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1. Introduction

Communication (from Latin communicatio(n-), from the verb communicare "to
share"[15]) can not be overrated. The ability of competent collaboration enforces the
quality and efficiency of human cooperation. The result of such a workmanship reflects
in todays ever-changing world deeper and faster than ever before, mainly because of the
breakthroughs in several fields of science. It is difficult to imagine our everyday lives
without the devices like laptops, smart-phones, smart-watches, printers, smart-TVs, etc.
Almost all of these gadgets/devices in their operation modus include information exchange
in a very vague meaning of this process. It can be as simple as a device sending its status
over the local network or more complex which involves human interaction such as email
delivery, fast message exchange (any popular messenger). The confidentiality of message
exchange always was and still is one of the important aspects of communication. The
history of various message conversion techniques dates back long before the common era.
Hence, athirst secrecy and constantly evolving communication technologies urged the need
of new field in science referred as Cryptography.

This thesis examines one of the practical implementations of public-key cryptography
known as Elliptic Curve Cryptosystem'. It describes how ECC can be realized and verified
to be functional. Furthermore, information about conduction of side channel attack (i.e.
simple power analysis attack) is conveyed. Prior to implementation of an elliptic curve
system, several aspects concerning realization need to be clarified, such as:

e a finite field, field element representation, algorithms performing field arithmetics
e clliptic curves, curve points representation, algorithms performing curve arithmetics

The outlined concerns were partially defined by the requirements. Hence, finite field has
to be field of characteristic 2, whereas its elements are represented as binary polynomials.
Exploited curves need to be named curves, which means that they have to comply with
NIST?*/SECG? or Brainpool* standards. The last stipulation in reference to implementation

Tt was discovered in 1985 by Neal Koblitz and Victor Miller [8] and the security of its schemes is based on
elliptic curve discrete logarithm problem. Known acronym: ECC

2National Institute of Standards and Technology is an agency of the United States Department of Commerce

3Standards for Efficient Cryptography Group (SECG), an industry consortium, that facilitate the adoption of
efficient cryptography

“Standard specification for ECC Curves
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was the computing platform being a microcontroller. Therefore, successful realization of
the task implies implementation of algorithms performing both field and curve arithmetics
coupled with verification of calculations as well as accomplishment of side channel analy-
sis.

This thesis is structured in such a manner, that in every chapter the investigation of a sin-
gle major aspect of the final accomplishment is unfolded. That being so yields the following
constitution. Chapter 2 provides succinct introduction to finite fields, field arithmetics and
necessary concepts for elliptic curve system. Chapter 3 reports on decisions taken in regards
to tools facilitating the development process and presents the software used for verification
of field and curve arithmetics implementation. It specifies the target device and describes
how it simplifies execution of simple power analysis. Furthermore, it explains the actual
implementation and illuminates existing intricacies of realized functions. Thorough clari-
fication is given on employed representations of field elements and curve points. Lastly, it
elucidates the validation and verification process. Chapter 4 reviews the execution of side
channel attack by examining and evaluating the gathered measurements. Chapter 5 delivers
a summary of the task accomplishments and suggests possible improvements. Finally, the
contents of the attached CD are listed in the Appendices.



2. Mathematical Background

One of the main concerns of the implementation was deciding how the underlying field
arithmetics for an elliptic curve system was going to be implemented. Thus, this chapter
walks through certain mathematical concepts of particular interest for this work, describing
in details how the filed and curve arithmetics is carried out.

2.1. Finite Binary Field Arithmetics

This section provides the necessary mathematical background of binary extension field,
introduces the field element representation and basics of field arithmetics. For a more elabo-
rate explanation of mentioned terms and detailed mathematical description reader can refer
to literature such as [11].

2.1.1. Important Mathematical Concepts

Understanding binary field arithmetics is crucial, since it is the core for the techniques
used in the implementation. Before defining the operations, some preliminary mathematical
concepts are important to mention.

Definition 1. A group is a set G together with a binary operation o on G and it’s called
abelian if the following four properties hold:

1. o is associative; that is for any a, b, c € G,

ao(boc)=(aob)oc.
2. There is an identity (or unity) element e in G such that for all a € G,

aoe=eoa=a.

3. Foreach a € G, there exists an inverse element o= € G such that

aoail:cfloa:e.
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4. The group also satisfies for all a,b € G,
aob="boa.

Definition 2. A field is a set F' on which two binary operations, addition and multiplication
are defined and which contains two distinguished elements 0 and e with 0 # e. F, further-
more, is an abelian group with respect to addition having 0 as the identity element, and the
elements of F that are # 0 form an abelian group with respect to multiplication having e as
the identity element. Both of the operations, namely addition and multiplication, are linked
by the distributivity law

a-(b+c)=a-b+a-c

where a,b,c € F and the element O is called zero element and e called the multiplicative
identity element.

Definition 3. A field F is called finite if there are limited number of elements in F. Finite
field or Galois Field has an order which is always a power of a prime p™, where the prime
p is called the characteristics and positive integer m € N.

A finite field satisfying the Definition (2) with prime p being equal to 2 is called finite
field of characteristic 2 or binary extension field. For the sake of clarification and distinction
one can denote it as GF'(2™) instead of Fam.

Definition 4. Binary extension field is a field GF (2™) with m > 2 and order 2™:
GF(2™) = {am 12" " + amo2™ * + - -+ + aglapsism—1 € GF(2)} (2.1)

and an element of this field is compactly represented as

a(xz) = Z a;x' (2.2)
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2.1.2. Arithmetics in Binary Extension Field

Here the definitions of arithmetical operations over GF'(2™) are given. It is important
to notice that these definitions are theoretical and they were not directly implemented in
realization. Detailed description of actual algorithms are given in corresponding chapter
(see Section 3.2.1) of this thesis.

Addition

Addition and subtraction are the same in GF'(2™), the addition of a(z),b(x) € GF(2™)
can be written in form of

m—1 m—1 m—1

ar'+ Y b= (a; Db’ (2.3)

=0 =0 =0

where @ stands for binary exclusive O R operation, known as XOR.

Multiplication

Multiplication of two elements in binary extension field is carried out as multiplication
modulo irreducible polynomial f(z), which is denoted exactly as any element of the field
GF(2™). Having two elements in GF'(2") such as a(x), b(x), then multiplication is defined
as

m—1 m—1 m—1
a(x) - b(x) = a;x’ biz' = Z a;z" - b(x))mod f(z) (2.4)
=0 =0 =0

Squaring

The square of a field element a(z) € GF(2™) can be computed the following way

m—1 m—1 m—1
a*(r) = (Z a;x')? =) (a2")? = Z a;x*'mod f(z) (2.5)
i=0 =0 i=0

This way the squaring in the field becomes a linear operation and is carried out more
efficient than simply multiplying an element with itself. Both of the operations (multipli-
cation and squaring) produce a result, which is twice as long as the element or elements of
operations, therefore it should be reduced with irreducible polynomial.
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Inversion and Division

Division and inversion are closely related. Taking two elements in GF'(2™) such as
a(x),b(x), then division b(x)/a(x) is defined as

b(z)/a(z) = b(z) - a~'(x), (2.6)

where a!(z) is the unique element in GF(2™) such that a(x) - a™'(z) = 1 mod f(x)
called the inverse of a(x) € GF(2™). One of the common methods for inversion is based
on extended Euclidean algorithm. For in depth description of this method reader can refer
to Chapter 2, section 2.3.6 of "Guide to Elliptic Curve Cryptography" [8].

Reduction

As it was mentioned above, multiplication and squaring operations’ results require twice
the size of a regular field element and therefore they need to be reduced. One of the fa-
vored choices of irreducible polynomial is the form of f(z) = 2™ + g(x) where the degree
of g(x) is small relative to m and deg(g) = k. Thus, it allows a fast modular reduction
procedure, however slightly less efficient than the one carried out using low weight irre-
ducibles. Next, by splitting the polynomial ¢(z), which is the result of aforementioned
operations into ¢(x) = cy(z) + 1 () with deg(c) = m +t, where ¢y () = S°._  c;a' and

cr(x) = 327! e;xt. The reduction of ¢(z) is then derived as

Crea(T) = cp(x) B cy(x) - g(x). (2.7)

Derived polynomial cg.4(z) has degree deg(creq) = max(m — 1,t + k). The operation
is applied recursively until deg(cgreq) < m.

2.2. Introduction to Binary Elliptic Curves

This section provides the introductory information about elliptic curves, familiarizes the
reader with arithmetics involving the curve points. There is vast amount of literature on this
topic, owing to the fact that elliptic curves come to light in many branches of mathematics.
For a throughout introduction to the theory of elliptic curves see the Chapter 3 of Blake and
Seroussi’s book [1] or refer to the book by Hankerson and J. Menezes [8].
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2.2.1. General Elliptic Curves

Definition 5. An elliptic curveE over a field ¥ is defined as follows
E y2 + a1xy + asy = 3 4 asx® + asx + ag (2.8)

where ay,as, a3, ay,a5 € F and A # 0; A is the discriminant of E and is defined by
equations:

A = —d?ds — 8d3 — 27d? 4 9dodyds )

dg = CL% + 4&2
d4 = 2@4 + aias (29)
CZ6 = ag + 4&6

2 2 2
ds = ajas + 4asas — ajazay + asas — ay |

Equation (2.8) is known as long Weierstrass form which describes curve E defined over
field F'; condition A # 0 enforce that there are no points at which the curve can more than
one tangent line. If G is an extension of field F, then the set of G — rational points on E
can be written in the form of

E(G) = {(x,y) € G X G : y* + ayzy + agy — 2° — az2”® — agx — ag = 0} U{O}

where O is point at infinity.

Simplified Weierstrass Equation

Weierstrass equation defined in form of Equation (2.8) can be significantly untangled by
a transformation which exploits the characteristic of elliptic curve known as isomorphism.
Mathematically it is described in the following form:

Definition 6. Ler 'y and E5 be elliptic curves over ¥ and defined by Weierstrass equations
By v+ ayzy + asy = 22 + asx? + aux + ag
Ey % + ayzy + asy = 22 + Gox? + aux + ag

they are said to be isomorphic over F if there exist u,r,s,t € F,u # 0, such that the change
of variables
(2,y) = (W + 1,0’y + u’sw +t) (2.10)

transforms E into E. The transformation (2.10) itselfis called admissible change of variables.
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Now, let F be a finite field of characteristic 2 and a; # 0, then the admissible change of
variables

a atas + a3
(2,y) = (o + =, aly + —5—2)
transforms Equation (2.8) into
v oy =23 +ax® +b (2.11)

where a, b € F. This curve is called to be non-supersingular and has a discriminant A = b.
The case of a; = 0 is equivalent to the curve being super-singular , this very special type of
curve is avoided in cryptography due to MOV attack.

Elliptic Curves over GF'(2™)

With the background from previous sections, the mathematical definition of elliptic curve
over binary extension field can be given. Thus, following holds:

E/GF(2™) = {(z,y) € GF(2™) x GF(2™) : y* + xy = 2° + ax® + b} U {O} (2.12)

where a,b € GF(2™) are constants, b # 0 and O is the point at infinity. Curves with
a € {0,1} and b = 1 are called Koblitz curves, otherwise they are characterized as random
curves.

2.3. Elliptic Curve Arithmetics

This section provides necessary information regarding fundamental concepts for elliptic
curve arithmetics.

2.3.1. Group Law

The law can be defined by a simple statement that three points on the curve will sum
to zero if and only if they lie on a straight line. Based on this statement explicit algebraic
formulas for elliptic points arithmetics can be defined. Before obtaining them the compre-
hensive denotation of the group law would be appropriate to mention.

'The MOV attack is named after Menezes, Okamoto and Vanstone (1993). It is a known algorithm which
uses Weil pairing to convert DLP in E(F}) to one in F;.. For brief explanation refer to [13].
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Definition 7. Let E/F then there is a chord-and-tangent rule for two points addition in
E/F to give a third point in E /F. This operation together with the set of points E /F form
an abelian group with O serving as its identity. To add a point to itself tangent to the curve
at this point is taken.

Operations in Definition (7) are best explained geometrically. Assume that P = (z1,y;)
and () = (x4, y2) are two different points on the curve F/F.

y y
0= (2, 72) P=taon -
75
A x
P = (x1.y1)
R = (x3,y3) R = (x3,y3)
(a) Addition: P+ Q = R. (b) Doubling: P+ P = R.

Figure 2.1.: Adding and doubling elliptic curve points ("Guide to Elliptic Curve Cryptogra-
phy" Chapter 3, page 80 [8])

The sum R of points P and () can be found by drawing a line through the points. This
line intersects the curve at the third point and the reflection of this point about the x-axis
will be R = (x3,y3). This can be seen in Figure 2.1a. Figure 2.1b depicts adding a point
to itself, which is performed by drawing a tangent at point . The tangent line crosses the
curve at the second point and x-axis reflection of it is the result of operation R = (z3, y3).

Thus, the algebraic formulae of the group law for non-supersingular elliptic curve E
defined over field Fam with O as identity, i.e. P+ O = O+ P = P for VP € E/Fam and
with negative of P denoted as — P ? is defined in the following form for addition

_ Y1+ Y2

T+ T2
T3 =N+ A+ + 190 +a
ys = MNax1 + z3) + 23Y1.

A

(2.13)

%if P = (z,y) € E/Fam, then —P = (x,z + y) since (z,y) + (z,z +y) = O
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Adding point to itself, or simply point doubling R = 2P = (x3,y3) is denoted as

)\:$1+£
Tp
b
xgz)\Q—I—)\—l—a:xf—i—F (2.14)
1

Y3 = o7 + A3 + 73.

Reader can find comprehensive explanation of group law definition and in-depth derivation
of Equations (2.13),(2.14) at the Chapter 3, Sections 3-4 of book by I.F. Blake, G. Seroussi
and N.P. Smart [1].

2.3.2. Discrete Logarithm Problem

The point or scalar multiplication is the core of cryptosystem based on elliptic curves
over F. The point multiplication is an equation of the form

Q=[kKP=P+P+---+P (2.15)

k times

where £ is an integer and P is a point on the elliptic curve £ with underlying field F. The
strength of the system is characterized by the fact that with a known curve, a given point P
(studied a priori or arbitrary) and [k] P it is hard to impossible to retrieve k. This is known
as the elliptic curve discrete logarithmic problem.

There are numerous well-known algorithms to efficiently perform scalar multiplication,
in this thesis multiply-and-add algorithm is used for this purpose. These algorithms exploit
various aspects of elliptic curves’ structure. Moreover, several possibilities of point repre-
sentation can significantly boost the computational time. For detailed descriptions of such
algorithms one can consult dedicated literature [16], [8], [1].



3. Realization of Elliptic Curve
Cryptography

Several issues arise when one investigates the problems in realization. One such problem
is the technique of number representation. The traditional data types offered by C pro-
gramming language addressing the aforementioned issue are limited either to 32 or 64 bits.
Implementation of the underlying logic for memory allocation and deallocation, efficient
referencing and bitwise relations in order to implicitly overcome this constraint is cumber-
some and immensely elaborate. Therefore, corresponding Section (see 3.1.1) describes a
possible solution, which utilizes external library. Further investigation of realization re-
quirements shows that there are other problems to be addressed as well. Thus, Section 3.1.2
covers proposals for concerns related to microcontroller used for realization and third-party
tools facilitating the implementation (see 3.1.2). The validation of the implemented system
is one of the important aspects of this thesis. Section 3.1.3 reviews the software, which was
solely used for this purpose.

Section 3.2 details software realization of ECC by providing the reasoning for methods
and algorithms implementing the underlying logic. Therefore, detailed description, corre-
sponding Nassi-Shneidermann diagrams and comprehensive explanation of implementation
for each mathematical operation over binary field (e.g. multiplication, division, addition,
etc) can be found in chapter 3.2.1. Section 3.2.2 looks into elliptic curve operations. To
be specific, it walks through the granular components of point addition and doubling op-
erations, providing an insight into factual constitution of those. Lastly, the dedicated Sec-
tion 3.3 reports on strategy used for testing the correctness of all calculations, which is a
bottom-up approach verifying small pieces of computation to establish a solid foundation
for complex elliptic curve cryptosystem.
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3.1. Technical Analysis

3.1.1. FLINT Library

FLINT/C (Functions for Large Integers in Number Theory and Cryptography)[9] is a li-
brary for calculating with large numbers. It is the core element of software realization for
this thesis. It offers numerous modules for arithmetics with numbers, polynomials, power
series and matrices over multi-precision integers/rationals, real and complex numbers as
well as finite fields. Nonetheless, due to limitations coming with microcontroller’s archi-
tecture most of the modules offered by FLINT are unavailable. It heavily depends on the
MPIR!/GMP? and MPFR? libraries. All the package modules in the library are optimized
for x86 and x86-64 CPUs. Thus, building the complete library from the source code for
ARM architecture was not an option. It might be theoretically possible by setting up a cus-
tom cross-toolchain* explicitly for Cortex-M3 (see 3.1.2), but this approach was proved to
be extremely complex hence out of scope for this work.

With points outlined above the usage of FLINT/C was trimmed to memory management
and bitwise logical operations (it includes left/right shift operations, bitwise relations, direct
access to individual bits as well as comparison operations).

3.1.2. Microcontroller and tools

Using a microcontroller as a target device comes with a trade-off between ease of software
implementation of ECC logic and execution of simple power analysis (i.e. direct access
to peripherals of a board). As it was mentioned in Section 3.1.1 a microcontroller is not
capable of running FLINT library with all features that it offers, if one wants to avoid extra
work. Thus, having LPC1769 provided, this section will present introductory information
regarding the chip architecture, peripheral complements of the board for power analysis and
development tools.

'Highly optimized library for bignum arithmetic based on GMP library. [10].

2A library for arbitrary precision arithmetic used for cryptography applications and research, Internet secu-
rity, computational algebra research, etc. [7]

3C library for multiple-precision floating-point computations with correct rounding [6]

4Cross-toolchain (cross-compiler) is a compiler which is capable of converting instructions into machine
code for a device other than that on which it is running. For more detailed information reader can refer to

(3]
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LPC1769

LPC1769 is an ARM Cortex-M3 based microcontroller by NXP for embedded applica-
tions, which can operate at CPU frequencies up to 120 MHz. The ARM Cortex-M3 uses
Harvard architecture with three dedicated buses for instruction, data and peripherals. Cur-
rent consumption measurement on CPU can be directly carried out by taking probes on
dedicated pins (denoted as J7 in Figure 3.1). This is described in Chapter 4, Section 4.1,
which goes through the necessary setup and equipment for this explicit task. The detailed
information of all the features available on the board reader can find in User Manual for
LPC176x/5x series [14]. An important facet of LPC board is the JTAG (LPC-Link) debug
interface, which makes the development convenient, since it is supported by numerous de-
velopment environments, to name a few uVision from Keil/ARM, Embedded Workbench
from IAR and LPCExpresso IDE.

LPCXpresso IDE and Git

The realization code base is large enough’® and would be inadequate to maintain it with
a simple text editor lacking version control. To deal with this difficulty LPCXpresso IDE
coupled with Git was used. LPCXpresso IDE offers a fully featured environment for de-
velopment, it has great compatibility with LPC-Link as well, which is of much importance.
It is available for Linux, however it has to be started via a script to ensure that all the user
interface components are visible. Git is a distributed version control system used to track
the changes to source files. In order to familiarize themselves with the concept of version
controlling in software development, readers can refer to specific literature such as "Pro Git"
by S. Chacon and B. Straub [2].

3.1.3. Verification of implementation

Evincing the validity of computations is essential. For this cause free open-source math-
ematics software system SageMath was used. It is based on numerous packages, some of
them were already mentioned in section related to long integer representation (see Section
3.1.1). It should be mentioned that one of these underlying packages is FLINT. The software
was installed and used under Linux environment, it supports several user interfaces includ-
ing command line sage prompt with Python (programming language) based syntax. It offers
an enormous amount of features, most importantly, implementation of elliptic curves and
arithmetics over various fields. Detailed test cases of binary field arithmetics and elliptic
curves operations are given in Chapter 3, Section 3.3. For information concerning Sage-
Math one can consult official documentation of the project [17].

SRanging between 1900-2000 lines of code, excluding external sources
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Figure 3.1.: LPC176x target side ("LCPXpresso LPC1769 rev B", Sheet 5 [5])

3.2. Implementation of Binary field Arithmetics and Elliptic
Curve Operations

Mathematical definition of binary field operations is given in Chapter 2 Section 2.1.2
where it is mentioned, that the technical specification varies from provided formulation in
sense of actual implementation. Therefore, the subsection 3.2.1 of this section extends on
this matter, whereas subsection 3.2.2 addresses the design of elliptic curve operations.

3.2.1. Binary Field Arithmetics Realization
Addition

It is the corner stone of the entire field arithmetics, despite being the simplest operation
to implement in means of logic complexity. The desired functionality is to add a(z), b(z) €
GF(2™), which are represented in form of binary polynomials. Since FLINT/C is used for
large integer representation, it is possible to make use of data structure CLINT ©, which will
hold the polynomials. Furthermore, addition in the field can be executed by binary exclusive
OR (also know as XOR). Once more, a ready-made function from the library is used to
XOR polynomials and store the result of calculation in third polynomial. Thus, following
figure (see Figure 3.2) encapsulates the description.

®For the detailed information refer to "Cryptography in C and C++", Chapter 2 [18]
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void add poly

¥or Il summand_poly A summand _pely B, total poly Res)

Figure 3.2.: Addition

Multiplication and Squaring

Multiplication of two elements in GF'(2™) such as a(z), b(x) can be carried out by mul-
tiplying a(z) by each term of b(x) separately, where each calculation iteration is equivalent
to combination of a shift operation followed by summation. The addition is performed as
stated in Figure 3.2. The logic behind of the multiplication function is depicted in the Nassi-
Shneidermann diagram below (see Figure 3.3) and it can be seen, that there is an instruction
performing shifting. To execute it a function provided by FLINT/C library is used.

int mull_poly

(frst_factor == 0 || scnd_factor == 0)

T F
set product to zero (frst_factor polynomial length > scnd_factor polynomial length)

T F
return status code

set multiplicand to frst_factor set multiplicand to scnd_factor

set multiplier to scnd_factor set multiplier to frst_factor

set multiplication loop upper bound (bit_length) to length of multiplier | set multiplication loop upper bound (bit_length) to length of multiplier

set displacementto O

fori « O to bit_legth by 1

(bit at position i in multiplier polynomial == 1)
T F
shift multiplicand left by (i - displacement )
set displacment = i @
add_poly( multiplicand, product, product ) ‘

‘ modulo_poly( product ) |

purge temporary variables

return status code

Figure 3.3.: Multiplication
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Multiplication function operates with three parameters, which are CLINT variables each
holding multiplicand, multiplier and product respectively. The function has a return value,
to facilitate debugging and general control flow. The explicit implementation of squaring
operation was omitted. Multiplication is used instead, with both parameters holding the
same value. It definitely affects the calculation performance, but at the same time it was a
conscious decision on trying to keep the overall workload manageable within a certain time
slot. It is obvious that the function produces results which have greater polynomial length
as any of its inputs. Therefore, there is a direct call of reduction function modulo_poly.’

Inversion and Division

Having two elements in G F'(2"™) such as a(z), b(x), then division a(zx)/b(x) is calculated
as the multiplication in the form of a(x) - b=!(z), where b=!(x) is the inverse of b(x).
It is obvious that inversion and division are tightly related operations. Thus, in order to
implement division over binary field some logic that administers the calculation of inverse
should be conceptualized. To accomplish this two additional functions are implemented:
one which executes long polynomial division and the other which implements the extended
Euclidean algorithm to calculate the inverse. It is worthwhile to mention that the realization
of long division with remainder was the most laborious subtask. For this reason, in spite
of the provided NSD?(see Figure 3.4) depicting this function, the careful explanation of the
algorithm would be appropriate.

For the long division, similar to the multiplication, shifting coupled with addition is used.
But in contrast to the described functions, in order to develop long division, some better un-
derstanding of FLINT/C library functionalities was required. Therefore, before explaining
the intricate parts of the actual implementation, it is reasonable to expand on how binary
polynomials are handled in memory. As it was mentioned earlier, they are managed by
CLINT data type from FLINT/C. A vague way to visualize how the library handles this task
is to imagine that polynomials are stored as binary strings, or as a sequence of 0’s and 1’s.
Each character or term of this string can be accessed via a library function and be inspected
for its value, whether it is a 1 or a 0. Additionally, there is a dedicated function which re-
turns the length of such a string. With this piece of information provided, the examination
of division function should become less confusing.

“Implementation information of this function is given later in this section
8Nassi-Shneidermann diagram
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The core idea behind of the implementation is to left shift the denominator by appending
trailing zeros to the end of it and then subtract it from the nominator, this way reducing
the degree (i.e. the length) of the divisor polynomial. This procedure should be executed
repeatedly until the length of the nominator is less than the denominator’s. Since addition
and subtraction are the same in binary field, it is accomplished by the addition function de-
scribed in subsection 3.2.1. The amount of shifting is regulated by the difference between
lengths of the nominator and denominator polynomials. Based on its value the divisor is
shifted by such amount that its highest term aligns with the highest term of the polynomial
representing the nominator. After each successful iteration the quotient is updated by shift-
ing its value to the left and appending 1 to its end. As a last commentary to the realization
of long division with reminder: there are several nested if statements in the NSD diagram,
which serve the purpose of correctly shifting the denominator and quotient polynomials.
After this brief explanation, it should become easier to understand the algorithm depicted in
Figure 3.4.

Further examination of the functions which perform division over binary field, it is ap-
propriate to concentrate on the function which calculates the inverse. Opposite to the long
division, the fundamental algorithm and its implementation for this function are well known.
It calculates the multiplicative inverse based on the extended Euclidian algorithm. There-
fore, Figure 3.5 simply illustrates the realization of the algorithm, which utilizes some of the
FLINT/C library functions, the long division with reminder, the multiplication and addition
functions described in details above. However, with the aim of avoiding possible ambiguity,
it suitable to comment on a function from the library called fswap_I. It is used instead of
a simple copy function (i.e. cpy_l), since it keeps the code better structured and directly
interchanges the contents of two CLINT variables, taking into consideration the necessary
memory management tasks. To summarize, the binary field division in this thesis is per-
formed in two steps: first, the inverse is calculated; next, the multiplication is carried out.

Reduction

Reduction or modulo is the last operation of interest and its implementation is not chal-
lenging. It relies on the long division function. At its core it simply invokes the mentioned
function and passes to it a polynomial to be reduced and the irreducible polynomial of un-
derlying field. The description of this functionality can be seen in Figure 3.6.



3. Realization of Elliptic Curve Cryptography 25

int div_poly

set num_of_shifts = numerator_len - denominater_len

set peinter = numerator_len

[ num_of_shifts < 0)

cpy_| ( reminder, numerator )

return status code

while ( numerator_len = denominator_len )

shift_| { denominator, num_of_shifts )

add_poly { numerater, denominator, numerator )

add_poly { quotient, ONE, quetient )

shift_| { denominator, 0 - num_of_shifts J

set displacement = peinter - numerator_len

set num_of_shifts = numerator_len - denominator_len

( num_of_shifts <0)

T F

{ numerator ==0) set pointer = pointer - displacement

shift_| { quotient, displacement )
shift_| { quotient, abs ( displacement - denominator_len ) )

set remainder to 0 @

break

( displacement = abs ( num_of_shifts ) )

( displacement > denominator_len )

shift_| { quotient, peinter - denominator_len ) shift_| { quotient, displacement + num_of_shifts )

break break

cpy_| [ reminder, numerator )

purge temporary variables

return status code

Figure 3.4.: Division

3.2.2. Implementation of Elliptic Curves: Point Addition and Doubling

The existence of functions embodying binary field arithmetics remarkably contributes to
the goal of achieving functional elliptic curve cryptosystem. To accomplish the objective,
functions outlining the group law described in Section 2.3 need to be implemented. This
subsection emphasizes the actual realization of point addition and doubling operations. Be-
fore going through the details of how the computation is carried out, couple of remarks
need to be made on the point representation technique used for this work. There are several
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int get_inverse

epy_l (1. IRREDUCIBLE_POL )

cpy_| { newr, poly_to_invert)

sett, newt, tmp_var, quotient to zero

while ( newr 2 0)

div_poly ( r, newr, quotient, tmp_var }

fswap_| (r. newr)

fswap_| ( newr, tmp_var )

mul_poly ( quotient, newt, tmp_var )

add_poly ( t, tmp_var, tmp_var )

fswap_| ( t. newt)

fswap_| ( newt, tmp_var)

cpy_| ( poly_to_invert, t)

purge temporary variables

return status code

Figure 3.5.: Inverse

int modulo_poly

( poly_length = IRREDUCIBLE_POL_LEN )
T F

div_poly ( poly_to_reduce, IRREDUCIBLE_POLY, quotient, remainder ) return status code

cpy_| ( poly_to_reduce, remainder )

pruge temporary variables

return status code

Figure 3.6.: Reduction

possibilities to represent an elliptic curve point (refer to Chapter 3 of "Elliptic Curves in
Cryptography" [1] for detailed explanation). Each of them comes with a trade off between
the ease of calculation and the computational efficiency. For this particular implementa-
tion of elliptic curve operations affine coordinates are used to describe points on a curve.
This decision was made relying on the operational simplicity of the affine representation
compared to the conventional projective coordinates.
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Point Addition

The realization of point addition conducts the calculations defined by the algebraic for-
mulae in Equation (2.13) in Chapter 2, Section 2.3. The function fulfills the regulations
of group law, by examining the points to be added. It is done in the following way by
checking:

e whether either of the points is the point at infinity
e whether one of the points is negative of the other

The complete implementation of the function is illustrated in Figure 3.8. After careful
examination of which, one can notice, that in addition to the checks defined above and the
functions performing binary field arithmetics, there is a function call for a method named
calculate_slope_addition. The sole purpose of this auxiliary function is to calculate A from
the formula (refer to Equation (2.13)). Its realization is described in Figure 3.7a. The
another important aspect is that the squaring of A (it is called slope in Nassi-Shneidermann
Diagram) is performed by multiplying the value by itself. The reasoning for this approach
was given in section describing the multiplication function (see 3.2.1). The consequences
of this implementation will be evaluated in Section 4, which covers the power analysis.

int calculate slope_addition int calculate slope_doubling
set numerator, denominator to zero set inverse to zero
add_poly [ paint_A->y, paint_B-»y, numerator | cpy_| (inverse, point_A->x )
add poly ( paint A->, point B-=x, denominator ) get_inverse ( inverse )
get_inverse ( denomingtor ) mul_poly ( paint_A->y, inverse, slope
mul_poly { numeratar, denominator, slope ) add_poly ( slope, point_A->x, slope )
purge temporary variables purge temporary variables
return status code return status code
(a) Compute A for Point Addition (b) Compute X for Point Doubling

Figure 3.7.: Auxiliary functions for point addition and doubling
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int add_points

set temporary variables to zero

{ point_A is point at infinity == true )
T

set result to point_B

return status code

( point_B is point at infinity == true )
T

set result to point_A

return status code

[ point_A-=x == point_B->x)
T

add_poly ( point_A->x, point_A->y, inverse_check_y)

{inverse_check_y == point_B-=v ),
T F

set result to point at infinity

return status code

add_poly { point_B->x, point_B->v, inverse_check_vy )

(inverse_check_y == point_A->v )
T F

set result to point at infinity

return status code

calculate_slope_addition { point_A, point_B. slope )

mul_poly ( slope, slope, slope_squared )

add_poly ( slope_squared, slope. result->x )

add_poly ( result->x, point_A->x, result->x)

add_poly ( result-=x, coeff_a, result->x )

add_poly ( result->x, point_A-=>x, result->y )

mul_poly ( result-=y, slope, result-=y )

add_poly ( result-=y, result-=x, result->y )

add_poly ( result->y, point_A->y, result->y )

purge temporary variables

return status code

Figure 3.8.: Point Addition
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Point Doubling

Analogously to the point addition, the doubling function straightforwardly implements
the formulas given by Equation (2.14), which explicitly define how calculations should be
carried out when adding point to itself. The realization considers a case of how a doubling
of the point at infinity should be handled. This is implementation specific. To elaborate
more, the point at infinity is defined as a point with coordinates (0,0). Additionally, at the
beginning of calculations, in order to exclude the possibility of error propagations by falsely
set variables, they all are preset to zero. Therefore, to countermeasure the occurrence of di-
vision by zero error this check is incorporated into the logic. The comprehensive description
of the explained functionality is shown in Figure 3.9. Moreover, the point doubling relies on
a supplementary method called calculate_slope_doubling. Similarly to its operative equiv-
alent in point addition, it calculates A from the Equation (2.14). To view the implementation
details of this function reader can refer to Figure 3.7b.

int double_point

set temporary variables

( point is point at infinity )
T F

return status code @

calculate_slope_doubling ( point, slope )

mul_poly ( slope, slope, slope_squared )

add_poly ( slope, slope_squared, point->x )

add_poly ( point->x, coeff_a, point=>x)

mul_poly { copy_of_point-=x, copy_of point-=x, copy_of_point-=x )

add_poly ( slope, coeff_a, slope )

mul_poly ( point->x, slope, point->y )

add_poly ( point->y, copy_of_point->x, point->y )

purge temporary variables

return status code

Figure 3.9.: Point Doubling
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3.3. Testing Implementation Validity

Confirmation of the fact that each component of the software performs as expected is a
vital part of any implementation. All the functions described in previous sections are the
subject of unit testing. Developer constructing individual modules is responsible to ensure,
that the piece of software produces reasonable output. Concept of the result or output being
credible can be further defined. Thus, for a well known input or inputs the unit under test
must deliver a result, which is consistent no matter how many times the same input was
provided to the unit. Furthermore, trustworthiness of the result must be verified against
independent software or tool capable of reconstructing the implemented functionality or
must be evaluated by any other means. External open-source software known as SageMath’
(refer to Section 3.1.3 for more details) was used for this particular aim in this work.

3.3.1. Test Cases for Binary Field Arithmetics Realization

A separate test suite was created for each function described in Section 3.2.1. For some
functions lookup tables containing inputs and corresponding outputs were generated to en-
able semi-automated testing, whereas others were tested manually. Such an approach with
mixed testing techniques speeds up the overall realization without sacrificing quality assur-
ance. Indeed, for some functions implementing binary field arithmetics, extensive tests are
unfitting. As an example addition function can be viewed. Due to its simplicity and com-
plete reliance on FLINT/C library function, a standalone test suite with lookup tables and
additional methods to conduct verification of each test case would be irrational. Therefore, a
simple manual comparison of one or two results of calculation against SageMath simulation
is sufficient.

In case of complex function realizations, like long division with remainder or multiplica-
tion, semi-automated testing is a better choice. Those functions have several intricate parts
and to test them manually is too laborious. Thus, it is desirable to set up lookup tables
and use them for affirmation of calculation correctness. A lookup table is a matrix (or it is
better to think of it as a two-dimensional array) with values taken from SageMath, which is
used to simulate the behavior of a specific function (e.g. multiplication, long division with
remainder, etc.). Each row of this array consists of a tuple representing input(s)'’ and out-
put(s)!!. To expound this approach, test suite of multiplication function is examined. It was
mentioned in Section 3.2.1, that function expects as input two values, which hold the factors

% Also known as Sage or SAGE (System for Algebra and Geometry Experimentation)

1"Depending on the function signature

1 Again, it depends on function signature, i.e. log division with remainder produces two results: quotient and
remainder
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to be multiplied, yet produces a single result containing the product. Thus, using SageMath,
multiplication over finite field of characteristic 2 was performed numerous times (for details
refer Section "Finite Fields" of SageMath Manual [17]), then values used in calculations
were directly passed to a two-dimensional array, with each row storing values of individual
computation. Figure 3.10a illustrates how this array looks like by providing an excerpt from
actual source code. In pursuance of avoiding manual invocation of multiplication function
for each test triplet of values (e.g. a row from array), additional function executing specified
test cases is developed. It simply iterates through the array, picks up the set of values, feeds
it to the function under test and, as a last step, verifies the result of computation against
the value from SageMath simulation. NSD depicted in Figure 3.10b expresses the described
logic in details. Very same approach is used to verify function performing long division'2.

Functions calculating inverse and performing reduction are tested manually. As an ar-
gument to be adduced in support of this decision, it can be pointed out that main blocks
in constitution of those functions are multiplication and(or) division functions. Therefore,
successful throughout testing of multiplication and long division with remainder drastically
reduces chances of miscalculations for them. To verify validity of computations by inverse
and reduction functions, similarly to addition, a few test cases can be conducted and checked
against SageMath simulations. Source code for test suites and lookup tables with additional
commentaries regarding execution can be found on the CD.

3.3.2. Test Cases for Point Addition and Doubling Functions

By carefully examining the actual implementations of point addition (see Figure 3.8) and
doubling (see Figure 3.9) operations one can notice, that both of them exploit the functions
described in Section 3.2.1. To be specific, they actually consist of numerous invocations
of the functions performing binary field arithmetics coupled with the logic which handles
regulations of the group law. Furthermore, an inspection of the auxiliary methods (see Fig-
ure 3.7) indicates, that those are composed of the field arithmetic functions as well. After
this preamble, it should not be surprising that the confirmation of calculations’ accuracy of
the field arithmetics functions, using the strategy described in Section 3.3.1, significantly
simplifies the testing of the point addition and doubling functions. Once again, SageMath
was used to warrant that the designed functions produce error-free results. It offers the nec-
essary functionality to conduct calculations with elliptic curves over various finite fields."?
The test suites of the point addition and doubling were developed in an uncomplicated and
straightforward manner.

12For multiplication and division 64 distinct test cases per function were generated
3For the detailed description of the features offered by SageMath module, reader can consult Section "Elliptic
curves over finite fields" of the SageMath documentation [17]
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At first a finite field of characteristics 2 should be defined, then an elliptic curve needs
to be specified with the previously created field as its underlying field. Then, some ran-
dom points from the curve can be selected using the methods offered by SageMath. Next,
point manipulations, like adding two distinct points or doubling a single point can be ex-
ecuted. After that, the generated values can be extracted in form of binary strings and be
used in the implementation for the testing purposes. Finally, by executing the self-designed
functions with the test data from SageMath and comparing the results of calculations from
self-implemented functions against the results of SageMath simulations for being identical,
it can be asserted that the functions operate as expected. This procedure was done several
times with various values of m (i.e. the order of GF'(2™))!* and different curves. In order
to facilitate a faster prosecution of the described routine, a simple set of SageMath prompt
compatible instructions was created. Reader can find the file with explicit instructions and
log file containing the test results on the CD.

4For the values ranging from 216 up to 21924
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char * mul_look_up[N][3]={

{"111001600000106011", "1101000016016810",
{"1111e1601166010101", "111e011i1i1i1ieee10",
{"1pe0116000010111", "O0le00e0lee0eelil",
{"ee100e1161111101", "1110160111016100",
{"0p10e110060111601", "101e066111106011",
{"0100000111101101", "O0Gl1l060111116081",
{"11910111060111010", "0l1EE011101001100",
{"01e000ee100011601", "10G00l110000000001",
{"11010060001110101", "1111010100100000",
{"®09111110016116066", "111101110660006011",
{"1110110111100101", "©010100001011810",
{"fi1e11pe1166011601", "111ill066001111601",

"100010100110001111160600010010116"},
"1011601110600110161111101016001016"},
"@e1ee011100010160111111110111001"},
"0011100001011016016011101116001606"},
"ee101111110001110160011010101011"},
"0E0E11000101111016011600000110101"},
"11911111611011600011601101110060" },
"@1e0011100000000110110100011001"},
"1001000101001011061111110100000"},
"0010100001011116016060101011101800"},
"001101011100000166011601111110016"},
"01101101101011011160000110100001"},

(a) Snippet from Lookup Table for Multiplication Test Suite

void test_poly_mat_mul

set temporary variables to zero

forieOtoN

setj=0

set frst_factor = mul_look_up [il[ j++ 1

set scnd_factor = mul_look_up [il[j++ 1

setres_check = mul_look_up [i1[j]

mul_poly ( frst_factor, scnd_factor, product )

T

( status code from multiplication function # OK )

print to console status code for debugging purposes
T

{ product == res_check )

E

print to console success message

print to console failure message

purge temporary variables

(b) Test Suite of Multiplication Function

Figure 3.10.: Verification of Multiplication Function




4. Side Channel Analysis

The side channel analysis operates with "side channel information", such as timing details
(e.g. time that operations take), radiation of various sorts and power consumption statistics,
which can be retrieved from encryption devices. The most common subtypes of this sort
of analysis are: simple and differential power analysis, timing and fault attacks. Simple
Power Analysis (SPA) is predominantly based on looking at the visual representation of
the power consumption while performing an encryption operation and direct interpretation
of the collected measurements. Since the amount of consumed power varies for divergent
operations performed by a microcontroller, SPA can reveal the differences in power profiles
and identify these operations. In this work SPA is used to distinguish point doubling and
addition operations of ECC implementations and attempt to yield information about the key
material. For the visual representation of the collected measurements an oscilloscope of
DPO4054 series was used. It features sample rates up to 2.5 GS/s and 10 M points record
length. The LPC1769 board facilitates the measurements by providing the dedicated pins
which are easily accessible for probing. According to the documentation [5] J7 (see Figure
3.1) is shorted on the board, but if the connection between two pins is opened, it can be used
for the current consumption measurement on the CPU.

It is stated in Chapter 2, Section 2.3.2, that a scalar multiplication is the core of elliptic
curve cryptosystems, which is defined by an equation in form of: Q = [k]|P = P+ P+ - -+
P (k times). Multiply-and-add method is one of the widely known algorithms to perform
this calculation (also known as binary method). It relies on the binary expansion of £ and has
a simple logic behind it. The binary representation of k is inspected from its most significant
bit down to the least significant one. In case of a bit being set two operations are performed:
point doubling followed by point addition, otherwise only a doubling is executed. Due to
the fact that elliptic curve operations produce different power traces, inspection of the power
profile may reveal the value of k. That being so leads to the conclusion, that the requisite for
conducting a successful side channel analysis is the ability to distinguish the power traces
produced by the curve operations.

The explanation of the physical configuration, the use of additional electrical components
and the necessary measurement arrangements for the oscilloscope to improve the readability
of data can be found in Section 4.1. Additionally, it contains the information about how
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some extra triggering enables doubling and addition operations discovery from the overall
power profile. The description of the domain parameters and the measurements’ evaluation
of the curves complying with NIST!/SECG? standards are given in Section 4.2.

4.1. Simple Power Analysis Realization

The implementation of the binary method to perform a scalar multiplication is simple.
However, it is necessary to show the actual realization to ease the explanation of the follow-
ing paragraphs. As it can be seen from Figure 4.1, the presented block carries out the logic of
the binary method, with only one difference: some additional instructions are incorporated
into algorithm’s execution to take the advantage of triggering.

multiply-and-add

set point_P to value taken form SageMath

set coefficient to value taken from SageMath

set point_Q to zero

set i to the length of binary representation of coefficient

set LPC1769 -> Pin 23 High

foriei-1lto0

double_point ( & point_Q )

(i-th bit of coefficient==1)
T F

set LPC1769 -= Pin 24 High

add_points ( & point_Q, & point_P, & point_Q ) @

set LPC1769 -= Pin 24 Low

set LPC1769 -= Pin 23 Low

Figure 4.1.: Multiply-and-add

'National Institute of Standards and Technology is an agency of the United States Department of Commerce
2Standards for Efficient Cryptography Group (SECG), an industry consortium, that facilitate the adoption of
efficient cryptography
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Before proceeding to details of the triggers’ role in facilitating discrimination of curve
operations, the physical arrangement for conducting the measurement should be described.
It was mentioned earlier, that LPC1769 board simplifies the task accomplishment by pro-
viding dedicated pins (J7 on Figure 4.2a), which can be directly accessed for the current
consumption measurement on the CPU. However, according to the documentation [5] they
are short soldered in between and for measurement purposes this connection must be broken
off. In order to indicate the voltage representation of the current flow between two pins a
10012 resistor is used (it can be seen in Figure 4.2b with the probes attached to it). Thus, by
attaching the oscilloscope probes to this resistor’ the power consumption on the CPU can
be observed.

After this preamble, the explanation of triggers’ role in aiding the power analysis would
be suitable. They simplify the detection of the overall computational block’s power profile
and the recognition of the independent operations. Thus, it was decided to use two periph-
eral pins* for this purpose: one of the them is supposed to mark the portion of the power
profile signal where the execution of scalar multiplication is taking place, whereas another
pin is configured to aid the curve operations distinction. The physical set up for this ap-
proach is illustrated in Figure 4.2b. The further elaboration can be formulated as follows:
pin 23 of the LPC1769 board is set high before the execution of the multiply-and-add block
calculations and low after its accomplished. The manipulation of pin 24 is coordinated so
that it outputs high voltage around the addition operation, whereas low voltage output per-
sists during the rest of computational steps. The described operational flow can be seen in
the diagram illustrated in Figure 4.1. To observe these manipulations, the mentioned pins
and J7 are connected to the oscilloscope of DPO4054 series, with the additional configura-
tions applied with purpose of improving the quality of readings. To summarize:

e The channel displaying the overall power consumption, is set to have band-limit of 20
MHz and AC coupling applied. It is scaled to 1mV peak-to-peak

e The channels displaying the triggers are set to have DC coupling and the signal reso-
lution for both is setto 5 V

e The record length of the oscilloscope is adjusted to be 10k points resulting into sam-
pling rate of 500 S/s

e High resolution mode is turned on.

In addition to these settings, a special probe with attenuation factor of 1 is connected to J7,
whereas for the trigger signals ordinary probes with attenuation factor of 10 are used. The
measurement result, collected with this setup, is depicted in Figure 4.3a. A strong distortion
in the signal (labeled as P_P, channel 2) represents the power consumption on the CPU

3For the sake of clarity further mentions of J7 mean this connection and not factual pins themselves
“for information about LPC1769 board peripherals refer to [14]
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and completely overlaps with the window, where the signal labeled as C'B_T' is high, which
appears for the voltage output at pin 23. The examination of Figure 4.3a shows, that trace
of the multiply-and-add implementation is distinguishable from the overall power profile
even without the additional triggering. This ability to identify the relevant portion of the
measurements empowers the further investigation and shifts the focus on the differentiation
of the power traces left by the distinct curve operations.

Therefore,the closer evaluation of the parts where the signal of channel 3 labeled as
OPB_T is high should be main point of the interest. Channel 3 monitors the voltage levels
at pin 24. The controlled output of this pin signifies the exact moments when an addition
operation is carried out. This hack serves a goal of finding the repetitive patterns in the
power profile, which can be confirmed later to represent the power trace of the aforemen-
tioned operation (see Figure 4.3a). The attentive examination of P_P signal indeed reveals
the recurrent appearances of the clearly recognizable traces within an observation window
which is defined by the voltage level alterations of O P B_T signal. Furthermore, they per-
sist outside of the observation window as well. This behavior is documented in Figures
4.3b, 4.3c and 4.3d.

A confirmation of the fact that observations hold in general and are not confined to any
specific case is done by conducting measurements several times keeping the same physical
arrangements. The demonstration of how this conclusion was achieved is critical. Moreover,
an explanation of the work-flow needs to be given, the fundamentals of which are valid
for all the measurement cases performed. Focusing on a particular case for the sake of
clarity, the following actions are taken to conduct a measurement. At first, a SageMath
simulation of an elliptic curve with its underlying field is generated. The field order is
explicitly set to 128 and the coefficient value is chosen so, that its binary representation
is (1000100010001),. The purpose of a coefficient manipulation is obvious, because 1’s
and 0’s dictate the order and quantity of the point addition and multiplication functions to
be executed. Thus, the observation of P_P signal must yield traces of thirteen doubling
and four addition operations. Since explicit triggering is not required to detect the signal
portion of interest, the instructions used for pin 23 manipulations are removed. The results
of the measurements with this slightly adjusted implementation of the multiply-and-add
(see Figure 4.1) are shown in Figures 4.4a and 4.4b. The first notice is that the absence
of the trigger signal from pin 23 does not affect the shape of P_P signal. The second,
instead of four pulses in the channel labeled as OFPB_T only three can be seen. Despite
the mismatches in the expected and the actual appearances of the power profile and trigger
signals, it should be mentioned, that the binary representation of the coefficient still can be
spotted to an acceptable extend.
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As it was noted in the description of the multiply-and-add algorithm, in case of a bit being
set a doubling operation will be followed by an addition, otherwise only a point doubling
takes place. It was also mentioned that the control logic of pin 24 delimits the traces gener-
ated by execution of point addition operation. Therefore, repetitive samples in overall profile
occurring midst two pulses in signal O PB_T must be the result of the doubling function
execution(s), whereas the pattern within a single pulse is the outcome of the point addition
calculation. This can be best presented graphically and Figure 4.4b is therefor: the distinct
operations and the corresponding bit value of the coefficient are manually separated and
marked. Now, the reason of the discrepancy in appearances of the power profile and trigger
signals can be given. It is implementation specific. Due to the fact, that there are several
function calls before the code block that implements the multiply-and-add algorithm, they
inevitably affect the code execution® and the overall power consumption in general. This
causes the deprivation of certain measurement readings, in particular the power traces of the
initial curve operations and the trigger signal alterations. Pursuing the goal of the distortions
minimization and the exclusion of the possible effects of triggering logic in measurements,
the instructions responsible for pin 24 manipulations were removed from the implementa-
tion of the multiply-and-add algorithm. However, even taking these changes into account,
the quality of the measurements has not significantly improved. To illustrate this, the coef-
ficient is set to (101011101101), and the measurements are done over again. It can be seen
from Figure 4.4c, that the curve operations are still traceable and the coefficient value can
be partially extracted; nonetheless, the problem persists and it is impossible to retrieve the
information regarding the power traces of the initial curve operations.

This particular realization of curve the operations (detailed description in Section 3.2.2)
is not performance efficient and causes a large difference in their computational time. Fur-
thermore, it yields a greater power trace for a doubling operation compared to an addition,
which is unusual and normally it is the other way around. Such kind of abnormality needs to
be analyzed and the possible causes of the observable behavior should be specified. Section
4.2 focuses on this matter by evaluating the execution mean time per a curve operation as
well as the overall calculation time for the curves of the different sizes.

Even if the compiler optimization is configured to be off
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Figure 4.2.: Complete measurement setup

4.2. Analysis of Curves Complying with Commercial
Standards

In continuation of Section 4.1, which describes the operation discovery from the repetitive
patterns in the power profile, this section reports on the further analysis, which examines the
performance characteristics of independent operations. For this purpose several curves with
the different domain parameters were chosen. The brief overview of them is given in Table
4.1a. It contains information about the underlying field sizes, the approximate bit lengths
of an RSA or DSA moduli at analogous strength specifications. The reduction polynomials
of the binary fields are listed in Table 4.1b. It is important to mention, that the measure-
ment routine was not changed. However, the additional triggering logic is removed from
the software implementation and the physical arrangement, in the pursue of minimizing the
unnecessary distortions in the appearance of the power consumption signal. The procedure
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Figure 4.3.: Usage of triggers

of the coefficient value extraction is preserved, it is done by studying the observable patterns
and manually separating the operations traces. Due to the implementation specific behavior
mentioned in Section 4.1, a direct evaluation of the execution mean time per operation is
performed. In order to ease the import of a curve and its field parameters, SageMath is used.
Exploiting the approach described in Chapter 3, Section 3.3.2, an elliptic curve and its field
are specified, then the values are exported in form of binary strings and are passed to the
program execution. The instructions facilitating this work-flow can be found on the CD.
Since all of the curves are Koblitz curves (see Chapter 2, Section 2.2.1), there is no need to
explicitly import the coefficients a and b. They are set utilizing FLINT/C library functions.
Moreover, the value of the k coefficient, which specifies the scalar multiplication is main-
tained unchanged for all six cases. Such a deliberate coefficient manipulation contributes
to a better graphical designation of the evolving computational complexity as the sizes of
the fields grow. Thus, the binary representation of the % coefficient is (100010110111),
yielding twelve executions of doubling and seven point addition operations. To estimate the
mean time of an operation execution, several measurement samples of a solitary operation’s
completion time are taken over the number of the samples. Table 4.3 illustrates the results
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Figure 4.4.: Observation of signal with specific coefficient

achieved by this approach. The domain parameters of the curves used for the analysis are
taken from "SEC 2: Recommended Elliptic Curve Domain Parameters" [4]. The curves to
be examined are defined by a simplified Weierstrass equation in form of:

vV +ay=2+ar’ +b

where the coefficients a and b, the underlying field and its reduction polynomial change their
value per curve. Therefore, to prevent unnecessary repetition of Weierstrass equations for
each curve, just the values of the coefficients, the reduction polynomial and the compressed
form of the curve base point are listed and can be found on the CD.



4. Side Channel Analysis 42

H Parameters ‘ Size ‘ RSA/DSA | Koblitz or random H

sect163kl | 163 1024 k
sect233k1l | 233 2240 k
sect239k1 | 239 2304 k
sect283k1 | 283 3456 k
sect409k1 | 409 7680 k
sect571k1 | 571 15360 k
(a) Curves used for observations

H Field ‘ Reduction Polynomial(s) H
| P fl@) =28+ 2"+ 25+ 23 +1
F2233 f($) = 2?3 + x™ +1
Fowo | f(x) = 2% + 2% + 1Tora?9 + 218 + 1
Fooss flx) =2 + 22 + 27+ 2° + 1
F2409 f(:)j) = 5(7409 + ZL’87 +1
Fosn flx) =2 + 29 425 4 2% + 1

(b) Reduction Polynomials of GF'(2"")

Table 4.1.: "SEC 2: Recommended Elliptic Curve Domain Parameters" Chapter 3, pages
14-15 [4])

4.2.1. Observations

Figure 4.5 clearly shows that the binary representation of the k coefficient can be revealed
from the power profile signal for all of the curves of interest. However, on the grounds of
the issue described in Section 4.1 there are still certain bits of the coefficient, which can
not be identified. A closer examination of the figures indeed reflects this behavior. Even
though the k coefficient is set to be (100010110111), the power traces of two doubling
and one addition operations are not perceptible, hence the visible part of the coefficient
is (0010110111),. The second important finding is that for any given curve a doubling
operation takes significantly more calculation time than an addition. In order to clarify the
main cause of this phenomenon the actual implementation of the curve operations should be
closely studied. Table 4.2a contains the information about how many times certain functions
are called on the average during the execution of a curve operation. Table 4.2b shows those
values for the helper functions, which were additionally implemented to calculate A from
Equations (2.13) and (2.14).
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At a first glance one can conclude that the statement about the abnormal execution time
is false, since a point addition has more than twice amount of the calls for the add_poly and
various library functions. However, the measurements prove the opposite. Even though a
greater number of the internal function calls affects the power trace of an addition operation,
the majority of the invoked functions perform two simple tasks: value copying and purging
of the temporary variables at the end of the calculations. Furthermore, those are the library
functions, which are already optimized. Regarding the add_poly: by reviewing the Nassi-
Shneidermann diagram illustrated in Figure 3.2 it becomes obvious, that the only overhead
of this function is expressed by the wrapper nature of its implementation. Being explicit,
it simply calls a library function to perform X OR of two CLINT variables. Therefore, it
should not be surprising, that the most of the computational time is consumed by the rest of
self-implemented functions for binary field arithmetics. Those are the multiplication, divi-
sion and calculation of the inverse functions (refer to Chapter 3, Section 3.2.1). Due to the
fact that those functions realize field arithmetics without utilizing any advanced methods,
they are extremely inefficient. Moreover, the squaring operation is not implemented at all,
instead the multiplication function is used. Thus, the difference in the execution time of
the curve operations is predominantly defined by the invocation frequency of the mentioned
self-implemented functions. When comparing among the total number of the multiplication
function calls per curve operation (including the helper functions) in Table 4.2, it can be
seen, that a point doubling has four, whereas a point addition requires three calls. Further-
more, a half of those calls actually imitates the squaring for a doubling operation. On the
other hand, only one out of three calls utilizes multiplication to perform the squaring in a
point addition operation. Going back to the multiplication function realization in Chapter
3, Section 3.2.1 it can be seen that in order to keep the computation result within the the
finite field the modulo operation (i.e. reduction function) is executed. Now, by taking into
consideration the fact that the squaring of a value is more likely to produce a result which
needs to be reduced, it can be said that for a doubling operation the reduction is performed
on average more often than for a point addition. This distinction has to have a significant
impact, whence the reduction is performed by exploiting the long polynomial division func-
tion, which itself is loosely implemented.

The timing analysis of the functions, which compose the elliptic curve operations, could
have shed more light on the assumptions and the conclusions made in the paragraph above.
However, before conducting it, one should take into the account an important aspect. Such
kind of an examination is labor-intensive. A careful and elaborated analysis of five func-
tions, which execution time depends on the several factors, implies a humongous workload.
Therefore, it is a conscious decision to keep the evaluation within certain boundaries and re-
view at provided depth only these functions, which realize elliptic curve arithmetics, whence
meeting the requirements of this work. Table 4.3 summarizes a simple timing analysis by
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displaying the total execution time and the mean execution time® of the point doubling, ad-
dition operations for the curves listed in Table 4.1a. As expected the overall execution time
rises according to the growth of the underlying field size. The curve operations’ execution
mean time’ lengthens as well, preserving the tendency of a doubling requiring more time

than an addition operation.

H Function Name

~ n calls in add_points

~ n calls in double_point H

tion

FLINT/C functions 22 8
add_poly 9 4
mul_poly 2 3
Respective auxiliary func- | 1 1

(a) Analysis of curve operations constituents

Function Name

~ n calls in calcu-
late_slope_addition

~ n calls in calcu-
late_slope_doubling

FLINT/C functions 4 2
add_poly 2

mul_poly 1 1
get_inverse 1 1

(b) Analysis of auxiliary functions constituents

Table 4.2.: Examination of implemented curve operations

Curve Total Computa- | Execution MT per | Execution MT per
tional Time [s] Doubling [ms] Addition [ms]

sect163k1 1,67 104,56 88,96

sect233k1 2,78 173,68 144,96

sect239k1 3,07 193,28 158,00

sect283k1 3,55 216,72 189,68

sect409k 1 6,13 380,40 321,92

sect571k1 10,21 633,00 535,20

Table 4.3.: Computational Time Characteristics

®Mean execution time is designated as MT in Table 4.3
"Execution mean time was calculated as the arithmetic mean (average) time of the operations’ execution
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5. Conclusion

There are several issues present, which can be resolved effectively and it would be ap-
propriate to review them. First, the corruption in the power profile that leads to the inability
of a complete coefficient identification from the observable traces. This drawback could be
eradicated by inserting an empty loop prior to the multiply-and-add block execution, which
in turn would possibly stabilize the signal to be examined. However, this would have con-
tradicted the goal of keeping analysis as close as possible to the real side channel attack.
Next, the absence of an actual implementation for a field squaring operation. This limita-
tion could be suppressed either by leveraging the full potential of FLINT/C library or by
explicitly implementing the operation itself. Unfortunately, none of the listed options can
be easily achieved and the brief descriptions of related problems are given in Chapter 3.

Further suggestions for the quality improvement of the performed analysis can be made
in addition to the description of the existing problems and their potential solutions. Even
though a custom cross-toolchain for target device was ruled out as a laborious task, it can be
viewed as the most optimal method. This way the complete functionality of the FLINT/C
library could have been utilized, which in turn would have led to the simplification of binary
field arithmetics realization. As a first possible outcome, the simple power analysis could
have been made the only priority in contrast to having two cross-related and equally im-
portant tasks: the field arithmetics implementation with verification and the power analysis
itself. The other possibility could have been the further investigation in the efficient field
and elliptic curve arithmetics implementation based on the FLINT/C library.

Nonetheless, this work shows a possible implementation of binary field arithmetics and
studies its effects on an elliptic curve system realization. It was demonstrated how the im-
plementation of the field and curve arithmetics can be achieved just relying on the bare
FLINTY/C library functionality. The credibility of the calculations produced by the functions
carrying out the field operations was asserted against an external tool. SageMath was used to
simulate binary field arithmetics and export computation data, which was further employed
by test suites. Exploiting very same approach the accuracy of the curve operation calcula-
tions was demonstrated. The execution of the side channel analysis was carefully examined
and described, straightforward evaluation of the measurement results was covered.
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A. CD Contents

flint.h Header file of FLINT/C library

e Autor: Michael Welschenbach, 1998-2001 by Springer-Verlag Berlin, Heidel-
berg

flint.c Source file of FLINT/C library

e Autor: Michael Welschenbach, 1998-2001 by Springer-Verlag Berlin, Heidel-
berg

ecc_mat.h Header file of Elliptic Curve Operations

ecc_mat.c Source code of ECC operations implementation

poly_mat.h Header file of Binary Field Arithmetics Operations

poly_mat.c Source code of Binary Field Arithmetics implementation

ECC_Thesis.c Source file with main function

test_suite.h Header file of Test Suites

test_suite.c Source code of Test Suites

lookup_tables.c Source file with lookup-tables for Test Suites

setting_up_curves.py Collection of instructions to facilitate SageMath of ECC curves
sage_generate.py Collection of instructions for ECC and field arithmetics testing

CurveSpecifications.pdf Values of coefficients, reduction polynomials and compressed
base points of curves used in analysis

MeasurementsExecutionExplanation.txt Journal of conducted measurements
SAGE_Samples Folder of helper scripts used for test data generation
TestLogs Folder of Test Suite Logs

Mes_Photos Folder with photo documentation of all the measurements
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