
Fakultät T echnik und Informatik Faculty of Engineering and Computer Science

Department Informations- und Department of Information and
Elektrotechnik Electrical Engineering

Anthony Kamau

Web based weather data analysis and presentation
of a local weather station

Bachelor Thesis

Anthony Kamau

Web based weather data analysis and presentation of a

local weather station

Bachelor Thesis based on the examination and study regulations for

the Bachelor of Engineering degree programme

Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner : Prof. Dr.rer.nat Hans-Jürgen Hotop

Second examiner : Prof. Dr. Müller Wichards

Day of delivery June 7
th

 2007

Anthony Kamau

Title of the Bachelor Thesis

Web based weather data analysis and presentation of a local weather station

Keywords

Web server, Database, Weather parameter, Dynamic web page; HTML,PHP script,

HTML form, HTML request , PHP Session ,Three tier architecture.

Abstract

In this report a web based application and presentation of weather data from a local

weather station is described. The design using PHP and HTML technologies is exten-

sively described. Also described is how the SQL query can be embedded in PHP to

read data from the database.

The realization of various dynamic web pages is examined where the output presented

to the web user will depend on user controlled input and data update in the database

due to weather data variation.

The weather station is located at the roof of a building in Hamburg. The local weather

station measures the weather data. This data is then processed and then stored in a da-

tabase. Its from this database that the connection with PHP will be established. The

data once available in PHP will be presented on the front web page using familiar in-

strument images to reflect the current weather conditions. Next the data will be proc-

essed, analyzed and presented to the user interactively. The real data and the calculated

means and range for different time dependent parts will be presented graphically.

Anthony Kamau

Thema der Bachelorarbeit

Internetbasierte Wetterdatenanalyse und Darstellung einer lokalen Wetterstation .

Stichworte

Webserver, Datenbank, Wetterparameter, Dynamische Webseite; HTML, PHP Schrift,

HTML-Form, HTML-Bitte, PHP Sitzung, Drei Schichten Architektur

Kurzzusammenfassung

In dieser Arbeit wird eine Internet basierte Darstellung von Wetterdaten einer lokalen

Wetterstation vorgestellt. Die Anwendung wurde mittels PHP und HTML Technologi-

en entwickelt, dabei werden die Daten aus einer SQL Datenbank gelesen und die An-

bindung der Datenbank in PHP vorgestellt.

Verschiedene dynamische Webseiten wurden entwickelt um dem Internetnutzer die

verschiedenen Wetterdaten darzustellen. Dabei hat der Nutzer die Möglichkeit zwi-

schen verschiedenen Darstellungsmöglichkeiten zu wählen. Die Wetterstation ist auf

einem Hochhausdach in Hamburg installiert. Sie mißt die lokalen Wetterdaten und

stellt die bearbeiteten Wetterdaten in einer Datenbank zur Verfügung. Mittels eines

PHP Programms werden die Daten aus der Datenbank gelesen und zunächst die aktu-

elle Wettersituation auf der Eingangsseite der Internet Präsentation in Form von be-

kannten Messinstrumenten dargestellt. Zusätzlich werden die Daten bearbeitet und

analysiert, um eine interaktive Präsentation für den Nutzer zur Verfügung zu stellen.

Die realen Daten und der jeweilige Mittelwert sowie die Standardabweichung für un-

terschiedliche zeitliche Ausschnitte werden grafisch dargestellt.

Contents

1 Introduction …………………………………………………………………1

2 Weather Station…….………………………………………………..……...2

2.1 Description of the weather station MWS 6…………………………..2
2.2 Description of the weather parameters measured………………….3
2.3 Description of the database……………………………………………5

3 Used software………………………………………………………………….8

3.1 Database Management Systems……………………………………..8
3.2 Web Server………………………………………………………. …….9
3.3 Server Side Scripting………………………………………………….12
3.4 Other possibilities of realizing web based data presentation……..17
3.5 Different technologies of realizing server side scripting…………...19

4 Requirements and Requirement analysis………………………………..24

4.1 Description of Three-Tier Architecture………………………………24
4.2 Requirements in the context of Three-tier Architecture…………..25
4.3 Output requirements…………………………………………………...27

5 Design…………………………………………………………………………..31

5.1 Weather data presentation homepage……………………………...31
 5.2 Weather History presentation………………………………………..33

5.3 Sessions ………………………………………………………………..36
5.4 Connection to the database and data fetching……………………..37

6 Realization...43

6.1 Weather home page and present weather situation presentation..43
6.2 Weather history presentation…………………………………………45
6.3 Display of the missing data…………………………………………...52

7 Testing and major challenges encountered…………………………….56
7.1 Testing………………………………………………………………….56
7.2 Challenges encountered……………………………………………...57

8 Conclusion……………………………………………………………………59

9 References …………………………………………………………………..60

10 Appendix..62

List of Figures

 1 Image of MWS 6 Weather station ….. …………………………………….2

2 Internal view of the weather station………………………………………...2

3 Compass showing cardinal wind direction…………………………………3

4 Wind measurement principle………………………………………………..4

5 A database containing several tables………………………………………6

6 Apache Installation wizard………………………………………………….11

7 Apache Installation step one……………………………………………….11

8 Apache Installation step two………………………………………………..12

9 Setting PHP path variable…………………………………………………..14

10 Editing PHP path variable………………………………………………….14

11 Adding full PHP path variable……………………………………………..15

12 Portal with two portlets…………………………………………………….22

13 Sequence describing generation of JSP dynamic HTML page………..22

14 Overview of three tier application…………………………………………25

15 Required and present three tier components……………………………27

16 Normally distributed data showing 1 standard deviation band range….29

17 Weather homepage design………………………………………………..31

18 Design of presentation and analysis of the past weather situation……34

19 Weather homepage realized………………………………………………43

20 Barometer drawn using a PHP program ………………………………..44

21 Hourly weather history user selection form………………………………45

22 User custom weather history user selection form……………………….46

23 Average hourly history for the hour 18th May 2007 12:00 to 13:00 pm...50

24 Average monthly wind direction for the month of May 2006……………51

25 May 2007 Output with null values………….………………………………53

26 Handling of null values in monthly weather history ……………………..54

27 Custom history output between 17-04-2006 00:00

 and 15-06-2006 00:00 ……………………………………………………...55

List of tables

1 Weather parameters and general measurement instruments…………..2

2 Weather parameters calculated by the weather station………………….3

3 Degrees to wind direction conversion……………………………………...4

4 dba.tblRawData table data definition………………………………………7

 5 Possible data sources and PHP functions………………………………..19

 1

1. Introduction

Weather data is of great importance to people from all walks of life. It is par-
ticularly very useful to the professionals working in the weather forecasting
field, Airline industry, farmers, disaster response teams just to name a few.
Past weather trends are particularly very useful since they serve as the ba-
sis for planning and prediction. It’s therefore very important for the weather
data to be recorded accurately, stored safely and presented to an interested
group in a manner that’s easy to interpret. Components of a modern
weather forecasting system include: Data collection, Data assimilation, Nu-
merical weather prediction, Model output post-processing and forecast
presentation to end-user. Collection and accurate past weather data is very
essential for accurate weather forecasting. If the data is not accurately re-
corded then this leads to wrong weather prediction. It’s also important to
state that weather forecasters require real time data or data that’s near real
time. This is well described in this thesis where the latest weather data
presentation is described. Data that’s as old as one minute can be pre-
sented to the weather forecasters, as it will be seen from this thesis.

This thesis seeks to discuss how past and near present weather data that’s
accurately recorded and stored in a database is presented on a website in
an interactive way to the user. In this case a user could be any of the above-
mentioned professionals or anybody who would like to know the past
weather trends in a graphical and tabular format.

The weather station is based on the roof of the building Berliner Tor 5 at the
Hamburg University of applied sciences. The weather station captures and
records six weather parameters since March 30, 2006, 5:07 pm within time
intervals of one second and a 60 seconds cycle mean is computed to give a
clearer trend of the data. The 60 seconds cycle mean data is less noisy than
the one second data. The 60 seconds mean for each parameter is then
stored in a Sybase database.

This thesis describes a web application development that seeks to fetch
this data from the database, analyzes and presents it in a friendly manner
that’s easy to interpret is discussed and outlined. In particular this data is
presented in form of graphs or both graphs and tables.

 2

2 Weather Station

Figure 1: MWS 6 Weather station Figure 2: Internal view of the weather station

2.1 Description of the weather station MWS 6

The weather station is from the firm Reinhardt – Testsysteme. Their external
and internal views are shown in figure 1 and figure 2 above. It measures six
different weather parameters in SI units as shown in the table 1 below

Table 1: Weather parameters and the general measurement instruments

Parameter Unit Instrument Abbreviation

Temperature °Celsius Thermometer TE

Atmospheric Pressure hectoPascal Barometer DR

Wind Direction ° Electronic sensor WR

Solar Radiation Watt/m2 Pyranometer SO

Humidity % Hygrometer FE

Wind Speed km/h Electronic sensor WG

The weather station also calculates four more weather parameters that are
very useful in weather data analysis. The calculated parameters and the
units are described on table 2 below

 3

Table 2: Weather parameters calculated by the weather station

Parameter Unit Instrument Abbreviation

Wind-chill Temperature °Celsius Calculated WC

Wind Maximum Peak speed km/h Calculated WS

Prevalent Wind Direction ° Calculated WV

Wind Average Peak speed km/h Calculated WD

2.2 Description of the weather parameters measured

Temperature is a physical property of a system that describes how hot or
cold something that is. The temperature of a system is defined as simply
the average energy of microscopic motions of a single particle in the
system. Temperature is measured using a thermometer which is
calibrated using various units. The scientific and SI unit for temperature is
Celsius.

Atmospheric pressure is described as the pressure at any point on the
earth's atmosphere. It’s approximated by the pressure caused by the air
above the measurement point. Low pressure areas have less atmospheric
mass above their location, whereas high pressure areas have more
atmospheric mass above their location. The SI unit for measuring the
atmospheric pressure is Pascal. In the weather station it’s measured in
hectoPascals.

Wind direction is the direction from which the wind is blowing. It is usually
reported in cardinal directions or in degrees. Traditionally wind direction is
measured using wind sock or wind vane. Today wind direction is
measured using Electronic Anemometers which can accurately measure
the wind direction. The SI unit for the wind direction is ° (degrees).The
degrees measured are interpreted to cardinal direction as shown in figure
3 and table 2 below:

Figure 3: Compass showing cardinal wind direction

 4

Table 3: Degree to wind direction conversion

Degrees Cardinal Direction
0° North
90° East
180° South
270° West

Solar radiation is radiant energy emitted by the sun, particularly
electromagnetic energy. It’s measured in Watt/m2. In general solar
radiation is measured by a Pyranometer.

Humidity is the amount of water vapor in the air. It is measured in three
ways: absolute humidity, relative humidity, and specific humidity. Relative
humidity is the most frequently encountered measurement of humidity
because it is regularly used in weather forecasts. It is an important part of
weather forecasts because it indicates the likelihood of precipitation, dew,
or fog. Relative humidity is, a ratio of how much energy has been used to
free water from liquid to vapor form to how much energy is left. Relative
humidity is expressed as a percentage. Humidity is commonly measured
using a Hygrometer.

Wind speed is the speed of movement of air relative to a fixed point on
the Earth. Wind speed is commonly measured using an Anemometer. In
the MWS 6 wind speed and wind direction are measured by an electronic
sensor shown in figure 4 below

 Figure 4: Wind measurement principle

 5

Wind chill temperature or simply wind chill factor measures the effect of
the combination of temperature and wind speed on human comfort. Both
temperature and wind speed do not have the same effect on inanimate
objects, or even on other animals or on plants. Nor do humans who are
sheltered from the wind feel this effect. Wind chill factors can be ex-
pressed as an equivalent temperature on either the Celsius or Fahrenheit
scale. In the MWS 6 weather station it’s expressed in Celsius.

Wind chill factor is published in tables. There are many such tables that
publish the wind chill factors and most of them do not agree on all the
equivalents. There are some discussions going on in an attempt to agree
on a common table. Presence of various tables has led to various formu-
las used to calculate the wind chill factor. The formula the National
Weather Service uses to compute wind chill factor is:

 T(wc) = 0.045(5.27V*0.5 + 10.45 - 0.28V) (T - 33) + 33
Where V is the speed of wind in km/h and T is the temperature in ° Celsius.

Its worth noting that the above wind chill calculation formula is not valid at
all for wind speeds greater than 90 km/h.

 Maximum Peak wind speed is the maximum instantaneous wind speed
measured since the last routine observation. It’s primarily determined with
the help of speed recorders. Average Peak wind Speed is the mean of all
the maximum peak wind speeds observed over given fixed intervals for a
given time.

Prevailing wind direction is the direction from which wind blows most
frequently across a certain region within a given time period. Different re-
gions on Earth have different prevailing wind directions, which are de-
pendent upon the nature of the general circulation of the atmosphere and
the latitudinal wind zones. The periods most frequently used are the ob-
servational day, month, season, and year. Methods for determination vary
from a simple count of periodic observations to the computation of a wind
rose. Compare resultant wind.

2.3 Description of the weather database

Database represents the internal layer in the three-tier1 architecture. It’s
composed of the database management system that manages the data-
base containing the data that users create, delete, modify or query.

In this case the weather data is managed using a Sybase DBMS. It’s
stored in a relational database called Weather. In a relational database,
all data are held in tables, which are made up of rows and columns.
Each table has one or more columns, and each column is assigned a spe-
cific data type, such as an integer, a sequence of characters (for text), or a
date. Each row in the table has a single value for each column.

A database can have one to many tables as shown in figure 5.

 6

 Table 1 Table 2 Table 3

 Figure 5: A database containing several tables

Characteristics of relational database table

The table in a relational database has some important characteristics. In a
relational database table there is no significance to the order of the col-
umns or rows. Each row contains one and only one value for each column,
or contains NULL, which indicates that there is no value for that column.
All values for a given column have the same data types. Each row can be
identified uniquely with the help of the primary key. A primary key is a
column or the minimum combination of columns that uniquely identify a
given row.

A primary key has some special characteristics that are important for the
definition of tables. A primary key should be stable. That means that it
should not change over time. It should be minimal. That means it should
have the minimum attributes possible. It should also be fact less. That
means it should not have any hidden information except uniquely identify-
ing the rows. It should be definitive. That means it should always exist and
have a value. It should not be null. It should be accessible. That means it
should be available when the data is created. Finally a primary key should
be unique. That means it should have no duplicate values.

The Weather database has one table named dba.tblRawdata. This table
has 11 fields that are defined that represent the 11 data types of the 10
weather parameters and 1 for the time when the data was recorded as
shown in the table 3. A common characteristic with all the defined field
types is that each field name begins with the letters fld… to show that it’s a
field name for easier identification. In this case the primary key is

 7

fldRecordedAt. It serves only the purpose of keeping the record of the time
when the data was recorded. In recording the time the date format used is:

 Year-Month-Day Hour: Minute: Second. Millisecond

Table 4: dba.tblRawData table data definition

Column Name Data Type

fldRecordedAt Timestamp

fldTemperature Decimal(5,2)

fldsolarRadiation Decimal(7,2)

fldWindSpeed Decimal(5,2)

fldWindDirection Decimal(6,2)

fldBarometer Decimal(7,2)

fldHygrometer Decimal(6,2)

fldWindChillFactor Decimal(5,2)

fldWindMaximumPeak Decimal(5,2)

fldWindAveragePeak Decimal(5,2)

fldPrevWindDirection Decimal(6,2)

The original weather measurement system sends data each second to the
data processing chip. Most of this data like the wind direction and wind
speed are very noisy. That means the data varies in magnitude so much
that it’s would be impossible to make sense out of it. Once the data is
measured by the weather station MWS 6 the mean of all the data over 60
cycles is calculated and then stored in the database described above. By
calculating the mean for every 60 seconds cycle, the noise is reduced
dramatically making the recorded data meaningful. When the 60 seconds
mean is evaluated, the mean computation completion time is recorded in
the field fldRecordedAt. By 23rd March 2007 about half million rows of
weather data have been recorded.

 8

3 Used Software

As it has been discussed in the last chapter where the data is accurately
recorded into the database, the tools that are used for presenting the data
to the user are described. Several tools were used in order to present the
data on the web in a manner that’s easy to understand and interpret.
These are the Database Management System, the Web Server, Server
Side Scripting language and other supporting modules.

3.1 Database Management System

A database management system (DBMS) is computer software designed
for the purpose of managing databases. Typical examples of DBMSs in-
clude Oracle, DB2, Microsoft Access, Microsoft SQL Server, Sybase and
SQLAnywhere. It has been mentioned in the last chapter that the weather
data is stored in a SQLAnywhere database. In order to be able to read the
data from the database it was necessary to install SQLAnywhere on the
local machine. By so doing it becomes possible to query the database
from the local machine. This was very important since it enables one to
use the server side script supporting modules supporting modules to con-
nect to the database. Furthermore installing it on the local machine pro-
vided a means to compare the query results from a script and the results
obtained from querying the database directly using the SQLAnywhere
user interface. The query results from the two procedures are supposed to
give the same results.

SQLAnywhere

SQL Anywhere is a Relational Database management System product
from iAnywhere Solutions. iAnywhere is a subsidiary of Sybase. SQL
Anywhere is a comprehensive package that provides technologies for data
management and enterprise data exchange, enabling the rapid develop-
ment of database-powered applications for server, desktop, mobile, and
remote office environments.

SQLAnywhere has some important features that make it very important in
terms of data management. One of the most important features of
SQLAnywhere is that its database files are operating-system-independent.
This means that they can be copied between supported platforms.
SQLAnywhere can be run on Windows, Windows CE, Novell NetWare,
and various UNIX platforms, including Linux. It has several standard
interfaces (ODBC, JDBC, ADO.NET) and some special interfaces (e.g.
PHP). These interfaces are very important since they provide a means of
interacting with the database. It supports powerful encryption of both
database files and client-server communication. This makes it very useful
because of its security. Version 10 supports materialized views, database
mirroring, server clustering, and snapshot isolation. Snapshot isolation is

 9

a guarantee that all reads made in a transaction will see a consistent
snapshot of the database, and the transaction itself will successfully
commit only if no updates it has made conflict with any concurrent updates
made since that snapshot.

SQL Anywhere is widely used as an embedded database, as an
application data store; for example, it’s used in network management
products, backup products, and others. Its ability to be used with minimal
administration is a distinguishing feature in this role.

SQL Anywhere is also widely used for mobile computing. It includes scal-
able data synchronization technology that provides change-based replica-
tion across many mobile databases. A Mobile database is a database
than can be connected to by a mobile computing device over a mobile
network. The client and server have wireless connections. A cache is
maintained to hold frequent data and transactions so that they are not lost
due to connection failure. Sybase has a 60% market share in mobile data-
bases followed by Oracle (20%) and IBM (15%). There are over 10 million
deployed seats of SQL

3.2 Web Server

The most important tool that’s required is a web server. A web server just
like the name implies is a computer or a computer program that is
responsible for accepting HTTP requests1 from clients, which are known
as Web browsers, and serving them HTTP responses along with optional
data contents. The contents usually are Web pages such as HTML
documents and linked objects. Usually Web servers have also the
capability of logging some detailed information, about client requests and
server responses, to log files; this allows the Webmaster to collect
statistics by running log analyzers on log files. A log file is a file that’s
automatically created in the server that maintains a history of page
requests. Some information about the request, such as client IP address,
request date/time, page requested, HTTP code, user agent, and referring
file are typically added.

Web servers are definitely essential in optional authorization request
(request of user name and password) before allowing access to some or
all kind of resources. Handling of both static and dynamic web contents is
another purpose for the web server. Static web content means content
which always comprises the same information in response to all download
requests from all users. Usually it comes from an existing file. Dynamic
contents are web contents that can change in response to different
conditions or contexts such as user input. Dynamic content is dynamically
generated by some other program or script or API called by the Web
server. In order for the web server to handle dynamic content then it
needs to support a related interface such as SSI (Server Side Includes),

 10

CGI (Common Gateway Interface), SCGI (Simple Common Gateway
Interface), JSP (Java Server Pages), PHP (Hypertext Preprocessor), ASP
(Active Server Pages). Web servers also help to compress the content to
reduce the size of response and thus lowering the bandwidth. They also
serve to limit the speed of responses in order to not saturate the network
and to be able to serve more clients.

 One of the most common HTTP serving programs is the Apache HTTP
server from the Apache Software Foundation. Others are Internet
Information services (IIS) from Microsoft and Sun Java System Web
Server from Sun Microsystems just to name a few. In the web based
weather data analysis and presentation project Apache HTTP server was
used.

Apache HTTP Server is commonly referred to as Apache, is a web server
that has strongly contributed to the growth of the World Wide Web.
Apache was the first alternative to the Sun Java System Web Server.
Since April 1996 Apache has been the most popular HTTP server on the
World Wide Web; as of March 2007 Apache served 58% of all websites.
Apache is developed and maintained by an open community of
developers under the name of the Apache Software Foundation. The
application is available for a wide variety of operating systems including
Microsoft Windows, Novell NetWare and Unix-like operating systems such
as Linux and Mac OS X. Apache is free and open source software.

Installation of Apache

Before Apache was downloaded a directory structure was set up and a
folder where it’s going to reside was created on the local computer.
Apache can be downloaded from
http://httpd.apache.org/download.cgi#apache20

Apache version 2.0.59 Win32 Binary was downloaded and saved into the
directory created above.

In order to install the installer file stored in the created folder above is
double clicked. After reading the Information and the agreements and
clicking next to move to the next screen. The network domain name,
Server name and the Administrator's email were added and "next" was
clicked. On clicking next the next screen was as follows .The customer
installation was selected as shown in figure 6 below:

http://httpd.apache.org/download.cgi#apache20

 11

”Custom” selected

Figure 6: Apache installation wizard

The correct directory where the Apache is to be installed was changed to
the folder with the directory structure created above. This was done by
first clicking”Change” button as it can be seen from the figure 7 below:

 Changed to the structure directory folder clicked”change” button

Figure 7: Apache installation step one

 12

On the next screen”Install” was selected and after installation was
complete then”finish was selected”.
In order to start the server from the start menu to the”All programs” menu
and the following selection in figure 8 was made.

Figure 8: Apache installation step two

Apache configuration file is located in the folder Apache2/config and is
called httpd.conf. This file was opened with a text editor and the most im-
portant configuration performed to the Apache is to set the directory of
PHP.

3.3 Server Side Scripting

Server-side scripting is a web server technology in which a user's request
is fulfilled by running a script directly on the web server to generate
dynamic HTML pages. HTML, short for Hypertext Markup Language, is
the predominant markup language for the creation of web pages. It
provides a means to describe the structure of text-based information in a
document

Server side scripting is different from the client side scripting because the
scripts are run in the web server where as a client side script is run by the
viewing web browser. Client side scripting and server side scripting will be
closely compared in the next chapter in more details.

Server-side scripting is preferred over client side scripting because of its
ability to highly customize the response based on the user's requirements,
access rights, or queries into data stores. In this case it’s highly effective in
the generation of the dynamic web content described in the last
subchapter.

ASP and ASP.NET from Microsoft are some of the server side scripting
technologies used. ASP abbreviates Active Server Pages. ESP or
Escapade enjoys wide use in Europe but has limited acceptance in US.

JSP, which abbreviates Java Server Pages and PHP abbreviating
Hypertext Preprocessor are the two most commonly used server side
scripting technologies. Others in use in the market are CodFusion, Lasso,
Server side JavaScript, SMX etc. PHP was the technology used in the
weather project. The reasons for its preference have been discussed in a
later subchapter.

 13

 PHP

PHP is an abbreviation for Hypertext Preprocessor. It’s a reflexive pro-
gramming language designed for producing dynamic web pages. PHP
was originally designed for producing dynamic web pages. It’s mainly
used for server side scripting but can also be used for command line inter-
face (CLI). A CLI is used whenever a large vocabulary of commands or
queries, coupled with a wide range of options, can be entered more rap-
idly as text, than with a pure GUI. PHP is a free software and it’s produced
by the”The PHP group” and released under PHP licence. The PHP group
is a worldwide group of PHP developers who are continuously developing
source code for various applications. The PHP group then avails the code
on the internet for anyone to download and use in their application and
also share their development with the others on the web.

PHP runs on a web server taking PHP code as an input and creating web
pages as an output. PHP can be deployed on most web servers and on
almost every OS platform free of charge. The PHP Group also provides
the complete source code for users to build, customize and extend for
their own use. This way users of PHP are able to spend time developing
new source code instead of reinventing the wheel (creating what has
already been created before).

 Installation of PHP

PHP can be downloaded from http://www.php.net/downloads.php
download page. For the purpose of realizing the weather data online
presentation project PHP version 5.1.4 zip package under the ”windows
binary” was downloaded. This meant that manual installation was
preferred than using the installer. The reason for opting for manual
installation was because it’s easier to configure it manually than let the
installer do the default configuration. The Zip file was then placed in the
folder that was created in the above directory structure where the Apache
web server was placed. The file was then unzipped and the original zip file
was deleted.

In order for PHP to work with Apache, the PHP folder was added to the
PATH environment variable. In order to do this the icon ”My Computer” was
clicked then ”Properties”. In the window that popped up ”Environment
variables” button was selected as it can be seen in figure 9 below:

http://www.php.net/downloads.php

 14

Selected

Figure 9: Setting PHP path variable

In the window that appeared the "Path" variable line from the "System
Variables" menu was selected and ”edit” button was clicked as it can be
seen in the figure 10 below:

Select ”Path” click ”edit” button

Figure 10: Editing PHP path variable

 15

At the end of the "Variable Value" field, a semicolon (;) was typed and the
full path to the PHP folder was then typed as shown in figure 11 below :

Figure 11: Adding full PHP path variable

Then”ok” was selected on each window until they were all closed. It was
then tested in PHP path was correctly set by selecting ”Run” in the start
menu ”cmd” was typed then ”OK” pressed to bring up a command window.
In the command window the command”php –v” was typed then”enter” was
pressed.

The output shown below indicated that PHP path was set correctly.

PHP 5.1.4 (cli) (built: May 4 2006 10:35:22)
Copyright (c) 1997-2006 The PHP Group
Zend Engine v2.1.0, Copyright (c) 1998-2006 Zend Technologies

Configuration of PHP was performed in a file called php.ini-recommended
located in the PHP folder. At first the name of this file was changed to
php.ini. This file was then opened with a text editor, in this case the Note
Pad. The main purpose of configuring PHP is to enable its functionalities
to work with the web server and to enable it to use the PHP extensions.
Extensions are reusable PHP components. Some are downloaded to-
gether with PHP installation files and others can be downloaded sepa-
rately.

It’s important to note that only the standard installation of PHP has been
discussed. Two more PHP libraries were downloaded and added to the
present installation like JPGraph and SQL Anywhere PHP Module.
JpGraph is an Object-Oriented Graph creating library for PHP newer than
version 4.3.1. The library is completely written in PHP and ready to be
used in any PHP scripts. All the functions that were to create the weather
data graph are defined in this library. SQL Anywhere PHP Module is a

 16

PHP library that can be used to retrieve data from an Adaptive Server
Anywhere database. The Weather database is managed by an Adaptive
Server Anywhere database. So all the functions that were used to estab-
lish connection to the database and to query the database are actually de-
fined in this library.

SQL Anywhere PHP Module

It has been stated in the introductory part of this chapter that by installing
SQLAnywhere on the local machine, one is able to use supporting mod-
ules to connect to the database. PHP provides the ability to retrieve infor-
mation from many popular databases, such as SQL Anywhere. Included
with SQL Anywhere is module that provides access to SQL Anywhere da-
tabases from PHP. This module and the PHP language can be used to
write stand-alone scripts and create dynamic web pages that rely on in-
formation stored in SQL Anywhere databases. This module is referred to
as SQLAnywhere PHP Module. This module can be downloaded from
http://www.php.net/ .

In order to be able to use this module it was required that SQLAnywhere
client software be installed on the same machine as the PHP and the web
server. The dynamic link library dblib10.dll, which provides the functional-
ity of PHP to access the database, is present in SQL Anywhere client soft-
ware. To install the SQL Anywhere PHP module on Windows, the DLL
from the SQL Anywhere installation directory is copied to the PHP installa-
tion. Optionally, an entry to the PHP initialization file is added so as to load
the module automatically, so there is no need to load it manually in each
script.

JPGRAPH

JPGraph is an Object Oriented graph library, which can be used to draw
graphs. The real advantage in using JPGraph is its simplicity. Creating a
graph at runtime may sound complex. But JPGraph class has been de-
signed in such a way that they hide the complex part from the user. Few
lines of coding can create amazing graphs, which can never be thought of.
The first step would be to download the JPGraph include files. This can be
found at (http://www.aditus.nu/jpgraph/). Extract all the contents to a folder
and put the folder in the same root directory as PHP. These libraries can
be referred to whenever needed.

First step would be to ensure that the GD library is enabled. GD is an
open source code library for the dynamic creation of images by program-
mers. GD is written in C, and "wrappers" are available for Perl, PHP and
other languages. GD creates PNG, JPEG and GIF images, among other
formats. GD is commonly used to generate charts, graphics, thumbnails,
and most anything else, on the fly. While not restricted to use on the web,
the most common applications of GD involve web site development.
JPGraph uses the GD library features to draw and create images. One

http://www.php.net/
http://www.aditus.nu/jpgraph/

 17

can use the phpinfo() to ensure that the GD library is enabled. By calling
this function all the settings and modules present together with their con-
figurations are outputted.

JPGRAPH has very many features such as flexible scales, supports text-
lin, text-log, lin-lin, lin-log, log-lin and log-log and integer scales. It sup-
ports PNG, GIF and JPG graphic formats. Supports caching of generated
graphs to lessen burden of a HTTP server. In the particular project the
caching feature was disabled due to the limited storage. It has intelligent
auto scaling which uses common scaling values, i.e. multiples of 2:s and
5:s. It supports color and brightness adjustments of images directly in PHP.
More so it supports, line-plots, filled line-plots, accumulated line-plots, bar
plots, accumulated bar plots, grouped bar plots, error plots, line error plots,
scatter plots, radar plots, 2D and 3D pie charts. Other features of
JPGRAPH include the ability to support an unlimited number of plots in
each graph, makes it easy to compose complex graph which consists of
several plot types, automatic legend generation, rotation of linear graphs
and more than 400 named colors.

3.4 Other possibilities of realizing web based data presentation

There are 2 types of web pages .These are dynamic web pages and static
web pages. Dynamic web pages are web pages whose contents can
change in response to different conditions. This kind of interactivity can be
realized in using client side scripting and Server side scripting.

Client side scripting

Using client side scripting is where one can change the behaviour of a
specific web page by keyboard or mouse event or specific timing e.g. auto
refresh after a given time duration. This type dynamic web page can be
realized using a client side scripting languages like JavaScript or Action
script which is used for Dynamic HTML, found in animations, sound and
changing text. One of the ways where interactivity could be realized in the
web based weather data presentation would have been to store the data
of limited time duration in a file from where it’s retrieved by the web server
and sent to the user’s computer. The user's web browser executes the
script, and then displays the document, including any visible output from
the script. A URL is a short text that identifies a web resource and
provides a means of locating the resource by describing its primary
access mechanism (e.g., its network ‘location’.

Using Server Side Scripting to realize a Dynamic Web Page

Using server side scripting to change the supplied page source between
pages, adjusting the sequence or reload of the web pages or web content
supplied to the browser. Data posted on a HTML form may cause the
server to respond in a specific way. Server response can also be

 18

influenced by parameters in the Uniform Resource Locator (URL), the type
of browser being used, the passage of time, or a database or server
configuration state.

The server side scripting works in a manner that’s more complicated than
the client side scripting to generate a dynamic page. The script or the
program to be executed receives input from a query string or a standard
user input from a submitted web form. The browser sends a HTTP request
to the web server. The web server retrieves the requested script which
could as well be a program. The server executes the script which results
in a HTML web page.

In the web based weather data presentation server side scripting could be
implemented by executing scripts using a web server which could typically
be Apache web server, Tomcat just to name a few. The user selects the
preferred dates and time to view the weather history on a HTML form. On
submitting the form the script is executed by the web server and the
output is sent back to the user user’s browser in form of a HTML output.
The user cannot view the source code unless the author publishes it
separately. Documents produced by the client side scripting may also
contain the client side script.

Comparison of client side scripting and server side scripting

Client-side scripts have greater access to the information and functions
available on the user's computer. The primary advantage of client side
scripting is that they do not require installation of addition software in the
server. This makes them popular with lots of authors who lack
administrative rights on the server. One major disadvantage of using this
kind of dynamic web pages in weather data presentation project is that the
user would be limited to the choices of the weather data stored in the file.
Therefore there is lack of complete interactivity and flexibility. The other
disadvantage of client side scripting is that some browsers do not support
certain client side scripting languages. So the behaviour of a web page
developed using a given client side scripting language can behave
differently from one browser to another.

In contrast to the client side scripts, the server side scripts when executed
produce output that’s understandable to the browser. Usually this is HTML.
Therefore they produce the same output regardless of the browser or the
system settings of the user’s computer. The server side scripting is more
effective in generating dynamic content. One major drawback with it is that
its used can strain low end, high traffic machines. Moreover it could be
exploited to gain access to the machine if not properly secured.

In each of the above case dynamic web page is the result. The two
methods of generating dynamic web pages can be used together. In the
web based weather data analysis and presentation project the server side
scripting was heavily used because it turned out to be more effective
especially in the data analysis part of the project and the graphical out put

 19

presentation. This could only be realized with the help of server side
scripting.

3.5 Different technologies of realizing the server side script

Server side scripting can be realized by many technologies. As mentioned
earlier some of the most popular technologies in use in the market are
ASP, ASP.NET, PHP, Perl, JSP, whose abbreviation has been explained
earlier in chapter 3. JSP and PHP are the most popular in the generation
of dynamic web content. The implementation of the web based data
presentation using PHP and JSP is discussed here and in the end of this
subchapter a comparison of the two is done.

PHP usage in web data analysis and presentation

There are three types of dynamic information that are there on the web
namely dynamic data, dynamic web pages and dynamic content. In
dynamic data only the variables within a web page are generated. In the
dynamic web page the whole web page is generated where as in dynamic
content only a portion of the web page are generated. In the context of the
weather data presentation the dynamism on the weather home page could
be viewed as dynamic data. This is because at each refresh only the
readings on the instruments changed but the rest of the web page remains
unchanged. As for the HTML page returned to the user who is interested
in weather history the whole web page is generated. So this is a case of a
dynamic web page.

All the dynamic content have one thing in common: they all come from a
data source outside the originating page. Table 4 below shows a list of
possible data sources and the PHP functions that handle them.

Table 4: Possible data sources and PHP functions

Data source

PHP function Comments

User $_POST

$_GET

These functions handle data
that’s directly entered by the
user on a web form

Database(local or
remote)

sqlanywhere_connect() This function is only specific to
SQLAnywhere database. It
establishes a connection to the
database from a PHP script

 20

In the web based weather data analysis and presentation PHP was one of
the possible server side scripting language that could be used. Being a
robust programming language its usefulness can not be underestimated.
The user input could be processed and all the calculations done with PHP.
Using its rich graphical library JPGRAPH the weather data could easily be
presented in a clear and an analytical manner through the charts. The
JPGRAPH which is used in PHP there are a lot of inbuilt functions which
are used to create and format charts. Such functions are very useful in the
weather data presentation using a line graph. Using the
PHP_sqlanywhere module one can establish a connection to a
SQLAnywhere database and query the data from the database from a
PHP script. By so doing it’s possible to query the latest data from the
database and use it to update the weather readings on the weather
homepage.

PHP has a lot of advantages over many other server side scripting
languages. It can easily be embedded into HTML and its use is very
widespread. It can also include a lot of server functionality that takes the
user input, manipulate and display it on the web. PHP version 5 is fully
object oriented and platform independent. Its speed makes it useful in
building large and complex web applications. In fact PHP is reputed to be
the fastest scripting language. PHP is an Open Source Code .This means
that the actual code that is PHP is available to the public free of charge.
So PHP is very cheap. Because PHP is open source there is a large
community of developers that help each other with the code. Therefore
they can write reusable pieces of codes called functions and classes
instead of reinventing the wheel. As a result the production time for a PHP
script is dramatically reduced. The syntax for PHP is quite easy. It’s similar
to C language.

On the other hand PHP has disadvantages as well. PHP has very poor
error handling capabilities. However this can be over come using a
feasible advantage solution.

Java Graphing using JGRAPH

JGraph is another possible way in which charts in Java can be realized. It
should not be confused with JPGraph. As stated earlier JPGraph is a
graphing library used in PHP where as JGraph is a graphing library in
Java. JGraph is a free, mature, and robust Java Graphing framework that
fully complies with Swing design principles. It contains all the graph visu-
alization and interaction functionality that’s expected in a graph library, in-
cluding multiple views, layering, zoom, drag and drop, undo, automatic
expanding and collapsing, routing, and layouts. One can create surprising
good workflow editors, call graphs, CAD tools, network diagrams, data-
base visualization tools, and more. It can also be deployed on the server-
side with a large range of image exporting functionality. It is fully docu-
mented and commercially supported. The main drawback of using JGraph
is that it’s slow and uses a lot of resources:

 21

JSP

JSP is an abbreviation for Java Server Pages. JSP is a Java technology
that allows the developers to dynamically create HTML or XML document
in response to a user request.

In order to run a JSP script one need to have a JSP capable web server
that’s up and running. There are many servers that are available most of
which are free for evaluation purposes. Some of the servers available
freely are Blazix from Desinderata Software, Tomcat from Apache
Software Foundation, Weblogic from BEA Systems just to name a few.

JSP simply puts Java inside HTML pages. For example a HTML file can
be changed to a JSP file by simply changing the extension from .html
to .jsp. Once each of the two files are loaded they produce the same
output but the JSP file will take longer to load for the first time. The reason
for this is that the HTML file is being converted to a Java file, compiled
then loaded. This happens only once and so after the first load the file
doest take long to load anymore.

The HTML file with a JSP script embedded in it looks close to one with
PHP embedded in it except that the JSP script is enclosed with the
tags ”<>” and ”%”.

Example

<HTML>
<BODY>
Hello! The time is now <%= new java.util.Date() %>
</BODY>
</HTML>

Each time the page is reloaded in the browser, it comes up with the cur-
rent time. The character sequences <%= and %> enclose Java expres-
sions, which are evaluated at run time. This is how JSP generates dy-
namic HTML pages.

Creating dynamic charts using JSP

In order to realize a time series chart in JSP one needs to download the
JFreeChart library. This is an open source graphing and charting library. It
can be freely downloaded from the link:
http://www.jfree.org/jfreechart/download.html

The library supports the standard array of pie, bar, line, area, and other
charts. In order to use the library one needs to create a Portlet16. Portlets
are pluggable user interface components that are managed and displayed
in a web portal. Web Portals provide a secure, single point of interaction
with diverse information, business processes, and people, personalized to
a user's needs and responsibilities. A portlet is a Java servlet that oper-
ates inside a portal. Portlets can be set up using an IDE such as Sun Java
Studio Creator or even Eclipse. Below in figure 12 is an example of a Por-

http://www.jfree.org/jfreechart/download.html

 22

tal with two Portlets. In this example, one portlet allows the user to go to a
URL; the other portlet provides some reminder text to the user.

Figure 12: Example of a portal with two portlets

ChartPortlet resides on a portal server, such as Sun Java System Portal
Server. When the portal server renders the complete view, it calls the port-
let's doView() method. In that method, the following is performed: connection
to the data source, in this case the Weather database to find out if some
new data is available. If there is some new data it’s fetched throw a sql
query. The API of the JfreeChart library is called to generate the time se-
ries chart. Using the Java 2D API from the javax.imageio package the im-
age is saved in the web server’s tempfiles. The URL for the image as a
portlet request parameter named CHART_PORTLET_IMAGE_URL is
generated and saved. The above process has been illustrated diagram-
matically using a sequence diagram on the figure 13 below

 Figure 13: Sequences diagram describing generation of dynamic HTML page

JSP has many advantages and it’s widely used. Most JSP pages are
primarily HTML. So any Java programmer who is familiar with HTML

 23

should be able to learn JSP techniques within a matter of hours. Debug-
ging JSP pages is also quite simple, as many popular Java IDE tools and
Web page design tools now support debugging or syntax-highlighting of
JSP pages. It’s more efficient where heavy loads are concerned. It’s also
an open source technology.

On the other hand although JSP is good at producing HTML content, JSP
pages must include logic to produce dynamic content. This means that
presentation and logic code coexist in JSP pages, and are tightly coupled.
This makes development and maintenance more costly. The greatest dis-
advantage for JSP is that JSP pages often run slower than similar pages
such as PHP due to being more robust and intensive.

From the above discussion of JSP and PHP it’s quite clear that both
methods of realizing the solution would work perfectly in the web based
weather data analysis and presentation. It calls for very careful needs
analysis before the web developer decides on which one to settle for be-
tween the two. Essentially, this choice depends on whether the project in
question is viewed as a web site or as an application -- which just happens
to have a web site as its user interface. Another way of putting it is that
developer needs to pose this question: Are the most challenging tasks that
will be faced about validating form input, or about problem domain things
that have nothing to do with HTML? If the most challenging tasks fall in the
second category, then the developer would want to look seriously at Java
and JSP as the better option to go for. If the most challenging tasks faller
in the first category, PHP could be close to ideal. Of course, real applica-
tions fit somewhere in the middle of these two categories. In the web
based data analysis and presentation project, PHP was preferred. This is
due to the huge amount of data involved in the results returned by the
queries from the weather database; PHP technology was preferred due to
its speed and ease of use.

 24

4 Requirements and Requirement Analysis

The weather station project requirement are widely discussed and ana-
lysed here. The requirements for the web based weather data presenta-
tion and analysis can be widely viewed in the context of three-tier architec-
ture. Before the discussion of the project requirement commences its im-
portant to discuss the three-tier architecture.

4.1 Description of Three-Tier Architecture

'Three-tier' is a client-server architecture in which the user interface,
functional process logic, data storage and data access are developed
and maintained as independent modules, most often on separate
platforms. In the client-server architecture the client computer request fro
the services from the server computer and the server computer processes
some data and gives the results to the client computer.

Typically, the user interface runs on a desktop PC or workstation and uses
a standard graphical user interface, functional process logic may consist
of one or more separate modules running on a workstation or application
server, and an RDBMS(Relational Database Management System) on a
database server or mainframe contains the data storage logic. The middle
tier may be multi-tiered itself (in which case the overall architecture is
called an "n-tier architecture").In the Web development field, three-tier is
often used to refer to Websites. A front-end Web server serving static con-
tent, a middle dynamic content processing and generation level Applica-
tion server and a back end Database comprising both data sets and the
Database or RDBMS software that manages and provides access to the
data.

The three tier architecture in the context of the web based data analysis
and presentation weather station is explained further using the figure 14
below

 25

 Figure 14: Overview of a three-tier application

4.2 Requirements in the context of the three tier architecture

Having discussed the three tier architecture it’s important to focus the
attention on the task at hand. The weather station data is recorded in the
Weather database. This data is updated after every one minute where a
new row of data is added to the table in the weather database.

Weather Homepage Requirements

The weather station data stored in the database data needed to be availed
to the users on the internet and in this case availed in a friendly format. It
should also be easy to interpret the data as it’s presented. The current
weather conditions are very important to the user in a manner that is easy
to have a quick view of the present weather parameter reading during the
time of view. It’s therefore very important that the user views it in form of
graphical images of the weather parameter instrument that is familiar to
him. Example: an image of thermometer on the weather homepage

 26

indicating the present temperature condition would be quite essential. In
order to fulfill this need the graphical images of the weather instruments
were required. It was therefore required that these graphical images of the
weather measuring instruments be available on the home page reflecting
the present weather condition in all their readings. It was further required
that the readings on each of the instrument be updatable as often as the
weather conditions can change.

The link to the HAW Hamburg home page was also required on the home
page to help the users to easier navigate and find out more about HAW
Hamburg .The home page was also required to provide user with a
means to access the past weather data or weather history. Further to this
the means for the user to obtain the weather history for a given hour, day,
month and year was required. The user should also be provided with
means to view weather history of user custom time period. Therefore the
buttons under which lay the links to each of the user preferred views of the
weather history were needed.

Weather History Requirements

In order for the user to view the weather history in form of data stored in
the Weather database the user needs to request the data to be presented
to him and in a certain format. By clicking any of the buttons leading to the
user defined history the user should be able to select the preferred time,
date or year through a user interface. Therefore the user interface was
very much required. On the user input form it was a requirement that the
user should be able to input the start date for the preferred weather history
duration. Specifically for the hourly weather history the user selection form
was required to allow the user to select the year, month, date and the hour.
For the daily weather history it should be possible for the user to select the
year, month and date. Same applied to the monthly history where it should
have been possible to select the year and the month of choice. In the
annual history there should be a provision to select the year the user
wishes to view the history.

Due to the nature of the flexibility that a user was allowed to have when
viewing the custom weather history special handling of the data fetched
was required. It’s important to note that the user was allowed to select
time interval within which to view the weather history of a maximum of one
year. The reason for this was that the amount of data involved in a time
period of more than one year would take a very long time to calculate and
analyse.

The user request is converted into a HTTP request by the client, the
browser in this case. Once the HTTP request is accepted by the web
server it needs to be processed, evaluated and converted into a sql query
so as to request the data from the database. The DBMS only understand
request in form of a sql query. The DBMS answers the query in form of a
row of results representing the columns requested. These results are

 27

returned to the application server(middle tier).From here the results are
evaluated, analyzed and converted in the format requested by the
client(user).The middle tier was therefore definitely needed in order to
fulfill the whole task. All the components that needed to be developed in
order to realize the expected result are diagrammatically explained in the
figure 15 below.

 Figure 15: Required/Present 3 tier components in the Weather Data presentation project

4.3 Output Requirements

Once the user is able to feed the system with the correct weather history
inputs it’s upon the system to deliver the correct output to the user. In terms of
output it was required that the system should be able to present the data for
the past weather conditions as requested by the user in a timely and an easily
understandable and interpretable manner. The minimum requirement was the
presentation of the requested past data in figures. However due to the extra
requirement that the data has to be presented in an easily understandable
and interpretable manner it was required that it be presented in form of line
graphs and tables. The main reason for requiring the line graph is that it’s
easy to see the trend with changing time.

For the hourly and the daily weather histories, it was required to present the
weather data for all the weather parameters on the same page. That means
that in the user input selection form it was not a requirement to select the
weather parameter to output since they would all be presented. Furthermore
the hourly and daily weather data was not expected to be large. It was
therefore necessary to present the data in form of graphs. For the monthly,
Annual and user custom data it was required that the user be able to select
on the parameter of choice on top of selecting the dates. It was therefore
required that the output of this data be both graphical and tabular for easier
interpretation.

It has been stated earlier that the 60 seconds mean was calculated and
recorded in the database for every weather parameter. It was still
observed that this data when plotted as it is was still very noisy and
therefore required to be smoothed. So plotting the smoothed the data was
an important requirement to be fulfilled. Data smoothing techniques are
used to eliminate "noise" and extract real trends and patterns.

 28

Some of the available smoothing methods available are the Random
method. This method is best when each period's data has no relationship
to the pattern in the previous data. Under this condition, the best predic-
tion for the next value in a series is simply the average of all previous data
points. Moving Average is another possible data smoothing technique that
can be used. This method works well if the data contains no trend or cyclic
pattern. Moving averages is calculated using the formula below:

n is a user-supplied constant greater than zero defining the number of
consecutive points to average. y’k is the kth smoothed element. Higher
values cause greater smoothing.

For all the cases in the mean, standard deviation and 1 SD band were
required to be plotted in all the charts. The arithmetical mean is defined as
the sum of all the members of the list divided by the number of items in the
list. For a data set the mean is the sum of the observations divided by the
number of observations. The general formula for calculating the arithmetic
mean is as shown below:

xi is the ith element from the list of elements whose mean is to be
calculated and n is the total number of elements.

In order to be able to explain the Standard deviation it’s important to
define the variance first. Variance is a measure of its statistical dispersion,
indicating how its possible values are spread around the expected
value .The expected value shows the location of the distribution, the
variance indicates the scale of the values. Usually mean which is
described above is taken to be the expected value. In general, the
population variance of a finite population of size N is given by:

 Where xi is the ith element of the population and is the population mean.
Although variance was not explicitly required for the data presentation it’s
important to calculate it since Standard Deviation is calculated from it. The
variance is not a very interpretable measure of dispersion. A more
interpretable measure is the square root of the variance, called the

 29

standard deviation abbreviated as SD. It gives in a standard form an
indication of the possible deviations from the mean. It is usually denoted
with the letter σ (lower case sigma). It is defined as the square root of the
variance. In other words, the standard deviation is the root mean square
(RMS) deviation of values from their arithmetic mean.

It’s calculated using the formula below:

Where xi is the ith element of the population and is the population mean.
Standard deviation is a statistic that shows how tightly all the various ob-
servations are clustered around the mean in a set of data. When the ob-
servations are pretty tightly bunched together and the bell-shaped curve is
steep, the standard deviation is small. When the observations are spread
apart and the bell curve is relatively flat, that implies that there is a rela-
tively large standard deviation. One standard deviation on either side of
the mean gives one standard deviation band range. It accounts for
around 68 percent of the total observations as it can be seen from figure
16 below:

 Mean -1SD Mean + 1SD
 Mean

Figure 16: Normally distributed data showing 1 standard deviation band range

If this curve above were flatter and more spread out, the standard devia-
tion would have to be larger in order to account for those 68 percent or so
of the observations. That’s how the standard deviation can be an indicator
of how the observations in a set are spread out from the mean.

The requirement was to plot the 1 SD sigma band range. However there
exists other sigma band ranges as well such as 2 SD sigma, 3 SD sigma

 30

band and 4 SD sigma bands that can be used depending of the analytical
needs. Statistically for a normally distributed population, there is a 68%
probability that the population will fall within 1 standard deviation, a 95%
probability that the population will fall within 2 standard deviations. There
is 99.7% probability that the population lies within 3 standard deviations
and 99.9% probability that the population lies within 4 standard deviations.
For Gausian normal distribution with mean = 0 and SD =1, N(0,1) the ac-
tual values of probability can be obtained from the standard normal distri-
bution tables.

 31

5 Design

5.1 Weather data Presentation Homepage

The figure below shows a block diagram describing how the weather
homepage was designed to look like figure 17 below:

Figure 17: Weather homepage design

As mentioned in the previous chapter, the first requirement was the
development of a web page which should be able to display the current
weather conditions. In order to fulfill this requirement five different
drawings of the weather measurement instruments were drawn using PHP
functions.

 32

Presentation of the current weather situation

In order to present the latest weather data from the database the
connection was established from the PHP script, used to draw the weather
instrument to the database. This was achieved with the help of the PHP
function:

 connection = sqlanywhere_connect("UID=;PWD=;eng=;dbn=;links=") .
‘UID’ means the user name used to access the database and ‘PWD’
means the user passord.’eng’ is the name of the data server. ’links’ is
assigned the name of the networking protocol17 used, e.g. ‘tcpip’ .

An SQL query was then formulated which read the top most data from the
database which was only one minute old as shown below. Example of
reading atmospheric pressure to be displayed by the barometer:

query string="select top 1 fldRecordedAt,fldBarometer from
dba.tblRawData order by fldRecordedAt DESC";

The field names have been explained in chapter 3

The connection $con together with the query $q were used to read the
data from the database and returned a result set comprising of one row of
weather record as required. This was done with the help of the method :
resultresult = sqlanywhere_query(connection, query). The column
number one was assigned to the local variable

A local variable is assigned the fetched column i from the result set which
goes under the name column[i] . The variable name column[i] is an array
element defined and it actually refers to the ith column of each row of the
result set. It refers to the various columns of the returned value of the
result set fetched after execution of an SQL query.

After the results are obtained and assigned to a local variable it is
necessary to free the database resources associated with the results
returned. It is also necessary to close the connection. This is achieved
with the method sqlanywhere_disconnect($conn). The reason for
disconnecting from the database is because the number of users
connected to a given database at one given time is limited. Usually when
this number is reached then the other users would have to wait for
connection by queuing which means long delays. By disconnecting from
the database after fetching the data then there are more connections
available and that means the performance is good.

The local variable $pressure was used to calculate the height of the
mercury fill that filled the barometer to indicate the pressure. Once the
height was calculated a loop was used to fill up the barometer tube
drawing up to the level calculated. The tube was well marked and the
height of the tube was drawn to scale. So the actual reading on the tube
was exactly the same as the reading obtained from the database. The
height is calculated and the fill level is calculated. Similar procedure was
used to display the latest weather data for the solar radiation, wind

 33

direction, wind speed, temperature and wind chill temperature. It’s
important to note that the drawing and displaying of the weather
parameter in each case differed a little although the same principle was
used to draw the images of the instruments and display the weather
parameters. Notable difference was in the solar radiation where the actual
reading was presented with figures as they were read from the database
and not graphically.

 Weather History buttons

Another important requirement was the ability of the user to view the
weather history. The home page is designed in such a way that the user
could choose the duration of the time interval of interest. Four fixed time
intervals are added namely hourly, daily, monthly and yearly. In addition a
user custom time interval provided where the user could flexibly choose
the time interval of interest. For all these possibilities buttons on the
homepage are provided that link the user to the HTML form. On this HTML
form the user can input the times one interest. The details of what actually
happens behind the buttons are discussed in the next subchapter.

5.2 The weather history presentation

On clicking any of the weather history buttons on the homepage, the user
is directed to an interactive webpage where user inputs can be inputted.
This is known as the HTML form.

The HTML form basically provides a medium through which the user can
send a message to the application. In three-tier architecture it acts like a
bridge between the client layer and middle layer. In order to make it easier
for the user, the option selector was used instead of the user having to
type the input. This was very important because the problems of misspell-
ing month names by the user and invalid dates are completely eliminated.
In the case of hourly weather history the user needs to select the hour,
date, month and year of choice. For the daily weather history then user
needs to select the date, month and the year. In the monthly weather his-
tory the user needs to select the month and the year. In the year weather
history the user needs to select the year and the weather parameter of
choice. Due to the large amount of data involved in the year weather his-
tory, it wasn’t possible to present all the weather parameters together. So
they are presented separately depending on the wishes of the user. So at
this point the user is given the chance to select the parameter of wish.

Once the user has selected the inputs and submits the HTML form by
clicking ”submit” the input is availed to the PHP script for validation using
the $_GET variable and the HTTP GET method. The $_GET variable is
an array of variable names and values sent by the HTTP GET method.
The $_GET variable is used to collect values from a form with
method="get". Information sent from a form with the GET method is visible

 34

to everyone (it will be displayed in the browser's address bar) and it has
limits on the amount of information to send (max. 100 characters).The fig-
ure 18 below gives a block diagram of how the presentation of weather
history was designed.

Figure 18: Design of presentation and analysis of the past weather situation

 35

User input validation and input error handling

The $_GET variable in the PHP script receives the variables sent by
HTTP GET method.

In the last subchapter on HTML form it was stated that the option selector
is used instead of the user having to type the inputs. Thus the unrecog-
nised inputs problem is eliminated. However another problem arises at
this point that the data is only available from 31.3.2006 at 17:01 hrs. A
user can possibly select a date before this date and time. A user can as
well select to view weather history of a future date or time. No data is
available for future date. As a result a JPGRAPH error is issued and the
user cannot proceed from there. This was solved by asking the user at the
top of the HTML page to only select date after the date when the data was
first available (March 30th 2006 5:07 pm). In case the user still went ahead
and ignored the warning then the same message is repeated and redi-
rected back to the same HTML.

Time formatting

After having checked the user input and found to be valid the next thing is
format the time input to a format that marches the fldRecordedAt time
column in the tbl.dba.RawData table of the weather database. The column
fldRecordedAt is in the time format:

”year-month-date hour:minute:second.millisecond”.
A part from converting the user inputted time. It’s necessary to take into
account the weather history that the user would like to view. Then an end
time marking the end of the hour, day, month or year that the user would
like to view was calculated as shown below

end time =(start time + 1 hour) : for hourly weather history view

end time =(start time + 1 day) : for daily weather history view

end time =(start time + 1 month) : for month weather history view

end time=(start time + 1 year) : for yearly weather history view

These above calculations do not apply to user custom weather history
since the user selected both start and end times of the time of interest.

Armed with these two local variables namely $end and $start its all ready
to use the variables to query the database. A separate PHP script was
written so that it could handle the task of querying the database and other
tasks concerned with the manipulation of the queried data. In order to
pass this data from the present PHP script to the other PHP script

 36

SESSIONS were used. Sessions and their usage have been discussed in
the next sub chapter.

5.3 Sessions

A normal HTML website will not pass data from one page to another. In
other words, all information is forgotten when a new page is loaded. This
makes it quite a problem for tasks like the PHP embedded in the HTML
page described above to be remembered from one page to the other. A
PHP session solves this problem by allowing one to store information on
the server for later use (start time and end time). However, this session in-
formation is temporary and is usually deleted as quickly as the user has
left the website that uses sessions. It’s important to state that sessions are
not recommended for sites that require high security like log in web sites.

Before beginning to store the information in the PHP session, one must
first start the session. When a session is started, it must be at the very be-
ginning of the code, before any HTML or text is sent. A session can be
started like the script shown below shows it:

<?php
session_start(); // start up a PHP session!
?>

In order to store a variable in a session a session associative array is used.
In an associative array a key is associated with a value. This is where
session data is both stored and retrieved. This can be done as shown
here below:
<?php
session_start();
$_SESSION['views'] = 1; // store session data
echo "Pageviews = ". $_SESSION['views']; //retrieve data
?>

The above PHP script would yield the output ‘1’.

In order to pass the variables from the first PHP script after it is formatted;
to the next PHP script such a session is used. Once the data has been
stored in the session the name of the session can be called from any
script in the same server and assigned to a local variable of the script. In
the second PHP script the session name is simply called and its contents
assigned to local variables

The above variables were then used in the second script in order to do
further processing of the data and presentation

 37

5.4 Connecting to the database and data fetching

In this section the connection to the database and the fetching of the data
from the database is going to be discussed. Also to be discussed is the
assignment of the fetched data to the local variables for use in the
statistical analysis and presentation.

As mentioned earlier the DBMS used in the weather database is
SQLAnywhere. As has been explained earlier in subchapter 5.1.2 the PHP
function is used to connect to the database as shown below:

connection = sqlanywhere_connect("UID=;PWD=;eng=;dbn=;links=") .

Where UID is username,PWD = password,eng= data server name,

dbn = database name and links = networking protocol.

The above function establishes a connection to an Adaptive Server Any-
where database. It returns a positive Adaptive Server Anywhere link iden-
tifier on success (connection), or an error and 0 on failure.

A query is a form of questioning in a line of inquiry. A database query is
the standard way information is extracted from the database .In order to
extract the data from the weather database a query is formulated as
shown below:

Query string = "select fldRecordedAt, fldBarometer, (SELECT MINUTE
(fldRecordedAt)) from dba.tblRawData where fldRecordedAt BETWEEN
start time and 'end time"

This is an extract of the query as used to fetch the atmospheric pressure
data.

Select is an SQL keyword used to specify the columns that should be in-
cluded in the result set. fldRecordedAt and fldBarometer are column
names in the dba.tbl.RawData table where the weather data is recorded.

MINUTE (d) is an SQL function that extracts minutes from a date d.
Example: MINUTE (‘2006-03-30 17:07:55.953’) returns 7.
Similar SQL functions exist that extract different components of a date as
shown below:
MONTH(d) that returns month , DAY(d) returns a date , HOUR(d) returns
hour and YEAR(d) returns year from a date.

From is an SQL keyword that precedes the name the table where the data
is recorded. In the case of the weather database all the data is recorded in
the table called dba.tbl.RawData.

Where is an SQL keyword that is used to restrict the returned result set to
only the rows that meet the specifications stated after the keyword
where .In the query that was defined in order to extract the weather data
the result set was restricted to the rows of records that were recorded

 38

between the dates specified. It’s important to recall that the dates
specified in the query are the local variables assigned to the session
variables stored from the previous PHP script. The PHP script had in turn
obtained these dates from the user selection in the HTML form.

The result of the query is assigned to a local variable for easier handling
and use in the PHP script to obtain the data from the database. With the
query and the connection to the database established, the query is
executed using the PHP function:

result = sqlanywhere_query (connection, query string)

The above function prepares and executes the SQL query on the connec-
tion. It returns a positive value (result) representing the result ID on suc-
cess, or 0 and an error message on failure.

After executing the query the data is fetched row by row using a while loop
with the function as shown below:

while ((row = sqlanywhere_fetch_row (result set)))

This function fetches one row from the result set at a time. This row is re-
turned as an array that can be indexed by the column indexes only. In
general this function returns an array that represents a row from the result
set or false when no rows are available. Each of the columns of the rows
in the result set is assigned to a local variable. This is done to every row
one by one where each row is accessed using a while loop until now more
rows are remaining as shown below

while ((row = sqlanywhere_fetch_row (result set))) {
 curr_row++
 local variable= row[i]

 }

curr_row is an internal counter that’s incremented each time a new row of
the result set is fetched.

Once all the required result has been fetched, the database resources as-
sociated with the result identifier $result is freed using the function:

sqlanywhere_free_result (result)

In addition the connection that had been established using the
sqlanywhere_connect() is closed using the function

sqlanywhere_disconnect(connection), whose purpose has been
explained in the last subchapter.

In order to calculate the mean the data fetched is separated by time
intervals of one minute. So each minute is associated with a given row of
the data. In order to represent this data in various graphs the data mean is
calculated for each unit time interval in the required weather history.

 39

The parameter data for each minute is added to a locally defined variable
which was initially zero. At the same time the minute counter is
incremented by one and the minute counter is checked if it’s equal to sixty
which is the minutes that make up one hour. If so the parameter total is
divided by the number of minutes so far to get the hourly average. The
hourly data total and the minutes counter are reset to begin calculating for
a new hour. It’s important to note that due to the problem of the missing
data it is not automatic that the number of data recorded within one hour is
sixty. For the hourly weather design history, the data is plotted as it is ob-
tained. The problem of the missing data will be discussed in details in
another chapter a head.

For the daily, monthly and annual histories it is now possible to plot all the
data for every minute. It is therefore designed in such a way that the mean
of the next smaller date element average is calculated and used. For ex-
ample for the daily weather history the hourly means for that particular day
are calculated. So for one day there would be 24 data points each repre-
senting the hourly mean.

Similar approach was used when populating the array for the monthly and
annual weather histories. The parameter mean for each day was
calculated in order to populate the array holding the data for one month.
Each element of this array represents the daily parameter average.
However special treatment was needed here because of the missing data.
For the monthly weather history the array element for a day when the data
was completely missing, the array’s element was populated with an
element ”” , to signify that no data is available for that time. Missing data
problem will be discussed at another chapter.

In the monthly, annual and user custom weather history the data in this
array was used in displaying the data in tabular form. In the case of
monthly data where the data for a complete whole day was missing it was
used to plot the graph. In all other cases it was smoothed before using it to
plot the graph. Smoothing will be discussed in a later subchapter.

Handling of the user custom data

The above description for the weather history implementation applies to
the weather history for the hourly, daily, monthly and annual weather
history. Due to the fact that the user can select start and end date,
handling of the inputted data is designed in a slightly different manner.

In order to calculate the data to be used to plot the graph for the user
custom history, the whole data within the time interval selected is divided
into 50 equal portions. This is achieved by dividing the total length of the
weather data array by 50 to obtain the interval. The mean for each portion
is then calculated and inserted into an array of length 50 used to store
these mean data. In order to calculate the mean for each portion,
elements of each portion are summed up index-wise while checking if the
present index is divisible by the interval. This is done by checking if the

 40

(current array index mod interval) =0. Example if the current array index is
57, then 57 mod 50 = 7. If current array index is 2000, then 2000 mod 50
=0. If the modulus is 0 then the sum of the elements is divided by interval
and the 50 elements of this array represent the data points to be used in
plotting the graph.

Smoothing the parameter data

In this project the moving average technique is used to smooth the data.
In this case a smoothing factor of six was used. In this case the first six
elements of the array original data array are summed up and then divided
by six to obtain the mean, which was assigned to 0th element of the
smoothed data array. Then first element to (1+6)th element are summed
up as well and divided by six to obtain the first element of the smoothed
data array. The same procedure is used to obtain the next elements of the
smoothed array up to (number of elements in the original array- smoothing
factor)th element. At this point the remaining elements are averaged and
the average is assigned to the (number of elements in the original array -
smoothing factor)th element of the smoothed array. Each of the remaining
elements of smoothed array is obtained by summing successive elements
each time beginning from the (present element+1). This procedure is used
to smooth data for all the weather histories. However for the annual history
the smoothing factor of 2 is used due to the number of data points in-
volved. At most there can be 12 data points in the annual history making
smoothing factor of 6 unreasonable.

Calculating Mean, Variance, Standard Deviation and 1 SD Band
Range

The parameter mean for the required time interval is calculated by sum-
ming all the elements of the parameter data array then dividing by the
number of non-null elements. In this case an array is defined whose ele-
ments were the mean of the array. If the user is interested on monthly
mean and all the days in that month have data then the data is summed
up and then divided by the number of days in that month. This leads to a
constant valued element array.

Variance in the web data analysis was calculated by first calculating the
sum of squares of each element of the population. That is each element
the data array is subtracted from the mean and the difference is squared
to obtain the sum of squares. Before each element is considered for
addition into the sum of squares it’s first checked if its non null. If so then
it’s used in the calculation of the sum of squares. If it’s a null value then it’s
excluded from the calculation of the sum of squares. Finally the variance
is calculated by dividing the sum of squares by the number of non null
elements.

Standard deviation is calculated by simply calculating the square root
array from the variance array. The whole array of standard deviation is

 41

therefore made up of elements made up of equal values which are square
root of the variance.

The calculation of the band range is done by defining two arrays. The first
array holds equal elements with value (standard deviation + mean). This
represents the upper band line. The second array is populated with equal
values obtained from the equation (standard deviation - mean). This repre-
sents the lower band line

 Formatting and displaying the graph

In order to use the data to plot the graph the data is first assigned to a self
descriptive array so as to make it easier to recognize what data the array
represents. Only the data to be plotted is assigned. In PHP its allowed to
define an array and specify its name that’s shows the type of elements to
be stored like data['Actual']= elements of actual data

In order to draw the graph there are two JPGRAPH library files were
required and are therefore included. These are:

include ("C:/Documents and Settings/Kamanu_A/My
Documents/Web/webserver/jpgraph-2.1.4/src/jpgraph.php");

include ("C:/Documents and Settings/Kamanu_A/My
Documents/Web/webserver/jpgraph-2.1.4/src/jpgraph_line.php");

These two files are usually included in the PHP code before they are used,
preferably at the beginning. In the project the two lines were included at
the beginning of the script. By including the two modules above then it
becomes possible to use all the JPGRAPH functions in PHP required to
draw line graph.

A graph is drawn, its scaling defined and title added. In order to achieve
this, an object of the type GRAPH is created as shown below:

Object name = new Graph (width, height,”cache storage”);
The third parameter cache storage is only used if the images are stored in
a cache for future retrieval in case they are required. In this particular
project it was designed in such a way that only real time images are
generated and outputted the images were not stored.

The graph scale was set and a title is added using PHP functions found in
JPGRAPH.

 The type of scale that should be used for the graph where by x axis is set
using PHP functions. There are various types of scales that can be
defined such as”textlin”, ”intint”. The first one means that x axis is going to
be text defined scale. This means it’s going to be scaled according to the
data available for the axis as it appears. The y axis is going to be scaled
automatically in a linear manner. Different texts with different colors are
added to the graph in order to describe which color graph represented

 42

what data. Their position in the graph is also defined by specifying the
coordinates on the graph area.

A line graph can have as many line plots as one wish. In order to plot one
line graph an object of the linePlot is created from an array of data to be
plotted. Each data point in the line graph was marked with a red colored
filled circle of width four. The color of this particular line which is used for
plotting the mean is blue. The above description was implemented as
shown below:

linePlot object = new LinePlot($data['smoothened']);//line graph using
array //$data['smoothened']

linePlot object->mark->SetType(MARK_FILLEDCIRCLE);// data points
marked with // a filed circle
linePlot object->mark->SetFillColor("red");//marks set to red
linePlot object ->mark->SetWidth(4); //marks have width 4

linePlot object ->SetColor('blue'); //line graph color set

The above description just describes how to plot the line for the actual
data. Similar technique was used to plot the lines for the mean, upperband
and lowerband data. After creating the lineplot object for each of the three
line plots, all the three lines they are added to the graph using the Add ()
function as shown below:

// Add the plot to the graph

$graph->Add(linePlot object1);
$graph->Add(linePlot object2);
$graph->Add(linePlot object3);

Finally the graph is displayed with all the added lines after calling the
method stroke() as shown below:

$graph->Stroke();

.

 43

6 Realization

6.1 Weather homepage and present weather situation presentation

As discussed in the last chapter and on chapter two, the first and most im-
portant requirement was presentation of the present weather condition. This
was realised in the weather homepage as shown in figure 19 below:

Solar Radiation Pressure Wind direction/Speed History Buttons WindChill Temperature Actual Temperature

Figure 19: Weather home page realized

On typing : http://r1380-02.haw22.php/ on the browser the above shown
weather page opened. Six weather parameters showing the present
weather conditions were presented using actual diagrams of the weather in-
struments used in measuring them and the figures. Solar radiation was dis-
played with a diagram of the sun and the actual solar radiation was dis-
played in figures. A diagram of barometer used to measure atmospheric
pressure was also realized on the homepage. It reflected the actual atmos-
pheric pressure at Berliner Tor at the moment of view. Apart from graphical
image the actual atmospheric pressure in figures was displayed below the
image of barometer. Wind direction reading was realized using a compass
with a pointer pointing to the direction of the wind. Wind speed is also dis-
played below the wind direction indicator (compass).Actual temperature and
the wind chill temperature present condition presentation was realized with
images of two thermometers. Mercury fill, which is red in color in the ther-

http://r1380-02.haw22.php/

 44

mometer images, reflect the actual reading. Weather history buttons are
also present on the homepage. With one of this buttons the user can navi-
gate from the homepage to the weather history.

Drawing Instrument Images using PHP functions

Each of the familiar weather instruments can be drawn with the help of PHP
functions. For example, such functions were used to draw a filled tube of a
barometer with a blue color to represent the mercury fill. The function
ImageCreate (int, int) was used to draw the background area on which the
image lay. ImageArc($im, int, int, int, int, int, int, $color) was used to draw
the curved parts of the image where as: imageline ($im,int,int,int,int,$color)
was used to draw the linear part of the weather instrument drawing. In this
case $im is the name of the image, and the integer parameters that follow
represent the x and y start and end coordinates of the line. In a case where
all the four integer arguments of the imageline function are the same, then
that represents one single point of the image. The fifth argument is used to
represent the color of the image and was predefined using another function
$red = ImageColorAllocate ($image,255, 0, 0).This could be extended using
a loop to fill up a large area in the image like shown in the code snippet
below

$i=130;
 for($j=0;$j<15;$j++){
 if($i<135)
 imageline ($im,76,$i,(97-$j*0.65),$i++,$blue);
 else
 imageline ($im,76,$i,(97-$j),$i++,$blue);
 }

The output from the above code snippet yields the image of a calibrated
barometer reflecting the present atmospheric pressure with the mercury fill.
This can be seen in the figure 20 below:

Figure 20: PHP program drawn Barometer

 45

6.2 Weather History Presentation

On selecting and clicking the “hourly” weather history button a HTML form
shown below was loaded by execution of the following line of HTML code:
<form action = "http://r1380-02/hourly.html" > <input type ="submit" value =
"Hourly"></form></td>
This means that the file named hourly.html is loaded. This file is actually the
HTML form in the figure 21 below.
From this form loaded, the user can select the preferred year, month, date
and hour of weather history of interest then click the “Go” button to submit
the user selection. Also included in the HTML form is the Hamburg Univer-
sity of Applied Sciences (HAW) logo and the link through which the user
could navigate the way to the weather homepage.

Year, Month, Day and Hour selection Link to the weather homepage HAW logo

Figure 21: Hourly weather history selection form

On selecting and clicking the “Daily” weather history button a HTML form
shown below was loaded. The HTML was the similar to the one for the
hourly weather history except that the user only needs to select the year,
month and date of interest. From it the user can then click the “Go” button to
submit the user selection.

http://r1380-02/hourly.html

 46

The monthly, custom and the annual weather history HTML forms are simi-
lar to each other but slightly different from the others described before. In
this case the user is required to select the weather parameter of interest in
addition to the time interval of interest. This is due to the huge amount of
data involved and therefore is not possible to the huge amount of data in-
volved. It’s not possible to view all the weather parameters at the same time.
Outputting of the data for the annual weather history can take almost 45
seconds. On the annual HTML form, the user is alerted about the expected
delay in the presentation of graph and table for the data with the message
“Due to the huge amount of data involved, processing and presentation may
take about 45 seconds. Thank you for your patience”.

The user custom HTML form requires additional input of the end time for the
time interval the user wishes to view the weather history. This can be seen
on the figure 22 below:

User selected start date User selected end date User selected weather parameter

Figure 22: User custom weather history selection form

HTML output

On clicking the submit button in the hourly history HTML form the weather
data for the ten different weather parameters is displayed in form of line
graphs. Behind the scenes the following code line was executed:

<form action = "http://r1380-02/hourly.php" method = "GET">

http://r1380-02/hourly.php

 47

This applied to the hourly weather history. The HTTP function GET is used
to send user input to a PHP script.
 $year= $_GET["Year"];
 $month= $_GET["Month"];
 $date= $_GET["Date"];

The variables received are assigned to local variables $year, $month and
$date. The PHP script hourly.php receives the user inputs and validates
them to guard against users selecting dates when data was not available
like a future date not reached yet.

In order to implement the solution to the problem described above a user
input validation code was implemented. All the local variables received from
the user input referring to time are appended as string format into one
continuous string as shown below.

$minsec = ':00:00.000';
 $space =' ';
 $mystime =
($date.$space.$month.$space.$year.$space.$hour.$minsec);

The above variable $mystime is a string and it represents a time format that
can be used by the PHP function strtotime() to convert the time inputted in
the above string format to unixtime18. This PHP function receives a string
argument of time in the format : “date month year
hour:minute:second.millisecond”.

The date and time when the data was first available on the database is on
“March 30, 2006, 5:07 pm”. This is then converted using the above method
to UNIX time. The two UNIX times (user inputted time and the first date
when the data was available in UNIX format) are compared. If the user input
time is less than first available data date then the user is asked to input
dates after “March 30, 2006, 5:07 pm” and is redirected back to the user
input HTML form. The same principle is used to check if the dates selected
by the user are a future date meaning that no data is available. In this case
the user selected date is compared with the present date which can be
obtained in UNIX time format using the function as shown below:

 $unixtime = time();

The time formatted to UNIX time format above was converted to this format
using the PHP function:

$start = date("F d, Y, G:i :s",$stime);

Where $stime is the time in UNIX time to be converted to the required
format. This format is the same time format as the time format used in the
weather database table. This is the column namefldRecordedAt.

Once the user input time was converted to the required format it was then
passed to the next PHP script using a session as shown below in the code
snippet:

session_start();
$_SESSION['hstart']= $start;

 48

$_SESSION['hend']= $end;
$_SESSION['displaydatetime']= $displaydatetime;
It was then retrieved by the second PHP script and stored locally as a local
variable as shown below:
session_start();
 $start= $_SESSION['hstart'];
 $end= $_SESSION['hend'];
These two local variables were used to formulate an SQL query $q that was
used to fetch the data from the database as shown below:
$q = "select fldRecordedAt,fldBarometer,(SELECT MINUTE(fldRecordedAt))
from dba.tblRawData where fldRecordedAt BETWEEN '$start' and '$end'";

A connection was then established to the database as shown in the function
below

$conn = sqlanywhere_connect("UID=;PWD=;eng=;dbn=;links=")

The arguments and the results returned have been explained in the design
chapter. Once a query string and connection were established, the query
was executed and the result was a set of rows and columns called result set.

$result = sqlanywhere_query($conn, $q)

After query execution, the result was then fetched as

while(($row = sqlanywhere_fetch_row($result)))
The obtained result set from the above function was then assigned to locally
defined array variables as shown in the code snippet below:
while((row = sqlanywhere_fetch_row(result set))) {
 $ curr_row++
 $hdata[$i]= $row[o];
 $xaxis[$i]=$row[1];
 }
In this case the array $hdata contained number of elements that is equal to
the time unit describing the required weather history. For example for daily
weather history $hdata contained the hourly average. So there were 24
elements representing the average for each hour.

The interval mean for the respective selected weather history way calcu-
lated. For the hourly weather history it was calculated as follows using the
code snippet below:

$htotal += $row[1]; //adds each parameter data

if(($minute[$i])==0){ //checks if current minute counter is 60
$hdata[$j]=($htotal/(count($minute))); //calculates hourly mean and //mean
assigned to jth element of the local array
 $j++; // and j incremented
 $htotal = 0; // total is reset
 $minute = array(); //minute array is reset to zero count

 }

Each weather parameter has its own graph. In all cases for the weather his-
tory and the weather parameters line plots on the graph showing the
smoothed data was plotted with marked data points. In addition to this, the

 49

actual data point plot, mean and the 1SD band range are also plotted in the
same graph. The mean was calculated by summing all the elements of the
parameter data array then dividing by the number of non null elements .In
this case an array was defined whose elements were the mean of the array.
This was a constant valued element array.

Variance in the web data analysis was calculated by first calculating the
sum of squares of each element of the population. That is each element the
array with the original data $ydata is subtracted from the mean and the dif-
ference is squared as shown in the code snippet below.
 $sumOfSquares =0;
 for($i = 0; $i < count($ydata); $i++){
 if($ydata[$i]!="x") //check if the element is null:if not proceed
 $sumOfSquares += pow(($ydata[$i]-$mean[$i]),2)

}

Finally the variance was obtained by dividing the sum of squares by the
number of elements in the original array. For example the hourly weather
history the number of elements was 60 if no data was missing. From the
variance the standard deviation was simply computed by getting the square
root of the variance thereby giving a constant valued array.

The calculation of the band range was done by defining two arrays namely
$upperband and $lowerband. The upperband array was populated by add-
ing one standard deviation to the mean. The lowerband was populated by
subtracting one standard deviation from the mean. Below is a code snippet
showing how this was achieved:

//computing the range

for($i=0;$i<count($ydata); $i++){
$upperband[$i]=$mean[$i]+$sd[$i];
$lowerband[$i]=$mean[$i]-$sd[$i];

}

In order to realize smoothed data in this project, the moving average tech-
nique was used to smooth the data. In this case a smoothing factor of six
was used. In this case the first six elements of the original data array were
summed up and then divided by six to obtain the mean which was assigned
to 0th element of the smoothed data array. Then first element to (1+6)th ele-
ment are summed up as well and divided by six to obtain the first element of
the smoothed data array. The same procedure is used to obtain the next
elements of the smoothed array up to
(number of items in original data array called $ydata - smoothing factor)th
element. At this point the remaining elements are averaged and the average
is assigned to the (number of items in $ydata - $factor)th element of the
smoothed array. Each of the remaining elements of smoothed array is ob-
tained by summing successive elements, each time beginning from the
(present element+1) then dividing by the number of elements summed up.

For the hourly weather history each data mark represents one minute. That
means each of the graphs has a display range of 60 minutes. In the daily

 50

weather history each data mark represents one hour. Therefore there were
a total of 24 data marks representing the number of hours in a day. At the
top of each graph there is a heading indicating the weather parameter under
which the graph is plotted from and the time interval of the graph. The
hourly and the daily outputs are realized as shown in figure 23 and figure 24
respectively as shown below. In order to realize the hourly chart below in
the user selected the year to be 2007, month to May, date to 18th and hour
to 12. The output was 10 graphs representing each of the weather parame-
ter as it can be seen from the figure 23 below. In each graph there was the
actual data plotted in orange, the smoothed data plotted in blue with red
marks each representing a data point. The mean was also plotted in red
which was actually a straight line. The 1 SD sigma bands were also plotted
in green.

Actual data(unsmoothed) Mean 1 SD Band range smoothed data

Figure 23: Average hourly history for the hour 18

th
 May 2007 12:00 to 13:00 pm

The output of the monthly and the annual weather history is similar. As ob-
served earlier in the HTML for the monthly and annual weather histories the
user is required to select the weather parameter of interest. So in the output
there is only one graph showing the smoothed data of the weather parame-
ter that is selected in the HTML form. Just like in the daily graph, there is
the actual data plot, mean and one standard deviation band range.

 51

The look of the annual and monthly graph is similar to the daily and hourly
graphs discussed earlier. The only difference is that in the monthly graph
each data point represents the daily data mean for that particular parameter.
So the number of data points plotted depended on the number of days in
the selected month. For the annual graph each of the data point represents
the mean monthly data for the selected parameter. For example in the year
2006 the data is displayed from April when the data was first available to
December. In addition to the graph there was a table showing the actual
data for each day or month for monthly and annual data respectively.

The output for the monthly weather history is shown in the figure 24 below.
For the monthly history, the weather parameter selected is “Wind direction”,
month of “May” and “Year” 2006 are selected yielding the figure 24 below:
The annual weather history output looks similar to monthly output except
that the data points are months based. That means on each table and graph
there is data for every month for that year. In case of 2006.The output will
be tabular and graphical presentation for monthly data beginning from April
to December. Due to the similarity of the annual and monthly outputs only
the monthly output is shown here on figure 24 below:

Monthly weather data table Actual data(unsmoothed) Mean smoothed data SD band range

Figure 24: Average monthly wind direction for the month May 2006

 52

6.3 Display of the missing data

One of the serious challenges encountered in the process of trying to design
the website data presentation was that of the missing data. This is a prob-
lem that occurs whenever the data server where the weather data is re-
corded goes off for some reason. This could be for maintenance purposes,
upgrade etc. Whenever this happens, the data captured by the weather sta-
tion is not stored in the database, as long as the data server is still discon-
nected from the weather station. This means it’s just lost. Once the data
server is turned on then the data for the entire period when the server was
off is not there. It is a problem in two ways. If a user wishes to view the pre-
sent weather conditions then the only the latest available data is presented
meaning it could be as old as the time when the server went off. It becomes
even more of a problem when the user wishes to view weather history of a
time interval within which there is a missing data interval.

If the data is to be presented in form of a graph then more work needed to
be done in order to realize the graph output described in the previous chap-
ter concerning the missing data. Such data was presented using a graph
with a gap on the line where the data was found to be missing as shown in
figure 26. In designing the presentation such a problem had to be taken into
consideration.

In anticipation of such a case the data was first fetched from the database in
two columns namely fldRecordedAt and the weather parameter in question.
The column name fldRecoredAt refers to the time in

year-month-date-hour-minute-milliseconds that the data was recorded. On
fetching each record of data, the time interval that the user needs to view
the weather history in is extracted. For example if the user needs to view the
monthly weather history then individual time measurement components of
the fldRecordedAt are extracted and stored in an array in the same position
as the weather parameter corresponding to that date. Example:

 $q = "select fldRecordedAt,fldSolarRadiation,(SELECT HOUR(fldRecord-
edAt)),(SELECT MINUTE(fldRecordedAt)),(SELECT DAY(fldRecord-
edAt)),(SELECT MONTH(fldRecordedAt)) from dba.tblRawData where
fldRecordedAt BETWEEN '$start' and '$end'";

$temp[$i]=$row[4]; //assign date component to a local array

$tempe[$i]=$row[1]; / assign parameter(solar radiation) to a local array

 In the above case it means that array $temp will hold the date values of all
the time data fetched. The weather parameter solar radiation was assigned
to a local array $tempe. Both arrays have equal lengths and each element
in one corresponds to the element in the same position in the other. Every
element of the date array is compared with the previous element. If the two
elements are the same then the next element of the weather parameter ar-
ray like solar radiation is added to a local variable called $htotal. If the two
consecutive elements of the date array differs by 1 then it is recognised that
a the corresponding data belongs to a new day and so the present $htotal is
averaged(divided by the number of non null elements for that day) and
stored in an array called $hdata. If the two consecutive array elements differ
by more than one then missing dates are recognised. First the number of

 53

missing dates are determined and next elements representing missing days
are assigned the value “”. In the date array the next element becomes (the
present date element +1). The same procedure is used to test every ele-
ment until the end of the array is reached. At this point the values of $hdata
array are presented graphically or in tabular format. The special handling of
the missing data is described with the help of a flow chart diagram as it can
be seen on figure 26.

There were several cases where the data was found to be missing for a
given interval .In such a case the part of the time interval with missing data
in the graph is represented by a gap. A good example is the month of May
2007, where there was no data that was recorded in the database from 1st
to 9th day of May. On the corresponding table, missing data is represented
as “0”. Mean and 1 Standard Deviation band range are computed from the
existing non zero data. Below is the output derived by selecting to view the
monthly temperature for the month of May 2007 on figure 25.

 Range of Missing data Actual unsmoothed data

Figure 25: May 2007 Output with null values

The whole process of how the missing or the null values were handled can
best be described using a flowchart as shown in figure 26 on the next page.
This basically described how a monthly data with some days with missing
values was handled. The handling for the other intervals was dealt with in
the same way .

 54

tempe[] :stores the weather data

 temp[]:stores the day element of the date
 hdata[]: stores the mean data points to be plotted

 No

 No
 No

 yes Yes

 No

Yes

 No

 Yes

Figure 26: Handling of null values in monthly weather history

 Start

Fetch time column
and solar radiation

Separate components of fldRecordedAt and store in
an array $temp
Store solar radiation in a local array $tempe

$temp array; $tempe array; $I, $j=0;

temp[i]-temp[I-1]=1?

Missing=0?

missing = temp[i]-temp[i-1]
i++

hdata[k]=(htotal/j);
day[k]= temp[i]
k++; j=0;htotal=0;

missing= missing-1;
hdata[k]= “ ”;
day[k]=day[k-1]+1;
k++;

Present hdata array(actual parameter data)
vs day array(date) data graphically/tabular

temp[i]-temp[i-1]=0?

Sum the tempe
array values
htotal +=tempe[i]
j++;

End of the temp
array reached?

 55

Custom weather history output is realized with a 50 data point graph and a
table consisting of 50 rows. The 50 data points were evenly spaced in terms
of time separating them. However the labelling of the x-axis is done after
every five data points. This helps to make the time axis readable. Only data
from one weather parameter as selected by the user is plotted and tabu-
lated. The code snippet below describes how calculation of the 50 data
points was done:

$interval=(count($tempe)/50);// intervals which to calculate a mean
for($k=0;$k<count($tempe);$k++){
 if(($k % $interval)==0){//mark the end of each interval
$axis[$i]=$month[$k].'-'.$timeDay[$k].' '. $timeHr[$k].':'.$timeMin[$k]; // time
label to appear on x axis
 $hdata[$i]= ($htotal/$interval);//calculate mean for each interval
 $htotal = 0;//reset the total
 $i++;}
 else
 $htotal += $tempe[$k]; // add data

On plotting this data against the time axis the following graph on figure 27 is
realized. In the user custom graph below the start date selected is 17-04-
2006 00:00 and end date selected is 15-06-2006 00:00

User selected start date User selected end date

Figure 27: Custom history output between 17-04-2006 00:00 to 15-06-2006 00:00

 56

7 Testing and major challenges encountered

In the web based data analysis and presentation project a few difficulties
were encountered in design and realization. Some were fully overcome and
others were not.

7.1 Testing

Testing of the entire website was actually done by three independent people
at various times. Each of the tester checked a different aspect of the web-
site. In each of the test the tester assumed the role of a user who intended
to view a given aspect of the weather from the website. In the first case the
tester found that the pictorial images of the weather instruments did not re-
flect the then current weather conditions. On further consultation about this
problem it turned out that the connection from the weather station to the da-
tabase is based had been turned off. As a result of this the latest data that
was available was the last data that was recorded in the database, which
were several days old. This was corrected and in this regard the presenta-
tion of the present weather readings on the homepage works fine.

Testing of all the links on the homepage was also carried out and was found
to be working fine. The homepage contained four buttons that linked the
user to the weather history user input form all these were found to be prop-
erly working. Other link to HAW Hamburg found to be working fine.

The outputs given back to the user after inputting the preferred time of view
was also tested. This test was carried out from other computers on the net-
work and the output turned out to be what was expected. One of the testers
selected a time interval with starting date that was before the data was first
available. The result of this was a JPGRAPH error, which was not user
friendly at all and could not be easily understood by an ordinary user: There-
fore a better error handling measure was recommended. An error handling
measure was implemented .In this case if the user selected an illegal date
and clicks “Submit” then an error message is issued telling the user to select
dates “to select dates between 30th March, 2006 and now”. In addition the
wrong inputs were not submitted but user referred to the same user input
page. The problem of invalid date input was also detected in this test where
a user can enter an invalid date such as 31st February. This was solved by
having an option select form instead of having a user typed input form. Sev-
eral recommendations on how to improve the output were proposed. The
third test was meant to ensure that everything worked fine. From this test
the general performance such as speed of presentation of the past weather
situation was assessed. It turned out that for the annual weather history the
presentation took longer than acceptable. At the moment it takes around
115 seconds to realize the whole annual output. This will be discussed in
the next subchapter. The situation was the same for the user custom
weather history. This was however solved by telling the user that the annual
weather history may take up to1 minute and 45 seconds. For the User cus-
tom weather history the user was restricted to a maximum time period of 6
months.

 57

7.2 Challenges encountered

 Delayed output for the Annual and Custom weather history

By the time of designing this project there were more than 460,000 records
of all the weather parameter data. Therefore if the user was to request to
view the weather history of the entire duration from 1st April 2006, then the
number of records to be accessed and the amount of data to be processed
is enormous. Assuming that for every one minute a new row of data is
added to the table in the database then in one hour we have 60 new records.
In one day we have:

60 *24 = 1440 records

1440*365=525,600 records in one year

That means when this data is fetched from the database it takes time to
read all this data and avail it to the PHP script for processing. Moreover this
data has to be stored in locally defined arrays so as to be processed and
means for various intervals calculated. If two data columns such as re-
corded time and temperature are fetched by a PHP script and stored in local
arrays, this will dramatically reduce the amount of memory available for use
in further calculations involving this data.

This brings a lot of overhead onto the processor and the processing com-
puters memory. Further more the mean data is then plotted on a line graph.
All these factors combined lead to a delayed output of the annual weather
history and the user custom weather history where the time interval in more
than 6 months. In the worst case it takes about 45 seconds after submitting
the user input in HTML form, before the output is seen. In monthly, annual
and user custom weather histories it was therefore impossible to view all the
parameters at the same time due to the resources required to do this.

One of the measures that are taken in order to minimise the delay effect of
this problem was to display the weather history of each weather parameter
separately. The user is expected to select which weather parameter is of in-
terest at that particular moment. By so doing the output is presented with
out so much delay. In the annual weather history the user is still forewarned
that the output would take up to1 minute and 45 seconds and therefore
asked to be patient. At the moment it takes 1 minute and 40 seconds to re-
alize the full annual output(table and graph).

In the user custom weather history the user is asked to select a time interval
in which to view the weather history of 6 months or less. In case the user
still goes ahead and selects a longer time interval then selection is not sub-
mitted and a message asking the user to select a time interval less than 6
months is repeated. By so doing it’s ensured that the amount of data being
calculated and outputted will not cause long unacceptable delays.

Incompatibility between versions of PHP and SQLAnywhere module

As mentioned earlier PHPSQLAnywhere module is a PHP library that has
important functions that can be used to connect to a SQLAnywhere data-
base. In all cases every version PHPSQLAnywhere module worked only
when installed in a specific version of PHP. It’s sometimes a problem be-

 58

cause matching versions are not readily available since they are
downloaded from different sources. This is especially so for the latest ver-
sion of PHP (version 2.2).This version of PHP has a lot of useful features
but for the purpose of connection to SQLAnywhere database there is no
matching PHPSQLAnywhere module that’s compatible with it. Furthermore
compatibility of PHP and Apache was also version dependent. This was a
problem during the setting up of tools needed for the project discussed. This
was overcome by downgrading the installations to slightly older versions of
each that are compatible in each case.

 Recommendations for further improvement of the website

One of the recommendations that would be suggested concerning this prob-
lem is distributing the work of calculating the weather data across several
processors. At the moment the computer where the web application is
based is a 3 GHZ Pentium processor. Distributing this work across two such
processors will reduce the delay times considerably. Usage of more mem-
ory can also go along way in minimising the problem due to the need to
store large arrays. However the most important thing is to strike a balance
between the additional hardware requirement and the acceptability of the
present delays. Additional hardware also leads to higher cost of implemen-
tation and maintenance.

 59

8 Conclusion

Web based weather data presentation is very important task. By presenting
the current weather condition of a given place on the web this provides a
near to real time update of the weather pattern to the user. Once the data is
available on the web in any form that an interested party would want to view
it then it opens up different angles of interpretation. Traditionally presenta-
tion of the weather data to the external users was mainly done in written
form where the weather data is recorded on paper and published in form of
printed weather reports. The number of interested users who would be able
to access this recorded data is definitely limited. Moreover there was limited
way one could interpret the data since it was not available in many different
views such as yearly, monthly. With emergence of the World Wide Web and
dynamic web pages technologies like the one discussed though out this
thesis this has become possible. The user can now view weather data that
is as old as one minute ago. The web based weather data analysis provides
groundwork for weather forecasting. The observed data is one of the factors
used in the weather forecasting.

In the web based weather data presentation and analysis the realization in-
cludes a homepage which presents the actual weather situation. In addition
it contains the links to other web pages that present the past weather situa-
tion in form of y-x graphs and tables in some cases. The data that’s pre-
sented in both cases originates from the weather station and is transmitted
through a serial interface after processing to a database in the data server
where it’s stored. From the database the data is fetched and used in the
programs that realize the weather website. The program reads the data
from the database compresses the data for easier presentation and viewing.
In addition in the graphs the mean and standard deviation is calculated and
shown and the data are shown in form of tables.

 60

9 References

Hugh E. Williams and David Lane. Web Database applications with PHP
and MySQL, O’REILLY, Köln 2002

Flanagan, D., Java in a Nutshell, A Desktop Quick Reference, O’REILLY,
ISBN 0-596-00283-1, 2002, 4th edition.

Arnold, K., Gosling, J., Holmes, D., The Java Programming Language Third
Edition, Addisob- Wesley ISBN 02017044331, 2001.

Yalcin, C., Zukunft, O.,Raasch, J., Software Engineering Konzepte in PHP:
eine Untersuchung, Hamburg, 2006.

http://en.wikipedia.org/wiki/Three-tier_(computing)
(Three tier Architecture) 25.04.2007

http://www.reinhardt-testsystem.de/PRAESW13.HTM
(MWS 6 weather station) 24.04.2007

http://groups.google.com/group/sybase.public.sqlanywhere.general/browse_
thread/thread/d729939ecbdcd9d5/20cbc5ee65fcfd89?lnk=raot
(SQLAnywhere- PHP connection) 21.02.2007

http://www.carbonblock.net/docs/jpgraph/html/manual_jpgraph.html
(JPGraph) 14.04.2007

http://en.wikipedia.org/wiki/Web_server
(About webserver) 26.04.2007

http://www.ii.uam.es/~saiz/webnet98-paper.html
(dynamic web pages) 26.04.2007

http://www.mediavue.net/programming/programLanguage/jsp_programming
.html
(About Java Server pages) 27:04:2007

http://www.articlesbase.com/programming-articles/advantages-of-php-
development-71741.html
(Advantages of PHP) 29.04.2007

http://en.wikipedia.org/wiki/JavaServer_Pages
(About Java Server pages) 30.04.2007

http://builder.com.com/5100-6371-1044979.html
 (Dynamic web pages) 30.04.2007

http://developers.sun.com/portalserver/reference/techart/jfreechart.html
 (Plotting charts using Java) 30.04.2007

http://en.wikipedia.org/wiki/Three-tier_(computing)
http://www.reinhardt-testsystem.de/PRAESW13.HTM
http://groups.google.com/group/sybase.public.sqlanywhere.general/browse_
http://www.carbonblock.net/docs/jpgraph/html/manual_jpgraph.html
http://en.wikipedia.org/wiki/Web_server
http://www.ii.uam.es/~saiz/webnet98-paper.html
http://www.mediavue.net/programming/programLanguage/jsp_programming
http://www.articlesbase.com/programming-articles/advantages-of-php
http://en.wikipedia.org/wiki/JavaServer_Pages
http://builder.com.com/5100-6371-1044979.html
http://developers.sun.com/portalserver/reference/techart/jfreechart.html

 61

http://www.tizag.com/phpT/phpsessions.php
 (PHP sessions) 03.05.2007

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/0902/e
n/html/dbpgen9/00000614.htm
 (Establishing a connection to an SQLAnywhere database) 07.05.2007

http://sqlzoo.net/fun_day
 (SQL date functions) 07.05.2007

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/9.0/ph
p/html/query.html
(Querying SQLAnywhere database from PHP) 07.05.2007

http://www.vanguardsw.com/DpHelp4/dph00109.htm
 (Moving Average) 07.05.2007

http://en.wikipedia.org/wiki/Arithmetic_mean
(Calculating arithmetic mean) 07.05.2007

http://en.wikipedia.org/wiki/Apache_HTTP_Server
(Apache Server) 10.05.2007

http://www.expertsrt.com/tutorials/Matt/install-apache.html#dirsetup
(Apache installation) 29.05.2007
http://mathcentral.uregina.ca/qq/database/QQ.09.98/fama1.html
(Standard deviation) 29.05.2007

http://en.wikipedia.org/wiki/Database_management_system
(Database management Systems) 30.05.2007

http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1000/e
n/html/dbpgen10/pg-php-s-4387280.html
(Installation of SQLAnywhere PHP modules) 30.06.2007

http://ourworld.compuserve.com/homepages/Gene_Nygaard/windchil.htm
(Calculation of wind Chill factor) 01.06.2007

http://www.nwas.org/committees/avnwinterwx/winter_teach2.htm
(Wind parameters explanation) 01.06.2007

http://www.velocityreviews.com/forums/t138563-jsp-and-php.html
(Advantages of JSP) 04.06.2007

http://www.tizag.com/phpT/phpsessions.php
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/0902/e
http://sqlzoo.net/fun_day
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/9.0/ph
http://www.vanguardsw.com/DpHelp4/dph00109.htm
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Apache_HTTP_Server
http://www.expertsrt.com/tutorials/Matt/install-apache.html#dirsetup
http://mathcentral.uregina.ca/qq/database/QQ.09.98/fama1.html
http://en.wikipedia.org/wiki/Database_management_system
http://www.ianywhere.com/developer/product_manuals/sqlanywhere/1000/e
http://ourworld.compuserve.com/homepages/Gene_Nygaard/windchil.htm
http://www.nwas.org/committees/avnwinterwx/winter_teach2.htm
http://www.velocityreviews.com/forums/t138563-jsp-and-php.html

 62

10 Appendix

This Bachelor Thesis contains an appendix of program listings, configura-
tion files for PHP and Apache, on a CD. The appendix also contains a text
file named A_Description_of _code_files.txt .This file basically explains the
purpose for which each of the source code and configuration files, and how
they were used.
This Appendix is deposited with Prof. Dr.rer.nat Hans-Jürgen Hotop.

 Declaration

I declare within the meaning of section 25(4) of the Examination and Study
Regulations of the International Degree Course Information Engineering that:
this Bachelor Thesis has been completed by myself independently without
outside help and only the defined sources and study aids were used.
Sections that reflect the thoughts or works of others are made known
through the definition of sources.

Hamburg, 7th June 2007, Anthony Kamau

