
Bachelorarbeit
Hauke Buhr

A proof of concept for an interoperable IoT platform

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Hauke Buhr

A proof of concept for an interoperable IoT platform

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Technische Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Becke

Zweitgutachter: Prof. Dr. Lehmann

Eingereicht am: 09, November 2017

Hauke Buhr

Thema der Arbeit
A proof of concept for an interoperable IoT platform

Stichworte
Internet der Dinge (IoT), Interoperable IoT Plattform, Objekt-Beschreibungssprache, Verteilte

Plattform, OMNet++, Nachrichtendesign, Kommunikationsdesign

Kurzzusammenfassung
Das Internet der Dinge (IoT) ist im Moment ein schnell wachsendes Themengebiet. Es �ndet

Anwendung in vielen verschiedenen Bereichen wie zum Beispiel dem Smart Home, der Smart

City, dem Gesundheitswesen [1].

Analysten prognostizieren, dass 50 Milliarden IoT Geräte im Jahr 2022 im Umlauf sein

werden [2]. Es ist zu erwarten, dass diese große Anzahl von Geräten erzeugt eine sehr große

Menge an Daten. Die generierten Daten müssen daher e�zient verwaltet werden, um die

Daten in angemessener Zeit verarbeiten und übertragen zu können.

Gegenwärtige Open-Source IoT Plattformen sind vertikal entworfen und decken die IoT Geräte

Hersteller SDKs sowie auch Datenauswertungs- und Darstellungsdiensten ab. Indes decken

gegenwärtige Plattformen nicht die Interoperabilität zwischen der eigenen und anderen Platt-

formen ab. Aus der fehlenden Interoperabilität kann gefolgert werden, dass die Daten nur

innerhalb der eigenen Plattform gespeichert und verwertbar sind. Der Zugri� auf die Daten

wird so jedoch nicht problemlos von außerhalb möglich.

Es gibt auch IoT Plattformen, die einen Ansatz zur Interoperabilität enthalten. Doch meist

konzentrieren sich die interoperablen Plattformen nur darauf, die Kommunikation von IoT

Geräten untereinander zu gewährleisten.

Diese Bachelorthesis schlägt ein interoperables IoT Plattformkonzept vor, welches durch sein

Design die Eigenschaft der Interoperabilität unterstützt. Das Konzept besteht aus zwei Struktu-

relementen, zum einen die Kernkomponenten und zum anderen die „Connected Services“. Die

Kernkomponenten sind die Management-, Registry- und Gatewaykomponente. Außerdem wer-

den mehrere Interfaces für eine einheitliche Schnittstellenbeschreibung eingeführt. „Connected

Services“ werden im Folgenden als „Objekte“
1

bezeichnet. Diese Objekte sind „Services“
2

auf

einer höheren Ebene, die Daten verarbeiten, speichern und, oder diese präsentieren.

1

Objekte nicht im Kontext einer objektorientierten Programmiersprache.

2

Services als angebotene Dienste, die Daten von Objekten nutzen.

Die in dieser Thesis vorgestellte Registry kann ihre Einträge mit einer anderen Registry teilen.

Diese verteilten Registryeinträge und die angestrebte Plattform führen zu einer Hierarchie der

IoT Plattformen, deren Daten auf jeder freigegebenen Ebene verfügbar sind. Dieser Ansatz

fördert somit einem heterogenen und o�enen Plattformdesign.

Außerdem braucht eine interoperable Plattform eine Objektsuchfunktion. Die vorgestellte

Suchfunktion benötigt eine generische Beschreibungssprache. Die in dieser Thesis vorgestellte

Beschreibungssprache ist objektorientiert.

Zu dem werden in dieser Thesis die Ergebnisse aus einer Proof of Concept Simulation in

OMNeT++ [3] bereitgestellt und ausgewertet. Es zeigt sich, dass die Komplexität der Objekt-

beschreibung minimiert wird, da nur wenige Merkmale beschrieben werden müssen. Jedoch

besteht durch den erweiterbaren Aufbau der Objektbeschreibung eine e�ektivere Möglichkeit

der Beschreibung.

Auch die vorgeschlagenen Kommunikationsmuster in dieser Thesis sollen das Nachrichten-

aufkommen reduzieren und eine Priorisierung von Nachrichten ermöglichen [2].

Teil dieser Bachelorthesis ist die Analyse von Anforderungen an eine IoT Plattform, mit

anschließender Analyse einiger bestehender Plattformen. Des Weiteren werden Kommunika-

tionsmuster de�niert und die Objektbeschreibungssprache wird designt. Am Ende wird ein

Entwurf der Plattform angeboten und mit OMNet++ demonstriert und evaluiert.

Hauke Buhr

Title of the paper
A proof of concept for an interoperable IoT platform

Keywords
Internet of Things (IoT), Interoperable IoT Platform, Object-Description Language, Distributed

Platform, OMNet++, Message-Design, Communication-Design

Abstract
The Internet of Things (IoT) is currently a fast developing subject. It takes place in areas like

smart home, smart city, health care and many more [1].

Analysts predict an amount of 50 billion IoT devices by 2022[2]. This tremendous amount of

devices is generating even bigger amounts of data then the ones today. The produced data has

to be processed in an e�cient way, to be able to compute the data in a proper time.

Current open source IoT platforms are vertical designed and cover everything from sensor

platform SDKs up to data evaluation and presentation services. But current IoT platforms

do not cover interoperability between itself and any other platform. This means the data is

stored and accessible only from within the system. Thus, there is no convenient way to access

the data from a di�erent platform. There are also approaches heading to an interoperable

platform design. However, they mostly only focus on platform intercommunication and not

on an interoperable discovery of IoT devices (further also referred to as objects) and data.

This bachelor thesis proposes an IoT platform concept which is interoperable by design. The

concept consists of two types of components, �rst the core components and second the con-

nected services. The proposed core components are the management-, registry- and gateway

component. Also several interface speci�cations are introduced, as displayed in Figure 6.1.

Connected services are here referred to as objects, upper level services like data processing

and data bases or presenting services. Furthermore registries can share their dictionaries with

other registries. Shared dictionaries and the resulting platform are leading to a stacked IoT

platform that can be accessed at any level. This approach counteracts a closed and monolithic

platform design.

Furthermore an interoperable platform needs an object discovery functionality. The proposed

discovery mechanism needs a generic description scheme, that proposed description scheme is

an object oriented description scheme. Moreover, this thesis discusses the experimental results

of a proof of concept simulation in OMNeT++ [3]. Also this thesis describes the results which

were made with a proof of concept simulation in OMNeT++. The object description scheme

uses some required description �elds and the descriptions can be adapted by some optional

descriptions. The communication pattern, that are proposed, reduce the messages [2] and use

di�erent priorities for data processing [2].

The �rst step of this thesis is to de�ne some requirements for an interoperable IoT platform

and afterwards some existing platforms are compared against the requirements. The second

step is to design the communication patterns and the object description scheme is designed.

The third step is to design the platform, to implement a simulation in OMNet++ and to evaluate

the simulation results.

v

Contents

1. Introduction 1
1.1. Motivation . 1

1.1.1. Use Cases . 2

1.1.2. IoT platform . 3

1.2. Requirements . 4

1.3. Goals . 5

1.4. Organization . 6

2. Related Work 7
2.1. Current State of the Art . 7

2.1.1. Proprietary . 7

2.1.2. Open Source . 10

2.1.3. Research . 12

2.2. Discussion . 14

3. Overview 16
3.1. Challenges . 17

3.2. Requirements Transposition . 18

3.3. Communication Patterns . 19

3.4. Design . 20

3.4.1. Management . 20

3.4.2. Registry . 20

3.4.3. Gateway . 21

3.4.4. Object Engine . 21

3.5. Security . 21

3.6. Summary . 22

4. Description Language 24
4.1. Object . 24

4.1.1. Object Description . 25

4.1.2. Object Implementation . 26

4.2. Object Identi�er . 26

4.3. Object Hierarchy . 27

4.4. Data Format . 28

4.5. Optional Descriptions . 30

4.5.1. Vocabularies . 30

vi

Contents

4.5.2. Basic Data Types . 31

4.5.3. Composition of Objects . 31

4.5.4. Description . 33

4.5.5. Methods . 34

4.5.6. HAL . 35

4.5.7. Shape . 36

4.5.8. Location . 37

4.5.9. Descriptions Summary . 38

4.6. Standardization . 38

4.7. Experiment . 39

4.7.1. Setting . 39

4.7.2. Results . 43

4.8. Discussion . 43

5. Rules 47
5.1. Periodic . 47

5.2. Conditional . 48

5.3. Actions . 50

5.3.1. Messages . 50

5.3.2. Methods . 50

5.3.3. Agents . 51

5.4. Discussion . 51

6. Interoperable Platform Design 53
6.1. Introduction . 53

6.2. User . 54

6.3. Management . 55

6.4. Registry . 56

6.5. Gateway . 58

6.6. Object Engine . 60

6.7. Discussion . 62

7. Communication Sequences 63
7.1. Basic Message Body . 63

7.2. Gateway Message Body . 64

7.3. Basic Sequences . 65

7.3.1. Heartbeat . 65

7.3.2. Object Registration . 65

7.3.3. Register as Sub-Registry . 67

7.3.4. Edit Registry Area . 68

7.3.5. Object Interaction . 69

7.3.6. Look-Up . 70

7.4. Discussion . 72

vii

Contents

8. Platform Simulation 74
8.1. Tool Chain . 75

8.2. Scenarios . 77

8.2.1. Scenario Object Engine Interaction . 77

8.2.2. Scenario Sub-Registry Registration . 79

8.3. Discussion . 81

9. Conclusion 83
9.1. Future Work . 84

A. Appendix 86
A.1. Object Description . 86

A.2. Messages . 86

A.2.1. acceptObject . 86

A.2.2. acceptObjectResponse . 86

A.2.3. addArea . 87

A.2.4. addAreaResponse . 87

A.2.5. addEntry . 88

A.2.6. addEntryResponse . 88

A.2.7. addObject . 89

A.2.8. addObjectResponse . 89

A.2.9. addRule . 89

A.2.10. addRuleResponse . 90

A.2.11. deleteEntry . 91

A.2.12. deleteEntryResponse . 92

A.2.13. deleteObject . 92

A.2.14. deleteObjectResponse . 92

A.2.15. deleteRule . 93

A.2.16. deleteRuleResponse . 93

A.2.17. editArea . 94

A.2.18. editAreaResponse . 94

A.2.19. gatewayAdvertisement . 95

A.2.20. heartbeat . 95

A.2.21. heartbeatResponse . 95

A.2.22. invokeObjectMethod . 95

A.2.23. invokeObjectMethodResponse . 96

A.2.24. lookUp . 96

A.2.25. lookUpArea . 97

A.2.26. lookUpAreaResponse . 97

A.2.27. lookUpObject . 98

A.2.28. lookUpObjectResponse . 98

A.2.29. lookUpPendingObject . 98

A.2.30. lookUpPendingObjectResponse . 99

viii

Contents

A.2.31. lookUpRegisteredAsSubRegistry . 99

A.2.32. lookUpRegisteredAsSubRegistryResponse 99

A.2.33. lookUpRegisteredObject . 100

A.2.34. lookUpRegisteredObjectResponse . 100

A.2.35. lookUpRegisteredSubRegistry . 101

A.2.36. lookUpRegisteredSubRegistryResponse 101

A.2.37. lookUpResponse . 101

A.2.38. lookUpRule . 102

A.2.39. lookUpRuleResponse . 102

A.2.40. registerAsSubRegistry . 103

A.2.41. registerAsSubRegistryResponse . 103

A.2.42. registerObject . 104

A.2.43. registerObjectResponse . 104

A.2.44. registerSubRegistry . 104

A.2.45. registerSubRegistryResponse . 105

A.2.46. ruleResponse . 106

ix

List of Tables

2.1. Comparison of all described proprietary platforms 15

2.2. Comparison of the described open source platform and the interoperable platforms 15

3.1. Discussion of the proposed platform. 23

4.1. Summary of proposed descriptions . 39

4.2. Comparison of the in Chapter 4 introduced description language with the

schemes used by BIG IoT and OpenIoT. 46

5.1. Summary of de�ned conditional pattern and their properties. 48

x

List of Figures

2.1. Amazon AWS IoT core architecture from [17] 8

2.2. SAP HANA IoT architecture from [27] . 10

2.3. Kaa cluster architecture from [28] . 11

2.4. BIG IoT architecture overview from [37] . 13

4.1. Object identi�er example . 27

4.2. Basic object inheritance scheme . 29

4.3. Example object inheritance . 40

6.1. Toplevel view . 54

6.2. User component . 55

6.3. Management component proposed architecture 56

6.4. Registry component proposed architecture . 58

6.5. Gateway component proposed architecture . 59

6.6. Object Engine component proposed architecture 61

7.1. Object registration sequence diagram . 66

7.2. Register as sub-Registry sequence diagram . 67

7.3. Edit Registry area sequence diagram . 68

7.4. Edit Registry area sequence diagram . 69

7.5. Management look-up sequence diagram . 71

7.6. Registry look-up sequence diagram . 71

7.7. Object look-up sequence diagram . 72

8.1. OMNeT++ module hierarchy from [3] . 75

8.2. OMNeT++ simple module implementation . 76

8.3. Scenario Object Engine interaction measurements 79

8.4. Path usage in monolithic and distributed scenarios 79

8.5. Scenario Object Engine registration measurements 81

xi

Listings

4.1. Description object . 25

4.2. OID and local_id at run-time . 26

4.3. Vocabulary de�niton . 30

4.4. Vocabulary de�nition with two vocabularies 30

4.5. Static member de�nition example(with coordinates) 32

4.6. Description example . 33

4.7. Methode de�nition example . 34

4.8. HAL de�nition example . 35

4.9. Location de�nition example with GeoJSON . 37

4.10. Description object . 39

4.11. Vocabulary de�nition . 40

4.12. Methode de�nition example . 40

4.13. HAL de�nition example . 42

4.14. Static member de�nition example . 42

5.1. Periodic rule de�nition example . 47

5.2. Conditional rule de�nition example . 49

5.3. Message action de�nition example . 50

5.4. Method action de�nition example . 50

5.5. Agent de�nition example . 51

7.1. Basic message body version 0.1 . 63

7.2. Basic message body version 0.2 . 64

7.3. Gateway message body version 0.1 . 65

A.1. acceptObject Message . 86

A.2. acceptObjectResponse Message . 86

A.3. addArea Message . 87

A.4. addAreaResponse Message . 87

A.5. addEntry Message . 88

A.6. addEntryResponse Message . 88

A.7. addObject Message . 89

A.8. addObjectResponse Message . 89

A.9. addRule Message . 89

A.10. addRuleResponse Message . 90

A.11. deleteEntry Message . 91

xii

Listings

A.12. deleteEntryResponse Message . 92

A.13. deleteObject Message . 92

A.14. deleteObjectResponse Message . 93

A.15. deleteRule Message . 93

A.16. deleteRuleResponse Message . 93

A.17. editArea Message . 94

A.18. editAreaResponse Message . 94

A.19. gatewayAdvertisement Message . 95

A.20. heartbeat Message . 95

A.21. heartbeatResponse Message . 95

A.22. invokeObjectMethod Message . 95

A.23. invokeObjectMethodResponse Message . 96

A.24. lookUp Message . 96

A.25. lookUpArea Message . 97

A.26. lookUpAreaResponse Message . 97

A.27. lookUpObject Message . 98

A.28. lookUpObjectResponse Message . 98

A.29. lookUpPendingObject Message . 98

A.30. lookUpPendingObjectResponse Message . 99

A.31. lookUpRegisteredAsSubRegistry Message . 99

A.32. lookUpRegisteredAsSubRegistryResponse Message 99

A.33. lookUpRegisteredObject Message . 100

A.34. lookUpRegisteredObjectResponse Message . 100

A.35. lookUpRegisteredSubRegistry Message . 101

A.36. lookUpRegisteredSubRegistryResponse Message 101

A.37. lookUpResponse Message . 101

A.38. lookUpRule Message . 102

A.39. lookUpRuleResponse Message . 102

A.40. registerAsSubRegistry Message . 103

A.41. registerAsSubRegistryResponse Message . 103

A.42. registerObject Message . 104

A.43. registerObjectResponse Message . 104

A.44. registerSubRegistry Message . 105

A.45. registerSubRegistryResponse Message . 105

A.46. ruleResponse Message . 106

xiii

1. Introduction

The motivation of this thesis, to develop a platform that is truly interoperable and an object

context is provided for all parties, is provided in this Chapter. Furthermore the role of IoT

platform is discussed and requirements for an IoT platform are presented.

This Chapter provides the motivation of this thesis, to develop a platform that is truly

interoperable and provides object context for using parties. Furthermore the role of IoT

platform is discussed and requirements for an IoT platform are presented.

1.1. Motivation

The Internet of Things (IoT) is an important and currently fast developing topic in both

technology and engineering perspectives. There is a vast amount of di�erent de�nitions what

the IoT is, which work is done by it and which bene�ts are provided by it. The broad consensus

is, that the IoT consists of objects, which are �tted with an Internet connection and their

dedicated purpose is ful�lled with enough computing power. Communication, Interaction and

Coordination between di�erent objects is done without human intervention. A unique identi�er

is generated and assigned to each object [4]. The added value, generated for all participants,

is the core improvement done by the IoT. The added value is a bene�t for companies and

customers, either a �nancial one or the e�ciency is increased.

Build on this consensus many di�erent kinds of IoT platforms were developed. A speci�c

purpose is served by each of these platforms. These di�erent approaches are further discussed

in Chapter 2.

The idea of an IoT is not new. Earlier the devices were limited by their size and computing

power. With these limitations an IoT was not feasible. Nowadays it is feasible due to the fact,

that electronics became minimized, have a better energy consumption and the computing

power is been enhanced [5]. An early adopter of the IoT-idea was the IP-enabled toaster

which could be controlled over the Internet. That toaster was featured in 1990 at an Internet

conference [6].

1

1. Introduction

The next question is how many devices will be used in the future. Many companies and

research organizations have o�ered their projections. A massive rise in the use of IoT devices is

projected by di�erent companies and organizations. A projection of 24 billion inter-connected

IoT objects in the year 2019 was announced by Cisco [7] and 75 billion networked devices

overall by 2020 are projected by Morgan Stanley [8]. In the more distant future the numbers are

massively increasing. An amount of 50 billion IoT devices by 2022 is predicted by analysts [2],

100 billion IoT connections by 2025 are projected by Huawei [9] and an overall IoT revenue of

$3.9 to $11.1 trillion by 2025 is suggested by McKinsey Global Institute [10]. The predicted

numbers show a big variation, which makes every speci�c number questionable. So every

speci�c number is questionable. A signi�cant growth of the IoT itself can be seen if these

numbers are analyzed and evaluated together.

Tremendous amounts of data and tra�c are generated by huge numbers of IoT devices. The

produced data has to be processed in an e�cient way, so that data can be computed in a proper

time. Therefore scaling structures are needed.

1.1.1. Use Cases

Several di�erent areas for the IoT can be found on Site [1]. Some examples for areas are smart

home, smart city and health care. The reason for the projected fast growth can be found in the

huge range of possible areas. Hereinafter some IoT-use cases are shown.

1.1.1.1. Smart Home

The area smart home is the �rst meeting point for consumers who are interested in IoT devices

and corresponding services. Consumers are a�ected by the IoT in areas like home automation

components, health care, entertainment and energy management. A higher comfort at home

could be reached by smart home systems. Furthermore a home with higher security standards

and better energy consumption could be accomplished [5].

A practical example for a smart home use case is music streaming. An audio device could be

used by someone in the room to stream music. The user is connected to the IoT system and is

now able to stream the music via a connected device, that is capable of music streaming.

A user presence monitoring system is another example for an IoT system. All installed devices

could be turned o� to save energy, if they do not have to operate at this time.

2

1. Introduction

1.1.1.2. Smart City

Todays cities are frequently congested by cars and commuters. Smart cities are a possibility

to help minimize these problems. Networked vehicles, intelligent tra�c systems and sensors

embedded in roads and bridges are examples for sensing and interacting interfaces of a smart

city [5].

A city is frequently congested by cars or people and tra�c lights are a limiting factor for these

groups to move e�ectively. With a monitoring system for cars and people, the tra�c could be

controlled in a more e�cient way and the cities could become less congested.

To monitor the availability of parking space is another possible use case for a smart city system.

In such scenarios a free parking lot could be searched and perhaps reserved for a speci�c

amount of time. The time that is needed to search for a free parking lot could be reduced and

the issue of congested streets could be reduced.

1.1.2. IoT platform

An IP-communication is installed in most devices today or they are connected via an IP-gateway.

The question is, how advantages of devices like the IP-capable toaster could be used to create

better services for the users. Philips Hue [11] for example, is a proprietary platform for IoT

devices, built by the vendor. Proprietary platforms are created by each vendor to support their

own products. The results are many di�erent and separated proprietary platforms. Devices

from di�erent vendors can be controlled only by the usage of several di�erent platforms. The

alternative is, to use devices from one single vendor only.

To overcome this situation, IoT platforms were developed and are still being developed. The

connectivity between IoT devices and users is established by IoT platforms. The upcoming

tra�c is handled and the communication between all participants is guaranteed by these

platform. The platform can be accessed in di�erent ways by the participants. Software

Development Kits (SDKs) are delivered by these platforms. The platform can be used by

di�erent devices with the speci�ed SDKs. Individual credentials are created to connect each

device to the platform. Di�erent devices are combined by these platforms, so they can be used

in one environment. Kaa is a good example for such an open source platform and is further

discussed in Section 2.1.2.

3

1. Introduction

Several bene�ts like security and scalability are o�ered by platforms like Kaa. Interoperabil-

ity is missed by all previously discussed platforms. That means the processed data is accessible

inside the platform, but not from the outside and intercommunication between devices of

di�erent platforms is not possible in a convenient way.

Interoperability is the core value and a corner stone of the current Internet. Current platforms

are built like so called "walled gardens" by most vendors today. It is impossible with todays

platforms, to share data in a convenient way with each other. Users are forced to choose a

platform and stick with this speci�c system. The transition to another system is made di�cult

by the vendors which have no intentions to open their "walls" to ease the transition to another

system.

Devices and services from di�erent platforms can be used by each other as desired, if a fully

interoperable IoT environment is established. To establish an interoperability over all devices is

not feasible or even necessary in every case, but the advantages and bene�ts for many use cases

are increased by interoperability. Bene�ts can only be generated when the interoperability

is well de�ned. Devices and services are de�ned by a common and well known description

scheme.

1.2. Requirements

In the following Section requirements for an IoT platform are proposed and de�ned. These

requirements should be discussed and are used for further IoT platform debates.

Interoperability Nowadays IoT devices are developed and manufactured by several di�erent

vendors. These IoT devices are normally connected to the vendors own platform. The

users are enabled by these platforms to monitor and control connected devices of that

speci�c vendor.

An interoperable platform is needed to counteract the segmentation of the IoT. Devices

from di�erent vendors should be able to be used within a single platform. By that, users

are able to use devices from di�erent vendors in their own system. Furthermore, the

devices should be able to interact with each other. Machine readable and interpretable

descriptions of services and devices should be provided or supported by that platform.

These descriptions should be well-de�ned, so they could be read by di�erent consumers

with di�erent systems. Also the descriptions should be discoverable, so speci�c services

4

1. Introduction

and devices could be found within di�erent platforms. Open standards should be used

by an open and interoperable platform and proprietary protocols should therefore being

avoided.

Independence Some platforms are built as a interoperability frameworks. The interoper-

ability is added, to compatible existing platforms which are not interoperable, by these

frameworks. A uni�ed environment is established by these frameworks but it is not

possible to connect devices directly to these frameworks. A core platform is needed to

overcome the need for a platform to connect a device.

Any IP-capable device should be able to establish a connection to the platform. In order

to do that the platform should be independent and ready to use without other platforms.

Message Reduction An estimation of high amounts of IoT devices was published. An even

higher message amount will be produced by these devices. The networks could be under

high pressure by the estimated amount of messages.

In knowledge of estimated IoT device numbers, the platform should be scalable. E�cient

communication patterns should be used to reduce the messages by design. Further

strategies should be established to reduce the send messages even more.

Dynamic Nowadays a IoT device is subjected to evolving requirements. The requirements

are in�uenced by mutating security, performance and function requirements.

To overcome that issue updates for devices should be done at runtime. The function of

the device should not be subjected by that. Dynamic mechanisms should be o�ered by

the platform to �x issues, edit and change the purpose of the devices and services.

Administration The IoT lives from a great distribution. People with di�erent kinds of tech-

nology knowledge are forced to use these systems. These systems have to be set up and

maintained while being operated.

An IoT platform should be easy to use for everyone. Furthermore these kinds of platforms

should be easy to set up and maintained.

1.3. Goals

The goal of this thesis is to present an interoperable IoT platform design, that is simulated in

order to check the functionality. The design is evaluated with an OMNet++ simulation and

the results are discussed. The object description language is a core feature of the proposed

5

1. Introduction

interoperable IoT platform. This description language is empirically examined and the results

are discussed.

1.4. Organization

To achieve these goals this thesis is organized as follows:

Chapter 2 - Related Work - the state of the art related work is described and some IoT platforms

are presented.

Chapter 3 - Overview - the proposed interoperable IoT platform is introduced. The measures

that are used to match the requirements are introduced, a short overview on behalf of security

issues is given and the proposed communication patterns are introduced.

Chapter 4 - Description Language - describes how an object is represented in a description and

some object descriptions are discussed.

Chapter 5 - Rules - introduces the rules in general. Furthermore, it is described how to work

with rules to generate usage bene�ts, how the agent runtime environment can be used and

usage examples of both cases are discussed.

Chapter 6 - Interoperable Platform Design - the created IoT platform design is discussed and

the associated key components are presented. Also, the proposed IoT platform is classi�ed.

Chapter 7 - Communication Sequences - It is de�ned how the de�ned components are commu-

nicating with each other. Furthermore, it is shown, which messages are used.

Chapter 8 - Platform Simulation - the simulations that are made with OMNet++ are described

and the test results are discussed.

Chapter 9 - Conclusion - The research �ndings are summarized and an outlook for future work

is provided.

6

2. Related Work

In the following Sections an overview of the current state of the art is presented. Also a small

range of current IoT platforms is shown and their purpose is discussed. Furthermore the

presented platforms are measured according to the previously de�ned requirements.

2.1. Current State of the Art

Currently the market is �lled with di�erent systems, that provide several services for di�er-

ent use cases and orientations. Hereinafter some platforms and their points of interest are

described. Also the platforms are measured according to the previously described require-

ments (Section 1.2) and are brie�y discussed. A more comparing discussion is presented in

Section 2.2. The Sections are presented in the following steps. Some proprietary platforms are

described in the �rst step. In the second step an open source variant is being explained and

two research platforms are described in the third step.

2.1.1. Proprietary

IoT platforms are o�ered by many companies, some of them a part of them are being discussed

in this Section. A speci�c use-case or environment is most likely to be focused by a company.

Some example platforms and their speci�c orientations are shown in the following Sections.

2.1.1.1. Amazon

Di�erent devices are connected to the cloud by Amazon’s "AWS IoT” cloud-platform [12].

All components from device SDKs up to management tools, evaluation tools and the needed

infrastructure are delivered by Amazon. This is shown in Figure 2.1.

On Amazon’s consumer website the AWS IoT platform is shown as a consumer platform,

but the infrastructure is focused on company sized platforms. Di�erent technologies are used

to exchange data between the devices and the platform. For example MQTT [13], WebSock-

ets [14] and HTTP/1.1 [15] are used to establish and maintain connections. The platform is

built as a monolithic and scaling system. One billion devices can be handled with the platform.

7

2. Related Work

Furthermore secured and reliable data transport is provided by the platform.

Some basic IoT devices are provided by Amazon, one example is a simple button [16]. The

button is used to trigger di�erent events. Events are for example to order a cab, open the

garage door or even control Philips Hue bulbs [11].

Figure 2.1.: Amazon AWS IoT core architecture from [17]

The Amazon AWS IoT platform is not interoperable. Inside tra�c is supported by the platform

but it has no interfaces for inter-platform data exchanges. Although meta-data is used to

describe delivered data and device capabilities. These meta-data is only useful and usable

inside the platform.

The platform is independent and operates solely. Furthermore the platform is connected to

other Amazon AWS services.

The generated tra�c is transported via the platform. A direct machine-to-machine com-

munication is not featured. Some bene�ts are added by the centralized tra�c handling. The

tra�c is monitored and added instances can handle tra�c peeks. The data is protected against

internal loss by centralized monitoring mechanisms. Messages can be reduced by the usage of

rules. A behavior is de�ned by the rules and they are executed in a component that is called

rule engine. Consequential the messages from the users to the devices are reduced.

A dynamic behavior of the devices is not supported by the platform. SDKs are used and the

devices behavior is previously de�ned. If a new behavior is required the devices need to be

updated manually.

The Amazon AWS IoT platform is hosted by Amazon, but the platform needs to be managed

manually. Which means for example, new devices have to be added and registered devices

have to be managed. [18] [19]

8

2. Related Work

2.1.1.2. Microso�

The Azure IoT Suite of Microsoft is focused on many use cases. Many of these use cases are part

of the so called "Industry 4.0". But there are also use cases like connected cars and intelligent

buildings [20].

In general, a connected plant is used to enhance the productivity and the pro�tability. The

OPC Uni�ed Architecture [21] standard is used to connect and monitor sites and devices. Due

to this the fabrication line can be analyzed and the performance and e�ciency can be increased.

Furthermore it can be used to monitor the devices and to make remote analysis. The e�ciency

can be increased while the costs of the plant are lowered [22].

The Azure IoT Suite is a closed platform which is composed of di�erent elements. The

key components are the "IoT Hub” and the "Event Hub". A bidirectional connection with all

registered devices is established by the "IoT Hub" [23] and the delivered data is processed by

the "Event Hub" [24].

Microsoft is focused on data analysis and processing. Therefore an added value can be

generated from the collected data.

Microsotf’s Azure IoT Suite is not interoperable. It is a closed monolithic system which is

built to process the data e�ciently within the platform. Internally meta-data is used to describe

devices and their properties. Third-party devices can be connected to the platform by di�erent

kinds of gateways [25].

The platform can be used by devices that are programmed with the delivered SDK. Many of

Microsoft’s own software products are used. One example is Cortana and Microsoft’s machine

learning system.

The tra�c is channeled through the platform and a direct communication between devices

is not allowed. So the e�ciency is reduced in favor of higher reliability.

Moreover agents are used to add dynamic, but limited, capabilities to their devices [25].

Another dynamic capability or usage of the devices is not mentioned.

The platform is hosted by Microsoft in combination with their complete Azure software

products. The IoT platform has to be managed manually. New devices are added and registered

devices are maintained by the user.

2.1.1.3. SAP

The focus of SAP’s IoT solution is pointed on companies which align themselves with the term

"Industry 4.0". A system, that processes orders and theoretically manufactures the ordered

goods automatically, is o�ered by them. In order with their SAP ERP system [26] it is not only

9

2. Related Work

used to plan and manufacture the products, but also the storages are updated automatically

and resources are tracked within the processes.

Figure 2.2.: SAP HANA IoT architecture from [27]

The architecture is shown in Figure 2.2 and third party service interfaces are de�ned. That

interface is used to connect third party evaluation tools. A basic device description scheme is

used internally. Furthermore, the possibility to de�ne messages is given by the system.

The platform is strongly coupled to SAP’s other systems and can be operated alone. However,

third party access is also allowed by them.

All messages are delivered and received by the platform itself. A direct connection between

devices is not mentioned, so a high-level control and monitor tool has to keep track and

coordinate the system like it is used within the automatic manufacturing site.

A dynamic behavior of the devices is not mentioned. So in conclusion all the devices are

connected to the platform via the SDK made available by SAP.

The IoT platform is a part of the HANA project and is hosted by SAP. The Internet of Things

Service Cockpit (Section 2.2) is used to manual manage the platform. The IoT Application

interface is used by the users.

2.1.2. Open Source

Kaa is an open source community project and it is basically a back-end machine-to-machine

communication platform, where within some basic data presentation schemes are included. It

10

2. Related Work

is a company grade IoT platform for private and project usage. The goal of Kaa is to provide

a platform that is usable for all use cases which need machine-to-machine communication.

Several usage examples are provided by the community.

Figure 2.3.: Kaa cluster architecture from [28]

The data is processed internally by the closed system. Also the data is represented by a basic

description scheme and is processed internally. The platform can only be accessed on the

device level or at the application level. The system is not built to share information with other

platforms easily.

The Kaa IoT platform works in an autonomic way. Other systems such as Apache Zookeeper [29]

or SQL-databases are used by the system. Furthermore it is considered as a back-end solution.

The complete tra�c is processed by the platform. A direct device to device communication

is not supported. So it is a centralized and monolithic system.

Dynamic capabilities can not be found within the devices. Delivered SDKs are used to access

and operate with the platform and changes of devices need to be made manually.

11

2. Related Work

The platform is hosted and managed manually by the user. A system that is ready to use is

delivered by Kaa. Eased �rst steps are promoted by the Sandbox that comes con�gured. A Kaa

cloud solution [30] is currently in progress.

2.1.3. Research

Research projects called OpenIoT and BIG IoT are founded by the EU. OpenIoT was built

to generate basic knowledge about interoperability and its bene�ts. BIG IoT is built upon

the generated knowledge of OpenIoT. BIG IoT is a interoperability framework which is a

marketplace for di�erent IoT platforms. In the following Sections these platforms are further

discussed.

2.1.3.1. OpenIoT

OpenIoT is an open source middleware with the purpose to collect information from sensor

clouds, without having to worry about which exact sensor is used. Basic values can be

measured by sensors or sensor systems. Vocabularies are used to describe speci�c values and

units. E�cient ways to use and manage cloud environments for IoT devices and services are

explored by OpenIoT. “Sensing-as-a-Service" is the concept that was chosen by OpenIoT. The

platform is specialized to collect sensor data, but actuators are not part of the system [31].

Semantically annotated sensor data is provided by OpenIoT. The W3C Semantic Sensor

Networks (SSN) [32] speci�cation is used to semantically annotate the data. This annotation is

standardized and is consequential machine understandable. Di�erent vocabularies are used in

the annotation scheme in order to support more data types [33].

The Global Sensor Networks (GSN) [34] is used to collect sensor data. Apart from that, the

platform is independent.

The communication pattern poll and push are used by the platform, but the e�ciency could

signi�cantly be increased, if the patterns are used properly [35].

The data is provided by several connected GSNs. The GSNs are only represented by their

description. So if the description of the GSN is edited, the described data is used by the platform

without further manual interaction.

The platform has to be hosted and managed manually. Furthermore, a Sandbox system like

Kaa’s is o�ered.

12

2. Related Work

2.1.3.2. BIG IoT

BIG IoT is the short form of Bridging the Interoperability Gap of the Internet of Things. It

is a speci�c interoperable platform for IoT platforms and services. "BIG IoT API" and "BIG

IoT Marketplace" are the two basic components of the platform. It is founded by the EU and

developed in corporation with several companies like Bosch, Seat and Siemens [36].

Sensor data and services are provided via the interfaces of the BIG IoT API. Money can be

earned with the BIG IoT Marketplace, If data and services are o�ered by the publisher and used

by other consumers. For example, a service to request an available parking lot, is o�ered [37].

Money has to be spent in order to use this service. A list of available parking lots is then sent

to the service user. Another feature would be a reservation service for a parking lot. Their

business model is to create a revenue based on di�erent payment models. Small fees on each

payment, pay per use, for example API calls or even basic usage fees are an extract of the

payment Models [38].

Figure 2.4.: BIG IoT architecture overview from [37]

The platform is interoperable. Vocabularies and another description language to describe

data and services are used. The basic di�erence to OpenIoT’s approach is basically that now a

segment to make business is added in the description.

Because devices are not directly supported by the platform, BIG IoT is not an IoT platform.

Adapters for other platforms and services are supported by BIG IoT. Through these adapters,

data and services can be provided and used. BIG IoT is used to generate pro�t of your data and

services. A marketplace for data and services is o�ered with the BIG IoT Marketplace.

13

2. Related Work

All the data is transported via the platform and direct connections between platforms are

not supported.

The chosen data can be o�ered by every user and therefore only the API has to be used.

This means, that there is not any device level software involved.

The BIG IoT platform is hosted and data and services are provided by platforms and services.

The usage of data and services can be feed.

2.2. Discussion

Di�erent purposes are followed by current platforms. The machine-to-machine communication,

security and data presentation is a critical feature of the platforms that are presented here.

Several software tools to present and analyze the gathered data are presented accordingly

to the proprietary platforms. Currently their main focus is on companies and their process

digitalization.

The proprietary platforms and BIG IoT are built to make money. That is comprehensible,

but also the focus on companies is illustrated by that.

All platforms that are presented here except OpenIoT and BIG IoT, are closed monolithic

systems, but some kind of description language is used by all of them. A range from basic

device descriptions up to data and billing descriptions are o�ered by them. All this is a good

start, but by these descriptions only basic data types or speci�c devices are described. So the

data and device representation is not as good when it comes to more complex objects. These

complex objects for example are not only a temperature �eld, but contextual information about

the usage of objects which is given by several sensors. This means, there is a disadvantage of

current systems.

The platforms purpose is shown in Tabular 2.1 and 2.2. Furthermore the platforms are brie�y

classi�ed accordingly to the requirements, that are presented in Section 1.2. The text in some

�elds of the Tabular is highlighted in the colors green, orange and red. An accordance to a

requirement is highlighted in green, a partial accordance is highlighted in orange and a not

su�cient accordance is signaled with the color red.

14

2. Related Work

Platform Amazon AWS IoT Microsoft Azure IoT SAP IoT

Purpose Private and corpo-

rate usage

Corporate usage Corporate usage

Interoperability

No No No

Independent

Yes Yes Yes

Message Reduction

No No No

Dynamic

No Partial, they use

agents for dynamic

behavior

No

Administration Hosted and self man-

aged

Hosted and self man-

aged

Hosted and self man-

aged

Table 2.1.: Comparison of all described proprietary platforms

Platform Kaa OpenIoT BIG IoT

Purpose Private communica-

tion platform

Open sensor net-

works

Interoperability

framework

Interoperability

No Yes Yes

Independent

Yes Yes No

Message Reduction

No Partial, push pattern

is used

No

Dynamic

No Partial, because of

descriptions

Partial, because of

descriptions

Administration Self hosted and self

managed

Self hosted and self

managed

Hosted and self man-

aged

Table 2.2.: Comparison of the described open source platform and the interoperable platforms

15

3. Overview

Currently the IoT is segmented by di�erent kinds of platforms, proprietary systems and some-

times single device groups and a vast amount of di�erent technologies is used. Interoperability

in general is not properly supported by the platforms.

In Chapter 2 alternative platforms were presented. The presented platforms are focused on

closed systems, that are improved to handle internal tra�c, that is generated by devices and

services. An approach was done by BIG IoT, to overcome the segmentation with an on-top

platform that is an interoperability-layer for di�erent other platforms. But BIG IoT is not

an IoT platform, it is built as an interoperability-layer and with this aim, that precondition

the platform is not built to handle devices directly. Furthermore no adequate description

scheme is used. Either devices can only be described in their basic abilities without context

or the devices are represented within the platform and the knowledge how the devices are built.

The IoT platform, that is proposed in this thesis, is designed as an interoperable IoT platform.

Thereby it is presented as an alternative IoT platform, where interoperability is explicitly

supported. The platform is designed for IP (IPv4 [39] and IPv6 [40]) based communication on

Internet-like networks. Light control components like Domain Name Service (DNS) [41] are

used in the Internet to establish connections. That idea of light control components is used

and adapted to match the requirements de�ned in this thesis. At this point and because of the

limited time, a security mechanism is not proposed in this thesis.

The platform is presented with an open design and a few control structures. Because only

IP networks should be supported at �rst, devices that are connected via other protocols, for

example sensor networks, are viewed beginning with their IP gateway. In order to that every

device which is not capable of IP or not powerful enough, is connected via an IP gateway.

In this thesis devices are further described as objects. These objects are a basic component in

the proposed design. Object implementations are executed by the Object Engine component.

Objects, that are executed by an Object Engine, are handled at run-time by the Registry

component. The access to the system is granted and managed by the Management component.

16

3. Overview

The system is accessed by objects and users of the system. The Gateway component is used

when a direct connection to a component of the system is not possible. In that case, messages

are sent to the Gateway and after that the message is forwarded to the destination component.

To create a connection between objects and users is a key goal of this thesis. The Management

and the Registry are the core components of this platform. These two are needed for a working

platform. The Gateway, Object Engine and the user can be added if they are needed.

In the following Sections the challenges of such a system are discussed, the core components

of the proposed design are brie�y outlined and discussed, the goals of this thesis are described

and the steps to accomplish these goals are shown.

3.1. Challenges

If an IoT platform is designed, several challenges have to be faced. First, the interoperability

issues have to be solved. Therefore an advanced object description language is proposed in

Chapter 4. In that description inheritance structures are de�ned. The inheritance structure is

built as a tree, like it is used in Java’s object inheritance structure. That description language is

used to bind the properties and methods to the object that is described. If an object is de�ned,

so it inherits from another object, all properties and methods are inherited from the parent

object. New methods and properties can be added but existing ones are not permitted to be

overwritten.

Second, to easily access these methods and properties, three di�erent basic communica-

tion patterns (Request-Response, Reactive, Stream) [42] are de�ned and further discussed in

Section 3.3. These two measurements are de�ned as the cornerstone of the interoperability

of the platform. These cornerstones are necessary, because a well-de�ned communication

patterns and descriptions are needed, if a connection between two di�erent devices and objects

is wanted.

Third, rules and a rule-based behavior is de�ned in Chapter 5. The proposed rules are

inspired by IFTTT (If This Then That) [43] and the paper [2] proposed roles. The e�ciency

and the �exibility of the system is improved by the rules. A continuous self-monitoring is

needed, in order to check the rules conditions and timer. The state of an device can either be

monitored by steady requests or by a reactive behavior of the device itself. If the rules are

triggered, the reaction should follow prede�ned steps.

Fourth, the platform needs to be designed e�ciently and decentralized. Therefore a handle-

driven platform is proposed. By the handle-driven approach, the tra�c should be reduced.

17

3. Overview

The design also needs a light structure of control services. These services are described in the

following Section.

3.2. Requirements Transposition

In Section 1.2 some requirements are de�ned. These requirements are introduced as crucial

properties of an interoperable IoT platform. The requirements and the subsequent measures

are introduced in the following Section.

Interoperability is one of the requirements which have been described earlier. It is realized

through several steps. First, two communication patterns are de�ned. Through this a well-

de�ned way of communication is implemented and all participants are enabled to communicate

with each other. Second, a description language is proposed, that is an advantage to the existing

description mechanisms. Third, the Registry and the Gateway component are introduced. The

Gateway is used to establish connections between devices, if a direct connection is not possible.

The Registry is designed to easily distribute object information, within the local network and

globally.

Independence is realized by the four components of the platform. The Management is in-

troduced as the component, that is used to supervise the platform. The Registry is used to

share the object information at run-time. To connect components, if they are not able to

communicate directly, is added by the Gateway. A device can be connected to the platform if

the Object Engine is used.

Message reduction is de�ned as a requirement, because it is an improvement for the scala-

bility of the platform. An improvement that can easily be done at design time and not by an

infrastructure that scales at run-time. By the direct communication that is introduced by the

handle-driven system, the messages that are sent, can be reduced signi�cantly. A reactive

behavior is introduced to lower the amount of messages that are sent for status requests. That

requests are done internally by the device, to check and execute rules that were previously

de�ned.

A dynamic behavior is a key value and requirement for the IoT. The Object Engine is built to

meet that dynamic behavior. Di�erent properties are introduced with the Object Engine. The

devices behavior can be manipulated at run-time and devices that are built with the Object

18

3. Overview

Engine should be connected autonomously to the platform. Also a run-time environment for a

reactive behavior is added to the Object Engine.

The Administration of the platform is combined in one component. The Management compo-

nent is de�ned to handle all access requests. These requests can be yielded by all parties that

participate in a system.

3.3. Communication Pa�erns

Well-de�ned communication patterns are needed for an interoperable IoT platform. A commu-

nication between the objects and user can be enabled by these patterns.

Publish-subscribe systems are used by other platforms for their message delivery. These

systems are loosely coupled by the usage of message servers [44]. The problem is, that messages

are sent between device and platform or device and message server, even if the data is not

subscribed. If the proposed patterns are used properly, the number of messages can be reduced

signi�cantly.

These patterns should be applicable to many di�erent use-cases. The most basic way to

communicate is the request response pattern. A request message is sent from host A to host B

and the a response message is sent from host B to host A. The pattern is very basic and simple.

No complex logic is needed and more important, no state has to be saved. But it is not very

e�cient. If the request response pattern is used for repetitive requests of a speci�c value or

resources, the amount of request messages rises. In these cases it could become more e�cient

to use a reactive pattern.

A reactive communication is set up with a condition. If that condition is satis�ed, an action

will be triggered. For example, every time a status change is detected, all subscribers of the

speci�ed condition are noti�ed. The self-monitoring of the objects is a crucial part of the

mechanism. The system has to be monitored periodically by itself, so a status change can be

detected. Furthermore, the connection needs to be monitored. That monitoring has to be done

to ensure, that a subscribed condition is correctly recognized.

The amount of messages that are sent, could be reduced by the reactive pattern. Some

e�ciency issues are shown by the reactive pattern, if it is not limited. It could result in a �ood

of status messages. Therefore it has to be parameterizable. The reactive pattern is further

19

3. Overview

discussed in Chapter 5 as rules.

The stream pattern for continuous method invocation is proposed. This pattern should be used

for tasks like video or music streams.

A priority scheme is proposed to support di�erent kinds of urgencies of messages and their

processing. By di�erent priorities, the processing of for example medical devices, could be

preferred.

Both the stream pattern and the priority scheme are proposed for further work, because of

the limited time.

3.4. Design

Four components are de�ned as cornerstones of the platform design that is proposed here.

These cornerstones are the Management, the Registry, the Gateway and the Object Engine.

The components are brie�y described in the following Sections.

3.4.1. Management

The Management of the platform has to be done at run-time. Therefore the Management

component is introduced as the control component.

A control interface and the security system should be managed here. Furthermore, the

user management should be done by this component. The list of connected Managements,

Registries, objects and user should be controlled within the Management.

Purposed tickets or certi�cates should be o�ered by this system. Through this, the permission

check for speci�c actions should be eased.

The Management is further presented and discussed in Section 6.3.

3.4.2. Registry

Object entries and their properties should be managed at run-time by the Registry. In the

system, the Registry design is built as a handle-driven broker. Like domain names that are

handled by the DNS in the Internet, object entries should be managed by the Registry.

Look-up strategies should be used to retrieve object information from the Registry. Thereby

di�erent kinds of information and relations between objects should be retrievable.

An object should can be published to another platform. In that case objects should be added

to the connected Registry. In conclusion all objects are saved within the Registry and some of

them are published to other platforms.

20

3. Overview

The Registry is further presented and discussed in Section 6.4

3.4.3. Gateway

The Gateway is de�ned as a component, because nowadays the networks are divided by

network borders called NAT (Network Address Translation) [45]. To solve this problem, the

Gateway component is introduced.

Networks which are normally not connected can be connected by Gateways. For example

an object in a LAN (Local Area Network) [44] needs to be accessed from outside the LAN. Such

objects can normally not be accessed.

In that case the connection should be established via the Gateway. If a message is sent to

the Gateway, the message should be forwarded by the Gateway like de�ned in the message.

The Gateway is further presented and discussed in Section 6.5

3.4.4. Object Engine

Devices can be connected to platforms in several ways. Devices that are programmed with

provided SDKs are the most common way today. A static installation of these devices is thereby

done.

Object descriptions should be used within this platform, to de�ne the behavior of an object.

An object implementation should be the coded implementation of the corresponding object

description. Furthermore the object implementation can be added to the Object Engine at

run-time. Through this, the dynamic behavior of the device, running an Object Engine, should

be signi�cantly increased.

A valid object implementation should be runnable within the Object Engine. The Object En-

gine should be a well-de�ned run-time environment for object implementations. A lightweight

management interface should be provided by the Object Engine. The interfaces should be

used to add objects and to handle incoming and outgoing tra�c. A run-time environment

for agents and rules should be part of the Management. These run-times are needed for an

e�cient behavior and decentralized structures. The Object Engine should furthermore be a

gateway for devices that are not capable of IP or not powerful enough.

The Object Engine is further presented and discussed in Section 6.6.

3.5. Security

The safety of the users and their assets has always been taken into account. Informations

about objects and users are handled within the platform. A �rst security issues is, that the

21

3. Overview

platform can not only be used to gather information, but to trigger actions of objects. These

actions can be safety-critical and therefore these informations have to be secured as best

as they can. Another problem is, that by the proposed object description language the con-

textual informations are enriched signi�cantly. If the dynamic composition 4.5.3 option is

used, then even the placement of safety critical objects can be disclosed. Therefore the discus-

sion has to be done, which information should be described with the o�ered description options.

There are two security mechanisms that could be taken into account. Authentication, encryp-

tion and decryption mechanisms could be provided by di�erent security mechanisms.

An asynchronous cryptographic system in form of a PKI [46] infrastructure or a security

system like Kerberos [47] is proposed. The described functionalities should be implementable

by both proposals. In further work, a security system should be proposed.

3.6. Summary

The proposed platform is brie�y discussed in Table 3.1. The amount of messages is reduced

by the rules and the handle-driven platform design. Messages are directly sent between two

objects and are no longer sent via the platform. The dynamic capabilities are increased by the

Object Engine. Every object can be processed and makes object updates at runtime possible.

In comparison to the IoT platforms, that are examined in behalf of the requirements and

are summarized in Table 2.1 and Table 2.2, some improvements are shown by the proposed

interoperable IoT platform. Improvements are shown especially when measured against to the

requirements interoperability, dynamic behavior and message reduction.

22

3. Overview

Category/ Re-

quirement

Proposed Platform Description

Purpose Private and public The platform is built to support a community that

is willing to share information.

Interoperability

Yes

The interoperability is supported by the proposed

communication patterns, the object description

language and the components Registry and Gate-

way. The components are introduced to support

the open data thought.

Independent

Yes

The platform is independent because all crucial

components and the corresponding mechanisms

are de�ned.

Message

Reduction

Yes

The messages are reduced by the handle-driven

approach and the reactive behavior (rules).

Dynamic

Yes

A dynamic behavior is supported by the variability

of the Object Engine and the reactive behavior.

Administration Self hosted or hosted

and self managed

The administration is de�ned within a single com-

ponent. The Management is designed to handle

all access and security issues.

Table 3.1.: Discussion of the proposed platform.

23

4. Description Language

A common understanding of objects and their abilities is needed in an interoperable environ-

ment. The knowledge, which speci�c device is used in a scenario, is utilized to process the

data. Such speci�cations can only be operated in environments where every device and its

behavior as well as the speci�cations are known.

In an interoperable platform the knowledge has to be enriched, so everyone can use the

device by its speci�cation and without the need to know by whom the service is o�ered.

Through the creation of description every object, this issue can be solved. One solution would

be a description language. In this thesis a description language is introduced as a possible

key to interoperability for interoperable IoT platforms. A well-de�ned description language is

essential to establish an interoperable environment.

Vocabularies are used by OpenIoT (Section 2.1.3.1) and BIG IoT (Section 2.1.3.2) to identify

speci�c data types. But the vocabularies are only used to describe basic values and not their

semantic context. The temperatures at a speci�c GPS location is an example for basic values

and their combination. But the context of sensor data is a major issue, that is not appealed by

vocabularies. For the description of basic values this is not important but if more and more

complex objects are described, the complexity can not be depicted.

The object description language, that is presented in the following Sections, is created to

improve the context of de�ned objects and their data.

4.1. Object

A device or a service can be represented by an object. The common description language is

chosen as the representation scheme, to establish a common understanding of devices and

services. Di�erent properties and abilities of objects can be modeled with the description

language. Simple objects can be composed to a bigger complex objects, by combining them in

the description.

The object, that is presented in this thesis, is a mixed view of two architecture orientations.

Both the ROA (Resource Oriented Architecture) [48] and SOA (Service Oriented Architec-

24

4. Description Language

ture) [44] approach are represented by a described object. First, the ROA approach is symbolized

by an identi�er that is called object identi�er (OID) (Section 4.2). Furthermore some basic

description �elds are bound to the object. Second, the SOA approach is symbolized by the

operations that can be executed by the object. The object is the context for the operation. In

conclusion the object is identi�ed by the OID and basically described (ROA) and operations

that can be executed by the object (SOA).

Two di�erent kinds of objects are described in this thesis. First the object descriptions and

second the object implementations. The object description has to be seen as a contract that is

de�ned before run-time and the object implementation is the implementation of the contract.

These two object types are further described hereinafter.

4.1.1. Object Description

The huge amount of di�erent devices that can be bought is a problem for the interoperability.

At run-time these objects can not be identi�ed and used, because a common interface is not

supported by them. An implicit or a very basic description is used by todays systems.

The object description is introduced to solve these problems. At �rst, an object is de�ned

before run-time. The description is identi�ed by an OID. This OID is used at run-time to

identify the object as an object that is implemented to ful�ll a speci�c description. Furthermore

at run-time only the run-time speci�c information has to be managed. The whole object

description is bound to the used OID.

The description or the contract is used to de�ne the capabilities and properties of the

object. Furthermore, these objects should at minimum be annotated with an OID, a name

and a description. In order to implement the object in the IoT platform, this is the minimum

level, that a object should be described with. Nevertheless, the objects should be de�ned and

described as particular as possible, to improve the usability.

An example of a object description is shown in Listing 4.1.

1 {
2 "oid": "0.0.1.4",
3 "name": "switch",
4 "description": "Can be used as a switch"
5 }

Listing 4.1: Description object

At run-time the object is bounded to the previously described object by the OID. To dis-

tinguish objects at run-time, a local_id is added. In Listing 4.2 an example for an OID and

local_id combination is shown.

25

4. Description Language

1 {
2 "oid": "0.0.1.0",
3 "local_id": "123"
4 }

Listing 4.2: OID and local_id at run-time

4.1.2. Object Implementation

The object implementations are implemented to ful�ll the contract which is de�ned by the

description object. At run-time the object implementation is identi�ed by the OID and an

additionally generated local_id.

A description object can be implemented in several di�erent ways and for each way, di�erent

implementations of an object description can exist. These object implementations should be

stored and made available for users and manufacturers.

In order to make the implementations available in a public repository, they should be de�ned

under a license, to regulate the usage of them. The implementations could also be sold via a

marketplace that is connected to the public repository.

4.2. Object Identifier

At run-time objects are needed to be identi�ed. The abilities and properties of the object are

de�ned before run-time and at run-time the object description should be represented by and a

unique identi�er.

The identi�cation can be done in di�erent ways. First, the objects can be de�ned at run-time

by descriptive arguments or second, they are identi�ed by a description language that was

previously de�ned. Descriptions that are de�ned before run-time, are used in this thesis. These

descriptions are identi�ed by the OID.

The object identi�er (OID) is speci�ed in Article [49] and is used originally in Simple Network

Management Protocol (SNMP) [50] to identify every node in a network. An example for an

OID is 1.2.2 . As shown before it is a string consisting of numbers and dots. The inheritance

hierarchy is described by the string in which the numbers are separated by dots. Object

inheritance trees can be built with this format and the relationship between the objects is

shown too.

In SNMP these identi�ers are used to identify nodes in networks. In this thesis these OIDs

are used to describe inheritance relationships like they are used in the Java object inheritance

structure. An example for such an inheritance structure is shown in Figure 4.1.

26

4. Description Language

Figure 4.1.: Object identi�er example

4.3. Object Hierarchy

Today, the IoT environment is separated and consists of many di�erent objects. Some of these

objects are built to ful�ll the same task but can not be identi�ed as these objects. An approach

that is used by current platforms is to tag the data. But by these tags, the relations between

di�erent objects can not be displayed.

A hierarchy of objects is presented in this thesis. Information of abilities and properties of

objects are contained in the object hierarchy. An inheritance mechanism, similar to the here

introduced hierarchy, is used in the object oriented programming language Java.

In Java, the abilities and properties of the basic Java object are inherited by every Java object.

A structure with properties and abilities is built with the inheritance model. In this system a

group of objects can be selected to ful�ll a task that it is de�ned according to their capabilities.

Object identi�ers (OID) are used to de�ne which other object inherits from which speci�c

object.

Like it is done in Java, the basic object is inherited by every object in this inheritance model.

Private OID areas should be de�ned which should be used as a test environment. Furthermore,

27

4. Description Language

vendor speci�c areas should also be considered.

An object identi�er example, that is shown in Figure 4.1. In this example the object with the

OID 1.2.2 is de�ned as a parent object for all other shown objects. The object 1.2.2 is inherited

by object 1.2.2.1 which is again inherited by The objects 1.2.2.1.1 and 1.2.2.1.2. This means,

that if the object 1.2.2 is de�ned with a certain ability, this ability is provided by all other

objects, which are inherited by object 1.2.2.

Four basic description objects are the base of the object hierarchy. The �rst is the regular

object which is the root of the inheritance tree (in Figure 4.2). The function of the other three

description objects is to categorize the objects right from the beginning. Further categorization

description objects are recommended and should be added to simplify the inheritance structure

and make classes of objects easier to recognize. A �rst essential step to improve semantics for

di�erent kinds of objects is proposed with the categorizations in the inheritance model.

Physical Object A real-world object is represented by the physical object. Examples for

physical objects are chairs, TVs and wearables.

Non Physical Object Non-physical objects are described as objects that do not exist in the

real-world. These kinds of objects can be used in AR- and VR-environments.

Service A service describes services that have a speci�c behavior such as a video streaming.

These kind of objects are not bounded to a speci�c existing object. Physical, as well as

non phyisical, objects are meant by the term existing. The service can be seen as a micro

service.

Private Object This area can be used to de�ne own objects. So this number space is reserved

for self created objects and objects that have to be tested in the later on de�ned environ-

ment. At run-time they can only be used in self de�ned scenarios, but the semantics are

not readable by others.

4.4. Data Format

The representation of the description language is an essential aspect. There are di�erent

concepts of object notations and meta-languages that can be used for that purpose. Because of

their popularity JSON and XML are chosen as possible candidates. JSON and XML are used in

a wide range of use-cases. Both have di�erent properties which are shown in the following

description.

28

4. Description Language

Figure 4.2.: Basic object inheritance scheme

JSON The JavaScript Object Notation (JSON) is a text-based, compact data storage and ex-

change format. JSON is used in JavaScript to describe objects internally. Externally JSON

is used to exchange data. The notation is designed to be e�cient, self-describing and

easy to use. Furthermore the notation is a native part of JavaScript and therefore simple

to process in a JavaScript environment. [51]

XML The Extensible Markup Language (XML) is a text-based format for the exchange of

structured data. XML is built in order to be human readable and simple to use. It is

applied in many use cases. A XML document can appear in two di�erent states. These

states are described as well-formed and valid. A document is called well-formed if it

is conform to the syntactical rules of XML. A XML-formatted text is called valid if it

is well-formed and it is conform to all rules de�ned in the DTD. The structure of the

document is de�ned by the Document Type De�nition (DTD). [52]

In this thesis, JSON is used for the prototypic descriptions, because it is easy to use and fast

in development. In further work, XML should be used for the descriptions, because of the

powerful validation feature.

29

4. Description Language

4.5. Optional Descriptions

In order to improve the contextual knowledge the object should be described as precisely as

possible. Therefore An object can be de�ned by several additive descriptions. In the following

Sections the optional descriptions are presented.

4.5.1. Vocabularies

Vocabularies are used to establish a basic knowledge of words in an interoperable system. If the

speci�ed vocabulary is used, the words, that are de�ned in the vocabulary, can be understood

and interpreted by every program.

An example for such a vocabulary is Schema.org. Schema.org was founded by Google,

Microsoft and others. It is used to describe properties, entities, relationships between entities

and actions. [53]

A vocabulary can be used to describe di�erent types of data and locations in which the data

is generated. This feature is essential for an interoperable platform. The purpose and context

of di�erent platforms can be made clear. By that, the usability of these platforms and services

can be improved signi�cantly. Vocabularies are identi�ed by URIs. In Listing 4.3 an example

for a vocabulary de�nition is shown.

1 {
2 "vocabulary_count": 1,
3 "vocabularies": {
4 "vocabulary_0": {
5 "prefix": "dcterms",
6 "URI": "http://purl.org/dc/terms/"
7 }
8 }
9 }

Listing 4.3: Vocabulary de�niton

The �eld pre�x is introduced in the example from Listing 4.3. A unique identi�er is needed

for every vocabulary that is de�ned. An example with two vocabularies is given in Listing 4.4.

1 {
2 "vocabulary_count": 2,
3 "vocabularies": {
4 "vocabulary_0": {
5 "prefix": "dcterms",

30

schema.org
schema.org

4. Description Language

6 "URI": "http://purl.org/dc/terms/"
7 },
8 "vocabulary_1": {
9 "prefix": "foaf",

10 "URI": "http://xmlns.com/foaf/0.1/"
11 }
12 }
13 }

Listing 4.4: Vocabulary de�nition with two vocabularies

The number of used vocabularies is expendable, like it is shown in Listing 4.4. A new vocabulary

can be added, as long the new pre�x is di�erent to the previously de�ned pre�xes. An overview

of vocabularies is given by the Open Knowledge Foundation [54].

4.5.2. Basic Data Types

Some basic data types are introduced along with the description language. The basic data types

are added to simplify the usage of the platform. These data types can be used if the pre�x bsc
is used. bsc is the short form for basic. In the following description, the basic data types are

de�ned.

bsc:boolean - true or false as a string

bsc:integer - 32 bit signed value

bsc:long - 64 bit signed value

bsc:double - 64 bit �oating point value

bsc:string - a UTF-8 encoded text

The time unit is standardized to the value µs and the measurement unit for distances is

standardized to the value µm.

4.5.3. Composition of Objects

The issue that a complex device has to be described, is not known by devices whose abilities and

properties are known implicitly. Complex objects can not be described by current description

structures, that are used by most platforms today.

The object composition is a key feature of the proposed description language. Complex

objects can be described by other objects. So every complex object should be decomposed

31

4. Description Language

to several simple object and then be reattached. Complex objects are called ambient objects.

Objects without other objects bound to it are called simple objects. The divide and conquer

principle is used with this approach. Simple objects are placed in coordinate systems. A

coordinate system with a root point is de�ned by the ambient object. Simple objects are

arranged in the coordinate system of the ambient objects. All composed objects are placed in

relation to the root point of the object it is composed with. A point in this coordinate system is

de�ned by the values of the coordinates in x-, y- and z- direction. Furthermore, an orientation

is added with the corresponding angles, that are given with the coordinates. So six values are

de�ned to describe a position and the orientation of a point in a coordinate system.

It should be noticed that only the ambient object knows about the attached objects. The

simple and complex objects are not aware of their context outside their de�nition. Also, every

ambient object can be a simple object that is composed to another ambient object.

More context can be generated by the composition and the produced data is now better to

understand. The data is enriched by given information, to increase the processing outcome of

the enriched data.

There are two kinds of compositions. On the one hand are the static members, on the other

the dynamic members. Further descriptions can be found in the following Sections.

4.5.3.1. Static Members

Static members are de�ned as objects that are composed to an ambient object before run-time.

If an object has static members, it is de�ned as a complex object.

The object that is composed to the ambient object should be positioned in the coordinate

system of the ambient object. If it is not positioned, the object is bounded to the ambient object

but does not have a speci�c coordinates. The possibilities of this language and the context of

the objects could be maximized, if the object is positioned in the coordinate system. It is highly

recommended to position the object.

A static member is a kind of composition, that requires a speci�c position of the member in

the coordinate system of the ambient object. The members are positioned referring to the root

coordinates of the ambient object. As described before, the mounting point is de�ned relative

to the object root. A static member description is shown in Listing 4.5. If the composition is

done without a speci�c position, the �eld mounting_point is de�ned as an empty object.

1 {
2 "member_count": 1,
3 "static_members": {

32

4. Description Language

4 "member_0": {
5 "description": "seating",
6 "oid": "0.0.23.0",
7 "mounting_point": {
8 "x": 0,
9 "y": 60000000000,

10 "z": 0,
11 "angle_x": 0.0,
12 "angle_y": 0.0,
13 "angle_z": 0.0
14 }
15 }
16 }
17 }

Listing 4.5: Static member de�nition example(with coordinates)

4.5.3.2. Dynamic Members

A dynamic member is described at run-time. These are dynamic compositions, that should be

de�ned to enrich the context informations of the objects.

For example, if a table object is combined to an ambient object room. Then the table object

would be a dynamic member of the ambient object room. These composition can either be

de�ned with or without a position in the coordinate system of the ambient object.

The composition of objects is recommended to increase the context of the produced data

and functions, but the composition is not required. A dynamic member is de�ned equally to a

static member only at run-time

4.5.4. Description

The object is described by a text. In this text, the object is shortly described. Furthermore, the

abilities and the purpose of the speci�c object should be illustrated.

An example for such a description is shown in Listing 4.6. The description should be used in

other contexts too.

1 {
2 "description": "A bulb that can be switched on and off.
3 It is used in systems like Smart Home."

33

4. Description Language

4 }

Listing 4.6: Description example

4.5.5. Methods

An object is built and described to ful�ll a purpose. The abilities that are needed should be

de�ned.

These abilities are called methods. Methods are de�ned as actions which can be performed

in the context of the object. First the amount of methods is de�ned by the �eld method_count
and second the methods themselves are de�ned by the methods. In this term the methods are

de�ned like shown in Listing 4.7.

1 {
2 "method_count": 1,
3 "methods":{
4 "method_0": {
5 "name": "setHeightInPercent",
6 "is_status_request": false,
7 "parameter_count": 1,
8 "parameters": {
9 "parameter_0": {

10 "type": "bsc:int",
11 "name": "newHeightInPercent"
12 "precond": "newHeightInPercent >= 0
13 && newHeightInPercent <= 100"
14 },
15 "return_values_count": 1,
16 "return_values": {
17 "return_value_0": {
18 "type": "bsc:boolean",
19 "name": "successful",
20 "postcond": "successful == true || successful == false",
21 }
22 },
23 "description": "sets the height of the seating in percent.",
24 "option_count": 1,
25 "options": {
26 "option_0": {
27 "description": "sets the height of the seating in percent.

34

4. Description Language

28 Faster height correction than operation_2"
29 }
30 }
31 }
32 }

Listing 4.7: Methode de�nition example

The �elds, that are used in Listing 4.7, are further discussed in the following description.

is_status_request is de�ned as true, if no state change is triggered by the invocation of the

speci�c method. The �eld is de�ned as false, if a state change could be triggered.

parameters are de�ned in their position by the parameter numeration. In order to that, the

�rst parameter is called parameter_0. type and a name are used to de�ne the parameter.

return_values are equally described as parameters.

conditions are de�ned either by conditions or by text. Conditions should be used for values

of the typ bsc:integer, bsc:long, bsc:double and bsc:�oat. In case of a bsc:string the

validation possibilities are limited. The validation of the length of a string is an example

for a validation capability for bsc:strings. The conditions are not furhther described in

this thesis.

options Di�erent implementations of the same method should be described by an option.

These options are de�ned by a string. This string is used to de�ne the di�erences between

the default implementation and the option.

4.5.6. HAL

The Object Engine is de�ned and introduced as a gateway for devices. The HAL in this design

is the link between the Object Engine and the device with its special interface.

The hardware interface between the Object Engine 6.6 and the device itself is de�ned by

a Proxy [55]. That Proxy is called Hardware Abstraction Layer (HAL) in further discussions.

Operations are introduced as actions that the HAL is able to perform. The �eld methods is

used to describe the operations, that are de�ned accordingly to the object methods. Operations,

that are not previously de�ned, are named by the �eld operations. An operation is de�ned

equally to methods, that are de�ned in Section 4.5.5. A HAL description is shown in Listing 4.8.

1 {
2 "hal": {

35

4. Description Language

3 "methods_count": 3,
4 "methods": ["method_0", "method_1", "method_2"],
5 "operations_count": 1,
6 "operations": {
7 "operation_0": {
8 "name": "isInitialized",
9 "parameter_count": 0,

10 "parameters": {},
11 "return_values_count": 1,
12 "return_values": {
13 "return_value_0": {
14 "type": "bsc:boolean",
15 "name": "initialized",
16 "postcond": "initialized == true || initialized == false"
17 }
18 }
19 }
20 }
21 }
22 }

Listing 4.8: HAL de�nition example

The e�ciency and the response time on events can be improved by a reactive mechanism, that

should be implemented. This mechanism should be used to get new information as fast as

possible. The normal way is, that an action is triggered by the HAL. These di�erent interaction

pattern for the HAL and the device should be de�ned in further work.

4.5.7. Shape

The shape is an image of the object and could be used to picture the object in other programs.

A possible use-case would be a design software for objects or furthermore, the shape could be

used to show and interact with these objects in VR- and AR-environments.

Every shape is de�ned by three anchor coordinates within the 3 dimensional space and a

corresponding angle for every dimension. This means, the object’s anchor point is de�ned by

a point with 6 dimensions.

The measures of the shape are referred to the anchor point coordinates. The shape could

be edited at run-time but that would be part of further work. A dynamic shape would be

interesting in AR- and VR-environments.

36

4. Description Language

Four di�erent shapes are supported by the platform. These shapes are adapted from the

JavaFX terminus [56] and are listed in the following description.

box represents a box with the attributes

• value_x - width

• value_y - height

• value_z - depth

sphere represents a Sphere

• value_z - radius

cylinder represents a Cylinder

• value_y - height

• value_z - radius

triangle_mesh represents a Triangle Mesh

• vertex_array - an array of 3d coordinates(x,y,z), where vertex_array[i], vertex_array[i+1]

and vertex_array[i+2] with ((i ≡ 3) = 0) are de�ning a vertex.

• face_array - an array of vertex_arrray indices, where a face is de�ned by three

vertices. face_array[i], face_array[i+1] and face_array[i+2] with ((i ≡ 3) = 0) are

de�ning a face.

Because the shape is no crucial part of the platform, it is not further mentioned.

4.5.8. Location

An object location is described by a GPS-position. The location of an object in a global context

is not accurate and the support of indoor positioning is not given by GPS-like systems. For

an exact location or even a better composition, the object should be composed with other

objects. GeoJSON [57] is an encoding format for GPS-positions formatted in JSON. To support

di�erent types of encodings, the GeoJSON object is wrapped in the format. The encoding style

is identi�ed by the type �eld.

These compositions are described in Section 4.5.3.

1 {
2 "location": {
3 "type": "GeoJSON",

37

4. Description Language

4 "obj": {
5 "type": "Feature",
6 "geometry": {
7 "type": "Point",
8 "coordinates": [53.557067, 10.023116]
9 },

10 "properties": {
11 "name": "HAW Hamburg BT7"
12 }
13 }
14 }
15 }

Listing 4.9: Location de�nition example with GeoJSON

4.5.9. Descriptions Summary

The description of an object at run-time is di�erent to the description that was done before

run-time. At run-time a speci�c object is described, a whole group of objects was described

previously. The descriptions at run-time are stored and managed by the Registry (6.4). The

descriptions are summarized and shortly described in Table 4.1.

4.6. Standardization

A form of standardization is highly recommended to control the hierarchy of described objects.

OID spaces are distributed by the standardization organization to all kinds of vendors and

participants in general. An example for a distribution by a standardization organization is

�rstly the IPv4 address spaces [58], that are managed by the IANA and secondly the Structure

of Management Information [59] also supervised by the IANA.

The object hierarchy should be supervised by a standardization organization. Because of this

the proposed open object hierarchy is prevented from being used to serve only one participant.

Furthermore the valid object hierarchy should be supervised by the organization, in order to

keep the hierarchy logical consistent.

38

4. Description Language

Descriptions Before Run-Time At Run-Time optional

OID Used to de�ne inheritance Used to identify an object No

local_id No De�ned and used No

Description Yes Possible before run-time

no, at run-time

yes

Vocabularies Used, to de�ne values Implicitly now because of

description

Yes

Composition

of Objects

Static member Dynamic member Yes

Methods Yes, to describe objects

abilities

Previously described

methods are used

Yes

HAL De�ned as a contract be-

tween description object

and real device

Used by the object imple-

mentation

Yes

Shape Described Used to present the object

in di�erent environments

Yes

Location Not de�ned De�ned as a GPS-position Yes

Table 4.1.: Summary of proposed descriptions

4.7. Experiment

An object is de�ned in the proposed object description language. In this experiment a simple

object is described before run-time, thereby the potentials of the description language are

shown. The object, that is represented here, is a physical object, with an inheritance tree, that

is shown in Figure 4.3.

The results are discussed later on.

4.7.1. Se�ing

Single components of the description are discussed here and the complete description is shown

in Appendix A.1.

The description, of the box that was earlier mentioned, has an OID. With the OID in Listing 4.1

the object can be identi�ed as an object that is built subsequent to the speci�ed contract. The

internal_timer �eld is used, to specify the internal timer interval. Through this, the value

rate for internal refreshes is speci�ed.

1 {
2 "oid": "0.0.8080",

39

4. Description Language

Figure 4.3.: Example object inheritance

3 "name": "Box",
4 "description": "A box that can be opened and closed.
5 Furhtermore it can be monitored,
6 if something is inside that box."
7 "internal_timer": 1000
8 }

Listing 4.10: Description object

Because only the basic data types are used, no additional vocabulary is needed. The basic data

types are now usable by adding the pre�x bsc: to the type de�nition.

1 {
2 "vocabulary_count": 0,
3 "vocabularies": {
4 }
5 }

Listing 4.11: Vocabulary de�nition

In Listing 4.7 example de�nitions for methods are shown. The �eld is_status_request is used

to identify the method as a non-status changing method. The method can be called, without

any concern of status changes. If the �eld is_status_request is de�ned as true, then the method

has to be a status retrieving method.

1 {
2 "method_count": 3,

40

4. Description Language

3 "methods":{
4 "method_0": {
5 "name": "openBox",
6 "is_status_request": false,
7 "parameter_count": 0,
8 "parameters": {},
9 "return_values_count": 0,

10 "return_values": {},
11 "description": "Opens the box.",
12 "option_count": 1,
13 "options": {
14 "option_0": {
15 "description": "Open the box faster."
16 }
17 }
18 },
19 "method_1": {
20 "name": "closeBox",
21 "is_status_request": false,
22 "parameter_count": 0,
23 "parameters": {},
24 "return_values_count": 0,
25 "return_values": {},
26 "description": "Opens the box.",
27 "option_count": 0,
28 "options": {}
29 },
30 "method_2": {
31 "name": "isBoxOpen",
32 "is_status_request": true,
33 "parameter_count": 0,
34 "parameters": {},
35 "return_values_count": 1,
36 "return_values": {
37 "return_value_0": {
38 "type": "bsc:boolean",
39 "name": "open",
40 "postcond": "open == true || open == false"
41 }
42 },

41

4. Description Language

43 "description": "State of the box.",
44 "option_count": 0,
45 "options": {}
46 }
47 }
48 }

Listing 4.12: Methode de�nition example

The object that is executed in the Object Engine, is just a gateway for the device. To have a

common device interface for the object, the objects hardware methods are de�ned by the �eld

hal. In this example, all needed device methods are de�ned alike the previously ones.

1 {
2 "hal": {
3 "methods_count": 3,
4 "methods": ["method_0", "method_1", "method_2"],
5 "operations_count": 0,
6 "operations": {}
7 }
8 }
9 }

Listing 4.13: HAL de�nition example

Two objects are composed to the box. First, a switch is attached as a member with position

coordinates to the box. Second, a LED is attached to the box without a de�nite position.

1 {
2 "member_count": 2,
3 "static_members": {
4 "member_0": {
5 "description": "switch",
6 "oid": "0.0.1024",
7 "mounting_point": {
8 "x": 0,
9 "y": 60000000000,

10 "z": 0,
11 "angle_x": 0.0,
12 "angle_y": 0.0,
13 "angle_z": 0.0
14 }
15 },

42

4. Description Language

16 "member_1": {
17 "description": "LED",
18 "oid": "0.0.2048",
19 "mounting_point": {}
20 }
21 }
22 }

Listing 4.14: Static member de�nition example

4.7.2. Results

In the example an object description before run-time is shown. The object is described as a

box.

Additional vocabularies are not de�ned, because only the basic bsc: vocabulary is needed.

But it is shown, how these vocabularies would be used.

Some abilities in form of methods are added to the object. There are two types of methods

yet. First, the ones a status change can be triggered with. Second, the ones no status change

can be triggered with.

The hal is de�ned by 3 operations that have the same syntax,like the methods that have

been de�ned in the methods part.

A switch and a LED are composed to the box object. The switch is attached through a

position. A huge bene�t is generated by that. The context of the object and its position can be

interpreted by that.

Another advantage is the modularity of the description language. Only those descriptions

have to be de�ned, that are wanted. A disadvantage is, that a new object has to be de�ned

and added to the description repository for every little edit of positioning. Furthermore, the

description language needs to be improved in further work.

4.8. Discussion

The object description language is highly scalable. The numbering scheme of the OID is not

limited and therefore the descriptions can be highly scaled. But in deep inheritance hierarchies

the number sequences can get very long. The number spaces could be separated in company

speci�c number spaces and organization speci�c number spaces, to establish a common system

for all users. A fragmentation of the number areas would be done when di�erent organizations

43

4. Description Language

get their own number spaces. These issues have to be discussed in further work.

Objects are described in two states. These states are before run-time and at run-time. A

kind of a gateway is implemented by the implementation of an object. The device methods

are de�ned by the hal �eld. The methods which are o�ered by the device are used by the

object. So the object is an abstraction layer for the actual device. By the abstraction of the

device a generalization of devices that are built to do the same tasks, can be done. Due to this

generalization, the complexity of di�erent devices can be reduced. Furthermore, the devices

are identi�ed by the OID. Because of that, the amount of data, that has to be transferred, stored

and evaluated at run-time, is signi�cantly reduced. Because the de�nition of the objects is

mostly done before run-time, additional structures for described devices have to be added.

Also, by the added abstraction of the devices, the error rate and the communication delay are

increased.

IP-capable devices are needed by this platform. Devices, that are not IP-capable or con-

strained, are connected to the platform via a gateway, like mentioned before. Like it was

described before, the abstraction has some positive and non positive properties.

A core classi�cation for devices is provided by the object hierarchy. The core classi�cation

is de�ned by the object, the physical object, non-physical object, the private object and the

service. The core classi�cation that is de�ned here, is very basic and needs to be adapted and

enhanced in further work. The de�ned objects can be de�ned by the usage of the optional

descriptions that are presented earlier. At run-time further descriptions could be added, but

that mechanism has to be evaluated in further work.

The composition of objects is used to minimize the problem size to small pieces instead of

design a complex object at once. A complex object is described as a composition of simple

objects. These simple objects are called static member of the complex objects at description

time. At run-time these compositions are called dynamic member of the complex object.

The principle divide and conquer is followed by this and the re-usability of simple objects is

increased. The dynamic member relations have to be managed at run-time. A big e�ort for the

Registry could be produced by that, if the complexity of possible objects is considered. But

through the memberships a big advantage is o�ered. The context of di�erent objects can be

symbolized now. At �rst a connection can either be unlocalized or localized. Further relations

have to be identi�ed in further work.

44

4. Description Language

Vocabularies are used by the proposed description language to describe the types of values.

Not types but objects and composed objects are de�ned by the proposed description language,

but vocabularies are also used to de�ne types.

The vocabulary idea is lifted to a whole new level by the object descriptions. These objects

could be described by data storage formats JSON and XML. Both formats are able to save and

exchange all properties of the described objects. JSON is easier to use and read, but XML could

be validated against the DTD. Therefore XML is the better choice, and therefore should be

used in further work.

The object description language should be standardized and the de�ned objects should be

managed by a form of authority organization. To generate the maximum bene�t of the language,

it should be used globally and therefore an object identi�ed by an OID should everywhere be

identi�ed as the same object with the exact same description.

The object should therefore be as well described as possible. Through this, the bene�ts of the

description language can be maximized. But assumingly the objects will not be better described

as the producer or description editor needs it to be. Due to this, only a few requirements for a

minimum speci�cations are introduced and can be seen in Table 4.1.

If no optional descriptions are used, the memory footprint at run-time is very low. The devices

are only managed by their OID and the local_id. If additional descriptions are used the memory

usage is increased. That behavior has to be evaluated in further work.

Due to the OID scheme, a high complexity can be described at run-time, while providing the

fewest amount of information. In conclusion the description before run-time is complicated

and at run-time the bene�ts are generated by the description.

In Table 4.2 the proposed description language is compared with the description language of

BIG IoT and OpenIoT.

Some improvements can be seen in terms of complexity of the described devices and the

e�ciency at run-time. A disadvantage is the longer development time, that is needed for the

description. The descriptions have to be published before run-time.

45

4. Description Language

Descriptions BIG IoT & OpenIoT Object Description Scheme
Complexity of de-

scriptions

Basic services and capabilities are

described. Fields like a location or

pricing can be added. Vocabularies

are used by them, to describe data.

The description of highly complex

objects is possible by the compo-

sition of objects. Vocabularies are

used to describe data types.

Context Contextual information is given by

extra �elds, in a limited way.

The context of objects is enhanced,

if they are placed in a coordinate

system. Relations between objects

are machine readable and can be

used to gather contextual informa-

tion.

Data before run-

time

Before run-time only the used vo-

cabularies and the used description

language are de�ned

The language needs well de�ned

objects before run-time in addition

to the de�ned vocabularies.

Data at run-time High need of data storage for all

kinds of descriptions. Messages are

bigger when the description is ex-

changed

The data at run-time is limited

to the needed informations. The

object is identi�ed by the OID

and a local_id. More storage is

needed, when optional descriptions

are used.

Faster in develop-

ment

Fast, because the data only has to

be described by the vocabularies

Not so fast, the objects needs to be

created and registered before they

can be used at run-time.

Faster in usage At run-time the description has to

be interpreted

Only the OID has to be searched.

After that additional contextual

knowledge could be gathered, if

needed.

Table 4.2.: Comparison of the in Chapter 4 introduced description language with the schemes

used by BIG IoT and OpenIoT.

46

5. Rules

Rules are used to give the objects a well de�ned mechanism for autonomous actions. They

should be used to reduce messages and even reduce the computing power of central computing

instances. In this case central processing units are less used because simple decisions and

reactions can be triggered directly by the objects. In order to that fewer messages are needed

to monitor the status updates and to react accordingly. This kind of rules is used in some

platforms and is also proposed by [2] and [60].

The idea of rules is taken up in this thesis. Two kinds of rules are proposed, periodic rules

as well as conditional rules. Actions can be triggered by both, conditional and periodic rules.

The properties of conditional rules, periodic rules and actions are described in the following

Sections.

5.1. Periodic

The periodic rules are used to trigger actions periodically. A periodic rule is set up with an

interval value. That value is used to de�ne the period in that the rule is triggered. The de�ned

time depends on the internal object timer that is de�ned in the description.

The periodic rule example described in Listing 5.1 triggers the de�ned action every second.

1 {
2 "rule_type": "periodic",
3 "interval": 1000000,
4 "action":{
5 /** **/
6 }
7 }

Listing 5.1: Periodic rule de�nition example

47

5. Rules

5.2. Conditional

A conditional reaction pattern is proposed by both [2] and [60]. Reactions based on less-equal,

greater-equal, equal and span are introduced by their patterns. To complete this range of

patterns, the patterns less and greater should be added.

These kinds of systems are already in use. That idea is adopted by IFTTT(If-This-Then-

That) [43]. Triggers are described in receipts and they are used by them to ful�ll actions when

the speci�ed event occurs. The rules that are de�ned here are di�erent because of their basic

value approach, but the idea is the same.

All introduced conditional rule patterns are described in Table 5.1. In the table the operands

named op1 and op2 are used. These operands are described to clarify the meaning of the

pattern. The order of the operands is described as op1 �rst, op2 second and so on.

Pattern name True if Operands

less op1 < op2 op1 is the return value of a method.

op2 can be a method return, a speci�ed value

or the previous value.

less_equal op1 <= op2 op1 is the return value of a method.

op2 can be a method return, a speci�ed value

or the previous value.

equal op1 == op2 op1 is the return value of a method.

op2 can be a method return, a speci�ed value

or the previous value.

greater_equal op1 >= op2 op1 is the return value of a method.

op2 can be a method return, a speci�ed value

or the previous value.

greater op1 > op2 op1 is the return value of a method.

op2 can be a method return, a speci�ed value

or the previous value.

inside op1 <= op3 <= op2 op1 and op2 are speci�ed values.

op3 is the return value of a method.

outside op3 <= op1 <= op2 OR

op1 <= op2 <= op3

op1 and op2 are speci�ed values.

op3 is the return value of a method.

Table 5.1.: Summary of de�ned conditional pattern and their properties.

The idea of level and edge sensitive rules is added to the system. Level sensitive rules are

triggered as long as the condition is true and edge sensitive rules are triggered int the moment

the transition of the logical value from not true to true is done. If an edge sensitive rule

48

5. Rules

is triggered by the transition, the rule is disabled until the result of the condition is false.

Afterwards the rule is enabled again.

Furthermore the timeout �eld is added. The timeout is de�ned to disable the rule for

the speci�ed amount of time, after the rule was triggered. An example for a conditional rule

de�nition is shown in Listing 5.2.

The �elds timeout and sensitivity are optional. The default for �eld timeout is 0 and the

default of sensitivity is "level".

1 {
2 "rule_type": "conditional",
3 "interval": 1000,
4 "sensitivity": "level",
5 "timeout": "20000",
6 "pattern":"less",
7 "operands":{
8 "operand_1":{
9 "type": "method_return",

10 "method":{
11 "name":"method_example_name",
12 "parameter_0": "example_string"
13 }
14 },
15 "operand_2":{
16 "type": "specified_value",
17 "specified_value":{
18 "type":"example_type",
19 "value": "example_string"
20 }
21 }
22 },
23 "action":{
24 /** **/
25 }
26 }

Listing 5.2: Conditional rule de�nition example

49

5. Rules

5.3. Actions

Actions are de�ned as the reaction to triggered rules. The behavior that is de�ned by the

actions, is characterized to act on behalf of central processing components. The message

amount is reduced because the action reduces the amount of status- and action-messages.

Three di�erent kinds of actions are proposed and described in the following Sections.

5.3.1. Messages

A message is a prede�ned set of data that is sent when the previously de�ned rule is triggered.

The text is directly de�ned in the JSON string, like shown in Listing 5.3. The message is

delivered to the de�ned host.

That could be used to trigger a behavior if the action is triggered. In that case a message is

sent to a de�ned host. With this message a method can be triggered, or another step could be

initiated. Through this, a device to device communication is added to the platform.

1 {
2 "action":{
3 "type": "message",
4 "message": "exampleText"
5 }
6 }

Listing 5.3: Message action de�nition example

5.3.2. Methods

A method is de�ned as a method invocation. The method invocation is de�ned by the method

name and the parameters. Both have to be used to describe a method action. The object

where the method invocation takes place is identi�ed previously, so here only the method

name has to be mentioned. An example for a method invocation is given in 5.4.

1 {
2 "action":{
3 "type": "method",
4 "method": {
5 "name": "method_x.name",
6 "parameters": {
7 "parameter_0": {
8 "value": 0

50

5. Rules

9 },
10 "parameter_1": {
11 "value": true
12 }
13 }
14 }
15 }

Listing 5.4: Method action de�nition example

5.3.3. Agents

An agent [44] is de�ned as a program that is loaded into an object to execute it in that

environment. This kind of agent is used here. The agent can only be executed within the

Object Engine. The execution is only allowed to take actions that are contained by the Object

Engine.

Agents can be used for the preprocessing of gathered data. The central processing of this

data is reduced by that. An example for an agent description is given in 5.5.

1 {
2 "action":{
3 "type": "agent",
4 "description": "descriptionExample",
5 "agent":"exampleCode"
6 }
7 }

Listing 5.5: Agent de�nition example

5.4. Discussion

The number of messages can be reduced by the rules. The status monitoring is done internally.

Therefore, no messages have to be sent. Furthermore the delay for a reaction is reduced,

because the reaction is triggered directly by the object. To enable the sensitivity option of

conditional rules, an internal monitoring of the status of each rule is needed.

There are several di�culties that have to be handled in order to enable rules. Basic questions

are, who is allowed to add or delete rules. Who is allowed to observe rules and their behavior.

Actions can be triggered by objects that are not even wanted to be connected. Due to the

limited time of this thesis, these challenges have to be addressed in further work.

51

5. Rules

The typing of variables, makes it possible to use conditional rules. Parameter for condition

checks could be added and proofed by their type.

Furthermore the agent code has to be checked if it is defective, but also it has to be checked

if its memory footprint and communication activities are normal and as estimated. The agents

also need to be checked in their run-time properties.

The direct communication feature that is added by the action message needs to be de�ned

in further work. The message itself can not be used to trigger an action in a more secured

system. But because of this feature the behavior of the platform and the connected devices

would be enriched signi�cantly.

The bene�ts of rules are described in detail in the Paper [2] and therefore they are not

further discussed here.

52

6. Interoperable Platform Design

The IoT will consist of a huge amount of devices. A�ected by that, the amount of data that

has to be transported will increase signi�cantly. Current IoT-ecosystems are proprietary built

solutions for vendor speci�c goals. Because of that an interoperable function is not provided. In

order to maximize the positive outcome of the IoT, the requirement interoperability, which was

de�ned in Section 1.2, needs to be established. Furthermore all requirements from Section 1.2

are needed to be implemented.

In Chapter 2 some proprietary platforms are discussed. An outcome of that discussion was,

that interoperability is not supported by the proprietary platforms, but some of the other

requirements are implemented. An overview of the implemented requirements can be seen in

the Tables 2.1, 2.2 and 3.1

The proposed platform design is introduced shortly in Chapter 3. In Figure 6.1 the basic

interfaces and core components are shown. In the following Sections the proposed platform is

introduced and the core components are further described.

6.1. Introduction

The proposed platform is a distributed system with some elementary management and dis-

tribution components. The platform is designed as an open communication platform for

interoperable objects. The proposed solution is introduced as a handle-driven platform, in

order to reduce central components. Direct connections between two components are preferred

and gateways are used only if otherwise a connection it is not possible.

The core of the proposed platform is created by some well-de�ned components and messages,

which are introduced later on. The interoperability is supported by the open platform design

and the description language introduced in Section 4. The context awareness is improved by

well-de�ned objects and the objects should be as well described as possible. The e�ciency and

usability is increased by the communication patterns and the description language de�ned in

Chapters 3 and 4.

53

6. Interoperable Platform Design

<<component>>
ObjectEngine

<<component>>
User

<<component>>
Gateway

<<component>>
Management

<<component>>
Registry

I_Gateway_Local I_Gateway_Global

I_ObjectEngine_Look-Up

I_User_Interaction

I_ObjectEngine_Interaction

I_Management_SubRegistries I_ObjectEngine_Registration

I_Management_Look-Up

I_Management_Users

I_Management_ObjectsI_Registry_Areas

I_Registry_Entries

I_Registry_Look-Up

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 6.1.: Toplevel view

In order to accomplish the de�ned goals, the following components are de�ned and described

afterwards.

6.2. User

A User in this context is de�ned as a person or program that interacts with the platform. The

interaction is done by the, in Chapter 7 characterized, messages and sequences of messages.

One interface is o�ered by the User component, like showed in Figure 6.2. The interface

I_User_Interaction is used for responses that are not sent immediately. An example for this is

the added rule. A response of a rule can be sent at di�erent points in time.

The User uses interfaces of the other components like described in Figure 6.1.

54

6. Interoperable Platform Design

<<component>>
User Communication

<<component>>
User Logic

I_User_Logic I_User_Communication

I_User_InteractionVisual Paradigm(Hamburg University of Applied Sciences)

Figure 6.2.: User component

6.3. Management

An e�cient control component is needed by an IoT platform. Such components are built to

manage users, devices and published devices.

Current platforms are built as monolithic systems with build-in services. Users and devices

are managed by these services. Published data is not a concern for current platforms and

therefore not mentioned by them.

A Management component is introduced with the platform. This Management component

is built to execute the de�ned authentication policies and to perform the access management

as well. An access management system could be built with an authentication system, similiar

to a PKI [46] or Kerberos [47]. The access management system has to be done in further

work, because it would go beyond the scope of this thesis. In conclusion the security-, access-

and user-management is held inside of the Management component and lists of objects and

connected platforms are controlled by this component.

Proposed Architecture

In Figure 6.3 a proposed architecture of the Management component is shown. The registration

of objects should be done at run-time with authentication mechanisms. Due to this, plug and

play-solutions can be supported. If an object is accepted by a User or by a rule, then the object

is signed in. Afterwards the handle for the Registry is sent to the previously accepted object.

Registered objects are available in the local Registry. These objects can also be shared with

other Registries. Therefore the remote Management is connected by the local Management, to

55

6. Interoperable Platform Design

<<component>>
Management Communication

<<component>>
Management Logic

I_Management_Logic

<<component>>
Access Vault

<<component>>
User, Object, Registry Database

I_UOR_DatabaseI_Access_Vault

I_Management_ObjectsI_Management_Users

I_Management_Look-Up

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 6.3.: Management component proposed architecture

get access to the remote Registry. After that, local objects can be o�ered to the remote Registry.

These sequences are further described in Chapter 7.

The I_Management_Look-Up interface is used for look-ups of the internal state of the Man-

agement. Users and objects can be added to the platform via the I_Management_Objects and

I_Management_Users interfaces.

The healthiness of the Registry should be monitored by the Management.

Discussion

Some advantages are introduced by the Management. For example the work-load of cen-

tral instances can be reduced. Furthermore, the access management could be done by the

Management component.

A disadvantage is, that in a decentralized system the access is granted and is valid for the

time span that was de�ned before. The system could be improved in order to reduce that risk,

by added access checks.

The risk of granted access which are declined later on, could be reduced by added access

checks, which are performed by the objects, that would increase the amount of messages

signi�cantly.

6.4. Registry

A kind of handle-driven broker [44] is needed by an open and interoperable platform. The

dynamic handling of entries is done by that broker. Entries in this context are de�ned in

Chapter 4. A huge amount of object variants can be speci�ed with the object description.

56

6. Interoperable Platform Design

Therefore the object entries have to be treated as generic as possible.

A simple internal data/object representation is used by the other platforms. These represen-

tations are de�ned with an implicit understanding of the objects and produced data. In a

monolithic system a handle-driven Registry is not needed. Only a mapping of data types is

done by the Registry.

The Registry of the proposed platform is built as a handle-driven broker, like it is used in the

Internet in the form of a DNS-Server [41]. Object entries are managed by their de�ned OID

and a local_id which is de�ned at run-time. The object entries have to be as generic as possible.

Therefore the Registry is built to handle the generic information, additional options are not

handled yet. A handling of additional options should be introduced in further work.

The Registry is de�ned as a local entry-management component. Local entries can be shared

by the Registry. In that case some de�ned entries are published to a speci�ed remote Registry.

The shared entries are organized in areas in the local Registry. If the local area is edited, then

the entries are handled as described in the edit A.2.17 message.

The object entries have to be stored in an e�cient way. There are two relevant types of

databases. These databases are SQL- and NoSQL-databases. SQL-databases are classic relational

databases. They have the advantage, if �xed data schemes are used. NoSQL-databases are

available in di�erent variations. Some of these variations are document-, key-value- and

graph-databases. They all have their application area. Because of the tree-like OID numeration

model, a graph-database is proposed. The selection of a use-case suitable database has to be

done in subsequent observations. [61]

Proposed Architecture

In Figure 6.4 a proposed architecture of the Registry component is shown.

Authentication checks are done and the internal state is represented by the Registry Logic

sub-component. The Graph Database sub-component is decoupled from the Registry Logic

sub-component by the Database Adapter sub-component. By that the database can easier be

replaced.

The interface I_Registry_Areas is used to setup and manage ares for shared objects and

I_Registry_Entries is used to manage the local object entries. Look-up messages are processed

via the I_Registry_Look-Up interface.

57

6. Interoperable Platform Design

<<component>>
Registry Logic

<<component>>
Graph Database

<<component>>
Registry Communication

<<component>>
Database Adapter

I_Registry_Areas

I_Graph_Database

I_Registry_Look_Up

I_Registry_Logic

I_Database_Adapter

I_Registry_Entries

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 6.4.: Registry component proposed architecture

Discussion

The proposed Registry is de�ned as a component of an open platform. A loose coupling is an

essential aspect of the proposed platform. The e�ciency is also increased by the handle-driven

approach. The dynamic abilities of the platform are increased by the possibility of �ne granular

areas in the Registry.

The Registry as the core component of the platform has to be very reliable and always

available. Object context information are hold by the Registry. Because of that, the information

has to be secured to protect additional context information.

6.5. Gateway

Todays networks are highly segmented. The network is segmented by global and local ad-

dress spaces. Local address spaces are needed, because of the limitation of the IPv4 address

space. IPv6 was introduced as the solution for limited IPv4-address space and simultaneously

prepared the way for an end to end communication. But current networks are still divided.

Outgoing tra�c is resolved by Network-Address-Translation(NAT) [45] but for the incoming

tra�c a mechanism has to be found. NAT translates the local address to a global address.

In some cases an end-to-end communication is not possible because of the segmented networks.

Central gateways are used by current systems. The gateway is reachable by a global address

and is a part of the platform. Incoming messages are forwarded by the platform to the receiving

component.

58

6. Interoperable Platform Design

The proposed Gateway component uses the same mechanism as the existing technologies.

The di�erences are, that the messages are forwarded by the Gateway component in the local

network. The receiving component is identi�ed by the global gateway address and the local

address. The Gateway is designed as a stateless component. That can be done because no

addresses have to be saved by the Gateway. Local addresses are sent within the gateway

message.

Proposed Architecture

<<component>>
Gateway Logic

<<component>>
Gateway Communication

I_Gateway_Logic

I_Gateway_Global I_Gateway_Local

I_Gateway_Communication

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 6.5.: Gateway component proposed architecture

In Figure 6.5 a proposed architecture of the Gateway component is shown.

The message forwarding is computed in the Gateway component. A message is sent to

the global Interface, computed in the Gateway Logic sub-component and sent via the generic

message interface. The generic message interface is de�ned as the message interface of all

local reachable components.

Incoming messages are processed via the I_Gateway_Global interface and forwarded via the

I_Gateway_Private interface.

Discussion

The advantages of this approach is, that the Gateway is stateless and therefore a scaling

performance can be estimated. The scalability can be done by adding more instances. The

incoming tra�c can be distributed to all Gateway instances.

One of the disadvantages is, that the Gateway can be used to access the internal network.

Furthermore the local network addresses are published to all Users that are connected to a

public Registry. This component has a high need for security measures. The Gateway is used

as a man in the middle to establish a connection. Thereby the property of an end-to-end

59

6. Interoperable Platform Design

connection is unsatis�ed. The current setting allows only one Gateway to deliver the message.

This issue has be solved in subsequent observations.

6.6. Object Engine

Current IoT devices can be built in di�erent shapes and have di�erent functionalities. Thus all

devices are built with their own interfaces. These interfaces are designed to ful�ll an exact

de�ned purpose. The semantics are provided by the manufacturer. That leads to a high range

of interfaces.

Currently devices are connected via a SDK. The software for the IoT-devices is implemented

using the platform’s SDK. Because of this, the devices are bounded to the platform. Most

times this process is static. The program can not be edited at run-time to change the device’s

purpose. The device’s semantics are well-known and are simply described inside the platform

and therefore are not further elaborated.

A well-de�ned Object Engine is proposed. The Object Engine should be seen as a device

gateway. Di�erent devices are bound to the platform by devices abstracted with an Object

Engine. The in Section 3.3 de�ned communication pattern and the rules de�ned in Chapter 5

should be supported by the Object Engine. Furthermore an object implementation should be

executable inside of the Object Engine. The object implementation should be bounded to the

hardware via a Proxy [55]. That Proxy is called Hardware Abstraction Layer (HAL) in further

discussions.

The Object Engine itself is an abstraction for di�erent kinds of objects. It is provided with a

well-de�ned interface. The same interface is used by every object in the system. The semantics

of each object are represented by the object implementation, which for example is provided by

the manufacturer.

The object implementation is an implementation of a description object, like it is de�ned in

Chapter 4.

Proposed Architecture

In Figure 6.6 a proposed architecture of the Object Engine component is shown. The Ob-

jectEngine Control sub-component should be used to control object implementations and their

assigned HAL. The Device HAL sub-component should be used to bind the functionality, which

is de�ned by the hardware, to the object implementation. The ObjectEngine Object Runtime

60

6. Interoperable Platform Design

<<component>>
ObjectEngine Control

<<component>>
ObjectEngine Communication

<<component>>
ObjectEngine Object Runtime

<<component>>
ObjectEngine Rule Runtime

<<component>>
Object HAL

I_ObjectEngine_Object_Runtime

I_ObjectEngine_Rule_Runtime

I_ObjectEngine_Interaction

I_ObjectEngine_Registration

I_ObjectEngine_Control

I_Object_HAL

I_ObjectEngine_Communication

I_ObjectEngine_Object_Runtime_HAL

I_ObjectEngine_Look-UpVisual Paradigm(Hamburg University of Applied Sciences)

Figure 6.6.: Object Engine component proposed architecture

sub-component should be used to run the added object implementations. A common interface

should be used by these object implementations to achieve a compatibility between the run-time

environment and the object implementations. The ObjectEngine Rule Runtime sub-component

should be used to run the de�ned and added rules. The actions de�ned in Section 5.3 should

also be executed by the Rule Runtime. The ObjectEngine Communication sub-component is

used to communicate with other platform components and Users of the platform.

Discussion

The Object Engine, which is de�ned in this thesis, is used as an IP-abstraction of a previously

de�ned device. Due to this, several advantages, such as the use of the same interface by all

objects within the system, are o�ered. Also, the object run-time is able to execute all kinds of

compatible objects. New objects can be added at run-time, thereby the dynamic capabilities can

be increased signi�cantly. At the same time the Object Engine acts as a hardware abstraction

61

6. Interoperable Platform Design

and as a result the IoT platform is decoupled from the actual devices by the Object Engine.

Through the dynamic capabilities the possibility for updates at run-time is added.

But some disadvantages are also introduced by the proposed approach. Objects that are not

capable of IP-communication are still connected via some kind of gateway. In this case an

Object Engine is proposed, whose Object HAL is used to connect with devices which are using

other protocols. An additional delay is added by the extra abstraction layer and in result of the

extra abstraction more memory, energy and computing power is consumed.

6.7. Discussion

Some advantages are introduced by an open and interoperable system such as the proposed

one. By the handle-driven approach the amount of sent messages is reduced in some scenarios.

Dynamic capabilities are added by the Object Engine and the rules. A new kind of agility

and decentralized computation and data preprocessing features are introduced by the agents.

Furthermore object updates are possible at run-time. A system like the proposed platform

is scalable because no central components are established. When a handle is requested, the

handle can be used to communicate with the object directly. If the Registry is not reachable

anymore. The object can further be used via the handle. That is a great improvement for

decentralized systems.

However a centralized access management is not possible and some advanced mechanisms

have to be used. An authentication with every component has to be used instead of one

authentication with the platform. A centralized data store can not be achieved, but data-storage

can be added by object implementations which are added to the Object Engines themselves. A

great possibility is introduced with the agents but there have to be security measurements to

check them and run them in a safe non harming way.

62

7. Communication Sequences

The proposed platform is de�ned as an interoperable IoT platform. The platform is designed

as a distributed system and therefore all functionalities between the components have to be

implemented with messages.

Theses messages in general are also used by the previously in Chapter 2 introduced and

discussed IoT-platforms.

The messages that are sent within the context of the platform are JSON formatted. The

advantages and disadvantages of JSON are discussed in Section 4.4. JSON is chosen because it

is e�cient, easily human readable and supported in several programming languages.

A basic message body is de�ned to have a common message organization.

7.1. Basic Message Body

Currently a version of a message body is used that allows only one type per message. The

current message body version is shown in Listing 7.1. Several commands of the same type

can be added to the command �eld. The commands can be added with a key that is called

"entry_x" whereby x is incremented with every entry. The entries are sorted in the order they

are added to the commands object. At the end the total amount of added entries is to be written

to the �eld with the key "numOfEntries".

1 {
2 "version": "0.1"
3 "authentication": "example_authObject",
4 "token": "example_tokenObject",
5 "type": "example_type",
6 "command": {
7 "entries":{
8 "entry_0": {
9 }

10 },
11 "numOfEntries":1
12 }

63

7. Communication Sequences

13 }

Listing 7.1: Basic message body version 0.1

The proposed new message body is created to take advantage of JSON’s structural features.

The new message body version is shown in Listing 7.2. Build in properties of JSON are now

used. The commands are added to a JSON array which keeps the order of the entries by

de�nition. The type now is bounded to the speci�ed commands. Due to this de�nition, the

entries can and should be executed in the order they are de�ned to allow ordered sequences of

commands.

The new message body should be used in further works and papers.

1 {
2 "version": "0.2"
3 "authentication": "example_authObject",
4 "token": "example_tokenObject",
5 "commands": [
6 {
7 "example_type": {
8 "description_of_example_Command": "example"
9 }

10 }
11]
12 }

Listing 7.2: Basic message body version 0.2

7.2. Gateway Message Body

In local networks or if the other participant is directly reachable, the previously introduced

basic message body can be used. If the devices are not directly reachable, then the message

is sent, enriched with the Gateway message body. A message that is de�ned with a Gateway

message body is send to the global Gateway address of the wanted component. The message is

sent to the component that is de�ned in destination by the Gateway. The address and the

gateawayAddress �elds are de�ned for the case, that the communication scheme reactive 3.3

is used. If push is used, a new connection has to be established and therefore the information for

Gateway messages have to be delivered. If IPv4 addresses with a corresponding port are used,

the symbolic addresses should be formatted as "[ip-address]:port". That format is introduced

in CoAPs URI scheme [62]. An example for that scheme would be "[127.0.0.1]:5000".

64

7. Communication Sequences

1 {
2 "gatewayMessage": {
3 "destination": "example_Destination_Address",
4 "source": {
5 "address": "example_Source_Address",
6 "gatewayAddress": "example_Source_Gateway_Address"
7 }
8 }
9 }

Listing 7.3: Gateway message body version 0.1

7.3. Basic Sequences

In the following Sections message sequences for basic functionalities are de�ned. All used

messages can be found in Appendix A.2 and are appended in brackets to each message type.

7.3.1. Heartbeat

In a distributed system, components are not integrated in a single process with shared memory

by the same machine. Because of this limitation, the current state of a process can not be

internally monitored by another process. A lightweight message is introduced to o�er the

possibility to check another part of the system. The check is simply a request and if a response

is sent by the other part a correct function can be assumed but not be guaranteed.

The heartbeat sequence can be used to either check if the component is reachable or if

the component is alive. If a heartbeatResponse (A.21) is sent back, than the component is

de�ned by the term alive.

The messages that were used are listed as follows:

1. heartbeat (A.20)

2. heartbeatResponse (A.21)

7.3.2. Object Registration

If this sequence is used, objects can be added to a speci�c platform. The sequence starts with

the message registerObject (A.42). The message is either sent directly to the Management, if

the Management address is de�ned, or the message is sent via broadcast to the local network.

65

7. Communication Sequences

After the �rst message is sent all other messages of this sequence are sent directly to the

speci�ed destination.

RegistryUser ManagementObject

5: acceptObjectResponse

8: addEntryResponse

7: addEntry

6: registerObjectResponse

4: acceptObject

3: lookUpPendingObjectsResponse

2: lookUpPendingObjects

1: registerObject

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 7.1.: Object registration sequence diagram

The object registration sequence is shown in Figure 7.1 and the messages that were used are

listed as follows:

1. registerObject (A.42)

2. lookUpPendingObjects (A.29)

3. lookUpPendingObjectResponse (A.30)

4. acceptObject (A.1)

5. acceptObjectResponse (A.2)

6. registerObjectResponse (A.43)

7. addEntry (A.5)

8. addEntryResponse (A.6)

66

7. Communication Sequences

7.3.3. Register as Sub-Registry

The sequence that is speci�ed in Figure 7.2 is used to establish a connection between two

Registries. This means two di�erent platforms are connected. In this relation, one Registry is the

remote Registry and the other is the local Registry. During the sequence an area is de�ned in the

local Registry. Objects, that are added to the speci�ed area in the local Registry, are shared with

the remote Registry. The process is triggered by the User. The registerAsSubRegistry (A.40)

message is sent by the User to the local Management.

local Registry remote Managementlocal ManagementUser

6: registerAsSubRegistryResponse

5: addAreaResponse

4: addArea

3: registerSubRegistryResponse

2: registerSubRegistry

1: registerAsSubRegistry

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 7.2.: Register as sub-Registry sequence diagram

1. registerAsSubRegistry (A.40)

2. registerSubRegistry (A.44)

3. registerSubRegistryResponse (A.45)

4. addArea (A.3)

5. addAreaResponse (A.4)

6. registerAsSubRegistryResponse (A.41)

67

7. Communication Sequences

7.3.4. Edit Registry Area

The edit Registry area sequence is used to edit shared objects, which are speci�ed in an area in

the local Registry. The possibility to easily share objects with other platforms is shown with

the edit Registry sequence. That means new objects are added and deleted by this sequence.

First the share status of the objects is altered in the area of the Registry and then the addEntry
and deleteEntry messages are sent to the remote Registry. Both, objects to add and delete,

are described in the message editArea A.17.

remote Registrylocal RegistryUser

6: editAreaResponse

5: deleteEntryResponse

4: addEntryResponse

3: deleteEntry

2: addEntry

1: editArea

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 7.3.: Edit Registry area sequence diagram

The edit Registry area sequence is shown in Figure 7.3 and the messages that were used are

listed as follows:

1. editArea (A.17)

2. addEntry (A.5)

3. deleteEntry (A.11)

4. addEntryResponse (A.6)

5. deleteEntryResponse (A.12)

6. editAreaResponse (A.18)

68

7. Communication Sequences

7.3.5. Object Interaction

The object interaction sequence is designed to show di�erent kinds of interaction possibilities

with objects.

The add/delete object rule sequence is used to edit the behavior of an object at run-time

based on rules. These rules are described as de�ned in Chapter 5 and can be added and deleted.

At run-time for example measurement data has to be requested from an object. That object

is designed to respond to the de�ned requests.

User Object

3: ruleResponse

7: deleteRuleResponse

6: deleteRule

5: invokeObjectMethodResponse

4: invokeObjectMethod

2: addRuleResponse

1: addRule

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 7.4.: Edit Registry area sequence diagram

The object interaction sequence is shown in Figure 7.4 and the messages that were used are

listed as follows:

1. addRule (A.9)

2. addRuleResponse (A.10)

3. ruleResponse (A.46)

4. invokeObjectMethod (A.22)

69

7. Communication Sequences

5. invokeObjectMethodResponse (A.23)

6. deleteRule (A.15)

7. deleteRuleResponse (A.16)

7.3.6. Look-Up

The possibility to keep the overview of the status of the entries of the speci�ed component is

o�ered by the look-up sequences. Entries and functionalities are managed by the Management,

the Registry and the Object Engine. The status of the functionalities and entries can be

monitored with the later introduced look-up sequences. The messages which are proposed,

are de�ned with a high granularity.

Management

The look-up sequences of the Management are used to keep track of di�erent registered

components. Objects and connected Registries are the registered components.

The look-up sequences of the Management are shown in Figure 7.5 and the messages that were

used are listed as follows:

1. lookUpRegisteredAsSubRegistry (A.31)

2. lookUpRegisteredAsSubRegistryResponse (A.32)

3. lookUpRegisteredSubRegistry (A.35)

4. lookUpRegisteredSubRegistryResponse (A.36)

5. lookUpPendingObject (A.29)

6. lookUpPendingObjectResponse (A.30)

7. lookUpRegisteredObject (A.33)

8. lookUpRegisteredObjectResponse (A.34)

Registry

The look-up sequences of the Registry are used to keep track of registered objects and connected

Registries. Furthermore the properties of the objects and Registries can be displayed.

The look-up sequences of the Registry are shown in Figure 7.6 and the messages that were

used are listed as follows:

70

7. Communication Sequences

ManagementUser

4: lookUpRegisteredSubRegistryResponse

3: lookUpRegisteredSubRegistry

2: lookUpRegisteredAsSubRegistryResponse

1: lookUpRegisteredAsSubRegistry

8: lookUpRegisteredObjectResponse

7: lookUpRegisteredObject

6: lookUpPendingObjectResponse

5: lookUpPendingObject

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 7.5.: Management look-up sequence diagram

RegistryUser

4: lookUpAreaResponse

3: lookUpArea

2: lookUpResponse

1: lookUp

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 7.6.: Registry look-up sequence diagram

1. lookUp (A.24)

71

7. Communication Sequences

2. lookUpResponse (A.37)

3. lookUpArea (A.25)

4. lookUpAreaResponse (A.26)

Object Engine

The look-up sequences of the Object Engine are used to keep track of the managed objects.

Furthermore the rules can be monitored by these sequences too.

User Object

4: lookUpRuleResponse

3: lookUpRule

2: lookUpObjectResponse

1: lookUpObject

Visual Paradigm(Hamburg University of Applied Sciences)

Figure 7.7.: Object look-up sequence diagram

The look-up sequences of the object are shown in Figure 7.7 and the messages that were used

are listed as follows:

1. lookUpObject (A.27)

2. lookUpObjectResponse (A.28)

3. lookUpRule (A.38)

4. lookUpRuleResponse (A.39)

7.4. Discussion

The sequences that were presented in this Chapter are used to make the basic functionalities

of the proposed platform available. The message bodies that are currently used have to be

72

7. Communication Sequences

improved and an improvement for the basic message body is already proposed and multiple

Gateways have to be supported within the Gateway message body.

Also the proposed messages, which are shown in Appendix A.2, have to be tested in real-life

scenarios and improved to ful�ll as many use-cases as possible.

The look-up sequences are de�ned in a high granularity. The alternative is a generic look-up

message, that de�nes the information that is wanted in an option �eld. In future work it has to

be worked out, which granularity is appropriate for an e�cient work-�ow and which access is

needed to retrieve information.

User information can not be retrieved with the currently de�ned look-up sequences. This

functionality and the complete access management has to be added in future work. The Registry

look-up sequences are currently built to give all provided information. Special search options

and dependency options have to be added to allow an e�cient and improved work-�ow.

The de�ned sequences are also used as test routines for the components separately and also

the collaboration of the components.

73

8. Platform Simulation

One goal of the proposed design is to create a more e�cient system than the existing monolithic

and centralized platforms. As a metric for e�ciency the amount of messages that are sent is

being evaluated. Following the idea that it is more e�cient to send only one message instead

of two or more.

This measurement can be done in two di�erent ways. One way is to implement the proposed

system as a real world test platform and the other way is to build a simulation model. A real

world test platform comes with several di�culties. Since the measurements are done in an

uncontrollable environment, the test results have to be handled with caution. If a test with

more instances is built, there has to be enough computation power to run them. Also separated

networks are di�cult to establish.

A simulation has some advantages towards a real world test system. The simulation envi-

ronment that is chosen has to generate reproducible results. Furthermore several instances of

components have to be executable by it and networks have to be established easily.

Because of the advantages that are mentioned before, the usage of a simulation environment

was chosen. The simulation was used �rstly to measure the e�ciency of the proposed system

and secondly the messages and message sequences were checked for their correctness.

The messages and message sequences were tested and improved in an iterative process. The

results are presented in Chapter 7 and in the Appendix A.2. Failures like missing arguments

and misspelled keys were found while the simulation was used. Another part of the simulation

was to evaluate needed messages. Namely some response messages were not de�ned or not

tested before.

Due to the the limited time of this thesis, a more informative simulation scenario could not be

found. For a more signi�cant simulation more time is needed.

Thus the simulation of the distributed approach and a monolithic approach that uses the

same message sequences was chosen. The di�erences between both simulation scenarios are

further explained in Section 8.2.

74

8. Platform Simulation

8.1. Tool Chain

There are several di�erent types of simulators. For the simulation of this platform a network

simulator is chosen. A set of them is listed in the paper [63].

In that paper two relevant simulators are named. First the ns-3 simulator and second the

OMNeT++ simulator. Both are discrete event simulators and a generic approach is pursued.

Network simulations can be performed by both of them. Because OMNeT++ is used at the HAW

Hamburg (Hochschule für Angewandte Wissenschaften Hamburg) by several workgroups, the

OMNeT++ discrete event simulator is chosen for the platform simulation.

OMNeT++ is an object-oriented modular discrete event network simulation framework. A

generic architecture is implemented, so it can be used for di�erent problem domains. It can

be used to model wired and wireless communication networks, model protocols, evaluate

performance aspects of complex distributed systems and in general to model and simulate

systems where the discrete event approach is suitable, and can be conveniently mapped into

entities communicating by exchanging messages.

One of the fundamental parts of this infrastructure is a component architecture for simu-

lation models. Models are put together from reusable components called modules. Modules

can be connected with each other via gates (ports). Message passing is used by the modules

to communicate and messages are passed by modules along prede�ned paths via gates and

connections, or directly to their destination. Modules at the lowest level of the module hierar-

chy are called simple modules, and the model behavior is encased by them. The OMNeT++

hierarchy is shown in Figure 8.1. [3]

Figure 8.1.: OMNeT++ module hierarchy from [3]

75

8. Platform Simulation

The platform components that are de�ned in Chapter 6 are represented in the simulation as

simple modules. The simple module is used as an interface for the component implementation.

An example for the Registry is given in Figure 8.2. All components are connected via a self

Figure 8.2.: OMNeT++ simple module implementation

de�ned simple module called router. All modules of a virtual network are connected to the

router of the network. To connect networks the routers of di�erent networks are connected

with each other.

The address scheme that is used in this simulation is self de�ned. An address is de�ned by

a network address and a module address. The network is identi�ed by the network address

and the host is identi�ed by the module address. "Net1_Registry" is an example for an address

like previously described. "Net1" is the network address and "Registry" is the address of the

Registry simple module in the speci�ed simulation. The network address and the module

address are separated by the "_" sign.

The concept of the interoperable IoT platform is de�ned in the Chapters before. To evaluate the

model and in order to do that the e�ciency, the components of the platform are implemented in

C++ [64]. C++ is the programming language that is used in OMNeT++. All platform components

are connected via a nearly similar simple module. The messages which arrive at the simple

module are dispatched by the message type. For the message type evaluation the Dispatcher

pattern [65] is used. A common interface is provided by the Dispatcher. The messages are

dispatched within the Dispatcher and then the corresponding methods are executed.

Due to time limitations, the functionalities are implemented in a very basic way. That means

the implementation is not optimized in relation to computing power or anything else. The

simulation implementation is built to be as adaptable as possible and as easy to work with.

76

8. Platform Simulation

8.2. Scenarios

Some of the previously in Section 7 de�ned sequences are tested and discussed in the subsequent

Sections. Both scenarios are simulated under the following conditions.

• The same message-sequences are used in the monolithic and the distributed scenario.

• The messages are sent directly to the receiver, if the proposed platform is used.

• The messages are sent via the central platform, if a monolithic platform is used.

• The Gateway, Management and Registry are combined to one component in the mono-

lithic approach and therefore no messages between those three components are mea-

sured.

• A message is sent for every request. The messages are not bu�ered and not sent together

or not sent in smaller groups.

• Initial message rhythm.

0s - 10s set-up time.

10s - 30s 10 initial messages per second were sent with equally temporal distance.

30s - 70s 50 initial messages per second were sent with equally temporal distance.

70s - 110s 20 initial messages per second were sent with equally temporal distance.

8.2.1. Scenario Object Engine Interaction

The communication between a User and an Object Engine is chosen as a relevant scenario. In

this scenario the Object Engine is already registered with the platform. The registration was

done with sequence 7.3.2. The interaction that is measured, is done with messages described

in sequence 7.3.5.

The message invokeObjectMethod A.2.22 is the initial message for the sequence. The

messages are sent in the rhythms, that are described before. The address and the information

of the Object Engine are prescribed and in order to that a look-up was not necessary.

In the diagram, that is shown in Figure 8.3, the results of the measurements, that were done in

scenario of the Object Engine interaction, are presented.

The data was collected as an OMNeT++ vector, that was exported to a python array. The

data in the array was evaluated and reprocessed. Afterwards the data was illustrated in the

diagram.

77

8. Platform Simulation

The horizontal axis is de�ned as the time in seconds and the vertical axis is de�ned as

messages per second. In the distributed line graph, four Sections can be seen. First, from zero

seconds to ten seconds, second from ten seconds up to 30 seconds, third from 30 seconds up

to 70 seconds and fourth from 70 seconds up to 110 seconds. In the subsequent description

the amounts of messages per second, that are indicated by the distributed line graph, are

summarized.

Section one nearly zero messages per second

Section two approximately 20 messages per second

Section three approximately 100 messages per second

Section four approximately 40 messages per second

In the monolithic line graph the same four time-sections can be seen. In the subsequent

description the amounts of messages per second, that are indicated by the monolithic line

graph, are summarized.

Section one nearly zero messages per second

Section two approximately 40 messages per second

Section three approximately 200 messages per second

Section four approximately 80 messages per second

Like it is mentioned before, the same four time-sections are shown by both line graphs. It

can be seen, that the amount of messages per second is twice as high with the monolithic

platform. The amount of messages with the monolithic platform is factor two higher as in the

distributed approach.

The reason for the di�erence can be seen in the monolithic platform. With the monolithic

platform all messages are sent not only between the User and the Object Engine, but the User

to the central instance to the Object Engine. That behavior can be seen in Figure 8.4. With the

distributed platform only path A (Figure 8.4) is used. In the monolithic platform the paths B

and C (Figure 8.4) are used. Paths in this scenario are bidirectional connections between two

components, that can be used to send a message.

78

8. Platform Simulation

0 10 20 30 40 50 60 70 80 90 100 110
time [s]

0

25

50

75

100

125

150

175

200

m
es

sa
ge

s p
er

 se
co

nd

Monolithic
Distributed

Figure 8.3.: Scenario Object Engine interaction measurements

Figure 8.4.: Path usage in monolithic and distributed scenarios

8.2.2. Scenario Sub-Registry Registration

The registration as a sub-Registry is chosen as another relevant scenario.

The interaction that is measured, is done with messages described in sequence 7.3.3. The

message registerAsSubRegistry A.2.40 is chosen to be the initial message for the sequence.

79

8. Platform Simulation

The messages are sent in the rhythms, that are described before. The address and the informa-

tion of the Object Engine are prescribed and because of this a look-up was not necessary.

In the diagram, that is shown in Figure 8.5, the results of the measurements, that were done in

the sub-Registry registration scenario, are described. The data was collected as an OMNeT++

vector, that was exported to a python array. The data in the array was evaluated and reprocessed.

Afterwards the data was illustrated in the diagram. The horizontal axis is de�ned as the time

in seconds and the vertical axis is de�ned as messages per second. In the distributed line graph

four Sections can be seen. First, from zero seconds to ten seconds, second from ten seconds up

to 30 seconds, third from 30 seconds up to 70 seconds and fourth from 70 seconds up to 110

seconds. In the subsequent description the amounts of messages per second, that are indicated

by the distributed line graph, are summarized.

Section one nearly zero messages per second

Section two approximately 60 messages per second

Section three approximately 300 messages per second

Section four approximately 120 messages per second

In the monolithic line graph the same four time-sections can be seen. In the subsequent

description the amounts of messages per second, that are indicated by the monolithic line

graph, are summarized.

Section one nearly zero messages per second

Section two approximately 40 messages per second

Section three approximately 200 messages per second

Section four approximately 80 messages per second

Like it is mentioned before, the same four time-sections are shown by both line graphs. It

can be seen, that the amount of messages per second is only two thirds with the monolithic

platform. The amount of messages with the distributed platform is factor one and a half higher

then with the monolithic platform.

The amount of messages that was measured with the distributed approach is higher. This

is the result of the distribution of the the components Management and Registry. With the

monolithic platform those messages are part of the internal communication and are therefore

not taken into account.

80

8. Platform Simulation

0 10 20 30 40 50 60 70 80 90 100 110
time [s]

0

50

100

150

200

250

300

m
es

sa
ge

s p
er

 se
co

nd

Monolithic
Distributed

Figure 8.5.: Scenario Object Engine registration measurements

8.3. Discussion

In both scenarios a di�erent behavior of the two platform constructions can be compared. But

two di�erent assumptions can be drawn from these two scenarios. In the �rst scenario of the

distributed platform, only half the messages are needed for the same behavior. In the second

scenario, the monolithic platform is proofed to be more e�cient, because only two thirds of

the messages are needed.

So the e�ciency of the distributed and importantly handle-driven approach is not more

e�cient in every case. The distributed approach is equally or more e�cient when a scenario is

chosen that includes a direct communication with a component. If a communication is directly

between a User and an Object Engine, then the e�ciency is increased. If a scenario is chosen

that includes communication between a Management, a Registry or a Gateway of the same

local platform, then the e�ciency in the monolithic platform is obviously higher.

It is more likely that the bigger part of the communication within a platform is used for the

communication between Object Engines and Users. Registrations of sub-Registries for example

are estimated not to happen so often in comparison to the device Object Engine communication.

81

8. Platform Simulation

Although the e�ciency is increased by the message scheme, some disadvantages are included

with the distributed platform approach.

First, the state of all components can not be monitored internally. That has to be done with

other mechanisms, that should be introduced in further work.

Second, if an Object Engine is requested by several Users, then a big work-load can be

imposed. The work-load for a small component is harder to handle, than for the monolithic

platform. So the Object Engines should either be able to handle that work-load or mechanisms

for a work-load balancer should be introduced.

Third, a centralized data-storage for the data is not part of the distributed approach. The

data storage should be added directly to every Object Engine. Through this the distribution is

further advanced.

There are some next steps that have to be discussed and done.

The simulation should be improved with IP-communication interfaces. Because of this

improvement the simulation could be used to evaluate the function of other components. Also

a real component could be tested against and with simulation components.

Furthermore to ease the test and evaluation process, test routines should be further de�ned

and implemented in an appropriate environment.

82

9. Conclusion

A concept for an interoperable IoT-platform is introduced by this thesis. An object description

scheme, a rule based behavior and di�erent interaction schemes have also been de�ned. The

proposed platform is built to support the Management of objects that are described by the

early mentioned and introduced description scheme 4. Some advantages and disadvantages of

the proposed platform are presented and discussed earlier. The proposed platform has to be

seen as a work in progress approach.

A central component that handles all upcoming tra�c is not needed. A direct communication

paradigm is introduced by this platform. Due to this the messages which are sent between

the components are reduced in total and the workload of central components is signi�cantly

reduced. The platform is managed by two central components. The Management is used

to manage users, connections to other platforms and objects. The Registry is used to save

the objects and their additional information. Also the shared objects are exchanged between

di�erent platforms by the Registry. A central database for historical measurement data is not

implemented due to the decentralized approach.

The error rate can be reduced by this approach. Because no central instance is implemented,

the tra�c between the User and the object can not be interrupted. Furthermore an object that

was earlier found via the Registry, can be used even if the Management and the Registry are

not reachable later on.

The platform is designed to work in IP-networks. Based on the limitations of IP-networks

the Quality of Service (QoS) is described as a best-e�ort platform. Some limitations can be

overcome by integrated mechanisms like responses.

By the focus on IP-networks many IoT-devices can not be directly connected to the platform.

In cases like that, an Object Engine has to be used as a gateway for such devices. In this case

the connected devices are de�ned in terms of the proposed platform and o�ered to the Registry

by the Object Engine. If a device is capable of IP but is limited otherwise, the same scenario

83

9. Conclusion

with an Object Engine as a gateway is applied.

Several use-cases are supported by the open architecture of the proposed platform. In particular

the interoperable design with an easy way to share objects is a bene�t and is needed in many

use-cases. But the open architecture in its current state is not suitable for use-cases that

strictly need a closed and secured systems. Issues concerning the security are discussed in the

following Section.

9.1. Future Work

The proposed platform should be built to support IPv4 and IPv6. IPv6 is an essential part of

the IoT development and is therefore a must. But, the concept is not limited to IP-networks

and can be adapted for other communication media. With the focus on IP-networks the QoS is

limited to best-e�ort. Because of that the support of other transmission technologies should

be examined.

All kinds of optional and additional information should be managed by the Registry. These

information should be used to �lter the objects in the look-up scenarios. Thereby the e�ciency

of the communication can be further improved.

A central database for objects is not part of the proposed platform. Due to this fact a

centralized data collection and storage is not supported. A mechanism to solve this issue would

be a decentralized database, added to the Object Engine. Therefore a speci�cation for historical

data requests is needed.

Furthermore, strategies for connection checks are essential. The heartbeat message (A.2.20)

and the corresponding sequence was introduced in Chapter 7.3.1. The heartbeat should be used

to check the reachability and healthiness of the components in the system. The own IP-address

should be monitored and in case of a change, the new address should be published. Currently a

address recon�guration message is not proposed but should be introduced. A work-around is

to delete the object with the old address and add the object with the new address to the Registry.

The Gateway component was introduced as a stateless gateway for messages and in this case

Gateway messages. The Gateway concept needs to be tested in a productive scenario. A change

of the messages and the concept may be required.

The communication patterns request-response and reactive are well de�ned. The stream

pattern needs to be worked out further. The data has to be described further and stream

84

9. Conclusion

capabilities have to be de�ned. A stream capability for example with which the rate data is

sent and processed.

The proposed description language is currently de�ned in JSON but has to be de�ned in XML

in further work. XML has the advantage of the validation feature. That is a huge advantage in

descriptions. With this feature it can be tested, if the description is technically �ne. Because the

description is de�ned once and is proposed to be locally stored, the higher extent of XML is not

that important. Furthermore XML is already used in several object serialization technologies

and should therefore be �tted to be used in this description scheme.

The rules like they are introduced, have to be tested further. Challenges in productive environ-

ments have not been discovered yet.

The advanced look-ip messages were mentioned before. These messages have to be adapted,

when the request scheme is de�ned. Also a support of sequence numbers should be introduced,

to be able to �lter messages by their order. Another topic for further discussions are transac-

tions. Another point that should be considered is a message checksum and a corresponding

validation mechanism. Like mentioned in the Section before, the security infrastructure has to

be implemented and tested.

Currently there is no security strategy implemented. Before a security mechanism is introduced

and implemented, the system must not be used in productive systems with safety-critical

applications.

In order to propose a security mechanism, a requirements analysis should be done. After-

wards, in further work, a security system should be proposed.

An interoperable IoT platform is presented in this thesis. Some existing techniques are refer-

enced to the design. Mechanisms like vocabularies, rules and actual communication pattern

are used. The description is further improved by a new object description language.

In order to use the new capabilities e�ciently, a handle-driven platform design is proposed.

Four components are the core parts of the platform. Each is de�ned to serve a speci�c purpose.

The e�ciency of the communication, the dynamic behavior of objects, the interoperability

between platforms and the context awareness of objects is improved by this approach.

85

A. Appendix

A.1. Object Description

A.2. Messages

The messages which are shown in the following sections are sorted in alphabetical order.

Furthermore these messages should be seen as examples. Some of theses messages need to be

rede�ned in future work.

A.2.1. acceptObject

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "accept": true,
6 "objectId": "0"
7 }
8 },
9 "numOfEntries": 1

10 "type": "acceptObject",
11 }

Listing A.1: acceptObject Message

A.2.2. acceptObjectResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "request": {
6 "accept": true,

86

A. Appendix

7 "objectId": "0"
8 },
9 "successful": true

10 }
11 }
12 "type": "acceptObjectResponse",
13 }

Listing A.2: acceptObjectResponse Message

A.2.3. addArea

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "options": {},
6 "registryId": "3",
7 "remoteRegistry": {
8 "address": "Net1_Registry2",
9 "gatewayAddress": "Net4_GlobalGateway"

10 },
11 "requestId": "1",
12 "token": "test_grantedToken_Net3_Management3"
13 }
14 },
15 "numOfEntries": 1
16 "type": "addArea",
17 }

Listing A.3: addArea Message

A.2.4. addAreaResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "areaId": "1",
6 "remoteRegistry": {
7 "address": "Net1_Registry2",
8 "gatewayAddress": "Net4_GlobalGateway"

87

A. Appendix

9 },
10 "requestId": "1",
11 "successful": true
12 }
13 },
14 "numOfEntries": 1
15 "type": "addAreaResponse",
16 }

Listing A.4: addAreaResponse Message

A.2.5. addEntry

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "address": "exampleAddress_Object",
6 "oid": "1.2.3.41.213",
7 "options": {},
8 "requestId": "1"
9 }

10 },
11 "numOfEntries": 1
12 "type": "addEntry",
13 }

Listing A.5: addEntry Message

A.2.6. addEntryResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "localId": "3",
6 "requestId": "1",
7 "successful": true
8 }
9 },

10 "numOfEntries": 1
11 "type": "addEntryResponse",

88

A. Appendix

12 }

Listing A.6: addEntryResponse Message

A.2.7. addObject

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "HALAddress": "example_HALAddress",
6 "HALToken": "example_HALToken",
7 "oid": "1.2.3.41.213",
8 "options": {},
9 "repository": "objectImplementationRepository_URL",

10 "tempObjectId": "1123.temp"
11 }
12 },
13 "numOfEntries": 1
14 "type": "addObject",
15 }

Listing A.7: addObject Message

A.2.8. addObjectResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "successful": true,
6 "tempObjectId": "1123.temp"
7 }
8 },
9 "numOfEntries": 1

10 "type": "addObjectResponse",
11 }

Listing A.8: addObjectResponse Message

A.2.9. addRule

1 {

89

A. Appendix

2 "command": {
3 "entries": {
4 "entry_0": {
5 "action": {
6 "method": {
7 "name": "User2_Test_Invocation",
8 "parameters": {
9 "parameter_0": 10,

10 "parameter_1": true,
11 "parameter_2": "Test_String_Parameter"
12 }
13 },
14 "receiver": {
15 "address": "Net1_User2",
16 "auth": "User2_test_auth",
17 "token": "User2_test_token",
18 "type": "other"
19 },
20 "respond": true,
21 "respondTo": {
22 "address": "Net3_User2",
23 "gatewayAddress": "Net4_GlobalGateway2"
24 },
25 "type": "method"
26 },
27 "interval": 1000,
28 "rule_type": "periodic"
29 }
30 },
31 "numOfEntries": 1
32 "type": "addRule",
33 }

Listing A.9: addRule Message

A.2.10. addRuleResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {

90

A. Appendix

5 "request": {
6 "action": {
7 "method": {
8 "name": "User2_Test_Invocation",
9 "parameters": {

10 "parameter_0": 10,
11 "parameter_1": true,
12 "parameter_2": "Test_String_Parameter"
13 }
14 },
15 "receiver": {
16 "address": "Net1_User2",
17 "auth": "User2_test_auth",
18 "token": "User2_test_token",
19 "type": "other"
20 },
21 "respond": true,
22 "respondTo": {
23 "address": "Net3_User2",
24 "gatewayAddress": "Net4_GlobalGateway2"
25 },
26 "type": "method"
27 },
28 "interval": 1000,
29 "rule_type": "periodic"
30 },
31 "ruleId": "0",
32 "successful": true
33 }
34 },
35 "numOfEntries": 1
36 "type": "addRuleResponse",
37 }

Listing A.10: addRuleResponse Message

A.2.11. deleteEntry

1 {
2 "command": {
3 "entries": {

91

A. Appendix

4 "entry_0": {
5 "localId": "0"
6 }
7 },
8 "numOfEntries": 1
9 "type": "deleteEntry",

10 }

Listing A.11: deleteEntry Message

A.2.12. deleteEntryResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "localId": "0",
6 "successful": true
7 }
8 },
9 "numOfEntries": 1

10 "type": "deleteEntryResponse",
11 }

Listing A.12: deleteEntryResponse Message

A.2.13. deleteObject

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "localId": "0"
6 }
7 },
8 "numOfEntries": 1
9 "type": "deleteObject",

10 }

Listing A.13: deleteObject Message

A.2.14. deleteObjectResponse

92

A. Appendix

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "localId": "0",
6 "successful": true
7 }
8 },
9 "numOfEntries": 1

10 "type": "deleteObjectResponse",
11 }

Listing A.14: deleteObjectResponse Message

A.2.15. deleteRule

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "ruleId": "0"
6 }
7 },
8 "numOfEntries": 1
9 "type": "deleteRule",

10 }

Listing A.15: deleteRule Message

A.2.16. deleteRuleResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "ruleId": "0",
6 "successful": true
7 }
8 },
9 "numOfEntries": 1

10 "type": "deleteRuleResponse",

93

A. Appendix

11 }

Listing A.16: deleteRuleResponse Message

A.2.17. editArea

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "areaId": "1",
6 "options": {
7 "add": {
8 "localIds": []
9 },

10 "remove": {
11 "localIds": [
12 "3_0"
13]
14 }
15 }
16 }
17 },
18 "numOfEntries": 1
19 "type": "editArea",
20 }

Listing A.17: editArea Message

A.2.18. editAreaResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "areaId": "1",
6 "successful": true
7 }
8 },
9 "numOfEntries": 1

10 "type": "editAreaResponse",

94

A. Appendix

11 }

Listing A.18: editAreaResponse Message

A.2.19. gatewayAdvertisement

1 {
2 "command": {
3 "globalAddress": "Net4_GlobalGateway2"
4 "type": "gatewayAdvertisement",
5 }

Listing A.19: gatewayAdvertisement Message

A.2.20. heartbeat

1 {
2 "command": {},
3 "type": "heartbeat",
4 }

Listing A.20: heartbeat Message

A.2.21. heartbeatResponse

1 {
2 "command": {},
3 "type": "heartbeatResponse",
4 }

Listing A.21: heartbeatResponse Message

A.2.22. invokeObjectMethod

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "localId": "test_requestId",
6 "methodName": "global User test invocation",
7 "parameters": {
8 "1": "test"
9 },

10 "responseId": "Net1_Management2"

95

A. Appendix

11 }
12 },
13 "numOfEntries": 1
14 "gatewayMessage": {
15 "destination": "Net1_Object2",
16 "source": {
17 "address": "Net4_GlobalUser"
18 }
19 "type": "invokeObjectMethod",
20 }

Listing A.22: invokeObjectMethod Message

A.2.23. invokeObjectMethodResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "responseId": "testResponseId",
6 "returnValue": {},
7 "successful": true
8 }
9 },

10 "numOfEntries": 1
11 "type": "invokeObjectMethodResponse",
12 }

Listing A.23: invokeObjectMethodResponse Message

A.2.24. lookUp

1 {
2 "command": {
3 "limit": 500,
4 "oids": [
5 "1.2.3"
6]
7 "type": "lookUp",
8 }

Listing A.24: lookUp Message

96

A. Appendix

A.2.25. lookUpArea

1 {
2 "command": {
3 "limit": 500
4 "type": "lookUpArea",
5 }

Listing A.25: lookUpArea Message

A.2.26. lookUpAreaResponse

1 {
2 "command": {
3 "entries": {
4 "1": {
5 "objects": {
6 "0": {
7 "localId": "0",
8 "registeredInRemoteRegistry": false,
9 "removeRequestedInRemoteRegistry": false

10 }
11 },
12 "options": {
13 "add": {
14 "localIds": []
15 },
16 "remove": {
17 "localIds": [
18 "3_0"
19]
20 }
21 },
22 "registryId": "3",
23 "remoteRegistry": {
24 "address": "Net1_Registry2",
25 "gatewayAddress": "Net4_GlobalGateway"
26 },
27 "requestId": "1",
28 "token": "test_grantedToken_Net3_Management3"
29 }

97

A. Appendix

30 }
31 "type": "lookUpAreaResponse",
32 }

Listing A.26: lookUpAreaResponse Message

A.2.27. lookUpObject

1 {
2 "command": {
3 "limit": 5
4 "type": "lookUpObject",
5 }

Listing A.27: lookUpObject Message

A.2.28. lookUpObjectResponse

1 {
2 "command": {
3 "limit": 5,
4 "pendingObjects": {},
5 "registeredObjects": {
6 "3": {
7 "HALAddress": "example_HALAddress",
8 "HALToken": "example_HALToken",
9 "localId": "3",

10 "oid": "1.2.3.4.Object1",
11 "options": {},
12 "repository": "objectImplementationRepository_URL",
13 "requestId": "1",
14 "tempObjectId": "1123.temp"
15 }
16 }
17 "type": "lookUpObjectResponse",
18 }

Listing A.28: lookUpObjectResponse Message

A.2.29. lookUpPendingObject

1 {
2 "command": {

98

A. Appendix

3 "limit": 500
4 "type": "lookUpPendingObject",
5 }

Listing A.29: lookUpPendingObject Message

A.2.30. lookUpPendingObjectResponse

1 {
2 "command": {
3 "entries": {
4 "0": {
5 "address": "Net3_Object3",
6 "authentication": "default_authObject",
7 "gatewayAddress": "Net4_GlobalGateway2",
8 "localId": "0",
9 "oid": "1.2.3.4.5.Object3",

10 "requestId": "Object301",
11 "token": "token_device0"
12 }
13 }
14 "type": "lookUpPendingObjectResponse",
15 }

Listing A.30: lookUpPendingObjectResponse Message

A.2.31. lookUpRegisteredAsSubRegistry

1 {
2 "command": {
3 "limit": 5
4 "type": "lookUpRegisteredAsSubRegistry",
5 }

Listing A.31: lookUpRegisteredAsSubRegistry Message

A.2.32. lookUpRegisteredAsSubRegistryResponse

1 {
2 "command": {
3 "entries": {
4 "2": {
5 "areaId": "2",

99

A. Appendix

6 "authentication": "test_authentication",
7 "remoteManagement": {
8 "address": "Net1_Management2"
9 },

10 "remoteRegistry": {
11 "address": "Net1_Registry2",
12 "gatewayAddress": "Net4_GlobalGateway"
13 },
14 "requestId": "test_requestId",
15 "requestSource": {
16 "address": "Net1_User"
17 },
18 "token": "default_tokenObject"
19 }
20 }
21 "type": "lookUpRegisteredAsSubRegistryResponse",
22 }

Listing A.32: lookUpRegisteredAsSubRegistryResponse Message

A.2.33. lookUpRegisteredObject

1 {
2 "command": {
3 "limit": 500
4 "type": "lookUpRegisteredObject",
5 }

Listing A.33: lookUpRegisteredObject Message

A.2.34. lookUpRegisteredObjectResponse

1 {
2 "command": {
3 "entries": {
4 "0": {
5 "address": "Net3_Object3",
6 "authentication": "default_authObject",
7 "gatewayAddress": "Net4_GlobalGateway2",
8 "localId": "0",
9 "oid": "1.2.3.4.5.Object3",

10 "requestId": "Object301",

100

A. Appendix

11 "token": "token_device0"
12 }
13 }
14 "type": "lookUpRegisteredObjectResponse",
15 }

Listing A.34: lookUpRegisteredObjectResponse Message

A.2.35. lookUpRegisteredSubRegistry

1 {
2 "command": {
3 "limit": 5
4 "type": "lookUpRegisteredSubRegistry",
5 }

Listing A.35: lookUpRegisteredSubRegistry Message

A.2.36. lookUpRegisteredSubRegistryResponse

1 {
2 "command": {
3 "entries": {
4 "2": {
5 "authentication": "test_authentication",
6 "registryId": "2",
7 "token": "default_tokenObject"
8 },
9 "3": {

10 "authentication": "test_authentication",
11 "registryId": "3",
12 "token": "default_tokenObject"
13 }
14 }
15 "type": "lookUpRegisteredSubRegistryResponse",
16 }

Listing A.36: lookUpRegisteredSubRegistryResponse Message

A.2.37. lookUpResponse

1 {
2 "command": {

101

A. Appendix

3 "entries": {
4 "1.2.3": [
5 {
6 "address": "Net1_Object1",
7 "gatewayAddress": "Net4_GlobalGateway",
8 "localId": "2_0",
9 "oid": "1.2.3.4.Object1",

10 "options": {}
11 },
12 {
13 "address": "Net3_Object3",
14 "gatewayAddress": "Net4_GlobalGateway2",
15 "localId": "3_0",
16 "oid": "1.2.3.4.5.Object3",
17 "options": {}
18 }
19]
20 }
21 "type": "lookUpResponse",
22 }

Listing A.37: lookUpResponse Message

A.2.38. lookUpRule

1 {
2 "command": {
3 "limit": 5
4 "type": "lookUpRule",
5 }

Listing A.38: lookUpRule Message

A.2.39. lookUpRuleResponse

1 {
2 "command": {
3 "entries": {}
4 "type": "lookUpRuleResponse",
5 }

Listing A.39: lookUpRuleResponse Message

102

A. Appendix

A.2.40. registerAsSubRegistry

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "authentication": "test_authentication",
6 "remoteManagement": {
7 "address": "Net1_Management2",
8 "gatewayAddress": "Net4_GlobalGateway"
9 },

10 "requestId": "test_requestId",
11 "token": "default_tokenObject"
12 }
13 },
14 "numOfEntries": 1
15 "type": "registerAsSubRegistry",
16 }

Listing A.40: registerAsSubRegistry Message

A.2.41. registerAsSubRegistryResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "areaId": "1",
6 "remoteRegistry": {
7 "address": "Net1_Registry2",
8 "gatewayAddress": "Net4_GlobalGateway"
9 },

10 "requestId": "1",
11 "successful": true,
12 "token": "default_tokenObject"
13 }
14 },
15 "numOfEntries": 1
16 "type": "registerAsSubRegistryResponse",
17 }

Listing A.41: registerAsSubRegistryResponse Message

103

A. Appendix

A.2.42. registerObject

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "address": "Net3_Object3",
6 "authentication": "default_authObject",
7 "gatewayAddress": "Net4_GlobalGateway2",
8 "oid": "1.2.3.4.5.Object3",
9 "requestId": "Object301"

10 }
11 },
12 "numOfEntries": 1
13 "type": "registerObject",
14 }

Listing A.42: registerObject Message

A.2.43. registerObjectResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "localId": "0",
6 "registry": {
7 "address": "Net3_Registry3",
8 "gatewayAddress": "Net4_GlobalGateway2"
9 },

10 "requestId": "Object301",
11 "successful": true,
12 "token": "token_device0"
13 }
14 },
15 "numOfEntries": 1
16 "type": "registerObjectResponse",
17 }

Listing A.43: registerObjectResponse Message

A.2.44. registerSubRegistry

104

A. Appendix

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "authentication": "test_authentication",
6 "requestId": "1",
7 "token": "default_tokenObject"
8 }
9 },

10 "numOfEntries": 1
11 "gatewayMessage": {
12 "destination": "Net1_Management2",
13 "source": {
14 "address": "Net3_Management3",
15 "gatewayAddress": "Net4_GlobalGateway2"
16 }
17 "type": "registerSubRegistry",
18 }

Listing A.44: registerSubRegistry Message

A.2.45. registerSubRegistryResponse

1 {
2 "command": {
3 "entries": {
4 "entry_0": {
5 "registryId": "3",
6 "remoteRegistry": {
7 "address": "Net1_Registry2",
8 "gatewayAddress": "Net4_GlobalGateway"
9 },

10 "requestId": "1",
11 "successful": true,
12 "token": "test_grantedToken_Net3_Management3"
13 }
14 },
15 "numOfEntries": 1
16 "gatewayMessage": {
17 "destination": "Net3_Management3",
18 "source": {

105

A. Appendix

19 "address": "Net1_Management2",
20 "gatewayAddress": "Net4_GlobalGateway"
21 }
22 "type": "registerSubRegistryResponse",
23 }

Listing A.45: registerSubRegistryResponse Message

A.2.46. ruleResponse

1 {
2 "command": {
3 "auth": "User_test_auth",
4 "returnValue": 0,
5 "ruleId": "0",
6 "token": "User_test_token"
7 "type": "ruleResponse",
8 }

Listing A.46: ruleResponse Message

106

Bibliography

[1] Kaa. IoT Use Cases. url: https://www.kaaproject.org/iot- use-
cases/ (visited on 04/13/2017).

[2] Hoan-Suk Choi, Deok-Hee Kang, and Woo-Seop Rhee. RISE: Role-based Internet of Things

Service Environment. Conference Paper. Department of Multimedia Engineering Hanbat

National University 34158 Daejeon Korea, 2016.

[3] OMNeT++. Simulation Manual OMNeT++ version 5.1.1. url: https://omnetpp.
org/doc/omnetpp/manual/#sec:introduction:what-is-omnetpp
(visited on 09/27/2017).

[4] Thomas Fischer. Internet of Things-Buzzwords: Das bedeuten die Schlagwörter. url:https:
//www.expertenderit.de/blog/internet-of-things-buzzwords-
das-bedeuten-die-schlagwoerter?hsCtaTracking=6d6f65d8-
0d01-425c-8f98-e32d36d4f13c%7C1ec95a02-5646-43e0-87d2-
51c2c320a19a (visited on 07/11/2017).

[5] Karen Rose, Scott Eldridge, and Lyman Chapin. The Internet of Things: An Overview.

Tech. rep. The Internet Society (ISOC), 2015.

[6] Living Internet. The Internet Toaster. 2000. url: http://www.livinginternet.
com/i/ia_myths_toast.htm (visited on 07/11/2017).

[7] Cisco. Complete Visual Networking Index (VNI) Forecast. url: http://www.cisco.
com/c/en/us/solutions/service-provider/visual-networking-
index-vni/index.html?stickynav=1 (visited on 07/11/2017).

[8] Tony Danova. Morgan Stanley: 75 Billion Devices Will Be Connected To The Internet Of

Things By 2020. url: http://www.businessinsider.com/75-billion-
devices- will- be- connected- to- the- internet- by- 2020-
2013-10?IR=T (visited on 07/11/2017).

[9] Ltd. Huawei Technologies Co. Huawei’s Heavy Investment in Five IoT Solutions Leads to

Impressive Breakthroughs. url: http://www.huawei.com/en/news/2016/
4/wuda-IoT-jiejue-fangan (visited on 07/11/2017).

107

https://www.kaaproject.org/iot-use-cases/
https://www.kaaproject.org/iot-use-cases/
https://omnetpp.org/doc/omnetpp/manual/#sec:introduction:what-is-omnetpp
https://omnetpp.org/doc/omnetpp/manual/#sec:introduction:what-is-omnetpp
https://www.expertenderit.de/blog/internet-of-things-buzzwords-das-bedeuten-die-schlagwoerter?hsCtaTracking=6d6f65d8-0d01-425c-8f98-e32d36d4f13c%7C1ec95a02-5646-43e0-87d2-51c2c320a19a
https://www.expertenderit.de/blog/internet-of-things-buzzwords-das-bedeuten-die-schlagwoerter?hsCtaTracking=6d6f65d8-0d01-425c-8f98-e32d36d4f13c%7C1ec95a02-5646-43e0-87d2-51c2c320a19a
https://www.expertenderit.de/blog/internet-of-things-buzzwords-das-bedeuten-die-schlagwoerter?hsCtaTracking=6d6f65d8-0d01-425c-8f98-e32d36d4f13c%7C1ec95a02-5646-43e0-87d2-51c2c320a19a
https://www.expertenderit.de/blog/internet-of-things-buzzwords-das-bedeuten-die-schlagwoerter?hsCtaTracking=6d6f65d8-0d01-425c-8f98-e32d36d4f13c%7C1ec95a02-5646-43e0-87d2-51c2c320a19a
https://www.expertenderit.de/blog/internet-of-things-buzzwords-das-bedeuten-die-schlagwoerter?hsCtaTracking=6d6f65d8-0d01-425c-8f98-e32d36d4f13c%7C1ec95a02-5646-43e0-87d2-51c2c320a19a
http://www.livinginternet.com/i/ia_myths_toast.htm
http://www.livinginternet.com/i/ia_myths_toast.htm
http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html?stickynav=1
http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html?stickynav=1
http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html?stickynav=1
http://www.businessinsider.com/75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10?IR=T
http://www.businessinsider.com/75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10?IR=T
http://www.businessinsider.com/75-billion-devices-will-be-connected-to-the-internet-by-2020-2013-10?IR=T
http://www.huawei.com/en/news/2016/4/wuda-IoT-jiejue-fangan
http://www.huawei.com/en/news/2016/4/wuda-IoT-jiejue-fangan

Bibliography

[10] James Manyika et al. The Internet of Things: Mapping the Value Beyond the Hype. Tech.

rep. McKinsey Global Institute, 2015.

[11] Philips. Philips Hue. url:https://www.philips.de/c-p/8718291241737/
hue-persoenliche-smarte-led-beleuchtung (visited on 10/11/2017).

[12] Amazon. Amazon AWS IoT. url: https://aws.amazon.com/de/iot-
platform/ (visited on 05/27/2017).

[13] Andrew Banks and Rahul Gupta. “MQTT Version 3.1. 1”. In: OASIS standard 29 (2014).

[14] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455. http://www.rfc-
editor.org/rfc/rfc6455.txt. RFC Editor, 2011. url:http://www.rfc-
editor.org/rfc/rfc6455.txt.

[15] Roy T. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. http://
www.rfc-editor.org/rfc/rfc2616.txt. RFC Editor, 1999. url: http:
//www.rfc-editor.org/rfc/rfc2616.txt.

[16] Amazon. Amazon AWS IoT Button. url: https://aws.amazon.com/de/
iotbutton/ (visited on 07/12/2017).

[17] Amazon. Amazon AWS IoT Overview. url: https://aws.amazon.com/de/
iot-platform/how-it-works/ (visited on 07/12/2017).

[18] Olawale Oladehin and Brett Francis. Core Tenets of IoT. Tech. rep. Amazon Web Services,

2017.

[19] . AWS IoT Developer Guide. Tech. rep. Amazon Web Services, 2017.

[20] Microsoft. Microsoft Azure IoT Solutions. url: https://www.microsoft.com/
de-de/internet-of-things/solutions (visited on 07/12/2017).

[21] OPC. OPC-UA. url: https://opcfoundation.org/ (visited on 10/11/2017).

[22] Microsoft.Microsoft Azure IoTHubDocumentation. url:https://docs.microsoft.
com/de-de/azure/iot-hub/ (visited on 07/12/2017).

[23] Microsoft. Microsoft Azure IoT Hub. url: https://azure.microsoft.com/
de-de/services/iot-hub/ (visited on 05/27/2017).

[24] Microsoft. Microsoft Azure IoT Event Hubs. url: https://azure.microsoft.
com/de-de/services/event-hubs/ (visited on 05/27/2017).

[25] . Azure IoT Reference Architecture. Tech. rep. Microsoft, 2016.

[26] SAP. SAP ERP. url:https://www.sap.com/germany/products/enterprise-
management-erp.html (visited on 10/11/2017).

108

https://www.philips.de/c-p/8718291241737/hue-persoenliche-smarte-led-beleuchtung
https://www.philips.de/c-p/8718291241737/hue-persoenliche-smarte-led-beleuchtung
https://aws.amazon.com/de/iot-platform/
https://aws.amazon.com/de/iot-platform/
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://aws.amazon.com/de/iotbutton/
https://aws.amazon.com/de/iotbutton/
https://aws.amazon.com/de/iot-platform/how-it-works/
https://aws.amazon.com/de/iot-platform/how-it-works/
https://www.microsoft.com/de-de/internet-of-things/solutions
https://www.microsoft.com/de-de/internet-of-things/solutions
https://opcfoundation.org/
https://docs.microsoft.com/de-de/azure/iot-hub/
https://docs.microsoft.com/de-de/azure/iot-hub/
https://azure.microsoft.com/de-de/services/iot-hub/
https://azure.microsoft.com/de-de/services/iot-hub/
https://azure.microsoft.com/de-de/services/event-hubs/
https://azure.microsoft.com/de-de/services/event-hubs/
https://www.sap.com/germany/products/enterprise-management-erp.html
https://www.sap.com/germany/products/enterprise-management-erp.html

Bibliography

[27] SAP. SAP HANA IoT Architecture. url: https://help.hana.ondemand.com/
iot/frameset.htm?4ab3521d055f41e9bce8837d4abbc09d.html
(visited on 07/12/2017).

[28] Kaa. Kaa Cluster Architecture. url: https://kaaproject.github.io/kaa/
docs/v0.10.0/Architecture-overview/ (visited on 07/12/2017).

[29] The Apache Software Foundation. Apache ZooKeeper. url: https://zookeeper.
apache.org/ (visited on 10/15/2017).

[30] KaaIoT Technologies. IoT Cloud Products. url: https://www.kaaiot.io/
products/cloud/ (visited on 07/12/2017).

[31] OpenIoT Consortium. Open IoT Objectives. url: http://www.openiot.eu/
?page_id=18 (visited on 07/12/2017).

[32] Michael Compton et al. “The SSN ontology of the W3C semantic sensor network incu-

bator group”. In: Web semantics: science, services and agents on the World Wide Web 17

(2012), pp. 25–32.

[33] OpenIoT.Open IoTWiki. url:https://github.com/OpenIotOrg/openiot/
wiki (visited on 07/12/2017).

[34] GSN. GSN Wiki. url: https://github.com/LSIR/gsn/wiki (visited on

07/12/2017).

[35] OpenIoT. Linked SensorMiddleware (LSM). url:https://github.com/OpenIotOrg/
openiot/wiki/Data-platform-%28lsm%29 (visited on 07/12/2017).

[36] BIG IoT. BIG IoT. url: http://big-iot.eu/ (visited on 07/13/2017).

[37] BIG IoT. BIG IoT Projects. url: http://big-iot.eu/project/ (visited on

07/12/2017).

[38] Werner Schladofsky et al. Business Models for Interoperable IoT Ecosystems. url: http:
//www.arne-broering.de/IoT-WS-Paper_BIG_IoT_Business_
Models_v0.7.pdf (visited on 07/12/2017).

[39] Jon Postel. Internet Protocol. STD 0791. http://www.rfc-editor.org/rfc/
rfc791.txt. RFC Editor, 1981. url: http://www.rfc-editor.org/rfc/
rfc791.txt.

[40] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Speci�cation. STD 8200. RFC

Editor, 2017.

109

https://help.hana.ondemand.com/iot/frameset.htm?4ab3521d055f41e9bce8837d4abbc09d.html
https://help.hana.ondemand.com/iot/frameset.htm?4ab3521d055f41e9bce8837d4abbc09d.html
https://kaaproject.github.io/kaa/docs/v0.10.0/Architecture-overview/
https://kaaproject.github.io/kaa/docs/v0.10.0/Architecture-overview/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://www.kaaiot.io/products/cloud/
https://www.kaaiot.io/products/cloud/
http://www.openiot.eu/?page_id=18
http://www.openiot.eu/?page_id=18
https://github.com/OpenIotOrg/openiot/wiki
https://github.com/OpenIotOrg/openiot/wiki
https://github.com/LSIR/gsn/wiki
https://github.com/OpenIotOrg/openiot/wiki/Data-platform-%28lsm%29
https://github.com/OpenIotOrg/openiot/wiki/Data-platform-%28lsm%29
http://big-iot.eu/
http://big-iot.eu/project/
http://www.arne-broering.de/IoT-WS-Paper_BIG_IoT_Business_Models_v0.7.pdf
http://www.arne-broering.de/IoT-WS-Paper_BIG_IoT_Business_Models_v0.7.pdf
http://www.arne-broering.de/IoT-WS-Paper_BIG_IoT_Business_Models_v0.7.pdf
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt

Bibliography

[41] Andrew S. Tanenbaum and Maarten van Steen. Verteilte Systeme: Prinzipien und Paradig-

men (Pearson Studium - IT) (German Edition). Pearson Studium, 2007. isbn: 978-3-8273-

7293-2.

[42] Alexandr Krylovskiy, Marco Jahn, and Edoardo Patti. Designing a Smart City Internet of

Things Platform with Microservice Architecture. Conference Paper. Fraunhofer FIT, Sankt

Augustin, Germany, Dept. of Control, and Computer Engineering, Politecnico di Torino,

Italy, 2015.

[43] IFTTT. IFTTT overview. url: https://ifttt.com/ (visited on 10/09/2017).

[44] Günther Bengel. Grundkurs Verteilte Systeme: Grundlagen und Praxis des Client-Server

und Distributed Computing. Springer Vieweg, 2015. isbn: 978-3-8348-1670-2.

[45] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Traditional NAT).

RFC 3022. RFC Editor, 2001.

[46] R. Perlman. “An overview of PKI trust models”. In: IEEE Network 13.6 (1999), pp. 38–43.

issn: 0890-8044. doi: 10.1109/65.806987.

[47] B. C. Neuman and T. Ts’o. “Kerberos: an authentication service for computer networks”.

In: IEEE Communications Magazine 32.9 (1994), pp. 33–38. issn: 0163-6804. doi: 10.
1109/35.312841.

[48] Leonard Richardson and Sam Ruby. RESTful web services. " O’Reilly Media, Inc.", 2008.

[49] Michael Mealling. “A URN Namespace of Object Identi�ers”. In: (2001).

[50] Je�rey D. Case et al. Simple Network Management Protocol (SNMP). STD 1157. http:
//www.rfc- editor.org/rfc/rfc1157.txt. RFC Editor, 1990. url:

http://www.rfc-editor.org/rfc/rfc1157.txt.

[51] T Bray. The JavaScript Object Notation (JSON) Data Interchange Format Internet Engi-

neering Task Force (IETF), 7159. 2014.

[52] Tim Bray et al. “Extensible markup language (XML).” In: World Wide Web Journal 2.4

(1997), pp. 27–66.

[53] Schema.org. Welcome to Schema.org. url: http://schema.org/ (visited on

07/25/2017).

[54] Open Knowledge Foundation. Linked Open Vocabularies. url: http://lov.okfn.
org/dataset/lov/ (visited on 07/25/2017).

110

https://ifttt.com/
https://doi.org/10.1109/65.806987
https://doi.org/10.1109/35.312841
https://doi.org/10.1109/35.312841
http://www.rfc-editor.org/rfc/rfc1157.txt
http://www.rfc-editor.org/rfc/rfc1157.txt
http://www.rfc-editor.org/rfc/rfc1157.txt
http://schema.org/
http://lov.okfn.org/dataset/lov/
http://lov.okfn.org/dataset/lov/

Bibliography

[55] Erich Gamma et al.Design Patterns: Elements of Reusable Object-Oriented Software (Addison-

Wesley Professional Computing Series). Addison-Wesley Professional, 1994. isbn: 0-201-

63361-2.

[56] Oracle. JavaFX: Working with JavaFX Graphics. url: https://docs.oracle.
com / javase / 8 / javafx / graphics - tutorial / shape3d . htm #
CJAHFAHA (visited on 07/26/2017).

[57] H. Butler et al. The GeoJSON Format. RFC 7946. IETF, 2016. url: https://tools.
ietf.org/html/rfc7946 (visited on 07/26/2017).

[58] IANA. IANA IPv4 Address Space Registry. url: https : / / www . iana . org /
assignments/ipv4-address-space/ipv4-address-space.xhtml
(visited on 07/26/2017).

[59] IANA. Structure of Management Information (SMI) Numbers (MIB Module Registrations).

url: https://www.iana.org/assignments/smi-numbers/smi-
numbers.xhtml (visited on 07/26/2017).

[60] Konstantinos Vandikas and Vlasios Tsiatsis. Performance Evaluation of an IoT Platform.

Conference Paper. Management and Operations of Complex Systems Ericsson Research

Stockholm Sweden, 2014.

[61] Inc. MongoDB. NoSQL Databases Explained. url: https://www.mongodb.com/
nosql-explained (visited on 10/14/2017).

[62] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP). RFC

7252. http://www.rfc-editor.org/rfc/rfc7252.txt. RFC Editor,

2014. url: http://www.rfc-editor.org/rfc/rfc7252.txt.

[63] E. Weingartner, H. vom Lehn, and K. Wehrle. “A Performance Comparison of Recent

Network Simulators”. In: 2009 IEEE International Conference on Communications. 2009,

pp. 1–5. doi: 10.1109/ICC.2009.5198657.

[64] Bjarne Stroustrup. The C++ programming language. Pearson Education India, 1995.

[65] Benoit Dupire and Eduardo B Fernandez. “The command dispatcher pattern”. In: 8th

Conference on Pattern Languages of Programs (PLOP ‘01). Citeseer. 2001.

111

https://docs.oracle.com/javase/8/javafx/graphics-tutorial/shape3d.htm#CJAHFAHA
https://docs.oracle.com/javase/8/javafx/graphics-tutorial/shape3d.htm#CJAHFAHA
https://docs.oracle.com/javase/8/javafx/graphics-tutorial/shape3d.htm#CJAHFAHA
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
https://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained
http://www.rfc-editor.org/rfc/rfc7252.txt
http://www.rfc-editor.org/rfc/rfc7252.txt
https://doi.org/10.1109/ICC.2009.5198657

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 09, November 2017 Hauke Buhr

	1 Introduction
	1.1 Motivation
	1.1.1 Use Cases
	1.1.2 IoT platform

	1.2 Requirements
	1.3 Goals
	1.4 Organization

	2 Related Work
	2.1 Current State of the Art
	2.1.1 Proprietary
	2.1.2 Open Source
	2.1.3 Research

	2.2 Discussion

	3 Overview
	3.1 Challenges
	3.2 Requirements Transposition
	3.3 Communication Patterns
	3.4 Design
	3.4.1 Management
	3.4.2 Registry
	3.4.3 Gateway
	3.4.4 Object Engine

	3.5 Security
	3.6 Summary

	4 Description Language
	4.1 Object
	4.1.1 Object Description
	4.1.2 Object Implementation

	4.2 Object Identifier
	4.3 Object Hierarchy
	4.4 Data Format
	4.5 Optional Descriptions
	4.5.1 Vocabularies
	4.5.2 Basic Data Types
	4.5.3 Composition of Objects
	4.5.4 Description
	4.5.5 Methods
	4.5.6 HAL
	4.5.7 Shape
	4.5.8 Location
	4.5.9 Descriptions Summary

	4.6 Standardization
	4.7 Experiment
	4.7.1 Setting
	4.7.2 Results

	4.8 Discussion

	5 Rules
	5.1 Periodic
	5.2 Conditional
	5.3 Actions
	5.3.1 Messages
	5.3.2 Methods
	5.3.3 Agents

	5.4 Discussion

	6 Interoperable Platform Design
	6.1 Introduction
	6.2 User
	6.3 Management
	6.4 Registry
	6.5 Gateway
	6.6 Object Engine
	6.7 Discussion

	7 Communication Sequences
	7.1 Basic Message Body
	7.2 Gateway Message Body
	7.3 Basic Sequences
	7.3.1 Heartbeat
	7.3.2 Object Registration
	7.3.3 Register as Sub-Registry
	7.3.4 Edit Registry Area
	7.3.5 Object Interaction
	7.3.6 Look-Up

	7.4 Discussion

	8 Platform Simulation
	8.1 Tool Chain
	8.2 Scenarios
	8.2.1 Scenario Object Engine Interaction
	8.2.2 Scenario Sub-Registry Registration

	8.3 Discussion

	9 Conclusion
	9.1 Future Work

	A Appendix
	A.1 Object Description
	A.2 Messages
	A.2.1 acceptObject
	A.2.2 acceptObjectResponse
	A.2.3 addArea
	A.2.4 addAreaResponse
	A.2.5 addEntry
	A.2.6 addEntryResponse
	A.2.7 addObject
	A.2.8 addObjectResponse
	A.2.9 addRule
	A.2.10 addRuleResponse
	A.2.11 deleteEntry
	A.2.12 deleteEntryResponse
	A.2.13 deleteObject
	A.2.14 deleteObjectResponse
	A.2.15 deleteRule
	A.2.16 deleteRuleResponse
	A.2.17 editArea
	A.2.18 editAreaResponse
	A.2.19 gatewayAdvertisement
	A.2.20 heartbeat
	A.2.21 heartbeatResponse
	A.2.22 invokeObjectMethod
	A.2.23 invokeObjectMethodResponse
	A.2.24 lookUp
	A.2.25 lookUpArea
	A.2.26 lookUpAreaResponse
	A.2.27 lookUpObject
	A.2.28 lookUpObjectResponse
	A.2.29 lookUpPendingObject
	A.2.30 lookUpPendingObjectResponse
	A.2.31 lookUpRegisteredAsSubRegistry
	A.2.32 lookUpRegisteredAsSubRegistryResponse
	A.2.33 lookUpRegisteredObject
	A.2.34 lookUpRegisteredObjectResponse
	A.2.35 lookUpRegisteredSubRegistry
	A.2.36 lookUpRegisteredSubRegistryResponse
	A.2.37 lookUpResponse
	A.2.38 lookUpRule
	A.2.39 lookUpRuleResponse
	A.2.40 registerAsSubRegistry
	A.2.41 registerAsSubRegistryResponse
	A.2.42 registerObject
	A.2.43 registerObjectResponse
	A.2.44 registerSubRegistry
	A.2.45 registerSubRegistryResponse
	A.2.46 ruleResponse

