
Bachelorarbeit
Roland Meo

Deep Q-Learning With Features Exemplified By Pacman

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Roland Meo

Deep Q-Learning With Features Exempli�ed By Pacman

Bachelorarbeit eingereicht im Rahmen des WP: Lernfähige Systeme

im Studiengang Bachelor of Science Technische Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Professor: Prof. Dr. Michael Neitzke

Zweitgutachter: Prof. Dr.-Ing. Andreas Meisel

Eingereicht am:

Roland Meo

Thema der Arbeit
Deep Q-Learning With Features Exempli�ed By Pacman

Stichworte
Maschinen Lernen, Verstärkendes Lernen, Q-Lernen, Tiefes Lernen, Neuronale Netze, Merk-

male, Regression, Pacman

Kurzzusammenfassung
Diese Bachelorarbeit behandelt die Entwicklung und Optimierung eines selbständig lernenden

Pacman-Agenten, da Pacman über komplexe Zustandsdaten verfügt, welche ein häu�ges Pro-

blem im Maschinen Lernen darstellen. Eine typische Herangehensweise ist hierbei die Bildung

von Merkmalen, eine verallgemeinerte Abstraktion der gegebenen Daten. Im Verstärkenden

Lernen werden diese Merkmale genutzt um einen Wert zu berechnen der aussagt wie vorteilhaft

eine Situation. Dabei werden meist Verfahren wie lineare Funktions-approximation genutzt.

Alternativ wird in dieser Thesis eine andere Herangehensweise vorgeschlagen, namentlich

eine Kombination aus Verstärkenden Lernen und Tiefen Lernen mit künstlichen neuronalen

Netzen. Ein neuronaler Netz-agent wird implementiert und optimiert bis diese Optimierung

als genügend empfunden wird.

Roland Meo

Title of the paper
Deep Q-Learning With Features Exempli�ed By Pacman

Keywords
Machine Learning, Reinforcement Learning, Q-Learning, Deep Learning, Neural Networks,

Features, Regression, Pacman

Abstract
This bachelor thesis deals with the development and the optimization of an autonomous

learning Pacman-agent, since Pacman o�ers high-dimensional state data, which is a common

problem in machine learning. A typical approach to this problem is using features, a high-level

abstraction of the given data. In reinforcement learning these features are used to calculate a

value describing how bene�cial a situation is by using prediction methods like linear function

approximation. This thesis suggests a di�erent approach by mixing reinforcement learning

and deep learning via an arti�cial neural network. A neural network agent is implemented

then and optimized to a level deemed su�cient.

Contents

1 Introduction 5

2 Reinforcement Learning 7
2.1 The Markov Property And Markov Decision Processes 7

2.1.1 The Markov Property . 7

2.1.2 Markov Decision Processes . 8

2.2 The Agent-Environment . 8

2.3 The A,< And S Spaces In Pacman . 9

2.3.1 Pacman Action Space A . 9

2.3.2 Pacman Reward Space < And The Return 10

2.3.3 Pacman State Space S . 10

2.4 Q-Learning . 11

2.4.1 Value Functions . 12

2.4.2 The Q-Learning Algorithm . 12

2.4.3 Q-Learning With Features (Linear Function Approximation) 13

3 Deep Learning 15
3.1 Neurons . 15

3.2 Deep Feedforward Networks . 16

3.3 Gradient Descent With Backpropagation . 17

3.3.1 Gradient Descent . 17

3.3.2 Backpropagation . 18

4 The State Representation (Features) 20
4.1 Level Progress . 20

4.2 Powerpill . 20

4.3 Pills (Food) . 21

4.4 Ghosts . 21

4.5 Scared Ghosts . 22

4.6 Entrapment . 22

4.7 Action . 22

5 Architecture 24
5.1 Third Party Software . 24

5.1.1 Pacman Framework Of CS 188 . 24

5.1.2 Keras - Deep Learning Library For Theano And TensorFlow 24

iv

Contents

5.2 Main Classes . 25

5.2.1 RewardHandler . 26

5.2.2 StateRepresenter . 26

5.2.3 NeuralControllerKeras . 26

5.2.4 NeuroKAgent . 27

5.3 Class Interaction . 27

6 Experiments 30
6.1 Metrics . 30

6.2 Lineaer Approximation . 31

6.3 Di�erent Networks . 32

6.3.1 Training Setup . 33

6.3.2 Sigmoid Vs Recti�er . 33

6.3.3 The Right Network Trainer . 36

6.3.4 Step size . 37

6.4 Knowledge Transition . 39

6.5 Powerpill-Distance Feature . 41

6.5.1 The Feature Equation . 41

6.5.2 Training The “8 Feature” Agent . 41

6.5.3 Comparing The “8 Feature” Agent . 44

6.5.4 Retraining The “8 Feature” Agent On The Contest Game-Grid With

More Evaluation Games . 46

7 Conclusion 49

v

List of Tables

2.1 game events and the corresponding rewards 10

6.1 Results of 200 �xed games with the best recti�er and the best sigmoid network 35

6.2 Results of 200 �xed games with the best network of Adam agent with η = 10−3

and the best network of agent2 with η = 10−4 39

6.3 Results of 200 �xed games with the best network of section 6.3.4 on the contest

game-grid . 40

6.4 Results of 200 �xed games with the best agent8feat, agent7feat & agent8alt

and the last episode agents on the training game-grid 44

6.5 Results of 200 �xed games with the best agent8feat, agent7feat & agent8alt

and the last episode agents on the contest game-grid 45

6.6 Results of 200 �xed games with the best agent8alt and the last episode agent

on the training game-grid . 47

6.7 Results of 200 �xed games with the best agent8alt and the last episode agent

on the contest game-grid . 47

1

List of Figures

2.1 Sketch of the functionality principle of the agent-environment, from Sutton

und Barto (1998). Showing the Agent receiving reward rt and state st and

giving action at to the Environment and therefore receiving a new reward

rt+1 and a new state st+1. 9

2.2 Showing the full action space in �gure 2.2a and how it changes depending on

the situation exemplary shown in �gure 2.2b 10

2.3 The standard game grid has a size of 20∗11 = 220 multiplied by 1280 for each

theoretical sub-state, so there would be about 281k states, not all of them being

possible though. Training an agent on so many states, that occur randomly,

since the ghosts have a stochastic moving pattern, would take enormous time.

That is why the concept of features gets introduced in section 2.4.3. 11

3.1 Sketch of a perceptron with two inputs x1, x2, weights w1 = w2 = −2 and a

threshold of 3, from Nielsen (2015). 15

3.2 Sketch of a neural network, from Nielsen (2015). 17

5.1 Class diagram of the most important classes. 25

5.2 Sequence diagram of the main classes interacting 29

6.1 The MSE returns while training the sigmoid agent in section 6.3. 31

6.2 Sketch showing the learning behavior of the linear approximation agent over

1000 episodes . 32

6.3 Sketch of the training game-grid . 33

6.4 Sketch showing the sigmoid function (green) and the recti�er function (red) . 34

6.5 Training progression of the two agents with di�erent neurons, taking the mean

scores of the 10 �xed games after each episode and plotting a regression curve

above them. 35

6.6 Training progression of the two agents with di�erent trainers, taking the mean

scores of the 10 �xed games after each episode and plotting a regression curve

above them. 36

2

List of Figures

6.7 Training progression of the two agents with di�erent trainers, taking the

average amount of food eaten in 10 �xed games after each episode and plotting

a regression curve above them. 37

6.8 Training progression of the two agents with di�erent step size parameter η,

taking the mean score in 10 �xed games after each episode and plotting a

regression curve above them. 38

6.9 Sketch of the contest game-grid . 39

6.10 Sketch of the 200 �xed games on the contest grid 40

6.11 Training progression of agent8feat, agent7feat & agent8alt, taking the average

score of 10 �xed games after each episode and plotting a regression curve above

them. 43

6.12 Training progression of agent8alt taking the average score of 30 �xed games

after each episode and plotting a regression curve above them. 46

3

Listings

2.1 Q-learning pseudo code . 12

4

1 Introduction

Machine learning has become a popular research area, combining all sorts of algorithms for all

kinds of tasks. But what they have in common no matter the task is that all machine learning

tasks require some sort of training data. And while the task learned upon might get more

complex so most likely does the depth of the input data structure, leading to the curse of

dimensionality. This means that with every new parameter in the environment trained upon,

the set of states in the environment grows exponentially. That again is blowing up the amount

of training data needed to get a good training performance. Resulting also in an increase of

time needed to train upon the gathered training data. In the end the computation time or the

memory needed might end up being so gigantic, that the particular machine learning task

exceeds the capabilities of the existing hardware. Therefore, in this thesis Pacman got chosen

as object of study, since it su�ers from the same problem. Seeming simple at �rst, the amount

of parameters in Pacman (namely the ghosts, foods, power-pill, Pacman’s location, etc.) are

resulting in the curse of dimensionality.

One prevalent approach to this problem are features, a high-level abstraction of the high-

dimensional input data. Each feature contains speci�c information of the original input

data and with a proper representation of the input data from multiple features, a simpler

abstraction is gained. The di�culty then becomes crafting these features, which can be done

by handcrafting them or generating them with algorithms. The gained feature abstraction

brings then the bene�t of making the learned translatable to similar problems, but comes with

the risk of not being descriptive enough, leading to learning results not performing as good

as anticipated. Fortunately in this case the features are preexisting and got adopted from the

paper Luuk Bom und Wiering (2013), so these di�culties aren’t encountered.

But one question arises, how to actually use these features? In reinforcement learning there are

methods like linear function approximation to estimate the bene�ciality of feature combinations

returning a descriptive value. But those methods might end up not being re�ned enough to

provide satisfactory results or need more expert knowledge in order to use them su�cient.

Instead this thesis takes a di�erent approach by using deep learning via arti�cial neural

networks, since they o�er a more generalized regression approach. By processing the features

5

1 Introduction

mapped to a reward signal to an arti�cial feed forward network, a regression between features

and rewards takes place. But since components of a neural network are interchangeable, �rst

�nding the right network con�guration for the given task isn’t trivial. Therefore multiple

networks get trained at the same time just being di�erent in one component or parameter.

After multiple episodes of training the best performing iteration of the network will then be

taken and compared to di�erent network con�gurations trained on the same task. From this

adjusting one component or parameter at the time and starting a new training round for the

next component until they are adjusted and some network deemed su�cient in performance

is found. Then �nally trying to further enhance the existing features, a new feature gets

introduced and experimented on.

In order to give the reader a better understanding of the problem ahead and how to accomplish

the task of building an self-learning agent, this thesis o�ers the basic knowledge needed to

understand the principles of reinforcement learning and deep learning used, the implemented

features, the architecture built and the results of experiments that helped further enhance the

network performance.

6

2 Reinforcement Learning

Reinforcement learning originated from the idea of learning something by interacting with its

environment. But before such an experiment can even designed, the task experimented on has

to ful�ll the Markov Property. As this property is given, the learner (agent) interacts with the

environment in discrete time steps , t = 1, 2, 3, 4,

Not knowing which action to take, the agent must discover which actions for each state are

most promising to reach a set goal. While learning the best strategy from one situation to

the next, the challenge of trade-o� between exploration and exploitation arises, as one might

choose the seemingly best action or explore an unknown action, that might be more rewarding

in future. (Sutton und Barto, 1998, 1.1 Reinforcement Learning)

2.1 The Markov Property And Markov Decision Processes

2.1.1 The Markov Property

In a reinforcement learning framework an agent transitions from one environment state s

to the next s′ via an action a, while receiving a reward r from the environment after each

transition in the next time step t+ 1. If from each of these states the next one can predicted,

without needing to know the preceded events, the Markow Property is given.

In mathematical terms:

Pr
{
st+1 = s′, rt+1 = r | st, at, rt, st−1, at−1, ...r1, s0, a0

}
(2.1)

In an equation 2.1 the assumption is made, that an environment in the present time t responds

with an reward at a future time t+1 to an action made at time t. Everything that might happen

in st+1 is causally dependent by events in the present st, at, rt and past st−1, at−1, ...r1, s0, a0.

Pr
{
st+1 = s′, rt+1 = r | st, at

}
(2.2)

But looking at equation 2.2, if at the same time the prediction of the future just can be made

from knowing present events, the Markov Property is given. (Sutton und Barto, 1998, 3.5 The

7

2 Reinforcement Learning

Markov Property)

Pacman ful�lls this property, since for every state not all previous states have to be known to

continue playing or to assume what action to take next. For example if a ghost approaches

Pacman, Pacman doesn’t need to know how the ghost came close, but can predict from present

information how to escape in future states so as not to lose. This makes Pacman suitable for a

reinforcement learning task.

2.1.2 Markov Decision Processes

If the Markov Property is given in a task, the task becomes a Markov Decision Processes (MDP).

With �nite sets of actions and states, the �nite MDP is a tuple of:

• S a set of states

• A a set of actions

• Pass′ the probability that state s transitions to state s′ via action a

• Rass′ the immediate reward received after transitioning from state s to state s′ via action

a

The probability Pass′ to translate from one state s to s′ as via an action a as is de�ned as follows:

Pass′ = Pr {st+1 = s | st = s, at = a} (2.3)

The immediate reward expected after transitioning from state s to state s′ via action a in the

next time step t+ 1 is de�ned as follows:

Rass′ = E
{
rt+1 | st = s, at = a, st+1 = s′

}
(2.4)

Mapping states and actions to numerical values, the behavior of the agent can now be de�ned

as a policy πt(s, a) that assigns a certain probability distribution over possible actions in each

state for each time step t. The goal of the reinforcement learning task is therefore to learn

the the most promising policy. The following statements in chapter 2 are made under the

assumption, that the designated task, is a �nite MDP.

2.2 The Agent-Environment

The agent-environment framework is a concept describing how an agent should interact with

his environment in an reinforcement learning experiment. At each time step t the agent

receives a representation of the environment’s state st ∈ S, where S is the set of all possible

8

2 Reinforcement Learning

states. From this state the agent chooses an action at ∈ A(st), where A(st) is the set of all

available actions in state st. With the next time increment the agent receives a new state st+1)

and in partially consequence of the chosen action a numerical reward rt+1 ∈ <, where < is

the set of all immediate rewards, from the environment.

In terms of Pacman this means the Pacman agent receives an initial game state, in which he

chooses an action and promotes the action to the environment. The environment computes all

kind of game events like foods, ghosts, etc. and replies to the agent with a new state. From this

new state the Pacman agent deduces a score, chooses an action again and so on, until some

�nal state is reached and a new game gets started.

Figure 2.1: Sketch of the functionality principle of the agent-environment, from Sutton und

Barto (1998). Showing the Agent receiving reward rt and state st and giving action

at to the Environment and therefore receiving a new reward rt+1 and a new state

st+1.

2.3 The A,< And S Spaces In Pacman

The following section discusses the spaces of actions A, rewards < and states S for Pacman,

which are essential to the reinforcement learning experiment.

2.3.1 Pacman Action Space A

For each state the agent has four possible actions, these make up the whole space of A. This

small action space will become bene�cial in section 2.4.3, as the introduced approach is more

practical with small action spaces Geramifard u. a. (2013)[p. 388-389]. Those actions are only

limited by the walls, as the Pacman cannot walk through them as seen in �gure 2.2b.

9

2 Reinforcement Learning

(a) {North, South,East,West} =
A(st) = A

(b) {North,West} = A(st) ⊂ A

Figure 2.2: Showing the full action space in �gure 2.2a and how it changes depending on the

situation exemplary shown in �gure 2.2b

2.3.2 Pacman Reward Space < And The Return

As suggested by Luuk Bom und Wiering (2013) following game events in table 2.1 are triggering

the immediate rewards. The sum of all triggered immediate rewards is returned to the Agent.

The possible combinations of all retrievable rewards makes up <.

Table 2.1: game events and the corresponding rewards

Event Reward Description
Win +50 Pacman has eaten all the food

Lose -350 Pacman collided with a non-scared ghost

Ghost +20 Pacman ate a scared ghost

Food +12 Pacman ate a food

Powerpill +3 Pacman ate a powerpill

Step -5 Pacman made a step

Reverse -6 Pacman made a reverse step

2.3.3 Pacman State Space S

The space or set of states in Pacman is quite big compared to the seemingly simplicity of the

game. For each �eld of the game grid there would be 25 ∗ 40 = 1280 theoretical sub-states,

since each �eld carries the information of:

• Pacman on �eld (binary)

• ghost on �eld (binary)

10

2 Reinforcement Learning

• food on �eld (binary)

• powerpill on �eld (binary)

• wall on �eld (binary)

• scared ghost time (counter 0 to 39)

The |set of states| then di�ers from the size of the game grid, as the amount of sub-states

gets multiplied for each �eld on the grid. Though a lot of the these states are not possible in

the actual game, exemplary considering that Pacman cannot be at multiple places at the same

time.

Figure 2.3: The standard game grid has a size of 20 ∗ 11 = 220 multiplied by 1280 for each

theoretical sub-state, so there would be about 281k states, not all of them being

possible though. Training an agent on so many states, that occur randomly, since

the ghosts have a stochastic moving pattern, would take enormous time. That is

why the concept of features gets introduced in section 2.4.3.

2.4 Q-Learning

Section 2.1.2 explained what properties must be given so a reinforcement learning experiment

can be designed and section 2.3 introduced a concept of how such an experiment should be

designed. Buts it is yet unclear how the Pacman agent actually learns. That’s why the next

section introduces a control algorithm called Q-Learning, following mostly Sutton und Barto

(1998)[6.5 Q-Learning: O�-Policy TD Control].

11

2 Reinforcement Learning

2.4.1 Value Functions

Before any control algorithm can be implemented, there has to be a metric to measure the

value of states and actions. So for measuring “how good” a state s is under a policy π a value

function V π(s) is de�ned as follows:

V π(s) = Eπ {Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s

}
(2.5)

The value function 2.5 returns the expected long term reward Rt for state st, that is the sum of

discounted immediate rewards, with gamma 0 < γ < 1 being the discount-factor.

Similarly the bene�t of taking an action a in a state s under policy π is de�ned as Qπ function:

Qπ(s, a) = Eπ {Rt | st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1 | st = s,t= a

}
(2.6)

The Qπ function 2.4.2 returns the expected long term reward Rt for a state-action pair (st, at),

that is the sum of discounted immediate rewards, with gamma 0 < γ < 1 being the discount

factor.

Both functions 2.5 and 2.4.2 are approximated from experience following a policy π, converging

to these functions with every single state encountered in�nitely.

2.4.2 The Q-Learning Algorithm

So now having a metric measuring the value of states and state-action pairs and further

knowing this only can be learned from experience, an o�-policy
1

control algorithm known

as Q-learning is used, in order to rate which action is best for each state, hence equation . A

single Q-value update is calculated according to:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(2.7)

Following equation 2.7, if the agent picked an action at in state st, the Q-value Q(st, at) gets

updated by the old Q-value Q(st, at) plus the product of learning rate 0 < α < 1 and the

immediate reward rt+1 (resolving from action at) plus the discounted best possible Q-value

Q(st+1, a) (of follow state st+1) minus the old Q-value Q(st, at).

Knowing how to update Q-values it is possible to dictate the Q-learn algorithm:

1 Initialize Q(s,a)

1

Because Q-learning adds the discounted next best possible Q-value instead of the actually occurring in its update

function, it is called o�-policy, this reducing the amount of training rounds needed to learn the optimum.

12

2 Reinforcement Learning

2 Repeat (for each game):
3 Initialize state
4 Repeat (for each episode):
5 Choose action from state using policy derived from Q
6 (by default epsilon-greedy):
7 Take action, wait for state’ and reward
8 Update Q(state,action)
9 state = state’

10 until state is terminal

Listing 2.1: Q-learning pseudo code

After initializing the Q-values arbitrarily, the game-environment gets started. The agent

receives an initial state from the environment. From this the agent has to pick an action

according to a policy derived from the approximation of equation 2.4.2. If the agent is in

training an epsilon-greedy policy is chosen, meaning that by a chance epsilon 0 < ε < 1 some

random action will be chosen, since as stated in section 2.4.1 the Qπ approximated is learned

from experience. The agent has to sometimes pick a random action, because it can’t experience

all state-action pairs, if it strictly chooses the seemingly best state-action pair with the highest

value. Additionally the highest value of an early regression of equation 2.4.2, might be vague

or just not correct. Therefore, while training the Pacman agent epsilon will start at 1 and

linearly decrease to a set minimum of 0.1, as proposed in Lample und Chaplot (2016). If the

Qπ is properly approximated, epsilon is set to zero, taking only the actions from a state with

the highest Q-value. After choosing an action and giving it to the environment like in section

2.3, the agent waits for state’ and the reward from the environment. With this data received,

he then can update the Q-value for the last state-action pair according to function 2.7, if the

agent is in training. This happens until a terminal state is reached, starting a new game and

repeating the process.

Knowing this it would be possible to write a simple Q-learning agent, but as stated in section

2.3.3 the space of states is huge. That’s why in section 2.4.3 the concept of features gets

introduced.

2.4.3 Q-Learning With Features (Linear Function Approximation)

In order to get a handle of enormous �nite state spaces with |A| � |S|, it is possible to

generalize the state representation with linear function approximation. Francisco S. Melo

(2007)

Qπθ (s, a) = φ(s, a)T θ (2.8)

13

2 Reinforcement Learning

Following equation 2.8, instead of one Q-value for every state-action pair, there is a vector

φ(s, a), each element is a feature and each φi(s, a) ∈ IR denotes the value of feature i for each

state-action pair (a, s). These features are normalized and computed by feature functions. For

this Pacman experiment 7 features are chosen and discussed in chapter 4.

There is the vector θ ∈ IRn containing weights for each feature i and therefore measuring the

contribution of each feature to the approximated Qπ(s, a). As the goal is to get as close to the

original Qπ function as possible the weights get adjusted each episode. To do so there is an

update function as follows:

θt+1 = θt + αδtφ(st, at) (2.9)

with

δt = rt+1 + γmax
a

Qπθt(st+1, a)−Qπθt(st, at) (2.10)

Following equation 2.9 each weight in θt gets updated by the learning-rate α multiplied by

the error δt multiplied by the corresponding feature value in φ(st, at). The error δt following

equation 2.10 consists of the reward received in the next time-step t+1 plus the product of the

discount-factor γ and the maximal Q-value of the follow state max
a

Qπθt(st+1, a) minus the

current Q-value Qπθt(st, at).

This is the technique used in the reference agent presented in chapter 6.

14

3 Deep Learning

Behind neural networks stands the idea of imitating biological nervous systems in a computa-

tional approach, by introducing arti�cial neurons connected to a collection called a (arti�cial)

neural network. Though by far not as powerful as the human brain, neural networks can be

used on huge data stacks for all kind of regression and classi�cation problems. In this instance

the neural network is used to resemble a function approximation of the Q-function. Though

a method for linear approximation was introduced in section 2.4.3, neural networks o�er a

more general approach to a more complex estimate than a linear approximation. Thus giving a

better approximation and showing how to combine reinforcement learning and deep learning

techniques exemplary.

3.1 Neurons

The neuron is the atomic unit of the neural network. It consists of inputs, input weights (for

each input), a bias (or threshold) and an output-function.

Figure 3.1: Sketch of a perceptron with two inputs x1, x2, weights w1 = w2 = −2 and a

threshold of 3, from Nielsen (2015).

15

3 Deep Learning

One of the simplest forms of neuron is the perceptron as shown in �gure 3.1. The shown

perceptron implements a NAND gate as its output gets computed like:

output =

1, if

j∑
n=1

xnwn ≥ threshold

0, if

j∑
n=1

xnwn < threshold

(3.1)

(Note: If the threshold gets shifted to the other side of the equation its called the bias b)

Though this isn’t a good example of the utility of perceptrons in practice. It shows that in

theory every practical computing machine could be realized, as every gate can be built from

NAND gates. In practice it is more common to use other neurons than perceptrons, for example

the sigmoid neuron. The di�erence between those and the perceptrons is, they use di�erent

output-functions. For instance the sigmoid output gets computed like:

σoutput =
1

1 + exp(−z)
(3.2)

So with bigger z =
∑j

n=1 xnwn + b, the σoutput gets closer to 1 and with smaller z closer to 0.

Knowing this it is now possible to construct more complex computing structures, by intercon-

necting the outputs and inputs of multiple neurons.

3.2 Deep Feedforward Networks

If multiple neurons get connected, they are called a neural network. The construction of neural

networks is accomplished in layers as shown in �gure 3.2

16

3 Deep Learning

Figure 3.2: Sketch of a neural network, from Nielsen (2015).

Each neuron of each layer is connected with each neuron of the next layer via output-to-input.

The �rst layer is the input layer, where there is one neuron for each input value, following

this layer are n hidden-layer and �nally one output layer. Each of these layers consists of 1

to k neurons. The kind of neural network used in this experiment is called a feed forward

network, simply because input gets fed to the �rst layer and wanders from front to back until

the output layer is reached. The network used consists of an input layer of 7 input neurons, a

hidden layer of 50 sigmoid neurons and an output layer of simply one neuron, whose output is

real-numbered (not just from 0 to 1). With just 7+50+1 = 58 neurons and 7∗50+50∗1 = 400

weights instead of thousands of Q-value pairs the networks is approximating the Q-function.

This will allow to estimate the Q-value by deriving the features of each possible follow state

and feeding them to the network, retrieving possible Q-values. If the network is well trained,

the action that leads to features with the highest Q-value,will be taken as the best action.

3.3 Gradient Descent With Backpropagation

3.3.1 Gradient Descent

The sections 3.2 and 6.3.3 gave an idea of how the network is constructed and computes outputs,

but it is still unclear how the network learns. It seems reasonable to suppose that alteration of

17

3 Deep Learning

weights is the way to go, but how are they altered, as small changes a�ect not just one neuron

but all follow neurons connected. First training data is needed, meaning multiple input data or

feature vectors x and the corresponding correct outputs y(x). With this it is able to de�ne a

cost function C(w, b), dependent on the weights w and the biases b.

C(w, b) =
1

2n

∑
x

‖ y(x)− a ‖2 (3.3)

This cost function (also known as mean squared error) allows to measure how close the network

output a is to the training data output y(x) on n training samples, with C(w, b) ≈ 0 being the

optimum. In furtherance of reducing the cost/error an algorithm called gradient descent is

adjusting the weights and biases to the gradient of the function C(w, b) in 0 < η ≤ 1 sized

steps, so that for each iteration there is a negative4C , till some minimum of the cost function

is reached. For this the k weights and l biases get updated thusly:

wk → w′k − η
∂C

∂wk

bl → b′l − η
∂C

∂bl

(3.4)

3.3.2 Backpropagation

The last open question is how to get
∂C
∂wk

and
∂C
∂bl

of equation 3.4 or more �guratively the

gradient of of the cost function. The answer is an algorithm called backpropagation. For the

backpropagation algorithm four equations are needed.

First Equation

The �rst equation δLj computes the error in the output layer L of each jth neuron.

δLj =
∂C

∂aLj
σ′(zLj) (3.5)

Equation 3.5 measures how fast the cost grows for each jth output activation aLj , multiplied

by the change of the activation function σ to the weighted input zLj . In a matrix-based form

equation 3.5 can be written as:

δL = (aL − y)� σ′(zL)1
(3.6)

1� being the Hadamard product exemplary computed like:

[
1
2

]
�
[
3
4

]
=

[
1 ∗ 3
2 ∗ 4

]
=

[
3
8

]

18

3 Deep Learning

Second Equation

The second equation δl computes the error in each layer l.

δl = ((wl+1)T δl+1 � σ′(zl) (3.7)

Multiplying the transposed weight matrix (wl+1)T of the next layer l+1 to the error of the its

layer δl+1
and again forming the Hadamard product of this product to σ′(zL), the error of the

recent layer l gets calculated. Combining the equations 3.6 and 3.7 it is possible to compute

the error δl for each layer l from back to front, starting with δL, δL−1, δL−2, ... , δ2.

Third Equation

The third equation
∂C
∂blj

computes the gradient of cost with respect to any bias in the network:

∂C

∂blj
= δlj (3.8)

The third equation can be written as the matrix-based equation 3.9 and is then the same as the

second equation:

∂C

∂bl
= δl (3.9)

Knowing this one unknown of the equation 3.4 hence
∂C
∂bl

can be solved.

Fourth Equation

The last and fourth equation
∂C
∂wl

jk

computes the gradient of cost with respect to any weight in

the network:

∂C

∂wljk
= al−1k δlj (3.10)

With al−1k being the activation of a neuron k of a previous layer l− 1 and δlj being the error of

the current neuron j in the layer l. Knowing this second unknown of the equation 3.4 hence

∂C
∂wk

can be solved.

Keeping these four functions in mind it is possible to compute the δ of each weight and bias

recursively from back to front and update it, hence the name backpropagation.

19

4 The State Representation (Features)

The agent has no direct view of the game grid, instead it is o�ered a high level abstraction of

the game state via features as introduced in section 2.4.3. As these features are an abstract

representation of the game state a policy transfer to another game grid is possible and will

be demonstrated in chapter 6. In conclusion, the agent can just perform as good as the state

abstraction is in expressiveness, hence an agent will always perform bad on an insu�cient

abstraction no matter how good the training.

Since the design of handcrafted features relies on expert knowledge, seven features derived

from the paper Luuk Bom und Wiering (2013) are introduced. All features are normalized to

0 ≤ x < 1 with x ∈ IR as suggested for the function approximation 2.4.3.

4.1 Level Progress

In Pacman the main goal is to eat all the food, while avoiding the ghosts. Hence, the �rst

feature represents the amount of eaten food, letting the agent know his progress in the game.

• a = total food

• b = eaten food

The progress feature fprogress gets computed as follow:

fprogress = (a− b)/a (4.1)

4.2 Powerpill

When the Pacman eats a powerpill the ghosts become scared and eatable for some time, making

it possible to score some extra points. The agent needs to learn when it is pro�table to engage

eating a ghost with the time left on the scared timer or if he should persuade other goals. By

default the scared timers of the ghost are set to 0, with the consumption of a powerpill, the

timer gets set or refreshed to a default scared time.

20

4 The State Representation (Features)

• SCARED_TIME = the maximal time of the ghost being scared

• scared = the biggest scared timer of the present ghosts

The powerpill feature fpowerpill gets computed as follow:

fpowerpill =

{
1− (SCARED_TIME − scared)/SCARED_TIME, if scared > 0

0, otherwise

(4.2)

4.3 Pills (Food)

In order to make any progress Pacman needs to know where the nearest food is. Hence, the

food feature (or pill feature) is rating how far the closest food is apart from Pacman. The closest

food to Pacman is found via breadth-�rst search.

• a = Maximum path length
1

• b = Shortest distance to next pill

The food feature ffood gets computed as follow:

ffood = (a− b)/a (4.3)

4.4 Ghosts

On the contrary to feature 4.3 if Pacman wants to avoid losing, he needs to dodge the ghosts.

Therefore, the ghost feature gives a rating of the distance to the closest ghost. The closest

ghost is the ghost with the smallest Manhattan distance to Pacman.
2

• a = Maximum path length
1

• b = Shortest distance to next ghost

The ghost feature fghost gets computed as follow:

fghost = (a− b)/a (4.4)

1

The length of longest path gets calculated once with the initialization of the game grid

2

The Manhattan distance between two vectors p, q is calculated as follow: d(q, p) =
∑n

i=1 | pi − qi |

21

4 The State Representation (Features)

4.5 Scared Ghosts

This feature is dependent on the powerpill feature 4.2. If there is no scared ghost, this feature is

set to zero, as zero is equal to the furthest distance. If then a ghost becomes scared, its distance

gets measured. Though it seems pro�table to engage a scared ghost, as a collide o�ers a lot

of extra points, the agent hast to regard that the scared timer decreases, hence the powerpill

feature 4.2, risking to run into a non scared ghost and lose if the timer runs out.

• a = Maximum path length
1

• b = Shortest distance to next scared ghost

The scared ghost feature fscared gets computed as follow:

fscared =

{
(a− b)/a, if fpowerpill > 0

0, otherwise

(4.5)

4.6 Entrapment

Sometimes while engaging food, Pacman also engages a ghost at the same time. In this case it

is bene�cent to know, if there are any escape roots following the path to the food. In order to

achieve this the entrapment feature is introduced, measuring the the amount of escape roots

(or crossings) in the moving direction. Since every crossing with 3 or more moving directions

is a possible escape root and thus considerably safe.

• a = amount of all crossings in the game grid

• b = amount of crossings following the present direction

The entrapment feature fentrapment gets computed like this:

fentrapment = (a− b)/a (4.6)

4.7 Action

In some games a situation occurs where 2 choices of action seem to be equally good. In this case

the wanted behavior is to keep Pacman following his current direction. Thus the action feature

is implemented, simply checking if the last moving direction matches the current direction.

• dlast = the last moving direction

22

4 The State Representation (Features)

• dcurrent = the current moving direction

The action ghost feature faction gets computed like this:

faction =

{
1, if dlast == dcurrent

0, otherwise

(4.7)

23

5 Architecture

Chapters 2 and 3 establish the needed knowledge to understand the mathematical and theo-

retical aspects of the Pacman agent and chapter 4 introduces the used features. This chapter

is explaining the architecture and the components used to run the associated experiments in

chapter 6, hence giving an idea of how the agent works software-wise and making it possible

to adopt this architecture for similar problems.

5.1 Third Party So�ware

In this section some important third party frameworks and libraries are acknowledged, without

which this Pacman experiment wouldn’t have be possible in given amount of time.

5.1.1 Pacman Framework Of CS 188

The Pacman framework of the UC Berkeley’s introductory arti�cial intelligence course, CS 188

is used as a foundation for this experiment. For it o�ers a framework that has a good setting

for learning the basics of reinforcement learning. It has a prede�ned environment, with states

that hold all relevant game data and a pre-de�end reward signal (,though it is not in-use in

these experiment). And an agent interface, that makes it easy to implement new agents, just

needing the user to keep some name conventions on the agent’s name and the agents to have

a function getAction(self, state) returning an action to the model.

If looking back at section 2.3 these conditions cover the full agent-environment concept.

The inner works of the agent are then up to the user to be designed.

5.1.2 Keras - Deep Learning Library For Theano And TensorFlow

Keras is a high-level deep learning library Chollet (2015) running on top of the libraries

Theano a library for de�ning, optimizing and evaluating mathematical expressions with multi-

dimensional arrays Theano Development Team (2016) and Tensor�ow is an interface for

expressing machine learning algorithms, and an implementation for executing such algorithms

24

5 Architecture

Abadi u. a. (2015).

In the end Keras, which made implementing all kind of networks variations used easier, is used

with a Theano back-end. Since at the time building the agent, the current Tensor�ow-built is

causing to much swaps on the memory of the server and hence is much slower than Theano

for this experiment.

5.2 Main Classes

Using the Pacman framework of section 5.1.1, the implemented agent has to take states from

the already given environment and give an action to the environment every discrete time step.

Looking at �gure 5.1 the agent NeuroKAgent1
is dependent on three other classes. These being

the NeuralControllerKeras2
class for handling the neural network, the RewardHandler class

that creates a signal according to the section 2.3.2 and the StateRepresenter class extracting the

7 features mentioned in section 4.

Figure 5.1: Class diagram of the most important classes.

The following sections will discuss the classes shown in �gure 5.1 int detail.

1

NeuroKAgent standing for Neural Keras Agent

2

Since there is more initial experimentation with di�erent neural network frameworks, the name convention

NeuralController_ emerges

25

5 Architecture

5.2.1 RewardHandler

The RewardHandler class creates the reward signal for the agent according to table 2.1. In

order to do so the RewardHandler needs the last state, the current state and the current action.

Thanks to the framework the following data can just be read from the current state:

• is lose

• is win

• ate ghost

By comparing the last state and the current state the RewardHandler can register if:

• Pacman ate food

• Pacman ate a powerpill

• Pacman made a step

And at last with the current action, the RewardHandler can measure if Pacman has done a

step backwards, since the future Pacman position following the action, might lead to the same

the position of the last state. The RewardHandler multiplies the binary signal values to the

corresponding score, summarizes them and returns the sum to the agent.

5.2.2 StateRepresenter

The StateRepresenter implements the features listed in chapter 4 and returns an array of real

numbered values between 0 to 1.

5.2.3 NeuralControllerKeras

The NeuralControllerKeras class controls the neural network. With its initialization it creates

a model of the network according to the given parameters, with random weights. From this

the NeuralControllerKeras can:

• load a di�erent model and its weights

• save the current model and its weights

• predict game-score according to the needed input (commonly the 7 features)

• train the network on sample data provided by the agent (commonly a set of feature-

combinations and their correlating game-scores)

26

5 Architecture

5.2.4 NeuroKAgent

The NeuroKAgent is the centric class and holds one instance of RewardHandler, StateRep-

resenter, NeuralControllerKeras each. It also de�nes the reinforcement learning parameters

needed for the series of experiments. These being ε = 0.9 for the random policy choice linearly

decreasing with further training episodes and γ = 0.5 the discount-rate for the previous

reward.
3

The NeuroKAgent class is responsibly for choosing an action according to the policy

and giving it to the Pacman-framework, receiving rewards from the environment and mapping

them to the last state’s features adding them to a data set and retraining the network after the

�nal game of a training episode. For this the class o�ers four methods:

• getPolicy is choosing an action to an epsilon-greedy policy (if not in training ε = 0)

• updateQV alue named according to the Q-Learning algorithm this method is adding

data samples to the data set

• getAction the only method demanded by the Pacman-framework for receiving a new

state and returning a chosen action

• final an optional method o�ered by the Pacman-framework, called after every game,

in this instance called to write logs, add the data of the �nal action to the data set and if

it should be the last training game retrain the network

5.3 Class Interaction

After explaining how each of the main classes work on their own, the sequence diagram in

�gure 5.2 shows how these classes and the enviroment interact witch each other.

The class entities collaborate in four major steps.

1. start framework:

Via command-line the framework gets started and initializes the agent given in the

arguments.

2. getAction(state):

After everything is set up, the environment o�ers a state to the agent, waiting for an

action. (If this is the �rst game the agent initializes his helper classes and the network)

a) getPolicy(state):

The agent picks an action, by estimating all possible future states, getting their

3

Note that α is not needed for the deep learning variant of the agent, since it comes with its own learning rate or

step-size.

27

5 Architecture

features vectors and getting those evaluated from the neural network. He then

choses an action according to an ε-greedy policy (with ε = 0 if not in training)

b) updateQV alue(feat_vec, action):

If the agent is in training mode, he “updates” the Q-value of the state-action pair

(except this turn is the �rst turn). In reality the correct Q-value will be approximated

adding this value and the feature vector of the last state-action pair to the training

samples for the neural network.

The agent return the chosen action to the environment. These steps repeat until a �nal

state is reached, hence Pacman lost or won.

3. final(state):

If a �nal state is reached, the environment calls the �nal function of the agent, passing

him a �nal state with the �nal score.

a) updateQV alue(feat_vec, action):

If the agent trains, he adds a training sample for the feature vector that lead to the

�nal state.

b) train(random_samples):

If this game happens to be the nth training game in a series of training games, the

agent picks a percentage of random training samples of all samples gathered and

trains the network on them. After the network is done learning, it will return a

loss, hence the mean squared error of the training samples to its outputs.

c) write to logs:

Every time a game is done, the agent will write relevant data to logs.

4. quit framework:

If the last game was the last game in a series of games, the framework will shutdown.

28

5 Architecture

Figure 5.2: Sequence diagram of the main classes interacting

29

6 Experiments

Still, In this chapter the e�ort of proving the assumption that arti�cial neural networks o�er an

alternative solution to classic regression approaches gets proven via experiments. For this an

agent is implemented using the linear approximation in order to compare its performance to the

more re�ned neural network agents. Further experiments attempt �nding a su�cient neural

network con�guration, as the attempt to �nd the right components and (hyper-) parameters

isn’t a trivial one. Therefore, di�erent types of neurons, learners (or trainers) and step sizes

(or learning rates) are experimented on and compared in order to �nd a �tting con�guration.

Notice that the result doesn’t raise the claim of being the optimal solution, as solutions for

these kind of problems rely strongly on the given task and an optimization is only pursued to

a level deemed su�cient to the task.

After �nding a satisfactory neural network a comparison to a linear approximation agent

is made. In order to prove the assumption, that behavior learned from features translates

to di�erent game-grids, an agent with the best network con�guration found in the former

experiments is playing on the so called “contest game-grid”. From that seeing that the features

of chapter 4 might be improved by a new feature named “Powerpill-distance”, an agent with

the new feature gets trained and compared to the former best “7 feature” agent on the training

as well as the contest game-grid. Showing that there is still room for improvement in the

features suggested by the paper Luuk Bom und Wiering (2013).

6.1 Metrics

Indispensable to any kind of experiment are certain metrics to evaluate the success of the

experiment Originally the assumption that taking the loss of the MSE function and seeing it

converge to zero would be a su�cient metric to evaluate the training success is made. But

looking at �gure 6.1, even for a successful agent the MSE doesn’t converge fast enough towards

zero. In addition, it is noisy, therefore making it hard to derive any information from it.

30

6 Experiments

Figure 6.1: The MSE returns while training the sigmoid agent in section 6.3.

Ergo, as a practical alternative to the MSE, the mean score of 10 �xed
1

games at the end of

each episode is used as a metric, since the goal of the agent is to maximize the game-score

via cumulated rewards. The paper Mnih u. a. (2013) also suggests the use of the average total

reward as a satisfactory metric, even though the average total reward metric tends to be

very noisy, because small changes to the weights of a policy can lead to large changes in

the distribution of states the policy visits. For this reason, the following �gures showing the

learning behavior of the agents are having a regression curve plotted above them, making it

easier to evaluate the overall training progression.

6.2 Lineaer Approximation

Trying an old less re�ned method called linear function approximation, an agent tries to

learn weights for each of seven features in chapter 4. These weights rate how bene�cial their

corresponding feature is in return. Hence, the agents plays 1000 episodes of 50 games each,

taking a snapshot of the weights after each episode, while consistently updating the weights

each turn in the game according to the formulas in chapter 2.4.3.

1

�xed games means, that the usual random ghost movement is calculated with a �xed seed for pseudorandom

numbers, resulting in the same ghost behavior every series of games.

31

6 Experiments

Figure 6.2: Sketch showing the learning behavior of the linear approximation agent over 1000

episodes

From this an agent behaving as seen in �gure 6.2 is gathered. The agent has a steep learning

curve in the beginning and reaches its possible best after about 200 to 300 episodes. But it

doesn’t really get better after this. Looking at the �gure again, there is a lot of noise in the

on-going later episodes. This might come from the fact, that a linear approximation isn’t just

enough to comprehend the complex state-action space of Pacman with the features and this

method given. Seeing that the maximum mean score reached is about 300 points and there

aren’t much optimization possibilities, it is concluded that this approach is just not satisfactory.

6.3 Di�erent Networks

When First learning of neural networks most literature chooses the example of a classi�cation

problem with sigmoid neurons and a stochastic gradient descent (SGD) trainer
2
. But since

playing Pacman or more precise the approximation of the Q-function via feature abstractions

is a regression task, it is unclear how good these approaches translate. Though thanks to

Luuk Bom und Wiering (2013) there is a suggestion regarding the amount of neurons in each

layer, but it is unclear what neurons and trainer (or learner) to use for more satisfactorily

results.

2

SGD trains on multiple random subsets of the provided training data (called minibatches), instead of the whole

training set like gradient descent in section 3.3.1

32

6 Experiments

6.3.1 Training Setup

In order to train the di�erent network setups each agent will have a neural network consisting:

• input layer of 7 input neurons
3

• hidden layer of 50 sigmoid/recti�er neurons

• output layer of 1 linear neuron

• and a network trainer for backpropagation

A training session lasts for 1000 episodes, each episode consisting again of 50 random games on

the training game-grid to gather a training set and train the network from random batches of

this set. After the retraining of the network is conducted, the agent will play 10 �xed evaluation

games, take the mean score of these games as a measure of performance. If the agent should

be the so far most promising agent, a backup of the current network will be taken.

After a training session the best performing networks will be taken for comparison. Playing

200 �xed games on the training grid.

Figure 6.3: Sketch of the training game-grid

6.3.2 Sigmoid Vs Rectifier

In common neural network literature like Nielsen (2015) or Goodfellow u. a. (2016) the neurons

referred or used are mostly sigmoid neurons. But Glorot u. a. (2011) suggests that recti�er

neurons (also known as ReLU
4
) hold more bene�t (especially in deeper networks), as they

are closer to the actual activation function of biological neurons. Also looking at 6.4 for the

sigmoid function with z 5
getting bigger (or smaller), the gradient of the sigmoid function

3

one for each feature

4

ReLU stands for recti�ed linear unit

5z =
∑j

n=1 xnwn + b being the sum of all inputs x multiplied by their weights w plus the bias b

33

6 Experiments

vanishes. While at the same time for z > 0 the gradient of the recti�er function is constant at

1. Resulting in an overall slower learning for sigmoid neurons compared to ReLU.

Figure 6.4: Sketch showing the sigmoid function (green) and the recti�er function (red)

Looking at 6.4, one of the key di�erences between sigmoid and ReLU is the function range:

• σ(z) : IR→ (0, 1)

• ReLU(z) : IR→ [0, z]

Another possible bene�t is that the neural network gains sparsity, which potentially improves

the estimation for rarer occurring training events, like the event of eating a ghost. Since

following equation 6.1 inputs z ≤ 0 will be forwarded with zero, instead of small values close

to zeroes as the sigmoid function does, causing to add real zeroes to the neural network, hence

sparsity. Meaning that neurons that would directly contribute to the scared ghost feature only

�re then their z > 0, but since all neurons of each layer are inter-connected with the neurons

of the next layer this might not happen, still the agent might take some bene�ts from this to

some degree.

ReLUoutput =

{
z, if z > 0

0, if z ≤ 0
(6.1)

34

6 Experiments

(a) Sigmoid agent (b) Recti�er agent

Figure 6.5: Training progression of the two agents with di�erent neurons, taking the mean

scores of the 10 �xed games after each episode and plotting a regression curve

above them.

Looking at the graphs in �gure 6.5a the sigmoid agent slowly gets better per average with

the episodes, having its best performing neural network in episode 801. In �gure 6.5b by

comparison the recti�er agent learns much faster and spikes to his maximum in episode

79, from this constantly getting worse. Since neural networks are very hard to debug, the

assumption is that this might come from a too big step size.

Taking the best performing networks of each agent, each agent plays 200 games with the

results presented in table 6.1.

Table 6.1: Results of 200 �xed games with the best recti�er and the best sigmoid network

Network Win ratio Avg. score Avg. food eaten/ game Avg. ghosts eaten/ game
Sigmoid801 69% 1090 88% 1.140

Recti�er79 81.5% 1261 92% 1.300

Examining �gure 6.5 the sigmoid agent shows a more consisting learning behavior than the

recti�er agent, but looking at table 6.1 the best recti�er agent still wins about 12.5% more

games than its sigmoid competitor. The grief problem is that in the current con�guration,

the learning curve of the recti�er agent is unstable, probably caused by a too big step size

parameter η in the network trainer. Still, primarily wanting to enhance the performance of the

agent, the recti�er neurons are chosen for further experiments, trying to resolve the unstable

learning curve in section 6.3.4.

35

6 Experiments

6.3.3 The Right Network Trainer

Too further enhance the performance of the neural network, the previously black-box treated

network trainer is exchanged for another. For this reason the commonly proposed SGD trainer

is competing against a network trainer called Adam, which holds bene�ts to noisy and/or

sparse gradients which is desirable since one can’t comprehend the
~feature-reward space,

introduces momentum (meaning that some fraction of the previous update is added to the

current update, speeding up the learning process) and computing individual adaptive learning

rates coming from gradient estimates. Kingma und Ba (2014)

In order to compare both approaches two agents are trained 1000 episodes, both agents only

distinguished by the trainer. After the training session the data presented in �gure 6.6 is gained.

(a) SGD agent (b) Adam agent

Figure 6.6: Training progression of the two agents with di�erent trainers, taking the mean

scores of the 10 �xed games after each episode and plotting a regression curve

above them.

Looking at �gure 6.6 the SGD agent behaves similar to the Adam agent, progressing steeply in

early episodes but getting worse with further training. So for a more di�erentiated comparison

the average amount of eaten food over the 10 �xed games is taken. It might be that the absolute

training goal of the agent is to maximize the game-score, but it is also interesting to see the

percentage of food eaten, since a game-grid with no food left is considered a win. Hence the

amount of food eaten is equivalent to the game progress. Therefore, in �gure 6.7 it is visible,

that the Adam agent out-performs the SGD agent by far since it averagely eats three times as

much food as its competitor.

36

6 Experiments

(a) SGD agent (b) Adam agent

Figure 6.7: Training progression of the two agents with di�erent trainers, taking the average

amount of food eaten in 10 �xed games after each episode and plotting a regression

curve above them.

Coming to the conclusion that even though the Adam agent digresses in performance visible

in �gure 6.6b, it somehow maintains some average utility observing �gure 6.7b, hence the

Adam trainer is used for further experiments.

But even with a better trainer the problem of unstable or decreasing learning behavior is still

present. The assumption is made that this might come from a to big step size 0 < η ≤ 1, which

is set to 0.001 by default. This is resulting in overshooting the optimum while trying to follow

the gradient in the
~feature-reward space.

Accordingly, the next goal is to balance the step size, that neither overshoots nor converges

too slowly.

6.3.4 Step size

The step size 0 < η ≤ 1 is a so called hyperparameter and cannot be learned from the standard

deep Q-learning task, instead it has to be prede�ned. Section 3.3.1 states that the step size

de�nes by how much the weights of the network get updated, resulting in the risk that a too

small step size leads to slow learning and a too large step size might lead to overshooting the

minima of the gradient.

In �gure 6.6b the training behavior of an agent with to big step size parameter η = 0.001 is

visible. In order to improve, two agents with smaller step size parameters (ηagent1 = 10−4 and

37

6 Experiments

ηagent2 = 10−5) are trained, potentially resulting in stable training behavior.

Again after a training session the data presented in �gure 6.8 is gained.

(a) agent1 with η = 10−5
(b) agent2 with η = 10−4

Figure 6.8: Training progression of the two agents with di�erent step size parameter η, taking

the mean score in 10 �xed games after each episode and plotting a regression curve

above them.

Looking at �gure 6.8 both regression curves are constantly increasing, which is an improvement

compared to the curve in �gure 6.6b. But looking at the y-axis of �gure 6.8a, the rewards never

leave the negative value range. This supports the assumption that the step size η = 10−5 is

just too small, since the agent is consecutively improving but much too slow.

Analyzing �gure 6.8b gives the wanted results. The agent learns steady, increasing its mean

score to a maximum of 1418. It is observable that up to episode 200 the agents constantly

achieves a mean score about −500 points, afterwards the mean score scatters in a positive

direction, from this constantly getting better observing the regression curve. Following the

Regression curve it shows that a maximum in learning behavior is reached about episode 950,

though it is unclear how much improvement there would be possible with further learning.

Nevertheless a stable learning behavior is achieved, which was the goal of this series of

experiments of section 6.3. But wanting to know if the best agent of η = 10−4 is performing

better as the formerly best performing agent of η = 10−3 with unstable learning behavior,

each of these agents is playing 200 �xed games on the training game-grid, emerging in the

results presented in table 6.2.

38

6 Experiments

Table 6.2: Results of 200 �xed games with the best network of Adam agent with η = 10−3 and

the best network of agent2 with η = 10−4

Network Win ratio Avg. score Avg. food eaten/ game Avg. ghosts eaten/ game
Adam79 81% 1261 93% 1.300

agent2961 89% 1418 95% 1.310

Looking at table 6.2 it is now clear that not just the learning behavior is stabilized but also the

quality of the agent has improved. agent2 with η = 10−4 of episode 961 has a higher win

ratio and higher average score than the former best agent with η = 10−3.

At this point it can be con�rmed that an agent with an Adam trainer with ReLUs in his hidden

layer and a step size η = 10−4 is advisable for such an experiment like this one.

6.4 Knowledge Transition

In chapter 1 the assumption was made, that since features are a high level abstraction of the

state a transition of the learned to other game-grids is possible. Hence, proving this assumption

the best neural agent from the last section 6.3.4 is chosen and playing 200 games on the contest

game-grid (observable in sketch 6.9) given by the framework.

Figure 6.9: Sketch of the contest game-grid

Comparing the contest game-grid to the training grid the training grid has a size of 11∗20 = 220

�elds while the contest grid consists of 9 ∗ 20 = 180 �elds. So the training game-grid is about

22% bigger. The training game-grid contains 97 portions of food, while the contest grid only

has 69. The training game-grid holds 41% more food, intuitively one would think that might

lead to higher scores in the training game-grid, but since there are 3 times more Powerpills

in the contest game-grid and therefore more potential scared ghosts, the agent could score

higher through eating ghosts. But the di�culty of the contest grid is increased, as mentioned

the number of ghosts is upped to 3. Further more it holds potential danger due to the dead end

39

6 Experiments

in the lower left corner if not eating the Powerpill. And though it has more Powerpills than the

training game-grid, looking at the features in chapter 4, the agent can’t measure the distance

to the next Powerpill, thusly not fully bene�ting of more Powerpills. Therefore, estimating the

out-come of the transition to the contest game-grid isn’t obvious, though one might guess due

the increase of di�culty the score might be less than before.

Figure 6.10: Sketch of the 200 �xed games on the contest grid

Looking at �gure 6.10 the agent achieves mixed results, though being mostly positive it doesn’t

score as high as on the training grid. But this is not surprising since it is expected to perform

not as good as on the training grid trained on.

Table 6.3.4 is summarizing the key data gathered. Comparing this data to the results from table

6.3 the win ratio on the training game-grid is 29% higher, the avg. score is also 56% higher on

the training game-grid, the avg. food eaten/ game di�ers by 19%, but the avg. ghosts eaten/

game are about the same.

Table 6.3: Results of 200 �xed games with the best network of section 6.3.4 on the contest

game-grid

Network Win ratio Avg. score Avg. food eaten/ game Avg. ghosts eaten/ game
agent2961 60% 909 76% 1.305

Surprisingly the increase of Powerpills doesn’t lead to more eaten ghosts, there is even a

slight decrease by 0.5%. This might not be much, but since expecting the agent to eat more

40

6 Experiments

ghosts on the contest game-grid due the increase of Powerpills this seems odd at �rst. But

remembering that there is no feature in respect to the Powerpill distance and looking at the

training game-grid’s layout, where Powerpills just lay in the shortest Path between two foods

and comparing it to the contest game-grid with exactly the same amount of Powerpills in a

similar constellation, it seems only these Powerpills get eaten, this would indicate why there is

no increase in eaten ghosts. Number-wise the key di�erence is in the win ratio and avg. food

eaten/ game, roughly wining about 60% the agent is performing decently with 76% avg. food

eaten/ game. The decrease of wins strengthens the assumption that the di�culty in the contest

game-grid is increased for an agent with no ability to detect Powerpills.

In an e�ort to improve the bene�t from the Powerpill hence the agent performance, a new

feature is introduced in the next experiment of section 6.5.

6.5 Powerpill-Distance Feature

Since Pacman isn’t able to evaluate the distance to the next Powerpill, this experiment intro-

duces a feature in respect to the Powerpill-distance, in order to take more bene�t from the

Powerpills on the game-grid.

6.5.1 The Feature Equation

In order to detect the closest Powerpill and evaluate its distance the feature is dependent on:

• a = Maximum path length

• b = Shortest path length to closest Powerpill
6

The feature fPowerpill−distance gets computed as follows:

fPowerpill−distance = (a− b)/a (6.2)

6.5.2 Training The “8 Feature” Agent

After adding the new feature, three di�erent agents are trained with the parameters acquired

in section 6.3 for 5000 episodes as referred in section 6.3.1. The number of training-episodes is

increased by a number seemed �tting, since the regression of
~feature to reward is expected

to be more complex with the added new feature. To estimate the bene�ts of the new feature

the three agents mentioned are:

6

The closest Powerpill is found by a breadth-�rst search.

41

6 Experiments

• agent8feat an 8 feature agent, trained on the standard training game-grid

• agent7feat a 7 feature agent, with the best performing con�guration of section 6.3,

trained on the training game-grid

• agent8alt an 8 feature agent, trained on the contest game-grid

agent8feat and agent7feat are trained for a direct comparison of performance between the 8

feature and the 7 feature variant of the agent.

agent8alt is added, since the contest game-grid contains more Powerpills, which might lead

to more eaten ghosts therefore directly taking more bene�t of the Powerpill hence the new

feature.

From this the training behaviors visible in �gure 6.11 are observed.

42

6 Experiments

(a) agent8feat (b) agent7feat

(c) agent8alt

Figure 6.11: Training progression of agent8feat, agent7feat & agent8alt, taking the average

score of 10 �xed games after each episode and plotting a regression curve above

them.

43

6 Experiments

Looking at �gure 6.11 the �rst observation is that even with a new feature or a di�erent

game-grid the con�guration acquired in section 6.3 holds up for a stable learning behavior

with all three agents. But by direct comparison the learning curve of the agent8feat is steeper

than its competitors’. All agents learn steady, while the agent8feat seams to plateau after 2600

episodes and the agent7feat seams to plateau after 3100 episodes. It’s only agent8alt that

seems to get worse in performance after episode 3100 for a while, but since it is trained on the

harder contest game-grid it’s a special case. It’s also noticeable that the mean score reached

for agent agent8feat and agent7feat is averagely higher than for agent8alt. This happening

despite the fact that the potential reachable score of both game-grids is similar, due to similar

the amount of food balanced by the amount of Powerpills. Remembering that agent8feat and

agent8alt are learning on the same con�gurations except the game-grid, it indicates that the

contest game-grid has a higher di�culty than the training game-grid. Nonetheless the best

performing agent8feat occurs in episode 4177, the best agent7feat in episode 2390 and the

best performing agent of agent8alt in episode 2549. These are used for further comparison.

6.5.3 Comparing The “8 Feature” Agent

To compare the actual performance of the trained agents and the new feature, the best perform-

ing agents and their corresponding last episode agents of section 6.5.2 are chosen to play 200

�xed games on the standard game-grid and again 200 �xed games on the contest game-grid.

The results of these games are summed up in table 6.4 and table 6.5.

Table 6.4: Results of 200 �xed games with the best agent8feat, agent7feat & agent8alt and the

last episode agents on the training game-grid

Agent Win ratio Avg. score Avg. food eaten/game Avg. ghosts eaten/game
agent8feat4177 93% 1439 96% 1.075

agent8feat5000 90% 1395 95% 1.055

agent7feat2390 81% 1286 93% 1.120

agent7feat5000 81% 1266 92% 1.150

agent8alt2549 41% 739 87% 1.295
agent8alt5000 65% 997 92% 1.070

44

6 Experiments

Table 6.5: Results of 200 �xed games with the best agent8feat, agent7feat & agent8alt and the

last episode agents on the contest game-grid

Agent Win ratio Avg. score Avg. food eaten/game Avg. ghosts eaten/game
agent8feat4177 68% 1036 83% 1.225

agent8feat5000 77% 1173 88% 1.365

agent7feat2390 72% 1138 85% 1.400

agent7feat5000 75% 1152 85% 1.330

agent8alt2549 53% 957 79% 1.590

agent8alt5000 65% 1168 89% 1.855

Starting with table 6.4, all best agents trained on the training game-grid are roughly scoring

the same or slightly better as the corresponding agent of the last episode. The exception being

agent8alt, the last episode agent agent8alt5000 wins 24% more games than the deemed best

agent agent8alt2549 on the training game-grid. Furthermore the agents with the additional

new feature trained on the training game-grid score higher than their 7 feature competitors,

even higher than agent2961 of section 6.3.4, which scores higher than the 7 feature agents

of this section despite using the same training con�guration. But in exchange the 7 feature

con�gurations eat more ghosts per game than the 8 feature agents, still keeping in mind that

the standard training game-grid contains only 2 Powerpills, therefore the new feature might be

less bene�cial than it could be. Hence the agent8alt is trained, the agent8alt2549 is averagely

eating the highest amount of ghosts of all agents but also scoring the worst and agent8alt5000
is roughly eating as much ghosts as the other better performing 8 feature variants.

So it is kept unclear in which way the new feature is bringing extra bene�ciality to the agents

performance on the training game-grid.

Continuing with table 6.5, all last training episode agents are outperforming their formally

deemed best corresponding agent. This means that though performing slightly worse on

the training game-grid they better translate to other game-grids. Again the best agent is

a variant with the new feature, namely agent agent8feat5000 , and again the best 8 feature

agent trained on the training game-grid isn’t signi�cantly eating a higher amount of ghosts

than its 7 feature competitors. But looking at the 8 feature variants trained on the contest

gaming-grid, the agent8alt5000 is eating 36% more ghosts per game than the best performing

agent agent8feat5000 . This indicates that the newly added feature leads to more ghosts eaten

per game on a game-grid with more Powerpills. Comparing agent8alt2549 with agent8alt5000
another problem arises as agent8alt2549 is believed to perform best on the contest gaming-

grid in the agent8alt training session, but looking at table 6.4 agent8alt5000 wins 12% more

games than agent8alt2549 . This comes from an uncertainty in the metric of section 6.1 used

45

6 Experiments

for all experiments, since the 10 �xed games are chosen arbitrarily, working well for agents

training on the training game-grid, but not for those training on the contest game-grid. For

example taking just 10 �xed games with agent8alt2549 results in an avg. score of 1890.8, but

for agent8alt5000 the avg. score for the same games is 850.6.

Hence, a higher number in evaluation games should be chosen for future experiments. But not

too high, since with the increase of evaluation games the amount of training time increases

proportionally.

6.5.4 Retraining The “8 Feature” Agent On The Contest Game-Grid With
More Evaluation Games

Though it seems that the new feature improves the overall performance of the agent, the fact

that the expected best agent8alt underperforms the last episode’s agent is unsatisfactory. So,

in an attempt to adjust this irregularity, the number of evaluation games at the end of each

training episode is increased up to 30 games. After this the following training behavior is

gained as shown in table 6.12.

Figure 6.12: Training progression of agent8alt taking the average score of 30 �xed games after

each episode and plotting a regression curve above them.

Comparing �gure 6.12 with �gure 6.11c the agent with increased evaluation games shows

similar learning behavior as the agent8alt, yet the adjusted agent8alt scores higher overall.

46

6 Experiments

Again the best agent and the last episode agent of the adjusted agent8alt are playing 200 �xed

games on both game-grids. The results get summarized in the tables 6.6 and 6.6.

Table 6.6: Results of 200 �xed games with the best agent8alt and the last episode agent on the

training game-grid

Agent Win ratio Avg. score Avg. food eaten/game Avg. ghosts eaten/game
agent8alt3226 71% 1131 93% 1.280

agent8alt5000 80% 1226 94% 1.170

Table 6.7: Results of 200 �xed games with the best agent8alt and the last episode agent on the

contest game-grid

Agent Win ratio Avg. score Avg. food eaten/game Avg. ghosts eaten/game
agent8alt3226 76% 1195 86% 1.500

agent8alt5000 71% 1068 80% 1.285

Observing tables 6.6 and 6.6 the agents now show similar behavior as the agents agent8feat

and agent7feat. This means that the deemed best performing agent is actually performing

better on the trained upon game-grid than the agent of the last episode, since agent8alt3226
wins 5% more games and scores about 12% more points than agent8alt5000 on the contest

game-grid. Also the agent of the last episode translates better to a di�erent game-grid, as

agent8alt5000 wins 9% more games and scores about 12% more points than agent8alt3226 on the

contest game-grid. In addition, the current agent8alt scores lower on the contest game-grid it

is trained on, than on the training game-grid it is transferred to. Yet agent8feat and agent7feat

which are trained on the training game-grid are scoring expectedly higher on the training

game-grid than on the contest game-grid. This is a strong indicator for the increased di�culty

of the contest game-grid.

An unexpected result is that by comparing the agent8alts in table 6.7 and table 6.5 the amount

of ghosts eaten decreases with the further training in the adjusted agent8alt unlike the former

agent8alt of section 6.5.3. Still, overall the performance is increased with the raise of evaluation

games. Comparing agent8feat5000 with the current agent8alt3226 the agent8feat5000 wins 1%

more games than its competitor, but the agents are setup to improve the reward hence the

game-score and agent8alt3226 scores about 2,3% more points per game than agent8feat5000 .

Nonetheless, the di�erences are minor and considering that training the current agent8alt

takes signi�cantly more time and performs worse on the training game-grid, the e�ort isn’t

really worthwhile.

Therefore, one could make the assumption that an agent that is trained on a more general

47

6 Experiments

game-grid holds more overall bene�ts than an agent trained on a more di�cult game-grid. But

this again raises the question how to judge the di�culty of a game-grid, which is something

that needs itself some kind of expert knowledge. Since previously in this series of experiments

indeed the assumption is made that the contest game-grid is more di�cult than the training

game-grid, indicators for the correctness of this assumption are gained after the experiments.

48

7 Conclusion

For this thesis I studied the needed knowledge in reinforcement learning and deep learning, in

order to approach arti�cial neural networks as an alternative for classic regression algorithms

while handling features. I did implement the features of paper Luuk Bom und Wiering (2013) in

the architecture presented. By doing this modular, single components were interchangeable for

di�erent experiments. In this instance these components were linear function approximation

and deep learning modules. Though the second approach was pursued mostly, since the focus

laid on deep learning as an alternative for classic regression algorithms.

First linear function approximation agents stagnated pretty fast in learning and performed

poorly, therefore got dismissed in the early stages. This indicates that linear function approxi-

mation wasn’t re�ned enough for this particular task. I used a simple feed forward network,

mostly utilized for regression and classi�cation tasks, to estimate the bene�ciality of possible

feature combinations for estimating which action given the current state might be the best. The

�rst attempted arti�cial network agent, trained on data sets of feature combinations mapped

to received rewards, averagely outscored the best linear function approximation agent’s score

by triple the points.

Sure there were more re�ned regression methods than linear function approximation, but these

would have also needed more expert knowledge to implement. Arti�cial neural networks or

better their libraries were like a toolbox, one could have potentially built a network without the

premiss of knowing every detail. This was giving more options for adjustments in the current

network design, without the need to interchange or learn a complete new method as with the

regression approach. The challenge in using such networks laid with understanding enough

or having enough experience to determine the network-size, choosing the right components

and �nding stable hyper parameters (like the step-size), etc. In this instance at the beginning

of the experiments no experience was preexisting, so the understanding gained from di�erent

papers had to be tested and veri�ed with the di�erent agents built and trained.

Looking back at the experiments, it becomes clear that arti�cial neural networks o�er a good

alternative performance-wise. Since the best agent was able to reach an 89% win-ratio on the

given training game-grid. After establishing arti�cial neural networks as a good alternative

49

7 Conclusion

to classic regression, the assumption that training on features makes the learned translatable

to di�erent game-grids is proven. The best agent trained on the training game-grid still won

around 60% of the games on the more di�cult contest game-grid. But while doing so I noticed

that the features presented in Luuk Bom und Wiering (2013) were missing a feature in respect

to the Powerpill distance as the contest game-grid held three times the Powerpills than the

training game-grid. Pacman was already able to evaluate the elapsed time of the scared ghost

duration after eating a Powerpill and the distance to a scared ghost, but not its distance to the

next Powerpill. After implementing this new feature a new best agent improved its win-ratio

to 93% on the training game-grid and 68% on the contest game-grid. This shows that �nding

an appropriate abstraction of the state space isn’t easy and that there might also be more room

for improvement. Another observation was that by taking a later iteration of the best agent

with more training on the training game-grid (but with slightly worse performance on the

same game-grid) and letting it play on the contest-game grid, led to out-scoring the deemed

best agent signi�cantly. This was interesting, since the agents seemed to stagnate in learning

as the score didn’t improve in later training episodes with further training, but indicated that

some kind of learning seemed to be going on as agents with more training translated better to

other game-grids. This happening, despite the fact that the only learning goal of the agents

was to improve the gained rewards, was unexpected. Thusly again hinting at the complexity

of Pacman and that understanding the math or principles behind the back-prop. algorithms

wasn’t enough to comprehend the actual learning of the agent.

Although positive results with arti�cial neural networks were obtained, there was a practical

downside to them as they di�ered in sizes and components. Their sheer amount of di�erent

components and size made them almost impossible to debug. If the network behaved oddly or

wouldn’t learn properly, all one can do was observe the behavior and make assumptions to

�gure out what was wrong. This trial and error approach depending on the complexity of the

task learned took a lot of time. For this series of experiments the time needed for one training

session di�ered from one day to almost a week depending on the amount of episodes.

Still, with the knowledge gained it will be possible to build an even more complex network

architecture, which can potentially craft its own features. This will make it possible to train an

agent from raw byte or image input data, while feeding these newly gained features into a

network structure acquired in this thesis. Therefore, having an architecture that could learn

all kind of Pacman-esque games, just by exchanging the environment.

For this reason I would promote this approach under the idea of pursuing a more advanced

network architecture in the future, using the knowledge gained in this thesis.

50

7 Conclusion

51

Bibliography

[Abadi u. a. 2015] Abadi, Martín ; Agarwal, Ashish ; Barham, Paul ; Brevdo, Eugene ;

Chen, Zhifeng ; Citro, Craig ; Corrado, Greg S. ; Davis, Andy ; Dean, Je�rey ; Devin,

Matthieu ; Ghemawat, Sanjay ; Goodfellow, Ian ; Harp, Andrew ; Irving, Geo�rey ;

Isard, Michael ; Jia, Yangqing ; Jozefowicz, Rafal ; Kaiser, Lukasz ; Kudlur, Manjunath ;

Levenberg, Josh ; Mané, Dan ; Monga, Rajat ; Moore, Sherry ; Murray, Derek ; Olah,

Chris ; Schuster, Mike ; Shlens, Jonathon ; Steiner, Benoit ; Sutskever, Ilya ; Talwar,

Kunal ; Tucker, Paul ; Vanhoucke, Vincent ; Vasudevan, Vijay ; Viégas, Fernanda ;

Vinyals, Oriol ; Warden, Pete ; Wattenberg, Martin ; Wicke, Martin ; Yu, Yuan ; Zheng,

Xiaoqiang: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. –

URL http://tensorflow.org/. – Software available from tensor�ow.org

[Chollet 2015] Chollet, François: keras. https://github.com/fchollet/
keras. 2015

[Francisco S. Melo 2007] Francisco S. Melo, M. Isabel R.: Q-learning with linear function

approximation. 2007

[Geramifard u. a. 2013] Geramifard, Alborz ; Walsh, Thomas J. ; Tellex, Stefanie: ATutorial

on Linear Function Approximators for Dynamic Programming and Reinforcement Learning.

Hanover, MA, USA : Now Publishers Inc., 2013. – ISBN 1601987609, 9781601987600

[Glorot u. a. 2011] Glorot, Xavier ; Bordes, Antoine ; Bengio, Yoshua: Deep Sparse

Recti�er Neural Networks. In: Gordon, Geo�rey J. (Hrsg.) ; Dunson, David B. (Hrsg.):

Proceedings of the Fourteenth International Conference on Arti�cial Intelligence and Statistics

(AISTATS-11) Bd. 15, Journal of Machine Learning Research - Workshop and Conference

Proceedings, 2011, S. 315–323. – URL http://www.jmlr.org/proceedings/
papers/v15/glorot11a/glorot11a.pdf

[Goodfellow u. a. 2016] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep

Learning. MIT Press, 2016. – http://www.deeplearningbook.org

52

http://tensorflow.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
http://www.deeplearningbook.org

Bibliography

[Kingma und Ba 2014] Kingma, Diederik P. ; Ba, Jimmy: Adam: A Method for Stochastic

Optimization. In: CoRR abs/1412.6980 (2014). – URL http://arxiv.org/abs/
1412.6980

[Lample und Chaplot 2016] Lample, Guillaume ; Chaplot, Devendra S.: Playing FPS Games

with Deep Reinforcement Learning. (2016). – URL http://arxiv.org/abs/1609.
05521

[Luuk Bom und Wiering 2013] Luuk Bom, Ruud H. ; Wiering, Marco: Reinforcement

Learning to Train Ms. Pac-Man Using Higher-order Action-relative Inputs. 2013

[Mnih u. a. 2013] Mnih, Volodymyr ; Kavukcuoglu, Koray ; Silver, David ; Graves, Alex ;

Antonoglou, Ioannis ; Wierstra, Daan ; Riedmiller, Martin A.: Playing Atari with Deep

Reinforcement Learning. In: CoRR abs/1312.5602 (2013). – URL http://arxiv.org/
abs/1312.5602

[Nielsen 2015] Nielsen, Michael A.: Neural Networks and Deep Learning. Determination

Press, 2015

[Sutton und Barto 1998] Sutton, Richard S. ; Barto, Andrew G.: Introduction to Reinforce-

ment Learning. 1st. Cambridge, MA, USA : MIT Press, 1998. – ISBN 0262193981

[Theano Development Team 2016] Theano Development Team: Theano: A Python frame-

work for fast computation of mathematical expressions. In: arXiv e-prints abs/1605.02688

(2016), Mai. – URL http://arxiv.org/abs/1605.02688

53

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.05521
http://arxiv.org/abs/1609.05521
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1605.02688

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, Roland Meo

	1 Introduction
	2 Reinforcement Learning
	2.1 The Markov Property And Markov Decision Processes
	2.1.1 The Markov Property
	2.1.2 Markov Decision Processes

	2.2 The Agent-Environment
	2.3 The A, And S Spaces In Pacman
	2.3.1 Pacman Action Space A
	2.3.2 Pacman Reward Space And The Return
	2.3.3 Pacman State Space S

	2.4 Q-Learning
	2.4.1 Value Functions
	2.4.2 The Q-Learning Algorithm
	2.4.3 Q-Learning With Features (Linear Function Approximation)

	3 Deep Learning
	3.1 Neurons
	3.2 Deep Feedforward Networks
	3.3 Gradient Descent With Backpropagation
	3.3.1 Gradient Descent
	3.3.2 Backpropagation

	4 The State Representation (Features)
	4.1 Level Progress
	4.2 Powerpill
	4.3 Pills (Food)
	4.4 Ghosts
	4.5 Scared Ghosts
	4.6 Entrapment
	4.7 Action

	5 Architecture
	5.1 Third Party Software
	5.1.1 Pacman Framework Of CS 188
	5.1.2 Keras - Deep Learning Library For Theano And TensorFlow

	5.2 Main Classes
	5.2.1 RewardHandler
	5.2.2 StateRepresenter
	5.2.3 NeuralControllerKeras
	5.2.4 NeuroKAgent

	5.3 Class Interaction

	6 Experiments
	6.1 Metrics
	6.2 Lineaer Approximation
	6.3 Different Networks
	6.3.1 Training Setup
	6.3.2 Sigmoid Vs Rectifier
	6.3.3 The Right Network Trainer
	6.3.4 Step size

	6.4 Knowledge Transition
	6.5 Powerpill-Distance Feature
	6.5.1 The Feature Equation
	6.5.2 Training The ``8 Feature'' Agent
	6.5.3 Comparing The ``8 Feature'' Agent
	6.5.4 Retraining The ``8 Feature'' Agent On The Contest Game-Grid With More Evaluation Games

	7 Conclusion

