

Bachelorthesis
Benjamin Sellak

Development and Implementation of a
TMS320C6713-based digital audio mixing

including effects application with Matlab live
remote control

Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Faculty of Engineering and Computer Science
Department of Information and
Electrical Engineering

Benjamin Sellak

Development and Implementation of a
TMS320C6713-based digital audio mixing including
effects application with Matlab live remote control

Bachelorthesis eingereicht im Rahmen der Bachelorprüfung
im Studiengang Informations- und Elektrotechnik
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr.-Ing. Jürgen Vollmer
Zweitgutachter : Prof. Dr.-Ing. Ulrich Sauvagerd

Abgegeben am 29. August 2017

Benjamin Sellak

Title of the paper
Development and Implementation of a TMS320C6713-based digital audio mixing in-
cluding effects application with Matlab live remote control

Keywords
DSP, Matlab, TMS320C6713, App Designer, Digital Biquad Filters, Nonlinear Sys-
tems, Dynamic Range Control, Multirate Signal Processing

Abstract
Subject of this thesis is the implementation of the signal chain of a generic digital
mixing desk’s channel. The focus hereby lies on the simulation of the most common
signal processing units of such a device with Matlab, with subsequent implementation
on a TMS320C6713 DSP development kit. Control over various processing param-
eters in real-time via serial interface is provided by a Windows software created with
the Matlab App Designer

Benjamin Sellak

Thema der Bachelorthesis
Entwicklung und Implementierung einer TMS320C6713-basierten digitalen
Audiomisch- und Effektanwendung mit Matlab-basierter Live-Steuerung

Stichworte
DSP, Matlab, TMS320C6713, App Designer, Digitale Biquadfilter, Nichtlineare Syste-
me, Dynamikumfang, Multiratensignalverarbeitung

Kurzzusammenfassung
Thema dieser Arbeit ist die Implementierung der Signalverarbeitungskette eines Di-
gitalmischpultkanals. Hierbei liegt der Fokus auf der Simulation der gängigen Signal-
verarbeitungsblöcke solcher Geräte mit Matlab, sowie der anschließenden Implemen-
tierung auf einem TMS320C6713 Entwicklungskit. Verschiedene Parameter können
dabei in Echtzeit über serielle Schnittstelle mittels in Matlab App Designer erstellter
Windows-Software gesteuert werden.

Acknowledgement

Thanks to my family Dana, Atreyu and Peppa for showing patience and understanding for
many nights spent in front of the computer and for all the support - I love you!

Thanks to my advisors Prof. Dr. Vollmer and Prof. Dr. Sauvagerd for providing exten-
sive insight and frequent feedback during the course of this project.

Thanks to Friedemann Kootz and Andreas Schwarz for allowing me to use their pho-
tographies of beautiful audio gear and beautiful people.

Thanks to Jünger Audio GmbH for allowing me to use their facilities for measurements.

Thanks to Matthias Koelle, Maxim Zyrianov and David Ditter of Jünger Audio for explaining
how things work in ’the real world’.

Thanks to Simon Nibbrig and Roman Quiring for providing two more pairs of eyes to
spot errors and inaccuracies.

Thanks to Midas Consoles for looking out old XL4 press kits for me and letting me use
them.

Contents

List of Tables 6

List of Figures 7

List of Acronyms 10

1. Introduction 12
1.1. Scope of this thesis . 12

1.1.1. Functional specification . 12
1.1.2. Technology . 17

1.2. Mixing desks: an overview . 20
1.2.1. Structure of analog mixing desks 22
1.2.2. Outboard Gear . 29
1.2.3. Structure of digital mixing desks 35

2. Signal processing fundamentals 38
2.1. Linear processing . 38

2.1.1. Parametric biquadratic filters . 38
2.1.2. Panorama . 43
2.1.3. Multirate signal processing . 45

2.2. Nonlinear processing . 52
2.2.1. Dynamics processing . 52
2.2.2. Harmonic distortion and overdrive 57

3. Simulation 59
3.1. Concept and goal of the simulation . 59
3.2. Results . 61

3.2.1. Parametric biquad filter simulation 61
3.2.2. Panorama simulation . 62
3.2.3. Dynamic range control simulation 64
3.2.4. Distortion . 69
3.2.5. Multirate signal processing simulation 70

Contents 6

4. Implementation 76
4.1. MixMaster - D.Module.C6713 Implementation 76

4.1.1. Overview of the program structure 76
4.1.2. Subsystem initialization . 77
4.1.3. EDMA . 79
4.1.4. Signal processing . 79

4.2. Matlab App Designer GUI for DSP remote control 83
4.2.1. Purpose of the control software . 83
4.2.2. Software architecture overview . 84
4.2.3. Object-oriented design paradigm and software patterns in Matlab . . 84

4.3. RS232 . 92
4.3.1. Serial communication from Matlab to DSP 92
4.3.2. Serial communication from DSP to Matlab 94

4.4. Performance analysis and measurements 96
4.4.1. Performance considerations . 96
4.4.2. Final measurements . 100

5. Conclusion 106

6. Outlook 107

Bibliography 108

Glossary 111

A. Instructions for setup and operation of the MixMaster application 115

B. Pictures of measurement setups 119

C. Measurements 121

List of Tables

1.1. Parametric equalizer - range of parameters 14
1.2. Compressor, expander and limiter - range of parameters 15
1.3. UART datagram . 20

2.1. Computation formulas for biquad coefficients 42
2.2. Ratio and slope of dynamics processors . 52

3.1. Parametric equalizer coefficients for filtering a bass drum signal 62
3.2. Measurement rise and decay times . 64
3.3. Limiter overshoot over allowed threshold . 67
3.4. Parameters for compander simulation . 69
3.5. Halfband FIR filter parameters . 72
3.6. Effect of interpolation on nonlinear distortion 75

4.1. Transmission codes and trailing values . 95
4.2. Amplitude of the k-th harmonics relative to the first harmonic of a distorted

sine with −3 dBU . Distortion: symmetric overdrive effect, drive factor dr = 2. 103
4.3. Effect of interpolation on nonlinear distortion 103

List of Figures

1.1. The digital mixing and effects application - system overview 13
1.2. Comprehensive block diagram of the mixing and effects signal processing . . 16
1.3. D.Module.C6713 wit D.Module.PCM3003 17
1.4. Matlab App Designer . 18
1.5. The Midas XL4 analog mixing console . 21
1.6. Console in operation . 22
1.7. XL4 head amplifier . 23
1.8. XL4 parametric equalizer . 24
1.9. XL4 panorama . 25
1.10.XL4 bus routing . 26
1.11.Peak Programme Meter and VU Meter . 28
1.12.Rack with dynamic range control processors 30
1.13.Static characteristic of dynamic range processor 31
1.14.TC Fireworx Multi-Effect Processor . 34
1.15.The Midas M32 digital mixing console . 35

2.1. Parametric shelving equalizer . 40
2.2. Parametric peak equalizer . 41
2.3. Azimuth of left and right loudspeaker and of virtual sound source 43
2.4. Channel attenuation gL and gR over virtual sound source azimuth 44
2.5. Up- and downsampling . 45
2.6. Compression of signal spectrum after upsampling 47
2.7. A half band low pass filter with N = 15 taps 48
2.8. Interpolation and decimation utilizing polyphase filters 50
2.9. Multirate signal processing . 51
2.10.Level measurement . 53
2.11.Smoothing filter block diagram . 54
2.12.Limiter block diagram . 55
2.13.Compressor/Expander block diagram . 56
2.14.Static characteristic of distortion/overdrive effects 57

3.1. Test signals used for simulation . 60
3.2. Simulation of the biquad filter cascade . 63

List of Figures 9

3.3. Panorama simulated . 64
3.4. Peak and RMS measurement timing . 65
3.5. Peak and RMS measurement of a sinusoid signal 66
3.6. Limiter simulated operating at th = −6.02dB 66
3.7. Compander simulated . 67
3.8. Overdrive simulated . 69
3.9. FIR Cascade overlab . 71
3.10.Half band filter amplitude response of a dyadic cascade 73
3.11.Half band Filters H1(z2) and H2(z4) . 73
3.12.Dyadic cascade interpolation filter H12(z4) = (H1(z2) ↑ 2) ·H2(z4) 74

4.1. Overall program flow . 78
4.2. Program flow of signal processing loop . 80
4.3. The GUI of the Matlab control software . 83
4.4. Simplified class diagram of the Mix Master Control Utility 85
4.5. The MVC software pattern . 88
4.6. Gold & Rader filter structure of recursive IIR part 97
4.7. Profiling of functions of a CCS project . 98
4.8. Spectrum of distorted sinusoid f = 10 kHz, −3 dBU with and without interpo-

lation. Distortion: symmetric overdrive effect, drive factor dr = 2. 104

A.1. Overview of the MixMasterControlUtility user interface 116

B.1. Setup for development, debugging and time-domain measurements 119
B.2. Setup for frequency-domain measurements 120

C.1. Magnitude response of the DSP with all signal processing blocks disabled . . 121
C.2. Noise floor of DSP . 122
C.3. THD+n measurement of DSP with all signal processing blocks disabled . . . 122
C.4. High pass filter with cutoff frequency f0 = 20Hz 123
C.5. Filter cascade with specification as in table 3.1 123
C.6. Spectrum of symmetric overdrive f1 = 250Hz, no interpolation 124
C.7. Spectrum of symmetric overdrive f1 = 250Hz, interpolation 124
C.8. Spectrum of symmetric overdrive f1 = 10kHz, no interpolation 125
C.9. Spectrum of symmetric overdrive f1 = 10kHz, interpolation 125
C.10.Spectrum of symmetric overdrive f1 = 14kHz, no interpolation 126
C.11.Spectrum of symmetric overdrive f1 = 14kHz, interpolation 126
C.12.Spectrum of tube overdrive f1 = 500Hz, no interpolation 127
C.13.Spectrum of tube overdrive f1 = 500Hz, interpolation 127
C.14.Spectrum of tube overdrive f1 = 10kHz, no interpolation 128
C.15.Spectrum of tube overdrive f1 = 10kHz, interpolation 128

List of Figures 10

C.16.Spectrum of tube overdrive f1 = 14kHz, no interpolation 129
C.17.Spectrum of tube overdrive f1 = 14kHz, interpolation 129
C.18.Limiter measurement . 130
C.19.Compander measurement . 131

List of Acronyms

ADC Analog-Digital Converter

ASCII American Standard Code for Information Interchange

BNC Bayonet Neill Concelman

CCS Code Composer Studio

CD-ROM Compact Disc-Read Only Memory

CPU Central Processing Unit

DAW Digital Audio Workstation

dB Decibel

DAC Digital-Analog Converter

DJ Disk Jockey

DMA Direct Memory Access

DSP Digital Signal Processor

EMIF External Memory Interface

EDMA Enhanced Direct Memory Access

EQ Equalizer

FFT Fast Fourier Transformation

FIFO First In, First Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FS Full Scale

GUI Graphical User Interface

I2C Inter-Integrated Circuit

List of Acronyms 12

IEEE Institute of Electrical and Electronics Engineers

IDE Integrated Development Environment

IID Inter-aural Intensity Difference

IIR Infinite Impulse Response

ITD Inter-aural Time Difference

I/O Input/Output

LED Light Emitting Diode

LTI Linear Time-Invariant

McBSP Multichannel Buffered Serial Port

MVC Model-View-Controller

PA Public Address

PFL Pre-Fader Listening

PLL Phase-Locked Loop

PPM Peak Programme Meter

RMS Root Mean Square

SDRAM Synchronous Dynamic Random-Access Memory

SPI Serial Peripheral Interface

SNR Signal-to-Noise Ratio

SRAM Static Random Access Memory

TDF2 Transposed Direct Form 2

THD Total Harmonic Distortion

TRS Tip-Ring-Sleeve

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VLIW Very Long Instruction Word

VU Volume Unit

1. Introduction

Common working environments of audio professionals, like live concerts, recording studios,
theaters and broadcasting stations have been subject to an ongoing revolution that came
with the advent of digital mixing consoles in the 1990’s. Were analogue consoles mainly
designed for signal mixing and routing purposes while relying on a large amount of dedicated
peripheral analog and digital signal processing units (the so-called outboard gear), digital
desks potentially unite all these processing features in a single device, rendering most of
additional outboard equipment obsolete.

1.1. Scope of this thesis

This thesis tackles the design and the implementation of a digital mixing and effects appli-
cation prototype in the vein of the consoles thoroughly described in chapter 1.2.3. Focus
hereby lies less on powerful routing capability and more on the various signal processing
blocks found within such systems. The prototype itself will run on a Texas Instruments-
powered DSP development kit with on-board audio codec and converters. There will be no
hardware control surface to influence the signal processing. Instead, a remote control PC
software will interface the DSP via RS 232 and offers full control over a wide array of signal
processing parameters. Figure 1.1 shows an overview of the system.

1.1.1. Functional specification

1.1.1.1. Signal processing functionality

Figure 1.2 displays the block diagram of the mixing and effects application. The signal pro-
cessing features are as following:

1. Introduction 14

Figure 1.1.: The digital mixing and effects application - system overview

I/O

• Two mono inputs, one stereo output

• Sampling rate 48 kHz, 16 bit resolution

Input section

• Input gain from -36 dB to +18 dB

• Polarity switch

• High pass filter trimmable from 20 Hz to 400 Hz with bypass switch

• Parametric equalizer with bypass switch, four bands with variable gain g, corner/center
frequency f0 and quality factor Q and slope S respectively. Parameter ranges as in
table 1.1

• Limiter with bypass switch and variable threshold

• Dynamic range control section with expander threshold, expander ratio, compressor
threshold, compressor ratio, attack time, release time and makeup gain. Bypass

1. Introduction 15

switches for compressor and expander. Range of dynamics parameters are shown
in table 1.2

• Aux bus routing section with routing to the overdrive effect bus from −∞ to 0 dB

• Master bus routing section with panorama knob and level slider

Effect section

• Overdrive effect with two different parametrized distortion characteristics. Mono input,
stereo output to master bus

Master bus section

• Attenuation sliders from −∞ to 0 dBFS for left and right outputs.

1.1.1.2. PC remote control software functionality

The PC software features are:

• precise real-time control of all aforementioned parameters via clear and appealing GUI

• Visual feedback of the current amplitude response of high pass filter and equalizer in
effect per channel

• Visual feedback of the static characteristic in effect of each channel’s dynamic range
control section

• Visual feedback of the static characteristic of the overdrive.

Filter type g dB range f0 min f0 max Q / S min Q / S max
low shelf ±18 dB 20 Hz 800 Hz 0.1 1.0

low-mid peak ±18 dB 100 Hz 2 kHz 0.7 3.0
mid-high peak ±18 dB 400 Hz 8 kHz 0.7 3.0

high shelf ±18 dB 1 kHz 20 kHz 0.1 1.0

Table 1.1.: Parametric equalizer - range of parameters

1. Introduction 16

Parameter Compressor Expander Limiter
threshold min −∞ −45 dBFS −18 dBFS
threshold max −45 dBFS 0 dBFS 0 dBFS

ratio min 0.01 1 fixed∞
ratio max 1 5 fixed∞
attack min 1 ms fixed 500 µs
attack max 100 ms fixed 500 µs
release min 1 ms fixed 200 ms
release max 1 s fixed 200 ms

makeup gain min 0 dB
makeup gain max +36 dB

Table 1.2.: Compressor, expander and limiter - range of parameters

1. Introduction 17

Gain

Hipass

4 Band pEQ

Limiter

Comp/Exp

Gain

Overdrive

Gain

Gain

Panorama

+ +

Gain Gain

Input

Output L Output R

Figure 1.2.: Comprehensive block diagram of the mixing and effects signal processing

1. Introduction 18

Figure 1.3.:
D.Module.C6713 wit D.Module.PCM3003, Spectrum Digital XDS510 USB JTAG emulator

and generic USB-to-Serial Converter

1.1.2. Technology

1.1.2.1. D.Module.C6713 and D.Module.PCM3003

The D.Module.C6713 from D.Sign.T is a standalone DSP development board based on the
Texas Instruments TMS320C6713 digital signal processor. This processor is clocked with
225 MHz, its VLIW architecture enables multiple parallel execution of fixed point operations
and floating point operations with single (16 bit) or double (32 bit) precision. It offers 4 kByte
of level 1 program cache and data CPU cache each with an additional 256 kByte level 2
cache.
Besides other interfaces like SPI and I2C, the processor is equipped with two McBSPs
(Multichannel Buffered Serial Port) that enable native handling of various audio stream
formats like I2S and an enhanced direct memory access (EDMA) to enable fast interfacing
of peripherals while maintaining minimal CPU load.
These features render the TMS320C6713 an appropriate chip for real time audio signal
processing.
The D.Module.C6713 extends the DSP by 16 MByte SDRAM and 512 kByte burst SRAM as
well as a UART interface. The D.Module.C6713 is programmed and debugged via Spectrum
Digital XDS510 USB JTAG emulator and the Texas Instruments IDE CCS (Code Composer

1. Introduction 19

Studio) v.5.5. Programs for the DSP can be written in C and in Assembler. D.Sign.T ships
a C library with the module, the D.Module.BIOS, which offers a set of functions to handle
low-level programming tasks that involve on-board peripherals.
The D.Module.C6713 board gives another D.Sign.T module a piggyback, the
D.Module.PCM3003. It features four name giving TI PCM3003 audio codecs that are
connected to the DSP via the McBSP. The codecs itself offer 64x oversampling delta-sigma
converters and do not require anti-aliasing filters: Passive first order RC networks designed
for 48 kHz sampling rate/16 bit resolution can be found at the input and output stages. The
input/output signals are accessible through DIN 41651 connectors and passed to the exterior
of the casing to be laid out as female BNC connectors.
The configuration and setting of CCS comply with the guidelines of the digital signal
processing laboratory of the Hochschule für Angewandte Wissenschaften Hamburg [1].

1.1.2.2. Matlab & App Designer

Matlab by The MathWorks, Inc. is both a high level programming language and an IDE like-
wise that has been constantly developed further since its initial release in 1984. Its origins
lie in numerical computing and matrix manipulation as well as graphical display of data. The

Figure 1.4.: Matlab App Designer

1. Introduction 20

Digital Signal Processing Toolbox offers numerous functions to aid in the design, simula-
tion and verification of digital systems. The Matlab language supports multiple programming
paradigms.
This makes Matlab a suitable choice for simulation of the processing blocks outlined in sec-
tion 1.1. The entire Matlab source code that has been developed during the making of this
thesis was created with and is compatible to Matlab R2016b.
With the introduction of App Designer in Matlab R2016a, a new GUI framework was pre-
sented to supersede the outdated GUIDE environment. The very accessible App Designer
allows the creation of visually pleasant user interfaces via drag-and-drop and offers a variety
of interactive control elements like buttons, drop-down-menus and text fields, but also more
application-specific gauges, rotary knobs and sliders in addition to the capability to embed
the well-known Matlab figures. Software developed this way can be packaged into apps that
are deployable as a single file and can be run directly from the Matlab toolbar.
The support of an object-oriented programming paradigm allows the utilization of modern
software engineering practices and the application of effective design patterns in collabora-
tion with a GUI framework that provides native support for audio mixing related UI elements,
Matlab App Designer has been chosen to be the host application for this project’s remote
control software. This further reduces coding expenditure as Matlab modules can be re-
used that had been developed for simulation purposes.
A drawback of using App Designer is the low refresh rate of displayed elements. An app
designed with this tool can not refresh faster than with approximately one frame per second.
This is the case regardless of the software version or the host computer. An inquiry at Math-
Works support revealed that this is a known issue that might be fixed in a future release of
Matlab, but there is no workaround for any version available at the time this thesis is written.
This renders the integration of any metering unfeasible since a refresh rate of less than 1 Hz
is unacceptable for audio metering.
Nonetheless it is the author’s belief that, given the project’s time constraints, App Designer
is the optimal choice for developing a GUI-driven control software for the DSP.

1.1.2.3. RS-232, Serial Port and UART Interface

The RS-232 is a standard for serial communication that was defined in 1969 by the Elec-
tronic Industries Association [2] and describes the physical layer of this interface such as
voltage levels, signal timing and connector properties.
A serial port characterizes an interface where information is transmitted in series, i.e. one
bit at a time. In a wider sense, ’serial port’ can refer to any hardware that is compliant to the
RS-232 standard. The serial port mostly disappeared from consumer personal computers
and would require an additional device such as a USB-to-Serial converter. It maintains an
important role in the industry due to the relative lack of complexity of the underlying standard,
the low cost of components and its robustness.

1. Introduction 21

The universal asynchronous receiver/transmitter (UART) describes a transmission protocol
as well as a hardware device implementing this protocol. Data can be sent and received in
full duplex. The asynchronous mode of operation makes the use of a dedicated clock line
unnecessary. This requires a receiver to be clocked at multiple times of the data rate. The
transmission rate of symbols per second a serial connection is usually referred to as baud
rate where one baud is the unit equivalent to one symbol transmitted. As the serial connec-
tion’s dictionary consists of two symbols, One and Zero, baud- and bitrate are equivalent in
this case. It is commonly set to 9.600 baud per second, although higher rates can be found
as well as lower ones.
The no data state is high voltage (to enable detection of a faulty line). Each word begins
with the start bit, followed by five to nine data bits, zero to one parity bit for error checking
and one or two stop bits. There is no handshake process for communication participants
to negotiate the data frame and rate - both must be set to identical values beforehand;
otherwise communication will not be possible.
The D.Module.D6713 UART is equipped with a DE-9 connector that can transmit and receive
RS232-compliant data streams and it features 32 byte deep transmit and receive FIFOs. By
default, the UART is configured to 9600 baud, 8N1 (eight data bit, no parity, one stop bit, see
table 1.3). The D.Module.BIOS provides library functions to access the UART.

Nr 0 1 2 3 4 5 6 7 8 9
Bit start bit LSB 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 MSB 7 stop bit

Table 1.3.: Default D.Module.D6713 UART datagram

Windows PCs can access a USB-to-Serial converter (or the serial port directly if applicable)
via the generic COM-Port. Matlab provides an extensive serial port I/O support. Core of
the communication is the serial port object with a wide array of functions and properties to
enable asynchronous reading and writing via UART.

1.2. Mixing desks: an overview

There is a vast number of devices labelled as mixing desks, consoles or simply mixer that
cater to various specific professions and purposes. A DJ who entertains an audience at a
night club and an audio engineer who is recording an orchestra have quite different require-
ments to their mixing consoles regarding the number of in- and outputs, the form factor, the
general robustness, the capabilities of sound processing and many more aspects.
In the context of this thesis, the main focus lies on the kind of consoles that is prevalent

1. Introduction 22

Figure 1.5.: The Midas XL4 analog mixing console

in sound reinforcement, recording and broadcasting environments (they do have significant
differences as well and usually can’t be interchanged easily; however those differences are
outside the scope of this thesis). The main function of these mixing desks can be summed
up as [3, p. 330]:

• Amplification and normalization of signals of various sources, particularly amplification
of microphone signals (Gain)

• Sound design and balancing by means of filters (EQ), level control (Fader) and dy-
namic range control processors (Dynamics)

• Distribution of signals between connected devices and internal mix buses(Routing)

• technical and acoustical monitoring of input and output signals with metering, head-
phones, and loudspeakers (Monitoring)

• Mixing of single- or multichannel input signals with individual levels and/or delays to
target formats like Mono, Stereo, Surround (Mix)

• Communication between control room and stage/recording room (Talkback).

1. Introduction 23

Figure 1.6.:
The author mixing a concert on a Crest X-VCA console. A side rack with an array of
graphical equalizers and various other outboard processors can be seen on the left.

1.2.1. Structure of analog mixing desks

An analog mixing desk can be split up into three general sections: the input section, the
output section and the mix buses. Additionally, there can be an arbitrary amount of outboard
equipment involved in the signal processing for which the console provides several points to
connect with.
In the following, the text is accompanied by detailed views of the Midas XL4 analog console
to illustrate the structure of mixing desks and give a non-exhaustive overview of its various
functions. The XL4 was released in 1993 but is still frequently encountered in large concert
venues and in the stock of rental services. Pictures are taken from the original XL4 Live
brochure [4] with courtesy from MUSIC Group.
The features described in this section as well as the range of their parameters are what the
author deems as common based on his experience gained during his years of work as a
professional live sound engineer.

1. Introduction 24

1.2.1.1. Input section

An average, moderately sized analog mixing desk easily offers over 100 potentiometers
to the user for operation, as well as a plethora of faders and buttons, due to the analog
console’s design principle one knob for each function. This might seem overwhelming to the
layman and a question that console operators frequently get to hear is an incredulous ’Do
you really know what every knob does?’.

Figure 1.7.:
Head amplifier, phantom

power, polarity reverse and
high pass filter of an XL4

input channel

The majority of any board surface’s real estate is occupied
by numerous input modules equal in layout and function, the
channel strips. Each channel strip represents an input sig-
nal and takes care of that signal’s processing. There are two
main kinds of inputs, mono inputs which are usually micro-
phones and stereo inputs, which are generally designed to
handle line-level signals. Although they do have slight differ-
ences (for example the input gain range of stereo channels is
usually lower than that of a mono channel and they can lack
phantom power), operating a stereo channel feels the same
as a monophonic one with a single button/potentiometer af-
fecting both L and R channels. Console vendors often sell the
same product line with numerous different input configurations.
The internal signal flow of a channel strip is consistent with the
layout of the operating elements and goes from the top to bot-
tom.

Connectors The connectors are mostly found on the top or
the rear end of an analog mixer. Mono inputs are fed with sym-
metric XLR connectors, TRS 6.3 mm jack, or XLR/jack hybrid
connectors. Stereo inputs offer unbalanced RCA connectors
and sometimes balanced TRS jack as well.

Head amplifier Depending on the source of the signal, an
input channel must be capable of processing a wide level range. Delicate ribbon microphones
may have an output less than +/-1 mV (-57.8 dBU or -60 dBV)at 1 Pa sound pressure while
line-level instruments like keyboards have an output up to 1 Volt (±0 dBV) when operated
at usual range. A console input channel is expected to handle both kinds of signals equally
without requiring any external signal conditioning beforehand. This is achieved through the
first gain stage, the head amplifier. With a potentiometer the operator can trim the gain,
commonly within a range of +20 to +80 dB. An additional switch, the pad, enables the user

1. Introduction 25

to attenuate the signal by 20 dB. A headamp thus is required to be able to boost the signal
by the factor 10.000 while keeping the added noise floor to a minimum and without adding
distortion. It is easy to understand why the head amplifier is considered a mixing desk’s
most important sign of quality and number one indicator of whether a console sounds ’good’
or not.

Figure 1.8.:
Parametric equalizer of an

XL4 input channel

Phantom power Condenser microphones, ribbon micro-
phones and active D.I. boxes require a supply voltage - the
phantom power - to be able to operate; this source is 48 V DC,
generated by the mixing console and applied to both balanced
wires via switch.

Polarity Switch The polarity reverse button, or phase re-
verse, as it is often called quite inaccurately, flips the polar-
ity of the input signal. This appliance comes into play when
two signals with opposite polarity are to be mixed. A common
example is the snare drum which is often recorded with two
microphones: One directed at the top skin and one to the bot-
tom skin and the snare wires. Since both skins are coupled, a
concave deflection of one skin causes a convex deflection of
the other and vice versa - , both signals are out of phase as
it is called commonly. Mixing both without reversing one’s po-
larity would cause an audible and undesirable cancellation of
frequencies across the whole spectrum.

High-pass filter A high pass filter is usually applied to the
signal in order to reject any undesired low frequency sound in
the signal path, such as microphone handling noise or a micro-
phone stand picking up floor vibrations. Cheaper mixing desks’
high pass filters reject all low frequency rumble below a fixed
cutoff frequency, usually between 50 and 90 Hz, while more
professional consoles offer filters that are trimmable between
0 and 400 Hz or even above.

Insert point The insert point enables the user to break the
signal chain and loop in an external device (see section out-
board gear). For this purpose, each input channel offers either one TRS jack (signal is sent
to the outboard via tip and returned via ring) or two balanced TRS jacks (one dedicated send,

1. Introduction 26

one return). This is the exception to the rule that the internal signal flow and the visual lay-
out of control elements are equivalent as the loop-in happens before or after the equalizer
section but the jack connectors are normally located next to the input XLR socket.

Equalizer While the high pass filter serves the purpose to filter out undesired signal com-
ponents, the equalizer section is mainly used for shaping the signal. It consists of two types
of filters, the shelving filter and the peak filter. The shelving type boosts or attenuates all sig-
nal content below (low shelf) or above (high shelf) a certain frequency by an amount typically
in the +/- 12 dB range. The peak filter boosts or cuts frequencies around a center frequency
with a given bandwidth. The equalizing section of a console is generally made up by a high
and a low shelf as well as one up to four peak filters. Low end consoles’ peak filters come
with fixed center frequencies. If the center frequencies are trimmable by the operator, the
equalizer is called semi-parametric, if the bandwidth of a peak filter is adjustable, too, it is a
(full-)parametric equalizer.

Figure 1.9.:
Panorama knob, mute

button, insert enable and
master bus routing button
of an XL4 input channel

Auxiliary send routing The auxiliary send routing (or aux)
potentiometers allow the operator to split the equalized signal
and route it to an aux bus (see section Buses). These sends
come in the variant pre-fader and post-fader, meaning that ei-
ther the amount of the signal routed to the bus is affected by
the channel fader’s position, or not. The former behavior is
desired, for example, if the signal feed is supplied to artists
performing on stage. If the console operator makes changes
in the mix for the audience, the artist’s monitor mix won’t be
affected this way. Post-fader aux sends on the other hand are
preferred when the input is fed to an external effect proces-
sor like a digital reverberator. This way, if the input signal is
altered in volume by the operator, the ratio input signal:reverb
signal will stay consistent. Small mixing consoles might come
with one or two auxiliary buses, bigger ones can have as much
as 16 separate auxes and the pre/post behavior can be either
fixed, can be switchable for certain or all auxiliary buses or can even be toggleable for each
individual auxiliary send potentiometer.

Panorama The panorama potentiometer or pan pot determines the ratio with which
the input signal will be routed to the left and the right stereo buses. A panorama po-
tentiometer turned all the way to the left will cause the signal to be sent 100% to the
left master bus (respectively group buses with uneven numbers) and 0% to the right

1. Introduction 27

(or even-numbered group buses) and vice versa. The distribution in between is deter-
mined by the pan rule or pan law which defines the level attenuation of left and right
signals at the center point. The predominant law in mixing desks is -3 dB at center;
so the stereo signal will maintain consistent power across the whole panorama range.

Figure 1.10.:
Faders, solo button and

routing selection buttons of
an XL4 input channel

Bus selection An array of buttons allows the operator to
choose the buses the signal will be routed to.

Mute and PFL/Solo Each channel offers two additional but-
tons: the mute button inhibits the input signal to be sent to any
bus. The PFL (Pre Fader Listening) splits the signal right be-
fore the fader and routes it onto a special bus that is fed directly
to the console’s headphone amplifier and enables the operator
to rehearse isolated signals while the overall mixes are unaf-
fected. Both buttons are typically accommodated with LEDs
indicating whether they are pushed or not.

Fader On the bottom end of a mixing desk one can find an
array of faders. The fader is effectively a sliding potentiometer
that enables the operator to control the level the signal is sent
to the mix buses (and post-fader auxiliary buses).

1.2.1.2. Buses

Consoles feature a number of buses that enable the grouping
of various input signals, offer similar, albeit not as extensive
signal processing capabilities as input channels and partly al-
low subsequent routing to other mix buses. Control elements
of the buses traditionally can be found on the right-hand side of
a console or in the center of larger-frame consoles. They are
easily distinguishable from the input channels by a slightly dif-
ferent potentiometer layout, a different color of the fader caps
and other minor differences.

1. Introduction 28

Auxiliary buses As mentioned before, auxiliary buses are a way to provide submixes for
monitoring purposes or to feed external signal processors with input. They often provide little
to no signal processing capabilities and are limited to an insert point and a master volume
control potentiometer. Aux buses are monophonic in the majority of cases, but feature-
rich consoles sometimes provide the ability to stereo-couple certain auxiliaries. A rerouting
of auxiliaries onto other buses is uncommon, they are usually sent directly to the board
outputs.

Group buses Group buses, or groups offer the possibility of submixes. A common use
case would be to logically group instruments/signals to buses, e.g. the drum group, the guitar
group, the vocal group, etc. This offers two advantages: via insert points it is possible to
process several inputs at once with an outboard processor. Also, the operator can adjust the
ratio in level between those groups with one (or two for stereo groups) without having to worry
to inadvertently change the ratios within one group. Groups can subsequently be routed
to the master bus as well as auxiliaries and offer an equalizing section as well, although
compared to the input equalizers they commonly offer a reduced set of functionality. A group
bus is monophonic and offers a panorama potentiometer as well. Like with input channels, a
fader at the bottom of the group section is the final instance to control the level at which the
group signal is routed to the master bus.

Master bus The master bus is made up of the left and the right bus (and sometimes a third
center or mono bus) and its main purpose is to control the overall volume of the mix as well
as providing an insert point for signal processing that is relevant for the whole sum of signals.
That could be a limiting processor that makes sure the volume is compliant with local noise
protection laws or an equalizer that counteracts the acoustical shortcomings of the control
room and/or the p.a. speakers. Other than that, master buses offer limited control elements
besides a fader and the space where one might expect the buses’ equalizer section is usually
occupied by special control elements like the headphone gain potentiometer and the volume
knob for the talkback microphone.

1.2.1.3. Output section

Mixing consoles offer several outputs that are equally found at the rear end. Besides the
obvious outputs of the master and auxiliary buses, all input channels and group buses pro-
vide an additional output, a so-called ’direct out’. This enables multi-track recording of all
channels individually (respectively group-wise).
Another group of outputs are the matrices. They are driven by a matrix of potentiometers
(hence the name) located above the controls for group and master buses. Matrix outputs are

1. Introduction 29

(a) Peak Programme Meter (b) VU Meter

Figure 1.11.: Peak Programme Meter and VU Meter

utilized to provide additional mixes that usually don’t require a lot of attention during the per-
formance/recording, like routing the L/R feed to a stereo recording device or routing the vocal
group towards sound systems located in other rooms of the venue to make sure important
announcements are heard everywhere in case of emergency.

1.2.1.4. Metering

Since it is not feasible for the mixing desk operator to judge every signal solely with his ears,
desks provide visual feedback about the in- and outgoing audio signals.

Peak programme meter (PPM) The PPM is a chain of LEDs indicating the current peak
value of a signal and can be found at the beginning as well as the end of an input channel
(often just a single LED for the former to signal overload of the input amplifier) and at each
bus output.

Volume Unit Meter (VU meter) The electromechanical VU meters display the perceived
loudness of the buses. Due to the needle’s inherent inertia, the information displayed is
indifferent towards short peaks as it integrates the signal over 300 ms [5].

1. Introduction 30

1.2.2. Outboard Gear

There are several other signal processing applications and effects that play essential roles in
most mixing and recording setups. These are not part of an analog mixing desk mainly for
economical reasons: Since they are only applied to a couple of assorted signals, equipping
every input channel or bus with such a unit would be wasteful while driving the selling price
unreasonably high. Thus, the vast majority of these products are packaged as 19" rack-
mount, of which several different devices are assembled into one or more side racks to be
operated in close proximity to the console.
When talking about outboard gear, in general the distinction is made between processors
and effects. The former replaces an incoming signal with the processed one. The processor
is looped into the signal chain by connecting it with the aforementioned insert point. An effect
is not supposed to replace a signal but rather to enrich a signal or multiple individual signals
at once. It is connected in parallel to the signal chain. The most common way is to connect
an auxiliary bus to the effect input while feeding the unit’s output back to a stereo input of the
console.
An outboard device is not inherently a processor or an effect by this definition, this is solely
determined by the way the device is integrated into the signal chain. However, based on
their intended impact on the incoming signal, specific devices are predestined - but not lim-
ited - to be utilized as either an effect or a processor predominantly. Thus, in the following
section no hard distinction between those terms will be made. The following non-exhaustive
list describes the outboard devices that are encountered the most frequently in mixing and
recording setups. Although outboard equipment is not necessarily analog, it is presented in
this section anyways since digital consoles do not rely on it much if at all, as will be explained
in section 1.2.3.

1.2.2.1. Graphical Equalizers

Those processors have a function similar to the parametric channel equalizer in that they
alter the spectral signature of the incoming signal. This device offers a bank of peak filters
with fixed center frequency covering the whole audible spectrum, usually 31 bands with a
spacing of a major third between adjacent bands (’1/3 octave equalizer’). The idea is that
the vertical sliders controlling each bank’s gain are are arranged in a way that their positions
resemble the amplitude response 1, hence the name ’graphical’ equalizer.
While a parametric equalizer is designed to deal with the insufficiencies of the signal source

1this can be misguiding however, since it does not take into account the bandwidth of individual bands. Setting
three adjacent sliders to +6 dB for example could result in the center frequency of the mid slider being
boosted by a value anywhere between +6 and +18 dB, depending on whether the filter is implemented as a
simple RLC/gyrator network or a more sophisticated Constant Q design. For more details refer to [6]

1. Introduction 31

Figure 1.12.:
Dynamic range processors. From top to bottom: UREI 1178 peak limiter, Valley People

Dynamite stereo compressor, Drawmer DL251 stereo compressor/limiter

such correcting a microphone’s frequency response and to (de-)emphasize individual sig-
nals within a mix, the graphical equalizer is supposed to compensate the deficits of the
signal chain’s end: The nonlinear responses of loudspeakers, headphones and finally the
room itself in where the program is rehearsed. For speakers directed at the audience or the
operator, the equalizer is used to achieve a more balanced spectrum. For the performing
artists’ foldback monitors, the equalizer has the additional task to combat audio feedback by
attenuating those frequencies most susceptible to feedback.

1.2.2.2. Dynamics

Dynamic range control processors, or short dynamics, are used to limit or extend the dy-
namic range of signals. They can be distinguished by the range they are active in and the
purpose they are serving and can be split up in three different groups: The limiter, the com-
pressor and the expander/noisegate. They start operating once a signal exceeds (limiter,
compressor) or is below (expander/noisegate) a certain level, the threshold. When talking
about dynamics, one needs to discern the main signal path that gets weighted with the gain
reduction factor from the signal sensing path, the side chain, that determines the amount of
the gain reduction. This path is driven by the input signal as well and can be weighted with
a filter before its peak or averaged value is evaluated. Many dynamic processors enable the
sidechain to be driven by an entirely different signal, too. This advanced technique is not
subject of this thesis.

1. Introduction 32

Figure 1.13.:
Static characteristic of a dynamic range processor. Dotted line: input level, solid line: output

level.)

Limiter As the name suggests, the limiter has its purpose in limiting the output of a signal
to a set threshold. There are two main reasons to limit a signal: First, as a safety measure
to prevent sudden peaks in level to damage loudspeakers and ears. Second, they enable
the possibility to further increase the loudness of a signal without having peaks excess any
maximum level imposed by the underlying analog or digital recording system as well as any
broadcast union standards (also known as the Loudness War2. The gain reduction is deter-
mined by the immediate peak value of the signal. Hard limiting achieves this by clipping any
excess signal without compromises which causes audible distortion. Soft limiting processes
the signal already before exceeding the threshold. This happens either by means of a curved

2A recent and famous example of excessive limiting is the album Death Magnetic from the band Metallica,
which gathered generally unfavorable reviews from fans and critiques for this reason[7]

1. Introduction 33

clipping which distorts the signal but does not clip it or by low pass filtering of the gain reduc-
tion and applying it to the delayed signal. The latter is only possible with a digital limiter due
to the need of a delay. Soft limiting mitigates audible distortion but does not necessarily fully
cancel it.

Compressor Similar to a limiter, a compressor reduces an incoming signal’s level as it ex-
ceeds the threshold based on the ratio. A ratio of 2 means that for each two dB that an input
signal is above the threshold, the output signal will be one dB above. Loud signal parts will
be attenuated while sections lower in volume will be unaffected. After that, the overall level
is brought up again with the makeup gain. The result is a signal whose perceived loudness
is increased while the maximum level stays the same.
A compressor can be used for example to bring softly spoken syllables on par with those ex-
pressed in a firm tone within the same word. It also can be used to alter the envelope curve
of a percussive signal, for example by letting the transients of a drum beat pass through but
compressing the trailing decay portion of the sound. Both applications have very different
requirements to a compressor’s response speed. This introduces two more important pa-
rameters: the attack and the release time. The attack time determines, how quickly the gain
reduction will be in full effect once the incoming signal surpasses the threshold, the release
time states the time constant with which the gain reduction reverts back to zero once the
signal is below the threshold again. Poor setting of attack and/or release time can result in
audible processing artifacts that can be described as unnatural ’pumping’.
Compressors rarely operate based on the peak value but rather on sensing an averaged
signal function, the root mean square (RMS).
Although even with the advent of digitization in professional audio, digital compressors rarely
delay the main signal to catch brief peaks above threshold. There are several reasons for
this:

• Unlike a limiter, a compressor’s task is not to protect equipment or to make sure that
a certain threshold is under no circumstance exceeded, but it is to increase a signal’s
loudness. Since human ears perceive volume by integrating the sound pressure level
over several hundred ms [8], short bursts barely affect this perception and thus are
tolerable.

• Since time constants are much longer than a limiter’s ones, the compensation de-
lay would need to be increased, too. This arises several new problems: Mixing a
compressed and delayed signal with an unprocessed one can cause phase cancella-
tion if both signals carry correlating content (I.e. an uncompressed bass drum and a
compressed snare drum with the former bleeding in the latter’s microphone). To com-
pensate this, every channel would need to be retarded by the same amount of time,
imposing an exorbitant additional demand for fast and expensive RAM. Also such a

1. Introduction 34

delayed signal can not be fed back to a performing artist’s rehearsal monitor since it
would inevitably irritate him.

• After decades of listening to analog recordings, the human ear is quite simply accus-
tomed to listening to the characteristic of non-perfect dynamics processors. As such,
the demand is high for digital compressors that try to emulate the sound of their analog
vintage counterparts.

Expander/Gate An expander is the counterpart to a compressor and further reduces signal
levels that are below the threshold. That way, unwanted signal components can be combat-
ted in the time domain without affecting the desired components itself. It shares the same
parameters as the compressor with the attack time determining how quickly the expander
ceases the gain reduction once the input climbs above threshold level.
A gate is an expander with an infinitive negative slope, i.e. beneath a certain threshold, no
signal passes at all.
Like the compressor, an expander senses a signal by its RMS function and like with the
compressor, sensible setting of attack and release is required. A slow-reacting expander
may miss the transients of an incoming signal while one that operates too fast can cause
’breathing’ artifacts by quickly reducing the level and rising it again in short succession.

1.2.2.3. Reverb

Reverb effects were one of the first category of devices profiting from audio digitization. Up
to this point, reverberation units were either very delicate (spring reverberators) or very large
and heavy (plate reverberators) electromechanical devices.
When digital reverberators were made widely available in the late 70’s, they operated on sim-
ple delayed feedback and allpass networks but quickly became more sophisticated with the
underlying algorithms being kept secret by the manufacturers.
As processors grew more powerful over the years, convolution reverberation started to be-
come feasible where signals are convoluted with the pre-recorded or simulated impulse re-
sponse of a real or virtual room.
Due to the fact that acoustical sound sources are generally recorded with microphones be-
ing put in very close proximity, the picked up signals can sound very dry and unnatural. To
mitigate this, reverb is added to make the sound more ’lively’.

1.2.2.4. Distortion

The desire for artificial distortion effects originate from two historical states: Early sound
reinforcement and recording was based on vacuum tubes and tape recorders. Both exhibited

1. Introduction 35

Figure 1.14.: TC Fireworx Multi-Effect Processor

distinct nonlinear behavior with increasing drive that can be described as a pleasant ’warmth’.
Also, before powerful P.A. systems were widely available, musicians playing concerts mostly
had to take care themselves that they are being heard by the audience. This resulted in
guitar players operating their amplifiers well over the intended limits and thus producing a
heavily distorted guitar sound. Over the decades, this necessity has become a virtue and is
now an integral part of many different music genres such as blues, rock and metal.
It is not uncommon to still see actual tubes used in modern music productions, predominantly
part of microphone and guitar preamplifiers. Due to their high price, delicacy in handling and
unfavorable form factor, there is demand for alternatives. Numerous devices are available
that emulate the sound of those paragons. The nonlinearity can be reproduced digitally by
means of a static characteristic or implemented as a Volterra series expansion[9].

1.2.2.5. Multi effect processors

There are numerous other effects and processors that have not been mentioned yet: pitch
shift (raising and lowering the original pitch), tremolo(modulation of amplitude), vibrato (mod-
ulation of frequency), octaver (synthesis of signals one octave below or above the original
signal) are just a few examples. While there are devices that emulate one single effect -
especially in form of pedal effects for guitarists - , their use in general is not as common as
the previously mentioned ones. Thus it is hardly economical for most music, broadcast and
film productions to have each of those effects at their disposal as a dedicated device.
This can be mitigated through the use of multi effect processors. These digital contraptions
offer a multitude of all kinds of effects for almost every purpose and somewhat serve as the
’swiss knife’ in the sound engineer’s side rack (See figure 1.14).

1. Introduction 36

Figure 1.15.: The Midas M32 digital mixing console

1.2.3. Structure of digital mixing desks

Compared to consumer audio, where the compact disk surpassed the sales of vinyl LPs and
music cassettes in the early 90’s, the triumphal march of digital consoles in recording and
live sound production took significantly longer. In fact, the demand for analog consoles from
low to high end still exists, although digital boards are vastly more common and accepted at
the time of writing this thesis than they have been ten years ago.
This section describes the most significant differences between analog and digital con-
soles.

New concept of operation The most obvious change is the entirely different layout of the
board surface. The possibilities of digitization enabled the departure of the ’one knob for
each function’ paradigm of analog desks. Instead of having huge arrays of potentiometers
and one slider for each channel and each bus, the number of controlling elements has been
reduced drastically.
Input channels and mix buses are grouped into layers that can be swapped, motorized vol-
ume sliders automatically adjust when switching between layers. There is a single set of
incremental encoders to control channel parameters like equalizer, panorama and so forth.
The operator has to select the channel to which changes apply first. One or more graphical
displays give information about the current state of parameters and provides additional visual
information like the actual amplitude response of the parametric equalizer.

1. Introduction 37

Routing A digital board’s routing engine is powerful and much more flexible than an analog
desk’s capabilities. There is a sharp distinction between buses and outputs which are not
required to be the same in numbers. The operator is free to route any input signal to any bus
and he can route any bus to any output connector, internal effect engine, or fold it back to a
stereo input without having to plug any cables.

Audio processing The heart of a digital board is generally one or more DSPs, although
some manufacturers utilize FPGAs as the processing engine.
24 bit/96 kHz can be regarded as an industry standard for the AD/DA conversion, although
the internal bit resolution is usually significantly higher. Unlike analog sound processing that
can suffer from component variance and degradation, the digitally processed sound always
stays the same, no matter the temperature or the age of the console.

Connectivity The digital nature of the console offers many options to be interfaced. Many
boards offer the possibility to be remotely operated via Ethernet, WiFi or Bluetooth and a
laptop or tablet. The need for AD conversion allows to physically dislodge the console from
the converters: The incoming signals are converted close to the source by a digital stage-
box, which is linked to the console via Ethernet or optical fiber. This drastically reduces the
susceptibility of power line hum and other unwanted interspersals. In fact, more often than
not the whole signal processing takes place in the digital stagebox as well with the console
merely sending and receiving control information. Another aspect of the new connectivity is
the rise of new digital protocols that enable the easy distribution of audio signals over existing
infrastructure, such as the Audio over IP protocols Dante and AES67 (Ravenna).

Effects Another revolutionary novelty is the capability of a digital console to include a li-
brary of all kinds of effects at the user’s disposal. Most of today’s consoles come with a com-
plete set of dynamics processors included in each individual input signal’s path. A graphical
equalizer can be enabled for most if not all outputs (as a quality-of-life feature, the motorized
channel sliders can function as the graphical eq’s control elements). Dedicated effect en-
gines can be the target and the source of mix buses. If the included effects library is still not
sufficient, many consoles offer the possibility to host a multitude of commercial DAW plug-
ins.
This effectively renders the need for a dedicated effect side rack moot.

Drawbacks Despite all these benefits, digital consoles have had a tough time getting ac-
cepted by operators, systems houses, technical directors and rental companies. This is due
to several reasons:

1. Introduction 38

• The learning curve is noticeable steeper. If an operator knows one analog board, he
knows all analog boards. The difference is often marginal. Due to the reduced number
and increased routing possibilities, digital consoles display more sophisticated con-
cepts of usage and those can vary significantly between manufacturers and models.

• The principle of layering and the paradigm ’one knob, many functions’ impose that
the operator cannot any longer access any arbitrary function by pressing one single
button/turning one single potentiometer. He is rather required to navigate through a set
of menus and layers until he can control the desired parameter. This has a negative
impact on the workflow, especially if the operator is not fully familiar with the desk (see
above).

• The AD- and the DA-conversion supposedly has a negative effect on the sound quality.
However, it is highly debatable whether this argument stands the test of time since it
arose in the early days of digitalization when converters and DSPs had much weaker
specifications than they have now.

2. Signal processing fundamentals

This chapter lays out the mathematical foundation on what the signal processing blocks of
this project will rely on.

2.1. Linear processing

The systems introduced in the following section belong to the category of discrete linear
time-invariant (LTI) systems that can be described in the time domain by their difference
equation and in the spectral domain by their transfer function. The impulse response h(n),
the amplitude response |H(z)| and the phase response ∠H(z) visualize an LTI system and
give information about its behavior.

2.1.1. Parametric biquadratic filters

The channels’ high pass filters and equalizers will be laid out as second order systems. All
transfer functions are derived from analog prototypes and transferred to the z -domain via
bilinear transformation, resulting in the following equation:

H(z) =
b0 + b1z

−1 + b2z
−2

a0 + a1z−1 + a2z−2
(2.1)

with a0 normalized to a0 = 1 as a convention.

2.1.1.1. High pass filter

The second-order high pass filter, which rejects unwanted low frequency content, is de-
scribed [10] by the analog transfer function

H(s) =
H0s

2

s2 + w0

Q∞
s + ω2

0

. (2.2)

w0 = 2πf0

2. Signal processing fundamentals 40

H0 is the pass-band gain, the quality factor of the filter is denoted byQ∞ and determines the
roll-off at f0. With the Butterworth approximation (Q∞ = 1/

√
2), the attenuation below f0 is

12 dB per octave or 40 dB per decade respectively [11, p. 128]. f0 is the resonance or cutoff
frequency of the filter. If the conditions H0 = 1 and Q = 1/

√
2 (Butterworth high pass with

unity gain) are met, then |H(jω0)| = −3dB.
A Chebyshev or elliptic filter characteristic could provide a narrower transition band. However,
in audio signal processing a Butterworth filter is preferred due to its passband linearity [12]
and insignificant amount of ringing artifacts [13]. These two characteristics are valued
higher than a steep roll-off.
The second order Butterworth high pass filter normalized with w0 = 1 and H0 = 1 thus is

HHP (s) =
s2

s2 +
√

2s + 1
. (2.3)

2.1.1.2. Shelving filter

To emphasize the low and/or high frequency content of an audio signal, a parametric equal-
izer can be utilized. It changes the gain g in dB above (high shelf) or below (low shelf) a
certain center frequency ωc = 2πfc with

|Hshelv ing(jωc)|2 =
max(|Hshelv ing(jω)|2)

2
. (2.4)

The transition width is defined by the slope S where the relationship is

1

Q∞
=

√√
V0 +

1√
V0

· (
1

S
− 1) + 2 (2.5)

V0 = 10
g

20 g ≥ 0

between S and the Q∞ of the filter’s underlying high-/low pass.[14]

Amplitude responses in dependence of those three parameters can be seen in equation 2.1.
A signal-boosting low shelf can be obtained with the transfer function

HLS(s) =
s2 +

√
V0

Q∞
s + V0

s2 + 1
Q∞
s + 1

. (2.6)

The parameter V0 is the gain at ω = 0. Variations of V0 allow boost if V0 > 1 or attenuation
if V0 < 1. However, in the case of a cut (V0 < 1), f0 does not stay constant but becomes
dependend on V0 [15]. To circumvent this, the transfer function 2.6 has to be inverted.

2. Signal processing fundamentals 41

(a)
High shelf (fc,H = 3 kHz) and low shelf (fc,L = 200

Hz) at g = 0 dB, ±6 dB, ±12 dB and ±18 dB

(b)
Low shelf filter with parameters g = +6 dB at fc,L = 1

kHz and slopes 0.5, 1 and 2

Figure 2.1.: Parametric shelving equalizer

A high pass - low pass transformation (s → 1
s

) yields the transfer function for the parametric
high shelf:

HHS(s) =
V0s

2 +
√
V0

Q∞
s + 1

s2 + 1
Q∞
s + 1

. (2.7)

2.1.1.3. Peak filter

The peak filter is an equalizer designed to boost or attenuate an arbitrary frequency. The
adjustable parameters are the center frequency ω0 = 2πf0 with |HBP (jω0)| = H0, the
quality Q∞ and the gain g = 20 · log10(H0). Based on the 2nd order band pass filter with
constant H0 = V0 − 1 peak gain

HBP (s) = H0 ·
1
Q∞
s

s2 + 1
Q∞
s + 1

(2.8)

the peak filter transfer function results in

HPK(s) = 1 +HBP (s) =
s2 + V0

Q∞
s + 1

s2 + 1
Q∞
s + 1

(2.9)

The resulting amplitude responses under varying parameters are shown in 2.2.

2. Signal processing fundamentals 42

(a)
f0 = 1000Hz , Q∞ = 1.25,

Gains: g = 0dB, ±6dB, ±12dB and ±18dB

(b)
f0 = 1000Hz , g = ±16dB,

Q∞: 0.5, 0.7071, 1, 2.5, 5,

Figure 2.2.: Parametric peak equalizer

2.1.1.4. Bilinear transformation

To realize those analog prototype filters in the digital domain with sample rate fs = 1
Ts

, the
bilinear transformation[16, pp. 84-85] helps conveying their transfer functions to H(z):

s =
2

Ts

z − 1

z + 1
(2.10)

The normalized analog frequency ω is transferred to the discrete normalized frequency Ω

with

ω =
2

Ts
tan

Ω

2
. (2.11)

Equations 2.10 and 2.11 map the imaginary axis of the s-Plane onto the unit circle of the
z -plane. The trigonometric term in 2.11 causes a nonlinear distortion of the absolute system
function. This is a necessity when mapping±∞ to±π. By compressing the whole imaginary
axis into ±π, no aliasing by means of overlapping filter spectra can occur as would be the
case with the impulse invariant design method [17, p. 61].
Applying the bilinear transformation to the systems 2.3, 2.6 and 2.9 results in the a and b
coefficients for equation 2.1 listed in table 2.1.

2. Signal processing fundamentals 43

High pass filter, k = tan(ω0Ts
2

)

b0 b1 b2 a0 a1 a2

1
1+
√

2k+k2

−2
1+
√

2k+k2

1
1+
√

2k+k2 1 2(k2−1)

1+
√

2k+k2

1−
√

2k+k2

1+
√

2k+k2

Peak filter, k = tan(ω0Ts
2

), boost V0 = 10g/20

b0 b1 b2 a0 a1 a2

1+
V0
Q∞ k+k2

1+ 1
Q∞ k+k2

2(k2−1)

1+ 1
Q∞ k+k2

1− V0
Q∞ k+k2

1+ 1
Q∞ k+k2 1 2(k2−1)

1+ 1
Q∞ k+k2

1− 1
Q∞ k+k2

1+ 1
Q∞ k+k2

Peak filter, k = tan(ω0Ts
2

), attenuation V0 = 10−g/20

b0 b1 b2 a0 a1 a2

1+ 1
Q∞ k+k2

1+
V0
Q∞ k+k2

2(k2−1)

1+
V0
Q∞ k+k2

1− 1
Q∞ k+k2

1+
V0
Q∞ k+k2

1 2(k2−1)

1+
V0
Q∞ k+k2

1− V0
Q∞ k+k2

1+
V0
Q∞ k+k2

Low shelf filter, A =
√
V0, α = sin(ω0)

2
·
√

(
√
V0 + 1√

V0
· 1
S
− 1) + 2

b0 b1 b2

A((A+1)−(A−1)·cos(ω0)+2
√
A·α)

(A+1)+(A−1)·cos(ω0)+2
√
A·α

2A((A−1)−(A+1)·cos(ω0))

(A+1)+(A−1)·cos(ω0)+2
√
A·α

A((A+1)+(A−1)·cos(ω0)−2
√
A·α)

(A+1)+(A−1)·cos(ω0)+2
√
A·α

a0 a1 a2

1 −2((A−1)+(A+1)·cos(ω0))

(A+1)+(A−1)·cos(ω0)+2
√
A·α

(A+1)+(A−1)·cos(ω0)−2
√
A·α)

(A+1)+(A−1)·cos(ω0)+2
√
A·α

High shelf filter, A =
√
V0, α = sin(ω0)

2
·
√

(
√
V0 + 1√

V0
· 1
S
− 1) + 2

b0 b1 b2

A((A+1)+(A−1)·cos(ω0)+2
√
A·α)

(A+1)−(A−1)·cos(ω0)+2
√
A·α

−2A((A−1)+(A+1)·cos(ω0))

(A+1)−(A−1)·cos(ω0)+2
√
A·α

A((A+1)+(A−1)·cos(ω0)−2
√
A·α)

(A+1)−(A−1)·cos(ω0)+2
√
A·α

a0 a1 a2

1 2((A−1)−(A+1)·cos(ω0))

(A+1)−(A−1)·cos(ω0)+2
√
A·α

(A+1)−(A−1)·cos(ω0)−2
√
A·α)

(A+1)−(A−1)·cos(ω0)+2
√
A·α

Table 2.1.:
Computation formulas for biquad coefficients.

Refer to [14] (Low shelf and high shelf filter) and [18, p. 43, p. 55] (high pass filter, peak filter)

2. Signal processing fundamentals 44

Figure 2.3.: Azimuth of left and right loudspeaker and of virtual sound source

2.1.2. Panorama

With a stereo sound reproduction system, it is possible to alter the virtual sound source,
i.e. the perceived direction from where a sound seems to originate. There are two main
principles that enable the human ears to locate a source[3, p. 337]: The first one is the
inter-aural intensity difference (IID). The ear faced towards the source’s direction hears a
higher level than the one turned away as the listener’s head dampens the incoming sound.
From the difference in level, the brain interpolates its origin. The second is inter-aural time
difference(ITD) and is closely related to the Haas effect1: here the brain evaluates the time
difference at which sound arrives at the ears.
In this thesis, the panoramic effect will be designed on basis of IID.
Assume a central position in front of a stereo loudspeaker setup, forming an angle 2θL where
θL is the azimuth listener - left loudspeaker. The virtual sound source’s azimuth shall be θ0

with θR < θ0 < θL (see figure 2.3). To achieve this, the approximation by the Blumlein law
[20] provides the level difference needed:

sinθ0 =
gL − gR
gL + gR

sinθL (2.12)

1The Haas effect is based on the law of the first wavefront and states that if two identical sound sources are
presented in short succession, they will be heard as one single sound. Further, the direction of the sound
that arrived first will be perceived as its origin - even if the other one is up to 10 dBSPL higher in level [19].

2. Signal processing fundamentals 45

Figure 2.4.:
Channel attenuation gL (solid line) and gR (dashed line) over virtual sound source azimuth

This proves to be a valid [21] formulation for broadband signals and low frequencies.
The gains can be obtained with [

gL
gR

]
= Aθu (2.13)

where Aθ denotes a rotation matrix

Aθ =

[
cosθ0 sinθ0

−sinθ0 cosθ0

]
(2.14)

and u a unit magnitude stereo signal

u =

[
1√
2

1√
2

]
. (2.15)

Assuming a θL = −θR = 45◦ is advisable: only one of both channels is nonzero in the case
of θ0 = ±θL then. The norm 1√

2
in equation 2.15 makes sure that |max(gL)| ≤ 1 ∀ θ0 and

thus avoids overload in the later implementation. This function follows the -3 dB pan law [22]
to keep the sum of both channel’s power constant across the complete range of θ0.

2. Signal processing fundamentals 46

2.1.3. Multirate signal processing

This section is largely based on [23]. Additional references will be declared explicitly.
In the implementation of digital signal processing blocks, it can be advisable to convert the
sample rate fs of the signal in question temporarily in certain situations, either by increasing
the sampling rate or by decreasing it. There is no unified nomenclature across literature
and terms are used interchangeably. For this thesis, the following definition of terms will be
used:

Interpolation The process of increasing a signal’s sampling rate fs by factor L ∈ N

Decimation The process of decreasing a signal’s sampling rate fs by factor
M ∈ N

Multirate processing Interpolating a signal with sampling rate fs by factor L, process it
at sampling rate L · fs , then decimating it back to fs . Alternatively:
Decimating a signal with sampling rate fs by factor M, process it at
sampling rate fs

M
, then interpolating it back to fs

Resampling Interpolating a signal with sampling rate fs by factor L and/or deci-
mating it with factor M to obtain a signal with sampling rate k

m
fs (2)

↑ L
x(m) y(n)

(a) Upsampler

↓ M
x(n) y(m)

(b) Downsampler

Figure 2.5.: Up- and downsampling

2.1.3.1. Interpolation

The process of interpolation consists of two steps: First, the original signal x(m) at sampling
rate fs0 = 1

Ts0
with m = k · Ts0 is zero-stuffed, meaning between each value of x , k − 1

equidistant zeros are placed. This step is called upsampling and yields the upsampled signal
y(n), n = k · Ts0

L
and L denotes the upsampling factor:

y(n) =

{
x(n

L
) n = mL, m ∈ Z

0 otherwise
(2.16)

2Resampling is not solely limited to a rational factor but can have an arbitrary real-value ratio. However, in-
terpolation that employs a discrete time filter as described in section 2.1.3.1 cannot be used in this case.
Advanced interpolation techniques such as utilization of piecewise polynominal splines or Lagrange inter-
polation are required. These topics are beyond the scope of this thesis.

2. Signal processing fundamentals 47

In the frequency domain, the zero stuffing causes a compression of the signal spectrum
along the normalized frequency axis with the sampling frequency in radians ωs

Ω =
ω

ωs
(2.17)

by factor L as can be seen in figure 2.6. This is equivalent to the transformation

z → zL. (2.18)

To distinguish both spectral domains, the following notation is introduced:

z denotes a complex variable in the Z-plane at fs0,

zL is the variable at L · fs0.

The signal spectrum is now imaged L-fold in the new sampling rate L · fs0. To maintain the
original signal and avoid aliasing, further measures are required. Thereby results the sec-
ond interpolation step, the application of an interpolation lowpass HLP (zL). As the original
spectrum is now compressed, its normalized Nyquist frequency ωs0

2
is now located at π

L
. This

must be the center frequency ω0 of the interpolation low pass filter to cut out the alias images
while retaining the original spectrum.
It is easy to see that an upsampled signal does not retain the amplitude, since the zero-
padding introduces a loss in the average signal power [24]

|y(n)|2 = lim
N→∞

1

2N − 1
·

N∑
n=−N

|y(n)|2. (2.19)

This is be mitigated by scaling y(n) by factor L. This scaling can take place at the input signal
of the interpolation x(m), the output signal y(n) or by scaling the interpolation filter transfer
function HLP (zL)→ L ·HLP (zL), whichever results in the most practical implementation.

2.1.3.2. Decimation

On a brief glance, decimation appears to be the reversal of interpolation but has a few notable
differences. The following section will use following conventions and definitions:

z → z
1
M (2.20)

z denotes a complex variable in the Z-plane at fs0,

z 1
M

is the variable at fs0

M
.

2. Signal processing fundamentals 48

(a) Original spectrum of a lowpass signal (b) Upsampled spectrum

Figure 2.6.:
Compression of signal spectrum after upsampling by factor L = 5 (2nd order Butterworth

low pass, Ω0 = 0.25)

Decimation of a signal x(n) at sampling rate fs0 with n = k · Ts0 to

y(m) = x(m ·M), m = k ·M · Ts0 (2.21)

compresses the frequency axis of the signal spectrum

z → z 1
M

(2.22)

rather than the spectrum itself as with interpolation. Since this means that the Nyquist fre-
quency in z 1

M
is now located at fs0

2·L in z , the signal must be low pass filtered by a filterHLP (z)

with cutoff frequency

f0 ≤
fs0

2 · L (2.23)

in order to avoid aliasing. Once the signal x(n) has been band limited, it can be downsam-
pled to fs0

M
by applying equation 2.21. Note that no further scaling is required opposed to

the interpolation, since there will be no loss of average power when equation 2.23 is fulfilled
sufficiently.

2. Signal processing fundamentals 49

(a) Impulse response h(n) (b) Spectrum of the filter

Figure 2.7.: A half band low pass filter with N = 15 taps

2.1.3.3. Half band FIR filters

A half band filter is an FIR filter with the special property that the center of its transition
region is located at fs

4
, where fs is the input sample rate. Interpolation filters for multirate

signal processing purposes are usually implemented as linear phase type 13 finite impulse
response filters. These filters can be designed with the least squared error criterion, the win-
dow method, the Parks-McClellan Design which uses the Remez exchange algorithm [25] or
others.
The non-recursive filters in this thesis will be designed using the Parks-McClellan algorithm,
which approximates a filter according to the parameters passband ripple δp, stopband at-
tenuation δs and the cutoff frequencies of the passband Ωp and stopband Ωs . A detailed
explanation of this procedure can be found in [26].
A notable subset of the FIR filter is the half band low pass filter. It is a type 1 FIR whose un-
even coefficients h(n) are zero, except for its symmetrical center h(N−1

2
) which is 0.5 when

normalized to |H(0)| = 1. This leads to the fact that the center Ω0 of the transition width b
is always

Ω0 =
Ωs −Ωp

2
= 0.25, (2.24)

or in words: half the Nyquist frequency of the sampled signal. This makes the half band
filter a good choice when implementing a multirate processing stage with an upsampling/-
downsampling factor of K = 2, where it fulfills the requirement for the cutoff frequency
f0 = fs0

2·K = 0.25fs .
The fact that close to half of the filter coefficients are zero effectively halves the number of

3Type 1 FIR filters have an odd number N of taps and have a symmetric impulse response around h(N−1
2)

2. Signal processing fundamentals 50

multiplications per sample. Considering the fact that discrete convolution has a computa-
tional complexity of O(N2), this has a large beneficial impact on computation speed.

2.1.3.4. Polyphase FIR filters

Instead of the common transversal FIR structure, a polyphase filter can be used for interpo-
lation and decimation.

Polyphase filter for upsampling As described in section 2.1.3.1, the N-tap interpolation
filter H(zL) is applied after the upsampling by factor L took place. This order of execution
can be changed by converting the filter to a polyphase structure with L phases.
The transversal FIR is divided into L FIRs with N

L
taps (apply zero-padding to receive integer

results) that are connected in parallel and fed by the input signal x(m). The coefficients of
each filter Hl(z) with length R = N

L
are

hl(m) = h(
n

L
+ l), l = [0, 1, 2, ..., R − 1]. (2.25)

The filter can be described as

H(z) =

L−1∑
l=0

Hl(z) =

L−1∑
l=0

z−l
R−1∑
r=0

hl(r)z−Lr (2.26)

The upsampling then can be represented by a commuter: for each input samplex(m), the L
output samples y(n), n = 0, 1, 2, ..., L− 1 are taken from the output of Hl(z), l = n.
This reduces the number of multiplications and additions: While the transversal FIR in the
zL domain requires L · N multiplications and L · (N − 1) additions, the same filter in the z
domain and polyphase structure only needs the computation of N multiplications and N − 1

additions.

Polyphase filter for downsampling Similarly to equation 2.26, the FIR for decimation
by factor M can be represented as a polyphase filter with M filters of length R = N

M
by

transposing it to the z 1
M

domain:

H(z 1
M

) =

M−1∑
m=0

Hm(z 1
M

) =

M−1∑
m=0

z−m1
M

R−1∑
r=0

hm(r)z−Mr1
M

. (2.27)

The inputs of those filters are fed by a commuter that distributes the M input samples x(n−
m), m = 0, 1, 2, ...,M − 1 that occur during one period of fs0

M
to the filters Hm(z 1

M
). After

2. Signal processing fundamentals 51

↑ L H1(zL) +

z−1
L

↑ L H2(zL) +

z−1
L

↑ L HL−1(zL)

x(n) y(m)

(a) Interpolation with polyphase FIR

↓ M H1(z 1
M

)

z−1
1
M

↓ M H2(z 1
M

) +

z−1
1
M

↓ M HM−1(z 1
M

) +

x(m)

y(n)

(b) Decimation with polyphase FIR

Figure 2.8.: Interpolation and decimation utilizing polyphase filters

one commuter cycle, the outputs of the M filters are summed up and yield the decimated
signal y(m).
As with interpolation, the number of multiplications and additions are reduced by factor 1

M
to

N and N − 1 respectively. See figure 2.8 for details.

2.1.3.5. Multirate Processing

Multirate processing can be advisable when applying a low pass4, the kernel filter, with cutoff
frequency f0 << fs and the requirement for a narrow transition band and/or high stop band
attenuation. Implementing this system in fs as an FIR, it requires a large number of taps
to fulfill this specification. As an IIR, the kernel filter faces the risk of suffering from limited
arithmetic precision and entailing problems like limit cycles, quantization noise and possible
instability.
Multirate filtering (see figure 2.9b) can avert these problems. With Dyadic Cascading, the
sampling rate can be successively reduced. Utilizing half band filters (section 2.1.3.3), the
absolute center frequency shifts with each cascade, while the required passband edge fre-
quency is given by the kernel’s cutoff frequency. This allows for a very broad transition band
for the filter in fs0 and thus a comparably small amount of filter coefficients. As the decimation
goes on, the transition band needs to narrow down and requires a higher FIR order. How-
ever, with decreasing sampling rate, the amount of calculations per time unit sinks as well.
For example, a low pass filter with the following specifications: passband frequency fpass =

30 Hz, stopband frequency fstop = 40 Hz, sampling frequency fs0 = 8000 Hz, passbband

4or likewise a high pass filter with f0 close to fs
2 !

2. Signal processing fundamentals 52

2 ·HL(z) ↑ L Nonlinear ↓ L HL(z)
x(n) x(m) y(m) y(n)

(a) Increase of samplerate

H 1
M

(z) ↓ M HK(z 1
M

) ↑ M 2 ·H 1
M

(z)
x(m) x(n) y(n) y(m)

(b) Sample rate reduction

Figure 2.9.: Multirate signal processing

ripple δp = 0.01, stopband attenuation δs = 0.001 would require N = 2033 taps according
to the Matlab estimation function firpmord(), resulting in over 16 million multiplications per
second when implemented with discrete convolution. However, reducing the sampling rate
to fs ′ = 125 Hz, the number of required taps drops to N = 31 and 3875 multiplications
per second. [23] shows that decimation by factor 64 (a dyadic cascade with 6 stages) and
then applying the kernel can be achieved with less than 100.000 multiplications per second.
Interpolation back to the original sampling rate approximately doubles this number.
Operation at a higher sampling rate can be necessary for highly nonlinear signal processing,
such as described in section 2.2.2. Applying harmonic distortion to a discrete signal with
a bandwith ranging from 0 Hz to fs0

2
inevitably produces aliasing artifacts as harmonics at

f > fs0

2
fold back to below the nyquist frequency. Interpolating the signal with a factor high

enough that any artifacts within the baseband are below a sufficient level avoids this effect.
The process of this is similar to the one before and is illustrated in 2.9a: Instead of decima-
tion, the original signal will be interpolated first. After the nonlinear processing took place,
the signal will be decimated back to its original sampling rate.

2. Signal processing fundamentals 53

2.2. Nonlinear processing

Transfer functions are not defined for this class of systems. They are generally represented
by a nonlinear function in the time domain. The output of the system is not proportional to
changes of the input and its spectrum can contain components not present in the input (and
vice versa). In case of a constant nonlinearity, the output signal is enriched with harmonics
of the input. Thus, care must be taken that the output signal does not violate the Nyquist-
Shannon sampling theorem, even if the input satisfies its requirement.

2.2.1. Dynamics processing

This section is largely based on the work of Udo Zölzer in [11, pp. 227-239] and [18, pp. 95-
104]. Additional references will be declared explicitly.
Dynamics processing, the automatic gain control of a signal based on its current peak or
averaged level is based on an amplitude detection algorithm, the envelope follower. If this
follower detects a level above or below a certain predefined threshold, the signal gain gets
changed in proportion to the threshold excess, the compression factor ratio R, defined as
R = ∆Lin

∆Lout
. ∆Lin denotes the threshold excess of the input signal, ∆Lout the resulting excess

of the output.
A derived item is the slope S:

S = 1−
1

R
(2.28)

The four types of dynamics processor are limiter, compressor, expander and noisegate. They
differ from each other by how the input signal is evaluated, whether levels below or above
threshold trigger the gain reduction and where the ratio is located, see table 2.2.

Limiter R =∞ LS = 1

Compressor 1 < R <∞ 0 < CS = 1

Linear R = 1 S = 0

Expander 0 < R < 1 −∞ < ES = 0

Noise gate R = 0 NS = −∞

Table 2.2.: Ratio and slope of dynamics processors

These ratios result in a static characteristic that can be seen in figure 1.13. The slopes are
tagged with their according dynamic range to make distinction easier: LS denotes the limiter
slope, CS the compressor slope, ES the expander slope and NS the noise gate slope.

2. Signal processing fundamentals 54

ABS + ≥ 0 × + +

×

z−1

x(n) xpeak(n)

−
−

RTAT

(a) Peak measurement block diagram

× + × +

z−1

x(n) xRMS(n)

−
ATV

(b) RMS measurement block diagram

Figure 2.10.: Level measurement

2.2.1.1. Level measurement

To measure the current level of the input signal x(n), the systems in figure 2.10 are used. The
values AT , RT and AV T (see equations 2.30 to 2.32) are dimensionless coefficients that
are based on the attack and the release time constants tat and tr t of the peak measurement
xpeak(n) and the averaging time tav of the RMS measurement xRMS(n) which equal the rise
time of the first order system

g(t) = 1− e−
t
τ

0.1 = 1− e−
t10
τ

0.9 = 1− e−
t90
τ

ta = t90 − t10 = ln(0.9/0.1)τ = 2.2τ (2.29)

The discrete coefficients sampled with fs = 1
Ts

thus are calculated with

AT = 1− e−2.2Ts/tat (2.30)

RT = 1− e−2.2Ts/tr t (2.31)

AV T = 1− e−2.2Ts/tav . (2.32)

These times should not be confused with the attack and release times of the automatic gain
control as described in section 2.2.1.2.

2. Signal processing fundamentals 55

It is suggested [18, p. 99] for limiter peak measurement xpeak(n) to set the attack and release
time constants to 20µs ≤ tat ≤ 10ms and 1ms ≤ tr t ≤ 5000ms respectively. For the
RMS measurement xRMS(n) averaging time tav = 200ms is recommended [27, p. 40].
The difference equation for the peak measurement is

xpeak(n) = (1− AT − RT) · xpeak(n − 1) + AT · |x(n)| (2.33)

and for the RMS measurement

xRMS(n) = (1− AV T) · xRMS(n − 1) + AV T · x2(n). (2.34)

This type of peak evaluation meter is called Sample Peak Programme Meter, or SPPM. It
does not take into consideration the fact that sampling can mask the true signal amplitude
by up to −3 dB 5. To mitigate that error, a True Peak Programme Meter (TPPM) can be
employed. A TPPM oversamples the signal by a factor of 4 to decrease the deviation of the
sampled value from the actual analog amplitude down to a few tenths of a dB [28]. A true
peak evaluation will not be part of this thesis, however. The operator does need to take this
into account when deciding the threshold at which the limiter shall start to operate.

z−1 + AT
RT

+ × +

z−1

f (n)

g(n)−

−

Figure 2.11.: Smoothing filter block diagram

5consider the sampling with Ts = 1/fs of a continuous-time signal f (t) = A · sin(2πf0t) with A = 1

and f0 = fs/4. If the sampling took place at t = k · Ts + 0.5Ts , the sampled values would be
[0.707, 0.707,−0.707,−0.707, ...]

2. Signal processing fundamentals 56

z−m ×

PEAK log2 + ≥ 0 × 2G LP

x [n] x [n −m] y [n]

−LT −LS

Figure 2.12.: Limiter block diagram

2.2.1.2. Smoothing filter

To realize parametric attack and release time of the automatic gain control f (n) as specified
in table 1.2, the system depicted in figure 2.11 is used. The output g(n) is the smoothed
gain factor. It follows the difference equation

g(n) = (1− k) · g(n − 1) + k · f (n) (2.35)

k =

{
1− e−2.2Ts/tattack g(n) > g(n − 1)

1− e−2.2Ts/trelease otherwise.

Where tattack , trelease denote the attack and release time and Ts the sampling period. The
block AT/RT in the block diagram is a decision making entity that sets the appropriate system
coefficient depending on whether f (n − 1) ≤ f (n) (coefficient is AT) or f (n − 1) > f (n)

(RT).

2.2.1.3. Limiter

The complete limiter block diagram can be seen in figure 2.12. The main signal path gets
delayed by m samples. In the side chain, the peak gets evaluated (PEAK) according to
section 2.2.1.1. LT is then substracted from the peak value’s 2’s logarithm. LT is the limiter
threshold in the 2’s logarithm domain. If the threshold is exceeded (≥ 0), it is multiplied
with the negative limiter slope −LS = −1 (refer to 2.2) and transferred back into the linear
domain (2G). The gain factor now gets filtered by the smoothing low pass according to
2.2.1.2 (LP). The delayed input signal finally is weighted with the output of the smoothing
filter.

2. Signal processing fundamentals 57

×

RMS log2 + ≥ 0 ×

+ ≥ 0 ×

2G TP

x [n] y [n]

−

−CT −CS

ET ES

commuter

Figure 2.13.: Compressor/Expander block diagram

2.2.1.4. Compressor/Expander

To enable an efficient computation, a compressor and an expander - which do not operate
on intersecting input level ranges, see figure 1.13 - can be combined into a single processing
unit. A range detector decides whether the upper or the lower branch of the side chain in
figure 2.13 comes into effect.

2. Signal processing fundamentals 58

2.2.2. Harmonic distortion and overdrive

Distortion is commonly measured and quantified as total harmonic distortion, or THD. It is
the harmonic content of a waveform compared to the waveform’s RMS value and calculates
[29]

THDR =

√∑∞
n=2 I

2
n∑∞

n=1 I
2
n

(2.36)

where I1 is the RMS value of the fundamental frequency f0 and Ik the RMS value of its k-th
harmonic frequency k · f0 6.
The musical application of distortion from valve amplifiers and overdrive effects can be found
on virtually every recording that features electric guitar tracks. These distorting effects are
based on various characteristics. In this thesis, two different kinds of digital overdrive are
presented, the symmetrical soft clipping based on the Schetzen formula and a tube emulation
based on the exponential function. Their static characteristics are displayed in figure 2.14.

(a) Symmetrical soft clipper, k = 1 (b) Tube distortion, k = 2, Q = −0.2, dist = 8

Figure 2.14.: Static characteristic of distortion/overdrive effects

2.2.2.1. Symmetrical soft clipping

This clipping algorithm aims to emulate the saturation curve of an analog tape recorder
while maintaining efficient computability. It is based on the Schetzen formula osymm(x) [18,

6More commonly found is the THDF definition where the denominator consists solely of the fundamental’s
RMS value I1. However, to stay coherent with section 4.4.2.5, THDR analysis is used here, as the distortion
calculation of the System Two audio analyzer is based on this definition as well

2. Signal processing fundamentals 59

p. 118]:

osymm(x) =


2x 0 ≤ x ≤ 1

3
3−(2−3x)2

3
1
3
< x ≤ 2

3

1 2
3
< x ≤ 1

(2.37)

Weighting x with a constant drive factor dr before applying the function o(dr · x) enables
control over the degree of saturation. This distortion enriches the original signal with uneven
harmonics.

2.2.2.2. Tube clipping

The static characteristic of the tube clipping emulation is based on a triode, a vacuum tube
commonly found at the input gain stage of a tube-based guitar amplifier. This asymmetric
emulation algorithm is based on several parameters:

dr the drive factor

Q The operation point or zero offset, controls the linearity of low input signals

dist The character of the distortion. Higher values provide harder distortion, i.e.
higher THD.

The tube clipping function otube(x) is

otube(x) =
dr · x −Q

1− edist(dr ·x−Q)
+

Q

1− edist(Q)
, Q 6= 0, dr · x 6= Q (2.38)

If the requirements Q 6= 0, x 6= Q are not fulfilled, simplifications have to take place:

otube(x) =
dr · x

1− e−dist(dr ·x)
, Q = 0, (2.39)

otube(x) =
1

dist
+

Q

1− edist(Q)
, dr · x = Q. (2.40)

These equations provide a signal distortion rich in both even and uneven harmonics. The
resulting signal has to be high pass filtered to reject the dc component.

3. Simulation

Before implementing the processing blocks outlined in chapter 2, extensive simulation is
required. The simulation files are provided in the folder ’Simulation Suite’ on the CD-ROM
accompanying this thesis.

3.1. Concept and goal of the simulation

As the signal processing application as shown in figure 1.2 is highly modular, the author will
refrain from modeling the complete system but rather just simulate and verify single blocks.
This is realized in Matlab which does not only offer powerful numerical tools for the purpose
of the simulation, but also enables graphic preparation of its results.
Simulation serves several purposes: First, it validates the concepts introduced in chapter 2.
Further, successful simulation provides a high level reference implementation as a guideline
for reimplementing the simulated blocks on the target host in a low level programming lan-
guage such as C. The results can then be compared to the simulation outcome to prove the
its correctness and to reveal any problems of the implementation.
In this specific case, the simulation needs to address the following points:

• formulas in table 2.1 need to be validated, i.e. ensure that the center/cutoff frequen-
cies, the gain and the Q/slope are appropriate. Also, the filters may not become unsta-
ble when setting extreme frequencies with single precision coefficients

• squared sums of left and right signals must stay equal across the whole panoramic
range

• dynamic range control must display the correct static behavior

• timing of the gain control must represent the desired rise and fall times set by attack
and release

• overdrive equations have to be validated and their impact in the frequency analyzed

• halfband FIR filters for multirate signal processing have to be specified and designed

3. Simulation 61

• the impact of interpolation on nonlinear processing and suppression of aliasing im-
ages needs to be examined

The script testsignal.m provides two sinusoid, an impulse and a boxcar function signal to
aid the simulation. Their frequency and duration respectively can be changed by a function
parameter, see figure 3.1

(a)
Sinusoid test signals with parameter p = 3

(p ≡frequency in Hz)

(b)
Boxcar and impulse test signals with p = 12000 (p ≡

no. of padded zeros and step length)

Figure 3.1.: Test signals used for simulation

3. Simulation 62

3.2. Results

3.2.1. Parametric biquad filter simulation

Three functions, highpass.m, peak.m and shelving.m calculate the coefficients of a 2nd order
recursive digital filter based on the formulas given in table 2.1.
The Matlab script filtercascade.m enables the user to specify the desired parameters of a
filter cascade consisting of one high pass filter, one low shelf filter, one high shelf filter and
two peak filters (see listing 3.1). The according coefficients are then calculated, converted
to single precision (32 bit float) and the resulting amplitude response is plotted.

Listing 3.1: filter_cascade.m: User parameters for filter cascade

1 % FILTERCASCADE
2 % Author : Benjamin Se l lak
3 % Last modi f ied : 8.8.2017
4 %
5 % generates 32 b i t f l o a t i n g−po in t c o e f f i c i e n t s
6 % f o r a cascade of 5 f i l t e r s and d isp lays the ampl i tude response .
7 clear a l l ; close a l l ;
8

9 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ User Parameters ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
10 f_hp = 40; % Highpass f i l t e r c u t o f f f requency i n Hz
11

12 f_s1 = 180; % Low s h e l f f i l t e r center frequency i n Hz
13 g_s1 = +6; % Low s h e l f f i l t e r gain i n dB
14 s_s1 = 1; % Low s h e l f f i l t e r s lope
15

16 f_s2 = 6000; % High s h e l f f i l t e r center frequency i n Hz
17 g_s2 = −3; % High s h e l f f i l t e r gain i n dB
18 s_s2 = 1; % High s h e l f f i l t e r s lope
19

20 f_p1 = 400; % 1 s t peak f i l t e r center frequency i n Hz
21 g_p1 = −6; % 1 s t peak f l i t e r gain i n dB
22 q_p1 = 2 . 5 ; % 1 s t peak f i l t e r q f a c t o r
23

24 f_p2 = 3000; % 2 s t peak f i l t e r center frequency i n Hz
25 g_p2 = +3; % 2 s t peak f l i t e r gain i n dB
26 q_p2 = 0 . 7 ; % 2 s t peak f i l t e r q f a c t o r
27 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ User Parameters END∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

A critical parameter is the high pass filter cutoff frequency f0, which can go as low as 20 Hz
as specified in section 1.1.1.1. This equals to 1

2400
of the sampling frequency fs = 48000.

3. Simulation 63

Filter type gain g cutoff/center frequency f0 Q/Slope
high pass n.a. 40 Hz n.a.
low shelf +6 dB 180 Hz 1

low-mid peak -6 dB 400 Hz 2.5
mid-high peak +3 dB 3000 Hz 0.7

high shelf -3 dB 6000 Hz 1

Table 3.1.: Parametric equalizer coefficients for filtering a bass drum signal

Since filters with cutoff frequencies f0 << fs are especially prone to rounding errors [11,
p. 148], it is essential to make sure that a high pass with the minimum allowed f0 = 20 Hz
specified results neither in an inaccurate amplitude response, nor does it become unstable.
To verify this, a simulation of the filter response can be seen in figure 3.2a. As can be seen,
the amplitude response at the cutoff frequency f0 is at ≈ 0.5% and within an acceptable
range.
A more comprehensive cascade parametrization is given in table 3.1, which is a typical set-
ting for equalizing a bass drum signal: The low end is emphasized by the low shelf filter,
as is the attack by the peak filter at f0 = 3000 Hz. The other peak filter is set to a narrow
cut at 400 Hz, a frequency range where bass drums often display an unpleasant ’wooden’-
sounding resonance. The high pass filter at 40 Hz and the high shelf at 6000 Hz attenuate
frequencies in ranges where the bassdrum does not produce sound of its own. This way, the
amount of rumble and bleeding can be reduced without affecting the desired signal compo-
nents.
Figure 3.2b depicts the resulting amplitude response and validates the results of the three
modules that calculate filter coefficients.

3.2.2. Panorama simulation

The panorama simulation consists of function panorama.m and script panoramatest.m. The
requirements for the system are:

• the system input shall accept an azimuth θ0 ranging from θR = −45◦ (signal source
located at rightmost direction) to θL = 45◦ (signal source located at leftmost direction)

• at θ0 = θL, the left attenuation factor shall be gL(θL) = 1, the right attenuation factor
shall be gR(θL) = 0.

• Likewise, for θ0 = θR, the left attenuation factor shall be gL(θR) = 0, the right attenu-
ation factor shall be gR(θR) = 1.

3. Simulation 64

(a)
High pass filter with f0 = 20Hz, other filters disabled (gain

g = 0dB)

(b) Filter cascade with parameters corresponding to table 3.1

Figure 3.2.: Simulation of the biquad filter cascade

3. Simulation 65

• at θ0 = 0◦, both attenuation factors shall be gL(0◦) = gR(0◦) = 1√
2
.

• the power sum of both gains shall be 1 across all azimuths gL(θ)2 + gR(θ)2 = 1

∀ |θ| ≤ 45◦.

A run of panoramatest.m, as displayed in figure 3.3, shows that those constraints are met
with the model presented in section 2.1.2.

Figure 3.3.:
The simulated panorama functions gL(θ) and gR(θ) and the power sum of both.

3.2.3. Dynamic range control simulation

The dynamic range control simulation consists of several parts. First, the correct evaluation
of peak and RMS levels has to be asserted. Second, a functional compression, expansion
and limiting based upon those levels has to be proven. The measurement is handled in
the Matlab functions peakcalc.m and rmscalc.m, the dynamic range control takes place in
the functions limiter.m and compander.m. The simulation of the dynamic range control can
be found in script compressortest.m and offers user parameters for all thresholds and time
constants.

Measurement t10,R t90,R ∆tR t90,D t10,D ∆tD
Peak 0.2003s 0.2052s 0.0049s 0.4096s 0.6093s 0.1997s

RMS 0.2048s 0.3048s 0.1000s 0.4042s 0.5042s 0.1000s

Table 3.2.: Measurement rise and decay times

3. Simulation 66

(a) Peak and RMS measurement of attack and release (b) Detailed view of peak measurement attack phase

Figure 3.4.: Peak and RMS measurement timing

3.2.3.1. Level measurement

Both types of level measurement two characteristics: The level itself and the time constant
with which this level is reached. To verify the time constants, the peak and RMS measure-
ment of a boxcar function

boxcar(t) = u(t1)− u(t2) (3.1)

is taken and analyzed, with u(t) being the unit step function, t1 = 0.2s and
t2 = 0.4s . The time constants for this simulation are taverage = 100ms for RMS and
tattack = 5ms, trelease = 200ms for peak measurement. The time it takes rising from
10% (t10,R)to 90% (t90,R) and to decay from 90% (t10,D) back to 10% (t10,D) is evaluated
and should result in these attack, release and average time constants. As can be seen in
figure 3.4 and in table, the time difference accurately matches the desired time constants.

To verify correct levels of the measurement functions peak(x) and RMS(x), a
sine signal f (t) = A · sin(2πf) is evaluated by both functions. At a time
t0 � max(tattack , trelease, taverage), the resulting values

peak(f (t0)) ≈ A (3.2)

RMS(f (t0)) ≈
A√

2
≈ 0.7071 · A (3.3)

are expected and may not be dependent on the frequency f0. This is verified in figure 3.5.

3. Simulation 67

(a) Peak and RMS level at f0 = 50Hz (b) Peak and RMS level at f0 = 5000Hz

Figure 3.5.: Peak and RMS measurement of a sinusoid signal with amplitude A = 1

3.2.3.2. Limiter

Figure 3.6.:
Limiter simulated operating at th = −6.02dB. The input signal is a sinusoid with f = 4Hz

and an amplitude change of 0.1 each second

The Limiter is simulated in the Matlab function limiter.m and will be set to tattack = 2 ms,
trelease = 100 ms, threshold th = −6.02 dB and ratio R = ∞. This effectively prohibits
the output signal to exceed the value 0.5 To evaluate the performance of the limiter, the test
signal 1 will be fed into the module and the amount of overshoot is measured.

As the results in table 3.3 suggest, the limiter error is less than 1%. This margin is negligible
with respect to the lack of true peak detection (see section 2.2.1.1).

3. Simulation 68

Input sine frequency 20 Hz 200 Hz 1 kHz 2 kHz 20 kHz
Overshoot 0.703% 0.726% 0.676% 0.393% 0.267%

Table 3.3.: Limiter overshoot over allowed threshold

3.2.3.3. Compander

Figure 3.7.:
Compander simulated with parameters as in 3.4. The input signal x(n) is based on test

signal 1 at f = 1000 Hz.

The initial simulation of the combined expander/compressor reveals an issue when imple-
menting a single smoothing filter for both units: The attack time of a compressor refers to
the time it takes to reduce the gain factor g to a value < 1 once the threshold has been ex-
ceeded. The attack time of an expander or noisegate on the other hand denotes how fast the
gain factor returns back to 1 (no gain reduction). For both compressor and expander, a short
attack time compared to the release time is desired. A straightforward implementation would
result in swapped release and attack times for the expander, which produces unacceptable
results.
Therefore, a range check to determine whether the current gain reduction stems from the
compression range or expansion range is included.

3. Simulation 69

Listing 3.2: compander.m: Range check for attack/release coefficients

1 p e r s i s t e n t range ;
2 %. . .
3 i f (rms >= compressor_thresh_ld) %above compressor th resho ld
4 f = −compressor_slope ∗ (rms − compressor_thresh_ld) ;
5 range = 1;
6 e l s e i f (rms <= expander_thresh_ld) %below expander th resho ld
7 f = expander_slope ∗ (expander_thresh_ld − rms) ;
8 range = 0;
9 else % w i t h i n l i n e a r range

10 f = 0 ;
11 end
12 %. . .
13 i f (range == 1) % l a s t gain reduc t ion stems from compression
14 i f (g_temp > g_old)
15 coe f f = r t ;
16 else
17 coe f f = a t ;
18 end
19 else % l a s t gain reduc t ion stems from compression , swap at and r t
20 i f (g_temp > g_old)
21 coe f f = a t ;
22 else
23 coe f f = r t ;
24 end
25 end
26 %. . .

The compander simulation is based on the parameters given in table 3.4 and results in the
output signal as seen in figure 3.7. The first two seconds, the signal is expanded downwards
by the rather steep ratio Rexp. At n/fs = 2s, the signal’s RMS value exceeds the expander
threshold thexp, the short attack tat reverts the gain reduction almost instantaneously. Until
n/fs = 4s, the signal stays in the linear range thexp < RMS(x(n)) < thcomp, no gain
reduction takes place. At second 4, the compressor threshold is exceeded and the output
is attenuated by a factor that increases with each second. At n/fs = 10, this process
successively reverts, albeit slower since the release time is set much higher. As the RMS
level falls below expander threshold at second 17, the signal is finally expanded to near-zero
again.
This also shows the effectiveness of the range check introduced in listing3.2 as the fast attack
both applies when the gain reduction is applied when the RMS value enters compression
range as well as the gain reduction is reverted once the RMS leaves the expansion range.

3. Simulation 70

Parameter Value
compressor threshold thcomp = −10 dB
expander threshold thexp = −15 dB
compressor ratio Rcomp = 2

expander ratio Rexp = 0.1

attack tat = 10 ms
release tr t = 500 ms

Table 3.4.: Parameters for compander simulation

3.2.4. Distortion

Figure 3.8.:
The symmetrical Schetzen clipper and the tube overdrive effect applied on a sinusoid with

f = 73.3Hz. Dashed line: input signal x(n). Solid line: overdrive signals o(n)

The distortion effect algorithms as lined out in section 2.2.2 are coded in overdrive.m, over-
drivetest.m offers simulation of those effects. The outcome of this nonlinear processing block
in the time domain and the frequency domain can be seen in figure 3.8. The simulation pa-
rameters are:

• working point Q = −0.1,

• drive dr = 2.0,

• distortion dist = 8.

The input signal x(n) is a sine with frequency f = 100 Hz, sampled with fs = 48 kHz.
The results are the distorted signals xsymm(n) = osymm(x(n)) and xtube(n) = otube(x(n)).
The symmetric overdrive effect function based on the Schetzen formula osymm(n) solely

3. Simulation 71

adds uneven harmonics to the input, while the asymmetric tube distortion function otube(n)

provides for uneven harmonics as well as even ones.
As can be seen in the spectral domain, even a full range amplitude sinusoid with f1 = 100 Hz
≈ 0.00208fs produces harmonics above the noise floor of the PCM3003 codec at k = 35 or
f35 = 3500 Hz = 0.073 ∗ fs when distorted by osymm(n) with said parameters. This means
that already a sine with f1 ≈ 700 Hz introduces aliasing artifacts above the noise floor, which
only gets worse with increasing fundamental frequency.
This clearly indicates that employment of multirate signal processing is necessary to combat
undesired audible aliasing, as will be covered in the following section.

3.2.5. Multirate signal processing simulation

The previous simulation demonstrated that aliasing images occur when distorting signals
to produce harmonics above fs/2. To enable nonlinear signal processing as lined out in
section 2.2.2, an interpolation of the input signal is required beforehand to avoid aliasing.
The Matlab script upsampling_filter.m provides means to specify the FIR constraints for two
consecutive stages of interpolation/downsampling. It also utilizes the function introduced in
section 3.2.4 to simulate the overdrive effect and analyze the resulting aliasing.

3.2.5.1. Interpolation and half band filter design

To aid with the design of the half band FIRs, the Matlab function firhalfband(n, fp) is uti-
lized, where n denotes the desired filter order and fp the passband edge frequency. The
specification follows these stipulations in order of importance:

• The computational load is to be kept low, so the number of FIR taps N needs to be low
as well.

• The stopband attenuation δs should generally be below −75dB across the stopband.

• The audible frequency range should not be affected by the FIR, i.e. the passband edge
frequency fp should be above 16 kHz.

For a single interpolation stage with upsampling factor L = 2 from sampling rate fs0 = 48

kHz to 2fs0 = 96 kHz, these constraints for the interpolation filter H1(z2) can be met by
setting the passband frequency to fp = 16 kHz and calling firhalfband() with varying filter
orders until the stopband attenuation criterion is barely met.
However, when interpolating by an upsampling factor of L = 4 with Dyadic Cascading,
the filter H2(z4) requires a different approach. It is tempting to allow the same passband
edge frequency (thus effectively doubling the transition width)to achieve a lower filter order.

3. Simulation 72

Figure 3.9.:
Transition band overlap occurs when two halfband FIR filters of a dyadic cascade share the

same passband edge frequency fp

This causes side effects, however. The upsampling from 2 · fs to 4 · f s mirrors the original
spectrum around the new Nyquist frequency 4fs0/2 = 96 kHz. This means that there is an
image of the baseband whose lower passband frequency is f ′p = 80 kHz and lower stopband
frequency is f ′s = 64 kHz, see figure 3.9.
If the second FIRH2(z4) with a sufficient filter order to obtain a stopband attenuation δs = 75

dB now maintained a passband frequency of fp = 16 kHz, the result would be a stopband
frequency of 4fs0/2 − fp = 80 kHz - the transition regions of H2(z4) and the baseband
image would intersect! That would cause a significantly less attenuation than 75 dB in the
region from 64 kHz to 80 kHz. The dilemma is pictured in figure 3.10a.
A possible solution would be to raise the passband edge frequency with the same rate as the
sampling rate, but this disables the possibility to reduce the filter order ofH2(z4) compared to
H1(z2). By doing this, the number of taps needs to stay the same in order to achieve−75dB
attenuation around the Nyquist frequency, yet there are side lobes that are attenuated much
more than specified, see figure 3.10b. This is inefficient filter design.
To keep the order of H2(z4) low while maintaining nearly constant sidelobe maxima levels in
the stopband region and fulfilling aforementioned specifications, an experimental approach
was chosen: The interpolation filter H1(z2) was designed to fit the criteria with N = 27 taps

3. Simulation 73

Filter No of Taps Passband edge frequency
H1(z2) N1 = 27 fp,1 = 16 kHz
H1(z2) N2 = 19 fp,2 = 26.4 kHz

Table 3.5.: Halfband FIR filter parameters

and a passband edge frequency of 16kHz. The parameters for the second FIR are the order
n and the passband edge frequency k · 16 kHz with 1 < k < 2. Next, following algorithm
was established and applied to find an appropriate H2(z4):

1. start with the sub minimum filter tap number N = 3 and passband and k = 1.

2. Raise filter number of taps by N = N + 4.

3. If |H2(96kHz)| > −75 dB, go back to 2. Else 4.

4. Increase k until |H2(96kHz)| ≈ −75 dB.

5. If there are sidelobes in the stopband with |H2(z4)| > −75 dB, go back to 2. Else 6.

6. Apply further fine tuning of k at leisure.

This manual optimization yields the FIR design parameters in table 3.5. The impulse and
amplitude responses of the filters can be seen in figure 3.11, while the response of the
dyadic cascade of both filters H12(z4) is displayed in figure 3.12.

3.2.5.2. Multirate nonlinear processing

To get a sense of how the multirate processing affects the amount of aliasing artifacts after
nonlinear distortion is applied to a signal, the script upsampling_filter.m is used again. To
achieve this, a discrete sine signal x1(n) = sin(2πf1Tsn) with sampling rate fs = 1

Ts
= 48

kHz, n = c ·Ts , c ∈ Z is upsampled twice to yield signals x2(m), m = c · Ts
2

and x4(r), r =

c · Ts
4

. The three signal vectors are then fed to the symmetrical overdrive function osymm(x)

(see equation 2.37) and subsequently their FFT with length N is computed, resulting in the
signals

d1(n) = osymm(x1(n)), D1(l) = F(d1(n))

d2(m) = osymm(x2(m)), D2(l) = F(d2(m))

d4(r) = osymm(x4(r)), D4(l) = F(d4(n))

l = 0, ..., N − 1.

3. Simulation 74

(a)
Cascaded half band filters with constant passband
edge frequency fp1 = fp2 = 16kHz, number of taps

N1 = 26, N2 = 11

(b)
Cascaded half band filters with same number of taps
N1 = N2 = 26 and passband edge frequencies

fp1 = 16 kHz, fp2 = 32 kHz

Figure 3.10.:
Half band filter amplitude response of a dyadic cascade H12(z4) = (H1(z2) ↑ 2) ·H2(z4)

Figure 3.11.: Half band Filters H1(z2) and H2(z4)

3. Simulation 75

Figure 3.12.: Dyadic cascade interpolation filter H12(z4) = (H1(z2) ↑ 2) ·H2(z4)

The spectra are then subjected to the calculation of the THDR as in equation 2.36. How-
ever, only harmonics are taken into account that are located below the Nyquist frequency
of the base sampling period Ts , because harmonics above this frequency are either already
mirrored back due to violation of the sampling theorem, or they will be filtered out by the
decimation FIR. As the SNR of the system is limited to −96 dB by the 16 bit quantization of
the DSP codec, any FFT bins with absolute value below 1.585 ·10−5 · |D(f1)| will be ignored
for this simulation.
As the symmetric overdrive is a static function, the THDR of the distorted signal should be
constant for any fundamental frequency f1 as long as

fk <
fs
2
∀ k | 20 · log10(|D(fk)|) > −96dB

is fulfilled. In words: as long as there are no harmonics above the Nyquist frequency with
level higher the system’s SNR.
As the fundamental harmonic f1 rises, overtones will start folding back into the audible range
once they violate the sampling theorem at fs ; the THDR between 0Hz and 24kHz stays
the same. The same harmonics of the signals d2(m) and d4(r) do not violate the Shan-
non theorem of their respective domain yet - they are not taken into account of the THDR
anymore, which therefore increases. Table 3.6 shows the varying THDR depending on fun-
damental frequency f1 and the upsampling factor. An overdrive function with drive d = 5

was chosen, which makes for an extreme distortion with relevant harmonics up to k = 71.
The odd-looking fundamental frequencies are chosen with respect to the FFT length to avoid
falsification of results due to spectral leakage.
A fundamental frequency of f1 = 16.11 kHz does not have any harmonics in the audible
range. Hence, the THD values in the lowest column exclusively represent aliasing artifacts.
The interpolation by factor L = 2 reduces aliasing by ≈ 38% in this specific setting, in-

3. Simulation 76

Fundamental frequency f1 THDR(D1(k)) THDR(D2(k)) THDR(D4(k))

146.5 Hz 39.33 % 39.33 % 39.33 %
1.464 kHz 39.33 % 39.11 % 39.11 %
4.394 kHz 39.33 % 35.77 % 35.53 %
7.324 kHz 39.33 % 32.52 % 31.24 %
10.25 kHz 39.33 % 12.68 % 4.472 %
13.18 kHz 39.33 % 17.48 % 6.981 %
16.11 kHz 39.33 % 24.49 % 9.192 %

Table 3.6.: Effect of interpolation on nonlinear distortion

terpolation with L = 4 by ≈ 77%. This still seems to be a high amount of aliasing. But
considering that an overdrive effect is usually applied to a full range signal rather than one
band-limited to high frequencies, the alias images are not relevant from a psycho-acoustical
point of view. They are masked by the audible lesser-k overtones of the lower fundamental
frequencies; the human ear will not notice them.

4. Implementation

This chapter explains the details of the implementation of the project application outlined in
the previous section. All source files can be found on the accompanying CD-ROM. A brief
instruction on how to set up and use the application can be found in appendix A.

4.1. MixMaster - D.Module.C6713 Implementation

In this section, the implementation of the DSP routine will be discussed. The program, which
has been christened MixMaster is written by the author in ANSI-C (C-99), with following
exceptions:

• The files uartio.h, uartio.c and bios.h contain support functions shipped with the
D.Module.C6713 kit

• The assembler function FIR_filter_sc() in the file FIR_filter_asm_sc.asm was
received from the digital signal processing laboratory of the Hochschule für Ange-
wandte Wissenschaften Hamburg and was included in this project with courtesy of
Prof. Dr.-Ing. Sauvagerd

• The EDMA and audio codec handling routines in main.h are based on the CCS project
dmod_c6713_dmod_pcm3003_EDMA, which is provided by the board manufacturer
D.Sign.T

4.1.1. Overview of the program structure

The general program flow can be seen in figure 4.1. After the initialization of all subsystems
in main.h (see section 4.1.2), the program enters the main loop for (;;). There, the
UART receiver is polled word-wise; if a transmission is received completely, the message
is processed. Once a complete ADC sample block is received and stored by the EDMA
controller (see section 4.1.3), the interrupt routine edma_complete_int() is called and
sets the block flag. The main loop stops polling the UART and begins with the sample-
wise processing of the received audio signals (see section 4.1.4). After the sample blocks
are processed and the output is provided for DA conversion, metering data is transmitted

4. Implementation 78

over UART to the control application. Due to the problems explained in section 1.1.2.2, the
data will not be handled by the application. Therefore, a detailed explanation of the process
is omitted.
The architecture of this program is highly modularized. Individual signal processing blocks
are externalized into own source and header files, as is the code for handling UART com-
munication (detailed explanation in section 4.3). All global variables are qualified with the
keyword static and thus cannot be accessed from outside their respective translation
unit [30, p. 42]. This ensures that no accidental modification or assignment of invalid val-
ues takes place. Variables can only be accessed via getter and setter functions. Explicit
mentioning of those accessors methods in section 4.1.4 will generally be omitted.

4.1.2. Subsystem initialization

The startup routine of the program consists of two parts - the setup of peripherals and the
initialization of variables and buffers.
All relevant board modules, such as the PLL, EMIF, the SDRAM (Not applicable here) and
the file table for UART support are set up with the bios.h function init_module(). The
McBSP buses are configured with

Listing 4.1: main.c: Initialization of McBSP buses

1 /∗∗
2 con f igu re McBSP0 and McBSP1 t r a n s m i t t e r and rece i ve r :
3 ex te rna l c lock and framesync
4 two 16 b i t data words per frame
5 frame sync a c t i v e high , one c lock delay to data MSB
6 w r i t e data on CLK f a l l i n g edge , read on r i s i n g edge
7 ∗∗ /
8 MCBSP(0)−>spcr = MCBSP(1)−>spcr = 0x02000000 ;
9 MCBSP(0)−>r c r = MCBSP(1)−>r c r = 0x00010140 ;

10 MCBSP(0)−>xcr = MCBSP(1)−>xcr = 0x00010140 ;
11 MCBSP(0)−>pcr = MCBSP(1)−>pcr = 0x03 ;
12 MCBSP(0)−>spcr = MCBSP(1)−>spcr = 0x02010001 ;

The initialization of EDMA is covered separately in section 4.1.3.
Initial values and variable declaration for all signal processing blocks are provided in
the files initial_parameters.h and initial_parameters.c. Each signal processing block
offers an initialization function, such as void limiter_init(void) or void
overdrive_init(void) to clear all state variables and buffers and initialize pa-
rameters.

4. Implementation 79

Figure 4.1.: Overall program flow

4. Implementation 80

4.1.3. EDMA

The EDMA setup and handling was taken mostly unaltered from the board vendor’s demo
project dmod_c6713_dmod_pcm3003_EDMA. The direct memory access is configured in a
way so that the PCM3003 ADC and DAC data transmitted on the McBSP0 and McBSP1
buses are stored in four ping-pong buffers1 (two input, two output buffers) per channel. This
approach greatly reduces processor load when handling converter in/out. Without DMA, the
DSP would have to handle an interrupt each time a new sample value at one of the ADC
occurs. Each interrupt involves the necessity of a context switch and produces a large
computational overhead.
The buffers are arranged as two three-dimensional arrays adcbuffer[channel]
[block][index] and dacbuffer[channel][block][index]. channel de-
notes the ADC/DAC channel the data comes from or is destined to, block is the index of
the ping-pong block (either 0 or 1). index points to one of the elements of the block. The
blocksize of these buffers is set to 1024 short data words, resulting in a requirement of
1024 · 8 · 2 · 2 · 2 = 65534 byte for input/output buffers.
The channels are transmitted in the order 0, 2, 1, 3, 4, 6, 5, 7. This needs to be corrected
before processing starts:

Listing 4.2: dmod_c6713_dmod_pcm3003_EDMA: Correction of channel order

1 i n t channe l_cor rec t ion [8] = {0 , 2 , 1 , 3 , 4 , 6 , 5 , 7 } ;
2 data = b u f f e r [channe l_cor rec t ion [channel]] [b lock] [index] ;

4.1.4. Signal processing

The actual signal processing happens within the main loop of the program. Once a block of
1024 input samples per channel has been received, the processing takes place sample-by-
sample as seen in figure 4.2. The processing itself is handled outside of main.c by individual
translation units. These are discussed briefly. For full documentation, refer to the source
code on the CD-ROM accompanying this thesis.
Each input sample is received as a short 16 bit signed integer value. It is then converted
and further processed as a single precision float until it is truncated back to short when
stored in the output buffer.

1One buffer is being written to/from the converters by the DMA controller, while the other is available to the
main function for signal processing purposes

4. Implementation 81

Figure 4.2.: Program flow of signal processing loop

4.1.4.1. initial_parameters.c/h

These files do not provide any functions. The purpose is to pre-allocate memory for buffers
and provide initial values for filter coefficients, gain factors, dynamic range processing thresh-
olds and others. Several global constants are defined in these two files as well, such
as the sample rate and the number of input channels. All other source files include ini-
tial_parameters.h.
This module provides getters that either provide a single float or a structure struct
stereo_value which aggregates two floats. The former getters are used to boost or
attenuate the channel input (and possibly flip the polarity) and to determine the channel level
that is routed to the overdrive module. The latter are used to obtain the values with which a
single signal (input channel, overdrive) will be routed to the left and right master buses.

4. Implementation 82

4.1.4.2. pan_and_level.c/h

The information about gain factors for all purposes are contained in these files as well as
appropriate functions to obtain them. The gain factor of the input channels has a negative
value if the polarity flip switch in the control surface has been enabled.

4.1.4.3. peak_meter.c/h and rms_meter.c/h

These modules are responsible for calculation of the peak and RMS values of a channel (see
section 2.2.1.1). Since they are depended on the current sample as well as on its history, the
calculation must be invoked by specifying the appropriate channel. This is done by calling
the functions float get_peak(int channel_no, float value) and float
get_rms(int channel_no, float value).

4.1.4.4. limiter.c/h

This is the implementation of the system thoroughly described in 2.2.1.3. The Limiter is used
by calling the function struct dynamics_mono_return limit_value(int
channel, float value, float peak) with channel denoting the channel the
sample is from, value being the current sample value and peak the calculated peak
value. The return structure contains the delayed and limited value and the gain reduction
factor. The input is internally delayed by an amount of samples defined by the constant
LOOKAHEAD_BUFFER_SIZE.

4.1.4.5. sos_filter.c/h

To equalize the input by a cascade of five biquadratic filters, the function float
filter_cascade(int channel, float value) of this module is called for each
sample. Internally, it is checked whether the high pass(filter with index 0) and/or the two peak
equalizers, the high and the low shelving equalizer(indices 1 to 4) are enabled. Then, the
input value is filtered with all equalizers of the specified channel that haven’t been switched
off in the Matlab control software.
Each of the filters is a second order system implemented with Transposed Direct Form II
structure [31, pp. 214-215].

4. Implementation 83

4.1.4.6. compander.c/h

Similar to limiter.c, this module processes the dynamic range of the input and returns a
structure containing the processed value as well as the gain reduction factor. The funcion
to call is struct dynamics_mono_return compand_value(int channel,
float value, float rms) and compresses or expands the argument value based
on the rms value. Compressor and expander can be enabled or disabled individually via
Matlab control software. Opposed to the limiter, the output of this function is not delayed.

4.1.4.7. overdrive.c/h

The overdrive module splits the processing into two parts: the input buffering and the dis-
tortion calculation/output. Since the overdrive effect is potentially driven by more than one
channel, the function call void overdrive_input (float value) adds the func-
tion argument to the input buffer. There will be no further processing until the function float
overdrive_output() is called: The input buffer is then taken and interpolated by a
factor depending on the currently selected overdrive type. The upsampled values are then
distorted (and high pass filtered in the case of tube distortion to reject DC components) and
decimated back to the original sampling frequency. Then the input buffer is reset to zero and
the distorted and decimated sample is returned.

4.1.4.8. fastmath.c/h

This module provides approximation algorithms for various mathematic operations. See sec-
tion 4.4.1.2 for details.

4.1.4.9. param_exchange.c/h

Functions to communicate with the control software via UART are provided by this module.
It receives new parameters from the Matlab application and calls the other modules’ ap-
propriate setter functions to put those new parameters into effect. Details can be found in
section 4.3.

4. Implementation 84

Figure 4.3.: The GUI of the Matlab control software

4.2. Matlab App Designer GUI for DSP remote control

The Matlab App Designer, basically an IDE within the Matlab IDE offers a quick way to
prototype user interfaces for complex Matlab programs as well as the possibility to package
them into Apps that can be distributed easily. The heart of such an application is a binary
file with .mlapp extension. This file cannot be read or altered with an external text editor.
Instead, the App Designer pre-generates function stubs and provides the ability to edit these
functions’ body. While it would be possible to program the entire control application with in
this file that has been christened MixMaster Control Utility, the individual components are
externalized into separate classes and functions. The control software user interface can be
seen in figure 4.3.

4.2.1. Purpose of the control software

The goal of the MixMaster Control Utility is to provide the operator with a clear and
self-explanatory interface to control the parameters of the signal processing on the
D.Module.C6713. The application can be seen in figure 4.3. A detailed explanation of its
functions is given in appendix A.
The leftmost two third of the UI represent the controls for an individual input channel, the
signal flow of the channel can be traced roughly from top left to bottom right. There is an

4. Implementation 85

individual layer of controls for each input channel.
In the upper right corner, the operator can select between three plots to visualize current
characteristics. The first two display the equalizer’s amplitude response and dynamics’ static
curve of the currently selected channel. The third plot displays the overdrive characteristic.
It has to be kept in mind that the plots are calculated within the Matlab software without feed-
back from the DSP. However, section C show that those simulated blocks can be regarded
as identical to the actual processing.
The lower right part of the GUI offers the user to control the parameters of the overdrive
effect and the master levels of the DAC outputs.

4.2.2. Software architecture overview

The application’s general approach features object-oriented design and its associated
traits such as encapsulation of data and inheritance. The connection between classes
is outlined in the class diagram seen in figure 4.2.2. Entry point of this program
is the aforementioned MixMasterControlUtility, which in turn instantiates the classes fil-
ter_manager, dynamics_manager, gain_manager, overdrive_manager, serial_manager and
UIAxes_view_handler.
The files parameter_id.m, channel_id.m and filter_id.m provide enumerations to distinguish
between different types of filters, channels and parameters. This avoids magic numbers or
invalid values in method calls. transmission_codes.m provides a lookup table for identifier
characters used in serial communication with the D.Module.C6713.

4.2.3. Object-oriented design paradigm and software patterns in
Matlab

As Matlab was not originally created with object orientation in mind, some features are rather
haphazardly implemented compared to established programming languages that are de-
signed around the concept of this paradigm, such as C++ or Java. Nevertheless it is possi-
ble to realize familiar concepts like interfaces, inheritance and collections of objects with the
Matlab syntax.

4. Implementation 86

Fi
gu

re
4.

4.
:S

im
pl

ifi
ed

cl
as

s
di

ag
ra

m
of

th
e

M
ix

M
as

te
rC

on
tro

lU
til

ity

4. Implementation 87

4.2.3.1. Object orientation

To obtain functions with consistent states over multiple calls, the keyword persistent can
be utilized. Objects with persistent states must be defined as classes in separate files and
then instantiated. The following listing shows an example class:

Listing 4.3: demo_class.m: Example of a Matlab class

1 c lassde f demo_class < handle
2 p r o p e r t i e s (Access = p r i v a t e)
3 hidden_value ;
4 end
5 p r o p e r t i e s (Access = p u b l i c)
6 pub l i c_va lue = 5;
7 end
8 methods (Access = p u b l i c)
9 function ob j = demo_class (i n i t i a l _ v a l u e)

10 obj . hidden_value = i n i t i a l _ v a l u e ;
11 end
12 function [new_value , pub l i c_va lue] = do_something (obj , value)
13 obj . hidden_value = obj . hidden_value + value ;
14 new_value = ob j . hidden_value ;
15 pub l i c_va lue = obj . pub l i c_va lue ;
16 end
17 end
18 end

The file begins with the definition classdef demo_class. The < handle denotes
that this class inherits from the super class handle. This is necessary in order to obtain
object references. It is possible to inherit from multiple classes.
Similar to C++, class members have to be defined in blocks that qualify their visibility (line 2
and 5 Access = private and Access = public). The class methods are defined
equally.
To instantiate an object of this class, a constructor must be present which needs to have the
same name as the class itself. Its return value is a reference to the object itself, in this case
called obj. This reference is also used when accessing instance variables, such as in line
10 and 13. As the Matlab syntax does not provide a universal way for an object to reference
to itself (similar to the Java and C++ keyword this), methods that access instance variables
must contain an object reference in the argument, see line 12.

4. Implementation 88

Listing 4.4 shows how to instantiate this demonstration class and how to call its methods:

Listing 4.4: demo_class_test.m: Instantiation and usage of the demonstration class

1 %demo_class_test .m
2 % spec i f y a format to p r i n t to command window
3 formatSpec = ’ P r i va te member hidden_value : %d ; p u b l i c member pub l i c_va lue

: %d \ n ’ ;
4 % i n s t a n t i a t e demo_class w i th value 1
5 demo_instance = demo_class (1) ;
6 % c a l l do_something
7 [a , b] = demo_instance . do_something (1) ;
8 f p r i n t f (formatSpec , a , b) ;
9

10 % change the p u b l i c member other_va lue :
11 demo_instance . pub l i c_va lue = 23;
12

13 % other p o s s i b i l i t y to c a l l do_something :
14 [a , b] = do_something (demo_instance , 1) ;
15 f p r i n t f (formatSpec , a , b) ;
16

17 % t r y to change p r i v a t e member d i r e c t l y , causes e r r o r !
18 demo_instance . p r i va te_va lue = 42;
19 f p r i n t f (formatSpec , a , b) ;

Lines 7 and 14 show the two different ways to call a method on an object. The first makes
use of the dot (.) operator familiar from other object-oriented languages. The second
method treats the method as if it was a static function and passes the object reference as
the first argument. Both calls are equivalent. Running this script produces the output
» demo_class_test
Private member hidden_value:2 public member public_value:5
Private member hidden_value:3 public member public_value:23
No public property private_value exists for class demo_class.

Error in demo_class_test (line 18)
demo_instance.private_value = 42;

4. Implementation 89

Figure 4.5.: The MVC software pattern

4.2.3.2. The MVC pattern

The Model-View-Controller (MVC) is a software pattern for the implementation of graphical
user interfaces [32, pp. 186-191]. It divides software components into the three name-giving
units

Model the underlying data and/or behavior model of the software

View the graphical representation of the data

Controller the user interface elements that enable the operator to alter the data or behavior

This distinction is useful to decouple the data model separate from the GUI elements and
enables to develop an interface prototype without previous knowledge of the underlying me-
chanics such as data transfer to and from the DSP, component interaction and calculation of
derived parameters.
With this pattern in mind, the control software implements the three components as follows:

Model The model consists of the underlying manager classes. These classes hold the cur-
rent states of the signal processing blocks and calculate derived parameters. As an example,
the instance of the filter_manager class maintains member variables that hold the states of
all filters. For each channel, it keeps an array of five biquad filter coefficients. Those get
individually recalculated whenever the method set_parameters(obj, channel,
filter_no, gain, q, frequency) gets called and a new filter parametrization is
passed.

4. Implementation 90

View The MixMasterControlUtility shows figures (precise: Matlab builtin UIFigure objects)
that display the state of the current channel’s filter cascade, its dynamic range processor
characteristic and the characteristic of the overdrive effect. These figures are controlled
by the class UIAxes_view_handler that updates the UIFigure objects whenever the class
receives a broadcast message (see section 4.2.3.3) from the Model classes.

Controller All changeable elements of the MixMasterControlUtility GUI belong to the Con-
troller component of the MVC pattern. Those are all sliders, knobs and buttons, but also
tab groups to switch between input channel controls, equalizer bands and the UIFigure
layers. Each control element is associated with a specific callback function that is in-
voked whenever the user changes the element’s state. Multiple elements share a sin-
gle callback function. For instance, all equalizer gain knobs share the callback function
KnobFilterGainValueChanged(app, event). If a filter gain knob is turned by
the user, the callback first checks which channel is currently active (i.e. which channel tab is
in the foreground) and which filter is active (which tab is selected: lo shelf, lo mid, hi mid, hi
shelf). Then it calls the filter_manager method set_parameters() with the appropriate
channel and filter number as argument as well as the new gain value.

4.2.3.3. The observer pattern

A glance at the class diagram in figure 4.2.2 depicts an implementation of the observer
pattern[32, pp. 192-213]. This design enables the communication between classes by send-
ing and receiving specific broadcast messages. A MixMasterControlUtility class that pro-
vides data which is of interest for multiple classes can inherit from the abstract class param-
eter_subject.

Listing 4.5: parameter_subject.m: The parameter subject super class

1 c lassde f (Abs t rac t = t rue) parameter_subject < handle
2 p r o p e r t i e s
3 ob se r ve r_ co l l ec t i o n
4 c o l l e c t i o n _ l e n g t h = 0;
5 end
6 methods
7 function ob j = reg i s te r_obse rve r (obj , observer)
8 obj . c o l l e c t i o n _ l e n g t h = ob j . c o l l e c t i o n _ l e n g t h + 1;
9 i f (ob j . c o l l e c t i o n _ l e n g t h == 1)

10 ob j . obs e rv e r_ co l l ec t i on = observer ;
11 else
12 ob j . obs e rv e r_ co l l ec t i on = [ob j . obse rve r_co l l ec t i on ,

observer] ;

4. Implementation 91

13 end
14 end
15 function ob j = no t i f y_obse rve r (obj , param_id , ch_id)
16 for i = 1 : ob j . c o l l e c t i o n _ l e n g t h
17 ob j . obs e rv e r_ co l l ec t i on (i) . param_not i fy (param_id , ch_id) ;
18 end
19 end
20 end
21 methods (Abs t rac t = t rue)
22 end
23 end

This class holds an object collection, the observer_collection. Two methods are
provided by the super class, register_observer(parameter_observer) and
notify_observer(parameter_id, channel_id). The counterpart to this class
is the parameter_observer interface2:

Listing 4.6: parameter_observer.m: The parameter observer interface

1 c lassde f (Abs t rac t = t rue) parameter_observer < matlab . mix in .
Heterogeneous & handle

2 methods (Abs t rac t = t rue)
3 y = param_not i fy (param_id , ch_id)
4 end
5 end

This interface does only contain an abstract method param_notify()that is implemented
by the child class.
An object that implements the parameter_observer interface can register itself at any param-
eter_subject by calling register_observer() passing itself as argument. This way,
the subject can inform about changes of its internal state by calling param_notify() on
all registered observers without having to know anything about the specifics of the observer
objects.
An example in this specific case is the class filter_manager, which inherits from parame-
ter_subject and the classes UIAxes_view_handler and serial_manager, both registered ob-
servers of filter_manager. If any filter coefficients change due to user interaction, the subject
calls the method param_notify() with param_id being FILTER to point to the broad-
cast origniator and ch_id specifying the channel of which the parameters changed. The
UIAxes_view_handler class now updates the UIFigure depicting the filter amplitude response
while the serial_manager starts transmission of the new filter coefficients to the DSP.

2Matlab does not support a dedicated interface type in the narrower sense of object orientation, however the
parameter_observer class fulfills the common definition of an interface[33, p. 42]

4. Implementation 92

Listings 4.5 and 4.6 also demonstrate a way of holding object references in a collec-
tion: The class to be aggregated must inherit from the Matlab built-in classes mat-
lab.mixin.Heterogeneous and handle. Now references to different objects of the same type
can be stored in a variable that can be accessed and modified like a common Matlab ar-
ray.

4. Implementation 93

4.3. RS232

The RS232 interface of the D.Module.C6713 supports baud rates of up to 460 kbaud/s. A
high baud rate makes for faster adaption of new parameters and improves the user expe-
rience as changes made are perceived as being adapted immediately. On the other hand,
this might cause the UART FIFO to overflow since the incoming data words are not read with
adequate frequency. A lower rate mitigates this hazard but might cause a noticeable time
delay between the change of user parameters in the Matlab user interface and the adaption
of the change in the signal processing.
To figure out an appropriate baud rate, following considerations are made: All signals are
sampled with 48000 Hz. Thus, the EDMA provides the main loop with a buffer of 1024 new
samples per channel every 21.3ms to process. The processing of samples has priority over
the serial communication and should not be interrupted. Therefore the baudrate must be
low enough to ensure that the FIFO does not overflow during those 21.3ms . It can hold
up to 32 bytes of data and each received byte is framed with a stop bit, so a maximum of
32 · 9 = 288 baud are allowed during this time frame. The result is a maximum rate of
≈ 13.5 kbaud/s. The next lower standard rate is 9.6 kbaud/s, which also happens to be the
value the D.Module.C6713 is configured to by default.

4.3.1. Serial communication from Matlab to DSP

The core of communication with the DSP in Matlab is the serial port object created with
serial [34]. In the control software, the object is constructed and maintained by the class
serial_manager.m with the method serial_init() on application startup:

Listing 4.7: Initialization of the serial object

1 function obj = s e r i a l _ i n i t (ob j)
2 f p r i n t f (’ Creat ing s e r i a l ob jec t . . . \ n ’) ;
3 ob j . se r i a l_hand le = s e r i a l (’COM6 ’ , ’ BaudRate ’ , 9600 , ’ Terminator ’ , ’CR ’ ,

’ DataBi ts ’ , 8) ;
4 ob j . se r i a l_hand le . BytesAvai lab leFcn = @obj . rece iv ing_da ta ;
5 f p r i n t f (’ Opening s e r i a l ob jec t . . . \ n ’) ;
6 fopen (ob j . se r i a l_hand le) ;
7 end

serial_manager implements the parameter_observer interface. Its instance is subscribed to
filter_manager, dynamics_manager, gain_manager and overdrive_manager, thus it receives
broadcast messages whenever a change of parameters in the user interface is made.
Upon broadcast reception, serial_manager.m calls the sender’s appropriate get-
ter function to obtain the new parameters in a D.Module.C6713-specific format (i.e.

4. Implementation 94

get_processed_params(obj, channel) for the dynamic range control parame-
ters).
The majority of data to be transmitted will be arrays of floating point values that represent
numerical data, the number of elements depend on the specific module that had its prop-
erties changed. Each value is converted into an ASCII string that represents the value as
IEEE-conform single precision hexadecimal. For example, the number 1.234 is converted
to the character array ’3f9df3b6’. To identify the purpose of such an array, an additional
identifier is needed. This is a single character which is obtained from the lookup class trans-
mission_codes.m. This identifier leads the message, followed by the converted hexadecimal
strings. A list of identifiers and values can be seen in table 4.1.
After a message of identifier, hex-encoded values and terminator character ’\r’ has been
assembled, it is sent over the COM-port to the DSP by calling the Matlab built-in function
fprintf():

Listing 4.8: Writing data via COM port

58 f p r i n t f (ob j . se r ia l_hand le , message) ;

obj.serial_handle references the member variable that points to the serial object,
message contains the string to be sent.
An example: The operator changes a parameter of the overdrive. The lookup ta-
ble returns the transmission code ’R’ for overdrive parameters. The actual values are:
Overdrive type is 2 (the tube overdrive), drive factor dr = 0.5, working point q =

−0.4, distortion dist = 10. These values represented as IEEE single precision hex-
adecimals are 0x4000 0000 (type), 0x3f 00 0000 (drive factor), 0xbecc cccd (work-
ing point) and 0x4120 0000 (distortion). Thus, the message sent to the DSP would
be the string ’R400000003f000000becccccd41200000\r’. On the DSP side, the module
param_exchange.c/h is responsible for receiving and dispatching these messages. While
the main loop is busy waiting for the EDMA to provide a new block of input samples, it re-
peatedly calls the function void check_for_messages(void). Each call polls the
board’s UART FIFO and, if data has been received, reads one character. The character is
stored in a message buffer. If the received character is the agreed upon terminator (carriage
return, 0x0D), the transmission is complete. An internal dispatcher function is called that
looks up the appropriate message destination according to the identifier character.
The received string is then segmented into substrings of eight characters beginning with the
first after the identifier - the floating point values converted to ASCII strings. Those char
arrays are converted back to float data types. A check is then performed whether the
received floating point values are valid numbers (neither +Inf, -Inf or NaN). If one or
more floating point numbers are invalid, the message is ignored. If each number passed this
check, the transmission is deemed successful and the setter function that is associated with
the identifier character is called with the received values as arguments. In both cases, the
message buffer is cleared afterwards and the FIFO is emptied.

4. Implementation 95

4.3.2. Serial communication from DSP to Matlab

Since the data sent from the DSP will not be used by the control software in a meaningful
way, this section will be kept brief.
An array of values relevant to the metering will be stored in the memory, such as highest peak
value of a channel or master bus or flags whether a limiter became active. After processing
a block of samples, one of those values or an aggregation of flags will be transmitted. The
functionality is provided by param_exchange.c, which takes care of UART communication.
Entry point to the transmission are the functions send_int(char param_id, int
data) and send_float(char param_id, float data). Both convert the ar-
gument data to a string consisting of the according ascii number characters. param_id
is an identifier for the control software. The resulting string is then sent by calling the bios.h
function int send_char (char c) character by character.
The class serial_manager of the control software takes care of the reception of data. Upon
creation, the serial object is assigned a callback function which is called whenever data has
been received via UART (BytesAvailableFcn):

Listing 4.9: Assignment of a callback function to the serial object

26 ob j . se r i a l_hand le . BytesAvai lab leFcn = @obj . rece iv ing_da ta ;

The referenced function receiving_data assembles the message by buffering it until
the agreed upon terminator is transmitted (’\r’), then notifies UIAxes_view_handler, a
subscriber of the serial_manager, via broadcast about new metering data.

4. Implementation 96

ID Type Parameters in order
’A’ Channel 1 high pass filter a1, a2, b0, b1, b2

’B’ Channel 1 low shelving filter a1, a2, b0, b1, b2

’C’ Channel 1 low peak filter a1, a2, b0, b1, b2

’D’ Channel 1 high peak filter a1, a2, b0, b1, b2

’E’ Channel 1 high shelving filter a1, a2, b0, b1, b2

’F’ Channel 2 high pass filter a1, a2, b0, b1, b2

’G’ Channel 2 low shelving filter a1, a2, b0, b1, b2

’H’ Channel 2 low peak filter a1, a2, b0, b1, b2

’I’ Channel 2 high peak filter a1, a2, b0, b1, b2

’J’ Channel 2 high shelving filter a1, a2, b0, b1, b2

’K’ Channel 1 levels input gain ,
to overdrive ,
to master bus L,
to master bus R

’L’ Channel 2 levels as above for ch 2
’M’ Overdrive and master levels overdrive to master bus L gain factor,

overdrive to master bus R gain factor,
master bus L to DAC 0,
master bus R to DAC 1

’N’ Channel 1 on/off switch states ch 1 polarity flip,
ch 1 high pass enabled
ch 1 EQ enabled
ch 1 limiter enabled
ch 1 expander enabled

’O’ Channel 2 on/off switch states as above for ch 2
’P’ Channel 2 Dynamics parameters ch 1 limiter threshold

ch 1 compressor threshold
ch 1 expander threshold
ch 1 compander attack
ch 1 compander release
ch 1 compressor slope
ch 1 expander slope
ch 1 makeup gain

’Q’ Channel Dynamics parameters as above for ch 2
’R’ Overdrive parameters overdrive type

drive factor dr
tube working point q
tube distortion dist

Table 4.1.: Transmission codes and trailing values

4. Implementation 97

4.4. Performance analysis and measurements

The implementation is accompanied by an ongoing judgement of the quality and correctness
of the signal processing with electronic measurement devices as well as biological ones,
namely the ears. Problems during the implementation can be discovered quickly by a trained
ear. However, certain problems are discovered quickly even by the layman when listening
carefully: for example, performance problems due to inefficient algorithms cause audible
dropouts.
This section covers the detection and solving of problems that occurred during the project
and measurements wrapping up and validating the implementation.

4.4.1. Performance considerations

During the process of the implementation, several adjustments had to be taken to improve
the result. They can be divided in two general groups: those made with intention to improve
the performance in terms of quality, and those to improve performance in terms of speed.

4.4.1.1. Quality performance adjustments

These adjustments were undertaken in order to yield a better quality of the signal processing
by increasing SNR, reducing distortion or by making the real result match the theoretical
more closely.

Alternative filter structure for biquad filter section The transposed direct form II (TDF2),
which is the underlying structure of this project’s biquadratic filter implementation, derives its
difference equation directly from the coefficients of the corresponding transfer function. This
results in the fact that a real system with finite precision has a low density of possible poles
along the real axis and around z = +/- 1 compared to the high density around z = +- j. This
potentially affects the high pass and low shelf filters in this project, whose cutoff/center fre-
quencies can be trimmed very low compared to the sampling frequency[11].
This can be mitigated through the use of a different filter structure, such as the Gold&Rader
structure[35]. Opposed to the TDF2, it alters the denominator feedback path of the filter as
seen in figure 4.6, so that the multipliers are not equivalent to the transfer function coefficients
a0, a1 and a2 but from the real and imaginary parts of the poles r · cos(φ) and r · sin(φ).
This makes for an even distribution of poles across the whole area within the unit circle.
Measurement shows that an implementation does not yield better results in terms of cutof-
f/center frequency accuracy nor SNR. The latter makes sense since the biquadratic filters
operate on single precision floating point arithmetic and have an ideal SNR of 138 dB due

4. Implementation 98

to the 23-bit mantissa, while the audio codec quantizes with 16 bit and offers an SNR of
90 dB [36]. Both structures make for a quantization noise that is well below the noise floor
introduced by the converters and does not influence the audio quality.
As this structure does not yield benefits but increases the number of multiplications per output
sample and introduce a delay into the signal path, the Gold&Rader filter is not employed.

+ +

z−1

×

×

+

×

z−1

×

x(n)

y(n)

r cos(φ)

r sin(φ)

r cos(φ)

−r sin(φ)

Figure 4.6.: Gold & Rader filter structure of recursive IIR part

4.4.1.2. Speed performance considerations

As the processing blocks grow in number during implementation, it is inevitable that the
computation time needed for certain blocks increases the maximum time available given by
the real time constraints of processing a continuous audio stream. This is the case when
the EDMA finishes receiving a full block of audio samples from the codec before the main
loop finished processing the current block. This causes audible dropouts. In this case, an
identification of the bottleneck in the processing chain is required first, then the problematic
block must be optimized if possible.
A helpful tool for identifying code parts that require a high amount of cpu time is the CCS
Simulator. It allows the execution of code on a virtual C6000 Hardware and provides detailed
analysis about the load that individual functions cause. The simulator for code profiling is set
up according to the guidelines of the digital signal processing laboratory of the Hochschule
für Angewandte Wissenschaften Hamburg [37]. Further modifications must be made to the
project to simulate it successfully; a run with the project as-is results in the error message

4. Implementation 99

Figure 4.7.: Profiling of functions of a CCS project

TMS320C671X: Error: Illegal opcode (403a0000) at
pc = 0xb00085ec
This issue occurs due to the memory limitations of the profiler [38] and can be resolved by
setting the constant BLOCKSIZE = 1024; to a smaller value such as 64. This limits the
size of the buffer per channel the EDMA reads and writes. Since peripherals such as the
audio codec are not simulated, this does not have any impact on the simulation. Figure 4.7
shows an example of profiling with CCS.
With this tool at disposal, several critical functions have been identified and optimized to be
able to process the incoming audio without risking dropouts.

Variable upsampling factor for overdrive effect The distortion effects calculation and the
accompanying interpolation have the highest demand on CPU performance by a big margin.
As can be seen in equation 2.38, the tube overdrive routine requires the calculation of two
exponential functions and two divisions per call, and due to the upsampling by factor L = 4

the routine is called four times per input sample.
Figure 3.8 shows that the envelope of harmonics produced by the tube overdrive decays sig-
nificantly faster with increasing harmonic number k than the symmetric distortion. Therefore,
a reduction of the upsampling factor to L = 2 when the tube distortion is active while main-
taining L = 4 for the symmetric effect is a viable option. This way, performance is increased
without compromising the suppression of aliasing artifacts unduly.

4. Implementation 100

Fixed-point implementation of Overdrive effect To further optimize the symmetric over-
drive effect, a fixed point implementation is undertaken instead of the initial floating point
calculation:

Listing 4.10: Fixed point implementation of symmetric overdrive

129 short sch e t z en_d i s t o r t i o n (short value) {
130 temp_i = value ∗ o v e r d r i v e _ s a t u r a t i o n ;
131 i f (temp_i > SCHETZEN_THRESHOLD_2) {
132 temp_i = FULL_SCALE;
133 } else i f (temp_i < −SCHETZEN_THRESHOLD_2) {
134 temp_i = −FULL_SCALE;
135 } else i f (abs (temp_i) < SCHETZEN_THRESHOLD_1) {
136 temp_i ∗= 2;
137 } else {
138 i f (temp_i > 0) {
139 temp_i = (t r i p l e _ f s − f as t_sq_shor t ((short) (doub le_ fs_sqr t −

((t r i p l e _ f s _ s q r t ∗ temp_i) / FULL_SCALE)))) / 3 ;
140 } else {
141 temp_i = −(t r i p l e _ f s − f as t_sq_shor t ((short) (doub le_ fs_sqr t

+ ((t r i p l e _ f s _ s q r t ∗ temp_i) / FULL_SCALE)))) / 3 ;
142 }
143 }
144 return (short) temp_i >> 1;
145 }

This ensures that this effect can be utilized at 4× Upsampling without causing dropouts.

Approximation of mathematical functions The side chain signal paths of the dynamic
range processors are based on calculations of power and exponential functions, the square
root and the binary logarithm. These operations are very expensive in terms of CPU cycles
and although the native math.h C-library is highly optimized, it provides more accuracy than
is needed: The side chain does not affect the audio signal directly, but via a gain factor that
is low pass filtered with a time constant that is long compared to the period of low frequency,
so a moderate margin of approximation errors in this path is acceptable.
For this reason, the library fastmath.h was developed and included in the project that provides
approximations for the aforementioned functions

• float fast_sq(float value) simply multiplies the argument with itself re-
turns the result. This is not an approximation. The library math.h does not provide a
dedicated function to square a value, instead the function double pow (double
base, double exponent) is supposed to be used. Since the exponent is eval-
uated at runtime, calling pow() is not the optimal choice.

4. Implementation 101

• float fast_sq_short(short value) is the equivalent to float
fast_sq(float value) for computing the square of 16 bit signed integer
values.

• void fast_sqrt(float number, float *result) calculates the
square root of the passed number and stores the result at the address in the ar-
gument. It is based on the fast inverse square root algorithm first established in the
video game Quake III Arena from id Software. This algorithm shifts the IEEE-conform
floating point value and subtracts a magic number to obtain a good first estimation for
the following two iterations of the well-known Newton method [39].

• void fast_log2(const float *value, float *result) has the
purpose of calculating the binary logarithm of a single precision number. The function
achieves this by setting the result’s integer part to the exponent of the argument; the
fractional part is calculated by evaluating the logarithm’s taylor series at the value of
the argument’s mantissa.

4.4.2. Final measurements

With the DSP source code being undergone several re-factorizations and aforementioned
optimizations, concluding measurements to validate the expected outcome of the simulations
are required. Plots of the measurements can be found in Appendix C.

4.4.2.1. Measurement setup and equipment

The measurements performed in this project fall in the two categories that require differ-
ent setups: frequency domain analysis and time domain analysis. Both are shown in ap-
pendix B.

Time domain analysis, development and debugging This domain is analyzed by record-
ing the DSP response of test stimuli. Those are wave files created in Matlab. Playback and
recording of signals is done via Windows 7 PC with the DAW Cockos Reaper. In/Out is han-
dled by a Focusrite Saffire PRO 24 audio interface. Rehearsal of audio was done via HEDD
Type 07 studio monitors.
The same setup was used for the entire development and debugging stage of the project as
well.

4. Implementation 102

Frequency domain analysis For measurements in the frequency domain, such as
THD + n and amplitude response, the Audio Precision System Two Cascade Plus audio
analyzer is utilized. The audio codecs PCM3003 operate at a full scale input/output level of
1.9Vpp which equals to−1.29 dBU . All measurements with the Audio Precision System Two
will be conducted with a test signal level of −3 dBU unless noted otherwise.

4.4.2.2. Reference measurement

The first measurements are undertaken in order to evaluate the capabilities of the
D.Module.C6713. For this, the CCS project dmod_c6713_dmod_pcm3003_EDMA is utilized.
When programmed with this example provided by the board vendor, no signal processing will
take place apart from routing all input channels of the PCM3003 codecs to the according out-
put channels. The frequency response can be seen in figure C.1. This shows that a low pass
filter with noticeable passband ripple is in effect. This is presumably caused by the digital
decimation and interpolation filters of the codec input/output stages and lies within the spec-
ifications.
Figures C.2 and C.3 show the noise floor and the distortion of the DSP when excited with a
sine with f = 1 kHz at −3 dBU . The System 2 reading gives a noise floor of 0.057% and a
THD of 0.006%.

4.4.2.3. Parametric equalizer

The critical point of the filter section is the high pass filter with cutoff frequency f0 = 20

Hz, since this is the lowest frequency to which the filter can be tuned and here the negative
effects of finite precision are potentially most significant. However, figure C.4 proves that
concerns are not necessary and the −3 dB center frequency lies exactly at 20 Hz as was
set via Matlab control surface.
To evaluate the performance of the parametric equalizer, it is set according to the specifi-
cations in table 3.1. Compared to figure 3.2b, the behavior as seen in plot C.5 is nearly
identical. There is a significant difference in the range 50 Hz to 150 Hz: The DSP shows a
’flattened’ curve with a maximum at ≈ 4.8 dB opposed to the simulated ≈ 5.2 dB. Reason
for this is that the graph was recorded at −6 dBu by mistake, disregarding the fact that the
expected maximum result of +5.2 dB exceeds the maximum output of the codec and causes
clipping. Nevertheless - with this in mind, interpolating the plot at this frequency region, it
can be assumed that the behavior of the DSP is equally as expected when given appropiate
level adjustments.

4. Implementation 103

4.4.2.4. Overdrive

The overdrive functions are measured with fundamentals f1 at several different frequencies.
The higher frequencies will be covered in section 4.4.2.5 in the context of multirate process-
ing. Here, figure C.6 displays the resulting symmetric distortion function of an input sine
with f = 250 Hz and drive factor dr = 2. Figure C.12 shows a tube distortion with funda-
mental frequency f1 = 500 Hz, drive factor dr = 2, working point Q = −0.1 and distortion
dist = 8. These parameters are equivalent to the ones in 3.2.4. Since the resulting total
harmonic distortion is highly depending on the input signal level, the direct THD values of
simulation and measurement won’t be compared; a visual comparison has to suffice.
The distorted signals strongly resemble the spectra plotted in 3.8, the envelope of the har-
monics behave similar. The tube distortion produces odd and even harmonics with steep
roll-off, while the symmetric distortion provides a slower decay of exclusively odd harmon-
ics.

4.4.2.5. Multirate processing

To evaluate the effect of multirate processing on aliasing suppression with a nonlinear sys-
tem, the two overdrive functions are re-evaluated with higher fundamental frequencies of
f = 10kHz and f = 14 kHz respectively. The results are shown in figures C.6 to C.17.
The parameters are the same as in the previous section. The results are listed in table 4.3
and show that interpolation of a signal before distorting it is in fact a very helpful technique
for avoiding aliasing.
If a sine with a level −3 dBU and a fundamental frequency f that is small compared to the
sampling rate fs is distorted with the symmetric overdrive effect with drive factor dr = 2,
a spectrum as seen in figure C.6 is the result. The levels of the harmonics relative to the
fundamental (k = 1) are read and gathered in table 4.2.
Now, considering a sine of f = 10 kHz with the same level, the highest overtone can be
found at k = 3 or 30 kHz with a level relative to the fundamental of −11dB, followed by
k = 5/50 kHz with −17 dB. With a sampling frequency of 48 kHz, both harmonics violate
the Nyquist theorem and theoretically fold back into the audible spectrum to |fs − 30 kHz
| = 18 kHz (k = 3) and |fs − 50 kHz | = 2 kHz (k = 5). And indeed, looking at figure 4.8a
reveals that this configuration produces the exact levels of aliasing at the frequencies 18 kHz
and 2 kHz.
If the same signal is upsampled to 4 · fs = 192 kHz before distortion, other results are ex-
pected: As the passband edge frequency of the interpolation FIR filters is set to fp = 16 kHz,
aliasing is supposedly suppressed by a big margin. Only harmonics within the band c · 192

kHz ±fp, c ∈ N will fold back into the base band unattenuated. For c = 1, those are the
harmonics k = 19 and k = 21 which are expected at the baseband frequencies 2 kHz and
18 kHz respectively.

4. Implementation 104

k relative level k relative level
1 0 dB 13 −42 dB
3 −11 dB 15 −40 dB
5 −17 dB 17 −42 dB
7 −24 dB 19 −47 dB
9 −32 dB 21 −56 dB

11 −54 dB 23 −71 dB

Table 4.2.:
Amplitude of the k-th harmonics relative to the first harmonic of a distorted sine with −3

dBU . Distortion: symmetric overdrive effect, drive factor dr = 2.

Fundamental frequency f1 250 Hz 500 Hz 10 kHz 14 kHz
THD+ n Symmetric, no upsampling 31.55% - 31.55% 31.51%

THD+ n Symmetric, 4x upsampling 31.58% - 0.92% 1.99%

THD+ n Tube overdrive, no upsampling - 35.28% 34.25% 28.94%

THD+ n Tube overdrive, 2x upsampling - 35.26% 32.19% 2.78%

Table 4.3.: Effect of interpolation on nonlinear distortion

As 4.8b shows, this is indeed where the aliasing artifacts with the highest level show up, with
the image of k = 19 matching exactly the value from table 4.2, while the artifact produced
by k = 21 is approximately 3 dB higher than expected. This may be due to superposition of
several artifacts.
When re-simulating with upsampling_filter.m (see section 3.2.5) under given conditions (In-
put level at −1.7 dBFS, fundamental frequency f = 10 kHz, drive factor dr = 2),
the simulated THDR shows the following: THDR = 30.6% without upsampling and
THDR = 0.59% when the input signal is interpolated by factor L = 4 beforehand. These
values are in the same order of magnitude as the actual measurements and strongly suggest
the correctness of our implementation of both the distortion effect as well as the multirate pro-
cessing As could be shown, by means of upsampling with factor L = 4, a significant amount
of the aliasing artifacts as seen in figure 4.8a could be reduced to the spectrum in figure 4.8b.
In these plots, the symmetric distortion of a sinusoid with frequency f = 10 kHz and a drive
factor dr = 2 is shown. The System Two reading indicates a THD + n of 30.12% for
the setup without any upsampling. As the input signal does not have uneven harmonics in
the audible range, the total harmonic distortion entirely stems from aliasing artifacts. Inter-
polation by factor L = 4 before applying the distortion effect to the same signal results in
figure 4.8b. The THD + n reading dropped to less than 1%.

4. Implementation 105

(a) Symmetric overdrive without interpolation

(b) Symmetric overdrive with 4× interpolation

Figure 4.8.:
Spectrum of distorted sinusoid f = 10 kHz, −3 dBU with and without interpolation.

Distortion: symmetric overdrive effect, drive factor dr = 2.

4. Implementation 106

4.4.2.6. Dynamic range processing

The setup for measurements in the time domain turned out to be suboptimal: The Focus-
rite Saffire PRO 24 audio interface introduced significant noise when recording the DSP
responses. The lack of calibration tools made exact level control difficult. Nevertheless, the
results strongly suggest a correct implementation when visually compared to the outcomes
of the dynamics simulation.
To measure the limiter, a test stimulus with the following properties was create: A sine with
frequency f = 1 kHz is increased in level from 0.0 to 1.0 with steps of 0.1 every second,
then decreases back to 0.0 with the same step frequency/magnitude (compare to simulation
test signal 2). The result can be seen in figure C.18. The upper graph displays the stimulus,
the center is the limiter response with threshold th = −3 dBFS. There is noticeable vari-
ance in the gain reduction when compared to the simulated limiter. The suspicion arises that
this is caused by the approximation of the fastmath.h functions. The lower plot reinforces
this impression: Swapping out the function fast_log2() in favor of log2() from the
standard math.h library produces far more accurate results. The deviation of the gain control
when the input signal’s amplitude is at full scale is approximately 0.05 or 6.8%. This is a
significant difference and bears the question whether the binary logarithmic approximation is
acceptable.
Figure C.19 shows the DSP response to the stimulus with activated compressor (center)
or expander (bottom). The parameters are as in table 3.4. As said before, the measure-
ment setup skews results and absolute threshold values are estimated. But comparing the
recorded file’s amplitudes and envelopes to the simulation outcome in figure 3.7 likely sug-
gests a correct implementation of the dynamic range processors.

5. Conclusion

A system model was conceptualized that emulates the most common foundational blocks of
modern digital audio mixing consoles while enabling an operator to control various system
parameters via remote control. Based on this model, a prototype was first simulated module-
wise and afterwards implemented on a D.Module.C6713 DSP development kit in combination
with a Matlab App Designer remote control application
The individual signal processing blocks parametric equalizer, panorama, dynamic range
control and overdrive effect were successfully simulated in Matlab. The blocks can be
parametrized with properties that are familiar to a console operator without having to know
about the internals of such systems.
During simulation of the overdrive effect, it became clear that the nonlinear distortion causes
aliasing that cannot be neglected. Thus, a model for multirate signal processing was con-
ceived and simulated to mitigate aliasing artifacts. The interpolation filters were optimized for
a compromise between computational efficiency and stopband rejection. For this purpose,
the concept of half band FIR filters has been utilized.
The successful simulation enabled an effective implementation on the D.Module.C6713 DSP
development kit. Temporary performance issues have been combated with various optimiza-
tion techniques, such as approximation of processor taxing mathematical functions, partial
refactoring of algorithms as fixed-point implementation and variable interpolation factors.
The Matlab-based parameter control application was implemented following an object-
oriented paradigm and utilizes modern software design principles and patterns. This ensures
readability of the code base, provides scalability and simplifies the addition of new functional
blocks.
The DSP and the Matlab application communicate via serial connection and employ a simple,
proprietary protocol to exchange data. The user experience proves that the communication
of new signal processing is reliable, changes in the control software are adopted quickly by
the DSP without noticeable delay.
The transmission and decoding of data from DSP to control software has been implemented
but due to the bad performance of Matlab App Designer applications for live display of mea-
surement data, the topic of metering has eventually not been pursued further. Concluding
measurements proved the successful implementation of both control application and DSP
program. The measured results match the simulations perfectly. The interpolation of the
audio signal prior to its distortion reduces aliasing to a negligible amount.

6. Outlook

As this project was conceived as a prototype rather than as a fully fleshed out product, the
code base is occasionally frail and delicate when operated outside of the specification. The
first step to further improve the mixing including effects application would be to make the code
more robust. An improved data transmission protocol with implementation of ’ACK’/’NAK’
flags to acknowledge successful transmission of data (or request retransmission respec-
tively) comes to mind. A handshake protocol between DSP and control application could be
established to resynchronize parameters when inconsistencies happen due to a fault in the
transmission line. Comprehensive range checks of parameters could be employed in order
to ensure no invalid values will be assigned to any variables relevant for signal processing.
Further, the system was designed with scalability in mind. The amount of input channels is
not hard coded into the software and is expandable easily. As the overdrive effect (which
is the processing block that requires the most cpu time) does not scale with the number of
channels, the DSP should be capable to process more input channels without requiring much
more optimization.
A glance at the DSP’s noise floor reveals that noise is biased towards low frequencies. This is
suboptimal from a psychoacoustic point of view, as low frequent noise is perceived as more
disturbing as at high frequencies. A noise shaping algorithm in combination with dithering at
the output stage could improve the sound quality further.
Different other effects, such as a reverberator could be added to either replace the overdrive
block or - after further performance optimization - be operated in parallel with the existing
effect.
Finally, the question has to be asked whether the audio codec PCM3003 is suitable for this
kind of application. A sampling rate of 48 kHz and 16 bit quantization is not really competi-
tive in this day and age as even digital mixing desks in the lowest price segment offer 24 bit
resolution and sampling rates of 96kHz are becoming a norm rather than an exception.

Bibliography

[1] A. Kupke, “Aufsetzen und Debuggen eines CCSv5.5-Projektes für D.module.C6713
DSP mit CODEC D.module.ADDA16,” February 2015, accessed: 2017-07-28.
[Online]. Available: https://www.haw-hamburg.de/fileadmin/user_upload/TI-IE/Daten/
Labore/Digitale_Signalverarbeitung/pdfs/CCS5.5_dmod6713adda16-Projekt.pdf

[2] Electronic Industries Association, Engineering dept., “Interface between data termi-
nal equipment and data communication equipment employing serial binary data inter-
change,” Electronic Industries Association, Washington, Tech. Rep., 1969.

[3] T. Görne, Tontechnik, 2nd ed. Hamburg: Carl Hanser, 2008.

[4] MIDAS Consoles, MIDAS XL4 Live Performance Console, Klark Teknik Group, Kidder-
minster, 1994.

[5] H. Schmidt, “Audio Program Level, the VU Meter, and the Peak-Program Meter,” IEEE
Transactions on Broadcasting, vol. 22, no. 1, March 1977.

[6] D. A. Bohn, “Constant-Q Graphic Equalizers,” Journal of the Audio Engineering Society,
vol. 34, no. 9, September 1986.

[7] E. van Buskirk, “Analysis: Metallica’s Death Magnetic Sounds Better In Guitar
Hero,” September 2008, accessed: 2017-07-27. [Online]. Available: https:
//www.wired.com/2008/09/does-metallicas

[8] E. B. Union, “Loudness Metering: ’EBU Mode Metering To Supplement EBU R
128 Loudness Normalization,” European Broadcasting Union, Geneva, TECH 3341,
January 2016, accessed: 2017-07-28. [Online]. Available: https://tech.ebu.ch/docs/
tech/tech3341.pdf

[9] F. T. Agerkvist, “Volterra Series Based Distortion Effect,” in Proc. 129th AES Convention,
no. 8212. San Francisco: Audio Engineering Society, November 2010.

[10] H. Zumbahlen (Editor), Basic Linear Design. Analog Devices, 2007.

[11] U. Zölzer, Digitale Audiosignalverarbeitung, 2nd ed. Stuttgart: B.G.Teubner, 1997.

https://www.haw-hamburg.de/fileadmin/user_upload/TI-IE/Daten/Labore/Digitale_Signalverarbeitung/pdfs/CCS5.5_dmod6713adda16-Projekt.pdf
https://www.haw-hamburg.de/fileadmin/user_upload/TI-IE/Daten/Labore/Digitale_Signalverarbeitung/pdfs/CCS5.5_dmod6713adda16-Projekt.pdf
https://www.wired.com/2008/09/does-metallicas
https://www.wired.com/2008/09/does-metallicas
https://tech.ebu.ch/docs/tech/tech3341.pdf
https://tech.ebu.ch/docs/tech/tech3341.pdf

Bibliography 110

[12] R. Clark, E. Ifeachor, G. Rogers, and P. van Eetvelt, “Techniques for Generating Digital
Equalizer Coefficients,” Journal of the Audio Engineering Society, vol. 48, no. 4, April
2000.

[13] H. Korhola and M. Karjalainen, “Perceptual Study and Auditory Analysis on Digital
Crossover Filters,” Journal of the Audio Engineering Society, vol. 57, no. 6, June 2009.

[14] R. Bristow-Johnson, “The Audio EQ Cookbook,” 2004, accessed: 2017-07-23. [Online].
Available: https://shepazu.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html

[15] U. Zölzer and M. Holters, “Parametric Recursive Higher-Order Shelving Filters,” in Proc.
120th AES Convention, no. 6722. Paris: Audio Engineering Society, May 2006.

[16] K.-D. Kammeyer and K. Kroschel, Digitale Signalverarbeitung, 5th ed. Wiesbaden:
Springer Fachmedien, 2002.

[17] M. E. Frerking, Digital Signal Processing In Communication Systems, 1st ed. New
York: Van Nostrand Reinhold, 1994.

[18] U. Zölzer (Editor), DAFX Digital Audio Effects, 2nd ed. Chichester: John Wiley & Sons,
2003.

[19] H. Haas, “The Influence of a Single Echo on the Audibility of Speech,” Journal of the
Audio Engineering Society, vol. 20, no. 2, March 1972.

[20] J. Blauert, “Räumliches Hören,” in Handbuch der Audiotechnik, 1st ed., S. Weinzierl,
Ed. Berlin, Heidelberg: Springer, 2008, ch. 3.

[21] V. Pulkki, “Virtual Sound Source Positioning Using Vector Base Amplitude Panning,”
Journal of the Audio Engineering Society, vol. 45, no. 6, June 1997.

[22] A. D. Blumlein, “British Patent Specification 394,325 (Improvements in and relating to
Sound-transmission, Sound-recording and Sound-reproducing Systems,” Journal of the
Audio Engineering Society, vol. 6, no. 2, April 1958.

[23] N. Fliege, Multirate Digital Signal Processing, 1st ed. Chichester: John Wiley & Sons,
1994.

[24] H. W. Schüßler, Digitale Signalverarbeitung 1 - Analyse diskreter Signale und Systeme,
4th ed. Berlin, Heidelberg: Springer, 1994.

[25] L. R. Rabiner, J. H. McClellan, and T. W. Parks, “Chebyshev Approximation for Nonre-
cursive Digital Filters with Linear Phase,” IEEE Transactions on Circuit Theory, vol. 19,
no. 2, March 1972.

https://shepazu.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html

Bibliography 111

[26] W. Fraser, “A Survey of Methods of Computing Minimax and Near-Minimax Polynominal
Approximations for Functions of a Single Independent Variable,” Journal of the ACM,
vol. 12, no. 3, July 1965.

[27] T. Sandmann, Effekte und Dynamics, 6th ed. Bergkirchen: PPV Medien, 2007.

[28] I. Dash, “True Peak Metering - a Tutorial Review,” in Proc. 136th AES Convention, no.
9041. Berlin: Audio Engineering Society, April 2014.

[29] D. Shmilovitz, “On the Definition of Total Harmonic Distoriton and Its Effects on Mea-
surement Interpretation,” IEEE Transactions on Power Delivery, vol. 20, no. 1, January
2005.

[30] P. van der Linden, “Expert c programming: Deep c secrets,” accessed: 2017-
08-15. [Online]. Available: http://www.electroons.com/8051/ebooks/expert%20C%
20programming.pdf

[31] R. Chassaing and D. Reay, Digital Signal Processing and Applications with the
TMS320C6713 and TMS320C6416 DSK, 2nd ed. Chichester: John Wiley & Sons,
2008.

[32] S. Kleuker, Software Engineering, 3rd ed. Wiesbaden: Springer Vieweg, 2013.

[33] A.-T. Schreiner, Object-Oriented Programming with ANSI-C. Axel-Tobias Schrein-
er/Lulu, October 2011.

[34] “serial (Official Matlab documentation),” accessed: 2017-08-24. [Online]. Available:
https://de.mathworks.com/help/matlab/ref/serial.html

[35] R. Lyons, “Improved narrowband low-pass IIR filters in fixed-point systems [DSP tips &
tricks],” IEEE Signal Processing Magazine, vol. 26, no. 2, March 2009.

[36] Texas Instruments, PCM3002 / PCM3003 Data Sheet, October 2004.

[37] A. Kupke, “Code Profiling im Simulator,” February 2013, accessed: 2017-08-15.
[Online]. Available: https://www.haw-hamburg.de/fileadmin/user_upload/TI-IE/Daten/
Labore/Digitale_Signalverarbeitung/pdfs/CCS5_ProfilingCode_de.pdf

[38] T. Support, “Tms320c671x: Error: Illegal opcode (403a0000) at pc = 0xb00085ec
illegal opcode at pc = 0xb00085ec,” January 2012, accessed: 2017-08-15. [Online].
Available: https://e2e.ti.com/support/dsp/tms320c6000_high_performance_dsps/f/115/
p/157856/575226

[39] C. Lomont, “Fast Inverse Square Root,” February 2003, accessed: 2017-08-15.
[Online]. Available: http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf

http://www.electroons.com/8051/ebooks/expert%20C%20programming.pdf
http://www.electroons.com/8051/ebooks/expert%20C%20programming.pdf
https://de.mathworks.com/help/matlab/ref/serial.html
https://www.haw-hamburg.de/fileadmin/user_upload/TI-IE/Daten/Labore/Digitale_Signalverarbeitung/pdfs/CCS5_ProfilingCode_de.pdf
https://www.haw-hamburg.de/fileadmin/user_upload/TI-IE/Daten/Labore/Digitale_Signalverarbeitung/pdfs/CCS5_ProfilingCode_de.pdf
https://e2e.ti.com/support/dsp/tms320c6000_high_performance_dsps/f/115/p/157856/575226
https://e2e.ti.com/support/dsp/tms320c6000_high_performance_dsps/f/115/p/157856/575226
http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf

Glossary

abstract a type of classes, properties and methods related to the object-oriented software
paradigm. Classes with abstract members or declared as abstract cannot be instanti-
ated and must be inherited from instead. 89

aliasing violation of the Nyquist sampling theorem. Any signal with frequency f > fs/2 folds
itself back to an aliasing artifact f ′ < fs/2. If fs/2 < f < 3 · fs/2, then f ′ = |fs − f |.
18, 60

bleeding when recording several acoustic sources simultaneously with microphones in
close proximity to the sources, these microphones will also pick up the sources far-
ther away. This kind of signal crosstalk is called bleeding. 32, 62

BNC Bayonet Neill Concelman, a lockable connector used for coaxial cable. 18

busy waiting repeatedly checking whether the state of a variable/flag/mutex has been
changed by another thread, process or interrupt. 93

CCS Code Composer Studio. An IDE for programming and debugging Texas Instruments
devices. Based on the open source IDE Eclipse. 17

clipping strictly limiting a signal to a certain threshold, clipping off anything that exceeds
this level. Causes high amount of harmonic distortion. 31

codec Portmanteau of coder and decoder. A device for en- and decoding digital data
streams, such as digital audio. 18

context switch occurs when a CPU switches to a different environment/thread, i.e. to han-
dle an interrupt. Program counter, stack pointer and register values are stored away
and later reloaded to commence the computing once the interrupt handling is finished.
79

CPU cache fast on-chip memory. CPUs often have several levels of cache. These are
denoted by an L1, L2, L3,.. prefix. Lower numbers are equivalent to faster memory. 17

Glossary 113

D.I. box Direct Injection box, small devices that are put in between signal source and mix-
ing desk for reasons like impedance conversion, galvanic isolation or balancing of an
unbalanced signal. 24

DAW a Digital Audio Workstation is a computer software for mixing, recording, editing and
producing audio files. 36, 100

dBU Level with reference value 0.775V . Predominant in Europe. 23, 101

dBV Level with reference value 1V . Predominant in USA. 23

dBFS Full Scale level, amplitude of a signal relative to the maximum amplitude a device can
handle before clipping occurs. 14

DMA Direct Memory Access allows for peripherals to read from and write to memory inde-
pendent from the CPU. A DMA controller handles the interaction of hardware subsys-
tems and central processing unit, relieving the latter from the task of data transmission.
17, 76

dropout Partial loss of samples in a signal stream. Cause can be a faulty connection or a
processor that is not powerful enough to handle the signal stream without interruption.
96, 97

DSP Digital Signal Processor, specialized microprocessor, optimized for signal processing
applications. 12, 17

Dyadic Cascading Interpolation or decimation with factor 2k , k ∈ N by cascading k inter-
polation/decimation stages with factor 2. 50, 70

EMIF External Memory InterFace, bus protocol for communication between processors and
memory devices such as SDRAM or memory-mapped peripherals. 77

FIFO First In, First Out describes a data buffer and the method with which data is handled
on the buffer: The oldest (’first’) data in the buffer will be processed first. 20

GUI Graphical User Interface, interaction with program by enabling the use of icons or other
visual indicators. 14

I2C Inter-Integrated Circuit, serial data bus for communication between a microcontroller and
peripheral integrated circuits. 17

IDE Integrated Development Environment, a software application for software development
that provides a comprehensive toolchain from source code editing to build automation
and debugging. 17, 18, 83

Glossary 114

Loudness War The desire of audio engineers and producers to mix their music as loud as
possible. This resulted in an ongoing trend of increasing audio levels in records over
the years that has been ill-received by many critics. 31

magic numbers An anti-pattern in software architecture. This refers to the use of arbitrary
numbers in source code (arguments of function calls or calculations) instead of unam-
biguously named constants. This practice severely impairs the intelligibility of code.
84

makeup gain a compressor attenuates signal segments above a certain threshold. The
compressor’s makeup gain then boosts it in level again so the signal increased in
loudness overall. 32

P.A. Public Address system, a sound amplification system meant to play back music or
speech at high volume to a big audience at a conference, a concert hall, a stadium or
similar. 34

phantom power switchable dc voltage source applied to the balanced wires of a micro-
phone input. Intended to power condenser microphones, D.I. boxes and other active
circuits. 23

PLL Phase Locked Loop, control system utilized (among other uses) for generating stable
clock signals. 77

plug-in additional software for DAWs that expand on their functionality and provide digital
effects or virtual instruments. 36

ringing artifacts the artifact that occurs due to a non-monotonic, oscillating step response
of a filter. They can be audible, especially when filtering percussive or other signals
rich in transients. 39

RS 232 Standard for serial communication. 12

SDRAM Synchronous Dynamic Random-Access Memory, a type of random access mem-
ory. 17, 77

SPI Serial Peripheral Interface, protocol for communication between devices in a mas-
ter/slave configuration. 17

SRAM Static Random-Access Memory, a type of random access memory, generally faster
than dynamic RAM. 17

Glossary 115

static (C keyword) functions and global variables qualified as static are only visible within
the translation unit they are declared in. Local variables qualified as static is al-
located at compile time and keeps its value beyond its scope, i.e. stays persistent
between multiple function calls. 77

threshold the level at which a dynamics processor starts operating, either when the signal
exceeds the threshold or when it falls below. 30, 52

translation unit the output file of the C preprocessor that is to be compiled. Contains the
.c source file (with all macros expanded) as well as all header files specified by an
#include directive. 77

VLIW Very Long Instruction Word processor architecture allows for execution of multiple
instructions in parallel. 17

A. Instructions for setup and operation
of the MixMaster application

This section provides a brief instruction on how to start and operate the thesis project on
DSP and on PC. For further questions, feel free to inquire Prof. Dr. Jürgen Vollmer at
the Hochschule für Angewandte Wissenschaften Hamburg about the contact details of the
author.

Prerequisites To start the MixMaster mixing and effects application, following electronic
and physical resources are needed:

• D.Module.C6713 DSP development kit with D.Module.PCM3003 audio codec daughter
card

• Windows 7 PC with CodeComposerStudio v.5.5 and Matlab v.R2016b

• Spectrum Digital XDS510 USB JTAG emulator

• USB-to-Serial converter

• The Code Composer Studio project MixMaster V2

• The Matlab App Designer project MixMasterControlUtility

As the COM port for communication with the DSP is hard coded into the MixMasterControlU-
tility, the first step is to find out which COM port the USB-to-Serial converter occupies on the
pc hosting the App Designer application. This can be done via Windows device manager.
Then, an appropriate modification must be undertaken in the file serial_manager.m:

Listing A.1: serial_manager.m: Setting up COM port

25 ob j . se r i a l_hand le = s e r i a l (’COM6 ’ , ’ BaudRate ’ , 9600 , ’ Terminator ’ , ’CR ’ ,
’ DataBi ts ’ , 8) ;

Here, ’COM6’ has to be replaced with the actual port.
In the unfortunate case that the CCS project is supposed to run on a DSP board where the
ADC and DAC connectors have been poorly soldered, specifically: where the pin rows 0 and

A. Instructions for setup and operation of the MixMaster application 117

Figure A.1.: Overview of the MixMasterControlUtility user interface

1 as well as the rows 31 and the 32 have been swapped by accident, an offset has to be
set:

Listing A.2: main.c: offset for in/out port correction

32 #define MORON_OFFSET 4

With this constant, input/output ports 4 and 5 of the D.Module.PCM3003 will be utilized in-
stead of 0 and 1. If not needed, set MORON_OFFSET to 0.

Program start To ensure proper audio pass-through without dropouts, select the MixMas-
ter v2 project in CCS and navigate to Project→ Properties→ Optimization. Make sure that
’Optimization level’ is set to ’3’. Start debugging the program (F11) but do not yet run it.
The MixMasterControlUtility can be started by double-clicking the MixMaster.mlapp file.
Once the control surface has loaded, run the DSP program (F8).

Operation of the MixMasterControlUtility Once both the MixMaster and the control utility
are running, operation is straightforward. The MixMasterControlUtility presents itself as seen
in figure A.1.

1. With this tab group, the operator can switch between the input channel layers. Doing
so sets all channel-specific control elements to the position according to the selected

A. Instructions for setup and operation of the MixMaster application 118

channel. If ’Filter’ or ’Dynamics’ is selected in the figure view, the plot changes accord-
ing to the selected channel’s settings as well

2. The input gain and high pass section precondition the signal. Both high pass and
polarity flip can be enabled and disabled via the switches.

3. On the left side of this box, the parametric equalizer band can selected by clicking on
one of the four tabs. The on/off button enables disables all equalizers of this channel,
not just the currently selected band.

4. The limiter and compander section can be enabled individually. The limiter processes
the signal before the compander gain factor is calculated. The attack and release
applies to both compressor and expander; the limiter operates on hard coded time
constants.

5. The upper of the two knobs in the aux routing section determines the attenuation with
which the channel signal will be routed to the overdrive effect input. The lower of the
two knobs does not have any use yet.

6. The slider determines the attenuation factor applied to the signal before routed onto
the master bus, the panorama knob distributes between left and right master bus.

7. This tab group enables switching between the figures to display. Filter shows the
current amplitude response of the selected channel’s high pass and equalizer section.
Dynamics display the static curve of limiter, compressor and expander. Overdrive
displays the static curve of the distortion effect.

8. In this box, the overdrive effect parameters can be set. The drop down menu enables
the choice of overdrive, however, the type ’exponential’ is not yet implemented. En-
abling it basically bypasses the effect. For ’Symmetric’ type, only the knobs ’Drive’
affects the characteristic of the distortion. ’To L/R’ routes the distorted signal back
onto the master bus.

9. The master bus section enables control over the attenuation with which the master
buses are

A. Instructions for setup and operation of the MixMaster application 119

Known issues As the MixMaster is not a fully finished application, it can sometimes
display erratic behavior or lead to program crashes. A list of known issues and possible
workarounds:

• After startup, the DSP may not react to any parameter changes made in
the MixMasterControlUtility. This is likely caused by an optimization is-
sue where the compiler changes the behaviour of the parsing function
parse_float_from_hex_string(char *string) in param_exchange.c
so that floating point values can no longer successfully be parsed from ASCII strings.
A workaround is to restart CCS, set compiler optimization to ’off’, clean, build and run
the project. Run the program and verify that parameter changes in the GUI are now
adopted by the DSP. Quit debugging and reset optimization to ’3’, rebuild and run. The
system should now behave as expected.

• The parameters of GUI application and DSP are not synchronized. If one of both
components are restarted, or changes in the MixMasterControlUtility are made while
the serial connection is interrupted, the parameters shown in the GUI are not consis-
tent with the actual DSP parameters. Thus it is recommended to always restart both
application when one needs to be reset or when the connection has been interrupted.

• The figures displaying the filter amplitude response and the dynamics characteristic
do not take into account the state of the various on/off switches.

• Rarely it occurs that due to a crash or a software bug, the Matlab serial object is
not deleted properly. This results in a Port not available error when restarting the
MixMasterControlUtility. Matlab (not just the App Designer!) has to be restarted in
order to run the control software again.

• Aforementioned error can be triggered by trying to re-run the application while there
still is an instance running. Always close the control software before attempting to run
it again.

• As discussed before, elements for metering and visual feedback (i.e. ’Limiter Active’
lamp) purposes are in place but not in use. This may or may not change with future
updates of the Matlab App Designer.

B. Pictures of measurement setups

Figure B.1.: Setup for development, debugging and time-domain measurements

B. Pictures of measurement setups 121

Figure B.2.: Setup for frequency-domain measurements at Jünger Audio GmbH

C. Measurements

Figure C.1.:
Magnitude response of the DSP with all signal processing blocks disabled. 0dBr = −3dBu

C. Measurements 123

Figure C.2.: Noise floor of DSP. 0dBr = −3dBu

Figure C.3.:
THD+n measurement of DSP with all signal processing blocks disabled. 0dBr = −3dBu

C. Measurements 124

Figure C.4.: High pass filter with cutoff frequency f0 = 20Hz. 0dBr = −3dBu

Figure C.5.: Filter cascade with specification as in table 3.1. 0dBr = −6dBu

C. Measurements 125

Figure C.6.:
Spectrum of symmetric overdrive with fundamental frequency f1 = 250Hz, drive dr = 2, no

interpolation. THD + n = 31.55%

Figure C.7.:
Spectrum of symmetric overdrive with fundamental frequency f1 = 250Hz, drive dr = 2,

4× interpolation. THD + n = 31.58%

C. Measurements 126

Figure C.8.:
Spectrum of symmetric overdrive with fundamental frequency f1 = 10kHz, drive dr = 2, no

interpolation. THD + n = 30.12%

Figure C.9.:
Spectrum of symmetric overdrive with fundamental frequency f1 = 10kHz, drive dr = 2,

4× interpolation. THD + n = 0.92%

C. Measurements 127

Figure C.10.:
Spectrum of symmetric overdrive with fundamental frequency f1 = 14kHz, drive dr = 2, no

interpolation. THD + n = 31.51%

Figure C.11.:
Spectrum of symmetric overdrive with fundamental frequency f1 = 14kHz, drive dr = 2,

4× interpolation. THD + n = 1.99%

C. Measurements 128

Figure C.12.:
Spectrum of tube overdrive with fundamental frequency f1 = 500Hz, drive dr = 2, working

point Q = −0.1, distortion dist = 8, no interpolation. THD + n = 35.28%

Figure C.13.:
Spectrum of tube overdrive with fundamental frequency f1 = 500Hz, drive dr = 2, working

point Q = −0.1, distortion dist = 8, 2× interpolation. THD + n = 35.26%

C. Measurements 129

Figure C.14.:
Spectrum of tube overdrive with fundamental frequency f1 = 10kHz, drive dr = 2, working

point Q = −0.1, distortion dist = 8, no interpolation. THD + n = 34.25%

Figure C.15.:
Spectrum of tube overdrive with fundamental frequency f1 = 10kHz, drive dr = 2, working

point Q = −0.1, distortion dist = 8, 2× interpolation. THD + n = 32.19%

C. Measurements 130

Figure C.16.:
Spectrum of tube overdrive with fundamental frequency f1 = 14kHz, drive dr = 2, working

point Q = −0.1, distortion dist = 8, no interpolation. THD + n = 28.94%

Figure C.17.:
Spectrum of tube overdrive with fundamental frequency f1 = 14kHz, drive dr = 2, working

point Q = −0.1, distortion dist = 8, 2× interpolation. THD + n = 2.78%

C. Measurements 131

Figure C.18.: Limiter measurement

C. Measurements 132

Figure C.19.: Compander measurement

Versicherung über die Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach
§16(5) APSO-TI-BM ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfs-
mittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen
habe ich unter Angabe der Quellen kenntlich gemacht.

Hamburg, August 29, 2017
Ort, Datum Unterschrift

	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Scope of this thesis
	1.1.1 Functional specification
	1.1.2 Technology

	1.2 Mixing desks: an overview
	1.2.1 Structure of analog mixing desks
	1.2.2 Outboard Gear
	1.2.3 Structure of digital mixing desks

	2 Signal processing fundamentals
	2.1 Linear processing
	2.1.1 Parametric biquadratic filters
	2.1.2 Panorama
	2.1.3 Multirate signal processing

	2.2 Nonlinear processing
	2.2.1 Dynamics processing
	2.2.2 Harmonic distortion and overdrive

	3 Simulation
	3.1 Concept and goal of the simulation
	3.2 Results
	3.2.1 Parametric biquad filter simulation
	3.2.2 Panorama simulation
	3.2.3 Dynamic range control simulation
	3.2.4 Distortion
	3.2.5 Multirate signal processing simulation

	4 Implementation
	4.1 MixMaster - D.Module.C6713 Implementation
	4.1.1 Overview of the program structure
	4.1.2 Subsystem initialization
	4.1.3 EDMA
	4.1.4 Signal processing

	4.2 Matlab App Designer GUI for DSP remote control
	4.2.1 Purpose of the control software
	4.2.2 Software architecture overview
	4.2.3 Object-oriented design paradigm and software patterns in Matlab

	4.3 RS232
	4.3.1 Serial communication from Matlab to DSP
	4.3.2 Serial communication from DSP to Matlab

	4.4 Performance analysis and measurements
	4.4.1 Performance considerations
	4.4.2 Final measurements

	5 Conclusion
	6 Outlook
	Bibliography
	Glossary
	A Instructions for setup and operation of the MixMaster application
	B Pictures of measurement setups
	C Measurements

