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Kurzzusammenfassung
Diese Arbeit beschreibt eine alternative Implementierung des Basic Immune Simulators (BIS)
mittels des Multi-Agent Simulation and Research (MARS) Frameworks. Hauptsächlich aufgrund
seiner fachlichen Logik ist die Implementierung umfangreich, komplex und daher schwer
wartbar. Eine Modelreduzierung durch eine globale Sensitivitätsanalyse (GSA) anstrebend,
fokussiert sich die Arbeit primär auf die Durchführung von GSAs mit MARS. Das primäre
Ergebnis ist ein Batchsimulationssystem (BSS). Die Arbeit erklärt die Verwendung von MARS
BIS sowie des BSS und evaluiert beider Implementierungsstände. Während generell GSAs mit
MARS möglich sind, macht eine GSA von MARS BIS der Zeit keinen Sinn.
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Title of the paper
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Abstract
This thesis introduces another implementation of the Basic Immune Simulator (BIS) using
the Multi-Agent Simulation and Research (MARS) framework. Mainly due its functional logic
the implementation is extensive, complex and thus expensive to maintain. Targeting a model
reduction through global sensitivity analysis (GSA), this thesis primarily focus on GSA with
MARS. The primary result is a batch evaluation system. Finally the thesis gives an usage
examples of the new toolset and evaluates its and MARS BIS’ current state. The evaluation
shows, that MARS generally is capable to do GSAs. But it does not make sense to apply a GSA
on MARS BIS, yet.
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1. Introduction

1.1. Motivation

Sensitivity analysis estimates the in�uence of certain model input factors on their output
values. It can empirically identify factors, which are non-in�uential. Input factors can enable
or disable certain model features (Saltelli et al. 2008). Thus sensitivity analysis can evaluate
their in�uence on the simulation outputs, on which the answers of a research question base.
In conclusion it is possible to reduce the model complexity by removing model parts with low
importance (for a certain research question). Beside model reduction sensitivity analysis is also
useful for other applications, including model calibration, uncertainty analysis or dominant
controls analysis (Pianosi et al. 2016).

Multi-agent based models can map single individuals and their interactions quite directly.
Thus this method is on the one hand useful to create representations of complex systems.
On the other hand, it often raises the question, which aspects of the individuals in the real
system to model, if the role of certain aspects in the mapped system is not fully understood.
Each new modelled aspect leads to a more complex model and eventually the maintaining
of a model functional and technical exceeds the available developer resources. Multi-agent
based simulations have a high demand of computional resources depending on the amount
individuals.

Advised software design and usage of a proper simulation system tackles the problem techni-
cally. The Multi-Agent Research & Simulation (MARS) group1 at the HAW Hamburg develops
the equally named system (Hüning et al. 2016). Model libraries hide several technical aspects
of agent based simulation and support the creation of modular models. MARS’ cloud service’s
allow to separate the management of input data and simulation result analysis from the model
itself. Further MARS aims to scale well with the available computer resources.

1www.mars-group.org; The author of this thesis is member of the group.
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1. Introduction

The immune system is essential for the human body, since it is able to identify a great variety
of danger’s sources and to �ght them. Even more, the complex system is able to learn and to
give a quicker and stronger response, if a similar situation occurs (Neumann 2008). Beside the
classical research methods of biologist on a complete living systems or parts of it, computer
simulations allow to watch all variables of interest in a system on ethically uncritical resources.
Many aspects are still subject of research. For example there are even multple theories, how
the immune system keeps the information about former attacks (Neumann 2008). The required
amount of agents easily can be high even with strict focus on small body parts, because a
human body hosts billions of immune cells (Neumann 2008). Further the diversity of the
immune cells is high.

The author developed an implementation of the Basic Immune Simulator by Folcik, An, and
Orosz (2007) using MARS. While both implementations basically share the functional model
logic, the MARS implementation’s architecture di�ers. The technical design was done from
scratch and integrates several features and paradigms from MARS. With the implementation
almost �nished the question arises, how to go ownward with the results.

One problem of both implementations is clearly their extent. The original implementation has
around ten classes, which each has thousands lines of code. Meanwhile the MARS implementa-
tion has hundred of classes, which are smaller than the classes of the original implementation.
Overall, there is no signi�cant di�erence regarding the amount of code. Improvements of
MARS have the potential to technically reduce the source code size. Another approach is to
evaluate more closely, if really all of the many classes are required for achieving the simulation
outcomes, which Folcik, An, and Orosz (2007) observed (and in�uenced their conclusions).

1.2. Goals

A primary goal of this thesis is to build a framework based on MARS for sensitivity analysis.
The thesis demonstrates, how well the resulting system works. It should identify potential
areas of improvements.

Another important target of the thesis is to document the design of the alternate Basic Immune
Simulator. Further the objective is to evaluate the implementation state of the MARS Basic
Immune Simulator. An ultimate goal is to reach a state, which actually allows to apply
sensitivity analysis methods on the latter.

2



1. Introduction

1.3. Structure

The second chapter describes the summarizes knowledge for the following chapters. Its contents
comes mostly from the works of others. The subsections introduce the immune system in
general, agent based models of the immune system, the original Basic Immune Simulator, as
well as the MARS simulation system. Finally the greatest part of the second chapter summarizes
several aspects of sensitivity analysis. The topic order is somehow chronological. Great parts of
the MARS based Basic Immune Simulator exist before the author started to study the sensitivity
analysis methods.

The third chapter describes the design of the MARS Basic Immune Simulator implementation.
After an overview, several subsections explain design decisions and public interfaces of the
components. The overall goal is, that the third chapter is a guide for another developer to get
along with the project structure and the used concepts.

The fourth chapter starts with requirements, which must be met to support sensitivity analysis
(as described by chapter two) with MARS. It suggests a work�ow, which merges the common
sensitivity analysis process with the typical model evaluation procedure using MARS. The
fourth chapter continues with a more detailed design description of tools, which the author
developed to support the suggested work�ow.

The �fth chapter mainly is a tutorial, which shows the usage of the previously described tools.
It additionally shows, how well the presented systems work. First a section outlines the used
environment. The next section shows, how to do evaluations of the Basic Immune Simulator
implementation. The �nal subsections describe the sensitivity analysis with an example model,
and the results.

The sixth chapter discusses the conclusions from the previous chapters in relation to the
introduction and the goals it de�ned. Finally the last chapter contains the conclusion and
outlook.

3



2. Related work

2.1. Introduction of the immune system

The decentralized human immune system consists of trillions of cells and antibodies (Schütt
and Broeker 2009). There are dozen of di�erent specialized cell types. Depending on its type a
cell either belongs to the innate or the adaptive immune system. While the innate immune
system is able to detect and �ght almost every danger since birth the adaptive immune system
trains itself over a life span getting more powerful (Neumann 2008).

The adaptive subsystem is able to �ght intruders like virus by respecting their foreign genetic
structures (antigens) (Neumann 2008). The adaptive immune systems regulates the strength of
the immune response to speci�ed antigens. Also it controls the locality of a speci�ed response.
The adaptive immune response is e�cient. Antigen matched antibodies are produced. Cells
are activated and reproduced, which are specialized to detect and destroy other cells infected
by a speci�ed antigen (Neumann 2008).

To enable the adaptive immune system the innate system must propagate the antigen in-
formation. This is primary done by dendritic cells. After �nding antigen structures, they
present them over their receiptors and move to the lymph nodes of the body, where many
adaptive immune system cells reside (Schütt and Broeker 2009). There a dendritic cell activates
T cells, which match a represented antigen. T cells are developed in the thymus and undergo
a selection, which ensures that for many possible antigen structures matching T cells exist
(Schütt and Broeker 2009).

After activation, cytotoxic T cells search and destroy infected other cells. Meanwhile T helper
cells activate matching B cells, which then produce the antibodies. Also they emit signal
molecules, which stimulate the reproduction of all immune system cells. Further some T helper
cells move to the infection sites. There they attract immune system cells (adaptive and innate)
by production of signal molecules (Neumann 2008).

4



2. Related work

Even after a immune response successfully removed intruders from the body, specialized and
long living T and B cells remain in the body (Schütt and Broeker 2009). They can be activated
by any innate immune system cells presenting the speci�ed antigen. In addition, a low antibody
production is kept up. This way the adaptive immune response starts much quicker if intruders
with the same antigen. Thus the immune system gets stronger with every infection (Schütt
and Broeker 2009).

2.2. Agent based modeling of the immune system

This subsection gives an overview of multiple models of the immune system, which all have in
common, that agents map the immune system cells. In some models, antibodies and antigens
are also agents (M. Bernaschi and Castiglione (2001), Rapin et al. (2010)). In contrast, other
models just represent the amount of antigens and antibodies (Folcik, An, and Orosz (2007),
Song et al. (2012)). Models also di�er regarding their scope. While some concentrate on the
adaptive immune system (M. Bernaschi and Castiglione (2001), Rapin et al. (2010)), others also
represent the cells of the innate immune system (Folcik, An, and Orosz (2007)}, Song et al.
(2012)). In addition, models exist, which model speci�c body parts and their special aspects
(Wendelsdorf et al. 2012).

The related work can be further classi�ed into their approach of antigen representation. One
group of models does not map the molecular structure of antigens, matching antibodies and
cell receptors (Folcik, An, and Orosz (2007), Song et al. (2012), Wendelsdorf et al. (2012)). On
the contrary, other models represent the molecular structures by bit strings (M. Bernaschi and
Castiglione 2001). In this case the number of di�erent bits specify the propability of a match
between antigen and antibody (or receptor). One model uses algorithms and data structures of
bioinformatics to represent molecules (Rapin et al. 2010). The Latter allows the integration of
informations from biological databases.

All models represent most physical and chemical processes simpli�ed. For example, the
agents representing body cells often move randomly (M. Bernaschi and Castiglione (2001),
Wendelsdorf et al. (2012)). However, in�uence of the movement by signals also exists (Folcik,
An, and Orosz (2007), Song et al. (2012)). Many models map the room through grid structures.
There are two and three dimensional spatial representations. Some models split the room into
apart subareas (Folcik, An, and Orosz (2007), Wendelsdorf et al. (2012)). Most models represent

5



2. Related work

the time using simulation steps. Continuous time mapping (e.g. using event driven simulation
(Tay and Jhavar 2005)) is rare.

Some simulators provide a graphical user interface (GUI) for parameter input or visualization
of model aspects (Folcik, An, and Orosz (2007), Sarpe and Jacob (2013)). Simulators without
a GUI often utilize proprietary declaration languages for parameterisation and textual result
output (Wendelsdorf et al. (2012), M. Bernaschi and Castiglione (2001)). Many models only
need several global parameters as input. The model of Rapin, Lund, and Castiglione (2011)
additionally integrates molecular information about antigens and cell receptor from biological
databases.

The huge agent amounts (related to the human cell numbers) are a big challenge for agent
based simulations. Therefore all related works only simulate few cubic millimetre of the body.
Even so the explosive grow of the agent numbers in some simulation scenarios is a prominent
technical challenge for computer science (Folcik, An, and Orosz 2007). Thus some researchers
concentrate on distributing their immune system simulations over many compute nodes
(Wendelsdorf et al. (2012), Andrew Emerson (2007), M. Bernaschi and Castiglione (2001)).

Many fold domains provide requirements regarding information management, visualisation
and distribution to the computer science. Thus it makes sense to base a simulator on a generic
agent based modeling and simulation framework. This way a fold domain can pro�t from
techniques, which were originally developed for another domain. Some existing agent based
immune system simulators are based on frameworks (Folcik, An, and Orosz 2007, Song et al.
(2012)).

2.3. Basic Immune Simulator

Folcik, An, and Orosz (2007) developed an agent based immune simulator to research the
relation between the innate and the adaptive immune system. One important aspect has been
the analysis of the the dendritic cell’s role (Folcik, An, and Orosz 2007).

The environment of the model is divided into three spatial zones (Folcik, An, and Orosz 2007).
One zone represents a part of infected tissue and another one maps a piece of the lymph system.
The last zone is the travel area for agents between the other two zones. A two dimensional
grid represents each zone. Each grid cell can hold an in�nite number of agents (Folcik, An,
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and Orosz 2007). Agents leaving a border reappear on the opposite border. Discrete simulation
steps map the time. The model doesn’t specify a quantitative spatial and temporal mapping.

The agents emit signals and check signal values in their neighbourhood (Folcik, An, and Orosz
2007). For that each grid cell stores the amount of each signal. The signals di�use over the grid
with each simulation step (Folcik, An, and Orosz 2007). Antigens and antibodies are mapped
as signals.

The agents represent immune system cells and tissue cells (Folcik, An, and Orosz 2007). Later
are infection target and reproduction hosts for a virus. Each agent’s logic is based on a state
machine. The agent logic’s input consists of the signal values and agents in the agent’s current
and neighbored spatial grid cells (Folcik, An, and Orosz 2007). After state change, interaction
with other agents and change of signal values an agent can move into a neighbored grid cell.
For that the agent chooses the target grid cell randomly or by the signal values. Agents can
change to another spatial zone over portal agents. Those control and manage the agent’s zone
change and exchange signals between the zones (Folcik, An, and Orosz 2007).

Folcik et al implemented their model in JAVA using the RepastJ framework (Folcik, An, and
Orosz 2007). They published their state machines with textual and graphical description and
the binaries and sources of the implementation’s 2007 version.

2.4. MARS framework and cloud

2.4.1. Overview from the user’s perspective

The Multi Agent Research and Simulation (MARS) framework o�ers a toolset for agent based
simulations. It includes libraries, which support the development of models. Further a cloud
based system manages models, input data, simulations and their results. Resources are divided
into projects and the system provides a simple, user based access handling. At the time of
writing, browser driven, graphical user interfaces exists for resource management, visual
analytics of results and live visualization of spatial simulations.

Models written with MARS are divided into agents and layers. Each agent represent an active
individual of the modelled system and is the instance of a speci�c type (e.g. elephant, immune
system cell . . . ). An agent’s type basically implements the rules of its behavior, whose e�ects
depends on the individual agent’s parameters (including the position in spatial models). The

7
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agent’s environment is divided into layers. Each layer represents a domain speci�c aspect
of the mapped environment (e.g. temperature, concetration of hormone . . . ). A layer can be
passive or active (like the agents).

The MARS library provides basic layers, basic agents and additional, commonly needed com-
ponents. At the moment of writing these layer base types exist:

• Time series layers, which allow agents to query time lines (e.g. global temperature
development of the last 20 years).

• Obstacle layers provide spatial boundaries to the agents.
• Potential �eld layers support agents in �nding certain spatial hotspots.
• Geo Information System (GIS) layers provide geospatial data to the agents.

The MARS libraries provide classes to develop agents based on an sensor, reasoning, action
pattern. An agent’s sensors observe its environment. Their results lead to certain decisions by
the reasoning, which �nally conclude into actions. The latter can be changes of the agent’s
state, its environment or interactions with other agents. Classes exist for geospatial, grid-based
or continuous position management. Additional helper classes support the movement of the
agents. Finally base agents help the model developer with the initial registration at the position
management (for spatial agents) and at the execution engine.

Figure 2.1.: Simple example of MARS’ table based agent initialization.

MARS can initialize agents based on data tables, which the user uploaded before the simulation.
A scenario description provides the mapping of table columns on agent parameters. Each
row corresponds to a certain agent. Figure 2.1 shows an example. The Agent type takes the
parameters age and name. Further the Mapping binds column a of table1 on the parameter
age and b on name (of table1). Based on this information the rows of table1 conclude in two

8
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agent instances. It is possible to map the columns from di�erent tables on an agent parameter.
Also constant values can be assigned. In the example 7 -> age would result in both agents
initialized with an age of 7. Further data on layer and column on time series layer mappings
can be de�ned.

A simulation happens in discrete, constant steps called ticks. Each tick relates to a certain
amount of time, which the model developer de�nes. In each simulation step, MARS triggers all
agents exactly once (e.g. for starting the proposed sensing, reasoning, action pattern). In case
of the proposed pattern the agent then senses, reasons and acts. MARS does not guarantee
an order of execution. But it ensures, that all agents have �nished with one simulation step,
before it proceeds with the next step. Active layers can provide three methods. One is executed
before an actual simulation step. Another one MARS calls together with the agent evaluation.
Finally the third runs after the actual simulation step. Interactions between agents base on
synchronous method calls.

At the time of writing, MARS supports two ways of recording agent information at the end of
each tick. In the legacy mode an agent has to implement a certain interface and implements
its method. The latter provides certain agent data as a dictionary, which the MARS system
will store together with metainformation (e.g. tick) into a database. The modernized recording
separates the output de�nitions from the model (Dalski, Hüning, and Clemen 2017). A result
output con�guration speci�es agent attributes, whose values MARS stores after tick.

2.4.2. Typical simulation workflow using MARS

While previous subsection focus on the model development with MARS, this subsection outlines
the processes and documents around a model evaluation (simulation). The diagram �g. 2.2
shows the (user) work�ow leading to a simulation, the involved documents and their relation.
The dotted arrows visualize references between documents, while the straigh lines show input
/ output relations between processes and documents.

Actually MARS stores all of the documents (except the ones initially uploaded by the user) in
databases. The diagram does not show this relations for clarity.

At the beginning the user uploads Input �les and the Model binary. The following Import

processes the contents, stores it into databases using internal formats and creates a Metadata

resource for every uploaded �le. Basically each Metadata resource contains user de�ned
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metainformation and the internal references to the databases. Further Metadata for tables
provide column informations. The Import process scans a Model binary and identi�es the
agents and layers it provides. Further it analyzes, which input parameters each agent requires
and what attributes it provides for output. Finally the related Metadata document stores the
results of this model re�ection.

Figure 2.2.: Overview about processes and documents involved in a simulation with MARS.

While the Mapping & Parametrization process the user selects a previously uploaded Model

and maps data on its agent’s parameters and layers (see sec. 2.4.1). Further not mapping related
parameters are de�ned, e.g. the simulation duration. A Scenario stores the mapping and the
parameters. MARS does several veri�cation checks on every Scenario. Incomplete (e.g. missing
mapping) or invalid (e.g. not allowed �le type) Scenarios can not be used for following processes.
Meanwhile the user can create Result Output Con�gurations for simulations not using the legacy
output (see sec. 2.4.1).

As soon a Scenario and Result Output Con�guration (for the same model) are complete, the
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user can combine them in a Simulation Plan (process not shown explicitly in �g. 2.2). Based
on the latter, a simulation can be started. This will create a Simulation Run document, which
combines all necessary information to start the Simulation. Further it stores the state of the
Simulation process. Finally it references the Results, which the Simulation generates.

2.4.3. Distributed simulations

A MARS simulation can be distributed. In this case layers and agents are statical spread
over the calculation nodes. Synchronous method calls map the interactions between agents
and layers or other agents. MARS archives that by using proxies (Hüning 2016). Those are
named Agent Shadows in the case of agents. The proxies marshal method calls into network
packages, which MARS then passes to the calculation node hosting the actual agent or layer.
After getting the response, the proxy (Agent Shadow) deserializes it. While MARS creates
layer proxies automatically at simulation start, the MARS AgentShadowingService produces
Agent Shadows on demand by a global unique identi�er. At the time of writing the simulation
distribution features are experimental. The MARS Cloud does not o�er an user interface or
services to manage the required con�gurations. Though this might change in the future. Thus
it is important to design a model distributable, unless this feature is not required. Especially
method calls, which might go over proxies, must be de�ned carefully. Parameters and responses
must be serializable. For example instead of the technical reference to an Agent Shadow, the
global identi�er of its agent must be passed.

2.4.4. Introduction of MARS Cloud’s services

Subsection sec. 2.4.2 outlined the single processes involved in a simulation. This subsection
gives an overview about the MARS Cloud services, which manage the processes. All services
are designed stateless and can have multiple instances. All instances of one service type access
those service’s persistent data directly. But the MARS Cloud architecture requires an instance
of one service type to access another service’s datasets only over the Application Programming
Interface (API). Most service’s APIs base on HTTP, while two services o�er GRPC1 interfaces.
Most HTTP APIs are described as Swagger2 de�nitions, which (as MARS convention) the

1https://grpc.io
2https://swagger.io
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service’s repositories provide in the directory interfaces. The GRPC de�nitions are in the proto

directories of the related service’s repositories.

Table 2.1 gives an overview about the elementary services, their tasks, managed resources
and project3 names. Several services, especially helper services for certain �le formats, are
not listed. The api services are reverse proxies, which handle client requests with applying
authentication and authorization.

Table 2.1.: MARS service overview (*1: mars-result-mongo-query-service)

Service Task Resources Project

File import management - mars-�le-svc
Metadata metadata management Metadata mars-metadata-svc
Scenario scenario management Scenarios scenario-svc
Result Con�g. result cfg. management Result Ouput Con. resultcfg-svc
SimRunner simulation management Simulation-Plans, -Runs sim-runner-svc
SimMonitor sim. progress observation - mars-sim-mon-svc
User user management Users mars-user-svc
Project project management Projects mars-project-svc
TeachingAPI api service, authentication - mars-teachingapi-svc
ResultQuery api service, result access - (*1)

2.4.5. Deployment of the MARS services and simulations

All services and the simulations are deployed as containers (process based virtual machines).
At the time of writing Kubernetes4 orchestrates those containers. Also each simulation runs in
its own container. The MARS SimRunner service builds an initial �le system image for each
Simulation Plan instance. Basically the service packs the simulation runtime environment
together with the model binaries into the image. Then it pushes the image to a global registry.
Kubernetes locates the container for a Simulation Run on a suitable calculation node. The
latter pulls the image and creates a container based on it. The MARS simulation runtime in the

3Repository is the located at https://gitlab.informatik.haw-hamburg.de/mars/REPO_NAME
4https://kubernetes.io/
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container fetches the required input data by direct communication with the MARS services
and databases. Kubernetes balances the load on multiple instances of the same service.

2.5. (Global) Sensitivity Analysis

Figure 2.3.: Typical sensitivity analysis work�ow

The goal of sensitivity analysis is to determine the impact of input factor changes on output
changes of a model’s simulation (Pianosi et al. 2016). Basically all sensitivity analysis ap-
proaches run simulations multiple times with di�erent sets of model parameters, which are
sampled from the input space. Each scalar parameter speci�es the concrete shape of a certain
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input factor. It can just de�ne a model constant or structurally con�gure the model (Saltelli et
al. 2008). Each simulation results in one or more scalar output values. Further the sensitivity
analysis evaluates di�erences in each output’s values in relation to the inputs. The results
are often sensitivity indices, where each index represents the in�uence of an input on the
variability on the output in the given setup. Graphic �g. 2.3 gives an overview about the typical
work�ow. Meanwhile the next subsections will cover certain aspects of sensitivity analysis.

2.5.1. Uncertainty analysis and its relation to sensitivity analysis

Uncertainty analysis evaluates the uncertainness of a model and its simulation results. Mean-
while a sensitivity analysis can estimate, how much each of an models input factors contributes
to the output’s uncertainty (Saltelli et al. 2008). Some researchers also de�ne sensitivity analysis
this way (Saltelli et al. 2004). Thus a sensitivity analysis can follow an uncertainty analysis,
e.g. to determine input factors to be treated with care.

Another connection between the two analyses are the often similar methods. Also uncertainty
analysis can base on multiple model evaluations using di�erent input samples. Since sensitivity
analysis explores the input space, it requires a more complicated sampling strategy (Helton
et al. 2006). But a uncertainity analysis can reuse these more sophisticated samples and the
related model evaluation. Since the �nal additionally costs (e.g. for di�erent post processing
methods) are rather small, analyses often cover uncertainty and factor sensitivity (Pianosi et
al. 2016). Helton et al. (2006) presents an overview about sampling based uncertainty analysis
methods and refers to analyses of uncertainty, which does not originate from the input factors.
Meanwhile the remainder of this thesis focus on sensitivity analysis with MARS.

2.5.2. Types of sensitivity analysis

A local sensitivity analysis only evaluates the e�ect, which a single factor has on its own
(Saltelli et al. 2008). Interactions between multiple parameters are ignored and are not part of
the analysis’ results. Meanwhile the global sensitivity analysis also estimates the in�uence of a
factor through interactions with other factors (Pianosi et al. 2016). It can happen that factors
are in�uential only in combination (Nossent, Elsen, and Bauwens 2011).

Beside doing a quantitative analysis with calculating the sensitivity indices it is also possible to
do a qualitative analysis. This is mostly done by using visualization (Pianosi et al. 2016). One
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powerful diagram type for it, are scatter plots. Saltelli et al. (2008) shows how certain shapes of
the points gives a hint about the in�uence of a parameter on the output. A qualitative analysis
can be helpful to make design decisions for a following quantitative analysis.

2.5.3. Input factors and the output

Before doing a sensitivity analysis the input factors must be de�ned. Since every evaluated
factor is a dimension of the input space (Saltelli et al. 2008), the count of input factors is a
driver of the minimum sample size. Thus the analysis should concentrate on the input factors
of interest and �x the others. If prior sensitivity analysis clearly shows, that certain input
factors have an negligible in�uence, they can be �xed in further experiments (Saltelli et al.
2008).

The sensitivity analysis methods require the input parameters to be numeric values. Some
methods further require them to be from a metric space (Pianosi et al. 2016). In most cases
the sampling generates normalized values between 0 and 1 (Saltelli et al. 2008). For the
transformation of them into the shape expected by the model, the researcher has to specify
the possible ranges for each input factor. It should be considered, that di�erent ranges can
result in di�erent sensitivity analysis results. Thus the latter should be taken with care, if
the ranges are poorly known (Pianosi et al. 2016). If the actual model input is more complex,
the researcher must express certain aspects of the input data (e.g. amount and distribution
of spatial entities) with numeric parameters. The same is the case, if an input factor is the
activation of model parts. One other possible approach is to provide sets of complex input data
/ model implementations and let a numeric parameter decide, which element of the set to use
for a simulation run (Pianosi et al. 2016). Further several sensitivity analysis methods rely on
independent input factors (Saltelli et al. 2008). Finally some methods incorporate the input
distributions and thus their performance depends on the knowledge about those (Pianosi et al.
2016).

Similar to the numeric parameters generated by common sampling methods, the post processing
methods expect scalar model outputs (Pianosi et al. 2016). If the output is more complex than
that, extensions to the evaluated model must convert it to a scalar, which represents output
aspects of interest. Multiple outputs can be evaluated separately (using the same input samples
and repeating the post processing) or in combination (Minunno et al. 2013).
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2.5.4. Goals of sensitivity analysis

Following three types of �ndings are most common (Pianosi et al. 2016)(Saltelli et al. 2008):

• Ranking of the input factors based on their in�uence on a certain output’s values.
• Screening to identify input factors with no signi�cant in�uence on output’s diversity.
• Mapping determines areas in the input parameter space, which result in output values

of interest. (e.g. values over a certain boundary)

The purpose is an important point in the decision, which analysis methods to apply.

2.5.5. Overview of sensitivity analysis methods

One major classi�cation of the available methods is their general sampling approach (Pianosi
et al. 2016):

• Especially methods related to local sensitivity analysis vary only one input factor at a
time to analyze its in�uence on the output. Meanwhile all other factors are �xed.

• Most of the global sensitivity analysis methods change all input factors while sampling
the parameter sets for the simulations.

Since the explored input space with only one varying factor has only one dimension, few
samples are enough to explore it properly (enough for sensitivity analysis). But the disadvantage
is that it does not give insights about the interactions between the input factors.

2.5.5.1. One factor change per sample based methods

The outputs without and with perturbation of an input factor can be visualized together. A
more quantitative approach is to calculate the partial derivate of the output function and use
it as sensitive index for the input factor (Pianosi et al. 2016). Aggregating these individual
indices for multiple parameters allows to evaluate interactions (Morris 1991) (and do a global
sensitivity analysis). Methods based on this approach di�er regarding the selection of the �xed
points, determination of the variation magnitudes (of the input factors) and type of aggregation
(Pianosi et al. 2016). Some methods do not aggregate �nite di�erences but transformations
(e.g. squares) of them.
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Morris (1991) provided the most established (Pianosi et al. 2016) method based on evaluating
multiple perturbartions of single factors and aggregating the results. It is also often called
Elementary E�ect Test (Saltelli et al. 2008) and calculates the sensitivity index for a factor i
as the mean of a speci�ed amount of elementary e�ects (EE). The latter are �nite di�erences
EE = g(x1,...,xi+∆,...,xM )−g(x1,...,xi,...,xM )

∆ ci, where g is the model evaluation function, x a
sample from the input space, M the factor count, ∆ the perturbation and ci a scaling factor
to make inputs with di�erent units of measurement comparable (Pianosi et al. 2016). The
standard deviation of the elementary e�ects gives a hint about the strength of interactions
involving the factor (Saltelli et al. 2008). Meanwhile the original sampling approach by Morris
(1991) rasterizes the input space into an uniform grid. It then explores the space by building a
trajectory for each elementary e�ect, which each has M (factor count) + 1 points and random
start within the grid (Pianosi et al. 2016). Two sequent points di�er in one factor (dimension)
at a time by ∆ (the perturbation), so that each trajectory allows the evaluation of one EE per
factor (Pianosi et al. 2016). Several variants of the sampling strategy exist, which all have in
common that for r elementary e�ects r(M + 1) input samples need to be evaluated to cover
all input factors (Pianosi et al. 2016).

2.5.5.2. Multiple factor changes between sequent samples based methods

Correlation and regression analysis methods derive the information about sensitivity from
statistical analysis of input and output datasets generated by Monte Carlo simulation and many
of them rely on assumptions of linearity and / or monotonicity between inputs and outputs
(Pianosi et al. 2016). Since such assumptions can often not be made for a complex, agent based
model, this class of sensitivity analysis methods is no further covered here.

Regional sensitivity analysis (also called Monte Carlo �ltering) mainly identi�es parts of the
input space, which result to output values above / below a certain threshold or (do not) match
some pattern. Thus this analysis approach allows mapping (as de�ned in sec. 2.5.4) (Pianosi et
al. 2016). The pattern or threshold criterion divides the input values into two groups based
on their output. The bevarioural set contains the input samples, whose output value conform
to the expected pattern (or is above the threshold) (Spear and Hornberger 1980). Meanwhile
the non behavioural set contains the other input samples. Besides a visual comparison of the
both sets for information on factor mapping, the divergence between the set’s distributions
can be used as sensitivity index (Pianosi et al. 2016). The Kolmogorov-Smirnov statistic is one
possible method to calculate the divergence d: dm,n = supx|Sn(x)− Sm(x)|, where Sn and

17



2. Related work

Sm are the sample (empirical cumulative) distribution functions for n behaviours and m non
behaviours (Spear and Hornberger 1980). The index may be used for ranking of parameter’s,
but not for screening. The reason is, that input factors in�uencing the output only through
interactions may have the same distribution functions for both sets (Pianosi et al. 2016). Thus
a low divergence alone is not su�cient to determine an unimportant input factor. Meanhwile
an advantage of regional sensitivity analysis is, that it does support any type of ouput (Pianosi
et al. 2016). It even is an exception to the rule, that the model evalutation outputs must be
scalar. But still a criterion to divide the outputs must be de�ned and veri�ed. As soon there is
no clear distinction possible between “good” and “bad” behaviour, this becomes problematic.

Meanwhile another class of analysis methods takes the output variance as estimator of a
input factor’s sensitivity. The output values are calculated by Monte Carlo experiments with
optimised sampling. Usually variance decomposition estimates two types of indices. Following
formula calculates the �rst order index Si for a factor i (Saltelli et al. 2008):

Si =
VXi(EX∼i(Y |Xi))

V (Y )

where Xi is the factor, X∼i are all other factors and Y are the output values. Further the
expectation operator EX∼i is the mean of the outputs with a �xed Xi (Saltelli et al. 2010).
Finally V are the variances. While a �rst order index indicates the direct in�uence of a factor
(ignoring its interactions), the total e�ect index includes the interaction e�ects. The latter ST i

is calculated by the formula (Saltelli et al. 2008):

ST i =
EX∼i(VXi(Y |X∼i)

V (Y )
= 1− VX∼i(EXi(Y |X∼i))

V (Y )

Total e�ect indices are especially useful for screening, since a low value is a su�cient condition
for a factor, which has no in�uence (Pianosi et al. 2016). It is possible to calculate sensitivity
indices of higher order to further evaluate the interactions between certain factors (Borgonovo
2007). Di�erent sampling strategies are available (e.g. discussed by Saltelli et al. (2010)), which
goal is to approximate the variance with few samples as possible. Though variance based
methods are expensive (compared to the previously introduced methods) regarding the required
sample count. Beside the computational costs the implicit assumption, that the variance fully
captures uncertainty, may be problematic regarding multi-modal or higly-skewed output
distributions (Pianosi et al. 2016).
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Thus a further group of methods calculates sensitivity indices based on the probability density
functions of the output (Pianosi et al. 2016). The latter represents the output distribution’s shape
better than its variance (for a certain input parameter set). The general form of a density-based
sensitivity index (for factor i) isSi = statxidivergence[fy, fy|xi

(·|xi)], where fy is the output’s
probability density function based on varying all input factors, while fy|xi

is the output’s
probability density function with one input factor �xed (Pianosi et al. 2016). The divergence

measure can be for example the area between two probability density functions with statistic
being the mean (Borgonovo 2007). Since it is complicated to calculate probability density
functions based on empirical results, some methods use cumulative distribution functions
(e.g. PAWN by Pianosi and Wagener (2015)). Density-based sensitivity analysis can be restricted
to a subrange of the output and often does not require a tailored sampling strategy (e.g. Pianosi
and Wagener (2015) just uses random samples) (Pianosi et al. 2016). The required count of
samples has the same magnitude as for variance-based methods.

2.5.5.3. Summary with comparison

Table tbl. 2.2 gives a summary about the groups of sensitivity analysis (SA, except correlation
& regression) methods, which cover interactions (e.g. do global SA). Number of factors is a
suggestion by Saltelli et al. (2008) and they introduce a grouping method (not covered here) for
a higher number of input factors while screening. r (typically around 4 - 10, see Saltelli et al.
(2008)) is the number of elementary e�ects (see sec. 2.5.5.1), k is the number of input factors
and N can basically be set to any value. The next section discuss N further. While Pianosi et
al. (2016) gives a broad overview about methods, Saltelli et al. (2008) explains several methods
with more background and practical examples.

Table 2.2.: Overview about the previously introduced class of sensitivity methods (based on
Saltelli et al. (2008) and Pianosi et al. (2016)).

Aspect Elementary E�ect Test Regional SA Variance / Density based

Samples from levels distributions distributions
Number of model runs r * (k + 1) k * N, N > 100 (k + 2) * N; N, N > 1000
Number of factors 20 - 100 < 20 < 20
Ranking yes yes yes
Screening yes no yes
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Aspect Elementary E�ect Test Regional SA Variance / Density based

Mapping no yes no

2.5.5.4. Selection of method(s), sample size and number of model evaluations

The decision for a method depends primarily on the goal (sec. 2.5.4) of the sensitivity analysis.
Further the available computational resources (=> doable amount of model evaluations) are
an argument. Finally certain model properties (e.g. non linearity, skew of the output) expulse
the application of speci�c methods or let them perform not well enough (Pianosi et al. 2016).
A common approach is to start with a Elementary E�ect Test (sec. 2.5.5.1) to exclude clearly
non-in�uental factors from further analysis with more advanced methods (Saltelli et al. 2008).
Meanwhile the sampling approach mainly depends on the selected analysis method. While
several alternatives exist for Elementary E�ect Tests (or local sensitivity analysis methods),
many variant-based methods depend on tailored sampling (tightly coupled with post processing)
(Pianosi et al. 2016). Further Regional Sensitivity Analysis and and density-based methods
basically allow any (quasi-)random sampling. Most commonly used are Latin-Hypercube and
Sobol’ quasi-random sampling (Pianosi et al. 2016). Some sampling methods are better suited
for certain model properties. But it is likely, that other settings (e.g. input variability or the
output de�nition) in�uence the analysis’ results more (Pianosi et al. 2016).

The main driver for the required amount of samples is the chosen sensitivity analysis method
and for several methods the number of input factors (see sec. 2.5.5.3). Meanwhile the exact
number of input samples depends on the actual problem and the required convergence level of
the sensitivity indices (Pianosi et al. 2016). Sensitivity indices for some input factors might
converge quicker (measured in required sample amount) than others. While the sensitivity
indices for non-in�uental factors often converge quickly, much more samples are needed for
in�uential factors (Nossent, Elsen, and Bauwens 2011).

Finally additionally model evaluations might be necessary for stochastically (e.g. agent based)
models, whose output for certain inputs is not deterministic. An unstable numeric scalar output
(of a model evaluation) tampers with the result of the sensitivity analysis, which empirically
evaluates the e�ects of input changes. Thus if it is not possible to make the outcome of
a stochastically model deterministic (e.g. by �xing the seed values of it’s random number
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generators), another solution is the calculation of the mean output from multiple evaluations
of the same input sample (Prestes García and Rodríguez-Patón 2016).

2.5.6. Frameworks and libraries

Prestes García and Rodríguez-Patón (2016) describe a sensitivity analysis framework based on
the Repast Symphony (North et al. 2013), which is a toolset for agent based modeling (thus
similar to MARS regarding its use case). Beside Repast Symphony the sensitivity analysis
framework bases on the programming language R5. Basically Prestes García and Rodríguez-
Patón (2016) provide an integration broker, which runs inside the same process as the controlled
Repast Symphony instance. The broker communicates with an engine, which runs in the R
process. On top of the engine Prestes García and Rodríguez-Patón (2016) build R application
programming interfaces (APIs) to control Repast Symphony simulations. Further Prestes García
and Rodríguez-Patón (2016) implemented a set of sampling and postprocessing methods to do
elementary e�ects and variance based sensitivity analyses. Finally their highest abstraction
layer allow to specify a sensitivity analysis basically in one method call, whose parameters
specify the number of samples and other sampling parameters (e.g. grid cell size for elementary
e�ect based methods). The user passes a de�nition of the input parameters (being subject of the
analysis) and their boundaries. High order functions translate between the input parameter’s
values and the model’s input and de�ne the scalar output. Prestes García and Rodríguez-Patón
(2016) apply their framework on multiple models, including a Repast Symphony example, which
is an agent based implementation of the popular predator / prey model.

Wu, Mortveit, and Gupta (2017) introduces a distributed system to support the validation of
network based models. Beside other (validation) model analysis methods they use the system
for sensitivity analyses. Similar to MARS the system stores models, metainformation about
them (e.g. their parameters) and evaluation results into databases. The user provides wrapper
code along with the models, which translates input data from Wu, Mortveit, and Gupta (2017)
system’s format into the form required by the model. Same applies to the results. A di�erence
to Prestes García and Rodríguez-Patón (2016) is, that the model wrapper also handles the
execution of a model evaluation. Thus it would theoretically be possible to combine Wu,
Mortveit, and Gupta (2017)’s system with MARS models. But Wu, Mortveit, and Gupta (2017)
does not provide enough technical information about their implementation for further work

5https://www.r-project.org/
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in this direction. In addition, MARS already provides data integration and result management
on its own.
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3. Extendend basic immune system model
implementation with MARS

3.1. Architecture

Primary architecture goal for the alternate implementation of the Basic Immune Simulator
was to create a extensible and reusable solution. Thus many generalized and con�gurable
components are the base for the implementation. Also MARS layer and agent structure concepts
are used. This section introduces the resulting model design.

3.1.1. Parameter generation

Folcik, An, and Orosz (2007) calculate the initial agent distributions within the RepastJ model
at the start of every simulation. But the MARS implementation separates this step from the
MARS model binary to allow data integration (e.g. of antigen information) in the future. Thus
an external tool (Parameter Preparer) generates multiple data tables. These tables are imported
by MARS. Further MARS’ agent initialization creates the agents based on the data (sec. 2.4.1).

Parameter Preparer’s input �le is a map based structure. The class diagram �g. 3.1 provides an
overview of it. The MetaGroups at the highest level are user de�ned categories (e.g. agents,
areas and antigens). Each MetaGroup has a name and further maps multiple AgentGroup

objects by their names. An AgentGroup objects can have any number of user de�ned attributes.
Each attribute corresponds to an agent parameter with the two exceptions _type and _number.
While _number speci�es the amount of data rows (agent number) to be generated, _type de�nes
the target data table. The attribute values can be constants or GeneratorReference objects. In
latter case type is the name of a generator known by Parameter Preparer, which will calculate
(multiple) attribute values based on optional, named parameters.
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Figure 3.1.: Basic structure of Parameter Preparers input and the Generator base class.

While execution Parameter Preparer creates a Generator object for every GeneratorReference.
It passes parameters (from GeneratorReference) and the number of values to be calculated as
constructor arguments. Then Parameter Preparer calls the generate method of every Generator

related to a AgentGroup _number of times. The argument agent_parameters are the constant
attribute values of the AgentGroup and previously generated agent parameters. Meanwhile
index is the ordinal number (between 0 and _number) of the generate call.

3.1.2. Components of the model binary

All components shown in �gure �g. 3.2 except CommonAgentTools provide a layer, which each
implements an interface used by the other layers and the agents.

The remainder of the section describes each layer more detailed:

• CommonAgentTools is a collection of service classes used by the agents or to manage
them. All classes are so abstract, that they might be of interest to other domains and are
staged for a upstream process into the MARS framework. For example the component
contains helper classes to realize state machines and timer units.

• AreaLayer: At the time of writing no MARS’ spatial management component exist,
which can be distributed over multiple calculation nodes. Further the spatial interfaces
provided by the MARS framework lack the concept of subareas, which are needed to
realize the zones (see section sec. 2.3). Thus each agent type and zone combination uses
its own instance of a MARS spatial management component. Each instance is wrapped
by an agent hosted by AreaLayer. The layer maps zone names and agent types on the
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global identi�ers of the agents and creates the adapter agents on demand. For later
purpose it also manages the dimension of each zone / area.

• AntigenInformationLayer isolates the domain speci�c representation of molecular struc-
tures, which are the base of individual antigens, antibodies and matching cell receptors.
The layer maps identi�cation strings on molecular structure objects. Those o�er a simple
interface, which calculates the binding probability between two molecular structures.

Figure 3.2.: Components of the Basic Immune Simulator implementation with MARS.

• The SignalLayer component is responsible for the management for the signal values. The
active layer collects all changes of each signal value for each grid cell while a simulation
tick. After the tick it then applies the changes and calculates the di�usion. Of course the
layer’s interface also allows agents to retrieve the current signal values.

• As a part of the portal (see section sec. 2.3) implementation the TransportLayer allows
output portal agents to register information objects paired with their global identi�er.
Input portals register transported agents by their global identi�er and an exit �lter. The
�lter matches portal information objects with speci�c attribute values. After each ticket
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the logic of the TransportLayer distributes all registered agents on matching output
portals. Finally in the following tick the output portals can query their attached agents
and process them further.

• The ImmuneSystemLayer �nally contains most of the agents, which are further described
in the next subsection. The layer also contains the input data based initialization of the
agents using the MARS AgentManager. Further the layer manages initial parameter sets
used for reproduction of agents. Each parameter set has a speci�c name (e.g. in�ammatory
TH-Cell). In case of reproduction an agent fetches a parameter set and modi�es it
depending on its own state (e.g. position).

3.1.3. AntigenInformationLayer: Basic support to map antigen specifity

Figure 3.3.: Overview about the public parts of the AntigenInformationLayer.
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The class diagram �g. 3.3 gives an overview about the public parts of the AntigenInforma-

tionLayer. Each cell receptor, Antibody and Virus in the model refers a IMolecularStructure

instance, which represents an antigen itself or the structures to detect a speci�c antigen.
Each IMolecularStructure provides a method to calculate the binding probability with another
IMolecularStructure. A real number between 0 and 1 expresses the probability.

An IMolecularStructure can derive from another IMolecularStructure, if the implementation of
the B-cells calculates the matching information for an antigen using BuildAntibodyStructure

from the IAntigenInformationLayer layer. Meanwhile the initialization of receptors and virus
bases on AntigenInformation objects. Each of them has an identi�er, which the agents use
to query it using GetAntigensMolecularStructure. AntigenInformation’s format determines the
IMolecularStructure implementation and source contains initialization information. At the
time of writing, the only available IMolecularStructure implementation bases on bitstrings of
length 64, which are de�ned by source as hexadecimal string with the pre�x 0x. The binding
probability is 64−n

64 , where n is the number of di�erent bits between two bitstrings.

Since MARS lacks a generic feature to map data tables directly on layers (and a identi�er on
information mapping is not a time series), AntigenInformationLayer uses AntigenInformation-

ProviderAgent (agents) for an initialization process as described in section sec. 2.4.1.

3.1.4. AreaLayer: Distributable implementation of the zones

Hüning (2016) proposes the use of multiple MARS Environment Service Component (ESC)
instances for position management in distributed simulations. He distributes agents of dif-
ferent type on separate layers, which each has their own spatial environment. Agents of one
layer query the positions of agents of another layer using those interface (and proxy object).
Meanwhile the Basic Immune Simulator Model has nine agent types with two additional ones
introduced by the author (of this thesis, sec. 3.1.7.1), of which several can occur on all three
zones. Each zone concludes in a MARS ESC instance. Thus using exactly Hüning (2016)’s
approach would lead to over 30 layers. Since layers and references between them must be
de�ned statically in MARS, a high number of layers is hard to maintain and thus AreaLayer
uses agents instead of layers to wrap the single MARS ESC instances.

An agent queries a MARS ESC wrapper agent’s identi�er by calling GetAreaID of AreaLayer’s
interface IAreaLayer (see diagram �g. 3.4). The agent passes the target zone’s (area’s) name

and the target agent type to the method. If it does not already exist, AreaLayer will instantiate
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an MARS ESC and the wrapper agent. Anyway GetAreaID returns the global identi�er of
the wrapper agent, which the calling agent further uses to retrieve the MARS agent shadow
(proxy) of the wrapper agent. Beside the wrapper agents AreaLayer manages information about
the areas / zones using AreaProperties objects. Each area has a name and cuboid boundaries
(de�ned by width, height, depth). Further the Basic Immune Simulator’s zones are toroidal

(agents leaving at one boundary enter at the opposite one, see sec. 2.3). The initialization
process of the AreaProperties work similar to the one for AntigenInformation (see sec. 3.1.3)
using AreaPropertiesProviderAgents, which �g. 3.4 does not show.

Figure 3.4.: Public classes and interfaces of the AreaLayer

3.1.5. SignalLayer: Signal modification and retrieval, result output

The SignalLayer uses a three dimensional grid for each signal, area (zone) combination. Each
grid rasterizes its area with a resolution of 1.0. Thus every cell has a discrete Position with the
components X, Y, Z (�g. 3.5). SignalLayer retrieves an area’s dimensions from the AreaLayer

(sec. 3.1.4). The creation of a grid happens on demand (with 0.0 in every cell).

As already mentioned by section sec. 3.1.7.2 Agent observe signal values by SignalSensors.
Each SignalSensor is connected to a certain signal layer and agent (owner) at creation. Further
it observers certain signals (speci�ed by constructor argument scannedSignals) in a Moore
neighborhood of certain size. Meanwhile a SignalSensor gets the center of the neighborhood and
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the area to observer from its agent. For that the Agent must implement ISignalConsumer, which
demands getters for the position and the name of the area. The SignalSensor’s Sense method
(called by MARS every simulation step) gathers the signal strengths using GetSignalStrength

of ISignalLayer. Further it creates a SignalResults object with the results, which MARS then
passes to the agents main logic. The latter can get the strength of a certain signal (GetSignal
method) or call SignalResult’s GetStrongestSources to retrieve the grid cell Positions with the
strongest signal strength. If the signal parameter of latter method speci�es multiple signals,
SignalResults sums their strengths beforehand. Meanwhile if the parameter withOwnPosition
is true, SignalSensor also considers the current cell of the agent.

Figure 3.5.: Interfaces and classes of SignalLayer and SignalSensor.

The ChangeSignalStrength method of ISignalLayer allows agents to modify the strength of a
signal in an area at a position by a certain amount. SignalLayer does not apply the change
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immediately. Instead it adds the sum of all changes to a grid cell’s value at the end of each
simulation step right after calculating the di�usion of signals. That way all agents sense the
same signal strengths on a speci�c position independent from the processing order of their
sensors, reasoning and actions. Meanhwile SignalLayer uses the same di�usion formula as
Folcik, An, and Orosz (2007). Further signal di�usion on border cells is in�uenced by cells at
the opposite border to map the toroidal zones also for signals.

Finally SignalLayer o�ers the bucket system, which support the MARS Basic Immune Simulator
implementation’s portals in their task to synchronize signals between zones. Each bucket sums
the signal strengths of a set of positions (sources, practically portals) in di�erent area / zones.
ISignalLayer’s AddBucket method adds a bucket with a certain name for a signal. AddBucket-
Source adds a source with identi�er at position in area to the bucket name, while RemoveBuck-

etSource removes the source. Finally GetNumberOfBucketSources count the sources of bucket
name, while GetBucketAmount returns the sum of signal’s strength at the source positions.
Like the di�usion SignalLayer calculates the bucket sums after MARS processed all agents in a
simulation step.

3.1.6. TransportLayer

While the portal agents use the SignalLayer’s bucket system to exchange signal strengths
between zones, the TransportLayer plays an important role in the transportation of agents
between the zones / areas. The latters layer’s design aims to be reusable for other models,
where several disjointed parts of the environment are spatially pictured and connected in an
abstract manner. One example is the model of a building, where the agents map the visitors,
the �oors relate to the zones and the elevators to the portals.

Each portal implementation provides an IPortalInformation (see �g. 3.6) object, which describes
transport relevant parts of the portal’s state. In the case of the MARS based Basic Immune
Simulator implementation for example agents decide to end their passages at a certain portal, if
a certain signal is present near the portal (SeeSignal method of BasicImmunePortalInformation,
�g. 3.6). More general the IsMatch method of an IGenericPortalFilter object decides if an
IPortalInformation matches and thus the travel of an agent (related to the �lter object) can end
at the portal agent (related to the information object).

At the start of its life a portal agent introduces itself to a TransportLayer by calling RegisterPortal
of the IGenericTransportLayer interface. The portal passes its identi�er and initial information

30



3. Extendend basic immune system model implementation with MARS

about itself. As soon the information changes, the portal calls UpdatePortalInformation. Further
the portal callsGetPassengers to retrieve information (global identi�er, type) of travelling agents,
which can enter an area through the portal. As soon the portal decides to let an agent pass into
the area, it calls TryEndTransport. If latter method returns False, the agent already ended its
passage through another portal. Respecting this information ensures thread safety. Meanwhile
a call of StartTransport marks the start of a travel. It provides the distributable information
about the related agent and the portal �lter to the TransportLayer implementation.

Figure 3.6.: Public interfaces of the TransportLayer and their relation to the Basic Immune
Simulator PortalAgent.

The �lter objects does (not) match a portal agent directly, because in this case the TransportLayer
would have to query the agent shadow of the portal from MARS. At the time of writing this
requires the concrete class, which implements the portal. In conclusion the TransportLayer

component would have a circular dependency with the component, which provides the portal
implementation.
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3.1.7. ImmuneSystemLayer and the agents

3.1.7.1. Agents and their interactions

Figure 3.7.: Overview of agent types (except portal agent) of ImmuneSystemLayer and their
interactions.

Figure �g. 3.7 shows almost all (except the portals) agent types, their interaction (classes) and
in which zones they can be found.

The agent types with white background are adopted by the Basic Immune Simulator’s model.
Meanwhile Virus and Antibody are additions by the author to prepare the alternate model
implementation for scenarios, where the antigen speci�city and high mutation of virus play
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an important role (e.g. HIV (Neumann 2008)). The movement and life of Virus and Antibody

re�ect the di�usion of the related signals in the original implementation of the Basic Immune
Simulator. DendriticCell agents and infected ParenchymalCell agents present the antigen
(molecular structure mapping) of the virus to other agents. T-Cell agent and other agents
representing immune system cells have receptors, which bind the antigen by some probability
(see also AntigenInformationLayer in �g. 3.2). B-Cell agents produce Antibody agents, which
match the antigen previous overtaken from a DendriticCell agent. Finally Virus agents infect
ParenchymalCell agents and reproduce themselves afterwards.

De�nitions of two classes of interactions between agents exist:

• An examination only a�ects the agent doing it on another agent and the other agent
does not in�uence it. The interactions take place while the sensing or reasoning of an
agent.

• A binding between two agents needs the successful outcome of the stochastic experiment
if two molecular representations match. It further involves a handshake process, which
allows both agents to in�uence the binding success. Finally a complete binding in�uences
the state of both agents.

Makrophage and NaturalKillerCell kill or scavenge other agents with a constant probability.
Beside that these interactions are binding interactions.

In each interaction one agent plays the active part, when the processing of his actions initiated
the interaction. The other agent has the passive part, where a part of its logic executes
independently from the main logic of the agent.

3.1.7.2. Internal structure of agents and their lifecycle

Figure �g. 3.8 gives an overview of common internal parts of an agent and how the agent
is embedded into its environment of layers and MARS components. The remainder of the
subsection describes the agent’s part with more details.

Each agent inherits from a Dalski SpatialAgent of the MARS framework. This basic agent
implementation manages the sensors, fetches and stores their results once in every ticket.
Further it executes the agent’s reasoning. The model’s neighbor sensors utilize AreaLayer and
MARS’ environment service component (PositionManagement}) to �nd nearby other agents.
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Further a neighbor sensor creates an agent stub on demand using MARS AgentShadowingService

(see section sec. 2.4.3). Meanwhile the SignalSensors query the SignalLayer for the signal values
at the current agent’s position. After the sensing phase �nished, the SpatialAgent executes the
reasoning.

Figure 3.8.: Overview of agent’s internal structure and the interaction of the units with each
other and other agents / layers. Parts which are mainly part of the MARS framework
are highlighted blue.

There the agent’s main logic makes decisions. For that it is supported by generic logic modules,

34



3. Extendend basic immune system model implementation with MARS

which for example measure time or count. Also units exist to support common transportation

(switches between zones) or production (of signals or agents) choices. Reasoning units may
retrieve sensor results and produce action objects. The SpatialAgent’s e�ectors executes those
after the reasoning phase. The actions then submit changes to layers (e.g. SignalLayer) or the
position management (for movement).

At the end of the reasoning the main logic can change the state and attributes. Each agent has
several Attributes. Some are state independent. In contrast others are inferred directly from
the current state of the agent. Since the MARS framework technically processes the sensing,
reasoning and e�ectors of multiple agents parallel, it can happen that one agent changes its
attributes, while another agent does an examination or binding interaction on it.

To prevent an inconsistent view on the attribute set, the main logic, the passive interaction

logics and �lter unit ensure exclusive access to the attributes. The �lter unit is the author’s
preferred way for an agent to get a consistent way on multiple attributes of another agent.
One agent provides a �lter object to the �lter unit, which matches several attribute values.
Further the �lter unit grants exclusive attribute access to the �lter object and let it decide if
the agent matches certain conditions. This way it is possible that each agent manages the
exclusive attribute access completely on its own, which helps to avoid deadlocks.

The event system handles the communication between the interaction and the main logic. It is
a high level structure managing the concurrent registration and query of event objects, which
inform the main logic about interactions triggered by other agents. There are interactions,
which the passive partner only can do once while a simulation step. For example a cell can
only be killed once. Thus the event system accept the report of certain events only once (until
the main logic clears all events).

3.1.7.3. Agent class hierarchy

While section sec. 3.1.7.1 gives an overview about the agents and their interactions, diagram
�g. 3.9 introduces the actual class hierarchy behind the agents. The colour marked interfaces
and classes are provided by MARS. For clarity the �gure does not show several classes, interfaces
and no details (e.g. methods, attributes).

Each agent has one concrete class (e.g. DendriticCell), which implements agent speci�c parts
of the units introduced by section sec. 3.1.7.2. Especially a concrete agent class implements the
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MainLogic. In case of the cell agent and the portals the later derives from the state machines,
which (Folcik, An, and Orosz 2007) present in the appendix of their publication. Meanwhile the
abstract parent classes (BodyCell, BodyParticle, . . . ) implement those parts, which are speci�c
to the MARS implementation of the Basic Immune Simulator (e.g. the Filter Unit) or which
multiple agents use. Logic for handling the agent’s position or an zone / area change is an
example for a common agent part.

Further each agent has a speci�c public interface (e.g. IDendriticCell), which extends more
generic ones. Other model parts and MARS interact with an agent implementation only over
its interfaces. Each agent interface encapsulate its initial parameters into a serializable and
immutable object. The agent exposes the parameter object using its I*Parameter interface
(e.g. IDendriticCellParameter). A concrete agent class inherits parameters required by its base
classes. For example BodyParticle requires an initial position, area name, SignalLayer reference
and the AreaLayer to implement common agent logic. Only Portals (not shown in �g. 3.9)
references the TransportLayer, since one of their speci�c tasks is the transportation of other
agents between areas.

Figure 3.9.: Class diagram shows interfaces and classes of the agent implementations

36



3. Extendend basic immune system model implementation with MARS

All concrete classes of the agents introduced by sec. 3.1.7.1 inherit from BodyCell, which itself
inherits from BodyParticle and basically adds logic to represent infection by a Virus. Exceptions
are Virus, Antibody and Portal, which inherit from BodyParticle directly.

3.1.7.4. Parameter groups and (re-)production of new agents

Section sec. 3.1.1 describes the generation of the table �les, which contain the agents’ parameter
data. It introduces parameter groups of agents, where multiple groups base the same type
(e.g. DendriticCell), but have slightly di�erent initial properties (e.g. non-/in�ammatory).
Further an agent take all parameters from its group except a few, especially spatial ones.
The ImmuneSystemLayer o�ers methods, which support agents to dynamically create new
agent instances based on a certain parameter group (e.g. in�ammatory DendriticCells). For that
ImmuneSystemLayer saves one concrete parameter object (see also sec. 3.1.7.3) per group. Then
an agent can query a copy of the object using the group name (e.g. In�ammatoryDC) and adjust
some parameters (e.g. position, area). Further it initializes an instance of the corresponding
agent class by calling one of the class’ constructors on the parameter object. Finally the
BodyParticle constructor of the new agent register the agent at the MARS’ simulation runtime.
Reproduction of an agent works similar based on the agent’s own parameter object.

3.1.7.5. Positioning, moving and neighbour sensing

MARS only o�ered a continuous spatial position management, when BodyParticle was designed.
Thus BodyParticle maps the grid of a Basic Immune Simulator zone on the continuous space.
According to the signal layer (sec. 3.1.5) each grid cell is a cube with a side length of one. Thus
the current home cell of an agent is calculated by rounding down its current coordinates. At
each simulation step BodyParticle changes its position by a vector v = (x, y, z), where x, y, z
have each a value of -1, 0 or 1. The spatially static agents, Portal and ParenchymalCell, override
this behaviour. Otherwise child classes of BodyParticle choose between a completly random
movement vector and a movement vector, which directs to a neighboured grid cell with the
heighest values of certain signal strengths (see also sec. 3.1.5).

Meanwhile a Neighborsensor (see sec. 3.1.7.2) scan a cuboid part of its agent’s current area for
other agents. The cube’s center equals the center of the agent’s current grid cell. Meanwhile
the cube has a side length of three, which corresponds to a Moore neighbourhood.

37



3. Extendend basic immune system model implementation with MARS

3.1.8. Result output and analysis

Basically the SignalLayer uses special service agents to output the strengths of each signal
/ area combination as three-dimensional matrices at every simulation step. Further several
properties of the agents, including their position, are recorded using MARS legacy output
mode (sec. 2.4.1).

After a simulation run an external, model speci�c evaluation tool generates additional matrices
by counting the agents in each grid cell of an area. For each matrix a certain �lter expression
de�nes the agents to be counted. Thus each matrix element speci�es the number of matching
agents in a grid cell of a certain zone and at a simulation step. Additionally the evaluation tool
counts the agent matching a �lter independent from the area and position.

In a next step the evaluation tool reduces the number of dimensions of the matrices to two
by aggregating counts on di�erent planes. Finally the tool generates a report with following
elements:

• A line plot shows the global counts for every agent �lter over the simulation steps.
• A heatmap visualizes the agent count / signal strength in the di�erent parts of an area.
• An index document references all images and contains information about the �lters.

A previous work1 of this thesis’ author describes the result evaluation tool in more detail.

3.2. Implementation state and details

A feature complete implementation exists of a all described layers. Further all of the common
agent tools are realized. Meanwhile the agent logic derived from the original Basic Immune
Simulator is implemented as described by the attachments of Folcik, An, and Orosz (2007).
But the implementation still lacks several details, which only Folcik, An, and Orosz (2007)’s
sources describe. Further it contains functional bugs. The C# sources of the actual model can
be found in the directory Code of the repository2. The directory is_tool hosts the analysis
tool’s Python sources and parameter_preparer the Python implementation of the parameter
generation. Code/Tests provides hundreds of unit tests, which especially check the agents.

1http://lukas-grundmann.de/pubs/PO2.pdf
2https://gitlab.informatik.haw-hamburg.de/mars/model-immune-system
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4. Global sensitivity analysis framework for
MARS

4.1. Requirements

Chapter sec. 2.5 gives an overview about available global sensitive methods. There are many of
them. All have their advantages and disadvantages depending on the actual research problem
and model to evaluate. Some methods might be suitable to support early decisions for further
research, but might not be able to generate the �nal results as required. Another aspect is,
that there are diverse possibilities how to process the results from the multiple simulation
runs. Because of the resulting variability of possible usage scenarios and sensitivity analysis
setups, a toolset should be designed �exible to support most of them. In this aspect the setup
of a sensitivity analysis is similar to de�ning a model. For the latter high level programing
languages have proven to be a �exible and powerful enough tool. Thus they should also
�t in the use case of setting up a sensitivity analysis experiment. To support this approach
MARS must provide a programing interface to allow the setup and start of model evaluations
(simulations).

One interface is already provided by the time of writing through the TeachingAPI service. But
it does not hide several technical aspects and malformed requests are often just rejected by
the MARS backend services. For the end users the graphical interface abstracts the technical
details. Since not every researcher should have to know those, a system is required, which
abstracts certain aspects about interfaces and protocols used between the MARS services. It
should re�ect the user interface work�ow as much as possible.

The MARS Teaching User Interface (UI) is a helpful tool for end users, especially to design the
mapping from data on model parts, since it can visualize the complex relationships better than
a textual description / programing language can do. On the other hand the user interface is
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not suitable to create thousand of simulations with di�erent parameter sets. For combining
the advantages of both worlds, the system for sensitivity analysis with MARS should allow to
retrieve mapping information and result con�gurations in a reusable and adaptable shape.

4.2. Architecture

4.2.1. Overview of high level components

Graphic �g. 4.1 gives an overview of the sensitivity analysis framework for MARS. It shows
the framework’s high level components and how they interact with each other. Further it
visualizes the components relation to the researcher / end user of MARS. Component designed
and developed mainly by other MARS developers have the pre�x “MARS” in their name. The
author developed the Result Query Service and the Automatisation Service while a study project.
The Client Library and Command Line Interface (CLI) are subjects of the development part of
this thesis. Thus this section covers latter two components in detail, while it only present
aspects of the other components, which are important for the interactions.

The user needs to upload �les (e.g. model binaries, data tables . . . see also sec. 2.4.2) only once,
which does not depend on the input parameters generated by the sensitivity analysis sampling.
Further a preliminary mapping can be created. If the mapping references data in�uenced by
input parameters, it requires adaption every simulation (evaluation of the model) run. But
the sensitivity analysis setup can reuse parts of the mapping like the column name to agent
parameter relations or constant �le references (basic mapping). Each model binary subject
to the sensitivity analysis needs its own result output con�guration entity. Thus if one input
factor chooses model variants and the researcher decides to create an own binary for every of
those, multiple result output con�gurations will be the result. For all of the previously descibed
operations the user can choose between use of the MARS Teaching User Interface (UI), the
Command Line Interface or the Client Library.

The user has to de�ne the actual sensitivity analysis over the Experimental Setup. This includes
the used method implementations for sampling and post processing of the scalar outputs. The
relations between the sampled parameters and the input �les must be de�ned. Same applies
for the aggregation of the model’s output to at least one scalar value. Basical the Experimental

Setup is a program, which contains the algorithms for data generation and data aggregation.
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It can implement the sampling and postprocessing directly or use external sensitivity tools

(e.g. libraries).

Figure 4.1.: Overview about the high level components of the GSA framework around MARS

The experimental setup uses the Client Library to upload generated (input) data, start simula-

tions and query the results to calculate the scalar outputs. For querying the results, the Client
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Library communicates with the Result Query Service, which restricts the queries to the result
database in the backend based on the client user’s permissions. Client Library has two options
for submitting input data and metainformation to MARS at the moment of writing. First is
the MARS (Teaching) API Service, which exposes several operations on MARS resource types
(e.g. update scenario). It checks the permissions, like the MARS Automatisation Service does.
The latter has two endpoints. One receives user information and an (compressed) archive
with the data. Along with the input �les there is a textual, declarative description (manifest /
resource de�nitions) of the MARS resources to create and how they depend on each other. The
MARS Automatisation Service processes the tasks in the correct order and o�ers state reports,
which a client can retrieve using the second endpoint. Finally several instances of di�erent
MARS Backend Services do the actual work. Two of them, MARS Project and MARS User Service

(shown explictly by graphic �g. 4.1) play an important role for the permission checks. While
the MARS User Service authenticates a user, the other service provides information about the
permissions, which the user has in the targeted project.

4.2.2. Client library

This subsection describes the Client Library already introduced in the previous section more
detailed. It starts with an overview of the components shown in diagram �g. 4.2 and their
interfaces. Tools includes all functions, which only depend on external libraries or programs
and which basically all other components use. At the time of writing one group of functions
(exposed by DataModels) o�ers schema based serialization and deserialization of complex
objects. They guarantee immediate failing with a clear problem description, if data in an
unexpected structure or with invalid property types is received from the MARS cloud. Also
with abilities like name translation of properties, the component simpli�es adaptions to minor
changes of the MARS API. Generally it reduces the code of other components regarding the
mapping between objects in the used programming language and data exchanged with the
MARS Cloud. Another part of Tools wraps the calls for the building of model sources and
further packs the resulting binary (if the build was successful) as expected by MARS’ import
infrastructure. This part provides the interface BuildModel.

The component Client handles the communication with the MARS backend services over
the MARS (Teaching) API Service and the Result Query Service. Further it represents resources
(e.g. scenarios) available in the MARS cloud to Client Library users over wrapper objects. The
latter’s tasks are to hide technical information (e.g. concrete database table names) and to cache
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information locally. Further the wrapper objects o�er methods, which make certain complex
data modi�cations (e.g. data mapping) more straightforward. All public parts of the wrapper
objects de�ne the MARSResourceWrapper interface and are further described in a following
subsection.

Figure 4.2.: UML component diagram of the Client Library

The Experiments component o�ers a toolset to programmatically declare a model evaluation
(or Experimental Setup introduced by sec. 4.2.1) as required by sensitivity analysis (see section
sec. 2.5). It further contains functions to evaluate an Experimental Setup with one or more
sets of input parameters. Finally Automatisation reimplements the basic functionality (ex-
posed by ProcessLocally) of the previously mentioned Automatisation Service against the Client
component and thus the MARS (Teaching) API Service. Meanwhile the Automatisation Service

communicates with the MARS Backend Services directly. The Automatisation component fur-
ther lacks the preservation of state in a database (compared to the service) and o�ers tools to
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generate the resource declarations / manifests (interface ManifestCreation). While manifests
allow to declare resources of all types explicitly, an Experimental Setup focus of the relation
between a model and scalar input parameters / outputs (as required for a sensitivity analysis).
Thus Experiments is a high level component compared to Automatisation. In the current design
both depend on Client.

4.2.2.1. Class overview of (component) Client: General resource management

The UML class diagram �g. 4.3 gives an overview about the resource management within
the Client component. The class Client is the entrypoint. It manages the credentials of an
user (name, password) and the Uniform Resource Locator (url) of a MARS cloud instance. The
login method handles the initial authentication using the provided credentials. In case of
success the MARS (Teaching) API Service will return a token, which the Client instances use for
subsequent authentication processes. After login the caller of Client can retrieve accessible
projects or create a new one (by create_project). A wrapper object represents every queried
remote resource locally. For each resource type known by MARS, at least one wrapper class
exists. Each wrapper object caches the internal representation of the resource. Further relations
to other wrapper objects are often cached. Exceptions are: �les, scenarios, plans, runs of Project,
projects of Client and result_con�gurations of Model. Thus to get a local metainformation
update (e.g. to check if another user changed it), a new wrapper object (for the same resource)
can be created calling one of these getter methods. Another option is to call the refresh method
several of the wrapper classes provide (not shown in the diagram �g. 4.3). Finally several of
the update methods include another retrieval of the resource’s data. Beside methods to create
new resources, only the update methods trigger an actual update of the resource’s data in the
MARS cloud. All other attribute setters and high level manipulation methods only work on
the locally cached data.

The Project class has a method to start the import of a local �le (speci�ed by path) of a certain
type (e.g. MODEL, TABLE_BASED). Other methods create a scenario (based on a model) or a
(simulation) plan (based on a scenario and a result con�guration). Metainformation (like a title
/ name or a description) can be provided by arguments, which diagram �g. 4.3 does not show.
Each File object represents a dataset uploaded to a Project and provides certain metainformation
about the dataset over attributes: the status like shown in �g. 4.3, the data type and more. Model

dataset wrapper objects o�er a method to create result (output) con�gurations, which base on
the represented model. Also it o�ers a getter to retrieve all result (output) con�gurations.
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Figure 4.3.: Overview about several classes of the Client component. Their public parts make
the MARSResourceMapper interface (see section sec. 4.2.2). Several attributes and
methods are not shown by the diagram to improve clarity.
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The agents attribute of ResultCon�guration exposes the individual settings for every agent. A
following subsection describes this feature further. As described earlier in this subsection
update will send local modi�cations on the con�guration to the MARS cloud. Meanwhile
the Scenario wrapper class provides the parameter attribute to change global scenario con-
�gurations (e.g. start date / time of the simulation). Further a method maps Files or columns
(represented as File, column name Tuple) on a layer or a parameter of an agent. Another sub-
section covers all available map variants and the setting of scenario parameters more detailed.
Parameters and mapping can be updated (in the MARS cloud) separately. SimulationPlan ob-
jects allow to resolve the scenario and result (output) con�guration, the related simulation plan
bases on. Further they o�er a method to start a simulation. Finally a SimulationRun instance
represents an simulation. Among other things a simulation generates logs (output) and makes
progress (status, current_tick). Also it produces results. The query interface for the latter is
described by a following subsection.

4.2.2.2. Class overview of (component) Client: Result output configuration

Figure 4.4.: Classes involved into result output con�guration

The class diagram �g. 4.4 shows all public classes, which represent a result (output) con�guration.
Section sec. 4.2.2.1 already introduced the class ResultCon�guration. As mentioned earlier the
agents attribute maps agent types on a AgentOutputCon�guration instances. Each of the latter
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allows to set, if the output is enabled for the agent type. Further it allows to specify an amount
of simulation steps (frequency), which must pass between records of the property values into
the result database. Further MARS allows to write the positions of spatial agents into the
results after each simulation step. This is controlled by the spatial_output attribute. Each
agent has properties, whose values can be written into the results. Thus the output_properties

attribute maps their names on OutputPropertyCon�guration objects. They allow to enable the
output of a property and to specify, if the property is static (set only once at agent’s creation
and thus only recorded once).

4.2.2.3. Class overview of (component) Client: Scenario updates

Class diagram �g. 4.5 gives an overview about all public scenario related wrapper classes in
the component Client. The central class Scenario (already introduced by sec. 4.2.2.1) provides
further wrapper objects, which each represent a certain part of the underlying model. Basically
these are the agents, the layers and their parameters. Thus the layers / agents attributes map the
layer / agent names on LayerMappingWrapper / AgentMappingWrapper instances. In turn they
connect parameter names to ParameterMappingWrapper objects. Further the LayerMapping-

Wrapper.agents map contains only the agents of its layer. Finally Scenario.categories groups the
layers by their type (e.g. time series layers). Each MappingWrapper object o�er the assignment
of just a �le and optionally a column. As an alternative a value can be assigned. The value

must be of primitive type (Boolean, Float, Integer or String). In this case the mapping will be a
value_mapping (instead of a column mapping). All three attributes can also be read. Not all
mapping combinations are valid. The wrapper classes reject several types of invalid mappings
(e.g. mapping GIS data on a time series layer). An AgentMappingWrapper also allow to manage
the agent count for the represented agent type.

Beside the structure of maps Scenario o�ers the high level methods map and set_instance_count

to modify the mapping information. Both identify a speci�c mapping target by a combination
of agent, layer or parameter name. The methods base on �nd_single_mapping to retrieve the
proper MappingWrapper and fail, if the model does not have the speci�ed part. Basically these
three data types can be mapped and passed to the method’s what parameter: A primitive value,
a File object or the tuple of a File object and a column name.
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Figure 4.5.: Scenario wrapper classes overview
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Scenario exposes the global scenario parameters by the attribute parameters, which refers to
a ParameterizationWrapper instance. The latter manages categories of scenario parameters.
At the time of writing only one exists (globals). A ParameterCategoryWrapper represents each
category. It has methods to get or set a parameter with a certain name (key). These do type
checking (on the value) and conversion based on informations by the MARS Scenario Backend

Service. Thus MARS can introduce new parameters and the Client Library will immediately
support them.

One important task of the MARS Scenario Backend Service is to verify the correctness and com-
pleteness of a scenario. The get_open_problems method of Scenario returns a ScenarioProblems

object, which describes the scenario’s state. If everything is �ne, the successful attribute is
true. Otherwise problems will contain a list of ScenarioProblem instances. Each represents a
single problem. It provides the location (model part), never changing code, a human readable
description and details of the problem.

4.2.2.4. Class overview of (component) Client: Result queries

Diagram �g. 4.6 shows the classes, which wrap the query of results. QueryWrapper basically
represents a �lter for operations on the result database. Multiple �lters can be combined
by the logical operators and and or. The result is a new QueryWrapper. Each QueryWrapper

objects o�ers to �nd agent result data using its �lter or to count result entries, which match
the �lter. Each SimulationRun object (see sec. 4.2.2.1) refers a ResultQueryWrapper instance by
its results attribute. The latter is a specialisation of QueryWrapper and matches all records of
the simulation run. Further it o�ers methods to collect general information about the results.
For example get_number_of_ticks returns the amount of simulation steps (ticks), for which
results are available.

Finally ResultQueryWrapper provides ResultQueryPropertyWrapper objects. They can create
a QueryWrapper and thus a �lter for a speci�ed result property. The �lter consists of the
internal property name, one comparison operator and a constant operand. Certain methods
of ResultQueryPropertyWrapper or its specialisation NumericResultQueryPropertyWrapper de-
termine the comparison operator. Currently equals, (negated) equals(_not), greater(_or_equal)
and less(_or_equals) are available. Further a one_of �lter matches, if the property equals one
of the elements passed as that. Meanwhile distinct queries the results for all distinct values of
the properties in the selection speci�ed by QueryWrapper query (and thus is not a operator
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method). A ResultQueryPropertyWrapper instance checks the type of that. For example the
object provided by tick (of ResultQueryWrapper) does not allow the comparison with �oating
point numbers, since the simulation step (tick) is an integer.

The attribute agents of ResultQueryWrapper maps the name of an agent type on a dictionary,
which map the agent’s output property names on proper ResultQueryPropertyWrappers. The
concrete implementation (e.g. NumericResultQueryPropertyWrapper) and the type checking
bases on the output property’s type de�nition by the model binary, which the simulation run
used. Only output properties can be selected over agents, which were actually enabled in the
used result output con�guration (sec. 4.2.2.2).

Figure 4.6.: Overview about wrapper classes to query results.
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The method �nd of QueryWrapper returns the result documents wrapped as ResultRecords.
Each ResultRecord speci�es the unique identi�er (AgentIdenti�er) and type (AgentType) of the
agent, which generated the data of the result record. The method get_property returns the
value of the output property name (of the agent) at simulation step Tick. If the underlying
result output con�guration de�nes a property as static or speci�es an output frequency greater
than one (sec. 4.2.2.2), no value might have been recorded at the simulation step. In this case
ResultRecord will transparently query the last record of it. Meanwhile get_time() converts the
simulation step into a date and a time (DateTime object) based on the global parameters of the
underlying scenario (sec. 4.2.2.3).

4.2.2.5. Classes for Experimental Setup configuration

The class diagram �g. 4.7 shows several classes, which declare (parts of) an Experimental Setup

as introduced by section sec. 4.2.1. Each ExperimentCon�guration (setup) bases on a model and
(scalar) outputs. A ModelDe�nition instance declares the model. It bases on a model binary
speci�ed by source. The latter is either already build (PrecompiledModel) or must still be build
(ModelSources). In �rst case the (local) path points to a MARS compatible model archive, while
in the second case it speci�es the location of the model’s source code. The metainformation
title and the optional description are stored in a Metadata object (referenced by metadata).

Further enabled_outputs of a ModelDe�nition speci�es the output properties of model’s agents,
which should be recorded. An EnabledOutput de�nes each property by the agent and the
(property_)name. Further it can specify, that the property’s value is constant. Enabling the
output for a property implies activating the output for the agent, which provides the property.
The output frequency (see also section sec. 4.2.2.2) is �xed to one in the current design.

Further a ModelDe�nition declares the information needed for setting up a scenario (see
subsection sec. 4.2.2.3) by its attributes / constructor arguments mappings and parameters.
The latter is a list of global scenario parameters. Each GlobalParameter de�nes the name and
the value of a global parameter. Value may be a primitive value (e.g. boolean or string), date
time object or a �tting Generator object. The latter generate data as described by a following
subsection. Meanwhile mappings is a list of Mapping objects, which each specify how data is
mapped on parts of the model. The model part is another time (sec. 4.2.2.3) de�ned by the
combination of agent, layer and parameter names. In the context of an Experimental Setup data

can be a File, a Generator a Column or a primitive value (e.g. Integer) at the time of writing.
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Figure 4.7.: Classes to declare an Experimental Setup
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A File de�nes input data, which is indepent from the input factor’s values and thus constant
over all evaluations of the Experimental Setup. It has type data_type and the local �le at path
stores it. If the data depends on the input parameters, the speci�ed Generator creates it at each
evaluation. Meanwhile Column objects allow to declare the mapping of table columns. For that
each object speci�es the column’s name and a �le, which can be either a File or a Generator

(not visualized by diagram �g. 4.7) for tables.

Finally the scalar results of the Experimental Setup are declared by the map outputs of Ex-
perimentCon�guration. It is a mapping of an output’s name on the Generator object, which
calculates it based on the recorded results of a simulation.

4.2.2.6. Generators

Section sec. 4.2.2.5 introduced Generator objects, which create MARS compatible input data
from few parameters (e.g. sample generated for a sensitivity analysis). Another task is to
aggregate the MARS model’s output into multiple scalar output variable. The graphic �g. 4.8
gives an overview about classes, which support the de�nition of a Generator. Every Generator

creates data of a certain type (e.g. scalar value or data table) and has a name, which can be
part of debug messages or the titles of generated MARS resources. Meanwhile function is the
central part of each Generator. Function is an user de�ned high order function, which does
the actual work. Its signature (arguments and result type) depends on the concrete Generator

class.

The basic class Generator expects a function, which �rst argument data is a DataWrapper.
All other arguments can be declared freely by the user. They are input parameters for an
evaluation of the Experimental Setup, which declares the Generator. Meanwhile the evaluation
implementation automatically creates DataWrapper, which is a data sink for the Generator’s
function. The latter can either write binary encoded results using the BinaryIOStream object
stream (of DataWrapper). Or it can write Strings using text_stream. TextIOWrapper encodes
the strings as UTF-81 and then it passes them to stream. The evaluation code automatically
closes the data stream, after the user de�ned function �nished.

Further a TableGenerator creates a table. The list columns (exposed as column_names) de�nes
the ordering and names of the table’s columns. Meanwhile the data argument of the Generator

1https://tools.ietf.org/html/rfc3629
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function refers a TableWrapper, which automatically writes the table header. Further the user
de�ned function can add rows. The TableWrapper encodes and writes the column values in a
MARS compatible format.

Figure 4.8.: Classes to declare Generators

Meanwhile a ScalarGenerator’s function does not have a special argument like data. It just
returns the scalar result. Finally ResultGenerator except the function to have the special argu-
ment result, which refers to a SimulationRun (see subsection sec. 4.2.2.1). Again the result is
just returned.
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4.2.2.7. Experimental Setup evaluation

Beside tools to declare an Experimental setup, the Experiments component implements batch
evaluations of them. This subsection mainly cover the work�ows for that.

Each batch evaluation bases on an Experimental Setup and a set of input parameter samples.
The latter basically is structured as a table, where each column represents an input parameter
and each row a sample to be evaluated. Further each batch evaluation is done in a certain
MARS project and has an unique identi�er.

In a �rst step the Experiments component stores the input parameters for each single evaluation
into a database. Further the database stores an unique identi�er within the batch, state
information and results for every single evaluation. Next the Experiments component prepares
the constant parts of the Experimental Setup. This basically includes:

• the import of the model binary.

• creation of a result output con�guration for the model.

• importing all the constant data �les, which does not depend on the input parameters.

Each step results in one or more MARS resources, which are then stored into the database
together with an identi�cation of the related Experimental Setup’s part (e.g. local �le path).

After preparation of a batch Experiments schedules its evaluations, which each involves these
three processes:

• Preparation creates the remainding MARS resources.

• Simulation triggers a simulation run in the MARS cloud and waits for its completion.

• Aggregation runs the output generators.

The successful completion of each process updates the main state of the single evaluation (in
the database). An interrupted Preparation or Aggregation process can not be resumed. But
Experiments will repeat it. Same applies to a process, which failed by temporary problems
(e.g. connection issue). Experiments keeps track about the retry count. If the latter gets about
a certain threshold, the single evaluation will �nally fail. Also the time between two tries
increases with the count to overcome a stress situation in the MARS cloud.
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The �owchart �g. 4.9 visualizes the Preparation process. First Generator objects (sec. 4.2.2.6)
of the Experimental Setup create data and single values based on the parameter sample. Next
Experiments uploads the data to the MARS cloud using the Client component (see sec. 4.2.2.1)
and triggers the import. The result (in case of success) are several �les. Their titles and descrip-
tion contain information about the evaluation, especially the used input parameter values. In
the next step Experiments creates and con�gures a scenario object. This involves the merging
(global) parameter template and mapping template with the results of the data generation, the
data import and the global batch preparation described earlier. Finally a plan is created based
on the scenario’s identi�er and the result con�guration identi�er, which was created while the
batch preparation. The database persists the plan identi�er as the Preparation’s result.

Figure 4.9.: Preparation of a single evaluation
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The Simulation process continues with creating simulation runs based on the plan. Their
identi�ers are stored immediately into the database. Afterwards Experiments regularly queries
the state’s of the simulation runs from the MARS cloud. As soon as MARS completed the
simulations, Experiments schedules the Aggregation, which uses Generator objects of the Ex-

perimental Setup to calculate the scalar outputs. Afterwards it stores the outputs into the
database.

4.2.3. Command line interface (CLI)

The core design of the command line interface (CLI) is inspired by Kubernetes’ CLI utility2 in the
aspect, that it basically o�ers methods on resources. As described by the previous subsections,
there are following resource types supported by MARS: user, project, �le, scenario, result output
con�guration, (simulation) plan and run. The CLI allows to create, describe, delete, get (list)
and update resources (of these types). Further the CLI has resource independent commands.
This includes building (and packing) of model sources, testing a Generator (see sec. 4.2.2.6) and
controlling batch evaluations (sec. 4.2.2.7). All CLI commands can have (optional) arguments
to control their behaviour or to pass information.

The architecture of the CLI utility follows a model view controller pattern and diagram �g. 4.10
show its components. Argument Parser analyzes the user input and parses the arguments (and
command) from it. It o�ers an interface, which allows the Controller to declare the expected
arguments and to retrieve the argument’s values. Further Controller calls the function of Use
Cases, which implements a speci�ed command. Finally the Controller hands the results of the
Use Cases method back to the user using the OutputPrinter component.

Use Cases o�ers functions for resource independent commands and a public class for each
resource type, which in turn has command methods. For example �gure �g. 4.11 shows the
class for result output con�gurations. The method create’s arguments provide the information,
which must or can be available while the initialization of a resource. In case of a result output
con�guration this is the model and the name. Another resource can be speci�ed by either
its complete unique identi�er or parts of its name (title in case of �les). If Use Cases �nds
multiple matching resources in latter case, it throws an exception with all matches. Then
the Controller returns the choices to the user. Meanwhile the delete methods for all resource
types must know the resource to be removed. Resolving the resource works similar to model

2https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
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as described before. Cascading deletion also removes resources, which depend on resource.
Describe returns several information Tables (two dimensional array) about a resource. For a
result output con�guration these include amongst others a metainformation table and a table
with the output settings for every output property of the underlying model (see sec. 4.2.2.2).
The method get returns a table, where each row represents a result output con�guration. The
columns contain metainformation like the name or the model identi�er. Finally the update of
a result output con�guration resource takes several arguments (not extensive list):

• Sub_command speci�es if the method call enables or disables.

• Output_properties is a list of agent name and property name tuples, which the Result-

Con�gurationHandler shall enable or disable.

• Agent relates to the general output settings of the listed agent names.

Figure 4.10.: Component overview of the command line utility

Figure 4.11.: CLI handler class for result output con�gurations
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4.3. Implementation state and details

Implementations exist of most features, which this chapter describes. This subsection gives an
overview about the feature’s sources, state, tests and delivery.

The command line interface (CLI) and the client library share a source repository3. Further
there exist one continous build pipeline, which runs the automatic tests and delivers both as
one package4. Basically a Python subpackage implements each described component. Also the
structure of the sourcecode directory mars_tools re�ects the components. One exception is
the CLI, since in opposite to its design the implementation integrates the OutputPrinter into
the Use Cases. Further the con�gure_ methods separate the con�guration of Pythons standard
argparse module from the Use Cases. Thus argparse has the role of the Argument Parser, while
the con�gure_ methods act as the Controller. But there is no separation on the package level.

Table 4.1 gives a state and test overview of the client library (sec. 4.2.2).

Table 4.1.: Implementation state overview

Feature State Automatic tests Section

Resource creation no users system tests 4.2.2.1, 4.2.2.2
Resource retrieval no users, no input data system tests 4.2.2.1, 4.2.2.2
Resource updates scenarios, result cfg. system tests 4.2.2.1, 4.2.2.2
Resource deletion highly experimental - -
Result queries no result wrapping - 4.2.2.4
Data models supports complex objects component 4.2.2
Model building done - 4.2.2
Manifest creation not implemented - 4.2.2
Manifest processing no result cfg. component 4.2.2
Experimental setup classes as described - 4.2.2.5, 4.2.2.6
Batch evaluation local, SQLite3 based - 4.2.2.7
Command line interface for all implemented features - 4.2.3

3https://gitlab.informatik.haw-hamburg.de/mars/mars-python-client
4Package mars-python-client in MARS’ Pypi feed: https://nexus.informatik.haw-hamburg.de/
repository/pypi/simple
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This chapter shows how to technically use the systems, which the previous two chapters
describe. Further it documents the evaluation, how well MARS handles the presented use cases.
Since the author did not manage to implement the Basic Immune Simulator completly with
MARS at the time of writing, it makes no sense to search for non-in�uential parts yet. Thus
the last part of this chapter does a sensitivity analysis with MARS on a variant of the wolves
and sheep model (similar to Prestes García and Rodríguez-Patón (2016)).

5.1. Environment of the experiments

5.1.1. Hardware

While the experiments an average computer was the client. Listing 5.1 show its hardware
resources as reported by the operating system: 15909 Megabyte of memory (line 4), 2 physical
cpu cores (line 18, line 16 => 4 logical cores) and a Solid State Disk (SSD) hard drive. Line 28
shows benchmark results of the SSDs read speed (498 MB/s) and line 31 shows a measured
write speed of 200 MB/s.

The MARS cloud ran on a heterogeneous Kubernetes cluster with computation nodes, which
di�er signi�cantly regarding their hardware resources. Table 5.1 shows an overview about the
processor and memory resources. They were basically determined the with the Linux utilities
free and reading /proc/cpuinfo using cat as on the client (lst. 5.1). But instead of the client a
Kubernetes pod on the speci�c node ran the commands. Listing 5.2 shows the usage of the
Kubernetes client utility kubectl to identify the pod and run the command. A Ceph1 shared
storage persists data. A database pod ran the benchmark of listing 5.1’s line 29 to get an idea
about the write speed of a single pod on a Kubernetes persistent volume provided by Ceph.

1http://ceph.com/
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The result was 92 MB/s. It should be taken in account that the shared storage (used for the
experiment) can provide this speed to multiple pods at the same time. Since the author had no
exclusive access to the Kubernetes cluster, it is possible that others used it a the same time.
Thus quantitative performance numbers in this work has to be taken with care.

Client and Kubernetes Cluster were connected over the internet. The client side internet
connection has a nominal bandwidth of 25 MBit/s upstream and 5 MBit/s downstream.

1 lukas@skybookHP:~$ free -h
2 lukas@skybookHP:~$ free --mega
3 gesamt [...]
4 Speicher: 15909 [...]
5 [...]
6 lukas@skybookHP:~$ stress -c 5 &
7 [...]
8 lukas@skybookHP:~$ cat /proc/cpuinfo
9 processor : 0

10 [...]
11 model name : Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz
12 [...]
13 cpu MHz : 3099.877
14 cache size : 3072 KB
15 physical id : 0
16 siblings : 4
17 core id : 0
18 cpu cores : 2
19 [...]
20 lukas@skybookHP:~$ sudo smartctl -a /dev/sda
21 [...]
22 Device Model: Samsung SSD 750 EVO 250GB
23 [...]
24 SATA Version is: SATA 3.1, 6.0 Gb/s (current: 6.0 Gb/s)
25 [...]
26 lukas@skybookHP:~$ sudo hdparm -tT --direct /dev/sda
27 [...] disk reads: 1496 MB in 3.00 seconds = 498.32 MB/sec
28 lukas@skybookHP:~$ sudo dd if=/dev/zero of=~/tmpfile \
29 oflag=dsync bs=1G count=1
30 [...]
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31 1073741824 bytes [...] copied, 4,53743 s, 237 MB/s

Listing 5.1: Hardware resources on the client reported by its Linux operating system.

1 lukas@skybookHP:~$ kubectl -n mars-mars-beta get po -o wide | \
2 grep icc-node-3
3 [...]
4 sim-mon-svc-vs8kw [...] icc-node-3.ful.informatik.haw-hamburg.de
5 lukas@skybookHP:~$ kubectl -n mars-mars-beta exec -it | \
6 sim-mon-svc-vs8kw -- free -m
7 [...]

Listing 5.2: Finding pod and running command with kubectl

Table 5.1.: Hardware resources of some Kubernetes cloud computation nodes

Node Processor physical / logical cores

icc-mars-node-01 8 / 8 128909 MB
icc-mars-node-02, -03, -04, -05, -07 6 / 12 64468 MB
icc-mars-node-06, -08 6 / 12 64400 MB
icc-mars-node-09 12 / 24 96744 MB
icc-mars-node-10 4 / 4 15871 MB
icc-mars-node-11 4 / 4 16070 MB
icc-mars-node-12, -13 4 / 4 8006 MB
icc-mars-node-14 4 / 8 16055 MB
icc-node-1, -2, -3 8 / 8 128909 MB

5.1.2. So�ware

An Ubuntu 16.04 Linux distribution operated the client2. Further the experiment execution
based on Python 3.5.2. Newer versions probably work, but are not tested. Older ones will
certainly break parts of the described tools. .NET Core 2.0.3 or newer can build the model
binaries. MARS package feeds provide all required libraries (by models and the toolset). Listing

2Most Unix based systems (e.g. Mac OS X, comparable hardware) should be able to run the showed experiments.
Though this was not tested at the time of writing. Windows probably is more tricky. But basically all used
libraries and tools have ports.
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5.3 shows the required changes on the package manager’s con�guration �les on an Ubuntu
16.04 based system. Listing 5.4 shows how to use the Python package management tool pip to
install the tools described by chapter 4. Since those tools wrap the calling of the .NET Core
tools (e.g. compiler), this section does not cover, how to install the libraries required by the
models explicitly.

The use of virtualenv3 prevents, that library versions required by the MARS Python tools
con�ict with the requirements of other applications on the client. Since the MARS Python
tools are strict about the required versions at the time of writing, the usage of virtualenv is
recommended.

1 lukas@skybookHP:~$ cat /home/lukas/.pip/pip.conf
2 [global]
3 index-url=https://nexus.informatik.haw-hamburg.de/\
4 repository/pypi/simple
5 lukas@skybookHP:~$ cat /home/lukas/.nuget/NuGet/NuGet.Config
6 <?xml version="1.0" encoding="utf-8"?>
7 <configuration>
8 <packageSources>
9 <add key="mars"

10 value="https://nexus.informatik.haw-hamburg.de/\
11 repository/nuget-group/" protocolVersion="2" />
12 [...]

Listing 5.3: Modi�cations on clientside con�guration �les of the package managers

1 lukas@skybookHP:~$ virtualenv --python=python3.5 master_env
2 [...]
3 Installing setuptools, pkg_resources, pip, wheel...done.
4 lukas@skybookHP:~$ source master_env/bin/activate
5 (master_env) lukas@skybookHP:~$ pip install mars-python-client
6 [...]
7 Successfully installed [...] mars-python-client[...]

Listing 5.4: Install of the tools described by the current chapter and previous chapter

The experiments were executed against the o�cal MARS Cloud beta deployment. Commit
4cc77012a595bb8fda5a36a0a26d22a25e64965d of its repository4 declares its state (e.g. versions of

3https://virtualenv.pypa.io/en/stable/
4https://gitlab.informatik.haw-hamburg.de/mars/mars-beta
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services) at the time of writing. While doing the experiments the MARS Cloud beta deployment
was accessed over the URL beta.mars.haw-hamburg.de.

Finally the o�cial5 or any other compatible Git client can be used to check out the sources, on
which this chapter bases on.

5.1.3. Registration at the MARS Cloud and initialization of client tools

Beside the software described in the previous section an unlocked MARS Cloud account is
required to do the experiments, which this chapter describes. At the time of writing using the
MARS Teaching UI is the only available way to request an account (as shown by screenshot
�g. 5.1). An administrator of the MARS Cloud needs to unlock the account.

Then the client tools can be con�gured to use the credentials of the previously created account.
Listing 5.5 shows the process for the MARS command line based user interface (MARS CLI). If
the latter does not �nd the speci�ed con�guration (in the user’s home directory if not speci�ed
otherwise), it starts an interactive creation process. The error message in line 11 just informs,
that the default project test does not already exist. Anyway after con�guration MARS CLI
continues to create the project my_project and prints the project’s global identi�er (last line of
listing 5.5).

1 (master_env) lukas@skybookHP:~/$ mars create project my_project
2 Since specified MARS configuration file does not exist,
3 it will now be created based on your input.
4 First insert the URL of a MARS cloud deployment
5 [...]: beta.mars.haw-hamburg.de
6 [...]
7 Registered login name: lukas2
8 [...]
9 Password (hidden input):

10 Name of your favourite project: test
11 ERROR:root:No project with identifier or name test found
12 29f90dc3-3395-4a54-94f7-3a1282b787a2

Listing 5.5: Interactive creation of the MARS command line tool’s con�guration

5git-scm.com
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Figure 5.1.: Account creation form of the MARS Teaching UI

5.2. Usage of the MARS based Basic Immune Simulator (BIS)
implementation

5.2.1. Workflow overview

The original work�ow to run single evaluations of the MARS BIS model is older than the
MARS command line interface (CLI). While the model speci�c support tool, is_tool still is the
only way to analyse the results, parts of the simulation preparation features of is_tools are
deprecated by the MARS CLI. This section only covers the new work�ow, while a previous
project report6 of the author describes the old work�ow involving the MARS Automatisation
Service (see sec. 4.2.1).

The graphic 5.2 shows an overview about the current work�ow. First the Parameter Preparer

(sec. 3.1.1) generates tables with the agent parameters based on a global parameter �le. Then
MARS CLI uploads the previously created tables, uses .NET Core to build the model sources (to
the model binary) and maps the data on the model based on the resource manifest. The �nal
result is a simulation plan. Further MARS CLI can start simulation runs straight from the plan.

6http://lukas-grundmann.de/pubs/PO2.pdf
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Also it can create a new scenario (and plan) based on the old plan and updated model sources

(build / import process not shown by �g. 5.2) or a new tick count. Anyway the user can specify
the number of runs. Finally the model speci�c analysis (sec. 3.1.8) from is_tool generates plots
and an index �le, which refers the plots.

Figure 5.2.: Current work�ow of BIS model evaluation

5.2.2. Initial, one time preparation

1 (master_env) lukas@skybookHP:~$ git clone https://GITLAB_USER\
2 @gitlab.informatik.haw-hamburg.de/mars/model-immune-system.git bis
3 [...]
4 (master_env) lukas@skybookHP:~/bis$ pip install is_tool \
5 parameter_preparer
6 Successfully installed [...] immune-system-model-tools-1
7 [...] parameter-preparer-0.0.1 [...]
8 (master_env) lukas@skybookHP:~/bis$ is_tool --config is.cfg \

66



5. Usage examples

9 from-mars-cli-config ~/.mars.config
10 (master_env) lukas@skybookHP:~/bis$ cat is.cfg
11 {"url": "https://beta.mars.haw-hamburg.de",
12 "project": "test", "user": "lukas2", "password": [...]}

Listing 5.6: Checkout of MARS BIS and con�guration of model speci�c tools

Listing 5.6 shows the checkout (lines 1, 2) of the MARS BIS model’s repository. Further the
model speci�c utilities parameter_preparer and is_tool are installed (lines 4, 5). Finally in line
8, 9 is_tool generates a con�guration (is.cfg) in its own format from MARS CLI’s con�guration
�le (~/.mars.con�g, default location of the �le). Afterwards the listing reveals the new �le’s
content, which basically is the same as the MARS CLI con�guration provided in section 5.1.2
with di�erent key names.

5.2.3. Initial parameter file and agent parameter generation

The �le parameter.yml in the root of MARS BIS’ repository bases on Folcik, An, and Orosz
(2007), additional �le 17. Listing 5.9 shows few parts of the �le. There are the metagroups
(sec. 3.1.1) areas, *_agents* and antigens. Areas contains the zone / area de�nitions. The depth

of all zones is 1 to re�ect the two dimensional grids used by Folcik, An, and Orosz (2007) for
agent positioning. &Zone1 in line 2 and &Zone2 in line 8 are YAML7 anchors, which allow to
include the zone mappings in a later part of the document (e.g. line 23). Also anchors are used
for parameter inheritance (lines 25 and 29). The commentaries (pre�xed by #) give a hint to
the related parameters of Folcik, An, and Orosz (2007) original BIS implementation. While the
bcells groups use the SomeOtherAntigen antigen representation for their receptor, virus bases
on SomeAntigen. All bits of those both di�er as visualized by listing lst. 5.8. Thus the resulting
binding probability is 1.0 (sec. 3.1.3).

1 (master_env) lukas@skybookHP:~/bis$ time parameter_preparer\
2 -q -o Data/ -i parameter.yml
3 real 0m5.984s
4 [...]
5 (master_env) lukas@skybookHP:~/bis$ head -n 2 Data/parenchymalcell.csv
6 z,[...],y,regeneration-time,area,duration-stressed,_groupname[...]
7 0.0,[...],0.0,1,Zone1,25,parenchymal-cells[...]
8 (master_env) lukas@skybookHP:~/bis$ cat Data/parenchymalcell.csv \
9 | wc -l

7http://www.yaml.org/spec/1.2/spec.html
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10 4225

Listing 5.7: Parameter generation with peek into the results

Listing 5.7 shows a call of parameter_preparer (line 1 and 2). The preceding time returns the
real time, which the call took (~ 6s). While the parameter -q surpresses most (debug) outputs of
parameter_preparer, -i parameter.yml speci�es the initial parameter �le and -o Data/ sets the
directory /home/lukas/bis/Data as target directory for the parameter tables. The next chapter
will show the importance of Data being in the root of the local working copy of MARS BIS’
repository. The remainder of listing 5.7 shows the parameter set for one ParenchymalCell

and counts the number of rows in the table �le. The row number of 4225 corresponds to the
*_number* �eld in line 19 of listing 5.9 (table contains 4224 data rows plus a header).

1 >>> for x in ["0xFF77FFFF", "0x00880000"]:
2 ... print("{0:0=32b}".format(int(x, 16)))
3 ...
4 11111111011101111111111111111111
5 00000000100010000000000000000000

Listing 5.8: Calculation of the binary representation of the bitstrings SomeAntigen and
SomeOtherAntigen

1 areas:
2 Zone1: &ZONE_1
3 _type: areainformation
4 width: 100
5 height: 100
6 depth: 1
7 [...]
8 Zone2: &ZONE_2
9 [...]

10 _agents:
11 [...]
12 parenchymal-cells:
13 ab1-lysis-threshold: 100 #signal units <=> Ab1_Lysis_Threshold
14 regeneration-time: 1 #ticks <=> DelayRegenerationTime
15 duration-stressed: 25 #ticks <=> DURATION_Stressed
16 area: Zone1
17 activate-at: 0 #ticks
18 _type: parenchymalcell

68



5. Usage examples

19 _number: 4224 #agents; source: BIS java code + own calculation
20 position:
21 type: XYZGrid
22 parameters:
23 <<: *ZONE_1
24 [...]
25 bcells: &DEFAULT_B_CELL
26 [...]
27 specifity: SomeAntigen
28 anti-virus-b-cells:
29 <<: *DEFAULT_B_CELL
30 [...]
31 virus:
32 antigen: SomeAntigen
33 [...]
34 antigens:
35 SomeAntigen:
36 _type: antigeninformation
37 format: bitstring
38 source: "0xFF77FFFF"
39 SomeOtherAntigen:
40 [...]
41 source: "0x00880000"

Listing 5.9: Parts of initial parameter �le (parameter.yml)

5.2.4. Using the resource specification file to prepare simulations

Listing lst. 5.10 shows snippets of the resource speci�cation8 (mars_bis.manifest.yml), which
declares the location and metainformation of the previously created parameter �les (e.g.
Data/parenchymalcell.csv in line 2-5) relative to its own path. Further the �le speci�es the
model binaries (line 6-10) source code and a scenario. The latter bases on the model (line 15),
an external mapping �le (line 16, see also lst. 5.11) and certain parameters. Since MARS lacks
the concept of abstract time mapping used by the BIS model, the absolute parameter values
are not important. Only the resulting number of simulation steps matter.

8The author’s project report http://lukas-grundmann.de/pubs/PO2.pdf provides a format de-
scription of the resource speci�cation, while this section focus on the MARS BIS’ speci�c contents.
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1 [...]
2 parenchymalcell:
3 data_type: TABLE_BASED
4 file_path: Data/parenchymalcell.csv
5 [...]
6 bis_model:
7 data_type: MODEL
8 [...]
9 code: ./Code/OnlyModelWithoutTests.sln

10 [...]
11 scenario:
12 type: scenario
13 name: ${experiment_name}
14 [...]
15 model: $bis_model
16 mapping: mapping.yml
17 parameters:
18 global_parameters:
19 SimulationStartDateTime: 1.1.2017
20 SimulationEndDateTime: 5.1.2017
21 DeltaT: 6
22 DeltaTUnit: hours
23 plan:
24 type: plan
25 name: ${experiment_name}
26 scenario: ${scenario}
27 [...]

Listing 5.10: Snippets of the current resource manifest for MARS BIS

1 agents:
2 [...]
3 ParenchymalCell:
4 count: 4224
5 parameters:
6 ab1LysisThreshold: {column: ab1-lysis-threshold,
7 data_id: "${parenchymalcell}"}
8 [...]

Listing 5.11: Snippet of the MARS BIS’ mapping �le
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Listing 5.12 shows how to apply the resource declarations using the MARS CLI. The resource
speci�cation ./mars_bis.manifest.yml references three external variables, which the user passes
to mars apply. The variables in�uence the names and descriptions of the created MARS
resources (see listing 5.13) and aim to support the traceability of certain simulation results.
Meanwhile the -p �ag speci�es the target project demo_project. It can be omitted, if a default
project was de�ned before.

Again time was used to roughly measure the duration of setting up the resources. Listing 5.14
shows that the model build consumes the most of the time (on the client).

1 (master_env) lukas@skybookHP:~/bis$ time mars apply \
2 ./mars_bis.manifest.yml --variable experiment_name="Demo1"\
3 --variable commit_id=$(git rev-parse HEAD) \
4 --variable timestamp="$(date)" -p demo_project
5 [...]
6 INFO:root:Upload of /parenchymalcell from [...] finished
7 INFO:root:Upload of /thelpercell from [...] finished
8 [...]
9 INFO:model-builder:Packed /tmp/tmpummr409e.zip

10 [...]
11 INFO:root:Upload of /bis_model from /home/lukas/bis finished
12 INFO:resource_processing:Check import state for /bis_model
13 [...]
14 INFO:resource_processing:Did mapping of scenario /scenario [...]
15 [...]
16 INFO:resource_processing:Created plan /plan from /home/lukas/bis
17 [...]
18 Finished resources
19 [...]
20 /parenchymalcell => e39c2a8b-029a-49bd-868a-f8f068e934e8
21 /plan => [’5a4a54af0ea6df00013e5cef’]
22 [...]
23 real 1m47.350s
24 [...]

Listing 5.12: MARS CLI applies the resource speci�cation of the MARS BIS model.

1 (master_env) lukas@skybookHP:~/bis$ mars get -p demo_project file
2 identifier title status [...]
3 [...]
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4 [...] Virus setup for experiment Demo1 FINISHED[...]
5 [...]
6 (master_env) lukas@skybookHP:~/bis$ mars describe scenario \
7 -p demo_project Demo1
8 [...]
9 Name: Demo1

10 Description: [...] based on commit 6b1[...] \
11 around Mo 1. Jan 16:31:16 CET 2018.
12 Model title: BIS MARS Model for experiment Demo1
13 [...]
14 Open scenario problems:
15 Layer mappings:
16 [...]
17 Mapping of agent ParenchymalCell with count 4224:
18 x: [...] x from e39[...] (PC properties for [...] Demo1)
19 ab1LysisThreshold: ab1-lysis-threshold [...]
20 [...]

Listing 5.13: Evaluation of previously created �le and scenario resources

1 (master_env) lukas@skybookHP:~/bis$ time mars build -o bis.zip\
2 Code/OnlyModelWithoutTests.sln
3 [...]
4 INFO:model-builder:Packed bis.zip
5 [...]
6 real 1m18.301s
7 [...]

Listing 5.14: Measurement of the time consume for a build of MARS BIS’.

5.2.5. Start of simulations and retrieving their state

Section 5.2.4 shows how to setup MARS resources, which base on the MARS BIS model and
related input data. One resource is the simulation plan. Now this section describes, how to
start simulations based on this plan and how to observe the simulations’ state. Listing 5.15
shows the straightest way by just creating MARS simulation run instances. To get rid of the
-p project �ag, line 4 switches sets demo_project as the current default. The remainder of the
listing creates three simulation runs using the same plan. A plan (as every MARS resource with
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a name / title) can be speci�ed by parts of its name or the complete unique identi�er. MARS
CLI reports a failure in the case of multiple matching resources.

Listing 5.16 shows a call involving MARS CLI’s run command. That command copies a scenario
and plan combination with certain modi�cations. In the example the -t �ags reduces the
amount of simulation steps to 2. The -r option requests 4 simulation runs, which bases on the
new plan and scenario combination. Further the user can de�ne the use of alternate model
sources / binary and a certain name or description (for the new scenario and plan). For every
command MARS CLI shows a help text, if the user adds the “-h” �ag. The run command waits
until all created simulation runs �nish. Meanwhile it shows an output as shown by listing
5.17.

Finally listing 5.18 gives an example usage of MARS CLI’s get to list all runs of a project
(restriction to a certain plan is possible, use -h �ag for details). Further mars describe returns
details about a speci�c run. The debug output reveals (for the speci�c simulation) that the time
to calculate each simulation step started to grow exponential from tick 10 onwards.

1 (master_env) lukas@skybookHP:~/bis$ mars get -p demo_project plan
2 identifier name
3 5a4a54af0ea6df00013e5cef Demo1
4 (master_env) lukas@skybookHP:~/bis$ mars set-default-project \
5 demo_project
6 (master_env) lukas@skybookHP:~/bis$ mars create run Demo1
7 5a4a84010ea6df00013e5cf0
8 (master_env) lukas@skybookHP:~/bis$ mars create run Dem
9 5a4a84120ea6df00013e5cf1

10 (master_env) lukas@skybookHP:~/bis$ mars create run \
11 5a4a54af0ea6df00013e5cef
12 5a4a84390ea6df00013e5cf2

Listing 5.15: Start of three simulations based on the previously created plan

1 (master_env) lukas@skybookHP:~/bis$ mars run -t 2 -r 4 Demo1

Listing 5.16: Call example of mars run

1 State of simulation runs at 20:19:44
2 Run State CurrentTick
3 5a4a89b10ea6df00013e5cf9 Succeeded 2
4 5a4a89bb0ea6df00013e5cfa Running 1
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5 5a4a89bb0ea6df00013e5cfb Succeeded 2
6 5a4a89bb0ea6df00013e5cfc Succeeded 2

Listing 5.17: Example output of mars run

1 (master_env) lukas@skybookHP:~/bis$ mars get run
2 identifier status plan current_tick [...]
3 [...]13e5cf0 Running 5a4a54af0ea6df00013e5cef 19 [...]
4 [...]
5 [...]13e5cf9 Succeeded 5a4a89b10ea6df00013e5cf8 2 [...]
6 [...]
7 (master_env) lukas@skybookHP:~/bis$ mars describe run [...]13e5cf0
8 Identifier: 5a4a84010ea6df00013e5cf0
9 [Plan] Name: Demo1 (5a4a54af0ea6df00013e5cef)

10 Status: Running
11 [...]
12 Output:
13 [...]
14 [AM] Starting creation of agent type: ParenchymalCell
15 [...]
16 [AM] [...] AgentCount is : 4224
17 [...]
18 ...done in 2039ms or 00:00:02.0398684
19 [...]
20 [LIFE] Tick 1 done. Took 3743 ms.
21 [...]
22 [LIFE] Tick 10 done. Took 3885 ms.
23 [LIFE] Tick 11 done. Took 5061 ms.
24 [LIFE] Tick 12 done. Took 6612 ms.
25 [LIFE] Tick 13 done. Took 9526 ms.
26 [LIFE] Tick 14 done. Took 15484 ms.
27 [LIFE] Tick 15 done. Took 26781 ms.
28 [LIFE] Tick 16 done. Took 58371 ms.
29 [LIFE] Tick 17 done. Took 178919 ms.
30 [LIFE] Tick 18 done. Took 552396 ms.
31 [LIFE] Tick 19 done. Took 2282664 ms.

Listing 5.18: Retrieval of simulation run’s progress and details
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5.2.6. Evaluation of the results

In listing lst. 5.19 the model speci�c analysis (is_tool create-reports) is applied on a �nished
simulation run (of MARS BIS). Basically the analysis can work on un�nished simulation runs.
But since it includes all recorded data, agent counts of an �nished, but not (yet) fully recorded
simulation step can be misleading. Another usage of time reveals, that the simulation result
report generation takes long and consumes much processor resources of the client. While
real again is the actual time, the sum of user and sys speci�es the amount of time, in which a
processor core handled the observed process. Since the client used for the experiments has
multiple logical cores (sec. 5.1.1), user plus sys can be greater than real.

1 (master_env) lukas@skybookHP:~/bis$ mars run -n Demo2 -t 18 Demo1
2 [...]
3 5a4bb61f0ea6df00013e5cfe Succeeded 18
4 (master_env) lukas@skybookHP:~/bis$ time is_tool --config is.cfg \
5 create_reports -o reports 5a4bb61f0ea6df00013e5cfe
6 Created report for run identifier 5a4bb61f0ea6df00013e5cfe
7

8 real 2m51.162s
9 user 5m12.932s

10 sys 2m32.752s

Listing 5.19: Generation of a MARS BIS’ simulation report

Each result analysis of a simulation run concludes in an archive, which contains the parts
of the result report. Report.md in the archive’s root directory contains metainformation for
traceability and refers the images. The digital appendix A.2 contains all report �les. Meanwhile
the remainder of this section presents only few of them. Figures 5.3 and 5.4 shows, that the
virtual infection spreads. First parenchymal cells are getting infected (after tick 2, see �g. 5.4).
Then the virus reproduction starts few ticks later. After some further ticks the virtual adaptive
immune system begins its response, which results amongst others e�ects (not shown in this
section) into an increase of T-Helper cell agents (�g. 5.6) and �nally a growth of the antibody
population (�g. 5.5). Figure �g. 5.8 shows the distribution of antibodies in the lymph zone
after the last simulation step. Some Antibody agents also reached the infection zone �g. 5.9.
Thus they theoretically could start to defeat the infection. But this e�ect could not be observed
by a little longer simulations and observations of a signal, which gets produced at virus and
antibody interactions. Meanwhile the agent population’s of the innate immune system also
just grow (e.g. natural killer cells as shown by �g. 5.10).

75



5. Usage examples

Figure 5.3.: Development of virus population’s size

Figure 5.4.: Infected parenchymal cell count over the time
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Figure 5.5.: Antibody population’s growth

Figure 5.6.: Increase of T-Helper cell agent count
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Figure 5.7.: Distribution of infected parenchymal cells in infection zone (1) at 18th tick

Figure 5.8.: Antibodies in lymph zone at 18th tick

78



5. Usage examples

Figure 5.9.: Distribution of antibodies in infection zone at 18th tick

Figure 5.10.: Growth of natural killer cell population
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5.3. Global sensitivity analysis with MARS

Basically there are two possibles ways to prepare, handle and postprocess a batch evaluation
with MARS (e.g. for a sensitivity analysis). The �rst one uses Python code, which directly can
use the Client library described by section 4.2.2. Meanwhile if the user wants to involve tools
without an interface to Python, the shell compatible wrapper provided through the MARS CLI

becomes handy, since it translates between contents of �les and calls of the Client library. This
section demonstrates both, the usage of MARS CLI ’s batch / sensitivity analysis features and
calling Client library directly. Both ways have the MARS model and the Experimental Setup

in common and this section starts with describing those, on which the presented sensitiviy
analysis example bases.

5.3.1. Introduction of the test model

Since the MARS BIS model does not show the expected behaviour in its current state and each
evaluation takes a lot of time, the author decided to use a simpler model for the demonstration
of a sensitivity analysis with MARS.

Thus the example sensitivity analysis use case bases on a MARS variant of the popular wolves
(predator) and sheep (prey) model. It bases on example models for other agent based simulation
frameworks, Wilensky (1997) and Sabelli and Kovacevic (2008). Most of the MARS port910 was
done by Jan Dalski. The author of this thesis made additions11 based on Prestes García and
Rodríguez-Patón (2016).

The model has three agent types, which represent wolves, sheep and grass. Wolves and
sheep wander randomly around and loose energy. As soon the energy drops under a certain
hunger level, the agents scan a certain area around their current position for prey. While
sheep eat grass, wolves eat sheep. Both target their prey and move towards it. After a wolf
or sheep agent successful ate its prey, it gains a certain amount of energy. Meanwhile the
prey dies. Wolves and sheep starve, if their energy becomes zero. The death of sheeps and
wolves technically is represented by agent removal and grass gets deactivated. The latter
activates itself after a certain amount of simulation steps (regrow time), while sheeps and

9Sourcecode: https://gitlab.informatik.haw-hamburg.de/mars/model-wolves-and-sheep
10Documentation: https://con�uence.mars.haw-hamburg.de/display/MP/The+Wolves+Model
11Branch gsa of sourcecode repository
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wolves reproduces themselves each tick with a certain rate. A two dimensional grid represents
the spatial environment of the agents.

Following input parameters are equal for all agents:

• Reproduction rate of sheep (sheep_reproduction_rate)
• Reproduction rate of wolves (wolf_reproduction_rate)
• Amount of energy sheep gain from a grass (sheep_energy_from_food)
• Amount of energy wolf gain from eaten sheep (wolf_energy_from_food)
• Regrow time of grass (grass_regrow_time)

Like Prestes García and Rodríguez-Patón (2016) the sensitivity analysis with MARS (shown
in upcoming sections) subjects all �ve parameters. Though the same ranges, scalar output
de�nitions and sensitivity analysis methods are used as by Prestes García and Rodríguez-Patón
(2016), the results can not be compared, since the used models di�er. Especially the hunger and
the targeting of prey are only present in the MARS version. Meanwhile the wolves’ and sheep’s
initial position and energy amount are random. Each agent uses its own random generator
with a seed, which an agent parameter provides. Each grid cell hosts a grass agent. Grass agent
parameters de�ne the grid cell (x, y) and if the agent is initially dead.

While the later four parameters should allow the sensitivity analysis to create an equal initial
state for every model evaluation, MARS unde�ned execution order probably still causes non-
deterministic simulation outcomes.

5.3.2. Experimental setup

This subsection covers parts of the Experimental Setup for the MARS wolves and sheep model.
Meanwhile the full �le is available as gsa/wolves_sheep_experiment.py (in the gsa branch of
the model’s repository).

The �rst important part of the Experimental Setup are the parameter generator functions. List-
ing 5.20 shows get_grass_regrow_time, which expects the input parameter grass_regrow_time

as real number between 0 and 1. The function scales the parameter’s value to an integer
between 20 and 40, how the model’s Grass agent expects it. Meanwhile generate_grass creates
a table, which contains the initial positions and dead state of the agents. At the time of writing
MARS CLI ’s batch features does not load generator functions with external dependencies
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(e.g. imports, calls of other methods) properly. Thus generate_grass (and the not listed genera-
tor functions) must import the required module random in its body. As described in a previous
subsection a �xed seed ensures, that every model evaluation has the same initial Grass agents.
Finally the actual generator grass_table bases on generate_grass and de�nes the column names
x, y, dead. If their order changes, the argument order of the add_row call (line 11) must change
accordingly!

1 [...]
2 def get_grass_regrow_time(grass_regrow_time: float):
3 return int(20 + 20 * grass_regrow_time)
4

5 [...]
6

7 def generate_grass(data):
8 import random
9 random.seed(1889842121)

10 for x in range(0, 50):
11 for y in range(0, 50):
12 data.add_row(x, y, random.random() < 0.5)
13

14 [...]
15 grass_table = create_table_generator(generate_grass,
16 columns=[’x’, ’y’, ’dead’])
17 [...]

Listing 5.20: Parameter generator (functions)

Next listing 5.21 shows the de�nition of the model, the scenario parameters, the mapping and
the de�nition of the agents to be recorded. The source (line 2) for the model is sourcecode
(ModelSources). The environment variable MODEL_SOURCE de�nes the sourcecode’s location.
Further ModelSources de�nes the (optional) title of the �nal MARS resource (of the model).
The GlobalParameters are all constants, except the virtual start date and time of the scenario
(SimulationEndDateTime). The scalar generator function generate_end_time calculates it based
on a parameter, which speci�es the number of simulation steps.

While the scaled gras_regrow_time is mapped on the argument regrowTime of the Grass agent
type, the x column of each grass table is mapped on the x parameter. For now the Experimental

Setup will lead to N-1 redundant grass tables, where N is the number of evaluations. The reason
is, that the batch processing calls all generators for all model evaluations (sec. 4.2.2.7) and the
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grass table generator uses a the same, �xed random seed as described earlier every time. Thus
a possible optimization is to generate the table once and replace grass_table.columns.x (line 15)
with Column(‘x’, File(‘LOCAL_FILE_PATH’, mars_tools.clients.DATA_TABLE, ‘TITLE’)), where
File and Column (sec. 4.2.2.5) are both implemented by the same package as Mapping (. . . see
source code).

1 wolf_sheep_model = ModelDefinition(
2 source=ModelSources(os.environ[’MODEL_SOURCES’], title=’WSM’),
3 global_parameters=[
4 GlobalParameter(’SimulationStartDateTime’, START_DATE_TIME),
5 GlobalParameter(’SimulationEndDateTime’,
6 create_scalar_generator(generate_end_time)),
7 GlobalParameter(’DeltaT’, 1),
8 GlobalParameter(’DeltaTUnit’, ’hours’)
9 ],

10 mappings=[
11 Mapping(agent=’Grass’, parameter=’regrowTime’,
12 data=create_scalar_generator(get_grass_regrow_time)),
13 [...]
14 Mapping(agent=’Grass’, parameter=’x’,
15 data=grass_table.columns.x),
16 [...]
17 ],
18 enabled_outputs=[
19 EnabledOutput(’Sheep’),
20 EnabledOutput(’Wolf’),
21 # EnabledOutput(’Grass’, ’Dead’)
22 ]
23 )

Listing 5.21: De�nition of model and scenario details

1 def count_wolves(results):
2 from mars_tools.clients.mars_client import MARSSimulationRun
3 assert isinstance(results, MARSSimulationRun)
4 agents = results.results.get_agent_ids(’Wolf’)
5 agents_query = results.results.agent_id.one_of(agents)
6 counts = [
7 (agents_query & (results.results.tick == tick)).count()
8 for tick in range(0, results.current_tick)]
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9 return sum(counts) / float(len(counts))

Listing 5.22: Scalar output de�nition Average number of wolves

For the current wolves and sheep Experimental Setup and MARS’ result output implementation
it is su�cient to enable the recording for Sheep and Wolf agents (line 19 and 20), since model
speci�c agent properties are not covered by the current scalar output de�nitions. Listing
5.22 shows the scalar output generator count_wolves, which calculates the average count of
wolves. In line 4 the function uses the ResultQueryAdapter (sec. 4.2.2.4) get all distinct Wolf

agent identi�ers. The following line builds a query object, which matches each result record,
whose identi�er property references a Wolf agent (thus its value must be in previously queried
set). Further count_wolves iterates over every simulation step (tick) and creates a �nal count
query for each by combining the identi�er query with a tick number match. Since the batch
processing calls the output generator after simulation �nish, the use of results.current_tick is
a valid source of the number of simulation steps. Finally the last line calculates the average
count.

Listing 5.23 shows the �nal Experimental Setup / ExperimentCon�guration for the wolves and
sheep model. The count_sheep method is like count_wolves, but for the Sheep agents. The idea
behind models being a list is to support sensitivity analyses, where the model itself is an input
factor (see also sec. 2.5.3). But this feature is not fully implemented and actually required at
the time of writing.

1 wolf_sheep_experiment = ExperimentConfiguration(
2 models=[wolf_sheep_model], outputs={
3 ’wolf_count’: create_scalar_generator(count_wolves),
4 ’sheep_count’: create_scalar_generator(count_sheep)
5 })

Listing 5.23: Top level de�nition of an Experimental Setup

5.3.3. Preparation of a batch evaluation for a sensitivity analysis

First step is to determine the required input parameters for each model evaluation. MARS CLI

o�ers a tool to extract that information from an Experimental Setup as shown by listing 5.24.
The directory /home/lukas/wsm (~/wsm) is a local copy of gsa branch from the MARS Wolves
and Sheep repository. The �rst line de�nes the local model source location (sec. 5.3.2). The -f
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�ag of mars batch speci�es the Python �le, which describes the Experimental Setup. There are
further options for the case, that the �le speci�es multiple setups (seemars batch -h). Meanwhile
the variable subcommand prints the name and the expected type, if the Experimental Setup

speci�es the latter. Further the -o �ag controls, if optional parameters and their default values
are of interest. Finally the �ag –sa-problem results in a SALib compatible problem description12,
which is further encoded as JSON. The example saves the problem description as problem.json.
It is now possible to de�ne the boundaries in the �le. But since the generator functions (in the
example Experimental Setup, sec. 5.3.2) does it already, this step is skipped here.

1 (master_env) lukas@skybookHP:~/wsm$ export MODEL_SOURCES=$(pwd)
2 (master_env) lukas@skybookHP:~/wsm$ mars batch -f \
3 gsa/wolves_sheep_experiment.py variables -o
4 grass_regrow_time of type float is required
5 number_of_ticks with default value 300
6 [...]
7 (master_env) lukas@skybookHP:~/wsm$ mars batch -f \
8 gsa/wolves_sheep_experiment.py variables
9 grass_regrow_time of type float is required

10 sheep_energy_from_food of type float is required
11 [...]
12 (master_env) lukas@skybookHP:~/wsm$ mars batch -f \
13 gsa/wolves_sheep_experiment.py variables --sa-problem > problem.json
14 (master_env) lukas@skybookHP:~/wsm$ cat problem.json
15 {"bounds": [[0, 1], [0, 1], [0, 1], [0, 1], [0, 1]],
16 "names": ["sheep_energy_from_food", "wolf_energ[..]],
17 "num_vars": 5}

Listing 5.24: Query the input parameters using MARS CLI

5.3.3.1. Sampling and batch preparation in Python

The python snippet in listing 5.25 uses the SALib to create Morris samples and further initializes
a batch evaluation. The main method �rst loads the problem from the previously created �le
(line 19). In the next line morris.sample from the external SALib generates Morris (sec. 2.5.5.1)
compatible samples with a grid level of 10, ∆ of 5 and 100 elementary e�ects.

12https://github.com/SALib/SALib/blob/master/docs/basics.rst
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Meanwhile in line 21, 22 the default MARS CLI con�guration (sec. 5.1.3) is loaded and a client

instance is created from it. Then the Python code initializes an ExperimentEvaluator, which
implements the batch processing logic described in section 4.2.2.7. The ExperimentEvaluator

bases on the Experimental Setup (wolves_sheep_experiment.wolf_sheep_experiment) and the
client. At the time of writing MARS creates a simulation container in the cluster immediately
after the creation of a simulation run. Early experiments showed, that this overloads the
cluster’s control backend13 in case of many planned model evaluations. As a workaround the
author of this thesis enhanced ExperimentEvaluator, such that it waits for simulation runs to
be �nished before creating new ones. The parameter max_parallel_simulations de�nes how
many simulation runs each batch evaluation may have at the same time. It has big in�uence
on the cluster resource usage (if each simulation uses at most one calculation node).

Finally evaluator.initialize_batch_evaluation builds the model (if required) and prepares all
other �les, which are not results of the generators. Further it loads the samples into a local
database. Since samples does not provide column names and the batch evaluation does a assign
a column on a generator parameter by name, another argument of initialize_batch_evaluation
takes problem[‘names’]. It is important that the order of the provided column names equals the
order of the actual columns in sample. The parameter project speci�es the MARS project, where
the batch evaluation manages all its resources. To prevent name collisions each batch evaluation
should use its own project. The method initialize_batch_evaluation creates a random name, if
none is provided. Also it creates the project, if it does not already exists. In case of success the
method returns the unique batch (evaluation) identi�er.

1 import json, csv
2 from SALib.sample import morris
3

4 from mars_tools.experiments.evaluation import ExperimentEvaluator
5 from mars_tools.clients.mars_client_configuration import \
6 MARSClientConfiguration
7

8 import wolves_sheep_experiment
9

10 PROBLEM_DESCRIPTION_PATH = ’problem.json’ # Path of problem description
11

12

13Originally the whole cluster was overstrained, since created containers actually run after creation. But after
adjustments by the administrators the cluster now runs a container only, if enough resources are free.
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13 def load_problem(path):
14 with open(path) as problem_file:
15 return json.load(problem_file)
16

17

18 def main():
19 problem = load_problem(PROBLEM_DESCRIPTION_PATH)
20 samples = morris.sample(problem, 100, 10, 5)
21 configuration = MARSClientConfiguration.load()
22 client = configuration.create_client()
23 evaluator = ExperimentEvaluator(
24 wolves_sheep_experiment.wolf_sheep_experiment, client,
25 max_parallel_simulations=20)
26 batch_identifier = evaluator.initialize_batch_evaluation(
27 samples, problem[’names’], project=’Batchproject1’)

Listing 5.25: Create samples with Python and SAlib

5.3.3.2. Initialize a batch evaluation with MARS CLI and sample files

The MARS CLI expects samples as tables, where each row holds the input parameters for a
evaluation and the columns correspond to the generator parameters with the same name. Each
element of the table is saved JSON encoded. All JSON encoded �elds are further stored as
comma-seperated values (CSV) with the speci�cations of table 5.2. Basically MARS CLI uses
the standard Python modules json and csv with default format settings. The �rst table row is a
header, which provides the column names.

Table 5.2.: Sample �le speci�cations

Aspect Details

Delimiter ,
Doublequote the quote character is doubled
Escape character none used
Terminator of line \r\n (carriage return + newline character)
Quote character “
Quoting �elds with special characters
Ignore of whitespace after delimeter no
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Aspect Details

More requirements �eld values must be JSON encoded

Listing 5.26 shows the �rst two lines of an example sample �le. Listing 5.27 demonstrates
how to initialize a batch evaluation with MARS CLI. Like prior the option -f speci�es the
Experimental Setup de�nition. The -p parameter corresponds to the project argument of ini-
tialize_batch_evaluation (sec. 5.3.3.1), sample.csv is the sample �le used in the example and the
�nal output (t9762ac7c_d049_4d2c_bd00_d4f8c69321e6) the global identi�er.

1 """sheep_reproduction_rate""",[...],"""wolf_reproduction_rate"""
2 0.1111111111111111,[...],0.3333333333333333

Listing 5.26: Example of sample �le

1 (master_env) lukas@skybookHP:~/wsm$ mars batch \
2 -f gsa/wolves_sheep_experiment.py initialize -p BatchDemonstration2 \
3 samples.csv
4 [...]
5 INFO:experiments:Build of model WSM finished
6 INFO:experiments:(Build and) uploaded all required constant files
7 INFO:experiments:Wait on import of: [...]
8 INFO:experiments:Created and configured result configuration [...]
9 INFO:experiments:Preparation finished

10 t9762ac7c_d049_4d2c_bd00_d4f8c69321e6

Listing 5.27: Initialization of batch evaluation with the MARS CLI

5.3.4. Execution of the batch evaluation

The next step after the initialization of a batch evaluation is to create a batch evaluation worker.
Listing 5.28 shows an addition to the Python snippet lst. 5.25 (previous section). The method
resume_batch_evaluation of evaluator on the batch evaluation identi�er proceeds the work,
which the database reports as un�nished.

At the time of writing, resume_batch_evaluation reads all open tasks greedy into its memory
and starts to work on them. The method reports signi�cant progress on a single evaluation to
the database. Thus resume_batch_evaluation can safely be interrupted and started later again
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on the same batch. But multiple instances of the method should not run on one batch at the
same time, because both would process equal evaluations (and do rendundant work). Another
aspect to be careful about are changes on the Experimental Setup de�nition, while a batch
evaluation uses it. The changes will not a�ect a running resume_batch_evaluation, since it
already loaded the de�nition into memory. But changes between interruption and resume of a
batch evaluation corrupt results of sensitivity (or similar) analysis, if changes on the (output)
generators make the already �nished evaluations incomparable to the pending ones.

Listing 5.29 shows, how the MARS CLI resumes a batch evaluation (t9762ac7c_[. . . ] in the exam-
ple). Again the -f option speci�es the Experimental Setup de�nition. The resume subcommand
basically is a wrapper around resume_batch_evaluation. Thus all considerations regarding
interruption, one call per batch and changes on the Experimental Setup apply on the usage of
MARS CLI, too.

1 [...]
2 batch_identifier = evaluator.initialize_batch_evaluation(
3 samples, problem[’names’], project=’Batchproject1’)
4 evaluator.resume_batch_evaluation(batch_identifier)

Listing 5.28: Resume the work on a batch from Python code

1 (master_env) lukas@skybookHP:~/wsm$ mars batch \
2 -f gsa/wolves_sheep_experiment.py
3 resume t9762ac7c_d049_4d2c_bd00_d4f8c69321e6
4 INFO:experiments:Loaded definitions from database
5 INFO:root:Resume single evaluations
6 [...]

Listing 5.29: Resume the work on a batch with a MARS CLI call

5.3.4.1. Get progress information about batch evaluations

There are multiple ways to get state information about a batch evaluation. Client Library uses
the standard Python logging module. The o�cial Python documentation provides information14,
how to con�gure the logs. The MARS CLI enables logs with verbosity level logging.INFO and
above. Further it reduces the verbosity of logs by the requests library to logging.ERROR, since
at logging.INFO every single HTTP request causes a log.
14https://docs.python.org/3/library/logging.html
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MARS CLI ’s batch state command provides progress summaries of batch evaluations as shown
by lst. 5.30. The parameters are the same as for the resume command. Meanwhile the command
�rst shows, how many evaluations are in which state. CREATED is the initial state. PREPARED
means, that all MARS resources for the evaluation except a simulation run are ready in the
MARS cloud. SIMULATING indicates, that a simulation is ongoing. An evaluation in state
SIMULATION_DONE waits for the execution of the output generators on the client. FINISHED
or FAILED mean a �nal successful / failed completion of an evaluation.

The state command then prints information about the evaluations in state SIMULATING. Finally
state gives a count of the problems of un�nished evaluations. It is important to keep in
mind, that the client repeats tasks of evaluations after errors, which it classi�es at temporary
(e.g. connection loss between client and MARS Cloud). Thus the problem count of state can be
treated as indicator, how smooth the whole environment works.

1 (master_env) lukas@skybookHP:~/wsm$ mars batch \
2 -f gsa/wolves_sheep_experiment.py \
3 state t9762ac7c_d049_4d2c_bd00_d4f8c69321e6
4 INFO:root:Load states from database
5 INFO:experiments:Loaded definitions from database
6 INFO:experiments:Login at MARS started
7 State of batch evaluation t9762ac7c_d049_4d2c_bd00_d4f8c69321e6:
8 375 / 600 evaluations are in state CREATED
9 185 / 600 evaluations are in state PREPARED

10 40 / 600 evaluations are in state SIMULATING
11 Details about running evaluations:
12 0 uses run 5a50ccfabeef2d0001be2d1a with state Running, 6
13 and was started at 14:19:54 01/06/18.19.2018
14 1 uses run 5a50ccfb0ea6df00013e6abe with state Running, 3
15 and was started at 14:19:56 01/06/18.19.2018
16 [...]
17 Sum of problems of unfinished evaluations: 0

Listing 5.30: State information of batch evaluation with MARS CLI

Listing 5.31 demonstrates the MARS CLI command batch problem, which gather and shows
informations about the recorded problems. Without the �ag ‘–include-�nished’ the command
only shows the problems recorded for evaluations not (yet) in the state FINISHED.

1 (master_env) lukas@skybookHP:~/wsm$ mars batch \
2 -f gsa/wolves_sheep_experiment.py \
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3 problems t9762ac7c_d049_4d2c_bd00_d4f8c69321e6
4 INFO:experiments:Loaded definitions from database
5 INFO:experiments:Login at MARS started
6 Problems of evaluation 1 with state SIMULATION_DONE
7 - MARSClientHTTPError([...]Service Temporarily Unavailable[...]
8 Problems of evaluation 4 with state SIMULATION_DONE
9 - MARSClientHTTPError([...]Service Temporarily Unavailable[...]

10 [...]

Listing 5.31: Getting problems of batch evaluation run

5.3.4.2. Profile the progress of a batch evaluation

The Client Library has a benchmark feature, which allows to pro�le the progress of a batch
evaluation. Basically it records the state counts (like shown by MARS CLI batch state com-
mand) together with a timestamp (absolute seconds in unix time => after 1.1.1970) into a
�le. Listing 5.32 shows how to integrate the benchmark feature into listing 5.28 (and lst. 5.25).
An instance of Benchmark does the counting and saves the count results into the local �le
PATH_OF_PROFILE_FILE. Meanwhile resume_batch_evaluation triggers the count every time
the state of a single evaluation changes. It then calls benchmark.on_evaluation_state_update

and passes a state information object to it.

1 [...]
2 from mars_tools.experiments.evaluation import Benchmark
3 [...]
4 def main():
5 [...]
6 benchmark = Benchmark(PATH_OF_PROFILE_FILE)
7 try:
8 evaluator.resume_batch_evaluation(
9 batch_identifier, benchmark.on_evaluation_state_update)

10 finally:
11 benchmark.close()

Listing 5.32: Create batch progress pro�le using Python

Listing 5.33 shows the use of –statistics-�le option of MARS CLI ’s batch resume command. The
option enables the batch pro�le creation, too.

91



5. Usage examples

1 mars batch -f gsa/wolves_sheep_experiment.py \
2 resume t71443335_2c06_41f8_9b1b_16915fb1e88a \
3 --statistics-file profile_t71443335_2c06_41f8_9b1b_16915fb1e88a
4 [...]

Listing 5.33: Creation of progress pro�le using MARS CLI

The python script lst. A.1 in the appendix uses matplotlib to visualize batch progress pro�les
as line graphs. The example output �g. 5.11 shows the progress of evaluating the Experimental

Setup of section 5.3.2 with samples created like in listing 5.25. The graph shows that 600
evaluations were processed in about 4,5 hours. It took about a quarter of an hour to generate
and upload all data (CREATED line hitting count of zero).

Figure 5.11.: Progress of a batch evaluation

The client kept the count of simulation runs (at the same time) around 40. The MARS cloud
processed �nished the last simulation after about 2,75 hours (SIMULATING line reaching time

axis). Processing the simulation results took signi�cantly longer. The author attached to
the container running MARS’ result database (using kubectl like in sec. 5.1.1) and analyzed
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the processor usage with the tool top. The result database hit the resource boundaries of its
calculation node. Flat FINISHED and SIMULATION_DONE lines in �gure 5.11 (short after third
hour) show an batch evaluation interruption by the author. The reason was, that an increasing
problem count (gateway timeouts, server side connection closes) indicated an instable MARS
cloud. Using MARS CLI ’s batch problems command (lst. 5.31) showed, that the reason for all
FAILED evaluations were a rather rare type of temporary errors, which the batch processing
wrongly categorized as de�nite problem.

5.3.5. Gathering and processing results of the batch evaluation

5.3.5.1. Dealing with failed single evaluations

Certain sensitive analysis setups can cope with missing results of some evaluations. For
example if a researcher used a much higher sample number than at least required by the chosen
sensitivity analysis method to reach a certain con�dence level. In any case the input samples
must be dumped, which the not available output values base on.

In the case that a misleadingly problem categorization or a bug in the user de�ned generators
lead to an evaluation failure, another solution is available. MARS CLI ’s batch reset-failed (usage
like resume, state . . . before) command resets the state of all failed single evaluations back to
CREATED. Thus another use of the batch resume command on the batch evaluation will give
the evaluations another try.

5.3.5.2. �ery scalar outputs and postprocessing example

The ExperimentEvaluator class’ (sec. 5.3.3.1) get_results method returns a table (as two dimen-
sional list) with the input samples. Also it returns a map, whose keys are the output names
de�ned by the Experimental Setup (e.g. wolf_count and sheep_count in lst. 5.23). A map’s value
is a list of the scalar outputs. The method get_results guarantees, that:

• The ith element of an output list derives from the evaluation of the ith row / sample in
the input parameter table.

• The order of the returned input samples equals the order of samples, which the batch
initialization process (sec. 5.3.3.1) retrieved.

• Input samples and output values of failed evaluations are not part of the results.
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Listing 5.34 extends lst. 5.28 by a call of get_results. Also it shows, how to pass the method’s
results to the Morris post processing implementation of the SAlib (corresponding to the Morris
sampling in the beginning, sec. 5.3.3.1). Passing the names values from the problem de�nition
as second argument of get_results ensures, that the column order of the returned input_samples

is as SAlib expects it (based on the problem de�nition). Listing 5.34 shows parts of an example
output of lst. 5.34.

MARS CLI ’s wrapper command batch result for get_result merges the output values as addi-
tional columns with the input sample table. Then it saves the resulting table in the format,
which sec. 5.3.3.2 describes. Listing 5.36 shows an example call.

1 [...]
2 benchmark.close()
3 input_samples, outputs = evaluator.get_results(
4 batch_identifier, problem[’names’])
5 for name, values in outputs.items():
6 indices = morris_post.analyze(
7 problem, numpy.array(input_samples), numpy.array(values),
8 num_levels=num_of_levels, grid_jump=grid_jump)
9 print(’Indices for scalar output’, name)

10 for i in range(0, len(problem[’names’])):
11 print(’of parameter’, problem[’names’][i] + ’:’,
12 indices[’mu_star’][i], ’with confidence interval’,
13 indices[’mu_star_conf’][i])

Listing 5.34: Result retrieval and postprocessing with SAlib and Morris method

1 Indices for scalar output sheep_count
2 of parameter sheep_reproduction_rate: 27.831900000000005 [...]
3 of parameter grass_regrow_time: 33.92208 [...]
4 of parameter wolf_energy_from_food: 31.563299999999995 [...]

Listing 5.35: Output example of listing

1 (master_env) lukas@skybookHP:~/wsm$ mars batch \
2 -f gsa/wolves_sheep_experiment.py result -o results.csv \
3 td1349870_2194_4797_8b2f_7facd019977b
4 [...]
5 INFO:root:Generate result table ...

Listing 5.36: Retrieval of results of a batch evaluation using the MARS CLI
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This chapter points the main conclusions of this thesis out and suggests possible consequences
and improvements.

6.1. Retrospective assessment of the original motivation

The current state of the MARS based Basic Immune Simulator (BIS) implementation cannot
be subject of a sensitivity analysis, which goal is to identify non-in�uental model parts for
the answer of the originally research question (by (Folcik, An, and Orosz 2007)). Anyway
the restrospect shows, that the demand of using the MARS implementation for such model
reduction actually does not really exist. Folcik, An, and Orosz (2007) answered their questions
with their implementation and functional design. For further analysis about which parts of
the agent logic are actually needed, it would probably have been an easier approach to to port
the original BIS implementation from Repast J to Repast Symphony. Then the R and Repast
solution of Prestes García and Rodríguez-Patón (2016) can be used.

6.2. Advantages and disadvantages of MARS

The conclusion of sec. 6.1 renders the original idea about sensitivity analysis of the MARS BIS
model senseless. However, both batch evaluation with MARS and the MARS BIS implemen-
tation still provide value. MARS’ approach to o�er simulation as a service in the Cloud has
potential. For example it allows even global distributed teams to straightforwardly work on the
same experiment. One team member can introduce data, another one can schedule simulations
based on them and a third member can evaluate the results. MARS allows the access to all
required assets over the internet. Further MARS ability to store all values of every agent’s
attribute is expensive, but creates also a valuable source of knowledge to debug unexpected end

95



6. Discussion

results. In the case of sensitivity or similar analyses, the extensive results also allow to apply
di�erent scalar output de�nition in hindsight, without the need of redoing the simulations
(assuming, that the already existent results are su�cient).

In the meantime, MARS architecture with it stateless services and container based deployment
is theoretically highly scalable. However, experiments based on sec. 5.3.4.2 indicated, that in
current MARS deployments the single node database setups are a bottleneck for use cases
like described in the previous chapter. For another experiment the wolves sheep setup was
simpli�ed, such that the model itself counts the agents after each simulation. Then a single
instance of a technical agent type exposes the counts over attributes, which MARS records
and the scalar output generators read. Also the Experimental Setup maps the grass and seed
arguments on data �les, which are only uploaded once.

Figure 6.1.: Progress of a batch evaluation based on modi�cated wolves sheep setup

The lineplot �g. 6.1 visualizes the progress of a batch evaluation (with more samples this
time). The results are more preparations in less time. Further the backlog of �nished, but
not fully evaluated simulation runs decreases to zero over the time. Finally after about six
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hours much more evaluations were completly evaluated than with the old setups. At the same
time, the random observations showed a much lesser load on the result database container
and improved usage of the calculation node’s resources. Overall, setups similar to the one
described in sec. 5.3.4.2 should pro�t from a MARS deployment, which have more powerful
databases or database clusters.

After six hours another weakness of MARS regarding automated simulations started to show
stronger e�ects. An unreliable simulation monitoring and progress reporting of MARS nega-
tively impacts the batch evaluation’s e�ciency. At the time of writing, MARS often reports
the termination of a simulation long time after it actually happened or even not at all. For
instance the output of mars batch state reports zero simulated ticks for an evaluation, even
multiple minutes after an analysis using kubectl shows a successful exit of the related container.
Thus cases exist, where the batch evaluation logic needless waits until it runs the output
generators. Even worse, the limitation of the maximal number of parallel, active simulation
runs (sec. 5.3.3.1) prevents the client from creating new simulation runs, since it believes MARS
still has enough outstanding work to do. This �nally leads to an underutilization of of the
available resources.

6.3. Proposed Improvements of the batch evaluation system

The batch evaluation system should be improved for a better user experience. The most crucial
aspect is an integration of the batch evaluations features into the MARS Cloud, since it would
allow to access Experimental Setups, input samples and the �nal scalar outputs from all over the
world. New MARS services would have more abilities for optimisations or to work around the
issues like the simulation progress monitoring. For instance until now, uploads of generated
data and download of database query results depend on the connection between the client and
the MARS Cloud.

The architecture of the batch evaluation is ready to a certain degree for this transition with its
processes, which store state informations and resource identi�ers into a database. The most
crucial point about moving the generators in the MARS Cloud is data isolation. A generator
function must only be able to access datasets, for which it has permissions. Thus the author
suggests the development of batch worker services in containers, which are network isolated
from MARS’ backend services and databases. The workers are exchanging tasks, their states
and resources over MARS’ API services.
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The generator framework only provides helper classes for the creation of tables, yet. Additions
for the MARS speci�c layer initialisation �les would simplify the development of generator
functions.

6.4. Future of the Automatisation Service and resource
definitions

The author suggests to drop the Automatisation Service project, since the client library o�ers
basically all of its features and more. However, a useful, reusable asset should be the resource
de�nition format, which is especially helpful for modelling projects with much input �les and
mappings. Further it is worth to consider the merge of the Experimental Setup (or parts of it)
with the resource de�nitions, since there is redundancy between them.

6.5. MARS Teaching UI and Command line interface (CLI)

The MARS CLI has been a side product from this thesis. It o�ers another user interface to
MARS beside the MARS Teaching UI. Originally the CLI was only planned as user interface
prototype for the batch evaluations and as supplement to be mainly used inside of shell scripts
for automatisation purpose (aside from the batch evaluation). In its current state the MARS

Teaching UI is to insu�cient to be used in combination with batch evaluations. It lacks live
reloads. To see resources created outside of one MARS Teaching UI instance (e.g. by the CLI),
the browser has to make a manual reload. Afterwards the user has to reselect the project and
resource view, which prohibits an e�cient work�ow. But more crucial is MARS Teaching UI ’s
lack of paging in resource lists. For instance, since the MARS Teaching UI renders all scenarios
of a project in its scenario view at once, it takes very long until the browser shows the scenarios
created for a typical sensitivity analysis. Especially for mapping the MARS Teaching UI is a
very intuitive and valuable. Therefore, the MARS group should consider to make it ready for
showing great amounts of resources and to refresh the current view, whenever the shown
content changes.
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Section 2.1 introduces the cells of the adaptive and the innate immune systems and their
relations, while sec. 2.2 gives an overview about available agent based immune system models.
Based on the previous subections sec. 2.3 describes the original Basic Immune Simulator (BIS),
which Folcik, An, and Orosz (2007) used to research the relation between the innate and the
adaptive immune system. Subsection 2.4 describes the MARS simulation as a service system,
which bases on multiple services running in compute clouds. Further the subsection gives an
overview about the MARS libraries, the typical simulation work�ow and the ability of MARS
to distribute simulations. Section 2.5 describes a typical sensitivity analysis work�ow, which
consists of the three phases sampling, evaluation and postprocessing. Also the section explains
the relation between uncertainty and sensitivity analysis and goals of the latter. Section 2.5
continues with an overview about basic sensitivity analysis approaches, which all do multiple
model evaluations with di�erent input parameter sets and multiple scalar outputs. Finally the
subsection introduces two comparable frameworks for sensitivity analysis.

Section 3.1 �rst describes a tool for the usage of the MARS BIS implementation, which trans-
forms an initial con�guration �le into agent parameter tables. Following subsections gives an
overview about the model’s components for information management and location manage-
ment. Another subsection describes the basic, modular agent architecture, which extends the
sensor, reasoning and e�ector paradigm of MARS by internal events. Further the subsection
introduces the agents, their interaction and class hierarchy. It also describes the design of
the agent’s production, their positioning, movement and sensors for other agents. Section 3.1
describes a tool, which creates visual result reports from MARS BIS simulation results.

Section 4.1 analyses that basically a system is required to schedule batch evaluations with
MARS. Section 4.2 then suggests a work�ow with such batch system for sensitivity analysis
and introduces the system’s components. One component is a client library, which allows to
manage MARS resources. The batch evaluation subsystem bases on the client library. Further it
provides a way to de�ne complex input data generation from input parameter sets (e.g. samples)
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and to de�ne the aggregation of scalar outputs based on a simulation’s results. Further sec. 4.2
introduces a command line utility (CLI), which bases on the client library.

Section sec. 5.1.2 describes how to prepare a client for the usage examples. Then sec. 5.2 gives an
overview about the current work�ow for single simulations with the MARS BIS model. Further
it describes, how to use the MARS BIS speci�c tools in combination with the CLI for MARS.
Listings with descriptions show the preparation, management and result visualization of MARS
BIS simulations. Finally sec. 5.2 shows parts of actual results and concludes, that sensitivity
analyses with MARS BIS does not make sense in the model’s current state. Consequently a
sensitivity analysis example de�nes input and output generators for a modi�cation of the
MARS Wolves and Sheep model example (sec. 5.3). Afterwards the sec. 5.3 guides through
sampling, model evaluation and postprocessing phase using the example setup and a sensitivity
analysis method based on Morris. Further it analyses, how well the batch evaluation system
works against the current MARS Beta deployment. The performance analyse also gives a hint,
how many simulation throughput is realistic at the time of writing.

Chapter 6 concludes, that the batch evaluation experience with MARS can be improved with a
more powerful databases setup. It further explains, how MARS currently unreliable simulation
progress reporting restrains e�cient usage of the available computing cloud hardware. Further
sec. 6 suggests to build services, which integrate the batch evaluation feature more into the
MARS cloud system. Finally sec. 6 motivates the enhancement of MARS current graphical user
interfaces by live reloading and paging.

The MARS BIS model has reached such a technical state, that its further development direction
requires the advise of domain experts from the immunology. Anyway there will be no more
modi�cations of the model to let it behave exactly like the Basic Immune Simulator. Even
un�nished it provides generic parts, which might be of use for other modelling projects with
MARS.

As soon MARS o�ers reliable simulation progress information, the batch evaluation system
provides a scalable (with the available hardware), technical base for sensitivity analyses of
models without much data in-/output. Deploying MARS with more powerful database setups,
will improve the experience for data intensive setups.
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A.1. Script to lineplot batch progress profile using matplotlib

1 #!/usr/bin/python3
2

3 import argparse, csv, os
4 from matplotlib import pyplot
5 import matplotlib
6

7

8 matplotlib.rcParams.update({’font.size’: 11})
9

10

11 def plot(progress_file, output_path, width, height):
12 try:
13 with open(progress_file) as opened_file:
14 reader = csv.reader(opened_file)
15 header = next(reader)
16 columns = [list() for x in header]
17 for row in reader:
18 for index in range(0, len(row)):
19 columns[index].append(float(row[index]))
20 columns = {header[i]: columns[i]
21 for i in range(0, len(header))}
22 time_column = columns.pop(’Time’)
23 time_column = [(x - time_column[0]) / 3600
24 for x in time_column]
25 figure = pyplot.figure(figsize=(width, height), dpi=300)
26 plotter = figure.add_subplot(111)
27 for name in sorted(columns):
28 plotter.plot(time_column, columns[name], label=name)
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29 plotter.set_ylabel(’count’)
30 plotter.set_xlabel(’time since first resume / hours’)
31 plotter.legend(loc="center right",
32 prop={’size’: 9}, shadow=True, fancybox=True)
33 figure.savefig(output_path)
34 except IOError as e:
35 print(’Could not read’, progress_file + ’:’, repr(e))
36

37

38 def main():
39 parser = argparse.ArgumentParser(
40 description=’Plots a MARS batch progress file’)
41 parser.add_argument(’progress_file’)
42 parser.add_argument(’--width’, help=’width in inches’,
43 default=6, type=int)
44 parser.add_argument(’--height’, help=’height in inches’,
45 default=8, type=int)
46 parser.add_argument(’output_path’)
47 args = parser.parse_args().__dict__
48 plot(**args)
49

50

51 if __name__ == ’__main__’:
52 main()

A.2. Digital appendix on a�ached compact disc

Path Description

example_simulation_report/ full simulation report example from section 5.2.6
progress_pro�le_to_plot.py lst. A.1
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