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Kurzzusammenfassung
Moderne Sensornetzwerke bestehen aus mehreren Sensoren, die innerhalb einer Deadline ihre
gemessenen Werte an eine verarbeitende Instanz senden sollen. Die Sensoren selbst sind da
meistens simpel und geben keine Echtzeit-Versprechungen. Zusätzlich ist eine Synchronisation
innerhalb des Netzwerks nicht gegeben, welche es ermöglicht von allen Sensoren gleichzeitig
Messwerte zu erhalten.

Aus diesem Grund entstehen Synchronisationsprobleme wie sie in Petersen’s Arbeit be-
schrieben sind [1]. Für die Microsoft Kinect, die in Petersen’s Versuchaufbau verwendet wird,
wurde mit OmniKinect [2] bereits ein Lösungsansatz für das Problem vorgestellt. Allerdings
wird durch die Skalierung über Universal Serial Bus (USB) Controller Chips die Bandbreite des
south-bridge Controllers von dem Mainboard zum Flaschenhals.

Ziel dieser Bachelorarbeit ist es, das Synchronisationsproblem aus Petersen’s Arbeit zu ana-
lysieren und eine Lösung vorzuschlagen1. Dafür wird ein Sensornetzwerk mit drei Microsoft
Kinects aufgebaut. Hierbei wird eine Echtzeitplattform vor jede Kinect geschaltet, welche
deren Daten über ein Ethernet Netzwerk an eine verarbeitende Instanz senden. Dieser Aufbau
dient als Basis für die Messungen, mit denen die vorgeschlagene Infrastruktur bewertet wird.

1Die resultierende Implementierung dieser Infrastruktur ist in folgendem GitHub Repository zur Verfügung
gestellt: https://github.com/Cherden/Bachelor2017

https://github.com/Cherden/Bachelor2017
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Abstract
Modern sensor networks consist of multiple sensors, which have to deliver their data within a
given deadline to a processing instance. The sensors themselves ar mostly simple and cannot
ful�ll real-time requirements. A synchronization within the network, which allows to obtain
data synchronously from the sensors, is not given as well.

This is the reason why Petersen observed the synchronization problems in his work [1].
In his test setup he uses the Microsoft Kinect. OmniKinect already proposed a solution for
synchronization with this sensor [2]. But since their solution scales with Universal Serial Bus
(USB) controller chips, the bandwidth of the mainboard’s south-bridge controller acts as a
bottleneck.

The goal of this bachelor thesis is to analyze the synchronization problems of Petersen’s
work and propose a solution for it2. For the analysis, a sensor network containing three
Microsoft Kinects is used. Each Kinect is connected to a real-time plattform, which sends their
data over an Ethernet network to a processing instance. The mesaurements to evaluate the
proposed infrastructure are based on the described testbed.

2The resulting implementation of the proposed solution have been made available on the following GitHub
repository: https://github.com/Cherden/Bachelor2017

https://github.com/Cherden/Bachelor2017
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1 Introduction

After voice over IP and video conferences, the next step to distributed collaboration are virtual
workplaces. Additionally to hearing and seeing a communication partner, a virtual room
is o�ered to simulate a more natural interaction. Meetings could be held in such a room,
removing travel cost and time. It is also essential for distributed work on a virtual object, e.g.
modeling a car. This requires the scan and reconstruction of all communication partners in
real time. Petersen developed and compared methods to reconstruct user as an avatar in a
digital, three-dimensional space [1].

This thesis’ goal is to propose a solution for the problem of synchronization addressed in
the master thesis of Iwer Petersen [1]. This chapter gives an overview over the mentioned
problem which provides the motivation for this work. Further, the requirements for a solution
are discussed. From that the goals and organization of this thesis are presented.

1.1 Motivation

Petersen’s reconstruction algorithm uses depth and RGB pictures from three RGB-D sensors to
generate models [1]. Each frame therefore consists of two pictures that have to be processed.
Further, these frames have to be combined. Since the model should be used for communication
and collaboration, real-time processing is a key requirement.

But this process is time consuming, which is shown by the minimum processing time
measured by Petersen [1]. With 272 ms per frame, the reconstruction algorithm only outputs
three frames per second (fps). This also raises the problem of synchronization. It is necessary
to know when the pictures were acquired during the 272 ms time period. In Figure 1.1 the
problem is illustrated.

Assuming the last step of combining the frames takes 100 ms, there is a 172 ms time window
in which the cameras can capture a picture. Having too much of a delay between each picture
results in deformed models and blurry textures. This is shown in a picture taken by Petersen,
visible in Figure 1.2. A fast movement results in a model, which is not recognizable anymore.
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1 Introduction

Figure 1.1: Illustration of the current steps for reconstruction.

A new architecture can tackle these problems, which’s requirements get analyzed in Chapter .

Figure 1.2: Picture showing the synchronization problem in the reconstruction. Source: Iwer
Petersen

1.2 Requirements

1.2.1 Problems

Before requirements for a new architecture can be established, the weaknesses of the old one
has to be analyzed. The setup is shown in Figure 1.3. There the RGB-D sensors are connected
directly to the processing instance, which runs the algorithm. Since the used driver only o�ers
a stream, the frames arrive solely on the criteria of the sensor being able to deliver data [1]. This
results in the time capture o�set. Because of the one way communication, no synchronization
between the cameras can be implemented.

The other problem is the communication medium. All three sensors are connected via the
same Universal Serial Bus (USB) to the computer. The RGB-D camera used in his setup is the
Microsoft Kinect, which uses the USB 2.0 standard for communication. This standard o�ers a
maximum bandwidth of 280 Mbit/s [5]. Calculating the size of one data package containing a

2



1 Introduction

Figure 1.3: Test setup of the old architecture. Source: [1]

video and depth frame results in about 5.8 Mbit per package [6]. With 30 frames per seconds
it adds up to a required bandwidth of 175.2 Mbit/s per sensor. Splitting the communication
medium for three devices will therefore cut the frame rate immensely. Additionally to the raw
data of the frame comes the o�set for the RGB format. This transformation is integrated in the
driver and therefore increases the required bandwidth. One converted RGB and depth frame is
about 12 Mbit big, needing 360 Mbit/s bandwidth to run at 30 FPS.

1.2.2 Solutions

Based on these issues, requirements can be derived in order to build a new infrastructure that
addresses them. This includes both, requirements for the software and network. Table 1.1 lists
these requirements.

3



1 Introduction

Infrastructure Requirements
# Description Comment
R1.1 The network should support the re-

quired 1.1 Gbit/s.
Since the application cannot process 30
frames per second, a fairly lower band-
width will su�ce.

R1.2 Each node has to be able to obtain 30
frames a second per camera.

-

R1.3 The time di�erence between each node
must not exceed 1 ms.

The time granularity is su�cient for this
context.

R1.4 The delay between the capture of each
frame has to be below 1 ms.

-

R1.5 The time to make one frame obtainable
has to be below 33 ms.

This is necessary in order to achieve a max-
imum delay of one frame.

R1.6 During the data transmission from
nodes to processing instance, no other
communication should happen over
the network.

Since the high amount of data which will
be sent over the network, it should not
have to share the bandwidth with other
applications.

R1.7 All three frames have to be accessible as
one data package through an interface.

This gives better control and also guaran-
tees that the frames are synchronized.

R1.8 The data transmission has to occur on
demand.

Receiving a consistent stream of data will
use computing power from the process-
ing instance, which could be used for the
application.

Table 1.1: Requirements for the new infrastructure, which supports three RGB-D cameras.

1.3 Goals

The goal of this work is to present an infrastructure, that ful�lls the requirements presented in
Table 1.1. It consists of the software architecture and a concept for the network. The architecture
design of the outcome is discussed and its time correctness proven with measurements.

1.4 Organization

Chapter 2 gives an overview over the topics needed for this work. In the next Chapter 3
the outcome of related work is presented. The following Chapter 4 discusses the software
architecture design choices. Building on that, Chapter 5 o�ers solutions to the networking
problems. Lastly, Chapter 6 summarizes the results and gives an outlook for future work.

4



2 Basics

This chapter provide the basics, that are needed for this work. The Section 2.1 explains the
idea of middleware architectures in distributed systems. Based on that, remote procedure calls
(RPC) are added to the concept in Section 2.2. Networked control systems (NCS) are elucidated
in Section 2.3 and the needed clock synchronization for it in Section 2.4.

2.1 Middleware

An application does often not only run local on one computer, but distributed. It has to com-
municate with other machines to access their services in order to o�er its full functionality.
A service can be to process given data, store �les, or acquire data. In this example the com-
munication participants can be divided in two groups. There is a client, who wants to use the
service. Then there are one or multiple servers who provide said services.

The application in this case is a distributed application. It is a composition of components
which o�er a function. The components themselves can not o�er the functionality on their
own and rely on each other. Besides not having to implement available services, distributing
tasks also divides the work load. This can result in faster processing of the main task. [7]

The communication between these components can take place on one machine, in a local
network or the Internet. In either case, the application often does not need to know where
these components are available. So, communication can be abstracted by o�ering an inter-
face between the component and application. The software that o�ers the interfaces to both
components is called middleware. The middleware’s only task is to transfer data between the
two. On a local machine, the data transfer over shared memory can be encapsulated, just
like communication between multiple machines over sockets. This generates an abstraction,
which makes it invisible for the application if a function is executed locally or remote. Location
transparency is one of the transparencies a middleware can o�er. Others are access, and failure
transparency. [7]

5



2 Basics

When implementing a middlware, it is not given that both components who want to com-
municate use the same processor architecture. One may use a little and the other big endian to
represent data in memory. If the middleware would simply copy the data and not regard the
endianess it could result in misinterpretation of the data. This would lead to non-deterministic
behavior in the application.

To guarantee that the data is interpreted the same way on all machines, it has to be converted
to one universal byte order during transfer. After the transmission it has to be converted back
to be readable by machine speci�c architecture. This converting process is called marshalling

or serialized. Unmarshalling or deserialization is the process to convert it back.
This process is implemented in di�erent tools. The most known are XML [8], JSON [9], and

Google’s Protocol Bu�ers [10]. Benchmarks for the serialization and deserialization time have
been made before in the past [11, 12]. Even though the performances may be in�uenced by
the speci�c hardware specs the test has been run on, Google’s protobuf seems to perform the
best. Therefore this tool will be used to serialize data in this work.

Protobuf’s description language is based on the C++ syntax. In the so called proto �les,
messages get de�ned. The messages contain �elds which can be of di�erent data types, like
boolean, integer or character �elds. Each �eld have an identi�er assigned, which is needed for
the serialization and parsing process. Depending on the syntax used, it has to be speci�ed if a
�eld is required or optional. If a required �eld is not set, the serialization would return an error.
The proto2 syntax needs this speci�cation, while the newer proto3 does not. Proto3
always returns the default value of a data type if a �eld is not set. An example message in the
proto3 syntax, which is used in this work, is shown in Listing 2.1. [13]

1 syntax = "proto3";
2

3 message ExampleMessage {
4 bytes data = 1;
5 uint64 timestamp = 2;
6 }

Listing 2.1: Example protobuf message.

Middlewares can be divided in di�erent types. One of them is the message-oriented middle-
ware (MOM). In this concept the data is transfered as messages, to which the communication
partner replies.

6
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Other types have a more abstract approach. Some implement the request-response model,
which o�ers access transparency. The client requests data and the server responds. The
response can either happen synchronously - after request of the client - or asynchronously,
when it is available. [7]

The request-response concept can be found in a RPC middleware, which the next section
2.2 will explain further.

2.2 Remote Procedure Call

As mentioned in Chapter 2.1, a remote procedure call (RPC) middleware relies on the request-
response concept. It abstracts the message transportation between two components as a
function call. For it, the middleware o�ers the same function signature to the client, as is
implemented by the server. The stub only serializes the parameter list and function name, then
sends it to the server. There the middleware calls the function with the received parameters.
The return value is then sent back to the client, where the middleware forwards it to the calling
function.

There are two modes in which this sequence can be executed. Either the call is synchronous
or asynchronous. In the �rst case the client waits for a return value and the process blocks
until the server sends it. A communication sequence of this method is shown in Figure 2.1a.
The RPC can also be processed asynchronously. There the application calls the middleware
stub method, which does not block. The return value from the server then gets stored in a
queue upon receiving. From there the application can access the data when it wants to process
it. Figure 2.1b shows a communication sequence of the asynchronous RPC execution.

Building on remote procedure calls are distributed RPCs (DRPC). The idea of it is described
in Apache Storm. With this method, the function call from the client gets distributed in a
network of nodes. In Figure 2.2 a sequence diagram shows the communication �ow with the
DRPC pattern. Having the task distributed in a network can increase the speed of the RPC. The
idea is, that a network or topology has a DRPC server, which is the only one communicating
with the one-to-n clients. It receives the procedure call and distributes it inside the topology.
Each node then sends the data back to the DRPC server, which forwards it to the client. One
approach to increase performance can be to send the data directly to the client, because for
high amounts of data the DRCP server can act as a bottleneck. Then the client has to combine

7
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the sub-results before processing the end result. [14]

(a)

(b)

Figure 2.1: RPC with (a) synchronous and (b) asynchronous communication.

8
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Figure 2.2: Message sequence of a distributed RPC with a forwarding and non forwarding
DRPC server. 9
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2.3 Networked Control Systems

Control systems are designed to react to external data, process it, and perform required actions
if needed. For example a sensor measures the gas level in the car and sends the information to
a controller. The controller processes the data and decides if an action has to be executed. If
the gas is low, the controller reacts by turning on an led on the dashboard.

In a networked control system (NCS), the sensors, actuators, and controller are not directly
connected. Figure 2.3 shows a model of this approach. They communicate over a network,
which can be wired or wireless. This allows physical and quanti�able larger networks. As an
exchange the network itself has to be controlled, too. Depending on the control system, speci�c
requirements have to be met. For dynamic NCSs a routing control has to be implemented.
Hierarchical NCS designs require protocols which allow the routing. Most control systems
also need to ful�ll real-time requirements. These specify a deadline, in which the data has to
be arrived at the controller. [3]

Figure 2.3: Typical structure of an NCS. Source: [3]

Deadlines can be divided in soft and hard deadlines. The former requires data to be there on
time, but would not result in failure if it is not met. An example is video streaming, where if
the data does not arrive on time it has to load. Hard deadlines on the other hand have to be
met. Otherwise the system may harm humans or nature. A hard real-time requirement can be
found in the control loop of a nuclear reactor. If the core overheats and the controller does not
receive the information, it can result in a meltdown.

10



2 Basics

To develop an NCS which satis�es real-time requirements, every node within the network
has to know the exact time. Otherwise two nodes can not agree on a deadline. Chapter 2.4
explains this problem further.

2.4 Clock Synchronization

Every computer has a quartz, which produces signals, or ticks, in a speci�c frequency. Out of
these signals the computer can deduce when a second passes, if it knows the exact frequency.
Kopetz [15] de�ned this clock as the local time with quartz accuracy. In this context it means
that the clock is only locally correct. It does not indicate the Unix time [16], but only an
approximation of seconds passed since the �rst measured tick.

It is not exact, because every quartz ticks in a di�erent frequency. Factors for its frequency
are the temperature and the accuracy of the quartz itself. Therefore the software that processes
the ticks would need to know the exact frequency of the speci�c quartz in order to portray the
time accurately. [17]

But the local time does not meet the requirements for distributed real-time systems. To
satisfy them, the nodes within a network of such a system have to synchronize their local time.
Contrary to the local clock, the global time represents an approximate clock within a network.
To create the global time, synchronization algorithms are needed.

Kopetz laid down four rules which these algorithms have to satisfy for distributed real-time
systems. The �rst rule says that the time between the local time of each node must not exceed
a known constant. Secondly, the global time should be able to measure small time intervals.
Additionally the algorithm has to be fault tolerant and, lastly it must not reduce the perfor-
mance of the system. [15]

Further, the construct time is in a total order. Therefore, if an event A has a higher timestamp
than event B, A occurred later. Synchronization algorithms may have to adjust the time
backwards. If it would simply be overwritten, event C, which occurred after B could have a
lower timestamp.

11



2 Basics

To allow the backwards adjustment of time while obeying the statements for a total order,
another mechanism called slewing can be used. To slew the local time, the amount of ticks
from the quartz for one time unit, i.e. virtual frequency, is increased. When the time is fully
adjusted, the virtual frequency gets reset to its default value.

Synchronization algorithms can be divided in two categories, centralized and decentralized.
Each group will be presented with an example in Chapters 2.4.1 and 2.4.2.

2.4.1 Centralized Synchronization

Centralized synchronization relies on a time server, which the nodes use to synchronize their
time with. An example for such an algorithm can be found in the Network Time Protocol (NTP)
[4]. Microsoft’s Windows Time service, for example, uses this protocol for synchronization
[18].

In Figure 2.4, the client A wants to synchronize his time with the server B. Ti−3 represents
the timestamp, at which the client sent the request packet to the server. At Ti−2 the packet
arrived at the server and Ti−1 marks the timestamp where the response packet was sent. The
timestamps Ti−3 to Ti−1 are included in the response from the server. With the arrival time Ti
and equation 2.1 the client can calculate the true o�set θ. [19]

θ =
(T i-2 − T i-3) + (T i-1 − T i)

2
(2.1)

Figure 2.4: Measuring delay and o�set in NTP. Source: [4]

12
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2.4.2 Decentralized Synchronization

Decentralized synchronization algorithms tackle that problem. With this approach the nodes
inside a network synchronize each other. The Berkeley algorithm [20] is one example of a
decentralized synchronization method. Its functionality is similar to a centralized approach.
At the beginning, a master node is chosen, which periodically polls the time of each slave
node. After receiving an answer, the master node can estimate the round-trip time. Out of the
timestamps from all slaves, the average timestamp tavg can be calculated using equation 2.2,
with n being the number of slave nodes and ti being the timestamp of a slave.

tavg =
n∑

i=1

ti (2.2)

The master then replies to each slave node an adjustment time t_adj, calculated by equation
2.3 with t_rtt being the round-trip time for a speci�c node.

t_adji = (ti − tavg) +
t_rtti
2

(2.3)

The master then replies t_adj to each slave node. This reduces further inaccuracy through
the round-trip time. All nodes adjust their clock by the given amount. An illustration of this
algorithm is shown in Figure 2.5. [20]

2.4.3 Discussion

The centralized approach that NTP o�ers is an already established solution for the synchro-
nization problem. But its biggest disadvantage is the client-server architecture. It o�ers a
single point of failure in the network, which violates Kopetz third rule of fault tolerance [15].

The decentralized approach does not have that problem. If the master node fails, a new
master can be elected. But since the algorithm synchronizes the time of all nodes at the
same time, it does not scale well in big networks. There it would require a big portion of the
bandwidth to send and receive messages at the same time. Therefore it would not ful�ll Kopetz
fourth rule, which says that the synchronization should not reduce the performance of the
system [15]. In small networks, though, the algorithm satis�es all rules.

This infrastructure requires the algorithm to obey all rules laid down by Kopetz. If the
synchronization algorithm would fail, the advantage of using this approach is lost. Therefore
this infrastructure uses a decentralized over a centralized algorithm.
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2 Basics

Figure 2.5: Sequence for time synchronization using the Berkeley algorithm.

14



3 Related Work

Other approaches to reconstruct a user in a digital space have yielded in well-performing
results. Omnikinect [2] has presented a solution which scales over USB controllers. Their
architecture feeds the processing instance with a stream of data from each camera. That way
their system can operate with data from 7 cameras. The bottleneck lies in the bandwidth from
the south-bridge of the motherboard.

A synchronization between the frames used for recreation has to be done by the processing
instance. Therefore it runs in the same problem as Petersen’s approach. Analyzing their videos
shows that they did not solve the synchronization problem itself. Instead they implemented
an algorithm, that corrects the o�sets. Moving the synchronization inside a sensor network
can make this algorithm obsolete and therefore improve the performance. As a result the
reconstruction can be faster and produced at a higher frame rate.

Another approach has been made by Microsoft with Holoportation [21]. Instead of having
one processing instance, they use multiple PCs to distribute the work load. Each PC supports
two RGB-D cameras. Their implementation consists of 4 PCs, which results in a total of 8
RGB-D cameras. After those PCs process the data, they send it to another PC over a 10Gbps
connection. There the data is then compiled and used to reconstruct the avatar. Instead of
reconstructing a new avatar with each frame, they adjust the recreation.

Since only two cameras are connected to one PC, it can be controlled to obtain a synchro-
nized image. In their paper [21] they do not write about a synchronization between the PCs but
since their approach adjusts an already existing model, a non-synchronized frame can result
in a deformation. The deformation can only be corrected by creating a new model. Derived
from that, a synchronization has to happen at some point. But since the information about it is
not available, this work tries to recreate their result. Since less expensive hardware is used,
achieving similar results can be an improvement to their approach.
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3 Related Work

Regarding the requirements, most network related ones are located in the context of NCS
1.2.2. More speci�cally, the synchronization in those systems is of importance. In [22] the
method of all-node-based clock synchronization is discussed. Compared to cluster-based or
di�usion-based methods it has a scalability problem, because all nodes in the network have to
participate in the synchronization process. The prerequisite, that the packet transmission time
between all hops is equal is also ful�lled, since all sensors are within one hop accessible.

An algorithm allowing all-node-based synchronization is the Berkeley algorithm [20]. Its
functionality is presented in Chapter 2.4.1. Other approaches [23, 24, 25, 26] tackle problems
like scalability and �ner granularity, which are present in Berkeley’s.

With the Precision Time Protocol (PTP) the IEEE de�ned a standardized clock synchro-
nization protocol in local area networks. It selects a master node, or grandmaster, using the
best master clock (BMC) algorithm. The nodes within the network then synchronize their
time with the grandmaster. In general, the synchronization mechanism is similar to Berkeleys.
But it o�ers higher con�gurability and allows synchronization over multiple domains. It also
synchronizes the global clock within nanosecond accuracy.
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4 Architecture Design

This chapter discusses the architecture design for this infrastructure. It is presented in a
top-down approach. Therefore the physical components are identi�ed �rst and then re�ned in
subcomponents. A critical part in the design choices are the requirements listed on page 4 in
Table 1.1.

4.1 Testbed

The physical components for this infrastructure are shown in Figure 4.1. With this setup, i.e.
testbed, the time critical requirements get validated through measurements. The components
are divided in four groups, which get explained in the following sections.

Figure 4.1: The test setup used for measurements in this thesis.
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Sensors

As mentioned in the motivation (Chapter 1.1), the sensors used are RGB-D cameras, speci�cally
the Microsoft Kinect v1. The cameras capture 30 RGB and depth frames per second with a
640x480 pixel resolution [6].

Nodes

The nodes have to be able to obtain 30 frames per second to comply with requirement R1.2.
They will need to process the data with enough speed ensuring that they do not violate
requirement R1.5. In order to comply, the Odroid Xu4 single board computer was used and
Ubuntu 16.04 was installed as the operating system.

Switch

To comply with requirement R1.1 an HP 1810 switch was used as it provides a bandwidth
of 1 Gbit/s. It o�ers easy con�guration through a web interface and supports jumbo packets
of up to 9216 byte frame size. Besides the support of RJ45 copper cables, two slots for �ber
connectivity are o�ered. [27]

Processing Instance

The processing instance is an Intel Core i7 3.4 Ghz CPU, 16 GB of RAM and an Intel Gigabit
Ethernet Controller. Ubuntu 17.04 is used as the operating system.

4.2 Outer Boundaries

The goal of this section is to identify the outer boundaries of the system and analyze their
interfaces. Out of the physical components, the black box in Figure 4.2 can be derived. It
shows the interfaces for input (ISensor) and output (IApp) of the infrastructure. The white
components are external and only the infrastructure is in the focus of this work.
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Figure 4.2: Black Box model of the infrastructure showing the interfaces to the outer systems.

ISensor is provided by the driver of the sensor. Microsoft’s Kinect for Windows SDK cannot
be used in this work, because the nodes run a Linux operating system. Instead an open source
driver called libfreenect1 is used. It also provides the functionality to obtain data synchronously
from the sensor. This feature allows the node to obtain a current image when triggered.

The interface to the Processor, IApp, has to be designed regarding the requirements R1.7
and R1.8. Listing 4.1 proposes an approach that ful�lls the requirements.

1 class IApp{
2 public:
3 int obtainNewData();
4

5 int getVideo(int sensor_id, char* buf, int size);
6

7 int getDepth(int sensor_id, char* buf, int size);
8 };

Listing 4.1: Interface to the application.

The functionobtainNewData() triggers the nodes to acquire new data from the sensors.
The trigger based transmission required by R1.8 is ful�lled with this approach. It also gives
status about the sensor network with its return value. Possible messages are:

1The driver is developed by the project OpenKinect presents at https://openkinect.org/wiki/
Main_Page
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Not all nodes connected The Processor needs all three nodes to be connected and able to
deliver data in order to function. If they are not, the Processor has to wait.

Currently acquiring data When all nodes are connected, this function signals the nodes to
acquire data. This process can only be started once at a time. If the nodes are currently
obtaining the frames and sending them to the processing instance, it will be announced
to the user.

Acquisition succesful On return of this message, the user is noti�ed that the data acquisition
was successful and can be obtained.

The data is stored until the function is called again, which complies with requirement R1.7.
Functions getVideo() and getDepth() can be called to get the video and depth frame,
respectively. As parameters both expect the sensor_id, a bu�er (buf) to write the data
to and the size of the bu�er. Their return values give information whether the operation
is currently executable or not. The main reason for their failure is that no data is available.
Either because one of the reasons mentioned in getNewData() or the available frame has
already been processed.

4.3 Components

Within the black-box component named "Infrastructure" in Figure 4.2, the inner components
can be identi�ed. Figure 4.3 shows this diagram. Visible are the two components: Node and
Aggregator. They communicate through the interface IAggregator. The following sections
provide information about each component.

4.3.1 Node

Each node is connected to one sensor component, communicating through the interface ISen-
sor. Its task is to obtain one frame, prepare it for transfer and then send it to the aggregator.
To comply with requirement R1.5, this process can not exceed 33 ms. Optimizing each step
reduces the delay between the capture and the portrayal of the reconstructed avatar. In order
to validate requirement R1.5 was met, the maximum process time of each task is measured.
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Figure 4.3: Component diagram showing the abstract inner components of the infrastructure.

To illustrate that this architectural setup would meet the time requirements disregarding
the network, the measurements were done with only one node active. The results of this
architecture utilizing 3 nodes is presented in Chapter 4.3.3. All measurements were captured in
a time interval of three minutes, which amounts to a total amount of 5384 measurements. They
show the maximum, minimum and average time it took to process each step. From importance
is the maximum time to calculate the guaranteed deadline of this infrastructure.

Obtain Frame

This step only consists of the driver calls. The delay of capturing a frame packet syn-
chronously is measured. The functions freenect_sync_get_video_with_res()
and freenect_sync_get_depth_with_res() requires a pointer to allocate mem-
ory and save the data on. Reusing the same pointer for each function call saves the step to
allocate new memory.
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When calling the function with a higher frequency than 30 frames per seconds would allow,
it waits until new data can be obtained. To ensure that this delay does not a�ect the measure-
ments being collected, the processing thread was sent to sleep.

Figure 4.4: The maximum, minimum and average time it takes to obtain one data packet using
the synchronous driver.

The measurements shown in Figure 4.4 show, that the processing time for this task can
almost be neglected. With an average of 0.027 ms it takes about 0.08% of the 33 ms time window.
The maximum of 2.899 ms most likely occurred, because the sleeping thread was awaken too
early. It therefore gets treated as an statistical outlier.

Serialization of Data

During this step, the data has to be serialized in order to be transfered over the network.
The necessity of this is explained in Chapter 2.1. As mentioned there, the serialization tool
used is Google’s protobuf [10]. The message used to serialize the data is shown in Listing 4.2.
fvideo_data and fdepth_data contain the video and depth frame. The timestamp is
represented in microsecond resolution and taken right after the previous step is completed. It is
obtained through the function gettimeofday() of the <sys/time.h> Linux system
library.
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1 syntax = "proto3";
2

3 message KinectFrameMessage {
4 bytes fvideo_data = 1;
5 bytes fdepth_data = 2;
6 uint64 timestamp = 3;
7 }

Listing 4.2: Protobuf message for node serialization.

As already mentioned in Chapter 1.2.1, this results in an approximately 12 Mbit big data
packet. The time it takes to serialize this amount of data is illustrated in Figure 4.5a. This
process takes with a maximum of 5.6 ms about 17% of the 33 ms timespan that is available (see
R1.5 of Table 1.1 on page 4).

Analyzing the used setter for the protobuf messages shows that new memory is allocated
every time the �eld is set. The API also allows to pass pre-allocated memory, which eliminates
this o�set. The times measured using the optimized process is shown in Figure 4.5b. The
maximum of 1.7 ms is measured during the �rst serialization process, which includes the
initialization of the message. But with an average of 0.9 ms it is more than 3.5 times faster than
the method used before.

Send to Aggregator

With the last step, the serialized data is sent to the aggregator over sockets. For this process,
there exist two protocols, the Transmission Control Protocol (TCP)[28] or the User Datagram
Protocol (UDP)[29]. Video streaming applications normally use UDP as the base protocol. The
main reason lies within the use cases of these applications. Packets that get lost on the wire
do not have to be retransmitted, since a newer packet will be sent shortly after. The received
packets also do not have to be ordered. Only packets with a later send time than the last
received packet can be used, the other are discarded.
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(a)

(b)

Figure 4.5: The maximum, minimum and average time it takes to serialize the sensor data to a
byte stream using (a) the normal setter and (b) a setter with pre-allocated memory.
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Chapter 4.1 mentions that the network does not meet what is required by the application.
This results in a higher chance of errors through data collision and corruption, a reason which
makes UDP unsuitable for this kind of activity. Lastly, the main reason why UDP is not suitable
in this context is that one data package is about 12 Mbit big (see Chapter 1.2.1). Since a UDP
packet can have a maximum length of about 65 KB 2, the data will be split in about 230 packets.

With these packets it is important, that all of the arrive in order. Therefore TCP is used in
this application. The amount of packets is the same, but the protocol provides the mechanism
for an ordered transmission of all data. Measuring the time of this process shows that this
takes the longest time. As illustrated in Figure 4.6, it takes a maximum of 13.7 ms to complete
the process. The big di�erence between the maximum and minimum process time can be
generated by the processing instance. During the runtime of other threads, no packets in the
receive bu�er can be processed. This step therefore is dependent on the activeness of the
processing instance.

Figure 4.6: The maximum, minimum and average time it takes to send one data packet from
one node to the processing instance.

An optimization of this step can be achieved by increasing the maximum transmission unit
(MTU). This decreases the amount of overhead through the Internet Protocol (IP)[30] and TCP
headers in exchange for higher chance of data corruption. The results in Figure 4.6 where
measured with the MTU con�gured at 9000 bytes instead of the default 1518 bytes of the
Ethernet standard3.

2The UDP header’s length �eld is 16 bit long and therefore allows a maximum length of 65535 bytes. [29]
3The minimum data length of an Ethernet frame is 1500 bytes [31], the MTU also regards the 14 bytes header and

4 bytes checksum of an Ethernet frame.
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Total Process Time

Adding the maximum time of each step results in a maximum process time of about 18.3 ms.
As a result the requirement R1.5 of Table 1.1 on page 4 is met.

Figure 4.7: The maximum, minimum and average time it takes to process each step.

But as mentioned in each section, some maximum times where measured during the �rst
acquisition process or are statistical outlier. So in order to determine the relative maximum
process time, all steps have to be measured back to back. Figure 4.7 shows the results of this
measurement. With 14.9 ms the relative maximum process time amounts to less than 50% of
the required 33 ms (see R1.5 in Table 1.1 on page 4).

Since each step is optimized in its runtime, the only way to increase the performance is by
reducing the data to serialize and send. This can be achieved by compressing the data. But
the amount of time this approach wins has to be compared with the processing time of the
compression. Since the requirement is ful�lled, which is shown in the next chapter, this step
was disregarded. Should the speed of the application accessing the interface increase, this
would be the next point of optimization.

As mentioned before, this only shows that the architecture works with one node. The
scalability with more nodes is discussed in Chapter 4.3.3.
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4.3.2 Aggregator

The aggregator triggers the nodes to obtain data. This is needed to comply with requirement
R1.8. After the process described in Section 4.3.1, it receives the data from each node. This
data then gets unpacked and can be accessed by the processor. To calculate the process time of
the aggregator, the delay generated by unpacking the data and copying it to the processor has
to be taken into consideration. Other than the measurements in Chapter 4.3.1, these show the
process time for each message from all three nodes. The mentioned delay plus the maximum
processing time of the nodes results in the total time needed with this architecture.

The conditions for the measurements are similar to Chapter 4.3.1. The duration is three min-
utes and since only one node was active as well, a total of 5384 measurements are represented
per �gure.

Parse Data

Firstly, the serialized byte string, that is received from each node, has to be parsed into readable
format. Figure 4.8 shows the maximum, minimum and average time it takes to �nish this task.
Unlike the serialization process, parsing always operates in a pre-allocated message object.
Therefore the average of 0.27 ms is already the optimal time to parse the received data.

Figure 4.8: The maximum, minimum and average time it takes to parse one message from one
of the three nodes.
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The maximum time of 2.36 ms can be explained by the way the nodes are implemented.
On the processing instance, each node is assigned one thread, which receives and parses the
data. While parsing one message, another node may send their data and this thread activates.
Depending on the scheduler, the thread that started the parsing process is sent to sleep.

With this explanation and the average case being very close to the minimum, it can be
derived that the maximum has no statistical signi�cance. But since this case can still occur, it
has to be regarded in order to calculate the worst case scenario.

Copy to Processor

The data parsed then be accessed through the interface IAggregator. Since each node thread
on the processing instance already has the parsed message object in memory, the data can be
copied to the processor. In order to reduce delay, the function expects pre-allocated memory.

Because this step only consists of one copy instruction, could have been disregarded. But
since the same scheduling problems explained in the section describing the parsing process
occur, the time has still signi�cance, as shown in Figure 4.9. With a maximum of 2.26 ms and a
much lower average of 0.61 ms it is similar to the measurement illustrated in Figure 4.8.

Figure 4.9: The maximum, minimum and average time it takes to copy a video and depth frame
to the function caller.
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The next step of the processor after acquiring the frames is to calculate the corresponding
point cloud out of the depth frame. This process iterates over the copied data and performs a
function on each depth point. It was analyzed if doing this step while copying the data will
increase the performance. The functionality changes from copying the whole byte array to
calculating each cloud point on pre-allocated memory.

Measurements showed, that the �rst two steps of acquiring the data and then calculating
the point cloud takes about 9 ms. With this approach the process time is down to 3.5 ms. In
the end it enabled the processor to process two more frames per second than before. As shown
in Figure 4.10, it takes an average of 2.18 ms for the point cloud to be calculated and returned
to the function caller. Even though it is not part of the architecture, it is a �rst step to optimize
the algorithm.

Figure 4.10: The maximum, minimum and average time it takes to calculate and return a point
cloud.

The idea of calculating the point clouds distributed on each node was also considered. Before,
each would node send the 7.4 Mbit for video plus 4.9 Mbit for the depth frame. With the new
approach the depth frame would be converted to a point cloud, which is three time as big4. But
since the network bandwidth is already exhausted, introducing the extra data to the network
would increase the time to send data even more. Therefore this approach was not further
contemplated.

4A point cloud consists of an x, y and z point. Therefore it’s size would be three times 4.9 Mbit, or about 14.7 Mbit.
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4.3.3 Processing Speed

The total processing speed of one frame is measured from the point the process is triggered
until all data is accessed through the interface IAggregator. As shown in Chapter 4.3.1, the
nodes can send their data with a maximum theoretical delay of 18.3 ms, if they are the only
sender in the network. The aggregator’s delay is 4.6 ms, which can be calculated by adding the
maximum measured delays in Chapter 4.3.2. With this results, a soft deadline of 22.9 ms for
one node can be guaranteed.

It was already mentioned in the Chapters 4.3.1 and 4.3.2, that even though the statistical
outliers have to be considered, the chance of them occurring during at the same time is minimal.
In order to determine the real guaranteed delay, the time between the triggering event and
obtention through the interface has to be regarded. The measurements also have to include all
three nodes to conclude a deadline for this process. The illustrations now represent about 3830
measurements over a span of three minutes. The decline of values within the same timespan
can be explained by the higher process time for each frame.

Figure 4.11 shows the result of this measurement. It is visible, that this process takes longer
than calculated from each step. With a maximum of about 71.4 ms for one frame, only 14 fps
are possible to process. The main reason for these values is the bottleneck of the network
bandwidth.

Figure 4.11: The maximum, minimum and average process time using three nodes with this
architecture.
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In order to analyze it, the time for one node to send its data was measured, when all three
nodes are connected. Figure 4.12 illustrates that a delay of 41.9 ms is possible during transfer.
Since the processing instance has to receive and parse three messages at once, it also becomes
as a bottleneck. The three messages are sent at the same time and are processed in di�erent
threads. These threads have to get processing time assigned for the CPU by the scheduler.
All these factors play a role in why the time to send/receive one data package is so high with
multiple nodes in the network.

Figure 4.12: The maximum, minimum and average time for one node to send its data with
three nodes in the network.

4.4 Communication

This Section explains the pattern used for communication between the aggreator and nodes.
As required by R1.8 in Table 1.1 on page 4, the processing instance has to be able to request the
data on demand. In other words, the aggregator calls a function on the nodes. These execute
the steps described in Chapter 4.3.1 and return the acquired data. This resembles the RPC
pattern presented in Chapter 2.2.

As mentioned in the chapter, the communication can either be synchronous or asynchronous.
In this context, the synchronous example can be disregarded. With this approach the aggrega-
tor would block while one node is acquiring and transferring the data. As measured in the
Chapter 4.3.1, this process takes about 14.9 ms. Therefore a delay of this amount would always
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exist between the data of each node. In the end, this would result in the same problem shown
in Figure 1.1.

Asynchronous communication is because of that the better solution. The aggregator starts
the execution of a remote function call for each node and waits until all data is delivered. The
delay between each frame is only a�ected by the delay introduced by the transmission of the
trigger message. But since requirement R1.6 presupposes that no other communication takes
place over the network during the RPCs, this delay should be minimal.

But the corresponding communication pattern leaves the problem of synchronization be-
tween the nodes open. The nodes do not know when the aggregator will acquire new data.
Because of that, they do not know if they have enough time to start a synchronization process.
As already mentioned, R1.6 in Table 1.1 on page 4 requires the whole bandwidth for the data
transfer during the RPCs. If the nodes are currently synchronizing their time, the transfer has
to be delayed until this process is �nished.

To solve this problem, a distributed RPC can be used. With this pattern, the aggregator sends
the trigger message only to one master node, the DRPC server. This node then distributes
the message to all other nodes. The nodes then return the data directly to the processing
instance. But since the DRPC server knows that a RPC has just been executed, it can trigger
the synchronization process. With a con�rmation message from each node after the RPC, it
also knows that no other messages are currently carried out over the network.

A corresponding communication sequence of the whole process can is shown in Figure 4.13.
The steps executeLocalFunction and processResult are the processes described
in Chapter 4.3.1 and Chapter 4.3.2 respectively. The synchronization process is presented in
Chapter 5. It also presents the election algorithm used to determine the DRPC server out of
the nodes.
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Figure 4.13: Communication model for the presented architecture.
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This chapter presents the underlying network, on which the architecture is based on. Its main
focus lies on the synchronization, which includes the election of a DRPC server.

Because of the large bandwidth requirement, con�guring the switch and devices correctly
also contributes to a better performance. The con�guration of the networked devices is ex-
plained in Chapter 4.3.1. The most important step is to use jumbo Ethernet frames. Con�guring
the MTU to 9000 bytes increases the e�ective data throughput, since the overhead generated
through protocol header is reduced.

Other con�gurations like adjusting the TCP windows size[28] were considered but found to
be out of scope for this work. It can increase the performance, but other approaches like com-
pressing the data seem more e�ective. The comparison between both optimization approaches
can be a topic in future works.

5.1 Election

The architecture requires a master node within the network, which triggers the data acquisition
and synchronization process. Compared to other distributed applications, this only needs to
elect its master once. If a node fails, the application cannot operate and shuts down, therefore
a re-election does not have to occur.

This also allows the nodes to elect a master node before the aggregator starts the data
acquisition. Because of that the speed of the election process is not of importance. Out of these
reasons, an election algorithm that is simple to implement is used. This resulted in a variation
of the Bully election algorithm presented by Garcia-Molina [32].
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Figure 5.1: Message sequence of the Bully algorithm.

The message �ow of the Bully algorithm is shown in Figure 5.1. When a new process, in
this case Node1, enters the network, it sends an election Message. If the receiver has a higher
ID than the sender, it answers and starts its own election process as shown with messages 1.1
and 1.2. When the node with the highest ID wants to start the election process, it receives no
answers as illustrated with message 1.2.2. This node then broadcasts its victory, upon receiving
the other nodes memorize him as the master.

Since the nodes have no static ID assigned to them, the modi�ed algorithm is based on the
startup time of each node. Another di�erence is, that the answer already includes the message
that a master has been chosen. In terms of scalability, this modi�cation eliminates the victory
messages of the Bully algorithm. But since the required bandwidth will not allow more nodes
in the network, this is only a small factor of its advantage. If more nodes can be added, it will
most likely not exceed ten. The related project OmniKinect [2] uses nine cameras in its setup,
which generate a su�cient recreation of a user from all angles. With this small amount of
devices in the network, scalability can be neglected as long as it is not exponential.

35



5 Network Design

The algorithm with this variations is illustrated in Figure 5.2. At the startup of each node
an election broadcast is sent over the network. The node then waits for an answer from an
already started node. The answer message includes the information, whether the replying
node is the master or not. The �rst node to send this broadcast will not receive any answers
and elects itself as the master.

Figure 5.2: Message sequence of the modi�ed algorithm.

As mentioned in Chapter 2.4.3 the fault tolerance of the algorithms used in the network is of
importance. The timeout interval, after which the node elects itself, is set to 1 ms. In theory it
is possible for two nodes to start up with a delay lower than 1 ms to send each other answers.
This would result in a network without an elected master. But since the node applications are
started with a deployment script, a built in delay between the start of each node will prevent
this problem from occurring.

Another source of error is a packet loss during the election process. The used transport
protocol UDP does not o�er a retransmission mechanism. If an election broadcast is lost with
an already elected master in the network, it can be possible that a second node will elect itself
master after the timeout. This is prevented with the answer messages. Should this occur,
one node would receive an answer with two nodes responding as master and it triggers a
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re-election. The same mechanism helps with the loss of answer messages, which results in
the same scenario mentioned. In the case of only one dropped answer message containing
the information of the leader, the node can derive from the other answer that another node
as already been elected.

5.2 Synchronization

In this chapter the synchronization process used is presented. First the suiting algorithm is
determined. Later the implemented algorithm is tested against the requirement from Table 1.1
(see page 4).

5.2.1 Algorithm

In Chapter 3, the Precision Time Protocol (PTP) is described as an already existing solution to
this problem. Since it is an established IEEE standard, its guaranteed time synchronization
in nanosecond resolution motivates the usage of this approach. With PTP daemon (PTPd) an
open source implementation of this standard exists. The problem is, that PTPd is a program
which runs in the background on a node. Therefore the architecture has no control when the
nodes synchronize their times and requirement R1.6 may not be met.

The other solution is the in Chapter 2.4.2 presented Berkeley algorithm. Compared to PTP
it o�ers a lower resolution, but can be implemented easier because of its simpler message
sequence. This allows the architecture to trigger a synchronization process and ful�ll require-
ment R1.6.

Figure 5.3 illustrates the message sequence of this process. First, the master broadcasts the
synchronization trigger to all other nodes. While the master waits for the responses containing
the timestamp of each node, it saves its own timestamp and starts measuring the round-trip
time (RTT). With the RTT it can approximate the time each node captured its time and add
the RTT divided by two to its timestamp. This provides a more accurate synchronization as
measurements have shown. From all the timestamps, an average is calculated. Each node
then receives the o�set from the calculated average to its sent timestamp. At the end, all
participating devices adjust their time by the received o�set.
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Figure 5.3: Message sequence of the implemented synchronization algorithm, based on Berke-
ley’s algorithm.

As with all other messages sent over the network, Google’s protobuf is used to serialize the
data. The used message is presented in Chapter 5.3. In the following section the suitability for
the illustrated algorithm in this architecture is discussed.

This algorithm consists of two states, timestamp collection and clock adjustment. If the
message 1.1 or 2.1 in Figure 5.3 is lost, the master node would be in a deadlock1. The same
situation can happen on the nodes while waiting for the o�set. To prevent this, a timeout has
to be used where the process will be set back to the initial state of waiting for the trigger.

Since the synchronization is triggered after the acquisition (see Figure 4.13 on page 33) and
the clock drift occurs slowly over time [17], missing it is acceptable.

1A process is in a deadlock when it is waiting on an event that will never occur.
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5.2.2 Test of the Algorithm

In this section the presented algorithm gets tested against the requirements of Table 1.1 from
page 4. Speci�cally the time to �nish one synchronization process and the resolution is of
importance.

Processing Time

The process time is important to o�er an optimal frame rate. When the processing instance
wants to obtain new data, it should not have to wait until the synchronization is �nished.
Because of requirement R1.6 it would have to, if this is the case.

Figure 5.4 illustrates the measured duration of this process. With about 1.4 ms maximum
processing time it will not hinder the application to operate with an optimal frame rate. Com-
bined with the maximum processing time on one node of 14.9 ms (see Chapter 4.3.1), it takes
about 16.3 ms to send the obtained data and synchronize the global time.

Figure 5.4: Message sequence of the implemented synchronization algorithm, based on Berke-
ley’s algorithm.

39



5 Network Design

One time consuming part during this process is the transmission. As seen in Figure 5.3,
this amounts to three one-way delays (OWD). The total amount of what one OWD amounts
to could not be measured, since it was too small. Therefore it is less than one microsecond.
This is possible because the network is free during this process and con solely use for the
synchronization messages.

Another part is the serialization. For each message sent between nodes in Figure 5.3 a
protobuf message has to be serialized. This process is more time consuming and amounts to
nearly the whole time. Since the nodes operate with the same processor architecture, the step
of serialization could be skipped. If this process would ever needed to be optimized, this is
where time can be saved.

5.2.3 Resolution

Next the resolution of the synchronization algorithm is analyzed. Requirement R1.3 speci�es
that the delay between nodes must not exceed 1 ms.

The delay was measured at two points, once with the o�set that is sent out during the
synchronization process and also at the aggregator with the timestamps. Former will provide
information about the minimal o�set that occurs during this process. The remaining microsec-
onds is the resolution of this algorithm. The latter gives information about the e�ective delay
between each capture. This helps to check requirements R1.4.

In either case the maximum delay is about 0.1 ms and therefore ful�lls both requirements.
The delay mainly consists of the approximated RTT. Even though the OWD is relatively small,
the synchronization of the messages varies, as seen in Chapter 4.3.1. The OWD is calculated by
simply dividing the RTT by two. But the RTT consists of both, transmission and serialization
time. With the small OWD, this only calculates about half the serialization and parse time.
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5.3 Network Control Communication

Previous chapters showed the control mechanisms that run within the network. During these,
it is mentioned that the messages are serialized with Google’s protobuf. The message is shown
in Listing 5.1.

The message has three headers: ELECTION, SYNC and TRIGGER. The former two are
self-explanatory, latter is the trigger message for the data acquisition. The leader �eld is
used to reply whether the node is the leader or not during the election process described in
Chapter 5.1.

During synchronization the message can have di�erent sub-header, like SEND, REPLY
and ADJUST. Former is set during the synchronization broadcast, illustrated as message 1
and 2 in Figure 5.4. The reply messages 1.1 and 2.1 then set the sub-header REPLY, which
includes the timestamp. Lastly, ADJUST indicates that this message contains the o�set in
the offset_usec �eld.

The communication, contrary to the data transfer in the architecture, is based on UDP. Since
the network bandwidth is free during the transmission of these messages, the probability of
data loss or collision is minimal. The messages themselves are also small. The largest ones are
the synchronization REPLY or ADJUST with a maximum of 10 bytes2.

2This contains 1 byte for the type, 1 byte for the sync_mode and 8 bytes for either the timestamp or
offset_usec.
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1 syntax = "proto3";
2

3 message NetworkMessage {
4 enum Type {
5 ELECTION = 0;
6 TRIGGER = 1;
7 SYNC = 2;
8 }
9

10 enum SyncMode {
11 SEND = 0;
12 REPLY = 1;
13 ADJUST = 2;
14 }
15

16 Type type = 1;
17

18 bool leader = 2;
19

20 // synchronization
21 uint64 timestamp = 3;
22 SyncMode sync_mode = 4;
23 int64 offset_usec = 5;
24 }

Listing 5.1: Protobuf message for network communication between nodes.
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6 Conclusion

The goal of this thesis was to present an infrastructure, that supports the user recreation
algorithm presented in [1]. In order to measure its functionality, the requirements from page 4
in Table 1.1 have been established. While discussing the architecture and network design, it
was shown that all requirements are met with the presented outcome of this work.

R1.1 is not fully met, as it does not o�er the full bandwidth, but the application can be
operated with the available 1 Gb/s. This also in�uenced R1.5, but as shown in Chapter 4.3.1,
it theoretically supports the required frame rate with higher bandwidth. That the required
processing power for the nodes is met can also be found in that chapter. R1.3 and R1.4 are both
shown to be ful�lled in Chapter 5.2. The implementation of the last three requirements R1.6,
R1.7 and R1.8 are presented in Chapter 4.

Figure 6.1: Picture showing two frames of the recreation algorithm during a fast movement.
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6 Conclusion

In order to fully test if this infrastructure solves the synchronization problem described in
[1], the application was rewritten to support it. The result showed clearly, that the problem
has been solved. Even fast movements do not provoke a deformation as illustrated in Figure
1.2 on page 2. A similar movement resulted in the recreated models visible in Figure 6.1.

During the discussion of each architecture and network design choice, di�erent approaches
for optimization have been addressed. The most promising, which will most likely drastically
improve the performance of this application, is to process part of the data distributed. It is
mentioned in Chapter 4.3.1 that calculating the point cloud in memory already increased the
frame rate.

In order to further increase the performance, distributing the next step of �nding triangles
within the point cloud, could be distributed. This would most likely require nodes with more
processing power. That would result in a setup similar to the one Microsoft uses in its Holo-
portation project [21].

This approach is planned to be implemented next, in order to further improve on this
solution.
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