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Kurzzusammenfassung
In this thesis, it will be shown how data-driven artworks can be generated. The generated
artworks aim at pleasing mass appeal. In order to do so, the artworks will be shown
to users who can vote for their favourite artworks. A genetic algorithm will be used in
order to process the voting results and create new artworks, that may please the users’
tastes better.
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Abstract
In dieser Thesis dreht es sich um das Erzeugen datengetriebener Kunstwerke. Ziel
der Kunstwerke ist es, den Massengeschmack zu treffen. Um dies zu bewerkstelligen,
werden die generierten Kunstwerke paarweise einer Benutzerschaft präsentiert. Die Be-
nutzer können dann für die Werke abstimmen, die ihnen am besten gefallen. Auf Basis
dieser Ergebnisse wird ein genetischer Algorithmus neue Kunstwerke berechnen, die dem
Massengeschmack noch besser treffen sollen.
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Introduction

1 Motivation

Generative art is becoming more and more popular and its techniques are used for
commercial purposes, live performances and fine art exhibitions. In the past, artists
used rather simple algorithms to create two-dimensional images. Since modern day
approaches lean towards complex and unique 3D renderings, the requirements for the
software systems have risen enormously: Firstly 3D renderings demand way more per-
formance than 2D renderings. Especially for live performances, it’s crucial that an
application runs fast enough to render artworks on the fly. Secondly, artists strive for
possibilities to embody their own style into the generated artworks. Therefore long-
serving techniques like using the Mandelbrot set don’t qualify to fulfil these desires
anymore. In contrast, it’s more suitable to use custom computer code to define the sys-
tem that generates the artworks, because it grants artists a lot of freedom. This, on the
other hand, requires an artist to have programming skills. Under the assumption that
not every artist who is interested in generative art originates from computer science, it
is helpful to offer a beginner friendly starting point. Finally, one of the main reasons
to use a generative art system is the possibility to create artworks with a very high
level of detail, that would be impractical to achieve with human means only. In order to
achieve this level of detail, artists delegate some artistic decisions to the system. Oftenly
the system makes these decisions based on unpredictable factors, like randomization or
gathered data that changes from time to time. This also enables an artist to generate
a series of distinguishable artworks using the same system. The challenge using these
techniques is to find a good balance between a high level of detail and variance while fil-
tering illegitimate content. For an artwork, this could mean that the actual composition
of the artwork can be random, but there is a constraint for it to show at least one object.

Right now there are many solutions for creating generative art that range from prebuilt
software like fractal generators, frameworks like openFrameworks, OpenCV and Cinder
to languages like Processing. All of these have their strengths and weaknesses when
it comes to fulfilling the mentioned requirements. A prebuilt software is very beginner
friendly, but all the outcomes look very similar. Therefore the possibility for an artist
to create something unique is not given. The language Processing is also designed to be
rather easy to learn. Considering that Processing allows the user to use computer code
to build an art generating system, the required freedom to design something unique is
given. Unfortunately, when it comes to performance, the high abstraction level and the
fact that the language is built on a Java core makes it less suitable for 3D applications.
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Introduction

While frameworks like openFrameworks promise to offer a way better performance due
to the fact, that they follow a very low-level approach, they require the user to have
advanced C++ skills, which makes them way less beginner friendly.

2 Goals

For this bachelor thesis, I will create a system that generates data-driven 3D artworks.
I will confront users via a graphical user interface with two images, that were randomly
generated beforehand. The users can vote for the image that they liked better. Based
on these votes the system will create new artworks that fit the preferences of the voters.
In order to define how the new images should look like, a genetic algorithm shall be
used. The new artworks again will be shown to the users and so forth. The goal is
to make every new generation of artworks more compatible with mass appeal than the
previous one. Everybody who is interested in art shall be able to take part. Therefore
the user experience shall be accessible and fun for the participants.

For the artworks, there shall be a high variance. I want to omit that all the artworks
look more or less the same after a few generations. The artworks shall have a new look
and feel. This is opposed to an approach where, for example, the votes would decide on
parameters of a Mandelbulb, because there have been a lot of works using Mandelbulbs.

In addition, the system shall be designed to make it easily extensible. Artists who
have programming skills shall be able to implement their own effects. In order to do
so, the artist shouldn’t need to have advanced knowledge about the low-level imple-
mentation details of the system. It should be enough to have basic knowledge about
the structure of 3D images. The system shall provide a clear structure that makes the
creation of effects as beginner friendly as possible. In addition, the system shall be built
in a way that fulfils the high performance requirements. Finally, the artwork creating
component shall be loosely coupled in order to allow different data-driven art projects
to use it.

3 Structure

In the following, an overview of generative art and it’s techniques are given in chapter
2. In chapter 3 a requirement analysis for the desired system is set out. Chaper 4
shows which measures had been taken in order to implement that very system. Finally,
in chapter 5 a retrospect of the thesis is given, an outlook is given and an alternative
approach is discussed.
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This chapter conveys an overview of generative art. Therefore, at first, a definition of
what can be considered generative art will be introduced in 1. Afterwards, the most
commonly used techniques for generating artworks will be listed in 2. In addition, in 3,
related works will be presented, that use these very techniques. Finally, in 4 it will be
discussed, why in 2018 it is preferred to use the techniques from 2.2 over the ones shown
in 2.1.

1 Definition of generative art

When looking for definitions on generative art, multiple definitions can be found. For
this thesis, this definition by Philip Galanter will be used:

“Generative art refers to any art practice where the artist uses a system,
such as a set of natural language rules, a computer program, a machine,
or other procedural invention, which is set into motion with some degree of
autonomy contributing to or resulting in a completed work of art.” [1, p. 4]

What is notable about this definition that it doesn’t limit generative art to artworks
created by computers. In the same paper, Galanter mentions generative artworks that
didn’t use any computer at all. For example Hans Haacke’s condensation cube [2] utilizes
condensing water inside a plexiglass cube in order to generate patterns. However, this
thesis focuses on computer-based generative art, that apart from that limit fits the cited
definition.

2 Techniques

In the following, the most commonly used techniques for generative art will be dis-
cussed. What most of these techniques have in common is that they are to some degree
inspired by nature’s laws and mechanics. For example, Robert Hodgin’s “Written Im-
ages: Coronal Mass Ejection” uses a simulation of gravity in order to create a pattern
for his artwork, as seen in figure 1. Another example are the objects created for Andy
Lomas’ “Hybrid Forms”. For this project, Andy Lomas build a system that simulates
cell growth, as seen in figure 2. Furthermore, most techniques that are used for gener-
ative art were originally developed for simulation purposes. Daniel Shiffman’s “Nature
of Code” [3] features many of the algorithms that are presented in the following. It is
noteworthy that the book is not focused on generative art of any kind but on “[. . . ] the
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programming strategies and techniques behind computer simulations of natural systems
[. . . ]”.

In addition to the definition discussed in 1, in the same paper, Galanter ranks tech-
niques for generative art based on their randomness. For the presentation of the most
used techniques in 2 a similar approach is taken by categorizing techniques as “more
predictable” in 2.1 or “less predictable” in 2.2. For the same initial conditions, a more
predictable technique will result in equal or very similar results. The outcomes of a
less predictable method may seem more random and the algorithm has more freedom
to create. Since the research showed, that great potential lays in the use of genetic
programming, its most used techniques are listed in 2.2.3. Many of these algorithms are
taken from the book “A field guide to genetic programming” by Riccardo Poli, William
B. Langdon and Nicholas Freitag McPhee [4].

Figure 1: Rendering from Robert Hodgin’s “Written Images: Coronal Mass Ejection”1

Figure 2: Stills from a video of Andy Lomas “Hybrid Forms” series2

1Source: http://roberthodgin.com/portfolio/work/written-images-cme/
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2.1 More predictable methods

At first, structures of complex strucutre, named fractals are presented in 2.1.1. After-
wards, the probably most known fractal, the Mandelbrot set will be introduced in 2.1.2,
followed by it’s 3D representation, the Mandelbulb in 2.1.3. In addition, it is shown
in 2.1.4 how the Lindenmayer-System can be used in order to use grammars and string
manipulations in order to create organic looking shapes. In 2.1.5 and 2.1.6 it is shown
how cellular automata and Voronoi diagrams can be used to create interesting patterns.
Finally, in 2.1.7 it will be shown how particle systems can be used to create effects like
smoke and fire. In 2.1.8 the suitability of the techniques for the goal of this thesis will
be discussed.

2.1.1 Fractals

Fractals are objects that have a very complex structure, that can’t be described by
Euclidean geometry. The term “fractal” was coined by Benoit Mandelbrot’s book “The
fractal geometry of nature” [5]. Furthermore, fractals are defined by having a self-similar
structure. That means that fractals can be divided into parts that look the same or
alike. In theory, they have an unlimited level of detail. When visualised on a computer
screen there is a limit, because there is no smaller measurement than a pixel. Examples
for well known fractals are the Sierpinski triangle, the Menger sponge, both sown in
figure 4, and the Cantor set, as seen in figure 3a. Fractals are often created by recursive
functions. For example, the algorithm for drawing the Cantor set in pseudo code is
shown in figure 3.

1: function CantorSet(line, y)
2: if getLength(line) >= 1 then
3: draw(line, y);
4: parts← divideInThreeParts(line)
5: cantorSet(parts[0], y + 100)
6: cantorSet(parts[2], y + 100)
7: end if
8: end function

(a) The Cantor set

Figure 3: Pseudocode for drawing the Cantor set as seen on the right hand side

2Source: http://www.andylomas.com/hybridForms.html
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(a) Menger sponge3 (b) Sierpinski Triangle4

Figure 4

2.1.2 The Mandelbrot set

“The Mandelbrot set consists of all of those (complex) c-values for which the
corresponding orbit of 0 under x2 + c does not escape to infinity.” [6]

The mandelbrot is a very famous and heavily used fractal. In order to visualize the Man-
delbrot set a complex plane[7] is used. When using a computer to calculate whether a
complex number is part of the Mandelbrot set or not, it is advised to limit the number
of iterations. The formula to compute the next iteration for a value is xn+1 = x2n+ c. If
the resulting values are smaller than a defined threshold, they’re considered as part of
the Mandelbrot set. Many examples of the Mandelbrot set use a black pixel to mark a
complex number that is part of the Mandelbrot set and a white pixel to mark a point
that isn’t. Assigning a specific colour to the number of iterations a complex number
needed to surpass the threshold — as seen in figure 5 — leads to a very colourful visu-
alisation that many people consider generative art.

The Mandelbrot set has an infinite level of detail. This can be explored by zooming into
the visualisation of the set. Furthermore, the structures that emerge by zooming in look
very similar to the fully zoomed out state. For the same zoom level, the Mandelbrot
set will always look the same, because it won’t change if a value is a member of the
Mandelbrot set or not. This makes this approach fully predictable.

3Source: https://de.wikipedia.org/wiki/Datei:Sierpinski-Trigon-7.svg
4Source: https://commons.wikimedia.org/w/index.php?curid=7818920
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Figure 5: The Mandelbrot set. Black pixels are part of the Mandelbrot set. Other pixels
are colored based on how many iterations it took to surpass a threshold5

2.1.3 Mandelbulb

Using the same method shown in 2.1.2, but mapping the complex numbers to spherical
coordinates, instead of a complex plane can result in a 3D object called “Mandelbulb”,
as seen in figure 6. The Mandelbulb has the same attributes regarding predictability
and detail as the Mandelbrot set.

Figure 6: Rendering of a mandelbulb6

5Source: https://en.wikipedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg#/media/
File:Mandel_zoom_00_mandelbrot_set.jpg
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2.1.4 Lindenmayer System

Lindenmayer systems (“L-systems”) are grammar-based systems, that create new words
using substitution. L-systems were originally found by Aristid Lindenmayer in order
to describe cell growth of plants. An L-system consists of a set of variables, a set of
constants, a starting word (“axiom”) and production rules on how to replace variables
with different variables or constants. In a computer program, the words are usually
represented by strings. Each character of the string represents a variable or constant.
For each iteration, the characters get replaced according to the rules. In generative art
it is common to use L-systems in combination with a set of instructions, like “draw”,
“stop drawing”, “move x pixels to the right” or “rotate 30 degrees clockwise”, which are
often refered to as “turtle graphics” 7. In order to use an L-system as an approach for
generative art, each variable and constant is mapped to an instruction, for example, the
constant R could tell a program to move a fixed amount to the right. This is heavily
used for organic structures like plants, as seen in figure 7

There are several variations for L-systems. A context-free L-system takes only one
variable at a time and replaces it according to one fixed rule. The chosen rule of a
context sensitive L-System depends not only on one variable but on its possible pre-
decessors and successors. Both of these are fully predictable. In addition, there are
L-systems using a stochastic grammar, which consists of multiple replacement rules for
the same variable and a probability for the application of each rule. This approach is a
little less predictable and aims at creating more organic looking structures. Although
the last method promises less predictability than the first two, most results still have a
low level of variance, because usually there are only a few rules per variable.

6Source: https://upload.wikimedia.org/wikipedia/commons/a/a0/Power_8_mandelbulb_
fractal_overview.jpg

7https://en.wikipedia.org/wiki/Turtle_graphics
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Figure 7: Plants drawn with a Lindenmayer system8

2.1.5 Cellular automata

Cellular automata consist of a grid of cells. Each of these cells has a state, for example
on or off. The overall state of the cellular automata is defined as the sum of the cell’s
states. In addition, there are rules on how to change a cell’s state. These rules take the
cell itself and it’s neighbours into consideration. There are several definitions of neigh-
bourhood for cellular automata. Most common are the Moore neighbourhood, as seen
in figure 8a and the von Neumann neighbourhood, as seen in figure 8b. An example of
a cellular can be seen in figure 9a. Figure 9b shows an example for the usage of cellular
automata in architecture.

The predictability for cellular automata differs significantly for different rules. In his
book “A new kind of science” [8] Stephen Wolfram introduced four classes for cellular
automata that define their complexity, with the highest class consisting of cellular au-
tomata, that require a very large amount of steps to reach a stable state. Nevertheless,
cellular automata are classified as a more predictable method, because if used as an
approach for generative art most patterns look similar and the changes are visually not
very significant.

8Source: https://en.wikipedia.org/wiki/L-system#/media/File:Fractal-plant.svg
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(a) Moore neighbourhood9 (b) Von Neumann neighborhood10

Figure 8

(a) Cellular automata created us-
ing the “Rule 110”11

(b) Cambridge north12, a railway station in
Chesterton. The window tile desig is in-
spired by “Rule 30”13

2.1.6 Voronoi diagram

Voronoi diagrams consist of a given set of points (“seeds”) and according Voronoi cells, as
seen in figure 10b. A Voronoi cell consists of all points that are closer to the encapsulated
seed than to any other seed. Voronoi diagrams are widely used in many scientific

9Source: https://de.wikipedia.org/wiki/Moore-Nachbarschaft#/media/File:Moore_
neighborhood_with_cardinal_directions.svg

10Source: https://de.wikipedia.org/wiki/Von-Neumann-Nachbarschaft#/media/File:
Von_neumann_neighborhood.svg

11Source: https://en.wikipedia.org/wiki/Rule_110#/media/File:CA_rule110s.png
12Source: https://en.wikipedia.org/wiki/Cambridge_North_railway_station#/media/File:

Cmglee_Cambridge_North_front_night.jpg
13https://en.wikipedia.org/wiki/Rule_30

13

https://de.wikipedia.org/wiki/Moore-Nachbarschaft#/media/File:Moore_neighborhood_with_cardinal_directions.svg
https://de.wikipedia.org/wiki/Moore-Nachbarschaft#/media/File:Moore_neighborhood_with_cardinal_directions.svg
https://de.wikipedia.org/wiki/Von-Neumann-Nachbarschaft#/media/File:Von_neumann_neighborhood.svg
https://de.wikipedia.org/wiki/Von-Neumann-Nachbarschaft#/media/File:Von_neumann_neighborhood.svg
https://en.wikipedia.org/wiki/Rule_110#/media/File:CA_rule110s.png
https://en.wikipedia.org/wiki/Cambridge_North_railway_station#/media/File:Cmglee_Cambridge_North_front_night.jpg
https://en.wikipedia.org/wiki/Cambridge_North_railway_station#/media/File:Cmglee_Cambridge_North_front_night.jpg
https://en.wikipedia.org/wiki/Rule_30


Basics and Related Work

and creative fields, such as procedural content generation and architecture, as seen in
figure 10a. For the same set of seeds the Voronoi diagram will look exactly the same for
each time it’s rendered. Therefore, it’s fully predictable. One could argue, that there is
potential for unpredictability in the random distribution of the seeds, but that doesn’t
change the overall look and feel of a Voronoi diagram. This is why Voronoi diagrams
are categorized as more predictable.

(a) Alibaba group Headquarters in Hangzhou14. (b) Multicolored Voronoi
cells15

Figure 10

2.1.7 Particle systems

Systems that consist of many small objects (“particles”), that are emitted from a source
are called particle systems. Apart from the source of emission, a particle system consists
of a set of rules for each particle that affect lifespan, speed, colour and movement
among many others. Particle systems are often used for effects that require are very
fine granularity like fire, as seen in figure 11 or smoke. Most particle systems are tailor-
made for a certain purpose like visualising fire or smoke. Therefore it’s desired, that the
particle system is predictable.

14Source: https://de.wikipedia.org/wiki/Alibaba_Group#/media/File:Alibaba_group_
Headquarters.jpg

15Source: https://en.wikipedia.org/wiki/Voronoi_diagram#/media/File:Euclidean_Voronoi_
diagram.svg

14
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Figure 11: Fire effect that consists of particles16

2.1.8 Evaluation of more predictable methods

Until this point, it has become clear, that there are many techniques for creating gener-
ative artworks that may lead to interesting and aesthetically pleasing results. However,
most of the techniques have already been used many times in generative art projects.
Therefore it is not given, that using one of these techniques may result in the creation
of something new and unique. In addition, most techniques still require a lot of work
in order to reach a high level of detail. For example, for a very organic looking object
created by an L-System, one would have to define many different rules.

2.2 Less predictable methods

The less predictable methods provide an approach to generative art, that is less pre-
determined than the more predictable methods. Noise functions, that are introduced
in 2.2.1, provide an example of the combination of randomness and control, that leads
to interesting results with comparatively low effort. In 2.2.2 it is shown, how processing
data can lead to a high level of detail and variance. Finally, genetic programming is in-
troduced in 2.2.3. Genetic programming shows great potential to create many artworks
of high variance at the same time and let them increase in quality iteratively. In 2.2.4 it
is discussed why the less predictable methods are favoured as techniques, that are used
within this paper.

2.2.1 Noise functions

Noise functions are heavily used by generative artists when (pseudo-)random numbers
come into play. A noise function takes in a given number of parameters. The exact num-
ber of parameters depends on the dimension, that the noise function is used for. For
example, a two-dimensional noise function takes in two paramters. Instead of returning
any random number, a noise function returns similar numbers for parameters, that are

16Source: https://upload.wikimedia.org/wikipedia/commons/f/f2/Particle_sys_fire.jpg
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close to each other. In the example of a two-dimensional Perlin noise, this is done by
seeding a two-dimensional grid with pseudo-random gradient vectors. Given that the
parameter values belong to a point anywhere in this grid, the algorithm determines a
grid cell that encapsulates the point. The grid cell’s corners are the four gradient vectors,
that are closest to the point. At first, the vectors from the corner points to the given
point are calculated. Then, the dot product between these vectors and the gradient vec-
tor at each corner is taken. The final value is an interpolation of these four dot products.

Noise functions provide a great example for a level of unpredictability that is desir-
able for a generative artist. Although it is not predictable which exact numbers are
returned by a noise function, the artist can still control the function by passing parame-
ters in, which is impossible for conventional random functions. As seen in figure 12 this
leads to results, that feel more organic than conventional random functions. The most
known and used noise functions are the Perlin noise17, which was developed by Ken
Perlin in order to create special effects for the movie “Tron” and it’s successor Simplex
noise18.

(a) The brightness of each pixel is deter-
mined by conventional random function

(b) The brightness of each pixel is deter-
mined by a noise function, based on the
pixel’s coordinates

Figure 12

2.2.2 Data-driven approaches

As the name suggests, a data-driven approach turns a set of data into an artwork.
Mainly, there are two paths of gathering the data. Firstly, there is the use of public
data sources, like social media streams, data on flight information, as seen in figure 13a,
or data that can be gathered from public APIs, as seen in figure 13b. Secondly, the
data can be collected or created especially for the project. This may be the case for live

17https://en.wikipedia.org/wiki/Perlin_noise
18https://en.wikipedia.org/wiki/Simplex_noise
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performances, where a sonic output may lead to visual representations, as seen in the
project “Flume: The infinity prism tour”19.

One of the reasons to use a data-driven approach is the connection between the artwork
and its surroundings. Another reason is that huge amounts of data can be gathered in a
comparatively short span of time. This allows an artist to create artworks with a large
amount of detail and variance, without the need to handcraft everything that is used in
his artwork. Furthermore in most cases the data an artwork relies on isn’t static, but
changes from time to time. This leads to artworks that change from time to time.

(a) “Flight Patterns” by Aaron Koblin
“Flight Patterns” by Aaron Koblin20

(b) “Taxi, Taxi” by Robert Hodgin &
Jonathan Kim. It uses New York City’s
data on taxis to create visuals21

Figure 13

2.2.3 Genetic Programming

The goal of genetic programming is to mimic Darwin’s survival of the fittest [9]. This
is desirable when there is not a clear solution to a problem but a way to measure the
quality of a solution. In genetic programming possible solutions are called individuals
that are grouped into generations. A genetic algorithm transforms these generations
in order to make them more suitable as a solution to the given problem. The more
suitable a solution is, the higher is it’s fitness value. In order to determine the fitness
value, genetic algorithms make use of a custom-made fitness function.

The fitness function usually returns a number for each individual. The number can
either represent the amount of error and the algorithm’s goal is to minimize it, or the

19https://www.tobyandpete.com/work/#/flume-prism-tour/
20Source: http://roberthodgin.com/portfolio/work/taxi-taxi/
21Source: http://www.aaronkoblin.com/project/flight-patterns/
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amount of success. In this case, the algorithm will favour individuals with a higher num-
ber. In genetic programming, there are multi-objective problems and single-objective
problems. The fitness value of a solution to a multi-objective problem is accumulated
from multiple criteria. The fitness value of a single-objective problem only consists of
one indicator. Since the fitness value for this project will be related to the voting results
only, the focus of this thesis lays on on single-objective strategies.

The outcome of a genetic algorithm is usually split into two parts: The genotype,
as seen in figure 14a and the phenotype, as seen in figure 14b. The phenotype is the
possible solution for a problem. For example, if the genetic algorithm is used for gen-
erative art, the artwork is the phenotype. The genotype is the representation of that
very artwork. A common procedure for genetic algorithms is to use the genotype for
initialization, selection, crossover and mutation, which will be discussed further below,
and the phenotype for the fitness function. Although there are other ways to structure
a genotype, most algorithms use trees. This thesis will also focus on trees as a data
structure.

The nodes of a genotype’s tree are either one of the following: Variables and constants,
which are called terminals, or functions that are applied on the terminals. The sum of
all available terminals and functions is called primitive set. Terminals or usually the
leaves of a tree, while functions make up the rest of the tree.

A genetic algorithm usually goes through four phases: Initialization, Selection, Crossover
and Mutation, as seen in figure 15. For each of these phases, there are many algorithms.
In order to create a successful solution, the algorithms have to be picked wisely. In the
following, strategies for each phase of the genetic algorithm will be presented.
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(a) A tree representation of an artwork’s
genotype. “Blue” and “Noise” are func-
tions that alter the appearance of the
terminals. The terminals s0, s1 and
s2 are spherical primitives. In a scene
graph, one would expect nodes that de-
termine the sphere’s positions. For the
sake of simplicity, these are left out in
this example.

(b) The phenotype: The actual artwork,
that belongs to the tree representation.

Figure 14

Figure 15: The stages of a genetic algorithm
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Initialization During the initialization process, the first generation will be set up. In
the following different algorithms will be presented that can be used to create an indi-
vidual’s genotype. In order to set up the whole generation, this will be repeated, until
the generation is completed. For most use cases it is desired, that the initial generation
doesn’t dictate a direction for following generations. For example, if a high percentage
of individuals within the initial generation have the same genotype, most selection al-
gorithms may favour it over a solution with fewer members in that same generation,
although it may have equal or even slightly higher fitness. Therefore, it is advisable to
pick an algorithm that promises a high level of variance. The following algorithms will
be presented in tables, that contain information on the algorithm’s procedure, as well
as advantages and disadvantages of the algorithm.

Full method

Algorithm In order to use the full method, one has to define a depth limit
for the tree. Until the depth limit is reached, the algorithm
will pick a random function from the primitive set. If the
depth limit is reached, the algorithm picks a random terminal.

Advantages The full method is advisable if all the trees need to have the
same depth. If the arity of every function in the primitive
set is the same, the trees will even have the same number of
nodes. Furthermore, it’s easy to implement and use.

Disadvantages For many use cases, it’s not needed that the depth of each
tree is the same. If so, this technique may unnecessarily limit
the variance of the initial population.

Grow method

Algorithm The grow method works very similarly to the full method.
The only difference is that a terminal can be chosen before
the defined depth is reached.

Advantages The grow method, like the full method, is very easy to im-
plement and use. Additionally, it adds more variance to the
initial generation, because trees may have different depth lev-
els.

Disadvantages If there are significantly more terminals than functions, the
trees tend to get very short, although a high depth level may
have been defined.
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Ramped half and half

Algorithm The ramped half and half approach uses the full method to
generate the first half the initial generation and the grow
method for the second half.

Advantages A higher level of variance than the full method, while having
at least the half of the generation reaching the depth limit.

Disadvantages -

Seeding

Algorithm For the seeding method, the developer adds premade indi-
viduals to the initial generation. This can be combined with
other algorithms. For example, 90% of the initial generation
may be generated by a ramped half and half algorithm, while
the other 10% are made up of premade solutions.

Advantages This method is good in order to prove a solution against other
solutions. For example, the winner of a previous run may be
seeded into a new run.

Disadvantages It is possible that the premade solutions are too dominant
and prevent the genetic algorithm from finding new solutions
that may have been found if the seeded solutions wouldn’t
have been part of the initial generation.

Selection The selection step is usually the first step, that is taken in order to compute
a new generation. During the selection phase, individuals are chosen based on their
fitness values. Two chosen individuals are meant to be the parents of a new individual,
that will be part of the following generation. The actual recombination of the parent’s
genes in order to compute the new individual is usually done in a separate step, that
will be discussed further below. Since two parents are needed in order to compute a new
individual, the selection phase needs to select twice as many individuals as required in
the following generation. A common pitfall regarding selection algorithms is to put too
much weight on the fitness value. This may lead to generations that consist of only one
solution after very few iterations. In the following the two most common algorithms are
discussed in the same format as the initialization algorithms.
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Tournament selection

Algorithm A predefined number of individuals is picked randomly from
the current generation. Like in a tournament, individuals are
paired up against each other. The higher rated individual
reaches the next round until one individual wins the tourna-
ment. In order to create a new individual for the succeeding
generation, it needs two tournaments — one per parent.

Advantages Easy to implement, individuals with average quality have a
chance to be picked.

Disadvantages Since the individuals for the tournament are picked randomly
there is a chance for a good solution not to be picked.

Roulette-wheel selection

Algorithm Each individual has the chance of fitnessi∑n
j=0 fitnessj

to be picked as
a parent. It is comparable to a roulette table with unevenly
sized fields.

Advantages Since only one value has to be chosen randomly, the roulette
selection is very fast and very easy to implement.

Disadvantages A member with a very high fitness value may be chosen mul-
tiple times, which can lead to a small level of variance.

Crossover During the crossover process, new individuals will be created. This is by
done using the pairs of parents, which were picked during the selection phase. The new
individuals consist of a recombination of their parents’ nodes. In the following, the two
most common algorithms for the recombination are discussed.

Subtree crossover

Algorithm A randomly chosen subtree of the first parent is replaced by
a randomly chosen subtree of the second parent.

Advantages Very fast and easy to implement.

Disadvantages No evaluation of the subtrees. The subtree that caused the
high fitness value may be cut off.
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Uniform crossover

Algorithm For each node in the child tree, a coin is flipped to decide if
a node from the first or the second parent should be used.

Advantages Uniform crossover tends to create more variance than subtree
crossover

Disadvantages Needs significantly more steps than a subtree crossover. Es-
pecially for big trees.

Mutation The mutation process is usually the last stage of a genetic algorithm. In
order to increase the variance, mutation is applied on a small percentage of the individ-
uals, that are inside the generation that has been computed during the crossover phase.
This is the only phase where nodes may be inserted into the generation that weren’t part
of it before. In the following, the most common algorithms for mutation are discussed.

Subtree mutation

Algorithm A randomly picked subtree gets replaced by a new randomly
computed one

Advantages Mutating a subtree may add new nodes to the gene pool,
which increases variance. Quick and easy to implement.

Disadvantages Neither the replaced subtree nor the newly generated one are
evaluated. This may lead to a subtree with a high fitness
being replaced by a subtree that will receive a very low fitness
rating.

Point mutation

Algorithm Random nodes are picked and replaced by another random
node from the primitive set.

Advantages Since this doesn’t only affect one subtree but potentially every
node in the tree, this method promises even more variance
than the subtree mutation.

Disadvantages The algorithm requires more steps, which can be problematic
for very large trees.
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2.2.4 Evaluation of less predictable methods

The huge advantage of the less predictable methods over the more predictable methods
is, that there is a greater potential for detail without the need of handcrafting it. Fur-
thermore, the less predictable techniques may be used to create a series of artworks with
the very same algorithm. For example, a data-driven artwork that uses social media
streams may never process the same stream twice. This can be very exciting for an
artist and for the user because for most static artform like painting and photography,
it’s impossible for the artwork to change after it’s creation. However, the less predictable
techniques are more difficult to control and may lead to unwanted results.

As a consequence of this research, the decision has been made to use genetic program-
ming in order to compute the genotypes of the artworks, that will be created for this
thesis. It has been shown, that the high level of variance fits the requirement to show
many different artworks to a user base, that may vote for these very artworks in order
to create new ones. In 3 it will be shown, that this approach already leads to interesting
results.

3 Related Work

In the following, two related works will be discussed. Both works use genetic program-
ming in order to create aesthetically pleasing objects. In 3.1 3D objects are altered
and users can vote for their favourites, which leads to a new generation of objects. A
similar approach is taken in 3.2, but the user votes are replaced by a programmatic way
to determine the object’s aesthetic value. These works give an example for how the
techniques discussed in 2.2 can be used in order to generate artworks. In addition, it is
shown, how the related works differ from the approach that is taken in this thesis.

3.1 “Design and Implementation of a Procedural Content Generation
Web Application for Vertex Shaders”

In their paper [10] Juan C. Quiroz and Sergiu M. Dascalu write about a project that is
very close to the one discussed in this thesis. For their experiment, they created a web
application that displays 3D renderings and lets users vote for their favourites. After the
user voted, a genetic algorithm is used to compute new renderings. Every 3D rendering
consists of the same model, that is altered by different vertex shaders. Vertex shaders
are used to alter the positions of a 3D model within the rendering pipeline. Each vertex
of a 3D model passes the vertex shader. The input of a vertex shader is the original
position. The output is the altered position. Quiroz and Dascalu use mathematical
equations that are added to the original position. In their paper, they use the equation
“x/(x + z)” as an example. During the rendering pipeline, each value of the original
position will be increased by the result of this equation. As soon as the user voted, a
genetic algorithm uses the favoured equations in order to generate new equations.
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Although Quiroz and Dascalu’s work is very close to this thesis’ project, there are
some differences. First of all, Quiroz and Dascalu position their work in the field of pro-
cedural content generation. What makes this different to a generative art project is that
procedurally generated content is supposed to fulfil a practical purpose. In their paper,
they make the proposition to use the generated content for video games. Secondly, the
application doesn’t accumulate the votes of all users but creates a new experiment for
each user from scratch. This leads to the outcome being tailor-made for one single user.
This is opposed to the goal of using the sum of user votings for the genetic algorithm
in order to create something that may please mass appeal. Furthermore, for the use of
Quiroz and Dascalu’s web application, the user may provide a 3D model or use a pre-
defined model of a human body. This is opposed to the goal of creating something new
and unique. In addition, Quiroz and Dascalu use the genetic algorithm for the vertex
shader only. This is opposed to the project discussed within this paper because it aims
at computing the whole composition of the artwork with the help of a genetic algorithm.
Finally, the user experience differs from the goals discussed within this thesis. The web
application displays nine renderings at once and lets the user choose more than one.
In their paper, Quiroz and Dascalu mention that the users weren’t engaged enough by
the user interface. It is desired to use their findings in order to create a more engaging
experience.

Figure 16: Screenshot of the provided user interface

3.2 Aesthetic-Oriented Generation of Architectonic Objects with the Use
of Evolutionary Programming

In their paper [11] Prof. Ewa Grabska and Agnieszka Mars provide another example
for the use of genetic programming and the generation of aesthetically pleasing objects.
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The paper aims at creating prototypes for architectonic objects. The objects are com-
posed of a set of solid basic objects, as seen in figure 17 and evaluated by Biederman’s
visual perception model [12]. Based on this evaluation a genetic algorithm computes
new compositions. Like the work of Quiroz and Dascalu and like the project presented
in this thesis, the ultimate goal of this paper is to create the most pleasing outcome pos-
sible. The outcoming 3D objects are composed within the course of the program. This
is comparable to the goals of this thesis’ project and opposed to Quiroz and Dascalu’s
use of predefined renderings.

What separates this work significantly from Quiroz and Dalascu’s work and also from
this thesis’ intent is the fact, that the approach doesn’t use any kind of user interaction.
The fitness values are taken from the result of the computer-based evaluation only.

Figure 17: Example results generated by Mars and Grabska’s algorithm

4 Conclusion

The purpose of this chapter was to find suitable techniques for a generative art project.
Furthermore, it was desired to find examples of the recent past, that made use of these
techniques. As a first step, it is needed to discuss the question “What is generative
art?”. This is done in 1. It has been shown that there is a need for a system, that
helps with the creation of an artwork. For the sake of finding a suitable technique that
can be the basis of said system, the most common techniques were discussed in 2. It
has been shown, that most of these techniques aim at simulating or mimicking nature’s
laws. All of the shown results can lead to aesthetically pleasing artworks. However, the
techniques discussed in 2.1 don’t seem to qualify for a generative art project in 2018. The
reasoning behind that is, that these techniques have been used too many times in the
past. If an artwork is created using, for example, the Mandelbrot set, it doesn’t meet the
requirement of creating something new and unique. Therefore, in 2.2 the less predictable
techniques were introduced. These techniques promise to enable a much higher level
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of detail and variance. This leads to the conclusion, that these techniques are more
suitable for reaching the goals formulated for this thesis. Furthermore, in 2.2.3 it has
been shown, that genetic programming has means to create generations of artworks,
that can iteratively increase their quality. This has been underlined by the related
works discussed in 3. As a conclusion, for this thesis artworks are generated with the
help of a genetic algorithm, that computes the individual’s fitness on the basis of user
votes.
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In the following, the requirement analysis will be presented. In 2 the steps, that compose
the creation of artworks will be discussed. In 3 the nonfunctional requirements are
described. In 4 the requirements are summarized in order to reference them in the
following chapters of the thesis. As stated in chapter 2.4, the system will create the
artworks with the help of a genetic algorithm. The fitness value of each artwork will be
determined by the number of votes it received.

1 Roles

There are two roles involved in the process of creating new artworks: The user, who
votes for artworks and the system, which creates new artworks based on these votes.

2 Functional requirements

There are four functions, that the system has to provide. As seen in 1 the user can
use the system by voting. This triggers the system to process the vote, which may
lead to the generation of new artworks, which is separated into computing the artwork’s
genotypes and rendering the according phenotypes.

Figure 1: This use case diagrams shows the functions required in order to create new
artworks
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2.1 Vote

Actors: User, System The system provides an user interface as seen in 2

2.1.1 Success scenario:

1. The user interface requests a pair of images. It is made sure by the system that
the user hasn’t seen these images yet and that the images are from the newest
generation of artworks

2. The user is asked to vote for his favourite artwork

3. As soon as the user chooses an artwork the system processes the vote

4. The user is taken back to step 1

Figure 2: The user interface on a mobile phone. The images can be browsed via a swipe
gesture. A touch of the button will vote for the image. Afterwards, the system
will display two new images.
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2.2 Process vote

Actor: System

2.2.1 Success scenario:

1. The system gets the result of the vote

2. The system increases the vote count for the winner

3. If a defined threshold of votes is surpassed, the system triggers the creation of a
new generation of artworks

4. As soon as the system has computed the new generation of artworks, the images
are rendered by the system

2.3 Compute new artworks

Actor: System

2.3.1 Success scenario:

1. As soon as the system triggers the computation of new artworks, the system gets
the voting results

2. The system gets the current generation’s genotypes

3. The system starts the genetic algorithm, which uses the provided information as
a basis for the fitness function

4. The genetic algorithm computes a new generation of genotypes

5. The system saves the new generation

6. As soon as the new genotypes are saved the system triggers the rendering process

2.4 Render images

Actor: System

2.4.1 Success scenario:

1. As soon as the system triggers the rendering of new artworks, the system reads
the genotypes of the new generation

2. The system renders the 3D model of each individual within the new generation

3. The rendered models are saved by the system
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4. From this point on, the system will display images of the new generation via the
user interface

3 Nonfunctional requirements

3.1 Accessibility

Since it’s desirable to have a large number of votes in order to make better assumptions
on mass appeal, the whole experience should be easily accessible for the user. As a
consequence, the application shall be accessible from as many operating systems as
possible. In addition, the application should be accessible from as many devices as
possible. Especially mobile devices are important because it seems more convincing,
that a user might want to vote in order to pass the time on a subway ride, than voting
from a desktop computer at home.

3.2 User engagement

In addition to the accessibility, it is important to make the experience for the user. The
reasoning behind this is to increase the time a user spends with the application, as well
as the chance of the user using the application multiple times within the run of the
voting period.

3.3 Variance

The system shall create generations of artworks, that are well distinguishable from each
other. Therefore it is helpful to create them using an unpredictable approach. On the
other hand, it is important that the approach is not completely random, because the
system shall be able to embody the features, that it determined as pleasing to the users.
In conclusion the function “Compute new artworks” 2.3 may use unpredictable means
in order to compute new generations with a high level of variance.

3.4 Extensibility

It should be easy for another developer or artist to add a function to the primitive set,
for example, a new effect that can be applied on objects. This is desirable, because this
allows fast testing of new ideas for me and others.

3.5 Loose coupling

There are some steps that are necessary for almost every 3D application, like creating a
rendering pipeline, setting up a data structure for the scene graph and so on. Therefore,
the components shall be coupled as loosely as possible, so that the components may be
reused for different projects.
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4 Conclusion

Table 1 lists the discussed requirements. The next chapter will show, which design
decisions were made in order to fulfill these requirements.

R1 The user can vote for artworks

R2 The system can process votes

R3 The system can compute new generations of artworks

R4 The system can render artworks

NFR1 The system is as accessible as possible

NFR2 The system is as engaging as possible

NFR3 The system produces artworks with a high level of variance

NFR4 The system is easily extensilbe

NFR5 The system is loosely coupled

Table 1
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In this chapter a software system is introduced, that is supposed to be a proof of
concept, showing that a computer can learn to create aesthetically pleasing artworks
by implementing the functionality defined in chapter 3. The system will make use of a
genetic algorithm. This is done as a consequence of the research presented in chapter
2. Firstly, in 1 the reasoning for a distributed system is made. In 2 the components of
this very system are introduced in detail. In 3 the infrastructure that is required to run
the system is shown. In 4 an example run demonstrates how the previously introduced
system works in order to create a new generation of artworks. A conclusion is given in 5
followed by an overview of the pitfalls emerged during the implementation in 6.

1 Reasoning for a distributed system

The first design decision was to build a distributed system. This is done in order to
combine the accessibility of a web application and the performance of a native applica-
tion written in C++. In order to achieve the nonfunctional requirement of accessibility,
as discussed in chapter 3.3.1, a web application is the obvious choice: Web applications
are accessible from every operating system, desktop computers and mobile devices. Fur-
thermore, a web application doesn’t require any kind of setup, which eliminates another
obstacle for any user who wants to take part. This also helps the requirement of user en-
gagement, as discussed in chapter 3.3.2. However, web applications are limited in terms
of performance. In order to avoid these limits, premade 3D renderings are displayed via
the user interface.

These renderings will be made by a native application that is written in C++. This
enables the system to achieve a much better performance. In addition, this also adds
to the fulfilment of the requirement of accessibility, because this way possible computa-
tion limits of mobile devices become irrelevant. Instead, renderings can be made on a
server with state of the art GPUs, which enables the system to create artworks of a high
complexity. Since it would go beyond the scope of this thesis and be very expensive to
provide these servers, as well as other needed services that will be listed further below, a
service provider needs to be chosen. The service provider needs to offer cloud computing
solutions, that support GPU usage. This will be further discussed in 3.
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2 Components

As stated in 1 the Rendering component and the Web Application will be separated
within the distributed system. In addition, there is a third component for the Genetic
Algorithm. This is done for two reasons: Firstly, this grants the freedom to choose freely
between differenet genetic programming frameworks written in a arbitrary language.
Secondly, this helps to achieve the requirement of loose coupling, as discussed in chapter
3.3.5. Since the voting results and the renderings have to be stored online, at least a
database and any kind of web storage are required. In order to avoid implementing the
interaction with these services for each component, there will be a fourth component,
that handles these demands. The results will be made available via an API that can
be used by HTTP calls. This makes it easy to interact with the services for every
component because almost every programming language has some built-in mechanics
for HTTP calls. Furthermore, the components get smaller, since there is no need to
add the service provider’s SDK to the components. A full overview of the components
is shown in figure 1.

Figure 1: An overview of the components

2.1 Web Application

The main purpose of the Web Application is to provide a user interface, as shown
in figure 2. Via the Web Application, users can vote for images. Therefore, the Web
Application displays two artworks. The user can vote for one of the artworks. After-
wards, two new artworks are shown to the user.
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Figure 2: In (1) the artwork is displayed. Via the controls shown at (2), the user can
trigger the system to show the next artwork. A tap on the button (3) triggers
the vote.

2.2 Voting process

The Web Application is accessible via every browser on desktop computers or mobile
devices. Once started, the application will request two unseen images from the Web
Services Adapter component. In order to determine which artworks have been seen
already, the Web Application saves the IDs of each seen artwork to the local storage
of the device. An array of these IDs is sent in the body of the request. The body of the
response contains two URLs of unseen artworks, that the Web Application will display,
once received. In the next step, the user will be asked to vote for one of the displayed
artworks. Once done, the Web Application sends another request to the Web Services
Adapter component, that processes the vote accordingly. This will be further discussed
in 2.5
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2.2.1 Realization of the mobile-first approach

In order to fulfil the requirement of accessibility, the Web Application is designed under
a mobile-first approach. That means, that every feature is built for a mobile device at
first, to make sure the functionality works within the limits of a mobile device, and
adapted for bigger screens afterwards. In order to make this as easy as possible, the
Web Application is responsive1. This means, that the appearance of the user interface
changes for different screen sizes.

2.3 Rendering

The Rendering component’s task is to create 3D models. In order to do so, the com-
ponent expects a scene graph as an input value. The component processes the scene
graph and renders an according 3D model. Finally, the model is saved by the Rendering
component. Naturally, this fulfils the requirement “Render images”.

In addition, the rendering component is designed to fulfil two nonfunctional require-
ments: Firstly, the requirement of “Loose coupling”. This is done by strictly limiting
the component to rendering, as opposed to adding functionality that is part of creating
new generations of artworks. This makes the Rendering component reusable for any
kind of generative art project that uses 3D graphics. Secondly, in order to fulfil the
requirement of “Extensibility”, a custom-made scene graph was implemented, that is
based on inheritance. It will be shown, how this leads to an easy entry point for artists
or developers, who want to add new nodes to the scene graph.

2.3.1 Choosing a framework

In order to avoid low-level tasks like setting up a window that can be used for rendering,
it is advisable to use a framework that provides this features. There are multiple choices
for anyone who is interested in any kind of creative coding. There are three frameworks
that are frequently used: openFrameworks2, Processing3, which positions itself as a
programming language, that runs on a JVM4, and Cinder5. As discussed in 1, the
decision for a distributed system was made because it promisses a better performance
for the Rendering component. Therefore, Processing doesn’t seem like a valid choice,
because it works on very high abstraction level, which produces an overhead that can
be avoided by choosing one of the C++ frameworks. In conclusion, openFrameworks
was chosen over Cinder, because it has a larger user base. This usually leads to more
ressources that may help to get to know the framework. openFrameworks uses openGL6

1https://en.wikipedia.org/wiki/Responsive_web_design
2http://openframeworks.cc
3https://processing.org
4https://en.wikipedia.org/wiki/Java_virtual_machine
5https://libcinder.org/
6https://www.opengl.org/
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in order to render 3D graphics.

2.3.2 Loop

The application runs in a continuous loop, that has three main phases:

Setup Before the loop starts the setup phase takes place. Everything that has to be
done only once, like initializing the rendering pipeline, should be done during this phase.

Update The update phase takes place every loop. During the update phase, values
may change in order to change the output of the draw phase. For example, if it is desired
to create an animation of an object that moves from left to right, during the update
phase the object may be moved a small amount in the desired direction.

Draw The draw phase takes place directly after the update phase. During the draw
phase, the 3D models are rendered.

2.3.3 Scene graph

As in most computer graphics applications, a scene graph7 is used. The scene graph
consists of multiple nodes that define the composition of the artwork. For example,
a node can contain the mesh of a 3D model, as well as modifications for a 3D model
that range from changing the model’s appearance, changing the model’s position, to
changing the model’s mesh by changing the position of the mesh’s vertices.

Composition of the scene graph The scene graph is basically composed of five node
types: The RootNode, the ModificationNode, the ShaderNode, the MatrixModificator-
Node and the ObjectNode. All of these nodes inherit their basic functionallity from a
Node class, as seen in figure 3. In the following all of these node types will be discussed
in detail.

Apart from the RootNode, all of the nodes are abstract classes. In order to create a
node, that is usuable within the scene graph, a node class has to be created that in-
herits from the ModificatioNode, the ShaderNode, the MatrixModificatorNode or the
ObjectNode. Each of these classes is designed to make it as easy as possible to create a
new node that is usuable within the scene graph. This helps to fulfill to the requirement
of extensibility. Further below, it will be discussed in detail, how a concrete class can
be created and which tasks the abstract class takes care of.

7https://en.wikipedia.org/wiki/Scene_graph
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Figure 3: An UML diagram showing the inheritance between the node types

Node The Node class provides basic features that are needed in order to build a
tree, such as adding children, getting a collection of children, getting the parent and
so on. Furthermore the Node class provides means to identify nodes. This is done by
using a predefined name for every node plus an ongoing number. For example, a Node
that contains a sphere and was the second node to be created within the process of
building the scene graph, will be named “SphereNode_02”. This is useful for debugging
purposes and a crucial feature for serialising the scene graph. In addition, the Node
class provides methods for other nodes to register as an observer. There are hooks that
notify observers right before the node is drawn, after the node is drawn, after the setup
is done and so on. For example, shader nodes make use of these hooks in order to know
when to begin() or end(). This will be discussed in detail further below. Every class
that inherits from Node needs to implement the methods draw() and setup().

RootNode The main purpose of the RootNode is to mark the root of each scene
graph. Each scene graph should consist of exactly one RootNode. This is helpful for
internal methods, that want to process the whole scene graph.

ObjectNode The ObjectNode is the base class for every node that contains a 3D
object. An ObjectNode will be initialized with the required information. For example, a
SphereNode will receive its radius and its resolution. The ObjectNode contains a model
of the 3D object, that can be requested by other classes. The ObjectNode’s setup()
method initializes the mesh that is within the node. The ObjectNodes’s draw() method
renders the mesh.

ModificationNode ModificationNodes are used to change the meshes of nodes in
it’s subtree. In order to get every mesh in the subtree, a ModificationNode sends a
request for a set of models to all of its child nodes, as seen in figure 4. If a node receives
the request, there are two possible responses: If the node is an ObjectNode, it adds its
model to the set, if it’s any other node, it just passes the request to all of its children.
Once all models are collected, the set is returned back upwards to the original request.
For this, there are also two possibilities: If the node is another ModificationNode, it
will modify every model in the set, before it passes the response further upwards. If it’s
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any other node, it will just pass the model further upwards.

In order to create a concrete class, all a developer has to do, is to implement the
modification itself. Therefore, the abstract method modify(...) is defined in the
ModificationNode class, that gets called for every model in the node’s subtree and
receives the model as a parameter.

Figure 4: An example subtree containing two ObjectNodes.

ShaderNode As the name suggests, a ShaderNode encapsulate a shader. A shader
is a programm that is executed on the GPU of a computer. It is part of openGL’s ren-
dering pipeline to apply shaders if specified. Therefore, a shader is activated by calling
it’s begin() method. From this point on, everything that will be drawn is affected by
the shader. Each shader has an end() method, that stops the effect of the shader. Since
shaders are usually stored in separate files, the ShaderNode takes in the name of the
shader. During the setup phase, it will load the according shader from a predefined
location.

The ShaderNode is designed to begin the shader’s effect before it’s subtree is drawn
and end it, after the all of the leaves are processed. Therefore, the ShaderNode registers
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itself on every leaf in its subtree. When the leaves are done drawing, the ShaderNode
gets notified. Then, it increases the count of drawn leaves. If this equals the total
number of leaves, the ShaderNode ends the shader.

All an inheriting node has to do, is to provide the name of the shader. The ShaderNode
expects to find a directory in a configurable location, where the shader’s files can be
found. Once this is done, the shader will be loaded, during the setup phase, begin before
it’s subtree is processed and end, once everything in its subtree is drawn. A shader can
receive arguments from the program that uses the shader. These arguments are called
uniforms. If a developer wishes to pass uniforms into the shader, this can be done by
implementing the method setupUniforms() within the inheriting class.

A mentionable concrete class is the MaterialNode. As the name suggests, the Material-
Node defines a material. A material defines the appearance of an object’s surface. This
is crucial in order to expose the object. Since most lighting algorithms, such as the
Blinn-Phong shading model8, require three colours, the MaterialNode consists of these
three colours: The ambient colour, the diffuse colour and the specular colour. It is
crucial, that every ObjectNode is in the subtree of at least one MaterialNode, because
otherwise the object would look flat.

MatrixModificatorNode The MatrixModificatorNode encapsulates changes to the
ModelViewProjectionMatrix9. This is desirable, everytime a model is supposed to be
translated, scaled or rotated. A MatrixModificatorNode applies the changes to ev-
ery object in its subtree. Before applying the modifications, the current ModelView-
ProjectionMatrix gets pushed onto a stack. After every leaf has been drawn, the
MatrixModificatorNode pops the previous ModelViewProjectionMatrix back from the
stack. In order to create a matrix modification an inheriting node needs to implement
the method motdifyMatrix(). Within this method, the changes to the ModelViewPro-
jectionMatrix may be done.

Combining nodes Finally, the scene graph comes together by combining nodes. In
order to keep the scene graph flexible, there should be as few constraints regarding the
possibilities of combination as possible. As a matter of fact, the only constraint is, that
the scene graph starts off with a RootNode. Some combinations may make no sense.
For example, a MatrixModificatorNode as a leaf node won’t change anything, but it’s
still possible.

Each node affects every node in its subtree. For example, if a ShaderNode sets the
colour to blue, every object that is a child of this node, will be blue. Some effects
are added up, some override each other, as illustrated in figure 5. For example, a

8https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
9http://www.codinglabs.net/article_world_view_projection_matrix.aspx
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MatrixModificatorNode that changes the position of an object to the centre of the
window, a ShaderNode that sets the colour to red and an ObjectNode that contains the
model of a sphere, will lead to a red sphere in the centre of the window. Other nodes
replace each other. For example, if in the same tree a ShaderNode setting the colour to
blue will be between the ObjectNode and the MatrixModificatorNode, the ShaderNode
that sets the colour to red will be overridden, therefore, have no effect. However, it is
imaginable that the red ShaderNode has another child that is an ObjectNode. This
object will be red again.
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(a) A scene graph, that consists of
SphereNodes, TranslateNodes,
NoiseNodes and ShaderNodes. The
TranslationNodes move the spheres
within the three-dimensional space.
The NoiseNodes roughen up the sur-
face of a sphere, by moving the vertices
away from the center by an config-
urable amount that is multiplied with
a 3D noise function. The ShaderNodes
set the colour of the spheres.

(b) The sphere on the left-hand side
is an example for the addition of
ModificationNodes. This sphere is af-
fected by two NoiseNodes, while the
sphere in the middle is affected by only
one. This leads to the left-hand sphere
having bigger “spikes” compared with
the sphere in the middle. The node
on the right hand side is an example
for overriding: The ShaderNode setting
the colour to red is overridden by the
ShaderNode setting the colour to blue.

Figure 5
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2.3.4 Renderer

In order to render the scene graph, a Renderer class has been implemented. The
Renderer traverses the scene graph using a depth-first search algorithm. During the
traversal, each node will be processed, until every node was reached. During the setup
phase, the Renderer will call setup() on every node, during the draw phase, it will
cal draw() on every node. Each node has to implement the effects that these calls will
have by itself. As discussed in 2.3.3 a ModificationNode, that was reached by the
Renderer, triggers every other ModificatorNode within its subtree before the Renderer
reaches these nodes. In order to avoid that the effect will be applied twice, nodes can
be skipped.

2.3.5 Data structure for meshes

The Rendering component contains a data structure for meshes. The data structure
stores vertices, edges and faces of a 3D model. The data structure provides methods to
change vertices, add polygons and to get information about the mesh, like the number
of faces, vertices and edges. The data is organized as a doubly connected edge list10

(“DCEL”). The data structure can be initialized empty or by passing in an instance of
the openFrameworks mesh class. If a mesh is passed in, the data structure will transform
the mesh into a DCEL. In order to make use of openFrameworks’ rendering methods,
the data structure can be converted (back) into the mesh class that openFrameworks
uses.

Under the assumption, that one has a predefined mesh that is passed into the data
structure, reproduced and converted back into the openFrameworks mesh class, it may
seem unnecessary to use the DCEL at all. But, there are two mechanisms that make
modelling with the data structure way easier than using the raw mesh provided by open-
Frameworks. Firstly, it unites vertices that are very close to each other. Some meshes
are organized in a way, that crossing points of polygons consist of multiple vertices, as
seen in figure 6a. This makes the modification of these meshes very difficult because, in
order to move the centre point of the shown square, the algorithm would need to find
and move four different vertices. In order to avoid this, the data structure checks for
every vertex it processes, if there is already a close vertex within the data structure. If
so, the processed vertex gets dropped and its edges are connected with the already ex-
isting vertex instead. The result is illustrated in figure 6b. Secondly, the DCEL helps to
identify adjacent faces, which is very useful for many modifications that may be applied
on the mesh. The data structure provides methods to find neighbours of a given face.
The method can be called with the face only, which will return the direct neighbours
of the face. There is an optional parameter, that defines the depth. For example, if the
depth is 2, in addition to the direct neighbours of the face, the neighbours’ neighbours
will be returned as well.

10http://www.cs.sfu.ca/~binay/813.2011/DCEL.pdf

43

http://www.cs.sfu.ca/~binay/813.2011/DCEL.pdf


Design and implementation

(a) A mesh consisting of four polygons and
twelve vertices. Each vertex belongs to
exactly one polygon

(b) The same mesh with five vertices. Ver-
tices that are close to each other were
united.

Figure 6

2.3.6 Serialisation

Lastly, the Rendering component has means to serialise and deserialise a scene graph.
The chosen format for the serialisation is JSON, because it is readable, which makes it
easily debuggable and almost every programming language has built-in means or well-
tested libraries to convert JSON strings into an object. Every node within the serialised
scene graph consists of the same three key-value pairs: Firstly, there is the name of the
node, that is unique and the same among all components. Secondly, there is the data
of the node, which contains the information that is needed in order to reproduce the
node. For example, for a sphere, the data field contains the radius and the resolution of
the sphere. Finally, the last key is called children. The value of this key is an array of
nodes. This is used to save the hierarchy of the scene graph.

2.4 Genetic Algorithm

As most genetic algorithms, the one implemented for this thesis works with trees as a
genotype. Since every artwork is the product of rendering a scene graph, there is already
a tree-like representation for each artwork. This will be further discussed in 2.4.1. This
makes it very easy to transform the artwork into a form that is usable for the genetic
algorithm. What makes the nodes of the tree special, is the fact, that the nodes contain
key-value pairs that need to be processed by the genetic algorithm as well. This can
range from a single value, for example, the intensity of an effect, to more complex struc-
tures. For example, a MaterialNode consists of three colours. Each of these colours is
defined by using the RGB model, that requires three values. This complexity requires
the genetic algorithm to handle each node differently.

The fitness of an artwork is determinable by its fitness values, which is rather sim-
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ple: The more votes an artwork received, the better it’s fitness value. Therefore, the
fitness evaluation of each individual is completed, before the algorithm was started.
What is more difficult to determine is what made an artwork more pleasing than an-
other. In order to get a better picture of that, global tags are used. Global tags are
criteria that describe attributes that influence how an artwork is composed like if an
artwork is multicoloured, monochrome, or black and white, the number of objects in the
artwork, the used colour families and so on. The tags are set programmatically during
the initialization, in an additional field of every artwork’s tree representation.

2.4.1 Transforming the scene graph into a genotype

The desired outcome of the transformation process is a genotype that is usable by the
Genetic Algorithm component. The genotype needs to have a tree structure and con-
sist of functions and terminals. Since the scene graph is already in a tree-like structure,
all that needs to be done to transform it into a genotype is to categorize its nodes into
functions and terminals. The set of terminals consists of every node that inherits from
ObjectNode. Everything else will be handled as a function. While handling the func-
tions, the genetic algorithm makes sure, that every genotype has a RootNode and every
ObjectNode has a MaterialNode, because they’re needed for every artwork.

2.4.2 Design of the algorithm

Initialization The initialization phase creates a new generation of individuals. The
initialization algorithm works like the grow method, as shown in chapter 2.2.2.3 with
some modifications. The grow method is a good choice here because it promises more
variance than the full method. The grow method may produce short trees if there are
significantly more terminals than functions. Since that is not the case here, this can
be ignored. The maximum depth is predefined before runtime via a config file. The
assembly of the tree is divided into four phases: At first, the RootNode is added as the
root of the tree. Secondly, a random amount of terminals is added to the tree. In the
third phase, for every terminal, a MaterialNode is added between the RootNode and the
terminals, so that every terminal can be exposed correctly. Finally, random functions
are added between the RootNode and the MaterialNodes. Since the initialization uses
the grow method, the amount of nodes added to the tree in the fourth phase ranges
from 0 to MAX_DEPTH − 3. The MAX_DEPTH is decreased by three here,
because RootNode, MaterialNode and a terminal are already part of each path from the
RootNode to one of the leaves at this point.

Selection The selection is an exact implementation of the roulette-wheel selection
algorithm. The probability of an individual being chosen depends on the number of
votes for the individual in relation to the total votes.
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Crossover During the crossover phase, the two parents’ nodes are sorted into three col-
lections: One for the ObjectNodes, one for MaterialNodes and one for every other node.
In order to avoid that the trees become too bloated, there is a maximum depth for each
new tree. The recombination works similar to the uniform crossover algorithm. At first,
the number of ObjectNodes gets computed. The according number of ObjectNodes is
then added to the child. Secondly, for every ObjectNode a MaterialNode is taken from
the parents. Finally, the child tree is filled with the remaining function nodes from the
parents, until the max depth is reached, or before.

Mutation The mutation algorithm works like the point mutation algorithm. It swaps
nodes with newly computed nodes. Every function node can be swapped with another
fuction node, with two exceptions: Firstly, since it would have no effect, the RootNode
isn’t mutated. Secondly, since it’s not desirable to substitute a MaterialNode with any
other node, the mutation algorithm will replace them with new MaterialNodes, that
may differ in colour. The terminals can be swapped with different terminals.

2.5 Web services adapter

The Web Services Adapter is made to bundle functionality, that at least two of the
other components need. There are two benefits gained by this. Firstly, the functionality
has be implemented only once. Since the components are written in different program-
ming languages, it’s not possible to copy and paste functionality or make it available as
core libraries for the project. Therefore, the functionality is made available via HTTP
calls. Secondly, the components get smaller and more manageable, because the service
provider’s SDK doesn’t need to be added to the other components. Every component,
that wants to use the web services, needs to be able to make HTTP calls, which is
usually a comparatively easy task.

The main task of the Web Services Adapter is to process the votes. As stated in
chapter 3.2.2, this may lead to the generation of new artworks. Therefore, the Web
Services Adapter may trigger the Genetic Algorithm and the Rendering compo-
nent. Furthermore, the Web Services Adapter handles everything, that has to do with
saving and reading from the database or web storage. This is especially needed by the
Genetic Algorithm in order to get the genotypes of the current generation and to save
the newly computed next generation.

2.5.1 API

The methods provided by the API can be accessed by HTTP calls. Every method
defines a “route” within the API. The functionality of many routes is the same, that
one would expect from basic get and set methods. For example, they may be used
to get the current generation’s phenotypes as a JSON string, or the fitness value of an
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individual. Therfore, they won’t be discussed in further detail. The routes listed in
table 1 are essential for the interaction of the components, as shown in 4.

Name Input/Output Description

vote Input: Object that con-
tains two IDs. One ID is
marked as the winner, the
other as the loser of the
vote Output: -

In this route, the votes are pro-
cessed. This ranges from in-
creasing the vote counts for the
artwork and the global tags to
calling routes that trigger the
run of the Genetic Algorithm
and the Rendering component

pair Input: Array of every
artwork’s ID, that the user
has seen already Output:
Array consisting of two
URLs that belong to two
unseen artworks

The pair route provides two
URLs that belong to unseen
artworks

generation Input: Object contain-
ing every individual of the
coming generation Out-
put: -

This route is used to post new
generations as genotypes. This
is used by the Genetic Al-
gorithm, after the initializa-
tion or evolution of new gen-
erations. Once saved, the
Web Services Adapter trig-
gers the rendering of the phe-
notypes.

Table 1

3 Infrastructure

In order to make the system accessible online, it has to be hosted on servers. Thus,
a service provider needs to be chosen, since it’s easier and cheaper to use a service
provider than building a custom made solution. Apart from basic hosting services, that
are offered by nearly every service provider, like web storage and databases, the system
developed for this thesis has special requirements , because the Rendering component
will need GPUs to work on. Therefore, in 3.1 the benefits of cloud computing in general
are listed. Afterwards, in 3.2, it will be discussed why Amazon Web Services11 (“AWS”)

11https://aws.amazon.com/?nc1=h_ls
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was chosen as a service provider. The UML diagram in figure 7 provides an overview
of the system within the AWS ecosystem. The services will be further explained in 3.3.
Finally, in 3.4 it is shown which additional means had to be taken in order to run the
system in the provided ecosystem.

Figure 7: UML diagram showing the system’s components within the AWS ecosystem.
For a better overview, the already existing components are marked as blue.
New components that will be introduced in this chapter are marked green. The
black boxes represent AWS services, that will be discussed in detail further
below.

3.1 Cloud Computing

The huge benefit of cloud computing12 is, that there are no hard limits regarding perfor-
mance and scalability. In addition, the costs of cloud computing are usually lower than
renting a server, because only the time that the system is actually doing something is
billed. This is very important for this project because the Rendering component needs
GPU computing, which is very expensive.

3.2 Amazon Web Services

For this project, the main requirement for a service provider is to offer cloud computing
with GPU support. In addition, a service provider is favoured that offers every service

12https://aws.amazon.com/what-is-cloud-computing/?nc1=h_ls
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that is needed to run all of the components because that promises less overhead that
may be produced by leaving the ecosystem and getting data into the ecosystem of an-
other service provider. Finally, it’s desirable that the services are well documented and
there are already many people using them since it’s helpful to have as many resources
as possible in order to learn about the services and the ecosystem in general.

All of the above criteria are met by multiple service providers. It’s imaginable to run
the software system on services provided by Google Cloud Platform13 just as well. The
choice in favour of AWS was based on the fact, that AWS is the market leader14, which
leads to the biggest community around it.

3.3 Chosen services

For each component, a service was chosen that promised the best performance, scalabil-
ity and cost control. In the following, an overview is given on which services were used
per component.

3.3.1 Web services adapter

The Web Services Adapter is written in TypeScript15. Therefore, it needs to be run
in an node.js16 environment. Furthermore, it needs to be accessible via HTTP calls.
The chosen service is AWS Elastic Beanstalk17. Apart from the cloud computing envi-
ronment that supports node.js, AWS Elastic Beanstalk sets up an API Gateway18 that
handles the HTTP calls. In addition, the Elastic Beanstalk Environment provides the
feature to scale the application up, by providing additional cloud computing instances
and a node balancer, that divides the load between the instances. This is helpful be-
cause the Web Services Adapter is used by every component. If the system will be
used by many people at once, no changes would need to be made in order to handle the
increased traffic load.

3.3.2 Rendering component

The Rendering component needs to run in a cloud computing environment that sup-
ports GPU usage. AWS’s Elastic Cloud Computing19 (“EC2”) provides cloud computing
solutions for many use cases, with 3D rendering in the cloud being one of them. The
rendering component runs on a G320 instance. This instance type is chosen because it
has the needed GPU power, while being relatively priceworthy.
13https://cloud.google.com/?hl=en
14https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519&st=sb
15http://www.typescriptlang.org/
16https://nodejs.org/en/
17https://aws.amazon.com/elasticbeanstalk/?nc1=h_ls
18https://aws.amazon.com/api-gateway/?nc1=h_ls
19https://aws.amazon.com/ec2/?nc2=h_m1
20https://aws.amazon.com/ec2/instance-types/g3/
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3.3.3 Genetic algorithm

The Genetic Algorithm runs in an AWS Lambda function21. AWS Lambda lets ap-
plications run without the need of provisioning servers or cloud computing instances.
Applications run via Lambda are called “Lambda functions”. Lambda functions are trig-
gered by other services. For this project, the Lambda function can be started via HTTP
calls. Once triggered, a Lambda function executes the application for a maximum du-
ration of five minutes. Lambda functions are a good solution for repetitive tasks, that
can be executed quickly. This is applicable for the Genetic Algorithm, which usually
takes a few seconds to compute a new generation.

3.3.4 Web application

The Web Application is hosted outside the AWS environment via GitHub Pages22. This
is done because the source code is hosted on GitHub. The Web Application doesn’t
need to interact with anything, but the API Gateway for which it makes no difference,
if a call comes from inside the AWS ecosystem, or not. The benefit of GitHub Pages
is, that once the source code is updated, the new version of the Web Application is
available immediately without the need for an additional deployment.

3.3.5 Database and storage

For the database, AWS’s NoSQL23 solution DynamoDB24 is used. A NoSQL solution is
suitable because the data is already available in a JSON format, which can usually be
passed into a NoSQL database without any further transformations.

Since the genotypes are relatively large and the information on the scene graph is not
needed until the point where the genetic algorithm gets triggered, the database con-
tains the ID, the global tags and a numeric fitness value for each individual. The full
genotype is stored in additional web storage. Therefore, the Simple Storage Solution25

(“S3”) was chosen. Within the S3 service, virtual storage units can be created, that are
called “buckets”. In addition to the bucket that contains the genotypes, there is a bucket
where the phenotypes are saved.

3.4 Putting components into service

In order to run the system within the AWS ecosystem, some additional functionaliity
had to be implemented. This regards the Rendering component especially. As discussed
earlier, the Rendering component is supposed to be loosely coupled. Therefore, the

21https://aws.amazon.com/lambda/?nc2=h_m1
22https://pages.github.com/
23https://aws.amazon.com/nosql/?nc1=h_ls
24https://aws.amazon.com/dynamodb/?nc2=h_m1
25https://aws.amazon.com/s3/?nc2=h_m1
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Rendering component itself makes no calls to any other service. Since it’s needed
to trigger the rendering process automatically, within the EC2 instance there is an
additional component: The Rendering Runner. The Rendering Runner is started, as
soon as the EC2 instance boots. This is done, once the Genetic Algorithm component
has computed the genotypes of the next generation. In order to trigger the rendering
of the phenotypes, the Rendering Runner downloads the genotypes to the hard drive
of the EC2 instance and starts an executable of the Rendering component, that takes
in the JSON string of the genotypes as an argument. Then the Rendering component
itself saves the phenotypes locally. Once this is done, the Rendering Runner uploads
them to a S3 bucket. Finally, it is made sure by the Rendering Runner, that the EC2
instance gets shut down again, in order to avoid paying additional minutes, although
the Rendering component is idle.

4 Example run

Putting it all together, in figure 8 an example run of the system is shown. It all starts
with the Web Application requesting an array of two URLs from the Web Services
Adapter, which are then displayed. Afterwards, the system waits for the user to vote.
Once the user voted, the vote is processed within the Web Services Adapter. Under
the condition, that a given threshold was surpassed, the Web Services Adapter will
send an HTTP request to the Lambda function containing the Genetic Algorithm,
which triggers its execution. Once the execution is done, the Web Services Adapter
gets notified. As a final step, the Web Services Adapter starts the EC2 instance that
contains the Rendering component. Within the EC2 instance, the Rendering Runner
gets started by a hook within the operating system’s booting procedure. The Rendering
Runner executes the Rendering application. Once the application exited, the Rendering
Runner uploads every phenotype to an S3 bucket. Once this is done, the Rendering
Runner notifies the Web Services Adapter. From this point on, the Web Services
Adapter will provide phenotypes of the new generation when the Web Application
requires them.
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Figure 8: An interaction diagram illustrating the steps that lead to new artworks

5 Conclusion

The intent of the work discussed in this chapter was to fulfil the requirements set in
chapter 3. First of all, in 1 it is shown, that a distributed system is a good choice in
order to create a software system that fulfils the requirement of accessibility, without
worrying about a possible lack of performance. In 2 the four components of the dis-
tributed system are introduced. Each of these systems fulfils one functional requirement.
In addition, it is shown, how the design of the components leads to the fulfilment of
nonfunctional requirements. In 2.1 it is shown, that the Web Application fulfils the
requirement “The use can vote for artworks”. Furthermore, in 2.3 it is shown, how “The
system can render artworks” is fulfilled. In addition, the introduction of the scene graph
fulfils the nonfunctional requirement of extensibility. Since another requirement aims
at loosely coupled components, the Rendering Runner was implemented, as described
in 3.4. To fulfil the requirement of creating artworks with a high level of variance, a
genetic algorithm is used, as discussed in 2.4. Finally, 2.5 gives an overview of the Web
Services Adapter. In addition, the routes needed to to fulfil the requirement “The
system can process votes” are discussed in further detail.

Since time was running out during the end of the project, the Web Application is
not as engaging as planned. The reason for this are some unexpected pitfalls, that will
be discussed in 6. An outlook on what yet has to be implemented is given in chapter
5.1.
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6 Lessons learned

In the following, the pitfalls that emerged during the design and implementation will be
presented. Although the goal of creating a proof of concept that can fulfil the functional
requirements was reached, it consumed significantly more time than estimated. This is
especially due to two things: Firstly, the overhead of a distributed system, which will
be discussed in 6.2. Secondly, setting up the project on AWS was more time consuming
than expected, as shown in 6.1.

6.1 Amazon web services

The first pitfall using AWS is the huge amount of services. As this thesis is written, there
are close to 100 different services within the ecosystem of AWS. Some are used for specific
cloud computing solutions, like EC2 or Elastic Beanstalk, some are needed in order to
configure the ecosystem like the AWS Identity and Access Management26 (“IAM”). This
requires a lot of reading. More pitfalls occur, once the services are supposed to work with
each other. For example, if the Web Services Adapter has to trigger the EC2 instance
that contains the Rendering component, it needs some configuration beforehand in
order to ensure thtat the Web Services Adapter has sufficent rights. Furthermore, the
database solution DynamoDB can be run locally. AWS promises that an application
developed with the local version of DynamoDB will work with the remote version in
the exact same way. Sadly, it didn’t. Instead of two days, it took two weeks to get the
components running within their environments and make the components work with
each other.

6.2 Overhead of the distributed system

Building a distributed system is very complex. Firstly, for the Genetic Algorithm as
well as for the Rendering component, a mechanism needed to be implemented, that
transformed the object that the JSON reader provides into a usable genotype or scene
graph. Secondly, as most distributed systems, the system interacts with the other com-
ponents via HTTP calls only. This is more complex than calling methods with arbitary
data as one would in a monloithic solution. Although creating a distributed system
comes with the benefits discussed in 1, it produced more overhead than estimated. The
advantages and disadvantages of an approach that uses a monolithic architecture are
listed in chapter 5.2.

26https://aws.amazon.com/iam/?nc2=h_m1
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In this thesis, it was explored, how to generate artworks that please mass appeal. There-
fore, it was desired to create a system, that generates artworks that show a high level
of variance and present these artworks to users. Based on the user’s votes, the system
shall learn how to iteratively create artworks that are even more fit to mass appeal. In
chapter 1.2 it was stated that these artworks will be composed of 3D objects.

Chapter 2 conveys an overview of generative art and it’s most used techniques. Firstly,
it is defined what can be considered generative art in chapter 2.1. Afterwards, the
most commonly used techniques are categorized in more predictable methods (chapter
2.2.1) and less predictable methods (chapter 2.2.2). By comparing these techniques,
the conclusion has been made, that the less predictable methods carry more potential
for generative artworks that are supposed to have a high level of variance. In addition,
it has been shown that genetic programming is especially promising when it comes to
creating multiple artworks of high variance and iteratively increase their level of mass
appeal. This is underlined by projects that already used genetic programming in order
to create aesthetically pleasing artworks, as discussed in chapter 2.3.

Based on these findings, a requirement analysis has been put together in chapter 3.
The requirement analysis set four functional requirements and five nonfunctional re-
quirements that are listed in chapter 3.4. In 4 it is shown how these requirements are
fulfilled. Therefore, in chapter 4.1 it is shown, that a distributed system promises to
combine the performance of a native application and the accessibility of a web appli-
cation. In chapter 4.2 the four main components of this very system are introduced in
detail. In chapter 4.3 it is discussed how the components were put into service with
the help of AWS. As a conclusion, the thesis has shown that the combination of the
custom-made scenegraph and genetic programming can lead to interesting results that
offer a high level of variance.

Until this point, the system aims implements a proof of concept that shows how the
components can work with each other in order to create artworks. As this thesis is
published, the artworks will consist of a sphere in different colours. This can be used to
determine the users’ favourite colour. In addition, with the scene graph, a foundation
has been implemented that can be used to create more complex modifications within
a short span of time. Unfortunately, there was no time left to present more complex
artworks in this thesis. Nevertheless, it is further discussed in 1 what ideas are yet to
implement and where the system can go from here. Lastly, in 2 the advantages and
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disadvantages of a monolithic approach are compared to the approach taken for this
thesis.

1 Outlook

In the following, it is presented what has yet to come per component. In 1.1 new features
for the Web Application that focus on increasing the user engagement are shown. In 1.2
it is shown what functionallity could be added to the Rendering component in order to
create more complex artworks. Finally, in 1.3 it is discussed how the Genetic Algorithm
can be improved.

1.1 Web application

For the Web Application there are two main aspects that may be improved: The user
engagement and the display of the renderings.

1.1.1 Better user engagement

As stated in chapter 3.3.2 the software aimed at creating a pleasing user experience.
In order to motivate the user to vote multiple times, a counter could be shown on
top of the displayed artwork. The counter could display a text like “2 out of 5 votes
cast”. Once, the user cast the given number of votes, he could receive an evaluation
of his voting behaviour along the lines of “Your favourite colour seems to be blue.”.
Furthermore, the desktop experience needs to be improved. As stated in chapter 4.2.1
the Web Application was built under a mobile-first approach. Right now, on a desktop
computer, the website feels like a scaled up mobile application. This can be changed by
implementing a layout for bigger screens. The layout may display the artworks next to
each other instead of making the user swipe to see the next artwork.

1.1.2 3D renderings within the browser

Right now, the artworks are displayed as images. For the future, it would be better,
if the artworks were presented in a way that the user could rotate them in 3D. If
it’s not desired to render the artworks within the browser, because that could lead to
performance issues, one could use a solution that is based on videos.

1.2 Rendering

For the Rendering component, more nodes should be added in order to create more
complex artworks. This could range from more simple ObjectNodes to very complex
ModificationNodes that change the object’s mesh. In addition, algorithms may be added
that determine how to position the objects. For example, one algorithm could order the
objects symmetrically and another one could order them asymmetrically purposefully.
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Finally, more options for the lighting could be implemented. For example, the light
could differ in colour and brightness, or more lights could be added.

1.3 Genetic algorithm

Once, a new node is introduced in the Rendering component, the Genetic Algorithm
needs to implement a mechanic that can handle the node accordingly. Apart from
that, the Genetic Algorithm needs to be further tested and improved. Changing small
details can have a great impact on the algorithm. Among these details are the size of
the population, how many of the new generation’s individuals are mutated, how the
fitness values shall be weighted. Right now, the genotypes are rather simple. Once this
changes, the settings that work well now, may not be fitting anymore.

2 Monolithic approach

In chapter 4.6 it was stated, that implementing the distributed system caused a lot of
overhead. Therefore, it is debatable if a monolithic solution would have lead to better
results. In order to keep the accessibility of a web application, the monolithic applica-
tion would use a WebGL1 framework like three.js2. This would set the programming
language to JavaScript. Rendering the artworks within the browser would eliminate
the overhead of rendering the images, uploading them and displaying them in another
component. Furthermore, the user could rotate and zoom into the artwork out of the
box. On the other hand, the rendering would be dependent on the device’s GPU. In the
case of a mobile device, this may lead to a bottleneck.

A monolithic solution would require the genetic algorithm to run in JavaScript as well.
Although there are frameworks for genetic programming in JavaScript, at a first glance,
they didn’t seem as advanced as comparable frameworks in other programming lan-
guages. This may lead to more custom code that needs to be written in order to achieve
the same functionality. But, since there would be no more need to serialise and deseri-
alise anything, it could reduce some overhead.

In conclusion, a monolithic solution is beneficial, when it comes to prototyping. For
an experiment on mass appeal, it may be sufficient to keep the complexity of the art-
works low. Nevertheless, a single threaded application that runs in a browser may not
reach the performance of a C++ application. In addition, the Rendering component is
reusable for different projects within the field of generative art.

1https://www.khronos.org/webgl/
2https://threejs.org/
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