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Kurzzusammenfassung
Das Debuggen von Programmen ist kompliziert, wird aber in einem verteilten System noch

komplizierter. Je größer die täglich erzeugten Datenmengen werden, desto wichtiger wird die

Nutzung verteilter Anwendung. Flink ist ein Framework zur verteilten verarbeitung von Daten

aus einem Stream, wobei die Daten zwischen den einzelnen Verarbeitungsschritten ebenfalls

durch Streams transportiert werden. Flink erleichtert es dem Entwickler, verteilte Anwendung,

die auf der Datenverarbeitung basieren zu entwickeln. Diese Thesis stellt eine Methodik zum

Debuggen von eben diesen Flink Anwendungen dar.
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Abstract
Debugging Applications is hard, debugging distributed applications is harder and the more

massive the amount of data that gets generated every day gets, the higher the need for these

distributed applications. Flink is a distributed stream processing framework; it processes data

while only using streams. It makes it easy for developers to write these distributed applications

to handle the ever-growing amounts of data in the world. This thesis explains how to debug

these Flink applications by providing a debugging methodology.
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1 Introduction

Debugging software systems is a di�cult task, to begin with. Debugging a distributed applica-

tion makes this process even harder. Since the beginning of computer science, developers have

always seen debugging as an unfortunate and tedious process. Always trying to minimise the

time spent doing it by developing better programming styles and techniques. Unfortunately,

not even the best programmer using the best possible method for his current project can write

bug-free code all the time. A lot of programmers only learn how to debug by doing it; almost

no one reads a book or scienti�c paper about how to improve one’s debug technique. Barry W.

Boehm estimates that reworking defects in requirements, design, and code consumes 40-50% of

the total cost of software development Boehm (1987). It makes sense to learn how to properly

debug as a better debugging understanding leads to less time spent debugging and more time

developing new features. As well as improving productivity, good knowledge of debugging

also increases one’s awareness of potential issues while writing code. So learning how to debug

correctly not only reduces the time spent debugging but also enhances the software quality

written by the developer.

1.1 Objective of the Thesis

Flink is a stream processing framework designed to make it easier for developers to write

distributed applications that have an continuous input (stream) of data. Even though applica-

tions for Flink are much easier to understand, write and debug it is still far from easy. This

thesis tries to make it simpler for Flink developers to �nd bugs in their code. This is done by

providing a methodology for debugging Flink and a debugging tool to the developer as well as

some general recommendations for building Flink applications. When �nished with this thesis

the developer should have a good understanding as to why an error might occur even if the

error message itself is not helpful.
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1 Introduction

1.2 Structure of the Thesis

In chapter two, debugging techniques are discussed and a methodology for debugging applica-

tions of all kinds is outlined

In chapter three, the Flink framework is explained, and similar work is analysed.

In chapter four, a debugging methodology for Flink is explained and the relevant steps shown

In chapter �ve, the Flink Backtracker tool is shown, and its internals discussed.

The �nal chapter six sums up the thesis, explains what lessons were learned and future work

for debugging Flink applications is presented.
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2 The Art of Debugging

As debugging of traditional programs is in many ways similar to debugging Flink applications it

is necessary to explore what good debugging is. This chapter is an accumulation of techniques

and methods that many people consider essential to debug e�ectively.

2.1 Word Count Application

This section quickly outlines the "WordCount Application" that is used in the thesis as an

example. The Application counts how often each word is in a speci�c text and returns the

results to the command line. An example run of the program would be:

1 $ java -jar wordCountSimple.jar "Hello hello how do you do"
2 how: 1
3 hello: 2
4 do: 2
5 you: 1

Listing 2.1: WordCount Result

Note that the application ignores capital letters in the input. This will be relevant later on.

2.2 The Java Debugger

Flink applications are very complex Java or Scala programs that still share a lot of the charac-

teristics of typical Java programs. As such most methods of debugging Java still apply to Flink

and should be used. This chapter will outline some of the ways that help Java developers to

�nd their bugs faster and with less of a hassle.

2.2.1 Basics of the Java Debugger

To understand how the java debugger works we have to �rst look at how Java runs applications.

Java applications run on the JVM, the Java virtual machine. To gain access to the information

of the running program, the virtual machine needs to be reachable. Java provides interfaces for
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2 The Art of Debugging

these communications, in general, the IDE implements the Java Debug Interface (JDI), and the

JVM Software implements the JVM Tool Interface (JVM TI). To allow communications between

the two interfaces, a protocol is necessary as the two interfaces are not running on the same

(virtual) system. Java uses the Java Debug Wire Protocol (JDWP) for that, which speci�es

which byte holds which information on the byte stream. When launching an application in the

"debug" mode, the IDE also starts a JVM TI alongside the application in the JVM and provides

the JVM TI with the breakpoint locations. These breakpoints can either be line numbers or

method heads that only trigger when reaching that precise method. Once the program hits the

particular method (or line), the JVM TI stops the application and noti�es the JDI. In general,

IDEs provide information about the state of relevant variables; this is done by the IDE itself as

it has to send a request to the JVM TI for each variable the user might want to see.

2.2.2 Debugging Principles

There are a few simple principles that help not only to �nd errors in the code easier, but also

to make sure that similar errors won’t occur in the future. This section will lay out some of

these principles.

Debugging Mindset

The mindset plays a signi�cant role in debugging; often developers see debugging as an

annoyance and try to get away from it as fast as possible. Although it is the goal of good

debugging to minimise the time a developer spends on it, it should be seen as a way to learn

something about why the error occurred in the �rst place. This learning reduces the time he

has to spend searching for a similar mistake later on.

The Programmer is at Fault

Another important step is to understand that it is most probably the developer’s fault when an

error occurs. Thus the programmer should always �rst look into his code to �nd the bug, only

if that fails he should start looking into other possible reasons. It is a common mistake not to

recognise one’s fault and should always be considered when debugging.

Last Change

Often the error occurs at a piece of code that is not responsible for the error itself. Zeller (2009)

describes program errors as follows:

4



2 The Art of Debugging

1. A programmer creates a defect in the code.

2. The defect causes an infection.

3. The infection spreads

4. The infection causes a failure

It is often best to �rst look at the last change that was made in the code, as the failure

probably originated there. Obviously, that doesn’t always have to be true, as there are multiple

other reasons why the failure only just now got discovered.

2.2.3 Conclusion

It is important to note that this section was merely a refresher on debugging and is not enough

to understand it in its completeness. For further information on the topic consider reading

Zeller (2009). The book covers the subject of debugging much more in depth.

5



2 The Art of Debugging

2.3 Why Programs Fail

This section will examine the "TRAFFIC" method of debugging that is published in Zeller

(2009)’s book "Why Programs Fail". It consists of seven steps that lead to a quick removal of

the failure while still preserving the information on how the failure came to be, as a big part

of debugging is not to �x a failure but to make sure that the same or a similar failure won’t

happen again. The seven steps are:

1. Track the problem in the Database

2. Reproduce the failure

3. Automate and simplify the test case

4. Find possible infection origins

5. Focus on the most likely origins

6. Isolate the infection in the chain

7. Correct the defect

The following subsection explains each step of the method along the example program

outlines above 2.1

2.3.1 Track the problem in the Database

Tracking is not the �rst step, but a good method at each step, logging what happened so that

anybody involved knows how far each problem was investigated. It is started once someone

�nds a problem. Put simply tracking is holding the information on what the problem is and

how close the developer is to �x it. This is mostly done on a platform that is accessible for all

involved parties to make the communication between the user and the developer easier. This

platform is only useful when used permanently as out of date information is more harmful

than useful. Most software projects have multiple people working on them, not all of them

know every bit of the program. This adds complexity to an already complicated process. It is

necessary to split the work to di�erent developers and this process has to be logged, otherwise

problem reports might get lost. A developer might have 20 problem reports on his desk of

which he only knows how to solve a few. Other reported problems might not even be problems,

but a wanted state. For example, someone might report that a password �eld is showing only

stars instead of the letters he put in. As this (for the developer) is a security feature, it will

6



2 The Art of Debugging

not be changed and has to be logged or noted so that the same problem will hopefully not be

reported again. To solve these and other issues, tracking should be used. Depending on the

application these metrics are useful:

1. The State of the Problem - Is the problem new, assigned to a developer, resolved, closed,

etc. This is useful for the developer as he can easily see which problems he has to work

on and which are already solved. It is also bene�cial for the user as he can easily see

when his problem is resolved.

2. The Resolution - Is the problem �xed, invalid, won’t be �xed (as the example above),

a duplicate, etc. This is useful as it lets the user see to which conclusion the developer

came.

3. Assigned Developer - Which developer is assigned to the problem. Makes it easy to

communicate with the correct person and lets people know that the problem is worked

on.

4. Severity - Is the problem crucial or is it only a minor inconvenience. Helps the developer

prioritise which problems to solve �rst.

These are just the most important ones, depending on the project more should be added.

2.3.2 Reproduce the failure

The �rst real step in any debugging activity is to consistently reproduce the problem described

in the problem report. This has two important reasons:

1. To observe the problem - The developer has to be able to reproduce the problem to

�x it, the developer could also check the source code at a position he thinks could be

responsible for the problem without reproducing it, but that makes it unnecessarily hard

for the developer as a good problem report should be re-creatable.

2. To check whether the problem is �xed - It is incredibly hard to tell in most situations if a

problem is solved or not without being able to rerun the problem without it happening.

Reproducing a problem can be incredibly hard, as the problem is rarely found by the person

that has to �x it, but by an individual who doesn’t understand how the program works. This

makes it di�cult for both the �nder and the �xer of the problem, as the �nder doesn’t know

which information the �xer might need, and for the �xer as he can only reproduce it with the

corresponding information.
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2 The Art of Debugging

Reproducing is done by going through the following three steps until the problem can be

reproduced:

1. Reproduce the problem locally - In the best case scenario, the problem can be replicated

on the local machine of the developer �xing it with the information provided by the

problem report. This is most successful when the problem state is not connected with

many other choices in the program. For example, a button might not work (as reported

in the problem report) that starts some function no matter what else happened before

the button was pressed.

2. Adopt more circumstances of the problem environment - Sometimes the problem can

not be reproduced by only following the steps provided by the problem report. In that

case, it is necessary to check what else is known about the environment the problem

was found in. This means installing the same version of depending software, using the

same con�guration �le, using the same hardware or anything else that could in�uence

the described problem.

3. Contact the problem �nder or declare the problem invalid - If the reproduction failed

even with all circumstances applied as outlined in the problem report, there are only two

options left. Either the problem is not real, or the �nder has not provided the necessary

information. Depending on the bug this can be solved by contacting the �nder and

asking him for more details. It is bene�cial for the developer to see the problem live, so

it would be a good option to remotely gain access to the computer of the �nder or get a

video meeting with him. This is obviously not possible or feasible in many situations

but extremely helpful if it can be arranged.

At this point, it is important to mark what information were necessary, so that another

developer can reproduce the problem easier as well as saving the information as it is not

guaranteed that the problem will be solved immediately. This is done with tracking: see 2.3.1

2.3.3 Automate and simplify the test case

Once the problem is reproduced, it is desired to simplify the problem so that it can be replicated

by a test case that as well as con�rming that the problem is solved, helps avoid building a

similar problem at a later time.

Simpli�cation is done by understanding what the root of the problem is. When the problem

occurs when pressing a particular button, but the button has no context to other set states of

the program it is safe to assume that actions done before the button click can be omitted. Thus

8



2 The Art of Debugging

leaving only the test case: After button press, function x started? This statement can now be

easily modelled by a test case.

The simpli�cation is not only essential for building test cases but also helpful for the

developer when trying to locate the problem in the code as it is much easier to �nd the error

when only looking at the relevant pieces of source code.

Why write tests? It is understandable to ask why to write a test when it is already known

where the bug is originating from. The developer only has to �x the problem and manually

test the program once, what good is a test case here? It is important to understand that �nding

a problem is giving a lot of valuable information to the developer he might not even realise.

We can assume that if the problem got into the code once it might get into the code again. The

only way to make sure it does not is to give the developer an immediate feedback when the

problem occurs again. As well as helping the Developer in the future it can assist the developer

while writing the �x to quickly test if the �x worked or not without having to manually start

the application and reproduce the problem all over again.

1 import java.util.HashMap;
2 import java.util.Map;
3

4 public class WordCount {
5 public static void main(String[] args) {
6 Map<String, Integer> result = new HashMap<>();
7 String[] words = args[0].split("\\s+");
8 int numberOfWords = words.length;
9 System.out.println("There are " + numberOfWords

10 + " words in total.");
11 for (String word : words) {
12 int count = result.getOrDefault(word, 1);
13 result.put(word.toLowerCase(), count + 1);
14 }
15 int uniqueWords = result.size();
16 System.out.println("Of these " + numberOfWords + " words "
17 + uniqueWords + " are unique.");
18 System.out.println("The unique words are: ");
19 for (String word : result.keySet()) {
20 System.out.println(word + ": " + result.get(word));
21 }
22 }

9



2 The Art of Debugging

23 }

Listing 2.2: Word Count Example

2.3.4 Find possible infection origins

Once the failure can be reproduced easily, it is time to search for what part of the code is

responsible for the failure. This is often the hardest part of debugging. To make �nding easier

for the developer the tra�c approach suggests to use backtracking to �nd the relevant piece

of code. Backtracking is done by starting at the manifestation of the error, meaning if the

program fails with an exception, the line noted in the exception. If the program just produces

an unwanted or wrong value, the line is used where that value was returned. Once a starting

point is found the next step is to backtrack all active and passive usages of the variable. As

failures can quickly propagate through the application it is unfortunately not enough to only

look at the variable that was causing the exception. We have to also look at all other variables

that interact with the �rst variable and so on. Lines that don’t use the variable can be omitted

as they cannot be responsible for the failure. The information gained by this technique should

be displayed by a control �ow graph to make them easier to understand. The graph can often

be omitted but should be used once the problem space gets too big to handle without a graph.

2.3.5 Focus on the most likely origins

Once the control �ow graph is done, the developer should look at the most likely sources. This

can be quite di�cult as it is subjective to the developer what the most likely origins are. Some

places to check can be:

1. Last Change in the Application - Often problems occur after a change in the software

thus it is very likely that problem is a result of the modi�cation. It is, of course, possible

that the problem was there before but got propagated through the new piece of code. In

that case, it still makes sense to look into the new code.

2. Check for common problems in the framework - when working with a framework or

any other software it is a good idea to check if the problem is related to the framework

and has been solved by other people already.

If both suggestions don’t work out, it should be thought about where the program is the most

complex as a developer is more likely to make a mistake in a complicated part than a simple

one.

10



2 The Art of Debugging

2.3.6 Isolate the infection in the chain

Isolating is done by creating a hypothesis and checking if it is true, then repeating the process

until the problem is solved. A sample run would be:

1. Hypothesis - The application creates a faulty value.

2. Prediction - The faulty value is set to the particular variable in the expected line.

3. Experiment - Using the debugger the prediction is con�rmed.

4. Observation - The faulty value is set to the variable.

5. Conclusion - The hypothesis is con�rmed.

As the problem is not located yet a new hypothesis needs to be thought of. It is common to

check if the failure is present at an earlier stage.

1. Hypothesis - The infection does not occur until function Y is called

2. Prediction - The variable should hold a sane value before Y is called

3. Experiment - Using the debugger the prediction is con�rmed

4. Observation - The variable is already wrong

5. Conclusion - The hypothesis is rejected

As the infection is already present at the function call, the function should be examined.

1. Hypothesis - Invocation of function Y with the faulty value causes the problem

2. Prediction - If the function is called with the correct value the program runs correctly

3. Experiment - Using the debugger the function call is called with a correct value

4. Observation - The program runs correctly

5. Conclusion - The hypothesis is con�rmed

This method has to be repeated until the root of the problem is discovered. The advantage of

this method is that the problem will be identi�ed eventually.
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2 The Art of Debugging

2.3.7 Correct the defect

Once the defect has been found, it can be corrected. But solving the defect is not enough as

it is also necessary to check if the problem is now solved. There are two reasons why this is

necessary:

1. The defect was not responsible for the error - It is common to �nd other bugs while

investigating a problem as the code is scrutinized. Another option is that the problem

consists of two defects, not one. For both these reasons, it is necessary to check whether

the defect was solved or not.

2. Is the cause an error? - Sometimes the deducted cause of the problem is in fact not the

cause, and the correction is just another defect that �xes the problem in the particular

problem case. To make sure that the cause really was the cause it is recommended to

think about the correction and if it solves the problem for all cases without compromising

all other working cases.

Once all of these steps are done the only thing left to do is to mark the problem as solved in

the problem report and add it to the next patch of the software.
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3 Related Work

The goal of this section is to give the necessary information to understand the rest of the thesis.

Debugging is a complicated process that is made much harder by distributing the system to

more than one physical location. To better understand the methods and principles, this chapter

will use a simple example application to comprehend the di�erences in each method easily.

3.1 Flink Framework

The Flink Framework is a stream processing framework for the JVM. It is written in java and

scala and can be used with a variety of languages and technologies. As is to be expected the

most supported languages are java and scala, although there is also a python wrapper and a

few more available. The following section will clarify how exactly a Flink application works

and what kind of debugging and logging tools it already has.

3.1.1 Basics

Flink is a Framework for processing applications that are distributed across multiple computers.

This part will lay out the foundations of the Flink Framework. Flink applications have a simple

base structure that is used by the developer. Each application de�nes tasks which have a

particular structure. Each task has an input and output stream. These are called source and

sink. Because both the source and sink of these tasks are streams, they can be attached to each

other thus creating a data �ow from task to task until the wanted end state is reached.

Figure 3.1 shows a basic program �ow. On the left side, it starts with a source. The source is

then transferred over a data stream to the �rst task. The map operation is executed, and the

result is sent over a data stream to the next task where the same procedure will start again. The

resulting data in this example is the sink, meaning we reached the end of the program. The

sink will typically be connected to a database or some other kind of technology for preserving

the data. The most basic option would be to write the sink onto the standard output on the

console.
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Figure 3.1: Simple Data�ow in Flink Flink (c)

Until now the system can only be distributed by having the di�erent tasks on di�erent

physical computers. This distribution process will not su�ce when the amount of input data

gets too high. To achieve real distribution in the application, each task can be run multiple times

as so called subtasks. These subtasks run as a single thread in the JVM and are managed by a task

manager. Task Managers connect to a Job Manager which coordinates the distributed execution.

The data �ow from one subtask to another can either be one to one or as a redistributing data

�ow. A redistributing data �ow is necessary to achieve an even distribution of data at the next

subtasks.

Figure 3.2 presents the same example as �gure 3.1 just with the subtasks shown as well. The

map task is a vital step in each application as it connects the data from each subtask with each

other. It is easily understood by a simple example. In an application that counts how often

each word is in a text, it would only split the text at each space symbol. The redistributing data

�ow would then create an even distribution in the next node which speci�es what to count by

(id task) and applies a particular aggregation function to the "apply" operation. The result is

then sent to the sink operator. This explanation is a simpli�cation of the actual MapReduce

model. For a complete overview see Dean und Ghemawat (2008).

3.1.2 Stream Processing and Batch Processing

Apache Flink is primarily a stream processing framework, although it can also be used for

batch processing. As it makes a big di�erence in the infrastructure of the framework which

process the primary one is, it is important to lay out the di�erences between the two.
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Figure 3.2: Distributed Data�ow in Flink Flink (b)

Stream Processing uses as the name suggests a stream to acquire the data. A stream is an

endless sequence of data that can be utilised both as an input and output. As there is no end, it

makes it tough to use some algorithms on it. For example, an algorithm that �nds the highest

number from the input. Flink uses "Windows" to solve this problem. These windows o�er a

frame for the operations to only use data that was received in each window. Windows can be

programmed and provide various ways to de�ne the frame. The simplest way would be just to

give a time frame, but more complex structures could also be built.

Batch Processing on the other hand has set boundaries, and it is evident how much data

is sent and where it ends. To support batch processing as well in the Flink Framework the

windows can be programmed to have the same size as the data in the batch. That way even

though Flink uses streams it still supports batch processing.

3.1.3 Debugging and Checkpoints

Flink comes with some tools that help the programmer debug his application and help prevent

errors stopping the application. This section will highlight what Flink does di�erent or on top

of the regular java/scala debugging features.

15



3 Related Work

Metrics

In a distributed application it can be hard to �nd out why something is not working properly

or why some function performs worse than expected. To help the programmer understand

these problems Flink provides metrics, these count or measure throughput on speci�c points in

the application and send this information to a reporter. The reporter provides the information

to external applications so that the metrics can be analysed as needed. There are four di�erent

metric classes available, a counter that can be in- or decremented, a gauge that can provide the

value of a particular variable, a histogram which measures the distribution of long values and

lastly a meter that measures the average throughput.

As applications could have a huge number of metrics which would make it very hard to �nd

anything, it is important to have some grouping mechanism. Flink provides scopes to solve

this. There are two types of scopes, user-scopes, de�ned by the user, and system-scopes that

hold current information about the system state like the task in which the metric was saved.

When a metric is registered, an identi�er and a system scope have to be speci�ed, a user-scope

can optionally be added.

In addition to the metrics above, Flink automatically collects system information like RAM

usage, the number of threads, network usage and much more.

Checkpoints

In distributed systems it is quite common that parts of the system crash, this can have many

reasons, the incoming data could be formatted wrongly, a data transmission could break away

before it is �nished, and so forth. Normally the application would log what went wrong and

stop or restart the whole application. Depending on how large the application is, this could cost

a lot of time. Flink creates checkpoints which it automatically falls back to if the application

crashes. The way these checkpoints work is by periodically injecting barriers at the source.

After a task receives a barrier at one of its inputs, it blocks that input until it received a barrier

at all of its inputs. Once that happens it takes a snapshot of all the data it received since the

last snapshot. This way it is guaranteed that every piece of information is part of a snapshot

all the time. To keep these snapshots from taking up too much space on the hard drive �ink

only stores one snapshot for every task and overrides it with the next. For a more in-depth

explanation of this algorithm see: Carbone u. a. (2015)

As well as these automated checkpoints Flink provides user-created checkpoints called

savepoints. These can be set by the user and are not getting deleted every time a new one is

created. They are used to pause the application for example.
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3.2 Similar work

Other people did similar work on another framework and distributed systems in general. This

section will explore to what conclusions these people came and what can be applied to Flink

as well.

3.2.1 BigDebug: Debugging Primitives for Interactive Big Data Processing
in Spark

Gulzar u. a. (2016). The University of California built a debugger for "Apache Spark" which

focuses on similar points as this thesis. The motivating intention behind their debugger is to

�nd the cause of the problem easily without having to go through millions of logs, and without

stopping the system itself. BigDebug uses �ve di�erent methods to solve this predicament.

This section will not only lay these methods out but also show if they are already present in

Flink.

Simulated Breakpoints are used to debug parts of the application without stopping the

running system in every node. This is done by spawning a new process with the same beginning

states as the remote one. After that the newly spawned process can be debugged without

intervening in the running system.

On-Demand Watchpoints with Guard are user-de�ned methods in the system that can

be set to inspect the value of a certain variable, check that value and store it in case the value of

the variable fails the check. This method can be useful in certain situations, for example when

checking a variable that is supposed to hold a zip code to see all values that are malformed.

This feature can easily be used in the Flink Framework with the use of metrics.

Crash Culprit and Remediation focuses on two things, �rst collecting interesting data

in case of a program error so that the user can easily �nd out why the crash happened and

secondly avoid rerunning the whole application when a crash happens. These two are grouped

together as they are solved together as well. After a crash, the user will get the value that was

responsible for the error, for example, the input could have been "23s" instead of 23. The rest of

the application will continue to work and once the user corrects the value to "23" the program

reruns this task. In Flink, this is partly implemented, as Flink creates automated checkpoints

the application will not completely stop when it crashes as it would be in Spark. Flink o�ers

no way to modify values that lead to a program error though.

17



3 Related Work

Forward and Backwards Tracing is done to make it possible to track where a piece of

data came from or where it will end up. This tracing is quite complicated as a piece of data in

task X is a sum of all modi�cations that occurred before that task. The way this is implemented

is by tagging each incoming piece of data with a unique identi�er and adding all the identi�ers

that are used to create a new piece of data together. On the other hand, if data is split into

multiple pieces, like splitting a sentence into words, every new piece gets a new ID, and the

relation between the old and the new ID is saved. That way a programmer can easily backtrace

to where a malfunctioning piece of data originated.

Fine-Grained Latency Alert is used to identify which records are causing delay. Baseline

Spark can already measure the time between each task. BigDebug builds on this feature and

extends it by making it available for each operator. This part is quite di�erent in Flink as Flink

o�ers no direct way to apply a metric to each task or operator.

Conclusion

BigDebug solves some challenges that a Flink developer has as well. It solves them only in the

spark framework and suggests no methodology or procedure for debugging a spark application,

it just provides some tools for the developer to use.
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3.2.2 Debugging Distributed Systems

Beschastnikh u. a. (2016) tries to lay out fundamental challenges developers face when building

distributed systems and how to solve them.

They give an overview of seven approaches that can help to build, validate and debug

distributed systems. What follows is a summary of the seven methods.

Testing is crucial but can only help to reveal some errors as testing every piece of the

application is impossible.

Model Checking is a form of testing that automates the testing process somewhat by

checking every possible input up to some upper bound in a prede�ned way. The way the

model checker works depends completely on the model checker itself, as there are a lot of

di�erent options available. There are for example symbolic model checkers available that

explore possible executions mathematically or black-box checkers that just run the application

with various inputs. Model checking can be helpful as it can cover much more ground than

manually written tests, as well as check parts of the application developers, might not have

thought of.

Theorem proving is a mathematical method of proving that the distributed system is free

of defects even before writing a single line of code. It is mostly used for proving that the core

of a new application is bug-free before spending lots of time building an application that might

not work properly. Amazon is one of the companies using it and released a paper about it as

well: Newcombe u. a. (2015)

Record and Replay is a method for analysing a single execution of the application to gain

insight into why an error occurs in a system that has non-deterministic events, as these change

every time the program is run even if the same input values are used.

Tracing is the method of following data through a system. It has the same goal as Record

and Replay although it is easier to understand what is happening as only a subset of the data

is shown.

Log analysis is a method for debugging black-box systems, but can be used on every

application. It is done by applying algorithms to the logs to �nd bugs that are not easy to spot.
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Visulisation is used to make distributed systems more transparent. If a developer has a

good visual representation of his work, it is much easier for him to �nd bad design choices

that could lead to bugs.

Conclusion

The article provides some basic methods for debugging distributed systems, the analysis of

which method is useful is short though.
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This chapter is the centre part of the thesis. It explains in detail how the method works. It

consists of two main sections, the �rst of which explores in detail what a developer should do

while writing the program to minimise the work when debugging. This step is crucial as it is

much harder to recreate problems locally as opposed to regular Java applications. The second

part focuses on the debugging itself once a developer is informed of an error and has to �gure

out what is causing it.

4.1 Be�er Developing

Flink applications are run remotely and without an active user providing input as it is typical

for a regular application. Not having a user makes it much harder to recreate the problem as

we only have the log �les and the stack trace as information. As such it is crucial to have all the

information at hand when the program fails, or we notice discrepancies in the resulting data.

The only way to make sure that the information is accessible once a problem is reported is to

think about what data is necessary for the debugging developer while writing the program.

Another issue is that some problems are unique to a distributed environment and won’t happen

when running on a local host. This section will explain what can be done while writing the

program to make the debugging process much easier.

21



4 Debugging Flink Applications

4.1.1 Building Tasks

The Flink framework uses a few features that set it apart from standard Java applications.

These are referenced in 3.1. The one that sets these applications apart from standard Java ones

while writing the application is the distribution. Applications should be built in a modular

way to take full advantage of these features and also make the program easily debuggable.

The development of these tasks should be done using a very similar set of rules as the Unix

philosophy states. In fact, Flink modules are not too di�erent to Unix command line tools,

they both provide a service while taking an input/output in a prede�ned way. For the Unix

command line, this is the standard output, for Flink programs, these are input and output

streams.

Unix Philosophy

The Unix philosophy is de�ned by Doug McIlroy, the inventor of the Unix pipe as follows:

McIlroy u. a. (1978)

1. Make each program do one thing well. To do a new job, build a fresh rather than

complicate old programs by adding new features.

2. Expect the output of every program to become the input to another, as yet unknown,

program. Don’t clutter output with extraneous information. Avoid stringently columnar

or binary input formats. Don’t insist on interactive input.

3. Design and build software, even operating systems, to be tried early, ideally within

weeks. Don’t hesitate to throw away the clumsy parts and rebuild them.

4. Use tools in preference to unskilled help to lighten a programming task, even if you have

to detour to build the tools and expect to throw some of them out after you’ve �nished

using them.

Most of the points mentioned here are of some relevance for Flink programming as well.

Each task should do one job and do it well. The next paragraph will look into why that is. The

second point is necessary by default in Flink; each task has to use the provided streams to

work. The third point is equally important if not more important in Flink applications as it is

in Unix programs. Always test each task individually to make sure it works as designed and

has no �aws on its own, only then can the whole application work without any problems.

Dividing the program into various modules has a lot of advantages:
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1. Easier to develop - It is much simpler to develop a smaller application as it is much

harder to lose track of what each piece of code should do. This reduced complexity in

return reduces the likelihood of mistakes. Once the program is completed, it results in a

more stable program that can be debugged easier.

2. Better distribution - As every Flink task can run on a di�erent computer the smaller the

tasks are, the better the Flink Job Manager can distribute the load evenly among the

available resources.

3. Checkpoints are easy to �nd - Checkpoints are a core piece of Flink technology. It allows

the framework not only to jump back and repeat a failed run without having to restart

the whole application but also provides information about which state the application is

currently in. This is extremely helpful as a lot of Flink applications only end when the

program is cancelled by the user.

The modulation of the program not only helps to achieve the advantages of the framework

but also supports with debugging later as a lot of the information needed are gathered at the

checkpoints.

Where to split the program

It should now be understandable that the programs should be divided into multiple tasks,

the next question now is how to break the program to get a simple program where there are

enough tasks but not too many, as too many would lead to the opposite e�ect we want to

achieve.

Why are too many tasks bad? When there are too many tasks, it gets even more com-

plicated than when everything would be in its task as basically every line of code would

be in a di�erent place. Additionally, it wouldn’t increase the performance as each task has

some initialisation work that would diminish the performance gain achieved by distributing it

perfectly.

It makes sense to use the Unix philosophy of having one task do one thing. In most cases there

are some obvious logical places to split the program. The same is true for Flink applications.

Data is modi�ed or analysed and each of these tasks could be one transformation of the data.
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4.1.2 Metrics

Now that the architecture of the program is done the next question is what metrics to use in

which positions to achieve the optimal security.

Once the program architecture is �nished, it makes sense to think about what kind of metrics

can be used where. Metrics are used to monitor the program without having to debug it and

are crucial in notifying the developer if something looks wrong. The �rst step is �guring out

where to use metrics. A good start is to look at the application in the worst possible way; what

is the most likely area that an error will occur in, after that it makes sense to surround the

area with metrics that will catch and log the gathered data. Another great location for metrics

is at positions where the incoming data is simple, and metrics can easily be implemented. This

should be the case in between tasks. As optimally each task only does one thing it should be

easy to check whether the starting and ending assertions are valid.

4.1.3 Logging

Logging in Flink is straightforward and is used the same as in every other Java program that

uses log4j. As Flink already provides the necessary libraries to use log4j all a developer has

to do is to write the logging con�g �le. Although the logging process itself is the same as

every other Java application, it should not be forgotten to use the di�erent log levels that log4j

provides. There is a lot of logging happening out of the box just by the Flink process itself.

The six logging levels, from highest to lowest are:

1. FATAL - the highest logging level, should only be used when the application cannot

continue to work because of an unexpected error.

2. ERROR - whenever an unexpected exception is thrown it should be logged.

3. WARN - warnings that could lead to errors later on. These are di�cult to think of

beforehand but if used correctly are very valuable for the debugging developer.

4. INFO - relevant information like successful database connections and other milestones in

the application to let the reader of a log �le understand at which point in an application

the program currently is.

5. DEBUG - should be used to record relevant information along the way that could be

useful to a programmer when debugging. This could, for example, contain values of

variables like database connection strings.
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6. TRACE - is used to let a developer searching for a bug understand the path the application

took. Should be logged into a unique log �le as it would �ood every other one.

4.2 The Debugging Process

There are multiple reasons how an error might be discovered; the most common one is an

exception in a log �le. Another option is that the end user of the results �nds that some of the

results are incorrect. Both of these cases require slightly di�erent handling. An excellent way

to start the debug process is by using a modi�ed version of the Tra�c approach introduced in

2.3.

4.2.1 Common Problems

Like with all frameworks and technologies there are some problems that often occur in Flink

applications. This section will outline a few to shorten the debug process if one these is the

issue:

• NotSerializableException - because everything is sent over the network almost everything

that is written has to be serializable. This includes all transitions. Because serialization

is not often on a developers mind and does not show up as an error in the IDE, it is often

forgotten. There can be two reasons for this error, either some class is not implementing

the "serializable" interface or local �elds in a class are not serializable. If a �eld does not

need to be serialized, because it does not need to be sent over the network, it can be

marked with the "transient" keyword.

• Network Exceptions - each system has to be able to communicate with the other systems.

See 4.2.7 for a list of possible reasons.

• ClassCastException - Sometimes multiple versions of the same class are loaded, this can

happen when class loaders of di�erent tasks and are later assigned to each other. Either

a library that caches loaded classes is used in which case one should try to remove them,

or the Flink itself is loading classes in the wrong order. This can be solved by adding

"classloader.resolve-order: parent-�rst" to the con�guration �le.

The Flink website features a complete list that is regularly updated: Flink Common Error

Messages
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4.2.2 Track the Problem in the database

Tracking a problem is essential in every development cycle no matter in which language or with

what framework and Flink is no exception. It is crucial for every developer to track the status

of problems in Flink applications as it helps to minimise work. Along the already mentioned

advantages in chapter 2.3.1, like having an easily accessible database of open problems and

knowing which problems are more important than others, tracking the problems of Flink

applications o�ers some other advantages as well.

1. Having access to relevant log �les.

2. Knowing how past problems were solved.

3. What relevant metrics were when the error occurred.

4. Which subtask of what task manager failed which allows seeing if problems only occur

on one machine.

To achieve these advantages, additionally to the already mentioned �elds the tracking

database needs a few additional columns. As soon as a problem is experienced the current log

�les should be saved so that it is easy for the developer to �nd the relevant lines in the log

�le even if he starts debugging months later. Secondly, for the same reason, all appropriate

metrics should be saved as well.

The resulting columns now are:

1. Description

2. State

3. Resolution

4. Assigned Developer

5. Severity

6. Link to logs

7. Steps that were taken to resolve the problem

8. Relevant metrics

9. Task manager that was used
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4.2.3 Reproduce the failure

Reproducing the problem is probably the most challenging part of debugging Flink applica-

tions. As there is no user to report the problem the only help the debugging developer has is

information provided by the problem report from the last chapter.

There are two possibilities how a problem is discovered, and both require di�erent steps to

reproduce the problem. The �rst and more di�cult one is that an error in the resulting data is

discovered without an exception being recorded in the log �les. This means that the program

is doing something di�erent then what the developer expected when writing it. The second

option to discover a problem is by having an exception showing up in the log �le.

Faulty resulting data

This section will use the word count application as an example program to debug. Notice that

the exact implementation of it is irrelevant at this point. The application is a black box as

only the incoming and resulting data are known. To always have the same expected result the

following sentence will be used as an input each time: "Hello hello �ink �ink �ink one two".

The expected result would be:

1 hello - 2, flink - 3, one - 1, two - 1

The following text explains the process that is used in this case alongside a diagram: 4.1

The �rst question that has to be answered is "how much data is a�ected". Are only a few

pieces incorrect or is everything faulty? Imagine the result of the application would be:

1 hello - 3, flink - 1, one - 1, two - 2

Each word has the count of the next word. So this would be considered as the second case

"everything is faulty" even though the word "one" has the correct answer. This is important to

note as sometimes a fault in a program can still result in a correct result. This �rst question

just di�erentiates between a few faults and a majority of faults, so the debugging developer

has to look at the whole picture and see if the majority of data is corrupt. An example of only

a few faults would be:

1 Hello - 1, hello - 1, flink - 3, one - 1, two - 1

Here only one additional word was counted ("Hello").
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Figure 4.1: Debugging faulty data

If the �rst case is valid (all data is faulty) the next question that should be asked is why the

problem is only now showing up. If the problem is observable for almost all the resulting data,

surely it should have been noticed while testing the application. In most cases, the problem

was either found during testing in which case the problem is already reproducible or was not

observable on the local test machine. That means that either the incoming data is di�erent to

the local one or that something is being executed di�erently on the remote network than on

the local machine. As Flink is responsible for the distribution and everything is running in a
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JVM, it is implausible that Flink is to blame. In most cases, the data on the server will di�er

from the local one. If that can be con�rmed the only thing left to do is to update the local test

data so that the problem can be reproduced locally.

The other option was that only some pieces of data were wrong. In that case, the process of

reproducing the fault is entirely di�erent. There are two options available. First, �gure out

what makes the faulty data unique in comparison to the other data. In the word count example,

this would be the capital "H" at the beginning of the �rst "Hello". If this option is successful,

the unique case can be added to the test cases, and the reproduction was successful. If on the

other hand, the developer can’t �gure out why the one failing case is di�erent to the others

the tool that is written alongside this thesis can be used, it will be explained in detail later

on. It can show which incoming data was leading to which result. In the example above it

could show that the �rst "hello" was the result of the original sentence. As there is only one

sentence in this example that is not very helpful, but in a more realistic use case, there could be

millions of sentences where just a few have capital letters in them. Once the starting sentence

is discovered, it can easily be reproduced.

The last step before moving on to the next section is to make sure that the reproduction

works. There is little to no use in �nding something in the code that is supposedly the problem

only to �nd out later that the problem is something else.

The fault should now be reproducible on a local machine as the a�ecting test data was

found. The only fault that remains are problems that only occur on the remote network and

are not happening because of di�ering incoming data. In almost all cases the root of these

problems is either incompatible Flink components or network issues. So before starting a more

complex search for the problem the developer should check the Flink documentation if all

used components, like data sources, the chosen backend etc. are compatible with each other.

Furthermore, it makes sense to check if all of the running systems can send packages to each

other and the database as �rewalls and other network related issues could be the issue. If none

of these are quickly found it is recommended to use the scienti�c method described in: 2.3.6

Exception in log file

The most common way to discover a failure in a program is by discovering an exception. It

makes no di�erence if this exception was found in a log �le or directly in the developer’s

console. The steps that are necessary to reproduce these errors are often easier as well.
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1. What kind of error was thrown? - The developer should always keep in mind what

type of exception was thrown as it is much easier to �nd the origin of the failure when

knowing what to look for.

2. Where was the failure thrown? - This information is the starting point for the search

of how to reproduce the failure. It is included in the stack trace of the exception so it

shouldn’t be a problem �nding it.

3. Isolate the conditions in the method - Knowing under which conditions the failure occurs

is crucial. Without this information, it is almost impossible to reproduce the failure

reliably as only a few errors occur under all circumstances. The developer should start

by just focusing on the method the exception is thrown in and �nding the conditions

by looking at the "if statements" that preceded the line in question. Note in which state

each variable has to be for the exception to be thrown. This can include the variable that

is throwing the exception as well. In most cases, the developer should now already have

a pretty good idea as to when the error occurs and if that is the case can skip the next

step to save time.

4. Repeat the same step for the method - Once it is understood in which conditions the

failure occurs in the given method, the developer has to �nd out in which cases the

method is being called with the conditions that were deducted in the last step. This

can be done by repeating the step above only for the line where the method was called,

which is included in the stack trace of the exception as well. This step has to be repeated

until the start point of the application has been reached. At this point, the developer

should have a good understanding when the exception is thrown and should be able to

reproduce it.

Conclusion

In most cases, the developer should have no problem reproducing the error easily without

going to much in depth into the steps presented in this chapter. Although these steps help to

guide a developer that might not even be deeply familiar with the code through the process

with ease sometimes problems occur that can not be found using these steps as they are too

unique and would not appear for anybody else. If a developer stumbles over such a problem,

it is suggested to apply the same method that is explained in 2.3.6 by creating a hypothesis

checking the outcome and repeating the process until the failure can be reproduced.
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4.2.4 Automate and simplify the test case

In comparison to typical Java applications where automated testing can be quite tricky as a

graphical user interface, and user interaction is involved, automating the test cases for Flink

applications is quite easy assuming that the problem is reproducible on a local machine. All

that the developer has to do is take the result of the last section and write a test with the

speci�c start parameters. The "Tra�c Approach" also suggests simplifying the test case to be

as easy to implement as possible so that only the error and nothing else gets checked. This can

be useful to make it easier to help spot the problem in the code later on but is not needed for

Flink applications. For example, if the word count application were to crash on "-" characters

and the input test case would be an entire book page of words it makes it harder later on to

�nd the actual character that is causing the fault but makes it easier to create the test case. As

understanding the problem and simplifying the test case is mostly the same it makes sense

to leave the test case long and rebuild it once the failure is understood. This way if the same

mistake gets built into the code again it is easily spottable as the test case already has a name,

description as well as a ticket number associated with it. Another developer could then easily

reproduce the steps that were taken to solve the problem the last time.

Flink Spector The problem with running the whole application in a test case is that there is

a lot of overhead. The whole application has to be built the di�erent task manager are started

all to run the program with one input. The worst part about this process is that it does not even

eliminate all the failures as the execution environment di�ers (because it is executed locally)

as well as the source of the application (because data is provided by the test case instead of the

data store) and lastly the sink (because the data is not actually saved). The only information

that is gained this way is that the transformations are doing what they are supposed to do.

This could be much easier done if data streams could be tested individually without having all

the overhead of starting Flink. The Otto Group had this issue and decided to write a plugin for

Flink that allows data streams to be unit tested called the FlinkSpector. It can be used in the

following way once the plugin is enabled:

1 @org.junit.Test
2 public void testWindowing() {
3

4 // Define the input DataStream:
5 DataStream<Tuple2<Integer, String>> testStream =
6 createTimedTestStreamWith(Tuple2.of(1, "fritz"))
7 .emit(Tuple2.of(1, "hans"))
8 .emit(Tuple2.of(1, "heidi"), intoWindow(30, seconds)
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9 .emit(Tuple2.of(3, "peter"), intoWindow(1, minutes)
10 .repeatAll(times(2))
11 .close();
12

13 // Lets you query the output tuples like a table:
14 OutputMatcher<Tuple2<Integer, String>> matcher =
15 //define keys for the values in your tuple:
16 new MatchTuples<Tuple2<Integer, String>>("value", "name")
17 .assertThat("value", is(3))
18 .assertThat("name", either(is("fritz")).or(is("peter")))
19 .onEachRecord();
20

21 assertStream(someWindowAggregation(testStream), matcher);
22 }

Listing 4.1: FlinkSpector Example: FlinkSpector

Put simply the developer has to create a test data stream of incoming data and the similar

thing for the data returned by the transformation. Once those are created the unit test is the

same and can be used with the "assertStream" method call (Line 22).

4.2.5 Find possible infection origins

This step in the debugging process is just a collection of possible points to start the debug

process from. It is always possible to change this point later if the chosen point turns out not

to be the origin of the infection. Flink applications are very di�erent to other Java applications

in this section. Flink uses a special way to write applications that make it possible to run on

multiple machines without having to specify how and more importantly which information

are transferred between di�erent machines. Because of this complication, code that is written

in Flink is being executed before a single piece of information is read. At the end of each

application is an execute-statement which then starts the application. When debugging the code

written by the developer with a debugger the only information that can be gathered is whether

or not Flink can successfully build the execution tree or not. The only relevant information

this provides to the developer is that all checks that Flink itself runs before executing are true.

At the time of writing this thesis (Flink 1.5), it ensures successful connections to the databases

or other data stores used by the application and compatibility of the used data sources and

backend. As an example, if a backend that supports snapshots is chosen, Flink will check if the

�rst data source supports rollbacks as that is a requirement of snapshots. Other problems like

incompatible datatypes can still occur afterwards.
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This section includes the next step of the tra�c approach as Flink applications are structured

in a way that makes it very easy to �nd the possible origins of the information given here. To

make it even easier the word count example from the beginning of the thesis is used again,

this time as an actual Flink application:

1 public class SocketTextStreamWordCount {
2 // configuration lines removed for clearity
3 public static void main(String[] args) throws Exception {
4 // configuration lines removed for clearity
5 DataStream<String> text = env
6 .addSource(new FlinkKafkaConsumer011<>("test",
7 new SimpleStringSchema(), properties));
8 DataStream<Tuple2<String, Integer>> counts = text
9 .flatMap(new LineSplitter()).keyBy(0).sum(1);

10 counts.print();
11 env.execute("Java WordCount from SocketTextStream Example");
12 }
13

14 public static final class LineSplitter
15 implements FlatMapFunction<String, Tuple2<String, Integer>> {
16 @Override
17 public void flatMap(String value,
18 Collector<Tuple2<String, Integer>> out) throws Exception {
19 // normalize and split the line
20 String[] tokens = value.toLowerCase().split("\\W+");
21 // emit the pairs
22 for (String token : tokens) {
23 if (token.equals("test")) {
24 throw new Exception();
25 }
26 if (token.length() > 0) {
27 out.collect(new Tuple2<String, Integer>(token, 1));
28 }
29 }
30 }
31 }
32 }

Listing 4.2: Word Count Example Flink
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What this program does is the same as the earlier word count example, it counts how often

each word is in a speci�ed input. As this is written in the Flink framework, it uses streams to

store the data and transformation methods to connect the streams in a way that splits and then

counts the words. The �rst stream is used to gather the incoming data from an Apache Kafka

cluster (Line 5). The data stream is called "text" and is used in the next stream as a source (Line

8). This data stream is called "counts" and is doing the actual work of the program. It uses a �at

map function to split the string at each space symbol and uses the newly created "words" to add

them to a new String, Integer tuple. Flink then adds merely all these tuples that have the same

key together and adds up the Integers. This can be done as the whole transformation method

is an extension of the �atMap method that is eventually adding all created tuples together.

Exception before application is executed

The �rst case that we are going to look at is that the application throws an exception before it

is being executed. This is the case if any of the lines before the execute line appear in the stack

trace. In our example the execute line is line 11. so the possible exception that would �t in this

category would be:

1 java.net.ConnectException: Connection refused (Connection refused)
2 at com.jakobjoachim.WordCountFlink
3 $WordCountFlink.main(WordCountFlink.java:5)

Listing 4.3: Connection Exception

As stated above connection problems are not the only issues that can cause an exception

before the execute line is reached. It is also possible for some of the Flink components to be

incompatible with others. No matter which of these two is the case the procedure is the same.

As the failure happens before any of the Flink speci�c issues are encountered the method

described in the standard "Tra�c Approach" 2.3.6 is enough to �nd the root of the problem.

This means going to the speci�ed line in the stack trace and checking if the line could be

responsible. As Flink applications are only a set of transformations on data streams, this search

is relatively easy as it is most probably found either at one of the transformations or the initial

connection to the database.

Because of how Flink works in this step there are only two possible roots for an issue in

this category. Either the line that throws the exception or the other side. In case of Flink

component issues, this means the line that sets up the data stream or environment that is being

used in the line that is throwing the exception. Because of this, it is not necessary to follow

the next step of the Tra�c Approach (focus on the most likely origins).
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Exception in a transformation method

Another possible case is that an exception was thrown while the application is running. On

contrary to exceptions that occur in the data streams and will not show the line written by the

developer in the stack trace, exceptions in transformation methods will show up as the source

in the stack trace. If we look at line 23 and 24 in the example application, we will see that an

error is thrown whenever the word "test" is read. Of course, this is set up to throw an error,

and a real application would be more likely to throw a null pointer exception or similar when

transforming the data (line 27). When "test" used as part of the input the following stack trace

is thrown:

1 java.lang.Exception
2 at com.jakobjoachim.WordCountFlink
3 $LineSplitter.flatMap(WordCountFlink.java:24)
4 at com.jakobjoachim.WordCountFlink
5 $LineSplitter.flatMap(WordCountFlink.java:14)
6 at org.apache.flink.streaming.api.operators.StreamFlatMap
7 .processElement(StreamFlatMap.java:50)
8 at org.apache.flink.streaming.runtime.tasks
9 .OperatorChain$CopyingChainingOutput

10 .pushToOperator(OperatorChain.java:549)
11 ...

Listing 4.4: Exception in Transformation

The only lines that are part of our code in this stack trace are the lines in the �atMap method.

The stack trace does not show which of our data streams called the method. This is because

the data stream was converted to a Flink internal data stream before the application was run.

As such the next step is to �nd out which of our data streams called the transformation method

in question. Possible infection origins are now:

• Bug in the code of the �atMap.

• Bug in transfer to the data stream that called the �atMap method.

• Bug in any data stream or transformation of data streams before that.

Failures in transfers between data streams are highly unlikely when the program can be

reproduced locally as any incompatible data types and components are already checked.

Although this is only true if Java Generics were used with all appropriate variables. These

possible infection origins are enough to uses as a basis for the next section called "Isolate the

defect in the chain" 4.2.6.
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Exception in internal Flink code

The last possible location to throw an exception is the internal Flink code itself. This can have

a lot of possible reasons and the least amount of helpful information in the stack trace. One

possible reason could be a timeout while sending data from one machine to the other. The

exception will show that a network timeout was the cause, but there is not much else in the

stack trace that can help the developer narrow down the search. This is why logging correctly

is crucial in this section as the most relevant pieces of information are which data stream was

responsible. The log �le contains such information and can be seen either directly by reading

the log or by using the Flink web UI if it is used.

We should now know which data stream is causing the exception but possibly, depending

on the thrown exception, not why. This step of the debugging process requires a lot of

understanding of how Flink and the program that is being debugged works. There are a lot

of di�erent reasons why an internal exception might be thrown. The good news is that it

is improbable that the fault is somewhere else in the code and that the data stream that is

throwing the exception is working �ne. In almost all cases it is either the data stream throwing

the exception or the transfer to that data stream. Because of that, we can use the data stream

line as our infection root for now.

No Exception but resulting data is faulty

If there is no failure and the resulting data is wrong, the developer can use the line where the

false data got stored as the "exception throwing line". At that moment the failure is already

present in the application so the line can serve the same way an exception would. If the

program is too complex to overview how it got to that point, a stack trace can be printed to

the console by adding the following line (remove this afterwards):

1 System.out.println(new Throwable().getStackTrace())

Listing 4.5: Create Stacktrace
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Brief introduction to the Flink Backtracking tool To narrow down the search to a line

that might be responsible, the developer can use the tool that was designed alongside this

thesis and is explained in detail in chapter 5. The tool allows the developer to see the content

of the data streams in real time and also shows the relation between the data and multiple data

streams. This is done by using the Flink watchpoint mechanism to split the inputs into groups.

In the WordCount example which has two data streams, this would result in the following

with an example input of "this is a test this is a test is this a test?":

• Data stream 1 - Watchpoint 2321: "this is a �nd this is a �nd", Watchpoint 2346: "is

this a �nd?"

• Data stream 2 - Watchpoint 2321: "this - 2, is - 2, a - 2, �nd - 2", Watchpoint 2346:
"is - 3, this - 3, a - 3, �nd? - 1"

If this was part of a more signi�cant input in a more complex program, the developer might

not have seen directly why the word "�nd" was only counted two times when it was cleary

in the input three times. Because he now has a direct overview of what data transformation

happened at which point he can easily spot at which transformation the failure is �rstly

observable and use that as the infection origin.

4.2.6 Isolate the infection in the chain

Now that the root of the infection was narrowed down to a few possible lines of code it is time

to isolate these lines to see if they are in fact the cause of the issue or merely another infected

line.

It is yet again necessary to split this section into multiple parts depending on which kind of

infection is present. We can skip this chapter altogether for exceptions before the applicaton is

executed because we already know for sure which line is causing the issue and only have to

correct the defect.

Exception in a transformation method

Isolating the transformation or data stream that is causing the issue can be done by �rstly

looking at the exception itself. It might be obvious that the line showing up in the stack

trace is responsible or that such an exception should never be allowed to crash the program.

Another important step while �nding the issue is to make sure that exceptions that crash

the application are only doing so when there is no other way. It might be possible to log the

exception and ignore that part of the input as long as the program can continue running. Most
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Flink applications run on huge server farms where each hour costs the company a lot of money

so full application crashes should be minimised.

If the issue is not apparent, it makes sense to use the tool that was developed alongside this

thesis that was already brie�y mentioned earlier: 4.2.5. In the same way that the tool is useful

when �nding corrupted data in the streams it can help us here to gain a deeper understanding

of what is happening in each stream. Together with the reproducible test and tool, we should

see how the data that is causing the issue got to the transformation in question. We can then

correct the defect as we isolated the faulty transformation.

Exception in internal Flink code

No matter where in the Flink internal code an exception is thrown we can use the information

from the log �le to �nd out which data stream was responsible. Then run the program a few

more times to make sure the exception is always thrown at the same data stream. The next step

is to make sure that the incoming data is correct and there are no error present beforehand.

Also, it makes sense to check if the incoming data can be manually added to the test case

of the transformation at the faulty data stream. If that also works, we know that the root of

the infection is, in fact, the data stream. This is enough to correct the defect. If, on the other

hand, one of these checks failed, we have to go back a few steps and include the option that a

transformation might be faulty depending on which of these checks failed. If the exception is

thrown at di�erent places all the time, it makes sense to google the exception to make sure

that it is not a common problem with Flink. If it does not use the scienti�c method to narrow

down the search until the cause is found.

No Exception but resulting data is faulty

We now have a speci�c location at which the data gets corrupted. To solve the issue, the

developer has to look at the transformation method that is used by the data stream. The method

can then be debugged on its own be writing a unit test for the method and using the standard

Java debugger with breakpoints to accurately see what is happening. To make matters even

easier in case, the method is very complicated the developer should still use the same method

described in 4.2.7
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4.2.7 Correct the defect

With all the information gained by the previous steps, we now know where the issue originates

from and we can �x the issue. There are a few possibilities:

4.2.7 Transformation method Faulty

4.2.7 Network issues

4.2.7 Data streams are causing the issue

Transformation method faulty

The �rst step in correcting a failure in a transformation method is to make sure that the unit

test checking that method is updated so that the same error can’t happen again. Another

important thing to think about is if such an error would happen again would it be better if

the application didn’t crash but instead log the error as critical log level and continue? This

could save the company a lot of money in computing cost. It is a good rule of thumb that Flink

applications should never crash once they are deployed.

Correting the defect Now that all the requirements are done, it is time to start correcting

the defect. Using the newly written test case and the Java debugger we can go through step by

step and see at which point the failure appears. Most of this task should already be done by

the actions beforehand. If for whatever reason the exact root of the failure could not yet be

located, we can use the scienti�c method to further narrow down the possibilities until the

root is found.

Network issues

Connection issues are quite common, following these steps should result in a working connec-

tion:

1. Insu�cient number of network bu�ers: If this exception is thrown it means that the

JVM size is too small for the amount of parallelism that is happening. It can be �xed

by increasing bu�er in the task manager settings. Refer to the Flink documentation for

further details: Flink (a).

2. Network issues: Both �rewalls need to be setup correctly to allow packets through. This

can be checked by starting a simple TCP connection between the two systems with

Netcat or a similar program.
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3. Con�guration issues: The database has to accept incoming connection requests from the

corresponding IP range. This has to be con�gured in the database settings and varies

between di�erent databases.

4. Flink database adapter: Flink has to support the chosen database or a database connector

has to be written. Consult the Flink documentation and check if the adapter version is

compatible with the Flink version.

5. Con�guration issue: The IP address or the username and password for the connection

that is used in Flink could be wrong.

Data streams are incompatible

There are two possible reasons why data streams would cause problems. Either they are not

compatible, or the data that is transferred in them isn’t. Another option that should already

have been ruled out is a network issue 4.2.7. Lastly, data could arrive at the latter data stream

in the wrong order. This is only relevant for some applications as most Flink applications, like

the word count example, do not care in which order the input arrives.

• Data types - The developer should make sure that Java Generics are used at every

appropriate location. This ensures compatibility of the data types because the Java

compiler checks them.

• Data streams not compatible - The developer should check the documentation of

each of the used data stream features to make sure both are compatible. Lastly, if that

failed, also check that the Backend is compatible in the same way.

• Data in wrong order - Applications that depend on data being in the correct order to

be processed correctly need to use the "event time watermark" feature which can add

a watermark to each piece of data and check if the previous one was processed or not

before doing any more work. Because this adds a lot of waiting time and additional

computing to the process it has to be enabled manually and also implemented at the

speci�c transformations. Watermarks have to be injected at the �rst data source and can

be used afterwards.
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Conclusion

Although �xing the defect is the reason the whole debugging process was started it is not the

end. As explained in the 2.3.7 other questions need to be answered before the developer can

move on to something else.

Alongside the already mentioned tasks a Flink developer should also think about the follow-

ing steps:

1. If there was no exception thrown and the failure was purely faulty data, it is not enough

to have a test case that makes sure that the same error gets reported again, but the

developer should also add a check into the program that throws an exception. This is

important as it is crucial that faulty data can’t be generated by the program.

2. If the test case was not simpli�ed, now is the time to �x that. The developer should

shorten the input to the bare minimum that would produce the failure, rename the test

case accordingly and add the ticket number as a comment to the test case.
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This chapter will explain in detail how the Flink Backtracking tool written alongside this

thesis works and how it is used. It is composed of two parts, the frontend part that shows the

results in the IDE and the backend part that has to be included in the project that sends the

information to the frontend. This chapter is thus split into multiple paths:

5.1 User manual

5.2 Backend architecture

5.3 Frontend architecture

5.4 State of the program

5.1 User manual

Introduction to the Flink Backtracking Tool The Flink Backtracking Tool allows the

user to see what data was read at each data stream and what data lead to the result at the next

data stream. The Flink Watchpoint mechanism is used which injects a barrier with an identi�er

ever so often. The data between each of these barriers at each data stream is the result of the

data between the same barriers plus the transformation of the previous data stream. Thus the

exact result of each data stream can be seen which is not possible with step by step debugging.

Prerequirements There are a few requirements that have to be met to make the program

work appropriately. First and foremost it has to be a Flink application as it can only track Flink

data streams. Also because it is using the watchpoint mechanism of Flink all requirements that

go along with that have to be met. This means each data stream has to support rolling back

data in cases of failure. Because of this requirement, it is currently only possible to use data

that comes from some big data storage. In the following examples, Apache Kafka will be used.

Using the program is an easy process. The "FlinkBacktracking.jar" has to be integrated into

the Flink application that is being developed, and the "FlinkBacktrackingIntelliJPlugin.jar" has
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to be activated in IntelliJ to see the results of the Tool. There is only one line needed to enable

the tool itself, although checkpointing still has to be enabled manually:

1 env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
2 env.enableCheckpointing(1000);
3 FlinkBacktrack backtracker = new FlinkBacktrack(env);

Listing 5.1: How to use the Backtracker

Where "env" is the Execution Environment. Any number of watchpoint behaviour is possible,

in this example it is set to inject a barrier after the speci�ed amount of time. Once the

Backtracker is initialised, it can be used by adding each data stream that the developer wants

to be watched to the tool. This is done in the following way:

1 backtracker.track(dataStream, "Transition name");

Where "dataStream" is the dataStream that should be tracked and "Transition name" is an

arbitrary name that is used to show the results under. This step has to be repeated for each

data stream that should be watched. Once these steps are done, the developer can open the

"Flink Backtracking View" by clicking on the button with the same name on the lower right

side of IntelliJ and start the application.

5.1.1 Debugging a Program with the Backtracker

Once the plugin has been con�gured the application can be started. Each piece of data that is

being processed by the application will show up in the "Flink Backtracker" tab in IntelliJ as

well. The �rst tabs that are shown are the di�erent data streams. Each watched data stream

has its own tab. Each of these tabs contains a list of watchpoints that passed since the program

was started and each of these includes the data that was processed by that data stream at the

time of the watchpoint.

The example 5.1 shows a good use-case for the tool. The developer can easily see that the

input of the program was successfully received by the �rst data stream. He can also see that

the application is removing special characters and converting all capital letters. Because the

content of the second data stream (result) is not only depending on the data stream that came

before (input) but also on all the data that was processed by the stream previously. Thus the

"hello,2" in the result transition at watchpoint 4316.
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Figure 5.1: Backtracking Example

5.2 Backend architecture

The Backend is composed of two parts: One is the function that is collecting the data and

sending it to the frontend the other is the main class that is used to set up the function in the

correct way to ensure that the function can gather all the necessary information.

The following example (5.2) helps to underline how the Flink application is set up so that

the data can be sent to the frontend.

Figure 5.2: Data�ow without the Backtracker

5.2 is a simple application with two transformations much like the WordCount application

used throughout this thesis. The �rst transition is reading the input and the second is modifying

it. At each transition, we split the data stream and send an exact copy to another transformation

that is part of the Backtracker that sends it to the front end. That means that with the

Backtracker enabled the earlier diagram now looks like this: 5.3

This ensures that the data is sent to the frontend but fails to show which pieces of information

are related to each other. Because of that, it is necessary to add watchpoints to the system.

The way that Flink handles watchpoints is simple: They are injected at the beginning of the
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Figure 5.3: Data�ow with the Backtracker enabled

application as part of the data stream, and each time a transformation receives one it injects

the same one back at its output at the same position. Each watchpoint is identi�ed by a

unique number and is used as a grouping method in this tool. Flink does not allow the current

checkpoint to be read out because there can be multiple active at the same time in di�erent

parts of the application. The only way to get the current checkpoint for a given transition is by

saving the last checkpoint that was read by the transition. The snapshotState method is called

by the Task Manager each time a new watchpoint is registered. The following line then saves

the checkpointId as a �eld of the class so that the most recent watermark is always available:

1 @Override
2 public void snapshotState(FunctionSnapshotContext context)
3 throws Exception {
4 currentWatermark = context.getCheckpointId();
5 }

Listing 5.2: Save Watermark

When sending messages to the frontend, the current watchpoint can then be added.

Sending Data Another important step along the way is sending the data to the frontend.

This is done by establishing a socket connection to the frontend (the frontend is the server)

and sending serialised Java objects over it.

5.3 Frontend architecture

The front-end architecture is pretty straightforward. A view is created and populated with a

tree view together with a socket server that is awaiting messages from clients. Once it receives

a message, it checks if the transformation and/or watchpoint is already present in the tree

and �lls the data to the correct location. The server can never stop IntelliJ from working as
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it is running in a separate thread, thus ensuring that any problems with the connection are

isolated.

5.4 State of the program

The backtracker tool is working, that being said it is not tested in the most vigorous way

possible and there are still a few features that would enhance the usability like being able to

save the results.

Saving results At the moment the only way the data can be displayed is by using the IntelliJ

plugin. Because the messages are sent by the internal transformation, a second transformation

could be written that instead of sending the data to the IntelliJ plugin saves it in a database or

logs it to a �le. When creating the Backtracker, a second constructor was needed to specify

which Backend function to use.

Be�er UI The UI still lacks a few features that would drastically increase the ease of the

program like clearing old results or saving the tree directly from there.
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Summing up all the pieces, this thesis outlined how to debug complex systems, in general,

showed how Flink programs are di�erent to regular Java applications and used that knowledge

to provide a methodology for debugging Flink applications. The basic procedure of a Flink

application was discussed, and the pitfalls of writing these programs marked, along the thesis

a sample WordCount application was used to picturise the methods. A tool was written that

provides the developer with more information than are available with Flink. Namely which

piece of data at which transition lead to which part of data in the next transition. This allows

the developer to gain a better overview of what the program is doing compared with what he

thought the program was doing.

6.1 Lessons Learned

This thesis showed a few things about debugging and writing Flink applications that were

not obvious before. Bad programming is made harder because the developer does not have

the freedom of writing whatever they want. Instead, they have to build using the framework

which limits the possible architectural failures. The developer can still make mistakes and does

so easily because the framework extends Java to be more complex which in turn makes the

development process more complex but as long as the developer understands the base concept

of the framework and where to put which piece of code he always has a good point of entry to

the debugging process especially with the methodology in this thesis.
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6.2 Outlook

There are a few things that need further research in this thesis:

1. Only the data stream part of Flink was discussed in this thesis. As Flink also o�ers a

dataset API, it would make sense to research how the dataset API might di�er in the

sense of debugging. Although a lot of the same principles still hold true there, it is by no

means the same.

2. The Backtracker was not experimented with in a lot of di�erent use cases. Data about

additional computing power use and more importantly computing time could be useful.

3. The functionality of the debugger can be extended as explained in 5.4.

4. Because of the lack of articles about good debugging in general and more speci�cally

debugging frameworks. It might make sense to use the information gained by this thesis

to write a methodology for debugging frameworks in general.

6.3 Further Reading

This section will outline a few more articles or books to read that are relevant to the thesis but

were not directly mentioned.

The beginning of the thesis provided some proposals on how to minimise the debugging. It

was suggested to use theorem proving or model checking. Because it is not part of the debugging

process, it was mostly left out, but because it can be quite helpful for some circumstances, it

makes sense to read more about it. Amazon uses model checking in some departments and

found some bugs that were not known before: Newcombe u. a. (2015). A common language

for writing these is called TLA+. It is a functional language where the core function of the

program is mathematically written. A good introduction can be found here: Lamport (2002).

If this thesis was read not speci�cally for gaining an understanding about debugging Flink

but for debugging distributed systems, in general, consider reading Olston und Reed (2011) as

well. It provides some tooling for monitoring and debugging distributed systems that Flink

already includes. So some of the information that are crucial in �nding bugs might be found

using it. Another fascinating study about missing events in distributed systems is also worth

reading Wu u. a. (2014).
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