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Abstract
The goal of the present document is to investigate signal processing techniques pre-
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nung in der Instrumentalmusik vorhanden sind. Zu diesem Zweck werden maschinel-
le Lerntechniken eingesetzt und Klassifikator trainiert. Die Ausgabe des Klassifikators
wird verwendet, um die Effizienz und den Beitrag jedes einzelnen Signalmerkmals zu
schätzen.



Contents

List of Tables 6

List of Figures 7

1 Introduction 8

2 Requirements 10
2.1 Performace requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Additional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Theoretical background 11
3.1 Emotion classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Categorical approach . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Dimensional approach . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Perceptual considerations . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Feature selection requirements . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Taxonomy of features . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Most used features . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Features of choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 File format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Segmentation of a music piece . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Mel Frequency Cepstral Coefficients(MFCCs) . . . . . . . . . . . . . 23
3.4.2 Zero-Crossing Rate (ZCR) . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Root Mean Squared Energy (RMSE) . . . . . . . . . . . . . . . . . . 24
3.4.4 Spectral Centroid (SC) . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.5 Beat Histogram (BH) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



Contents 5

3.5 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.1 Supervised learning subtypes . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3 Random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Software design 31
4.1 General structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Design constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Dataset construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Software setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Selection of the programming language . . . . . . . . . . . . . . . . 32
4.4.2 Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.3 Libraries used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.4 Third-party software used . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Application workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.1 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Extraction of metadata . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.3 Classifier training and testing . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Application file structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Results 37
5.1 Output of testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Feature Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 40

Glossary 45



List of Tables

3.1 Emotion categories of choice and corresponding Russel’s Model values . . . 15
3.2 Common types of features (Kim u. a., 2010) . . . . . . . . . . . . . . . . . . 17
3.3 Schematic overview of a user-dependent taxonomy for feature extraction

(Lesaffre u. a., 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Common types of features (Peeters und Rodet, 2004) . . . . . . . . . . . . 19
3.5 Frequently used features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Programming languages considered for software implementation . . . . . . . 33

5.1 Testing output:Overall accuracy of classification . . . . . . . . . . . . . . . . 37
5.2 Testing output:Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Testing output:Weights of features . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Weights of MFCCs individually . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Weights of BH features individually . . . . . . . . . . . . . . . . . . . . . . 39



List of Figures

3.1 Hevner’s groups of adjectives (Hevner, 1936) . . . . . . . . . . . . . . . . . 12
3.2 Russel’s Circumplex model (Russell, 1980) . . . . . . . . . . . . . . . . . . 14
3.3 The experimental model of Cowen & Keltner (Cowen und Keltner, 2017) . . . 16
3.4 Mel-frequency filterbank (Sigurdsson u. a., 2006) . . . . . . . . . . . . . . . 29
3.5 Block-diagram of the beat-detection algorithm based on the Discrete Wavelet

Transform (Tzanetakis u. a., 2001) . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Detailed application workflow . . . . . . . . . . . . . . . . . . . . . . . . . 35



1 Introduction

Since the rise of humanity, music played an important role in everyday life. As human cul-
ture developed, music developed alongside it, sprouting various genres, forms, instruments
and performance techniques. There are many explanations of the importance of music at
different levels of interpretation and one of them is that music conveys strong emotional
load. Music has the power to stimulate strong emotions within a listener and, even if the
listener is not directly affected, various emotions can be communicated just with a simple
music instrument. Mechanisms of this emotional communication were studied for centuries,
mainly in the form of music theory. In the 20th century, when speech recognition of a digi-
tized audio signal became a popular research field, a number of techniques were invented
that were also applicable to audio signals not containing speech but music. Researchers
tried to extract signal features from audio signals and tie it with existing music theory, of-
ten going directly to the field of emotion. The combined effort of these researchers led the
establishment of a new research field: Music Information Retrieval. In modern day, with
the development of machine learning, signal processing, increase in computational power
and vast amounts of music available through the internet it became possible to automati-
cally analyze and annotate music using signal audio data. For instance, automatic genre
classification was studied for several years (Guaus, 2009) and, while still far from perfect, is
already used to automatically detect genre of the music piece. In that context, classification
techniques are being developed that allow for emotion detection in music. However, this task
is considered much more complex than genre classification, since emotion notation wasn’t
developing strictly alongside music (as music genres were) and perceived emotion is often
considered much more subjective than genre definition. One of the problems, encountered
by researchers of emotion-related MIR is that most of the music in a modern day consists of
two components, that do not depend on each other directly: vocal and instrumental. Even
casting aside the problem of the recognition of a sung text, MIR researchers struggle with
identifying mixed emotional signals communicated with the lyrics and the instrumental part
separately. To overcome this problem deeper understanding of emotion conveyed by each
part (vocal and instrumental) is required. The focus of this thesis is a study of instrumental
music since it isn’t affected by "emotional noise" caused by the vocal part. Classification of
an emotion, definition of an emotion, extraction of representative signal features and selec-
tion of an appropriate Machine Learning technique are addressed. Then, on the basis of
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these parameters classifier is built as a proof of concept in order to estimate the efficiency of
the chosen signal features.



2 Requirements

In a general statement, the main requirement of this work is to build and test a classifier that
identifies the emotion, perceived in a music piece based on the features extracted from the
said music piece via signal processing.

In order to construct such classifier, a set of steps has to be followed:

1. A representation of an emotion identified has to be defined.

2. A set of features extracted from music pieces has to be defined.

3. Machine learning techniques appropriate for the emotion classification have to be cho-
sen.

4. An instrumental music dataset has to be constructed based on the chosen represen-
tation of emotions.

5. A software application for feature extraction and classifier training has to be designed
and implemented.

6. General efficiency of a said classifier and each particular feature in its context has to
be estimated via testing.

2.1 Performace requirements

The expected minimum accuracy of the classifier has to surpass a threshold of 60%.

2.2 Additional requirements

Open source dependencies: To guarantee the availability of a developed software applica-
tion for extension and/or testing on different datasets, said application has to be built on top
of open source libraries and available as an open source.



3 Theoretical background

3.1 Emotion classification

Emotion classification is a contested issue in emotion-related research. Earliest attempts to
classify emotions were made by Aristotle in "De Anima", dated approximately 350 BC. Since
then, the topic was addressed from different research fields, including biology, psychology
and sociology. While there is a wide range of different classification approaches, they can be
roughly split into two categories according to two fundamental viewpoints:

• Emotions are discrete and fundamentally different constructs. (Also known as Discrete
emotion theory or categorical classification)

• Emotions can be represented in a dimensional model. (Dimensional classification)

3.1.1 Categorical approach

The categorical approach to emotion classification considers that people experience emo-
tions as categories that are distinct from each other. Various concepts were implemented to
group and organize emotions into categories.

One of the first psychology papers, that directly focuses on finding and grouping terms con-
nected to emotions was written by Kate Hevner (Hevner, 1936). In her paper, Hevner used
a set of 66 adjectives that were presented to the participants of the experiment. Participants
listened to music pieces and marked appropriate adjectives. Based on that, adjectives were
clustered into eight groups distributed on a circle (Figure 3.1). A relative position of the two
groups in this model defines the relation between the two: opposite group is the furthest
apart by emotion. Later on, different researchers suggested different sets of adjectives and
different groupings.

The categorical approach is often tightly coupled with the concept of basic emotions, intro-
duced by Paul Ekman. It states that there is a limited number of innate and universal emotion
categories, that can be used as a basis to derive more broad emotion classes (Ekman, 1992).
In his work Ekman suggests six basic emotions, which are:
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Figure 3.1: Hevner’s groups of adjectives (Hevner, 1936)
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• happiness,

• sadness,

• fear,

• anger,

• disgust,

• surprise.

Ekman’s basic emotion list was initially based on the facial features, and since then various
researchers from other fields came up with different sets of basic emotions.

The major drawback of the categorical approach is that number of basic emotion classes is
too small in comparison with the range of music emotion perceived by humans, meaning that
one class encapsulates a set of emotions that can be quite different. However, increasing the
number of basis emotions leads to ambiguity of the definition of an emotional classification
unit (Yi-Hsuan Yang, 2011).

The categorical approach by its nature is well-suited for classification algorithms of machine
learning. However, careful selection of label set is required, since the same music piece
can be assigned multiple labels and high intersection rate would lead to low accuracy of a
classifier.

3.1.2 Dimensional approach

In the dimensional approach, emotions are identified on the basis of their location in a space
with a small number of emotional dimensions. In this way, the emotion of a music piece is
represented as a point or area in an emotion space. Most dimensional models incorporate
valence and arousal or intensity dimensions. Dimensional models of emotion suggest that a
common and interconnected neurophysiological system is responsible for all affective states.
These models contrast theories of basic emotion, which propose that different emotions arise
from separate neural systems (Posner u. a., 2005).

One of the first such models was proposed by James Russel (Figure 3.2). This model sug-
gests that emotions are distributed in a two-dimensional circular space, containing arousal
and valence dimensions. Arousal represents the vertical axis and valence represents the
horizontal axis, while the center of the circle represents a neutral valence and a medium
level of arousal.

Due to its nature, the dimensional approach does not suffer from ambiguity as the categorical
does. However, it is argued that the dimensional approach obscures important aspects of
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Figure 3.2: Russel’s Circumplex model (Russell, 1980)

emotion process. For instance, two emotions that have a significantly different effect on the
listener can be placed very closely on the valence-arousal plane.

This issue is usually addressed by creating alternative models or adding dimensions in order
to improve classification precision. However, adding dimensions makes data gathering more
complicated and causes an increase in error rate.

Because of these limitations, minor modifications and extensions of Russel’s model are still
commonly used in regression algorithms of machine learning applied to emotion recognition
in music.

3.1.3 Perceptual considerations

When performing any measurement of emotion, one must also consider the source of emo-
tion being measured. Many studies, using categorical or dimensional measurements, indi-
cate the important distinction between one’s perception of the emotion expressed by music
and the emotion induced by music. (Kim u. a., 2010) While both perceived (expressed) and
induced emotions are largely dependent on the observer, induced emotion is much more
dependent on the observer’s background, environment and context of listening, thus has a
larger variance (Kallinen und Ravaja, 2006). According to Laukka et al. (Juslin und Laukka,
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2004) people tend to agree more on the perceived emotion than on the induced emotion. In
this paper, labels, given to music pieces are considered to be emotions perceived by users,
as they are more objective.

3.1.4 Summary

Neither of the two approaches provides a full and accurate representation of emotion. How-
ever, it is believed that the approaches are complementary and can be used together: in the
work of Cowen & Keltner (Cowen und Keltner, 2017) 27 different categories are connected
with "gradients", effectively making it a 27-dimensional model of an emotion (Figure 3.3).

After consideration of both approaches, the categorical approach was chosen to form a set
of emotion labels tested, since it gives a clearer representation of an emotion to a user and
test results can be easily verified. Labels, chosen for the classifier correspond to edge points
on Russel’s model (Table: 3.1).

Emotion Valence Arousal
Sad Low Medium

Happy High Medium
Epic Medium High

Melancholy Low Low
Relaxed High Low

Table 3.1: Emotion categories of choice and corresponding Russel’s Model values

3.2 Feature selection

An important step of audio classification is feature selection. In order to get high accuracy
for classification, it is crucial to select a set of meaningful features that can capture both
temporal and spectral characteristics of an audio signal. Extensive research in the area of
music information retrieval (MIR) led to the discovery of vast amounts of meaningful features
that can be extracted from a single music piece. (Laurier und Herrera, 2009) (Herrera u. a.,
2005). Although some research has focused on searching for the most informative features
for emotion classification, no dominant single feature has emerged.(Kim u. a., 2010) While it
is impossible to list all features available, choice of said features for a particular testing set
should still be justified.
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Figure 3.3: The experimental model of Cowen & Keltner (Cowen und Keltner, 2017)
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Type Features
Dynamics RMS energy
Timbre MFCCs, spectral shape, spectral contrast
Harmony Roughness, harmonic change, key clarity, majorness
Register Chromagram, chroma centroid and deviation
Rhythm Rhythm strength, regularity, tempo, beat histograms
Articulation Event density, attack slope, attack time

Table 3.2: Common types of features (Kim u. a., 2010)

3.2.1 Feature selection requirements

In order to select features that will be further used for classification, the following criteria
should be met:

• Features have to be non-redundant. Both extraction of additional features and ex-
tension of feature-vector for classification significantly increase computational costs for
each given entry. To resolve this issue, feature taxonomy (section 3.2.2) is introduced,
which allows for a better selection of features.

• A feature has to hold significant discriminative power, i.e. values, obtained from
feature extraction from differently labeled music pieces should also significantly differ.
In order to find such features "most used" (section 3.2.3) and well-tested features are
collected from different research papers and combined into a set.

3.2.2 Taxonomy of features

One way of selecting features is to introduce a taxonomy of features and then form a set of
features based on their properties. While feature taxonomies still vary based on application,
they tend to share common properties and can be simplified to the same level. (Peeters und
Rodet, 2004) (Lesaffre u. a., 2003) However, this approach cannot be used on its own, as
certain subsets contained within taxonomies would still contain large amounts of features.

While taxonomy of features is rarely addressed directly, researchers tend to group features
according to Types (Table 3.2). "Types" here refer to the terminology of the music theory and
it’s to low-level audio features. Naming conventions and overall usage of types tend to differ
from one researcher to another, but timbre, rhythm, dynamics and corresponding features
are present in the majority of researches.

A few researchers addressed the issue of feature taxonomy directly, but their works are well-
renowned. Lessafre et al. approach an issue of taxonomy (Table 3.3) using a combination of
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Table 3.3: Schematic overview of a user-dependent taxonomy for feature extraction (Lesaffre
u. a., 2003)
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Group Features
Temporal shape attack time, temporal increase/decrease, effective duration
Temporal features autocorrelation coefficients, zero-crossing rate
Spectral shape features spectral centroid, skewness, kurtosis, slope, MFCC
Harmonic features harmonic/noise ratio, harmonic deviation, fundamental frequency
Perceptual features Total/specific loudness, sharpness, loudness spread

Table 3.4: Common types of features (Peeters und Rodet, 2004)

abstraction level, time extent and previously mentioned "Types" to determine the position of
a feature in their classification. While Lesaffre et al. base their taxonomy on user perspective
(also known as the subject-centered approach), Peeters et al. (Peeters und Rodet, 2004)
form a taxonomy using object-centered approach(Gouyon u. a., 2008), focusing on the fea-
tures of the music piece. Despite approaching the problem from the opposite point of view,
Peeters et al. come to a similar set of taxonomy descriptors:

• The steadiness or dynamicity of the feature, i.e the fact that the features represent
a value extracted from the signal at a given time, or a parameter from a model of the
signal behavior along time (mean, standard deviation, derivative or Markov model of a
parameter);

• The time extent of the description provided by the features, i.e. scope of the
extraction of a particular feature (Global, e.g. RMS of a signal or local e.g. attack
time).

• The abstractness of a feature, i.e. amount of steps required to extract a feature from
a signal. Essentially, this descriptor indirectly correlates with concept level, introduced
by Lesaffre et al. (Table 3.3).

• The extraction process of a feature e.g.:

– Features that are directly computed on the waveform data (Temporal features),

– Features that are extracted using frequency domain (spectral features),

– Features extracted using harmonic modeling

– Features based on human hearing models (Mel/Bark scale).

Extraction process loosely corresponds to feature types but is instead focused on the
transforms applied to an input signal.

While not using user-dependent groups, Peeters et al. form a set of groups based on the
extraction process of the feature extended with the other three descriptors. (Table 3.4)
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Based on three taxonomies presented, following requirements can be specified for a feature
set:

• Features in a feature set should cover different groups and/or types.

• Features of choice should mainly belong to physical and sensorial concept level (low
level of abstraction) to maintain consistency.

• Both global and local features should be used. (Local in conjunction with statistical
tools)

3.2.3 Most used features

Another way of resolving the feature selection dilemma would be to choose a subset of
features most used in MIR researches involving machine learning (ML). However, to properly
determine "most used" features, statistically significant amount of scientific papers should be
analyzed, which is itself a separate research. Even if a list of the most used features is taken
from a separate source, following issues arise:

• Some of the frequently used features will be inevitably redundant.

• Statistically significant amount of papers has to accumulate, thus a list of frequently
used features will never contain recently discovered ones. (Or, in the worst-case sce-
nario, the list itself will be dated).

Despite all the disadvantages listed above, list of the most used features provides a useful
reference to techniques commonly used and vastly tested through the years.

Report, presented on Music Information Retrieval Evaluation eXchange (MIREX) by Hu et
al. (Hu u. a., 2008) and meta-analysis from following years (Hu und Downie, 2010) as well as
recent applications (Speck u. a., 2011) (Panda u. a., 2015) (Imbrasaite, 2015) suggest grow-
ing importance (and consequently, usage) of spectral (timbre) and rhythmic features, with
MFCC used almost universally. However, a few dynamics features (signal energy/loudness)
and pitch features (pitch histogram-based features) are still commonly present (Table:3.5).

3.2.4 Features of choice

After consideration of taxonomy and frequency of usage of features, following set of features
was formed:
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Group Features
Energy features RMS energy, Loudness, Loudness variation, Spectral power
Timbral features MFCCs, spectral shape, spectral centroid, spectral flatness,

spectral flux, zero-crossing rate
Pitch features Pitch histogram features, highest amplitude, histogram bin

summation
Rhythm features Rhythm strength, regularity, tempo, beat histograms

Table 3.5: Frequently used features

• MFCCs Mel Frequency Cepstral Coefficients (Logan, 2000) are widely recognised by
MIR and speech recognition researchers as a very informative feature related that is
closely related to timbre perception.(Laurier und Herrera, 2009).

• Zero-crossing rate (ZCR) Being one of the simplest descriptors, ZCR (Kedem, 1986)
was actively used by MIR researchers as a measure of the weighted average of the
spectral energy distribution. By definition ZCR is easy to compute and provides valu-
able overview on noiseness of a signal.

• Spectral centroid (SC) Due to limitations of MFCC (one coefficient per frequency sub-
band) SC (Grey und Gordon, 1978) is often used as a complementary feature that
allows for more precise spectral shape description. Researhes show that SC corre-
lates to timbral brightness of a music piece (Schubert u. a., 2004).

• RMS energy (RMSE): mean and variation Loudness of a music piece is often repre-
sented via RMSE. Combined with the timbral features, RMSE energy becomes quite
discriminative for several music categories (Laurier und Herrera, 2007) (Gouyon u. a.,
2008).

• Beat histogram (BH) features: values and weights of two highest peaks, a relation of
their height. A BH (Tzanetakis u. a., 2001) describes how much periodicity is in the
music piece at different tempo levels. In many cases, the most prominent peak of
the histogram corresponds to the main tempo of the music piece (Pohle u. a., 2005).
Gouyon et al. in their research paper (Gouyon u. a., 2004) suggest that rhythmic de-
scriptors are essential for music classification.

3.3 Preprocessing

In order to get equally precise calculations of the selected features for each music piece,
audio segments should be equally long and have the same sampling frequency. Since MIR
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is a developing research field, no standard approach to segmentation and resampling is
established. Moreover, certain tasks might require specifically different sampling rates and
segment lengths. However, since this paper does not have any specific requirements, com-
monly used segmentation/resampling techniques can be employed.

3.3.1 File format

The format of the input file is also a non-standardized property. Since compressed formats
are not well-suited for the feature extraction, they should be converted to WAV data format
as a part of preprocessing(Guaus, 2009).

3.3.2 Segmentation of a music piece

According to the meta-analysis conducted by Guaus (Guaus, 2009), segmentation of a music
piece is considered mandatory when low-level features are being extracted. While the length
of a segment varies from 5s to 120s, most commonly used segment length is 30 seconds. To
avoid the inclusion of zero padding and intro in the processed segment of a music piece, first
30 seconds of each music piece are discarded. Resulting segments last from 30th second
of the original music piece to 60th. Music pieces with insufficient length (less than 60s) are
discarded.

3.3.3 Resampling

A sampling rate of each audio segment directly affects the calculation of the most features,
thus, in order to provide consistency in feature vectors, single sampling frequency should
be chosen. According to the meta-analysis conducted by Guaus (Guaus, 2009), a sam-
pling frequency of 22.05KHz is considered the most suitable for MIR. While human hearing
range goes up to 20KHz, requiring at least 40KHz as a sampling frequency, audio signals
above 10KHz are considered noise on a perceptual level and can be safely discarded (Rosen
und Howell, 2011). Following these guidelines, each music segment is resampled to 22.05
KHz.

3.4 Feature extraction

Here methods of feature extraction from a signal should be thoroughly discussed. The feature
set used in this paper consists of local features (MFCC, SC, RMSE), measured in 30ms



3 Theoretical background 23

frames and global features (BH, SCR), measured through the whole music segment. In
order to provide a considerably sized feature vector, mean and variance of local features
among the frames are calculated.

3.4.1 Mel Frequency Cepstral Coefficients(MFCCs)

The Cepstrum of an input signal is defined as the Inverse Fourier Transform of the logarithm
of the spectrum of the signal(Logan, 2000) :

[htbp]C [n] =
1

N

N−1∑
k=0

log10 |X [k ]|j
2π
N
kn
, 0 < n < N − 1 (3.1)

where X [k ] is the spectrum of the input signal and N its length in samples.

Calculation of MFCCs (Sigurdsson u. a., 2006), however, includes a few modifications and is
described in the following way:

1. Initial signal is split into short frames, which allows the assumption that signal is sta-
tionary through each individual frame.

2. Hamming window is applied to remove edge effects.

3. The spectrum of a frame is found via FFT application.

4. Mel-scaling is applied in a form of a Mel-spaced filterbank.

5. The logarithm of amplitudes of the spectrum is calculated

6. DCT is applied in order to decorrelate overlapping Mel coefficients

7. First 8-15 (depending on the implementation) coefficients are retained, the rest is dis-
carded as insignificant.

The core difference between calculation of Cepstrum as is and MFCCs is the application of
Mel Filterbanks. The Mel scale is intended to map the perceived frequency of a tone onto a
linear scale that approximates the frequency resolution of human hearing:

melf requency = 2595 · log10[1 +
f

700
]

Based on the center mel-frequencies, Mel-filterbank (Figure 3.4) is created and applied to the
signal, resulting in a vector of frequency bins. The number of MFCCs retained varies from
researcher to researcher. Generally, latter MFCCs are considered less significant. Guaus in
his meta-analysis (Guaus, 2009) suggests usage of 8 MFCCs, as further increase doesn’t
improve classification accuracy in a general case.
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3.4.2 Zero-Crossing Rate (ZCR)

As defined by Kedem (Kedem, 1986) ZCR measures the rate of a waveform changing its
sign. For a signal with a length N ZCR is defined as:

ZCR =
1

2

N∑
n=1

|sign(x [n])− sign(x [n − 1])|

3.4.3 Root Mean Squared Energy (RMSE)

From a mathematical point of view, the time-domain energy of the input signal can be defined
as:

RMSE =

√√√√ 1

N

N∑
n=0

x [n]2

Where x [n] is the input time-domain data and N is length of x [n] (Guaus, 2009).

To estimate sharpness of the loudness transitions a mean value of the first-order delta of
RMSE sample is calculated along with mean and variance:

∆[k ] = E[k ]− E[k − 1],

Mean∆ =
1

K

K∑
k=1

∆[k ]

Where E[k ] is a vector of RMSE values for each frame and K is a number of frames.

3.4.4 Spectral Centroid (SC)

From a mathematical point of view, the Spectral Centroid can be calculated as:

SC =

∑N−1
n=0 f [n]a[n]∑N−1
n=0 a[n]

Where f [n] is the frequency value of nth bin of the FFT, a[n] is its amplitude and N is a
number of bins.(Grey und Gordon, 1978)
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3.4.5 Beat Histogram (BH)

The concept of Beat Histogram was initially proposed by Tzanetakis et al. (Tzanetakis u. a.,
2001) as a feature for automatic genre classification system. Extraction of the beat histogram
(Figure 3.5) is described as follows:

1. The signal is decomposed into a number of octave frequency bands using the DWT.

2. Time domain amplitude envelope of each frequency band is extracted separately as
follows:

a) Full Wave Rectification is applied:

z [n] = abs(y [n])

b) Low-pass (one pole with α = 0.99) filter is applied to the rectified wave:

a[n] = (1− α)z [n]− αz [n]

c) The resulting low-frequency signal is downsampled by a factor of k:

b[n] = a[kn]

d) Normalization (mean-removal) is applied to a downsampled signal:

c [n] = b[n]− E[b[n]]

3. The envelopes of each band are then summed together and an autocorrelation func-
tion is computed:

d [n] =
1

N

∑
n

c [n]c [n + k ]

4. The first five peaks of the autocorrelation function are detected and their corresponding
periodicities in beats per minute are calculated and added to the histogram

The periodicity corresponding to the most prominent peak of the final histogram is considered
to be the tempo in bpm of the audio file. However, since rhythm of the multi-instrumental
music pieces is considered quite complex, first two histogram peak values are taken, as well
as their weights separately and a relation of weights.
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3.4.6 Summary

Resulting feature vector for a signal consists of 27 features:

• Mean + variance for each of eight MFCCs - 16

• Mean + variance for SC - 2

• Mean + variance + mean delta for RMSE - 3

• BH features: "2 highest peaks values, weights and a relation between weights. - 5

• ZCR - 1

3.5 Machine learning

From the practical point of view, ML aims at creating programs that optimize a performance
criterion through the analysis of data (Guaus, 2009). Ml algorithms are widely used for ap-
proximating models without an obvious relation, creation of adaptive systems and clustering
of data.The MIR community has traditionally used ML techniques to classify music. Likewise,
the main goal of this thesis is an identification of a relation between emotion and features ex-
tracted from a physical signal. Since there is no clear connection that can be drawn berween
the two, ML is used to approximate the relation and define influence of different features on
it. Traditionally, ML algorythms are split into two groups:

• Unsupervised learning - The main property of unsupervised classifiers is that the
classification emerges from the data itself, based on objective similarity measures.
Multidimensional feature vectors are extracted and the distance between them is cal-
culated in a number of ways. Based on this distance, data entries are combined intro
clusters. In this case, no labels are pre-defined, and resulting clusters might have no
meaning in a regard of an emotion.

• Supervised learning is performed on a previously defined labels and aims to define a
relationship between the features extracted from a data entry and the label assigned to
it. Then the relation defined is used to identify a label for new data entries. Supervised
learning is commonly used in emotion-related MIR research with the combination of
hand-labeled datasets.
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3.5.1 Supervised learning subtypes

Supervised learning itself can be also split into two groups: regression and classification
algorithms. Regression algorithms are fed numerical values as labels of the data and aim
to predict a quantitative response. Classification algortighms, on the other hand, deal with
categories as labels and aim to predict a catefory that data entry belongs to without any
intermediary values. Both approaches are closely connected and use similar algorithms, only
the classification approach uses probabilities instead of quantitative response. As described
in section 3.1, categorical approach can be considered preferential due to the clarity of labels,
thus one of the classification algorithms should be employed.

3.5.2 Decision Trees

One of the definitive algorithms used in classification problems (as well as regression prob-
lems) is the decision tree algortihm. The decision tree algorithm splits the training dataset
into subsets based on a test attribute value. This process is repeated on each subset in a
recursive manner (recursive partitioning). Decision trees classify instances by sorting them
down the tree from the root to a lead node which provides the classification of the new in-
stance, and each branch descending from that node is one of the possible values for this
attribute. (Mitchell, 1997)

Decision trees for regression and classification hold a number of advantages and disadvan-
tages over the more classical approaches, such as linear regression:

• Trees tend to mimic human perception of a choice.

• Trees are easier to export and analyze when it comes to qualitative predictors.

• Unfortunately, trees generally do not hold the same level of predictive accuracy as
some other approaches.

• Trees are very sensetive to errors in input data.

However, by aggregating many decision trees, using methods such as random forests the
predictive performance of trees can be substantially improved.

3.5.3 Random forests

The random forest classifier uses several decision trees in order to improve the classification
rate. The basic concept behind this algorithm is common to other classifier strategies. It is
the idea of combining weak learners (decision tree in this case), to build better models. A
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set of trees is buit based on the training set and random vector, which allows decorellation of
the trees. Once the calssifier is built, input vector is estimated by each decorellated tree sep-
arately. The label with highest frequency ratio is then assigned to the input data. (Breiman,
2001)

3.5.4 Summary

Since one of the goals of this work is to test weight of different features in emotion-related
decision making, random forests were chosen as a classification algorithm.
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Figure 3.4: Mel-frequency filterbank (Sigurdsson u. a., 2006)
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Figure 3.5: Block-diagram of the beat-detection algorithm based on the Discrete Wavelet
Transform (Tzanetakis u. a., 2001)

.



4 Software design

4.1 General structure

Classification of audio data is a standard procedure in a field of MIR. General steps of such
process are:

1. Labeled audio data gathering.

2. Extraction of metadata (features) from the audio data.

3. Training and testing of a classifier based on extracted metadata.

This chapter describes design decisions made in order to implement this process as a soft-
ware application.

4.2 Design constraints

While requirements given in the section 2 do not define any particular constraints, leaving a
lot of freedom of design and implementation, certain design decisions have to be made to
guarantee correct functioning of an application developed. In particular, design of a software
application should allow:

• Implementation of feature extraction as defined in the section 3.4,

• Implementation of data gathering and preprocessing described in the section 3.3,

• Implementation of ML techniques chosen in the section 3.5,

• Easy storage of music metadata.

• Structure and code of application should be easy to understand.
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4.3 Dataset construction

Since this research focuses specifically on instrumental music, most of publically available
MIR datasets cannot be used. It was decided to create a new dataset based on one of
the complementary datasets of Million Songs Dataset(MSD) (Bertin-Mahieux u. a., 2011) -
Last.fm dataset. Last.fm dataset is provided in a format of SQLite file and contains song
names and corresponding tags. After reducing this set to instrumental music via tags, audio
tracks can be downloaded from publically available sources(youtube.com).

4.4 Software setup

4.4.1 Selection of the programming language

Theoretically, any high-level programming language can be sufficient for the requirements
listed above. However, to achieve ease of implementation and code understanding following
requirements have to be met:

• Language should be familiar to the implementing person (author of this thesis).

• Language has to have a variety of signal processing / machine learning libraries.

Considering these requirements, one of four languages can be chosen: Plain C, Java, Mat-
lab, Python. After a careful consideration of advantages and disadvantages of all four lan-
guages (Table 4.1), Python was chosen. It should be noted that most computation-heavy
python libraries are in fact partially written in C to increase the performance speed. Cur-
rently two versions of Python (2.7.x and 3.4.x) are supported. While most libraries of python
already have separate version for Python 3, some of them are still under a process of rewrit-
ing. Since none of Python 3 advantages can be used in the implementation, it was decided
to use Python 2. Additionally, bash is used as a scripting language in order to manage files
and SQL is used to manage the database.

4.4.2 Data storage

Since the initial set of songs names and corresponding labels gathered from MSD (Bertin-
Mahieux u. a., 2011) was stored as SQLite database, it was decided to keep using this
database engine for consistency. Apart from the consistency issue, SQLite has a huge
number of advantages over other storage methods:
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Language Advantages Disadvantages
Plain C High performance speed Questionable ease of use

Established libraries for ML and signal
processing

Java Low performance speed
Matlab Is specifically designed for engineers and

scientists
not open-source

Based on C, meaning high performance
speed

Not developer-friendly

Python Easy to use Slightly lower performance speed than C
Has dedicated community that provides
open-source libraries for signal process-
ing and ML

Table 4.1: Programming languages considered for software implementation

• SQLite is an SQL database engine which allows easy access to data using SQL
queries.

• SQLite is serverless and is stored as a single file, meaning that it can be easily trans-
fered.

• SQLite is a zero-configuration database, meaning that no setup is required.

• SQLite has a very limited set of dependencies, which are already a part of a platform
in the majority of cases.

Disadvantages include bad performance in case of multiple simultaneous transactions. How-
ever, since application workflow is intended to be strictly sequential, this disadvantage can
be completely discarded.

4.4.3 Libraries used

Python is widely known among scientists and engineers for its dedicated community. Mul-
tiple libraries for signal processing and machine learning are being developed and updated
regularly. Following libraries were chosen for feature extraction and machine learning imple-
mentation:

• Essentia (Bogdanov u. a., 2013) - a huge signal-processing library for C with a wrapper
for python.
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• pyAudioAnalysis (pyAudioAnalysis) - a smaller, but well-designed python library for
signal processing.

• Scikit-learn (Pedregosa u. a., 2011) - a machine learning python library developed as
a part of SciPy project - a group ofpython libraries designed specifically for engineers
and scientists.

4.4.4 Third-party software used

Third-party application youtube-dl (youtube-dl) is used in order to fetch music pieces publi-
cally available at youtube.com.

4.5 Application workflow

With the tools selected, general steps defined in the section 4.1 can be further specified and
summarized in a flowchart diagram 4.1.

4.5.1 Data gathering

Data gathering is performed in following steps:

1. Last.fm complementary set of MSD is retrieved in a form of SQLite database containing
songs and corresponding tags.

2. Set is filtered from all non-instrumental music and split into emotion categories (as
defined in 3.1.4) via SQL queries applied to tags.

3. Training (400 track names per category, randomly chosen, 2000 total) and testing (40
track names per emotion category, randomly chosen, 200 total) datasets are formed
and stored in the database, containing equal amount of audio tracks from each emotion
category.

4. After datasets are defined, youtube-dl is used to fetch corresponding audio data and
store it in the file system.
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4.5.2 Extraction of metadata

Preprocessing

Audio files are reformatted, segmented and resampled to match the same sampling fre-
quency as defined in section 3.3

Feature extraction

Features, defined in 3.4 are extracted from each track sequentially and stored in the database
with corresponing track name and emotion label.

4.5.3 Classifier training and testing

RF-based classifier, as defined in section 3.5 is trained and tested with corresponding training
and testing data.

Figure 4.1: Detailed application workflow
.
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4.6 Application file structure

In order to allow for easier debuging and improve the robustness of an application it is im-
plemented as a set of separated scripts, each script responsible for one of the general steps
(data gathering, feature extraction, classifier training). SQLite database is used to persist
datasets and corresponding metadata between the steps.



5 Results

5.1 Output of testing

In order to evaluate the efficiency of chosen features and learning methods, application was
run 5 times with a randomized training dataset each time. Mean of the results were taken
and compiled into the tables.

5.1.1 Classification Accuracy

5.1. It can be observed that accuracy of classification of "Epic" and "Happy" categories is

Emotion Label Sad Happy Melancholy Relaxed Epic Overall
Accuracy 62.5% 82.0% 54.6% 68.0% 86.0% 70.62%

Table 5.1: Testing output:Overall accuracy of classification

significantly above the rest. To better understand this issue, Table 5.1.1 shows the confusion
matrix.

True label/Predicted Label Sad Melancholy Relaxed Happy Epic
Sad 62.5% 23.0% 12.6% 0.2% 1.7%

Melancholy 27.2% 54.6% 18.7% 0.0% 00.0%
Relaxed 8.4% 14.1% 68.0% 8.2% 1.3%

Happy 0.4% 0.1% 9.5% 82.0% 2.0%
Epic 4.1% 2.3% 4.5% 3.1% 86.0%

Table 5.2: Testing output:Confusion matrix

The highest confusion rate can be observed between categories "sad and "melancholy".
There are a few possible reasons behind that:
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• Semantic issues : "sad" and "melancholic", while defining inherently different emo-
tions, can be sometimes used as synonyms, thus confusion between the tags is in-
evitable.

• Acoustic issues : both "sad" and "melancholic" are supposedly played in minor, in calm
manner. Certain features extracted might identify the same behavior.

Another interesting effect that can be observed is confusion vector for "epic" label. Notably,
most of the features do not get falsely assigned "epic" label, yet the opposite happens, in
approximately equal parts. The reason behind this might be the very definition of "epic". This
label was chosen as a representation of powerful music with high arousal. Assumption can
be made that certain melodies with low arousal can be perceived as "epic" in a sense of
performance technique, and do not receive any other emotion label.

5.1.2 Feature Impact

Structure of a RF classifier allows for an easy evaluation and representation of weight of
each feature. In order to reduce the length of the table 5.3, MFCC and BH features were
grouped together.

Feature MFCC-mean MFCC-var SC-mean SC-var RMSE-mean RMSE-var RMSE-delta BH ZCR
Weight 0.314 0.061 0.162 0.014 0.000 0.000 0.110 0.183 0.156

Table 5.3: Testing output:Weights of features

The output of the classifier is mainly defined by the mean MFCC (representing harmonics
in timbre) as well as BH features (representing tempo). Notably, ZCR is almost as effective
as SC-mean, despite a huge difference in an abstraction level. Most likely this effectiveness
of ZCR is caused by "clusterisation" of chosen emotion categories, as "melancholy", "sad"
and "relaxed" are expected to have lower ZCR. Both MFCC and BH are a combination of
coefficients, so they can be further investigated (Table 5.4, Table 5.5). Expectedly, MFCC1
doesn’t hold any value, as it just represent the energy of the frame. Obvious drop in the
weight of MFCCs is caused by irrelevance of higher harmonics (since they are essentially
noise). Weight of the second peak of BH is surprisingly high, which might be caused by the
prevalence of modern multi-instrumental music. Weights of BH peaks are expected to be of
value only if BH peak itself is also of value, which causes semi-scaling of peak values and
weights.
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MFCC coefficient 1 2 3 4 5 6 7 8 9
Weight 0.000 0.122 0.093 0.031 0.031 0.014 0.012 0.005 0.006

Table 5.4: Weights of MFCCs individually

BH Feature BH-peak1-value BH-peak2-value BH-peak1-weight BH-peak2-weight BH-peak-relative-weight
Weight 0.090 0.061 0.022 0.010 0.000

Table 5.5: Weights of BH features individually

5.2 Discussion of the results

While threshold specified in the section 2 is met for a mean accuracy, "melancholy" category
fell below the thresholds due to the semantic and acoustic errors. It might be that different
category would have been a better fit. Another crucial point is a data gathering source.
Unfortunately, with multitagging available and a random distribution of the tags, high accuracy
might be unachievable. Bright example of this issue is distribution of the tag "epic" into other
categories in such proportions.

Feature behaviour was expected, although it might be that different post-processing tech-
niques could enhance the behaviour of MFCCS.
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Glossary

MFCC Mel-Frequency Cepstral Coefficients

MIR Music Information Retrieval

ML Machine Learning

MSD Million Songs Dataset

RF Random Forests

RMS Root Mean Square

RMSE Root Mean Square Energy

ZCR Zero-Crossing Rate
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