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Abstract
This thesis describes the design of a demonstrator for optical fault injection attacks.
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1. Introduction

Embedded systems are part of everyday life in today’s world. They are used in household
appliances like washing machines and freezers but also in security-critical areas like access
control, cars, and smart cards. This growing trend is expected to continue with the Internet
of Things (IoT). Robust and mathematically secure cryptographic algorithms ensure security
of such devices. However, these methods have only been tamperproof against mathematical
attacks, not against attacks that target the implementation of these algorithms.

Security flaws in hardware are even more dangerous than in software, since they typically
cannot be patched. Chips on embedded devices are usually easy to access, which makes
many more attack vectors possible. Hardware attacks can be used to manipulate the be-
havior of an system or to obtain secret information like a cryptographic key. This is done
by monitoring and analyzing side channels like the power consumption, injection faults, or a
combination of both.

The objective of this thesis is to design a new demonstrator for NXP Semiconductors Ger-
many GmbH on the topic of optical fault injection attacks. The main goal is to provide an
understanding about the threads and impacts of these types of fault attacks. The demonstra-
tor must be comprehensible to a broad-based target group. Customers and visitors should
be convinced about the importance of using secure components in security-related prod-
ucts. The demonstrator will be also used for in-house training for employees with a security
background.

NXP already has a demo based on a microcontroller with 8051 architecture and command
line user interface. The new demonstrator is expected to have a clear graphical user interface
(GUI). NXP should be able to ship the demo to different sites, so it should be portable and fit
into a small case. Also, a previously uninvolved person must be able to set it up by following
a short user guide. The demonstrator must be reliable and reproducible. Five working demos
are required. One main challenge is to make the faults occur relatively quickly. In the real
world, fault attacks are usually completely automated, and it might be days or weeks before
an exploitable fault occurs

The 8051 architecture was invented in the 1980s, but it is still used in a variety of today?s
microcontrollers. However, the architecture is now considered obsolete. Therefore the more
modern ARM Cortex-M3 architecture was chosen for this demo. Today, 130 billion Advanced
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Figure 1.1.: User interface of the old demo

RISC Machines (ARM) processor have been sold, and 90% of all mobile devices are pow-
ered by an ARM processor [Lim17]. They are used in a wide range of applications, such
as motor drives, application control, handheld devices, equipment, personal computer (PC)
peripherals, and medical equipment.

This thesis starts in chapter 2 with background information about integrated circuits that is
essential in understanding the subsequent introduction to attacks on secure devices. Chap-
ter 3 describes the process of preparing the target and finding a vulnerability on the chip.
Chapter 4 examines the design of the built demonstrator for optical fault injection attacks.



2. Background

2.1. Integrated Circuits

An integrated circuit (IC) is a set of electronic circuits consisting of parts such as resistors, ca-
pacitors, and transistors. These circuits are implemented on a small piece of semiconductor
material called die. Semiconductors are usually composed of silicon. These chips are much
smaller, faster, and cheaper than those constructed of discrete components [Wik18a].

ICs are structured in several layers. Drain and source regions of transistors are diffused
into the semiconductor material. Isolations for the gates are implemented by depositing and
etching silicon nitride using masking. The structural size of regions are as small as a dozen
nanometers. On the top, several metal layers interconnect the different electronic compo-
nents to a circuit. Security ICs also have several metal layers as shields. Metal shields are
further described in Chapter 2.4. Figure 2.1 illustrates the cross-section of a semiconductor
die under a scanning electron microscope (SEM) with the different metal layers marked as
M1-M6.

Figure 2.1.: Cross-section of semiconductor die under a scanning electron microscope
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ICs are encapsulated in an enclosure, also known as a package. This packaging protects
the die from damage and environmental influences. The die is glued onto a leadframe.
Bondwires are used to connect the pads on the die with the individual pins of the leadframe.
In the 1980s, chip packages were composed of metal or ceramic, but now epoxy resins are
typically used.

Figure 2.2.: Cross section of IC package
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2.2. Attacks on Secure Devices

The first type of hardware attack was likely discovered in 1943, when an engineer at Bell Labs
found a flaw in a cryptographic teletype [Age07]. Rather than attacking theoretical weak-
nesses in the algorithms, the information could be obtained by monitoring radio frequency
(RF) emissions - a so-called side channel attack. During the late 1990s, the scientific commu-
nity became aware of hardware attacks as a method to compromise cryptographic systems
[Koc96].

Evaluating the security of embedded devices requires a wide knowledge of hardware and
software. A system normally can only be as secure as its weakest component. Five [Sko05]
major attack categories on embedded devices have been defined as follows:

Software attacks exploit vulnerabilities found in the protocols and cryptographic algorithms
or their implementation.

Fault generation uses abnormal environmental conditions to cause malfunctions in the pro-
cessor to exploit them.

Eavesdropping monitors a variety of information provided indirectly by an embedded device
through supply and interface connections and RF transmission. This information can
have statistical correlation to secret keys or similar elements.

Reverse engineering understands operations, functions, timing, and signal paths of the
semiconductor.

Microprobing1 accesses the chip surface directly to observe, manipulate, or interface with
the chip.

These attacks can also be combined. Attackers could use eavesdropping on side channels
to see how far a program has processed. Attackers can use this information to inject a fault at
a certain location in the program. For example, a password authentication could be bypassed
this way. The fault could be injected during the comparison between the correct password
and the one provided by the user.

Hardware attacks can be classified with following attributes:

Invasive involves decapsulation of the chip to reverse engineer, probe, or modify it.

Semi-invasive also involves decapsulation but without making direct contact to the die.

Non-invasive includes analysis of side-channels like timing, power consumption, and elec-
tromagnetic fields. This type also includes glitching on power or clock supply.

1Physical attacks would be a better description as it also involves other attacks.
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Local includes precise attacks on deliberate areas of the chip that implement a certain func-
tion.

Global relates to global parameters such as voltage and clock and results in random im-
pacts. Adversaries are not in charge of which functions of the chip they are attacking.

2.2.1. Side-Channel Analysis

Non-invasive attacks are also known as side-channel attacks. They refer to a variety of in-
formation emitted indirectly by an embedded device. This information, such as time delays,
power consumption, and electromagnetic emission, can be statistically related to the pro-
gram flow and be used to restore secret information, as in [Age07], or for further attacks.
Eavesdropping on these side-channels can be done without modifying the hardware. The
device usually will not be damaged permanently.

General side-channel attacks include:

Simple power analysis monitors variations in the power consumption of the device. The
power consumption varies with the executed instructions of the controller. Therefore,
by recognizing patterns of a cryptographic algorithm, secret keys can be extracted -
for instance, in the multiply-and-square algorithm of an RSA [Neu16].

Differential power Aaalysis occurs in two phases. First, a large amount of power traces is
taken during the cryptographic algorithm. Secondly, the data is analyzed with a variety
of statistical methods. In this way, secrets can be obtained from measurements, which
contain too much noise for simple power analysis.

2.2.2. Fault Injection

A fault attack describes an active attack that aims to inject errors into a target device. These
errors can be accomplished by several tampering means. Typical target circuits are central
processing unit (CPU) registers, memories, or program counters. Depending on the precision
of the applied technique, the effects can vary from flipping certain single bits to random
values in several bytes.

Common fault attacks include the following:

Clock glitching. This attack induces faults by sudden and short increases of the clock sig-
nal. Depending on gate length and internal clock distribution, the manufacturer spec-
ifies a maximum clock frequency. When the clock signal is too fast, the flip-flops are



2. Background 14

triggered before the input signal is stable, resulting in a metastable state. In this man-
ner, the executed instructions are disturbed or prevented, as there is not enough time
to complete them before the next clock cycle occurs. After the glitch, the processor
operates normally. Combining this attack with simple power analysis offers the op-
portunity to launch the attack at certain points in the code. Clock glitching attacks
are simple to perform, as no modification of the chip itself or specialized hardware is
needed. [SGD08]

Power glitching. This attack is similar to clock glitching. The fault is induced by abrupt
changes in the supply voltages. Voltage glitches modify the timing properties of
CMOS-logic, causing faults like instruction skipping. Furthermore, memories need
a stable power supply to operate correctly. Sensitive amplifiers are used to read from
flash memory, and high-voltage pumps are used to write to it. A reduced supply volt-
age might result in incorrect data being read or written to the memory. Timing and
duration of the glitch must be adjusted until the desired fault is achieved. [BECN+04]

Temperature attack. An IC is only specified for a specific temperature range. Outside this
range, proper function is not guaranteed. Conceivable effects can be the random
modification of RAM cells through heating. The temperature can vary to a point where
writing to memory works but reading does not [BECN+04]. Another attack aims on
DRAM memory. If a device is turned off, the contents of DRAM vanish gradually over
a period of seconds to minutes. This process can be slowed down by cooling the chip
to around �50�C. Contents like cryptographic keys can then be read out. [HSH+08].

Electromagnetic-Pulse. This attack uses electromagnetic pulses to influence memory cells
or general functions. An active coil is used to create a magnetic field that induces Eddy
currents on the surface near the conducting materials. Using this technique precisely,
local attacks can be carried out. The equipment needed for this attack is relatively
cheap, and no decapsulation of the IC is needed. The attacker does need to know the
basic layout of the die to position the coil.

Optical fault. A semi-invasive fault injection attack is carried out through light pulses or high-
intensity lasers. This type of attack is described in more detail in section 2.2.4.

2.2.3. Physical Attacks

A few more hardware attacks must be mentioned. The following invasive attacks are used to
modify the chip or to directly interface with it:

Focused ion beam. A focused ion beam (FIB) can be used directly to modify an integrated
circuit. It can be used to add or cut electrical connections to make individual elements
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like bus lines accessible for measurements. Figure 2.3 illustrates modifications done
with a FIB on (1) a new connection between two traces and (2) a cut through a trace.

Figure 2.3.: Modification of an IC using FIB

Microprobing. Needles are placed on traces of the chip to eavesdrop internal signals.
[Sko17]

Reverse engineering. Photons are emitted by switching transistors. These photons can be
detected and used as a side channel. Because of the metal layer on the front side,
these attacks would be carried out on the backside. Invasive modification of the IC,
like thinning of the die, can be required. [Sch14]
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2.2.4. Optical Fault Injection

During nuclear tests in the 1950s, abnormal behavior was observed on semiconductors
[Wik18b]. These problems also occurred in space and aerospace electronics caused by
cosmic radiation. The generic term for effects caused by ionizing particles striking through
sensitive electronic devices is Single Event Effect (SEE). An important subcategory of SEE
is Single Event Upsets (SEU), which describes a state change of an electronic circuit. These
events are also called soft errors, as they are only temporary and do not physically damage
the device. In the mid-1960s, pulsed lasers were used to simulate these effects on semi-
conductors [Hab65]. The single board computer Raspberry Pi 2, released in 2015, is also
affected by SEUs. The computer crashes if it is photographed with a xenon flash. The voltage
regulator on the board has a chip scale package. The die is mounted directly onto the printed
circuit Board (PCB) upside down without any enclosure. Through a small gap between die
and PCB, the photon could penetrate the silicon [Rak16]. In 2002 [SA+02] published the first
optical fault injection on the SRAM of a microcontroller.

When an ionizing particle like a photon hits a part of a semiconductor, it is called the pho-
toelectric effect. If the photons strike the silicon of a device with a higher energy than the
bandgap, electron-hole pairs are generated along the light beam’s path. Usually all of these
pairs recombine, and no effect on the IC is noticeable. The most sensitive regions of an IC
are reversed biased pn junctions. If the photon hits the junction, like in figure 2.4, the holes
and electrons cannot recombine because of the electric field. The holes drift to the p-zone
and the electrons to the n-zone. This process, called funnelling, leads to a fast transient
current through the struck junction. Then, diffusion is where the current decreases slowly
until all charges are collected, recombined, or diffused away by the junction area [WA08].

Figure 2.4.: Cross-section of a CMOS Inverter

Inside a logic circuit, this process can cause an SEU, which means that the state of a circuit
changes unexpectedly. Figure 2.5 illustrates the schematic of the CMOS Inverter in Figure
2.4. The input of the inverter is High and the output state is Low. Hence, the PMOS transistor



2. Background 17

is On and connected to the positive supply voltage Vdd. The NMOS transistor is Off. If a
photon hits the drain (marked red) of the reversed biased NMOS, as illustrated in Figure 2.4,
a transient current flows through the struck transistor. As a result, the restoring transistor
sources a current to compensate the particle-induced current and induces a voltage drop at
its drain [Rec10]. This action leads to a temporary change of the output from High to Low.
When the input of the inverter is High, the vulnerable area is the source of the closed PMOS
transistor.

Figure 2.5.: Schematic of a CMOS Inverter

Optical fault injections can be carried out either from the front or back of the die. Frontside
attacks on silicon can be implemented with wavelengths from 500nm � 800nm, depending
on the chip’s design. Backside attacks on modern chips are more practical due to the in-
creasing number of metal layers on the chip itself. The metal layers make the target denser
for a light beam. Wavelengths for backside attacks reach from 950� 1050nm [Ana14]. For
wavelengths over 1100nm, silicon becomes transparent and the photons pass through with-
out being absorbed. With backside attacks, the transistor can be reached directly through
the silicon on which the transistors were built.

Optical fault attacks can be executed with various light sources with the appropriate wave-
length. A xenon2 photo-flash lamp of a camera is the simplest form of this technique, as it
only requires cheap equipment and a decapsulated chip. The light of a photoflash contains
the wavelengths necessary for front- and backside attacks. However, without any further
equipment, only precise global attacks can be executed. Therefore, it is not detectable which
areas and function of the chip are attacked. As a result, effects can be extremely random
and not reproducible, or multiple errors can take the chip into a non-operational state.

2Light-emitting diode (LED) flashes lack the necessary near-infrared light spectrum [KBCK13].
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A more advanced setup uses lasers in combination with an optical microscope to obtain
extremely focused light beams. Depending on the optics, the spot size of a laser can be as
small as 1�m, making it possible to attack certain parts of a circuit without disrupting the
whole chip. Lasers can also help in understanding what caused the fault.

Figure 2.6 illustrates a commercially available setup for the evaluation of optical fault attacks.
It is equipped with a motorized XY-Stage. The setup can be used for stepping over a chip’s
surface and automatically testing various spots for vulnerability. Two individual lasers offer
the opportunity to attack two locations at the same time. An infrared camera can be used to
navigate over the chip during backside attacks.

Figure 2.6.: Riscure Laser Station 2 [Ris18]
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2.2.5. Effects of Fault Attacks

The following effects of fault attacks are possible on a microcontroller:

Data/code modification affects stored data in the memory, which particularly. This applies
in particular to SRAM or FLASH memory. This can variate from unpredictable values
at various locations to flipping specific bits or bytes.

Register modification directly affects CPU registers. Especially in a PC, this modification
offers an attacker the opportunity to jump to any location in the code and control the
program flow.

CPU execution corruption changes the instruction of an opcode. Depending on the preci-
sion of an attack, this corruption can skip an instruction or change it to a legit random
or specific value.

Figure 2.7.: Instruction corruption

Figure 2.7 illustrates an example of instruction corruption. This example uses a Thumb2 16-
bit conditional branch. These branches are conditional on the status register. Bit 15-12 of the
opcode encodes the instruction as conditional branch, bit 11-8 encodes the condition, and
bit 7-0 encodes the offset from the PC to the destination address. Instruction (1) is a branch
if less or equal instruction, which is common at the end of a loop just after a comparison of
the loop counter. The modification of a few bits can cause a completely different behavior
of the program. Instruction (2) changes from branch if less or equal to branch always by
flipping a single bit in the condition field. Instruction (3) changes the address field to jump to
a different address in the code. An adversary can use these effects to either bypass access
or right control verification. The attacker can also generate faulty encryptions or signatures,
from which secret keys can be extracted.



2. Background 20

2.3. RSA

RSA is an asymmetric encryption and signature scheme. It was first published in 1978
[RSA78] and is named after its inventors Ronald L. Rivest, Adi Shamir, and Leonard Adle-
man. RSA, through its asymmetry, includes a public key for encryption and a different key,
called the private key, for decryption. It is not feasible to obtain the private key from the public
key in a reasonable amount of time. Thus, for mke = c mod n, where m is the plain text, ke
the encryption key and c the cipher, there is a decryption key kd so that ckd mod n = m.

Figure 2.8.: Encrypted message transfer using RSA

For example, if Alice wants to send an encrypted message to Bob, he first needs to generate
a key pair. The scheme of this system is illustrated in Figure 2.8. To create a key pair, two
large prime numbers p and q are multiplied. The product n = p � q is called the modulus
and is part of the public key. In addition �(n) = (p � 1) � (q � 1) is calculated, where � is
the amount of integers that are relatively prime and smaller to n.

The second part of the public key is the public exponent e. Usually, the values e = 3, e = 17

or e = 216+1 are chosen because of the low hamming weight of the number, which results
in a faster computation of the algorithm 1.

The private key d is determined by ed � 1(mod�(n)) [Neu16].
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Alice can now encrypt a message by using Bob’s public key:

c := me mod n (2.1)

Bob can decrypt the message using his private key, which only he is aware of:

cd mod n = m (2.2)

The size of the modulus n is the key size. The security depends on the difficulty of factorizing
the product of large prime numbers. To date, no mathematical procedure exists for factorizing
a large n, without knowing p or q. within a reasonable time. . But considering progress in
cryptanalysis, the recommended key length for RSA will be extended. The German federal
office for information security (BSI) recommends a key length of 2,000 bits until the year
2022, when the key size should be increased again [fSidI18].

Implementation

As depicted in formula 2.1 and 2.2, exponentiations are required for RSA. As the exponents
are several hundred digits long, these computations would take a long time in a naive im-
plementation. A 32-bit CPU can usually only multiply two 16-bit numbers in one instruction
cycle. As the size of the key and the messages is usually much longer, an algorithm is
required to perform exponentiations.

Algorithm 1 depicts a square and multiply algorithm, an efficient method for exponentiating
by squaring. The exponent k is used in its binary form.

Algorithm 1: Square and Multiply Algorithm
Input : x, k, n
Output: result = xk mod n

1 result = 1

2 for i = Len(k)::0 do
3 result = result2 mod n

4 if ki = 1 then
5 result = result � x mod n

6 end
7 end
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2.3.1. Signing Messages

RSA can also be used to sign a message. Suppose Alice wants to send message to Bob.
Alice can calculate the signature of message s = md mod n, using her private key. She
then can send the signature and unencrypted message to Bob. Bob can then use the public
key to verify the message. Therefore, he can apply se mod n using Alice’s public key. If the
result matches the actual message, he knows that the message could only have been sent
by Alice, as long as she is the only person who is in possession of her private key.

2.3.2. RSA-CRT

Decryption or signing can be made even more efficient by using the Chinese Remainder
Theorem (CRT). The receiver of the message, in possession of p and q, can calculate cd

mod p and cd mod q. Using these intermediate results, the receiver can calculate cd

mod n by using the CRT. As p and q are much smaller than n, this approach is much faster
than calculating cd mod n directly.

Algorithm 2: RSA-CRT Algorithm
Input : c, d, p, q, n
Output: m = cd mod n

1 dp = d mod (p � 1)

2 dq = d mod (q � 1)

3 Find u and v with 1 = u � p + v � q using the extended Euclidean algorithm
4 sigp = cdp mod p

5 sigq = cdq mod q

6 m = u � p � sigp + v � q � sigq
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2.3.3. BellCoRe Attack

The BellCoRe attack was published in 1997 by Boneh, DeMillo and Lipton from Bell Com-
munications Research Inc. also known as BellCoRe [BDL97]. The attack uses fault injection
to provoke an error in a RSA-CRT algorithm. The result of this faulty signature can lead to
the leakage of the private key. As depicted in Algorithm 2, the computation for sig = cd

mod n is split into two parts, sigp and sigq. The attack is based on injecting a fault during
the computation of these partial results and leaving the other one correct.

Let ^sig = u � p � sigp + v � q � ^sigq be a signature with the faulty ^sigq .

A subtraction of a correct signature with a faulty one produces:

sig� ^sig = (u�p�sigp+v �q�sigq)�(u�p�sigp+v �q� ^sigq) = v �q�(sigq� ^sigq)

It is most likely, that sigq � ^sigq is relatively prime with p and q. The term 1 = u � p+ v � q

implies v � q � 1 mod p, which means v � q cannot be a multiple of p. As q is a factor of
n, the computation of the greatest common divisor of sig � ^sig and n will reveal q.

GCD(sig � ^sig; n) = q

The modulus n can now be easily factorized. To summarize, the private key of a RSA cryp-
tosystem can determined by using a correct signature and one where a fault happened during
the computation of only one of the both partial signatures. It even doesn’t matter how often
a fault happens during the computation of sigq.
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2.4. Countermeasures

Secure embedded systems are critical for financial institutions, retailers, and governments.
Therefore, techniques have been developed to provide protection against hardware attacks.
Different certifications, like the ISO/IEC 15408, also known as the Common Criteria, evaluate
and audit security properties of IT products. There are two approaches to prevent attacks.
One is to prevent attacks from occurring in the first place by making the job of an adversary
harder. The other is to detect attacks and react in an appropriate way. For example, a device
could delete all its secret data after a certain amount of monitored tampering attempts. Since
no countermeasures can prevent all attacks, various techniques are combined. An adequate
trade-off between efficiency and security must be chosen.

Common countermeasures include the following:

Metal shields on the top layer of the die are used to deny access to the circuits and to de-
tect intrusions. Their purpose is to prevent all types of semi- and full-invasive attacks,
including probing, fault attacks, and optical fault injection. They also hamper reverse
engineering. These shields can be implemented as passive, and they measure the
capacitive load of the mesh. However, passive shields can be defeated as they must
tolerate some variations in the quantities to be measured. On active shields, random
bit sequences are put on the input of the trace and compared for faults on the output.
Figure 2.9 illustrates an active shield on top of a secure IC. The randomized layout
makes it harder to guess the pattern bypass of the shield [BCD+12]. It is impossible
to find any hints about the structures underneath it with a microscope. At the marked
spot, a trace of the shield was cut using the FIB. The chip was not operational after-
ward.

Figure 2.9.: Active shield on an Atmel ATAES132

Tamper detectors for voltage, temperature, frequency, and light are used to detect various
fault attacks.
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Randomized chip design is another way to make reverse engineering of the chip harder.
The key is to renounce the use hard-coded macros during the Very-Large-Scale Inte-
gration (VLSI) design and to use decorrelated glue logic instead. Some manufacturers
are tempted to use the same already laid-out and certified crypto processor block on
various products. However, this design makes it easier to identify these function blocks,
and hardware vulnerability found in the design can be applied to all other products with
little effort.

Encrypted memory prevents reverse engineering of program data, as readout protections
of ROMs in the microcontroller can be bypassed [OT17]. Encrypted RAM prevents live
forensics of the system.

Software countermeasures are used against a large variety of attacks. They involve dou-
ble computation and verifying results as an effective detection against fault attacks.
Also, the time redundancy of a software function can be improved to reduce leaked
information about the program flow-side channels, decreasing the ability to use timing
attacks.

As already mentioned, the security of an embedded systems relies on hardware and software
design. Various techniques during software development can be applied to decrease the risk
of side-channel and fault attacks.
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Software countermeasures for RSA

Algorithm 1 is vulnerable for simple power analysis. For di = 1, the multiplication in line 5 is
executed. For di = 0, the multiplication is not executed and results in shorter computation
time. As a consequence, the exponent d is determinable in the power consumption profile
on Figure 2.10 using a timing attack.

Figure 2.10.: Simple power analysis on square and multiply algorithm

In [Tob11], an enhanced RSA decryption method, with software countermeasures against
timing and fault attacks, is described. This vulnerability is resolved in Figure 2.11 at block
(44) by adding an identical computation for the case di = 0. As a result, the program
takes the same amount of time for both states. This additional computation is later used for
verifying the result against faults.

Mn at (44) executes the exponentiation with the complement of d . So (44) can be written
as:

Mn = Cd�1 mod N, where the complement d�1 can be replaced by:

d�1 = 2L � 1� d , where L is the number of bits of d .

The verification at (45) calculates the product:

y = C �M �Mn mod N

y = C � Cd
� C2L�1�d

y = C2L
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The result is compared with the auxiliary variable x , which holds the value x = C2L after L
cycles. Any fault during the computation will mean that x is not equal to the product y .

The algorithm can be improved more by initializing Mn with the value of C. This way the
multiplication with C at (45) is not needed.

Figure 2.11.: Block diagram of a RSA decryption method with verification [Tob11]

—————————————————————————————————



3. Practical Attack

This chapter describes details of attacks. Although the principles of optical fault injections
were discussed in chapter 2, optical fault injections are far too complex to guess or simulate
their behavior during an attack. Therefore, the target architecture and the silicon die have
been analyzed and the fault behavior investigated in different experiments. Similar attacks
have been successfully executed by [SA+02] on a PIC16F84. The authors used a photo-flash
mounted on a microscope, and, with a magnification of 1500x, they were able to change sin-
gle bits in the SRAM. [GGS17] depicted an attack on an ARM Cortex-M0 controller using a
low-cost setup. A photo-flash was mounted on a 3D printed frame with a lens and a motor-
ized XY-stage to implement local attacks from the chip’s backside. [Nac16] demonstrated a
successful BellCoRe attack on the same processor family.

3.1. Device Architecture

The STM32F103RBT6 microcontroller is part of the STM32F1 processor family, which con-
sists of a ARM Cortex-M3 32-bit RISC core. This IP-Core is part of the Cortex-M family by
Advanced RISC Machines Ltd. The STM32F103 is realized as a System on a Chip (SOC).
It also contains 128 Kbytes of Flash memory and 20 Kbytes of SRAM.

The ARM Cortex-M3 is based on a modified Harvard Architecture with separate storage and
buses for instructions and data. This structure allows simultaneous access to both storages.
However, instructions and data storage are accessible over the same address space. The
Cortex-M3 uses a subset of the Thumb-2 instruction set. Thumb-2 extends the 16-bit Thumb-
1 instruction set with additional 32-bit instructions. The 16- and 32-bit instructions can be
used together in the code and ensure higher code density and performance.

This processor has 16 CPU Registers, R0-R15. R0-R12 are general purpose registers,
which can be used for data storage and are much faster than all other memory. The stack
pointer (SP) R13 is used as a pointer to the active stack. The link register (R14) is used to
store the return value for the program counter when a subroutine is called. R14 is the actual
program counter (PC). It stores the addresses of currently executed instructions.
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Figure 3.1.: Pipeline of the ARM Cortex-M3

The in Figure 3.1 illustrated ARM-v7M architecture implements a three-stage processor
pipeline. All three stages-fetch, decode, and execute-operate simultaneously during a clock
cycle. For example, during execution, a second set of instructions can be decoded, and
another can be fetched. During the fetch state, the program data is returned from the in-
struction memory. Up to two instructions can be fetched during a cycle because most of
them are 16 bits wide. The decode state reads the immediate values out of the instruction
code and forwards them to the registers. The instruction then is executed during the execu-
tion state. When an instruction takes several clock cycles to be executed, the pipeline stalls.
The instruction prefetch unit also has an instruction buffer. The buffer has a capacity of 3x32
bits. Thus, it can store up to 6x16-bit or 3x32-bit instructions. Instructions can be fetched
several cycles ahead before they enter the decode stage.

The internal flash memory holds the program code. It has a bandwidth of 64 bit per block.
Program data for the prefetch unit of the core is buffered in a additional 2x64 bit flash buffer.
The buffer reads in 64 bit with a single read. This enables faster CPU execution, as the CPU
fetches one word at a time with the next word already available in the prefetch buffer.

The STM32F1 already has some features to harden it against environmental influences. All
modules of the chip are fed by an embedded voltage controller. Therefore, voltage rails for
the CPU core and memory cannot be disrupted directly. A programmable voltage detector
constantly compares the input voltage with a configurable value. An interrupt is triggered
when the supply is over or below the threshold. An internal temperature sensor can be
used to monitor the temperature of the device. A clock security system can be activated to
detect errors in the external oscillator and generate an interrupt. However, these systems
are designed to protect against faults caused by environmental conditions. They might be
insufficient to protect against precise fault attacks.

In addition, the processor has several fault exceptions. These exceptions cover such usage
faults as attempted execution of undefined instructions, division by zero, and invalid loading
of the PC. They also cover memory faults, which occur when the CPU attempts to read or
write at invalid addresses. The microcontroller also has a debugger. Among other things, it
supports processor halt, single-step, processor core register access, hardware and software
breakpoints, and full system memory access.
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3.2. Decapsulation

To gain access to the die of an IC, its enclosure needs to be opened. This process is called
decapsulation. There are many different approaches depending whether the front or back
of the chip should be opened. A further difference is whether the chip should remain intact
or if only the die itself is needed for analysis. Many labs use red-fuming nitric acid (HNO3)
as standard procedure for decapsulation. It etches away the epoxy but leaves the die and
bondwires, which are made out of gold, intact. For newer ICs, copper bondwires are used
more frequently as they are cheaper than gold. In this case, [Age14] recommends using a
9:1 or 2:1 mixture of HNO3 and sulfuric acid (H2SO4). For thicker packages like PDIP, it is
recommended to mill a small cavity as preparation. Chemical etching will then be faster and
more effective.

For the target chip, this optional step is not needed. The STM32F103RBT6 comes in a QFP
package that is only 1.6mm thick. The materials declaration form [STM17] indicates that gold
bondwires are used; hence HNO3 can be used. First, the IC was scanned with an X-ray to
determine the actual size and position of the die. The die can be detected in the center of
Figure 3.2, lying on the leadframe. Also, the bondwires, connecting the die with the pins, are
recognizable.

Figure 3.2.: X-ray image of an STM32F103RBT6 with QFP package

An automated chemical decapsulation system is used for the etching process. This process
allows faster, safer, and more reproducible results. A suitable Teflon mask, depending on the
die size, is chosen, and the IC is placed into the machine. Etch time and temperature are
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selected and the automatic etch process is started. Figure 3.3 displays the machine under a
fume hood.

Figure 3.3.: JetEtch Pro Decapsulation System by Nisene Technology

After etching, the remaining acid in the hole is washed away with acetone. An additional step
is to clean residues of the die surface using a semiconductor cleaning agent with assistance
from an ultrasonic cleaner. Afterward, the whole package is cleaned again with isopropyl
alcohol. The last step is to blow-dry the specimen to avoid corrosion. Figure 3.4 displays the
final result with the IC fully exposed and the bondwires and pins intact.

Figure 3.4.: Decapsulated Microcontroller



3. Practical Attack 32

3.3. Target Analysis

After the die is exposed, the basic components of the microcontroller can be located. This
view can be helpful in gathering more information about the chip, especially for optical fault
injection attacks to find potential targets. Figure 3.5 depicts a composite image of the die
made with a microscope. It is fairly easy to locate the memories because of their consistent
pattern. The bottom left identifies as the 128 kByte flash memory. On the top right of the
die is the SRAM with 20 kByte capacity. At the bottom right of the die, analog functions are
identifiable by their unique structure. Capacitors and resistors for the internal power supply
fill a large amount of space. These blocks are usually designed and tested once and used
on all ICs of the same family. The remaining surface of the die is populated by glue logic,
including the ARM core and all digital parts of peripherals such as timers, clock management,
and bus drivers. The digital circuits are described by a hardware description language (HDL)
and synthesized automatically. The synthesizer places standard cells such as AND and OR
and then automatically routes connections between them. Because of this process, these
circuits are not distinguishable without comprehensive reverse engineering.

Figure 3.5.: Die of STM32F103RBT6 with annotations

As mentioned in 2.2.4 silicon is transparent for infrared light. Due to this factor, images
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from the backside of the chip can be made with an infrared camera. Since there are no
metal layers on the backside, more components can be revealed. To gain access to the
backside, the chip was completely decapsulated and removed from the remaining lead frame.
Afterward, the die was placed with the backside up under a microscope. The microscope
was equipped with an infrared light source and a high-density near-field infrared camera.
The camera picked up the light reflected by the die. Figure 3.6 depicts a complete backside
image of the. Figure 3.6 depicts a complete backside image of the device under test (DUT).
The flash controller, which had been hidden by the metal layers on Figure 3.5, is now clearly
visible.

Figure 3.6.: Backside of STM32F103RBT6 with annotations
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3.4. Setup and Experiments

The experiments are executed with a xenon strobe light. The only adjustable setting is the
flash frequency. To ensure constant conditions, the strobe light is mounted on an aluminium
profile. A measuring scale is attached to the profile to measure the distance between the
strobe light and the IC. This setup allows the intensity to be adjusted by varying the dis-
tance.

The microcontroller on a NUCLEO-F103RB development board was desoldered and re-
placed with a decapsulated one. To communicate with the board, the microcontroller is
connected to the PC via USB. This way, a UART and the debugger interface are accessible.
The onboard ST-Link debugger on all development boards was upgraded with Seggers J-Link
firmware [Gmb18a]. This debugger runs faster and has more capabilities. All programs are
developed using Seggers Embedded Studio [Gmb18b]. The GCC Compiler Version 6.3.1 is
used.

Figure 3.7.: Setup for experiments with xenon strobe light
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3.4.1. Experiment 1: Finding a Vulnerable Spot

To gain a basic understanding of whether the controller is even sensitive to frontside optical
fault attacks, a simple test program was written in C. Algorithm 3 starts by sending a reset
notifier using the UART. Afterwards, it will increment a loop counter and an additional counter
until they both reach a value of 1 million. The results of both counters are then sent to the
PC using UART with a baud rate of 115,200 baud. The external crystal is not populated
on the development board. Therefore, the internal RC-Oscillator with a frequency of 8 MHz
is used for the system clock. No additional libraries are used in order to keep the code as
short as possible. The more the processor stays inside the actual counting loop, the greater
the probability that a fault will hit this loop. In this way, faults can be narrowed to a few
instructions of the program code. Presumably, a fault would affect an incorrect result of the
counter value.

All unused flash memory was written with a branch to the address of itself. In case the PC
is set to a random value in flash, the processor will remain in this loop, making it easy to
trace this type of fault with the debugger. A handler for the hard fault interrupt sends out the
Configurable Fault Status Register (CFSR) and Hard Fault Status Register (HFSR), providing
some insights about the failures. Afterward, the handler stays in an endless loop. Thus, the
microcontroller must be reset manually. These hard faults are considered as failed attacks
since they are recognized by the chip.

On a proper device, line 9 would never be executed because of the while-loop. This message
will indicate that the program broke out of the loop. Because of the compiler optimization,
line 1 and two 2 cannot be replaced by while (1), as the compiler would otherwise ignore the
unreachable code in line 9. This factor is still the case when using the lowest optimization
level in ARM GCC. The total duration for a complete counting loop and output of the data
takes around 2 seconds.

Algorithm 3: Testprogram

1 UartSend("Reset") a = 1

2 while a == 1 do
3 cnt = 0
4 for i = 0..1000000 do
5 cnt++
6 end
7 UartSend(i,cnt)
8 end
9 UartSend("Outbreak")
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At this point, all attempted attacks resulted in a reset of the controller. This reset was still the
case with maximum distance between the strobe light and the IC, even with use of neutral
density filters on the IC that reduced the light intensity of the flash up to 99.9%. A problem
with global optical attacks is that analog circuits are fairly sensitive to light. Figure 3.5 shows
that parts of the analog circuit are not covered by metal layers, which makes them even more
sensitive to these attacks. Referring to the pinout the PLLs for the clock signals, the reset
handler and likely the internal voltage regulator might be located there. Optical fault attacks
with lasers would not cause such problems, as their spots are smaller. They only affect local
areas of the chip.

To prevent the controller from resetting during the attacks, different methods of masking
the die were tested. Paint has previously been used to protect parts of a memory against
ultraviolet (UV) radiation. It can be applied using a microscope and a single hair of a brush.
A very steady hand is required to ensure that no bondwires are damaged. Some paints were
transparent for non-determinable wavelength, which disrupted the IC. Furthermore, photons
that impact next to the die can reflect and strike the silicon from the side, as depicted in
Figure 3.8.

Figure 3.8.: Reflect photons on the leadframe

A more hassle-free method is to use electric tape. It is completely lightproof and can be
stuck on the remaining package surface. Therefore, the chance of harming the bondwires
is reduced. Masks can be cut with a scalpel. Afterward, they can be placed very precisely
under a microscope. Figure 3.9a depicts an applied mask where the analog circuits are
covered. Different areas of the chip were covered during this test. The flash controller was
the vulnerable part of the chip. This finding could be confirmed with the help of the backside
image in Figure 3.6. To reduce the number of unusable faults the mask in Figure 3.9b, which
only exposes the area of the flash controller, was made. Tests where only the SRAM or the
Core logic were exposed proved unsuccessful.

Different error patterns occurred during the successful fault injections against Algorithm 3. In
many cases, cnt and i had the same, too-low value. This result indicates that the counting
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(a) Analog part covered (b) Only the flash controller exposed

Figure 3.9.: Covered chips using tape

loop was left too early. Other cases had an unaffected i and a much too high or too low cnt .
In this case, the incrementation instruction of cnt may have been disturbed. As explained
in Chapter 2.2.5, only a single bit of a conditional branch has to be flipped to change its
behavior. A breakout of the infinite loop occurred only once. The relevant code for the while
loop is only 3 assembly instructions long, making it unlikely to be struck.

The contents of the fault registers during the hard fault exceptions were also evaluated.
Most of the time, the exceptions were thrown because the memory tried to access invalid
addresses. Another common exception was that the processor was attempting to execute
illegal instructions. An illegal instruction is an opcode that is not defined in the instruction set.
Overall, the produced faults were well-reproducible.
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3.4.2. Experiment 2: Fault Behavior of the Flash Controller

This experiment is meant to examine the effects that the fault injection has on the flash
controller. The faults in Chapter 3.4.1 were injected during the program execution. No writing
or erasing of the flash was performed during the test program. Also, the faults were only
temporary, with no data in memory changing permanently. This finding suggests that only
the reading of the flash was affected by the attack. The illegal instruction exceptions suggest
that the chip received corrupted instructions from the flash memory.

To test this theory, the flash memory was completely written with a consistent test pattern.
It was then read out using the debugger. The flash controller was attacked during the read-
ing. Afterward, the original flash contents were compared to the dumps. The attack was
automated using the python program flash-tester.py. A python library [Inc18] was used as
interface to the SEGGER J-Link debugger. The flash was dumped in and compared to the
reference image in a constant loop. Corrupted memory contents were released.

Figure 3.10.: Flowgraph for flash-tester.py

As expected, the attacks resulted in corrupted data in the dumps. Depending on the fre-
quency of the flash, one or two small areas in the flash were affected. The locations were at
different addresses during the test. The corrupted areas ranged between 16 bits and several
words, depending on the distance between DUT and flash. Different test patterns demon-
strated that the corruption resulted in setting bits to zero. The case of a bit modification from
0 to 1 never occurred. In most cases, the data was completely set to 0. This result means
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that the CPU will load 0x0000 as its instructions, which will be decoded as "mov r0, r0" and
is equal to an no operation (NOP) instruction. As the data corruption never occurred at the
same address, and only the flash controller was exposed to the light, it is unlikely that the
flash cells themselves were flipped.
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3.4.3. Experiment 3: Influence of the Light Intensity

During the experiments, we observed that the distance between the DUT and the flash had
a significant influence on the error rate. It seemed that a higher rate of hard fault exceptions
occur when the light intensity increases. The portable demonstrator will not have a stand,
but it is still important to gain the highest fault rate possible. Therefore, we need to further
examine this observation.

As already mentioned, the flash intensity was not adjustable. Therefore, it was varied by
changing the distance between the flash and the DUT. The strobe light was constantly run
with a frequency of 1-2 Hz. For every distance, 50 loops of the program were attacked and
logged. The python program "flash_test.py" was written for automated evaluation. Using the
pySerial library, the incoming UART data was fetched in and the results were parsed. The
total amount of runs, unaffected runs, injected faults, hard faults, and values of the counter
were logged into a .csv file.

The experiment proved that the intensity of the strobe light has a significant influence on the
fault behavior. Figure 3.11 illustrates the relationship between the distances of the flash and
the DUT and their effects on the chip.
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Attacks with a distance of 90 mm or more were unsuccessful. Distances lower than 90
mm had a rapidly increasing number of incorrect counter values. By further decreasing the
distance, more hard faults occurred. Below 55 mm, the chip was not able to operate properly
anymore.
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3.5. Conclusion

The experiments demonstrate that even on semiconductors with several metal layers,
frontside attacks are still possible. Vulnerable spots can be found and attacked with the
cheapest equipment. Advanced equipment was used for the backside images, although lo-
cating the flash controller is also possible from the front side. After a vulnerable spot was
found, simple test programs were created to investigate the fault behavior. These insights
are useful to plan attacks on security functions.

It was proven that the flash controller is disrupted, leading to wrong results during the readout
of the program instructions. Most of the affected opcodes were turned to zero, and therefore
skipped by the controller. This result offers the opportunity to manipulate conditional checks,
cryptographic algorithms, and simple software countermeasures. It would be even more
effective in combination with external triggers, which induct the fault at the exact moment of
a conditional check.

Following assumptions can be made for the design of the demonstrator:

• Frontside attacks are possible. Therefore, only simple modifications on the board are
required.

• For proper results, the distance between the photo-flash and the board must be kept
at around 8-9 cm.

• Long algorithms are more suitable to attack in a demo than in conditional checks.
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This chapter is about the actual design of the demonstrator for optical fault injection attacks.
As part of the "Kryptographie in Software und Hardware" lecture at HAW Hamburg, experi-
ence has already been gained in attacking a RSA-CRT implementation with power glitching
on a similar device. Ultimately, it has not been possible to perform successful attacks. The
previous experiments have demonstrated that long algorithms are a promising target for lo-
cal optical fault attacks. With its long computation times, the RSA-CRT offers a much-larger
surface for triggered attacks than conditional checks in a password interrogation. The Bell-
CoRe attack is well-known and efficient. Therefore, a use case for a BellCoRe attack on a
RSA-CRT implementation has been chosen.

The audience might not has the required knowledge to understand the exact processes
of fault injection and the BellCoRe attack. For these people, the demo has been greatly
simplified, so only the effects and impacts can be demonstrated to them.

4.1. Use Case

The use case for this demo is based on secure authentication schemes. These solutions
are implemented in medical test equipment, printer cartridges, battery packages, and acces-
sories like charging cables. They are meant to protect manufacturers and consumers from
fraudulent products. Counterfeit batteries for mobile devices might not have the required
safety and protection circuits. In 2017, smartphone batteries distributed through AT&T’s
insurance program were recalled. Some of the batteries were counterfeit and showed ab-
normal behavior, which could lead to overheating [Com17]. In 2004, LG recalled batter-
ies for mobile phones because they lacked the necessary over-voltage protection circuits
[Com04].

Many authentication ICs and battery-management ICs with authentication mechanisms inte-
grated are on the market. For the authentication schemes, symmetric or asymmetric cryp-
tography is used.

On symmetric systems, the host and the client possess the same secret key. The host sends
a challenge to the client, and both encrypt the challenge with the secret key. The client sends
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back the encrypted challenge in response. The host compares both ciphers. If they match,
the host can be assured that the client is in possession of the right secret key, and is therefore
authentic.

Asymmetric schemes are based on asymmetric cryptography. The host has the public key
and the client the private key. The client will sign the received challenge using the private key
and send it back as the response. The host will verify the response using the public key. The
client will authenticate if the result matches with the plain challenge. Usually these schemes
are combined with a hashing algorithm. They produce a condensed representation called a
message digest for a message. Most systems use a random challenge generator to make
replay attacks harder. The advantage of an asymmetric scheme is that secure key storage is
only needed for the client side. However, symmetric schemes are less expensive and easier
to implement.
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4.2. Implementation

This demo represents the simplified case of a battery authentic system. A connected battery
needs to be authenticated to be accepted by the host. The authentication IC of the battery is
represented by the microcontroller on the evaluation board. If the board is connected to the
computer, the host application will send a challenge to the device. The IC will sign the chal-
lenge using the private key, stored in the flash memory. Afterward, it sends back the result
to the host. The host will apply the RSA-CRT with the public key to the received response.
Then, the result is compared with the previously sent challenge. A matching result means
that the device is authentic, and the host application will accept the battery. Otherwise, a
warning is presented to the user that the user has connected an unauthorized battery. To
simplify the implementation, no random challenge generator and hashing algorithm will be
used. Instead, the host application will always send the same challenge. This setup also
simplifies the BellCoRe attack because one correct and one false response for the same
challenge is needed. The applied scheme is depicted in Figure 4.1.

Figure 4.1.: Applied authentication scheme using RSA-CRT
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A second board represents a counterfeit battery. This board is not in possession of the
secret key; therefore, it cannot answer with valid responses to the challenges. Thus, the host
application will not accept the connected device and will provide a warning.

The faults are injected with a detachable flash for cameras, which has the advantage of
being more portable as it is supplied by batteries. The microcontroller on the board, which
represents the original battery, is decapsulated. Faults can be injected to compromise the
RSA-CRT implementation. The obtained private key can then be sent to a counterfeited
device to make it act as a verified unit. The board is connected to the computer using USB,
establishing a UART connection.
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4.2.1. Microcontroller

As already mentioned, this demo is based on the BellCoRe Attack on an RSA decryption.
The RSA-CRT was implemented according to Chapter 2.3.2. RSA requires calculations
with several hundred-digits- long numbers. The Cortex-M3 lacks any process to do these
calculations in hardware. Therefore, the FLINT1 long-number arithmetic library was used.
The FLINT library stores the values as CLINT objects, which are variable-length arrays of
digits. The size of the values is only limited by the RAM. The computations in this library
are performed in an inner loop for each element of the object. These loops are extremely
vulnerable to the previously discovered effects of fault injections. If instructions are skipped
during the computation loop, the program will proceed with the wrong values without noticing
it.

Due to the poor performance of the microcontroller, the RSA calculation for a 256-bit key
requires an average of 500 ms. Therefore, only 256-bit keys are used. On the other hand,
this long computation time is essential to be able to hit the algorithm with the injected faults.

The flowchart in Figure 4.2 illustrates the implementation of the client application in the mi-
crocontroller. The program starts with initialization routines. The USART2 interface is used
for communication with the host over the USB to UART bridge. The RSA key values are
saved as strings in the program memory. During the initialization, they are read from flash
converted into a CLINT object using the str2clint_l function.

During the main loop, the program will first check if the new challenge flag is set. If so, it will
overwrite the challenge string with the value in the buffer2. This step is necessary to ensure
that the challenge is not overwritten by the UART interrupt during the response calculation or
data output. Subsequently, the corresponding response to the challenge will be calculated
using the RSA-CRT function.

The data will be sent to the host using the UART interface. A simple frame layout, depicted
in Figure 4.3, is used to parse with the host application. The frame is sent as a string with
a header section (orange) at the beginning, followed by up to two data elements (blue) of
variable length. The single elements are divided by space characters. Each frame ends with
a new line character (red).

The UART receive interrupt is used to read in new challenges from the host. When the UART
receives data, the interrupt is generated. The handler will check if a new char is available in
the FIFO, and it is then read into the buffer. The newline character "\n" represents the end
of a string. The program will then set the new challenge flag to true. A new private key can

1This library is part of [Wel01].
2Although this function will not be used for the demonstrator
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Figure 4.2.: Flowchart of the microcontroller application

be configured by sending a hashtag character at the end of the string. This key will only be
stored in volatile memory to make the demo easy to reset.

The hard fault handler is programmed to reset the chip after sending out the error message.
In this way, the host application can count these failures, and the chip does not get stuck
during the presentation. A watchdog timer is implemented to improve reliability. This timer
resets after a programmed amount of time if the counter is not reset. This step prevents
the processor from getting stuck without causing a fault exception. These additions to the
code are essential because usually only under 17% of the attacks on this RSA-CRT im-
plementation are successful, with 20-40% of the attempts resulting in hard fault exceptions
or other program crashes. If manual resetting would be required, the demo would become
impractical.
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Figure 4.3.: UART frame format for Client-to-Host messages

Implementing Countermeasures

As an additional feature, the hardened multiply and square algorithm described in Chapter
2.4 is implemented. If a fault is detected, the "Fault Detected" notifier is sent to the host and
the device will reset. The countermeasures can be activated with a jumper on pin PC7 to
ground.

Extracting the private key was still possible with the countermeasures implemented. To ob-
tain a comparison, 1,000 runs with each version were monitored. On the straightforward
implementation, an exploitation fault was accomplished on 17.1% of the rounds, compared
to the hardened version, where only 0.4% exploitable faults occurred and 194 faults have
been detected. On an actual application, the device could refuse operation after a certain
amount of errors have occurred.

Most likely the verification of the results are compromised by a glitch. At position 49 on
Figure 2.11, the program decides whether to proceed or to abort depending on the result
of the verification. If this conditional check is somehow disrupted, the RSA-CRT algorithm
will continue with wrong results of the exponentiation, leading to a faulty and compensable
output.

This result underlines that software measures alone are not sufficient to secure embedded
devices. Only the joint implementation of software and hardware countermeasures can en-
sure a high level of security.
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4.2.2. Host Application

The host application for the demo is written in python. Using the tkinter library, a graphical
user interface (GUI) was created. To make the user interface clearer and less distractive,
it is divided into three different pages. The mainloop depicted in Figure 4.4 handles the
communication with the connected board in the background. It sends out the challenge,
and the incoming UART messages are parsed depending on the header field. The received
responses are verified, and if they are wrong, a BellCoRe attack is attempted. All results are
displayed in the user interface. To reduce CPU load, the program sleeps 2 ms before each
loop. For the RSA calculation and the BellCoRe attack, a small library named CryptTools.py
was written. It contains a straightforward implementation for the RSA, BellCoRe attack, and
support functions. The GUI is automatically updated during the idle times.

Figure 4.4.: Flow graph of the host applications main loop

Parameters like the RSA public key and the serial ports are saved inside a configuration file
named config.ini. PyInstaller [Tea17] is used to generate a Windows executable and run the
application on any Windows computer without python installed. To make the demo easier
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to use during a presentation, all buttons are mapped to keyboard keys. The three different
pages of the GUI are described in the following sections.

Battery Monitor

Page 1 contains a battery monitor. It serves as an introduction to the use case. The battery
monitor indicates if a battery is connected, and if it is authentic or not.

Figure 4.5.: Different status indicators of the battery monitor

Main Page

On page 2, the communication between host and client are charted. Challenges and re-
sponses are constantly updated in two lists. Correct challenge-and-response pairs are high-
lighted with a green background. Faulty signatures are highlighted in yellow. In case of a
faulty signature, the program executes the BellCoRe attack and attempts to calculate the
private key. An exploitable faulty signature is highlighted with a red background color.

As an additional feature, a simple statistics function is implemented. By activating the func-
tion, a configurable number of rounds will be logged. The number of rounds, correct re-
sponses, faults and exploitable faults, program crashes, and detected faults are listed in a
table. There are modes for the normal straightforward and for the implementation with coun-
termeasures, making it possible to compare both.

BellCoRe and Cloning

On page 3, all exploitable responses are listed. Any of these responses can be selected, and
the BellCoRe attack will be applied to it. The private key will then be indicated. By pressing
the clone button, the obtained private key will be sent to the counterfeit device.
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Figure 4.6.: Page 2 with communication display and statistic

Figure 4.7.: Page 3 with key extraction and cloning
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4.3. Outcomes

Overall, five units of the demo were created. Their reliability was proven several times in
presentations during the design process. The demonstrator is packed in a hard case to
make it portable. Instead of strobe lights, external photo-flashes are used. The benefits are
battery supply and easier handling. Cases for the boards were made using a 3-D printer. To
illustrate the two boards as original and counterfeit, a small panel was designed and printed.
The panels have a small picture on them and can be plugged onto the boards. A short video
of the demonstration is included in the appendix. Instructions, host application, and source
code are available in each kit on a USB flash drive. Each demo kit contains the following
items:

• A development board with decapsulated chip representing the authentic battery

• An unmodified development board representing the counterfeit battery

• A photo-flash

• A decapsulated chip for viewing purposes

• A USB mini-cable

• A USB stick with instructions, the host application, binary files, and source code

• A ruler with a marking to help align the photo-flash
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(a) Original device (b) Counterfeit device

Figure 4.8.: Both boards of the demonstrator in 3D printed cases
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Figure 4.9.: Complete demonstrator kit in case



5. Conclusion

A demonstrator for optical fault injection attacks was built for this bachelor thesis. In building
the demonstrator, a Cortex-M3 microcontroller was examined for vulnerabilities. After de-
capsulating the chips, the surfaces of the die were analyzed for potential targets. By using
electronic tape, the local fault attacks could be performed with cheap equipment. Simple test
programs have been used to find the flash controller as the vulnerable spot. This finding
proves once more that these types of attacks are feasible with the simplest equipment and
little prior knowledge. Hardware manufacturers need to be aware that security-related appli-
cations on standard microcontrollers are absolutely not recommended. Another threat for a
company is that their intellectual property can be stolen from these devices.

The knowledge derived during the experiments was used to design a portable, easy-to-
reproduce, and cheap demonstrator. Effects of the attacks are perfectly suited for an Bell-
CoRe attack on an RSA-CRT implementation, which is well known in the cryptography com-
munity. To be able to teach people without knowledge about this attack and the threats and
impacts of fault attacks, a use case around the BellCoRe attack was arranged. In addition, a
software countermeasure was implemented.

Further work can use the photo flash lamp to perform triggered attacks. Also interesting
could be using a STM32F105RB controller. It is a pin-compatible controller of the same
production family and with the same flash size. However, this controller has the embedded
trace macrocell (ETM) in its core. This feature can be used in addition to an advanced tracing
debugger. It could be possible to trace the modified instructions executed by processor after
a successful attack on the flash buffer.

The vulnerable part of the flash controller might be the reading charge pumps. Charge
pumps on flash memory are known as a weak point [NGSJ99]. Attempts have been made
to locate the charge pumps to perform more local attacks on them. Therefore, a chip was
encapsulated on the backside, and a hole was milled into a development board. In this way,
the flash controller could be further investigated using photo emission microscopy. At this
point, it was not possible to determine the charge pumps.
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A. Appendix

The appendix is located on a CD-ROM. It can be inspected at the auditors Prof. Dr. Heike
Neumann and Dr.-Ing. Wolfgang Tobertge.
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