
Master Thesis

Jan-Uriel Lorbeer

Hierarchical Reconfigurable Petri Nets

Fakultät Technik und Informatik

Studiendepartment Informatik

Faculty of Engineering and Computer Science

Department of Computer Science

Jan-Uriel Lorbeer

Hierarchical Recon�gurable Petri Nets

Master Thesis eingereicht im Rahmen der Master Thesis

im Studiengang Master of Science Informatik
am Department Informatik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Julia Padberg

Eingereicht am: 28.05.2018

Title of the paper
Hierarchical Recon�gurable Petri Nets

Keywords
Recon�gurable Petri nets, Petri net transformations, hierarchical Petri nets

Abstract
The challenging development of modern systems can be eased through the usage of appropriate
models to simulate, evaluate and validate the system before hand. One well known method
for this is the deployment of Petri nets. Especially challenging is the development of large
systems with dynamic components. Hierarchical Petri nets (HPN) provide a more abstract
view whereas recon�gurable Petri nets (RPN) allow dynamic structural adaptation. This thesis
presents the combination of RPN and HPN yielding a hierarchical structure for recon�gurable
Petri nets. The aim of this thesis is to: present a concept for a hierarchical recon�gurable Petri
net (HRPN) model based on substitution transitions (with mathematical de�nition), prove
the models correctness, implement HRPN within the tool ReConNet and evaluate the HRPN
model and expanded ReConNet tool using a use case of a �exible manufacturing system.

Thema der Arbeit
Hierarchical Recon�gurable Petri Nets

Stichworte
Rekon�gurierbare Petri-Netze, Petri-Netz Transformationen, hierarchische Petri-Netze

Kurzzusammenfassung
Die anspruchsvolle Entwicklung moderner Systeme kann durch die Verwendung entsprechen-
der Modelle zur Simulation, Evaluation und Validierung erleichtert werden. Eine bekannte
Methode dafür ist der Einsatz von Petri-Netzen. Besonders anspruchsvoll ist die Entwicklung
von großen Systemen mit dynamischen Komponenten. Hierarchische Petri-Netze (HPN) bi-
eten eine abstraktere Sicht und Rekon�gurierbare Petri-Netze (RPN) erlauben dynamische
strukturelle Adaption. Diese Thesis präsentiert die Kombination von RPN und HPN zu einer
hierarchischen Struktur für rekon�gurierbare Petri-Netze. Das Ziel dieser Thesis ist: die
Vorstellung eines Konzeptes für ein hierarchisches rekon�gurierbares Petri-Netz Model das
auf Substitutions-Transitionen basiert (inklusive mathematischer De�nition), das Beweisen
der Korrektheit des Models, die Implementierung von HRPN in dem Werkzeug ReConNet
und die Evaluation des HRPN Models und des erweiterten ReConNet Werkzeuges unter der
Zuhilfenahme eines Anwendungsfalles eines �exiblen Manufaktursystems.

Contents

1. Introduction 1

2. Background 3

2.1. Hierarchical Petri Nets . 3
2.2. Recon�gurable Petri Nets . 6
2.3. ReConNet . 8
2.4. Flexible Manufacturing Systems . 10
2.5. Related Work . 11

3. Concept for Hierarchical Reconfigurable Petri Nets 14

3.1. General Concept . 14
3.1.1. Hierarchical Model . 14
3.1.2. Transformation Rule Concepts . 15

3.2. Hierarchy and Flattening of HRPN . 20
3.2.1. The Hierarchical Recon�gurable Petri net 20
3.2.2. Hierarchical Flattening . 21

3.3. Transformation Rule Concept . 24
3.3.1. Transformation Rules in HRPN . 24
3.3.2. Equality of Behavior . 25

4. HRPN in ReConNet 28

4.1. HPN Structure . 31
4.2. Persistence . 33
4.3. Simulation . 34
4.4. Rule Application . 35
4.5. HRPN Flattening in ReConNet . 35

5. Evaluation of HRPN in ReConNet 42

5.1. The FMS Evaluation Example . 42
5.2. The HRPN of the FMS . 44
5.3. Simulation . 49
5.4. Evaluation . 52

5.4.1. Usefulness of HRPN . 52
5.4.2. Hierarchy Modeling Capabilities of ReConNet 55

6. Future Work 58

iv

Contents

7. Conclusion 59

A. Petri Nets and Rules of the FMS Evaluation Example 64

v

1. Introduction

The development of modern systems comes with many challenges. Some of these challenges
can be coped with through the usage of appropriate models to simulate, evaluate and validate
the system before hand. One well known and widely accepted method for this is the deployment
of Petri nets [Pet81]. Petri nets provide a graphical language for constructing system models
as well as a precise, mathematical semantics. With a well build model of the system faults in
the system can be detected and �xed at earlier development stages. The earlier faults can be
detected the easier and cheaper it is to �x them.

With a steady increase in complexity and size of modern systems their models also become
larger and less comprehensible. A way to counteract this issue is the employment of a layer
of abstraction such as hierarchy. Hierarchical Petri nets (HPN) [JR12] combine the Petri net
model with hierarchical layering. HPN break the complexity of a large model down into several
connected submodels that are arranged in a hierarchical structure. This allows to concentrate
on a speci�c system part, without the need to oversee the whole system. Also submodels
can be reused with little a�ord at multiple location in the same system, or even in a di�erent
system where similar components are needed.

The increase in size and complexity is not the only challenge modern systems present. Some
modern systems, such as �exible manufacturing systems [Chr13], mobile ad-hoc networks
[BCGS04] or concurrent systems [MP12], involve dynamic adaptations and are subject to
structural change to support their various applications. Such systems can be modeled using
recon�gurable Petri nets (RPN) [EHP+07, PEHP08]. RPN are Petri nets that are combined with
a rewriting systems to modify the Petri net at run-time. This allows the models structure to
change while transitions are being �red. The core of the rewriting system is a set of rules that
de�ne the changes that can be made. They provide powerful and intuitive formalisms to model
dynamic systems that require both the representation of their processes and of the system
changes within one model.

This thesis presents hierarchical recon�gurable Petri nets (HRPN), a model that combines
the HPN and RPN models into one, harnessing the advantages of both. Thus allowing a focused
design of submodels and their reusability and the ability for dynamic changes at run-time,

1

1. Introduction

hence supporting the design of complex dynamic systems. As one of its key properties, the
presented HRPN, can be transformed into a non-hierarchical RPN with equal behavior through
a process called the �attening process. This has the advantage that only the consistency of
the �attening process has to be proven to guarantee the correctness of the model, since then
the HRPN model can rely on the correctness of the already proven RPN model. Furthermore,
since the behavior of the HRPN and its �attened RPN representation are the same, analyzing
and verifying the HRPN can be done through its �attened representation and then requires no
more e�ort than its counter part with no hierarchy.

The aim of this thesis is to �rst describe a hierarchical recon�gurable Petri net model with
formal de�nitions of net model and �attening process and then to demonstrate and evaluate the
model by integrating it into a Petri net modeling tool called ReConNet. ReConNet [PEOH12]
is a tool that provides the capabilities to model and simulate recon�gurable Petri nets. For the
demonstration and evaluation a use case for HRPN in the form of a �exible manufacturing
system is used.

This work is structured as follows: First Chapter 2 provides an overview of relevant back-
ground knowledge. The hierarchical recon�gurable Petri net models concept and detailed
formal de�nitions are presented in Chapter 3. Chapter 4 deals with the integration of the
HRPN model into ReConNet. It describes the additions and changes to ReConNets program
structure and details the implemented �attening algorithm. Then Chapter 5 presents a �exible
manufacturing system as an evaluation example. With the FMS example the usefulness of
HRPN for �exible systems and the added HRPN modeling capabilities of ReConNet are evalu-
ated. In Chapter 6 an outlook on possible future advancements is given and �nally Chapter 7
completes this thesis with a conclusion.

2

2. Background

In this chapter an overview of relevant background knowledge is provided. In Section 2.1 base
concepts of hierarchical Petri nets are presented followed by an explanation on recon�gurable
Petri nets in Section 2.2. Section 2.3 is an introduction to ReConNet. Flexible manufacturing
systems are discussed in Section 2.4 and �nally Section 2.5 addresses related work.

2.1. Hierarchical Petri Nets

Hierarchical Petri nets (HPN) extend Petri nets by hierarchical layering [JR12]. They use
hierarchy to break down the complexity of a large model, by dividing it into a number of
submodels. This helps the modeler to concentrate on a speci�c system part without the need to
oversee the whole system. Also submodels can be reused with less a�ord at multiple location
in the same system or even in a di�erent system where similar components are used.

There are two mayor techniques of hierarchical Petri nets. Transition substitution substitutes
transitions with subnets and place substitution substitutes places with subnets.

An other approach for hierarchical layering is the usage of Object-Oriented Petri nets
(OOPN). Currently there exist various sorts of OOPN, [MK05] presents a survey of the most
common ones. In it’s basic form an OOPN is composed of a system net and it’s tokens. Each
token represents either a trivial object (e.g. a number or a string) or an object net instance of
some class. Every class consists of an object net and a set of dynamically instantiable method
nets which structure the models inner behavior. Tokens move from one place to another calling
methods and changing attributes. So each token consist of one instance of the appropriate
object net and several concurrently running instances of invoked method nets. [KJZJ08] The
purpose is to use object oriented constructs to structure and build the system.

Substitution Transition HPN

A hierarchical Petri net can use substitution transitions to implement hierarchy. A substitution
transition is a special kind of transition that itself does not �re, instead it contains a subnet that
de�nes the behavior that takes place. Following this basic de�nition of substitution transitions,

3

2. Background

di�erent implementations suited for speci�c purposes are possible, this work utilizes a variant
of the substitution transition based HPN presented in [JK09].

Each substitution transition has its own subnet. All places that share an edge with a
substitution transition are called the transition’s connecting places and for each connecting place
of the substitution transition there exists a corresponding connecting place in the transition’s
subnet. Each connecting place of the transition and its corresponding connecting place in the
subnet form a connection set. Both places in a connection set always have the same tokens on
them, so if one or more tokens are added or removed from one place of the set the same tokens
are also added or removed from the other place of the set. Through these places tokens enter and
leave the subnet. During each simulation step one transition can �re, the �ring transition can
be from either the main net or any subnet. Any net can contain multiple substitution transitions
each instantiating exactly one own subnet. Although multiple substitution transitions may
instantiate the same subnet layout, each substitution transition has it’s own permanent instance.
Subnets may also contain substitution transitions, which results in a deeper hierarchy.

Figure 2.1 shows in the top half a hierarchical net with it’s main net MN and a subnet SN .
In the main net the substitution transition st1 has two connecting places: p0 has an edges
connecting it to st1 and st1 has an edge connecting it to the place p1. These places can also
be found in the subnet as connecting places with edges to and from di�erent transitions. If
tokens are added to the place p0 via the transition t1 these also appear in the subnet. There
SN ’s transition sub_t1 can �re and remove tokens from p0 resulting in the removal of the
same tokens from p0 in MN . All connection sets work in this fashion.

This type of hierarchical Petri net can be �attened. A process in which the hierarchy of the
Petri net is removed. The result is a non-hierarchical Petri net which behaves exactly like the
hierarchical Petri net. The speci�c process steps of the �attening process can vary for each
Petri net type and realization. The substitution transition model with connecting places allows
employing a relatively straight forward �attening process. During the �attening process one
by one every substitution transition is replaced by its subnet and each of its connection sets
merged into a single place. In Figure 2.1 this process is used on a simple hierarchical net to
create the �attened net F .

Place Substitution HPN

Place substitution works similar to transition substitution. First a place to substitute has
to be chosen, than a subnet is created for said place. Similar to the connecting places of
substitution transition HPN, connecting transitions are created. Each connecting transition
in a subnet corresponds to one ore more connecting transitions in the super net, the net of

4

2. Background

Figure 2.1.: Flattening of a substitution transition.

the substitution place. Whenever one of the connecting transition in the super net �res the
corresponding connecting transition in the subnet �res simultaneously. When a connecting
transition in the subnet �res one of the corresponding connecting transitions in the super net
�res simultaneously. During each simulation step one transition can �re, the �ring transition
can be from either the main net, any subnet or a pair of connecting transitions. Any net
can contain multiple substitution places with each instantiating exactly one own subnet.
Although multiple substitution places may instantiate the same subnet layout each place has
it’s own permanent instance. Subnets may also contain substitution places resulting in a deeper
hierarchy.

5

2. Background

Figure 2.2 shows a hierarchical net with its main net SuperPage and a subnet Queue. Four
transitions called Put and Init connect to the substitution place SubPlace. SubPlace is connected
to two transitions called Get. All connecting transitions in the super net sharing the same name
are combined into one connecting transition in the subnet, resulting in only three connecting
transitions in there. When any of the transitions labeled Put or Init �res, tokens are added to
the places P4 and P5 or P5 thus adding tokens to the subnet. If the subnets Get transition �res
one of the main nets Get transitions �res and adds a token to the place P3. This way tokens
enter and leave the subnet.

Figure 2.2.: Place substitution example [JR12].

2.2. Reconfigurable Petri Nets

Recon�gurable Petri nets extend normal Petri nets to include the ability for dynamic change.
This is achieved through the use of a rewriting system in the form of rules for the transformation
of nets [EHP+07, PEHP08]. This allows the modi�cation of the net’s structure at run time,
which can be used in the modeling of dynamic recon�gurable hardware like FPGAs or �exible
manufacturing systems. Such a recon�gurable Petri net enables two kinds change:

• a change of state accomplished through the �ring of net transitions

• a change of process attained through the use of the rule based rewriting system.

A recon�gurable Petri net is de�ned as a marked Petri net N ,

6

2. Background

De�nition 2.1 (Marked Petri Net) A marked Petri net N is described as a tuple,

N = (P, T, pre, post,M0)

whereP is a set of places andT a set of transitions. The pre- and post-domain functions pre, post :

T → P⊕ describe pre- and post-conditions for all transitions. The pre-conditions describe how

many tokens are required for the �ring of a transition while the post-conditions describe the

placement of tokens during the �ring of a transition. M0 ∈ P⊕ is a set of tokens and de�nes the

initial marking of the net. P⊕ is the free commutative monoid over P [JLL07, MM88].

and a set of transformation rulesR.

De�nition 2.2 (Transformation Rules) A transformation rule r ∈ R is de�ned by three nets

L, K and R and their strict net morphisms [Pad12] as

r = (L← K → R)

where L is the rule’s left-hand side, that is to be located in the net N , and K is an interface

between L and R. R is the right-hand side, which is inserted into N . An occurrence morphism

o : L→ N is required to identify the relevant parts of the left-hand side L in N .

The basic idea of transformation rules is: when a rule r is applied to a net N an occurrence o

of its L net is found in N and gets replaced by R resulting in a new net M . Adding such a set
of rules to a marked Petri net forms a recon�gurable Petri net RN .

De�nition 2.3 (Recon�gurable Petri Net) A recon�gurable Petri netRN = (N,R) is com-

posed of a marked Petri net N and a set of transformation rulesR.

A recon�gurable Petri net can either �re an activated transition or execute a transformation
step N

(r,o)
==⇒ M . Figure 2.3 illustrates the transformation of a net using two push-out com-

plements (1) and (2). This is possible because Petri nets can be proven to be anM-adhesive
transformation category [Pad15, EEPT06].

An example for this process is displayed in Figure 2.4. It shows in (a) a recon�gurable Petri
net N and in (b) it’s rule r, with r’s nets L, K and R. N consists of two places, two tokens
and one transition which is black when activated. When rule r is executed the net’s arcs are
inverted. In it’s initial state (1) the rule r is not executable because there is no match to the
rules L net. L speci�es that at least two tokens are needed on the a place named P where
the edges lead to, which is at the bottom. So only the transition T can �re. After transition T

�ring twice state (3) is reached. In this state two tokens are located on the bottom place P and

7

2. Background

Figure 2.3.: Transformation of a net [Pad15].

(a) State sequence of net N (b) Exemplary rule r

Figure 2.4.: Example Petri net N and rule r.

r can be executed inverting the arc directions resulting in state (4). If in state (3) there would
have been an additional token on the upper place P either the transition T could have �red or
r could have been executed. In state (4) r is no longer executable because the edges now lead
to the upper place P , so only the transition T can �re. State (4) is very similar to state (1) and
after T �ring twice r would be executable once again.

Recon�gurable Petri net rules can be extended using negative application conditions (NAC).
NAC in recon�gurable Petri nets have been introduced in [RPL+08] and provide the possibility
to forbid certain rule applications. They restrict the application of a rule by forbidding a
certain structure to be present before or after applying a rule in a certain context. Rules with
NACs have an additional set of nets NCi, denoting the forbidden contexts. Formally, a rule is
applicable only if its match m cannot be extended to a match mi of NCi [PH15].

2.3. ReConNet

To model and simulate the capabilities of recon�gurable Petri nets a tool called ReConNet
[PEOH12] can be used. It is completely implemented in Java 6 and provides a graphical user
interface, as can be seen in �gure 2.5. In the left center Petri nets and rules can be managed.

8

2. Background

Petri nets are displayed in the center, rules with their nets L, K and R at the bottom. The
top part of ReConNet’s GUI shows from the left to the right: modeling tool selection, node
attributes and simulation/transformation tools.

Instead of a span approach for rules: r ∈ R = L ← K → R, ReConNet uses a co-span
approach, as described in [EHP09], for it’s rules: r ∈ R = L→ K ← R. This results in the
gluing net K being a union of L and R that contains all places, transitions and edges that are
in at least one of them. The span and co-span approaches result both in the same net after the
transformation.

The bases for ReConNet are decorated PT nets [Pad12]. Decorated PT nets extend PT nets
with additional decorations like names for places and transitions, capacities and transition
labels that can change during the �ring of a transition. The additional labels allow further
coordination of transition �ring and rule application. This provides a tool to control the
application of rules while preserving the nets behavior.

Figure 2.5.: ReConNets graphical user interface.

9

2. Background

2.4. Flexible Manufacturing Systems

A �exible manufacturing system (FMS) [KV10] is a group of computer numerically controlled
(CNC) machines that are connected, via loading and unloading stations, to an automated
transport system. It seeks the middle ground between a standalone computer numerical
controlled machine that is capable of producing a variety of products and a transfer line, which
consist of a predetermined sequence of machines.

Figure 2.6.: FMS in relation to other production solutions [LWL+06].

In a FMS the transport system carries work to and from the machines by means of an
automated material handling and storage system. The system parts are central controlled
and able to respond to changed conditions. This automated production system is capable of
processing and manufacturing a variety of part types at a rapid speed. [Tet90] A FMS usually
consist of three main parts:

• CNC machine units

• an automated material handling and storage system

• a computerized planning and control system

Figure 2.7 shows an exemplary FMS that uses a loop layout for its transport system. All raw
materials and produce are carried by the same transport system and the control system decides
which items are loaded or unloaded at each intersection and chooses what a CNC unit does
with the materials it receives. This way any combination of process steps capable by the CNC
units can be accomplished on the �y.

10

2. Background

Figure 2.7.: Basic loop layout of a FMS [LGB18].

In the center of a loop layout FMS stands a circular transport systems on which parts loop
around until they reach their destination. Depending on the requirements and main focus of
a use case, di�erent FMS and layout concepts are possible. [MRA10] and [Tet90] elaborate
further on di�erent techniques of manufacturing systems and possible FMS layouts.

2.5. Related Work

A number of tools similar to ReConNet exist. Snoopy [HHL+12] is one of these tools, it is
a unifying Petri net framework with a graphical user interface. It allows the modeling and
simulation of colored and uncolored Petri nets of di�erent classes, it also supports analytic
tools and the hierarchical structuring of models. CPN tools [RWL+03] is another tool for the
modeling and simulation of colored Petri nets. Using a graphic user interface CPN tools features
syntax checking, code generation and state space analysis. The HiPS tool [HiP17] developed at
the Department of Computer Science and Engineering, Shinshu University is a tool written in
C# and also employs a graphical user interface. HiPS is a platform for design and simulation of
hierarchical Petri nets. It also provides functions of static and dynamic net analysis. While all
of these tools support the design of hierarchical Petri nets each lacks ReConNet’s core feature
the aspect of recon�gurability.

There are many use cases for hierarchical Petri nets, one can be found in [SCDB14]. There
hierarchical colored Petri nets are used to model the French railway interlocking system RIS

for formal veri�cation and logic evaluation. The RIS system is responsible for the safe routing
of trains. Detailed veri�cations and evaluations are mandatory before deploying an RIS, since it

11

2. Background

(a) Snoopy (b) CPN tools (c) HiPS

Figure 2.8.: Petri net tools.

is a safety critical system. The paper describes how the signaling control and the railway road
layout are speci�ed and constructed into a colored hierarchical Petri net. In [ZZ09] hierarchical
colored Petri nets are used to model the production process of a cold rolled steel mill. For this
a crude description of the entire running process of the system is given at the main net, and
the more detailed behaviors are speci�ed in the subnets. It is shown that the design is highly
consistent with real production, improving the development e�ciency for production planning
and scheduling.

The utilization of recon�gurable Petri nets for �exible manufacturing systems is prevalent,
in [TPCS12] the concept of recon�gurable �nite capacity Petri nets applied to a �exible manu-
facturing system model is explored. This concept is then used to model a simpli�ed scenario
involving a FMS which is able to assemble several products.
ReConNet core feature is the ability to model and simulate recon�gurable Petri nets,

although in the department of other recon�gurable Petri net tools there is not much to �nd
there exist a number of graph tools that allow transformations. General purpose graph tools
like GROOVE [Ren03] and AGG [Tae99] allow the design, simulation and transformation of
graphs. By de�ning the basic rules of a Petri net, these tools can be used to produce Petri net
graphs and allow transformations.

This thesis is based on two previous works. The previous work [Lor17a] investigates
di�erent hierarchical Petri net types for the use in hierarchical recon�gurable Petri nets.
Besides hierarchical Petri nets based on transition substitution, nets based on place substitution
and Object-Oriented Petri nets (OOPN) are considered. The follow up [Lor17b] presents a
concept for hierarchical recon�gurable Petri nets (HRPN) and provides formal de�nitions and
proves of the hierarchy and recon�guration properties. In [LP18] a variation of the HRPN

12

2. Background

concept is presented, it uses Petri nets with labels and subtyping of labels to allow global
transformation rules that can be applied to any level of the hierarchical net.

13

3. Concept for Hierarchical Reconfigurable

Petri Nets

The concept of a hierarchical recon�gurable Petri net (HRPN) can be divided into two major ar-
eas: the hierarchical model that is used to realize the hierarchical aspects and the transformation
rules that are responsible for the recon�gurability of the Petri net.

The concept presented here is based upon the concept described in [Lor17b], while Section
3.1 provides the general concept choices for hierarchy and recon�guration, Section 3.2 and
Section 3.3 go into further detail and provide formal de�nitions for the structure of the HRPN
and the transformation rules.

3.1. General Concept

This section provides the basic designs used in the HRPN concept with additional remarks on
the reasoning of the conceptual choices and special properties of HRPN. Since the intend is to
integrate hierarchy into the recon�gurable Petri net model that is used by the ReConNet tool,
the presented HRPN concept is designed with its usability for ReConNet in mind.

3.1.1. Hierarchical Model

For the hierarchical model the use of a model based on substitution transitions is chosen. In
particular a model that can be �attened into a non-hierarchical Petri net model of equal behav-
ior as it is described in Section 2.1. The ability to �atten the net into a non-hierarchical Petri
net of equal behavior is useful during the implementation process and allows the utilization of
methods of validation and veri�cation that are commonly used on non-hierarchical nets. Substi-
tution transitions are also chosen because many related tools like snoopy [HHL+12], CPN tools

[RWL+03] or HiPS [HiP17] use substitution transitions, which allows for if not compatibility,
at least comparability. Also the model aims to support the usage of hierarchical Petri nets for
as many applications as possible and a majority of papers concerned with hierarchical Petri
nets use substitution transitions to achieve their goal, [SCDB14] uses hierarchical colored Petri

14

3. Concept for Hierarchical Recon�gurable Petri Nets

nets to model the French railway interlocking system and [ZZ09] used hierarchical colored
Petri nets to improve the planning and scheduling e�ciency of a cold rolled steel mill.

3.1.2. Transformation Rule Concepts

As Section 2.2 elaborated, recon�gurable Petri nets use transformation rules to recon�gure
themselves. The combination with a hierarchical model presents a certain challenge. With the
chosen hierarchical model three di�erent transformation rule concepts were compiled: global
rules, local rules and layer based rules.

Global Rules

A global transformation rule is a general rule that may be applied in any net on any level of
the whole hierarchical net. So occurrences can be in the main net, its subnets, all their subnets
and so forth.

Figure 3.1.: Application of global rules to a hierarchical Petri net.

15

3. Concept for Hierarchical Recon�gurable Petri Nets

Local Rules

A local rule applied to a (sub-)net allows occurrences to only be found in that speci�c net. Local
rules enable the dynamic modi�cation of a speci�c part of a hierarchical net. The advantage is
that rules can be created without the knowledge of other parts of the hierarchical net.

Figure 3.2.: Application of local rules to a hierarchical Petri net.

Of course a local rule’s design can be reused an applied to a di�erent (sub-)net as well thus
e�ectively enabling the modi�cation of a set of (sub-)nets.

16

3. Concept for Hierarchical Recon�gurable Petri Nets

Layer Based Rules

Layer based rules are applied to nets relative to the main net. A layer based rule will only
be applied to nets of its designated layer. While in layer 1 there is only the main net, layer 2
composes of all subnets that are derived directly from the main net. Layer 3 composes of all
their direct child nets and so on.

Figure 3.3.: Application of layer based rules to a hierarchical Petri net.

17

3. Concept for Hierarchical Recon�gurable Petri Nets

Special Properties of Hierarchical Reconfigurable Petri Nets

The hierarchical net is speci�cally designed to allow black-box behavior of subnets. In a
hierarchical recon�gurable Petri net it must be ensured that the internal workings of a subnet
do not change by applying a transformation rule to its super net. For this transformations may
not span across hierarchical borders.

Figure 3.4 shows a net with one subnet. To the net a global rule is applied as shown in �gure
3.5. This rule adds two places and can be applied at multiple locations.

Figure 3.4.: A basic hierarchical recon�gurable Petri net.

Figure 3.5.: Rule for the hierarchical recon�gurable Petri net.

In �gure 3.6 three matched occurrences are highlighted. The addition of the places marked
in green and yellow is straight forward. The rule application creating the green places only
e�ects the main net and the application creating the yellow places e�ects only the subnet. The
addition of the places marked in red would be possible in a non-hierarchical net. However the
hierarchical layout excludes the rule application across hierarchy borders. Thus the rule must
not be applied under such constraints.

18

3. Concept for Hierarchical Recon�gurable Petri Nets

Figure 3.6.: Considered rule application locations.

Since for the hierarchical Petri net model an approach is chosen that can be �attened into
a non-hierarchical Petri net model of equal behavior, the limitations to transformation rules
imposed by the hierarchical borders must be preserved in the �attened net. As a consequence
a more complex �attening process, than for a normal hierarchical Petri net, is necessary. This
is due to the fact that in the process of �attening a normal hierarchical Petri net all information
on where the hierarchical borders were located are lost. These information are needed for the
correct application of transformation rules in the �attened net, so that the behavior of the net is
not changed by �attening it. This more complex �attening process assures that a transformed
net is always the same in both the cases of: �rst applying a rule and than �attening it and �rst
�attening it and than applying the rule. Section 3.3 details how this can be achieved.

Figure 3.7.: Flattening and transformation of a hierarchical recon�gurable net.

19

3. Concept for Hierarchical Recon�gurable Petri Nets

3.2. Hierarchy and Fla�ening of HRPN

Following the concept of Chapter 3.1, for a hierarchical recon�gurable Petri net (HRPN), this
chapter provides in Section 3.2.1 a formal de�nition for HRPNs. In Section 3.2.2 the �attening
process, that is used to obtain the non-hierarchical representation of a HRPN, is de�ned.

3.2.1. The Hierarchical Reconfigurable Petri net

The HRPN is mainly de�ned by it’s �attening into a non-hierarchical recon�gurable net. The
HRPN consists of a recon�gurable net RN and a set of substitution rules SR. To de�ne this
properly, �rst the surrounding net Net(t) of a transition t is being de�ned as follows:

De�nition 3.1 (Net(t)) The net of t, Net(t), is the net surrounding a transition t. With the

tuple Net = (P, T, pre, post, pname, tname) describing a net, then Net(t) is de�ned as

Net(t) = (•t ∪ t•, t, pre|t, post|t, pname|•t∪t• , tname|t).

With this HRPN can be formally de�ned:

De�nition 3.2 (Hierarchical Recon�gurable Petri Net) A hierarchical recon�gurable net

HN = (RN,A, SR) is given by a recon�gurable net RN = (N,RN), a name space A =

(AN
P , AN

T) and a set of substitution rules SR, so that

RN = (P, T, pre, post, pname, tname,M,R) with:

• AcP ⊆ AN
P : the name space of connecting places and

AsT ⊆ AN
T the name space of substitution transitions.

• P : a set of places that also contains connecting places cP ⊆ P .

• T : a set of transitions that also contains substitution transitions sT ⊆ T .

• pre : T → P⊕ a function used for all pre-domains of each transition.

• post : T → P⊕ a function used for all post-domains of each transition.

• pnameP −→ AN
P : a naming function for places with

pname(cP) ⊆ AcP and

pname(P\cP) ⊆ AN
P \AcP .

• tnameT −→ AN
T : a naming function for transitions with

tname(sT) ⊆ AsT and

tname(T\sT) ⊆ AN
T \AsT .

20

3. Concept for Hierarchical Recon�gurable Petri Nets

• M : a set of tokens byM ∈ P⊕.

• RN
: a set of transformation rules over (AN

P , AN
T \AsT).

SR is a set of substitution rules, together with a mapping of substitution transitions to sub-

stitution rules: sT −→ SR so that sr(st) = ST (st) ←− CP (st) −→ SN(st) with sr ∈ SR,

st ∈ sT and

• ST (st) = Net(st)

• CP (st) = (•st ∪ st•, ∅, ∅, ∅, pname|•st∪st• , ∅)

• SN(st) being a hierarchical net SN(st) = (R̂Nst, Âst, ŜRst) with AcP ⊆ Âst.

Figure 3.8 shows an example for a very basic substitution rules.

Figure 3.8.: An exemplary substitution rule.

3.2.2. Hierarchical Fla�ening

The non-hierarchical representation of a hierarchical recon�gurable Petri net is a recon�g-
urable Petri net. Through the �attening process this non-hierarchical (�attened) Petri net
representation can be obtained. The basics of the �attening process were previously described
in Section 2.1.

In [JK09] Chapter 5 it states that for the �attening of a hierarchical net that uses substitution
transitions each substitution transition must be removed and its subnet inserted into the super
net by fusing the connecting places. Figure 3.9 shows a hierarchical Petri net with its main net
MN and one subnet SN housed in the substitution transition st1.

Through the removal of the substitution transition st1 from MN and inserting the subnet
SN, by fusing the SNs and MNs connecting places labeled p2, p3 and p4 respectively, the �at
representation of the hierarchical Petri net displayed in Figure 3.10 can be acquired.

21

3. Concept for Hierarchical Recon�gurable Petri Nets

Figure 3.9.: A hierarchical Petri net.

This process can also be modeled using the substitution rules from De�nition 3.2:

De�nition 3.3 (Substitutions) For all sr ∈ SR and for all injective occurrences o of sr there

exists exactly one substitution s = {(sr, o)|(sr, o) is applicable} for every substitution transition
st. These substitutions are collected in a set s ∈ S.

De�nition 3.4 (Flattening Process) The �attening is de�ned for an hierarchical net HN =

(RN,A, SR) given by a recon�gurable netRN = (N,RN), a name spaceA = (AN
P , AN

T) and

a set of substitution rules SR as given in Def. 3.2 recursively by

1. flat((N,R), A, SR) = (N,R) if sT = ∅

2. flat(RN,A, SR) = flat(FLAT ((N,R), SR), A, SR) with

• A =
⊎

st∈sT (Âst \AcP)]AcP

• R =
⊎

st∈sT R̂st

• SR =
⊎

st∈sT ŜRst

with FLAT ((N,R), SR) = (N,R) by applying each substitution s once, s ∈ S from De�ni-

tion 3.3.

22

3. Concept for Hierarchical Recon�gurable Petri Nets

Figure 3.10.: The �at representation of a hierarchical Petri net MN .

De�nition 3.5 (Disjoint Union) Given set A and B then A] B is given by the coproduct

construction, so that for any f : A → C and B → C there is a unique h : A] B → C with

h ◦ inclA = f and h ◦ inclB = g, [EEPT06] as in the diagram below:

A

inclA
##

f

%%
A]B

h // C

B

inclB

;;

g

99

When applied the �attening process from De�nition 3.4 transforms a hierarchical net into a
non-hierarchical one.

Theorem 3.1 (The Flattening Process Produces a Well-de�ned Net F) Any possible trans-

formation sequence during the �attening process results in the same net F that is well-de�ned

up to isomorphism.

Because all substitution rules can be proven to be pair-wise independent [Lor17b] Theorem
3.1 can also be proven:

Proof Sketch 3.1 (The Flattening Process Produces a Well-de�ned Net F) With all s ∈
S being mutually independent, [RE97] states all the transformation sequences HN

∗
=⇒ F are

23

3. Concept for Hierarchical Recon�gurable Petri Nets

equivalent and there exists a parallel transformation sequenceHN

∑
s∈S s

====⇒ F . Also it is always

possible to construct such a parallel transformation sequence and that sequence is unique up

to isomorphism. So with all sequences being equivalent the resulting F is well-de�ned up to

isomorphism.

Fla�ening as Transformation Unit

The �attening process can also be realized as transformation unit, transformation units encap-
sulate rules and control conditions that regulate the application of rules to graphs including
the speci�cation of initial and terminal graphs [KKR08]. The transformation unit used for
the �attening process uses the as long as possible operator (!) : HN

sr!
=⇒ F with injective

occurrences. For this transformation unit an applicable substitution rule sr with an occurrence
is randomly picked and applied, this step is repeated until there no longer exists a sr ∈ HN

with an occurrence. The approach with a transformation unit also produces a well-de�ned �at
net F [Lor17b].

3.3. Transformation Rule Concept

As mentioned in Section 3.1.2 transformation rules in general and local rules in particular
need to be limited so that they do not induce changes across hierarchical borders. To prevent
transformation rules from altering hierarchical borders in a HRPN special restrictions on
transformation rules are de�ned in Section 3.3.1. These restrictions also ensure that a HRPN
and the �at net obtained through the �attening process are of equal behavior both in �ring
transitions and applying transformation rules, Sections 3.3.2 elaborates on this equality of their
behavior.

3.3.1. Transformation Rules in HRPN

In Chapter 2 three possible transformation rule variants were presented: local rules, global rules
and layer based rules. Both global rules and layer based rules can be modeled by a systematical
usage of local rules, so for the purpose of simplicity all further considerations are made with
local rules in mind only.

To preserve the designed hierarchical layer borders, no transformation rule may e�ect more
than one (sub-)net. To realize this, two restrictions are imposed on transformation rules. Firstly
substitution transitions cannot be part of a transformation rule, i.e. only atomic nets are
allowed as L, K and R nets of a transformation rule.

24

3. Concept for Hierarchical Recon�gurable Petri Nets

De�nition 3.6 (Atomic Net (AN)) An atomic net AN is a non-hierarchical net and can be

de�ned using the notation of De�nition 3.2 as AN = (RN, ∅) with sT = ∅.

De�nition 3.7 (Transformation Rule Restriction 1) For all transformation rules r ∈ R it

applies: The nets L,K and R of r = L←− K −→ R are atomic nets from De�nition 3.6.

Secondly connecting places may not be deleted or added by a transformation rule, but they
can be part of one. So for all transformation rules r = L←− K −→ R it applies: If a connecting
place is part of the left-hand side L or the right-hand side R of a transformation rule r than
the connecting place is also part of r’s interface K and thus part of all of r’s nets L, K and R.

De�nition 3.8 (Transformation Rule Restriction 2) For all connecting places p ∈ cP in a

transformation rule r = L ←− K −→ R it applies that from p ∈ L or p ∈ R it follows p ∈ K .

With pre(t) ⊆ cP⊕ and post(t) ⊆ cP⊕ if t ∈ sT .

3.3.2. Equality of Behavior

The HPN model can always be �attened into an equivalent non-hierarchical model with the
same behavior [JR12]. This is also true for a hierarchical recon�gurable Petri net. The behavior
of a HRPN model is composed of the simulation behavior and the transformation behavior.
While the simulation behavior is de�ned by the activation of transitions and the movement of
tokens, the transformation behavior is de�ned through the application of transformation rules
and how they change the net and its behavior.

To make certain that the proposed HRPN model su�ces these behavioral constrains this
section elaborates on the model’s conditions. Section 3.3.2 gives insight on the model’s simula-
tion behavior without the interference of transformation rules and Section 3.3.2 elaborates on
the transformation behavior both before and after the application of the �attening process.

Simulation Behavior

Without the recon�guration rules a hierarchical recon�gurable Petri net (HRPN) simply is a
hierarchical Petri net (HPN). The HRPN uses a colored HPN presented in [JK09] and [JR12] as
a basis. The used HPN model is directly comparable to the HPN model used by Jensen and
Kristensen. Chapter 5 of [JK09] elaborates on this HPN and its Section 5.6 in particular on
the behavioral equality of the HPN and its �at representation acquired through the �attening
process, which there is called unfolding. By using this model it is ensured that the simulation
behavior of the HRPN and its non-hierarchical presentation are the same.

25

3. Concept for Hierarchical Recon�gurable Petri Nets

Transformation Behavior

For the transformation behavior of a HRPN and its �attened representation to be the same
the application of a rule must be independent from the form of the net. Be it its hierarchical
representation N or its �at representation F . Thus the �attening process Flat and any rule r

need to be independent from one an other as seen in Figure 3.11 on the left.

Figure 3.11.: Possible combinations of �attening a net and applying a rule: In red applying a
rule to the �at net, in green �attening a net in which the rule was already applied.

Theorem 3.2 (Independence of Transformation and Flattening) The transformation se-

quence HN
Flat
==⇒ F

r
=⇒ F ′ is equivalent to HN

r
=⇒ HN ′

Flat
==⇒ F ′ with HN being a recon-

�gurable hierarchical net from De�nition 3.2, r one of HN ’s transformation rules and Flat the

�attening process of HN from De�nition 3.4.

HN
Flat
==⇒ F

r
=⇒ F ′ ≡ HN

r
=⇒ HN ′

Flat
==⇒ F ′

Because the pairwise independence of any two substitution rules and the independence of
any substitution rule and any transformation rule can be proven [Lor17b], theorem 3.2 can
also be proven as well:

Proof Sketch 3.2 (Independence of Transformation and Flattening) All s ∈ S of HN

are pairwise independent,HN
Flat
==⇒ F can also be constructedmaximumparallel asHN

∑
s∈S s

====⇒
F or as a transformation sequence HN

∗
=⇒ F = HN

s1=⇒ ...
sn=⇒ F with n = |S| [RE97].

26

3. Concept for Hierarchical Recon�gurable Petri Nets

Since r is mutually independent from all s and since any sequence of sequentially independent

transformations can be applied in arbitrary order yielding the same well-de�ned resulting net

[EEPT06], r can be applied before or after all or any s: HN
∗
=⇒ F

r
=⇒ F ′ ≡ HN

r
=⇒ HN ′

∗
=⇒ F ′

and thus

HN
Flat
==⇒ F

r
=⇒ F ′ ≡ HN

r
=⇒ HN ′

Flat
==⇒ F ′ (3.1)

Thereby for a hierarchical recon�gurable net HN it does not matter if one of its transforma-
tion rules r is applied before or after the net was �attened to its non-hierarchical representation
F , thus the transformation behavior does not change through the �attening of a net and the
transformation behavior of a hierarchical net HN and its �at net F are equal.

27

4. HRPN in ReConNet

Since the concept of hierarchy is new to ReConNet, for the integration of the hierarchical
recon�gurable Petri net from Chapter 3 there are three mayor points to consider:

• Simulation of HPN

• Storing and restoring of HRPN

• Application of local transformation rules

This chapter presents an implementation approach for HRPN into ReConNet, �rst a brief
overview of ReConNets program structure and Petri net model is given, so that later the
changes and additions for the incorporation of HRPN into ReConNet can be discussed in
further detail. Afterwards Section 4.1 deals with the incorporation of the HPN model into
ReConNet. In Section 4.2 a solution to the persistence problem of storing and restoring
HRPN with ReConNet is presented. Then Section 4.3 and Section 4.4 discuss simulation
and realization of local rules in ReConNet. Finally Section 4.5 details ReConNets �attening
algorithm.

ReConNet structure

ReConNet is written in Java 6 and it consists of �ve main components: gui, petrinet, persis-
tence, transformation and engine. The two packages exceptions and util add support for the
components with custom exceptions and other utensils. An overview of ReConNets program
structure with the most signi�cant program parts is displayed in Figure 4.1.

28

4. HRPN in ReConNet

Figure 4.1.: Overview of ReConNets program structure.

29

4. HRPN in ReConNet

The engine component operates at ReConNets core and controls the program �ow. It holds
data (e.g. SessionData, PetrinetData) , data structures (e.g TransitionAttribute, PlaceAttribute)
and handlers for all other relevant program parts and acts as an intermediate between them.
The data objects of the engine component contain information about all Petri nets and rules and
about the current program session. All information is accessible via its ID so that other program
parts only need to hold the IDs of information they require. The handlers PetrinetHandler and
RuleHandler only control the access to the petrinet and transformation components, while the
SimulationHandler organizes all the simulation related functionalities, like �ring a random
activated transition or applying a random rule with an occurrence.

The graphical user interface is managed by the gui component. It is divided into six areas
(panes), each for a speci�c purpose: Petri nets, rules, RPN simulation, editing of node or arc
properties, tool selection and management of �les. Access to and from the gui component is
realized through the EngineAdapter and the engine component.

The transformation component realizes the creation and application of rules, the component
is accessed through its TransformationComponent class. For the application of a rule a Trans-

formation object is created, it contains a reference to the rule that is to be applied, the Petrinet
that the rule is to be applied to and an a Match, found by the matcher subcomponent, that
represents the occurrence of the rule in the Petri net. The Transformation object also holds the
tools necessary to apply the matched rule to the Petri net.

The petrinet component manages ReConNet’s Petri nets and Petri net related functionalities
like creating Petri nets, editing Petri nets, activating transitions and �ring transitions as well as
the Petri net model structure itself. The model consists of Places, Transitions and directed arcs.
The arcs are divided into PreArcs and PostArcs. PreArcs are all arcs that point from a place to a
transition and PostArcs are all arcs that point from a transition to a place. All places, transitions
and arcs have an ID and a set of attributes as it can be seen in Figure 4.2.

Finally the persistence component is responsible for storing and restoring Petri nets and
rules as PNML (Petri Net Markup Language [Sti05], [BCVH+03]) �les. PNML is an XML-based
syntax for high-level Petri nets with the aim to enable Petri net tools to exchange Petri net
models. A secondary model that uses an object for each Transition, Place and Arc and for each
of their attributes is used by a Converter to write ReConNets Petri net model into a PNML �le.

30

4. HRPN in ReConNet

Figure 4.2.: Structure of ReConNets Petri net model.

4.1. HPN Structure

To be able to simulate hierarchical Petri nets in ReConNet several additions to ReConNet
are made. Mainly the Petri net model is extended to accommodate transitions that substitute
subnets.

Model changes: ReConNets model, presented in Figure 4.2, is only experiencing minor
changes. The only changes to the model are made to the Transition class, it gains an additional
attribute subnetID that contains the ID of the Petri net it substitutes or a negative value if it is
a normal transition. Since substitution transitions cannot be activated or �red any transition
that has a positive subnetID attribute value always return false on its isActivated() function
that signalizes if the transition is activated and thus it never �res.

Subnet data structure: Like the data for all Petri nets and rules, the engine component
stores the information about all subnets in an appropriate data structure. For this it uses
SubnetAttribute objects. For each subnet exists exactly one SubnetAttribute that holds:

• the ID of the subnet,

• a reference to the substitution transition that is substituting the subnet,

31

4. HRPN in ReConNet

Figure 4.3.: Additions to ReConNets engine component to accommodate hierarchy.

• the ID of the net containing this substitution transition (also known as the super net of
that subnet),

• and a bidirectional mapping of all the substitution transition’s connecting places in the
super net to their corresponding connecting places in the subnet.

The HierarchyEngine: To manage the hierarchical nets the HierarchyEngine is added to
the engine component, it maintains all SubnetAttributes so that their data stays accurate after
changes to any hierarchical net. The HierarchyEngine also contains a mapping of all subnet
IDs to their SubnetAttributes and structures all subnet IDs in NetHierarchyTree tree structures
so that for every hierarchical net in ReConNet there exists a NetHierarchyTree that resembles
the hierarchical net and holds all (sub-)net IDs that belong to that hierarchical net with their
child-parent relations. Since all Petri (sub-)nets are stored and administrated independently via
their ID by the SessionManager, these trees of IDs also de�ne the hierarchy of all hierarchical
nets. Figure 4.4 displays an exemplary NetHierarchyTree with mappings of its subnet IDs to
their SubnetAttributes.

For the administration of the hierarchical nets the HierarchyEngine also provides the nec-
essary functions to add and remove subnets. Added subnets can either be empty or a replica
of a Petri net that has already been loaded into ReConNet. If the added subnet is empty,
connecting places that correspond to the substitution transitions connecting places are au-
tomatically created within the subnet. If the new subnet is a replica, then for each of the
substitution transitions connecting places either one place of the subnet has to be chosen as
the corresponding connecting place or a new connecting place is created in the subnet.

32

4. HRPN in ReConNet

Figure 4.4.: (NetHierarchyTree) Tree structure for net hierarchy with the associated
SubnetAttributes.

4.2. Persistence

To store Petri net models, PNML �les are used. The persistence components Converter �rst
creates a Pnml object that than is written into a PNML �le.

PNML in ReConNet

A Pnml object contains

• a nodeSize for layout purposes,

• a type String that indicates if the PNML is for a rule (type = „rule“) or a normal Petri net
(type = „petrinet“),

• and a list of Nets where each Net represents a Petri net.

The Pnml - type is mainly used as header information when restoring a Petri net or rule from
PNML to chose the correct restoration procedure. In the list of Nets, each Net object represents
a Petri net. It has an ID String, that correlates with the ID of the Petri net in ReConNet it
represents, a Page that contains all the data about the Petri net and a nettype String. In the
case the PNML is for a rule the nettype String contains L, K or R depending on which part of
the rule the Net represents, if the PNML is not for a rule the nettype String is empty.

33

4. HRPN in ReConNet

Figure 4.5.: PNML in ReConNet.

Persistence for hierarchical Petri nets

For the storage of hierarchical Petri nets a third Pnml - type (type = „hierarchical petrinet“) is
introduced. Also when a hierarchical Petri net is converted into a Pnml object, the HPN’s main
net is the �rst entry in the list of Nets. Then all subnets follow in arbitrary order.

When restoring a hierarchical Petri net from Pnml �rst the HPN’s main net is restored. Then
for every transition with a subnetID in the main net, the Net with the corresponding ID is
found in the list of Nets and added as subnet to that transition, this is repeated recursively for
all subnets until the whole hierarchical Petri net has been restored.

4.3. Simulation

In a HRPN activated transitions on any level of the hierarchical net can �re and since the
SimulationHander of the engine component is driving the simulation adjustments would have
to be made there as well.

With regard to not only to the addition of hierarchy, but also the addition of local rules
later, it was decided to use the �attened representations of HRPNs during the simulation. This
is possible because, as Section 3.3.2 described, a HRPNs hierarchical representation and its
�attened non-hierarchical representation are of equal behavior. Since ReConNet is already
capable of simulating non-hierarchical nets this keeps the changes to the SimulationHander to
a minimum.

During the design phase of a HRPN, in which the net designer develops the nets and
transformation rules, true hierarchy is used and at the beginning of the simulation the �at net
is acquired with the �attening process.

Then during the simulation ReConNets simulation engine switches to the �at representation
of a HRPN for transition �ring and transformation rule application. However for the user this
remains transparent and the visual interface remains in a hierarchical view. While transitions
are �red and transformations are performed on the �at net, the hierarchical net applies the
changes appropriately. To achieve this the HierarchyEngine holds a bidirectional mapping of
all places and transitions of the generated �at net to their counter parts in the HRPN. When

34

4. HRPN in ReConNet

ever tokens are moved or transformations performed on the �at net the change is mirrored to
the HRPN via this mapping, so the user perceives the simulation of the hierarchical net.

4.4. Rule Application

The implementation of the local rules, described in Chapter 3, that target a speci�c (sub-)net
of a HRPN, presents a certain challenge. Since for the simulation the �at net is used and for
the application of rules one single name space for places and transitions (AP , AT) is needed,
this name space needs to include all of the disjoint name spaces of all of the hierarchical nets
(sub-)nets. This single name space is created during the �attening process. Whenever a subnet
is inserted into its super net all places and transitions that are not connecting places gain a
pre�x to their names that is unique to the substitution transition that was replaced. The local
rules meant for that subnet are adjusted to that naming scheme as well. This way the naming
preserves hierarchy borders and (sub-)net identities and so the names of places and transitions
are speci�c enough that a rule meant for only a speci�c (sub-)net can be limited to the correct
part of the �at net. The concrete steps and name changes that are taken during the �attening
process are described in Section 4.5.

To apply a rule as local rule to a (sub-)net, a (sub-)net can choose any rule that has been
loaded into ReConNet. The chosen rule is then copied and associated with the (sub-)net. The
HierarchyEngine manages local rules by keeping a mapping of (sub-)net IDs to rule ID sets that
have been chosen as local rules.

4.5. HRPN Fla�ening in ReConNet

With the additions and changes of the previous sections in place the only part remaining that
is needed for the simulation of HRPN is the �attening process. As Section 3.2.2 explained the
�attening process needs to integrate all subnets into the main net and unify the disjoint name
spaces of all (sub-)nets of the HRPN into one.

Naming convention

For the generation of the �at nets name space a distinct naming convention is utilized. As a
�rst naming step, during the design phase of a hierarchical Petri net in ReConNet to every
substitution transition the name pre�x „ST_“ and to every connecting place the name pre�x
„CP_“ is added. These name pre�x are are always in the front and are unavailable for other
places and transitions. They separate the name spaces of connecting places and substitution

35

4. HRPN in ReConNet

transitions from other places and transitions to realize the concepted naming function for
places pnameP −→ AN

P with pname(cP) ⊆ AcP and pname(P\cP) ⊆ AN
P \AcP and transitions

tnameT −→ AN
T with tname(sT) ⊆ AsT and tname(T\sT) ⊆ AN

T \AsT .
Secondly every time a substitution transition is �attened all places and transitions from its

subnet gain a pre�x to their name, in form of the name of the substitution transition. This way
the subnet identity of places and transitions is retained in the �at net so that the application of
a local rule meant for that subnet can be con�ned to that part of the �at net. Excluded from the
addition of a pre�x are the connecting places that form a connection set with the substitution
transitions connecting places, because they are merged with their set partner places. The
names in a local rule of a subnet need to be adjusted to this naming as well, so whenever a
naming pre�x is added to the places and transitions of a subnet they are also added to the
places and transitions of every local rule that belongs to that subnet. This addition of subnet
name pre�xes realizes the disjoint union of name spaces during the �attening process required
by the concepted model presented in Chapter 3.

Since the designer retains a hierarchical view only the substitution transition pre�x „ST_“
and the connecting place pre�x „CP_“ are visible, all other pre�xes are invisible from the
designers view to uphold transparency.

Figure 4.6 illustrates an exemplary HRPN with one local rule and the �at net of the HRPN
created once with and once without subnet name pre�xes. The local rule should only be
applicable to the place labeled p1 in the subnet subnet2. Without the subnet naming pre�xes a
second occurrence for the rule arises in the �at net, which would result in di�erent behaviour
of the �at net compared to the hierarchical net which must be prevented to suite the model.
The �at net with subnet name pre�xes averts this issue.

36

4. HRPN in ReConNet

Figure 4.6.: HRPN �attening with name pre�xes.

37

4. HRPN in ReConNet

Fla�ening Algorithm

The �attening process that is described in Chapter 3 transforms the hierarchical net that it
is applied to into the �at net. However the hierarchical representation of the HRPN is still
needed after the generation of the �at net, so the �rst step for the generation of the �at net in
ReConNet is to copy the HRPN that is to be �attened.

The �attening process is formally described as:

De�nition 4.1 (Flattening Process) The �attening is de�ned for an hierarchical net HN =

(RN,A, SR) given by a recon�gurable netRN = (N,RN), a name spaceA = (AN
P , AN

T) and

a set of substitution rules SR as given in Def. 3.2 recursively by

1. flat((N,R), A, SR) = (N,R) if sT = ∅

2. flat(RN,A, SR) = flat(FLAT ((N,R), SR), A, SR) with

• A =
⊎

st∈sT (Âst \AcP)]AcP

• R =
⊎

st∈sT R̂st

• SR =
⊎

st∈sT ŜRst

with FLAT ((N,R), SR) = (N,R) by applying each substitution s once, s ∈ S from De�ni-

tion 3.3.

Since Chapter 3 explains that all the transformation sequences of HN

∑
s∈S s

====⇒ F are
equivalent and well-de�ned, thus any sequence of substitution transition �attening is �ne. So
for the �attening in ReConNet a bottom-up approach is chosen. It only �attens substitution
transitions with subnets that contain no substitution transitions themselves. This approach
avoids the creation of substitution rules that create substitution transitions.

Algorithm 1 describes the main steps that are taken in ReConNet to generate the �at net.
As can be seen in line 2 of Algorithm 1, �rst a copy of the hierarchical net is created. This

netcopy of the HRPN is then �attened. A HRPN is organized like a tree structure where every
node is a (sub-)net and all leaf nodes are non-hierarchical subnets that thus do not contain
substitution transitions or subnets of their own. This structural property is utilized by the
recursive procedure flattenNet, that realizes the net �attening. The recursive procedure
starts at the main net, the root of the net hierarchy tree, and tries to �atten all its subnets �rst,
if one of its subnets has a subnet of its own it trys to �atten that one recursively �rst before
returning to its parent net and so the procedure recursively moves down the net hierarchy
tree (lines 8-10).

38

4. HRPN in ReConNet

Algorithm 1 Flat net generation:
1: function generateFlatnet(mainnet)
2: netcopy = deepCopyNet(mainnet)
3: flattenNet(netcopy)
4: flatnet = netcopy
5: return flatnet
6: end function

7: procedure flattenNet(net)
8: for each subnet s of net do
9: flattenNet(s)

10: end for
11: for each subnet s of net do
12: for each local rule r of s do
13: addSubnetNamePrefixesToRule(r, SubnetAttribute of s)
14: add r to the local rules of net
15: end for
16: sr = createSubstitutionRule(SubnetAttribute of s)
17: transform net by applying sr
18: end for
19: end procedure

When reaching a leaf node (De�nition 4.1 case 1.) the �attening procedure does nothing,
because all leaf nodes are non-hierarchical nets already. After returning from the last child
of a (sub-)net net whose child nodes are all exclusively leaf nodes the procedure �attens all
substitution transitions of net (lines 11-18) (De�nition 4.1 case 2.). For this all of nets children’s
local rules are modi�ed with subnet name pre�xes and added to nets own set of local rules
(lines 12-15). Afterwards a substitution rule is created for each of nets substitution transition
and then applied (lines 16-17). This realizes De�nition 4.1s union of name spaces and rules, a
union of substitution rules in unnecessary since due to their lack of substitution transitions
the subnets do not contain substitution rules. As a result net is turned into a leaf node itself
which enables its parent node to be �attened by the procedure.

Figure 4.7 displays the (sub-)net-wise �attening of an exemplary hierarchical net tree using
this algorithm.

Substitution Rules and Subnet Prefixes

During the �attening process the subnet pre�xes that were �rst described in Section 4.5 are
constructed. They are introduced into to the net through the substitution rules. Figure 4.8

39

4. HRPN in ReConNet

Figure 4.7.: Tree view of a HRPN �attened in ReConNet.

shows the substitution rule for the substitution transition ST_sn2 of the HRPN displayed in
Figure 4.10.

Figure 4.8.: Substitution rule with subnet name pre�xes.

Substitution transition ST_sn2 substitutes the subnet subnet2, so for the creation of the
substitution rule of Figure 4.8 the left-hand side L contains the substitution transition and its
surrounding net, i.e. its connecting places. The right-hand side R contains the subnet subnet2
but to each place and transition of R the name of the substitution transitions without the
ST_ pre�x is prepended. Excluded from this are the connecting places CP_p2 and CP_p3

40

4. HRPN in ReConNet

since they are part of ST_sn2s connection sets. So in R the place and transition p1 and t1 are
named sn2_p1 and sn2_t1 respectively.

Figure 4.9.: Local rule before and after renaming with subnet name pre�xes.

In a similar way subnet pre�xes are also added to local rules. When for example Figure 4.10s
substitution transition ST_sn2 is being �attened, all of subnet2s local rules are added to the
net that contains ST_sn2 (here: mainnet). And in all L,K and R nets of local rules that are
transferred this way, the names of places and transitions are prependend with the substitution
transitions name without the ST_ pre�x. The exception for connecting places that correlate to
the substitution transitions connection sets applies here as well. So the places named p1 are
renamed to sn2_p1 and the transition tnew is renamed to sn2_tnew.

In Figure 4.9 local rule1 can be seen before and after this renaming.

Figure 4.10.: A HRPN example.

41

5. Evaluation of HRPN in ReConNet

Since other Petri net models struggle with the modeling of dynamic recon�gurable hardware
like FPGAs or �exible manufacturing systems and recon�gurable Petri nets are meant solve this
issue, it seems appropriate to evaluate the added hierarchical recon�gurable Petri net modeling
capabilities of ReConNet by using such a system as an example. So for the evaluation of
ReConNet this chapter �rst presents an exemplary �exible manufacturing system (FMS) and
then utilizes ReConNet to model said system. Afterwards the modeling procedure as well as
the modeled HRPN are evaluated to see if the modeling of HRPN in ReConNet hold advantages
over similar modeling procedures and tools.

5.1. The FMS Evaluation Example

In Section 2.4 the basic concepts of FMS have already been explained. A FMS is a group of
computer numerically controlled machines (CNC) that are central controlled and connected
through an automated transport system. The following FMS evaluation example seeks to be as
simple as possible while being complex enough to appropriately demonstrate the modeling a
real FMS with HRPN.

The FMS evaluation example can produce four kinds of completed parts: toy bricks, gears,
clocks and toy cars. For the production the system takes in six di�erent starting work parts:
green, blue and red plastic granulate, aluminum and steel sheets and electric engines. Starting
work parts and completed parts enter and leave the FMS through a loading and unloading
station. Part of the FMS are four CNC machines. One of the CNC machines is an injection
molder, two are laser cutters and one is an assembly machine. The CNC machines are connected
to a conveyor transport system with a loop-layout so that parts can be transported from any
CNC machine to any CNC machine. An overview of the FMS is given in Figure 5.1.

CNC1: CNC1 is the injection molder, the injection molder takes in green, blue and red plastic
granulate, melts the mixed granulate down and injects the molten plastic into molds. By
mixing di�erently colored granulate a wide spectrum of colored plastic can be created. Also,
independent from the used plastic mixture, di�erent molds can be used to create di�erent

42

5. Evaluation of HRPN in ReConNet

Figure 5.1.: Overview of the FMS evaluation example.

plastic parts. For this FMS the injection molder makes either toy bricks and parts for toy cars
or toy bricks and clock body parts. All parts are created in one of two possible colors.

CNC2 & CNC3: CNC2 and CNC3 are laser cutters (laser cutter 1 and laser cutter 2, respec-
tively). The laser cutters take in either aluminum or steel sheets, one kind of material is used
until it runs out. A computer controlled laser then cuts a sheet into parts. For this FMS, laser
cutter 1 (CNC2) cuts toy car metal parts and laser cutter 2 (CNC3) cuts clock handles. Both laser
cutters use spare room on the metal sheets to cut out gears. The gears are then galvanized and
�nally all parts are polished before leaving the CNC machine. CNC2 can also add or remove a
galvanization step to the production of toy car metal parts on the �y.

CNC4: CNC4 is an assembly machine. It can assemble one item at a time which can be either
a clock build from clock body parts, clock handles, gears and an electric engine or a toy car
build from toy car plastic and metal parts, gears and an electric engine. It can only switch from
the assembly of one to the other between completed assembly processes so that no wrong
parts reside within the machine.

43

5. Evaluation of HRPN in ReConNet

5.2. The HRPN of the FMS

For the HRPN model of the FMS evaluation example a main net with four subnets is created.
Each subnet models the behavior of one CNC machine while the main net models the behavior
of the transport system and the loading and unloading station. The centralized controlling
system is represented by local rules that are added to each CNC subnet and the limited number
of edges in the main net.

The following sections presents the most important parts of the created HRPN, the complete
HRPN with close ups of all nets, rules, the �at net and subnet templates can be found in
Appendix A.

Main Net

The main net is displayed in Figure 5.2. The transitions with only one edge on the far left and
right side of the net add starting work parts to and remove completed parts from the system.
These transitions function as the FMS’s loading and unloading station. All places of the main
net are part of the FMS’s transport system, they connect the loading and unloading station and
all CNC machines. The transitions ST_CNC1, ST_CNC2, ST_CNC3 and ST_CNC4

are substitution transitions, they house the subnets for the machines CNC1 (injection molder),
CNC2 (laser cutter 1), CNC3 (laser cutter 2) and CNC4 (assembly machine).

In essence: Tokens representing starting work parts enter the system trough the transitions
on the left side, the CNC subnets take these tokens in and produce tokens representing
completed parts that exit the system through the transitions on the right side. Furthermore
there are no (local) rules allotted to the main net itself.

44

5. Evaluation of HRPN in ReConNet

Figure 5.2.: Main net of the HRPN.

CNC1 - Injection molder

In Figure 5.3 (a) the subnet CNC1 is displayed. It models the behavior of the injection molder.
The places CP_green granulate, CP_blue granulate and CP_red granulate are connect-
ing place through which granulate tokens enter the subnet. As a �rst step di�erently colored
granulates are mixed in a prede�ned ratio. The mixed colored granulate is then smelted and
injected into molds. The tokens representing the molded parts exit the subnet through the
connecting places CP_toy bricks, CP_toy car plastic parts and CP_clock body parts.

In its starting con�guration the injection molder produces toy bricks and toy car plastic
parts from plastic that uses one part green, two parts blue and three parts red granulate. The
FMS can switch the mixing ratio from (1 green / 2 blue / 3 red) to (3 green / 3 blue / 1 red).
The local rules CNC1 rule 1 and CNC1 rule 2, displayed in Figure 5.3 (b) and Figure 5.3 (c),
model the switch between the two compositions by changing the weights on the edges leading
into the transition mix. Rule 1 switches the ratio from (1 green / 2 blue / 3 red) to (3 green / 3
blue / 1 red) and rule 2 can reverses this switch. The local rules CNC1 rule 3 and CNC1

rule 4, displayed in Figure 5.3 (d) and Figure 5.3 (e) model the switch between the production
of toy car plastic parts and clock body parts by changing the edges coming from the injection
molding transition. Rule 3 switches from toy car plastic parts to clock body parts and rule 4
can reverse this change.

45

5. Evaluation of HRPN in ReConNet

(a) Subnet CNC1

(b) CNC1 rule 1: granulate composition switch. (c) CNC1 rule 2: granulate composition reversal.

(d) CNC1 rule 3: mold switch. (e) CNC1 rule 4: mold reversal.

Figure 5.3.: Subnet CNC1 with its local rules.

CNC2 & CNC3 - Laser Cu�er 1 & 2

The subnets CNC2 and CNC3 are displayed in Figure 5.4 and they are both created from the
same template net. On the left side of the net metal sheet tokens enter the subnet through
the places CP_aluminum sheets and CP_steel sheets. The sheets are then cut into gears
and metal parts for toy cars (CNC2) or clock handles (CNC3). Metal parts are polished and
transported out while gears are galvanized, polished and then transported out of the subnet
through the connecting places CP_gears, CP_toy car metal parts and CP_clockhandles.

The local rules displayed in Figure 5.5 model the switch between the two sheets variants by
changing an edge between the current sheet material place and the the transition transport

to the alternative sheet material place. Each rule is �tted with a NAC with a single token on
the place of current sheet material, so that the rule is only applicable when no more tokens of
the current material are present.

As Section 5.1 described CNC2 can add and remove a galvanization step for toy car metal
parts. The rule displayed in Figure 5.6 (a) models the addition and the rule in Figure 5.6 (b)
models the removal of the galvanization step. CNC2 rule 1 adds a place and transition after
the cutting step and CNC2 rule 2 removes them.

46

5. Evaluation of HRPN in ReConNet

(a) Subnet CNC2

(b) Subnet CNC3

Figure 5.4.: Subnet CNC2 and CNC3.

(a) CNC2&3 rule 1: sheet material switch. (b) CNC2&3 rule 2: sheet material reversal.

Figure 5.5.: Local rules for CNC2 and CNC3.

(a) CNC2 rule 1: add galvanization step. (b) CNC2 rule 2: remove galvanization step.

Figure 5.6.: Local rules for CNC2 only.

47

5. Evaluation of HRPN in ReConNet

CNC4 - Assembly Machine

Figure 5.7 displays the subnet CNC4 with its two local rules. The subnet takes tokens repre-
senting clock or toy car parts from its connecting places in the left via its sort transitions and
moves them through its assemble transition to the connecting places CP_clock and CP_toy
car. Since the assembly machine can only assemble one item at a time the place sorted parts

has a capacity of one.

(a) Subnet CNC4

(b) CNC4 rule 1: switch to toy car assembly. (c) CNC4 rule 2: switch to clock assembly.

Figure 5.7.: Subnet CNC4 with its local rules.

48

5. Evaluation of HRPN in ReConNet

The switch between the assembly of clocks and toy cars is model through CNC4s local
rules CNC4 rule 1 and CNC4 rule 2. The two rules change edges to and from the subnets
connecting places so that the appropriate part tokens are taken in by the sort transition and
the corresponding �nished product token is created by the assemble transition. Each rule has
a NAC with one token on the place sorted parts so that it is assured that the rule can only be
applied when the CNC machine is empty.

5.3. Simulation

From the HRPN presented in Section 5.2, ReConNet generates the �at net displayed in Figure
5.8 and a set of twelve rules. The nets that replaced the former substitution transitions are
marked in blue. The generated net and rules are used by ReConNet to simulate the HRPN.

Figure 5.8.: FMS evaluation example: �at net. Former subnets are marked in blue.

As can be seen in the �at net, in its starting con�guration the FMS net can neither produce
clocks nor toy cars. This is because the injection molder is set to produce toy car plastic parts,
so no clock body parts are being created, and the assembly machine is set to assemble clocks
and thus no toy cars are being assembled. Only through recon�guration can the model reach
con�gurations in which these two items, represented by the places CP_clock and CP_toy
car, can be created.

To test simulate the system a �x number of resource tokens are added to the system. 300 to-
kens are placed onto each of the granulate places CP_green granulate, CP_blue granulate
and CP_red granulate and 100 tokens are placed on each of the places for metal sheets and
electric engines (CP_aluminium sheets, CP_steel sheets and CP_electric engine). In
order to avoid that further resources are added to or removed from the system the transitions

49

5. Evaluation of HRPN in ReConNet

representing the load and unload station are being removed. This results in the altered main
net presented in Figure 5.9.

Figure 5.9.: FMS simulation example.

For the simulation test the system runs until no further transition �ring can occur, at which
point only transformation is still possible. Figure 5.10 illustrates the main net after about
one-half of the simulation, at which point during the last step the last token from the place
CP_aluminium sheets has just been removed. So far multiple transformations within the
subnets CNC1, CNC2 and CNC4 could be observed. Multiple tokens on the outgoing connecting
places of ST_CNC1 and ST_CNC4 attest to the production switch of the two subsystems.
CNC3 and the left side of CNC2 on the other hand have not experienced any transformations,
also no tokens have been removed from the place CP_steel sheets. This is consistent with
the premises that the laser cutter intake of sheet material only switches once one material is
unavailable.

Figure 5.10 shows the main net at the end of the simulation. At this point no more starting
work parts can be processed and no more completed parts can be assembled due to lack of
electric engines. During the simulation it could be observed that the laser cutter subnets CNC2
and CNC3 switched their sheet material to steel and that further transformations occurred
in the other subnets CNC1 and CNC4 which is also indicated by the additional tokens on the
places for completed parts and plastic parts of both kinds.

When looking at the simulation observations, all observations are backed by the FMS
description in Section 5.1 and the simulation supports the assertion that the presented HRPN
of the FMS works correctly. Assuming the model represents the exemplary FMS correctly it
can be used to make statements about the FMS itself.

50

5. Evaluation of HRPN in ReConNet

Figure 5.10.: FMS simulation example after one-half of the simulation.

Figure 5.11.: FMS simulation example at the end of the simulation.

51

5. Evaluation of HRPN in ReConNet

5.4. Evaluation

In this section the hierarchical recon�gurable Petri net model and its implementation in
ReConNet are evaluated using the FMS evaluation example. First the usefulness of HRPN
for modeling dynamic systems is considered in Section 5.4.1. For this the HRPN modeling
approach is compared to HPN approaches without recon�guration rules. Then Section 5.4.2
evaluates ReConNets modeling capabilities and compares them to similar tools that support
hierarchical Petri nets. For the comparison the well developed and well known tool CPN tools

is chosen as a representative.

5.4.1. Usefulness of HRPN

To evaluate the usefulness of the HRPN, this section analyzes Petri net approaches without
recon�guration to see what di�culties arise and how much e�ort it would be to overcome
these di�culties compared to the HRPN approach.

Without the recon�guration rules the FMS evaluation example can be modeled as a hierar-
chical Petri net. A simple way to do this is to create a HPN for every possible net con�guration.
In this simple example with only six parts of the net switching between two states this results
in 26 = 64 di�erent nets. Since most net con�gurations are quite similar to one another after
modeling the �rst net every of the other 63 nets can be created in only a fraction of the time.
Still if one net is reworked later these change need to be propagated to all 64 nets which is a
considerable amount of e�ort It is also to consider that the FMS evaluation example is small
and of low complexity, bigger systems would result in far more nets with the number of nets
rising exponentially with increasing system size and complexity of the system making this an
impractical approach. Also this would disregard the fact that the system can switch between
con�gurations on the �y which might result in crossed states unreachable by any of the single
nets.

Since in the FMS evaluation example the con�guration switches each only apply to a certain
subnets, instead of recreating the entire net for each possible net con�guration, an other simple
approach is to model each subnet con�guration and then add it to the main net in a parallel
fashion. In the case of the FMS evaluation example this results in 22 = 4 nets for CNC 1,
22 = 4 nets for CNC2, 2 nets for CNC3 and 2 nets for CNC4 for a total of 4 + 4 + 2 + 2 = 12

subnets instead of the 4 ∗ 4 ∗ 2 ∗ 2 = 64 whole nets of the �rst approach. Figure 5.12 displays
the FMS evaluation examples main net using this approach. This approach takes signi�cantly
less e�ort than the �rst approach with 64 nets. Also if changes are made to a subnet, these
changes only need to be propagated to the other con�gurations of the subnet. Furthermore

52

5. Evaluation of HRPN in ReConNet

Figure 5.12.: Main net of the FMS evaluation example with separate subnets for each subnet
con�guration.

in contrast to the �rst approach the number of nets would not rise exponentially in bigger,
more complex systems. With more use of hierarchy the number of duplicated subnets could
possibly be reduced further.

While this approach is signi�cantly more reasonable than to create a HPN for every possible
net con�guration and does account for more crossed states, since all con�gurations are within
one HPN, it still does not account for crossed states that are created within one subsystem. An
other problem is that it can also violate some system restrictions. For example, two parallel
subnets can violate a restriction on CNC4 where only one item may be assembled at a time. By
having a token parallel on each of the sorted parts places in both CNC4 subnet instances, to
items would be assembled simultaneously.

A less simple approach than the �rst two can address the issue of crossed states. This
approach adjust each switching part of the net locally. Figure 5.13 shows how this is done for
CNC1.

Some system switches however have additional restrictions. In the HRPN these are realized
using NACs. The switch between the assembly of clocks and toy cars in CNC4 is an example for
this. Figure 5.14 shows how this is achieved using the approach of paralleling each switching
part of a net locally. Since the restriction of CNC4 is that only one item is assembled at a time
and that the assembly type can only be switched when the the machine is empty, the additional
changes are rather limited.

53

5. Evaluation of HRPN in ReConNet

Figure 5.13.: CNC1 of the FMS evaluation example with all its con�gurations added locally.

CNC2 and CNC3 also have a restriction on a system switch for their sheet material. The
switch from aluminum sheets to steel sheets may only occur when there are no more alu-
minum sheets, i.e. no tokens on the place CP_aluminium sheets. Although this is not a
complex restriction and in a HRPN modeling a NAC that accounts for this is can be done quite
easily, modeling this behavior without rules and NAC is quite di�cult. Other, more complex,
restriction can become even harder or impossible to realize.

Figure 5.14.: CNC4 of the FMS evaluation example with all its con�gurations added locally.

In regard to systems with dynamic components it turns out the HRPN seem to hold signi�cant
advantages over non recon�gurable approaches. Although in some cases the approaches using
multiple HPN or parallel subnets are feasible, the realization as a HRPN seems both easier
during the �rst creation and during phases of revision and rework of the systems nets.

The approach using local adjustments can cope with most situations but complex restrictions
or locations containing complex or multiple dynamic components would involve a serious
amount of modeling work and considerations, that could be solved by using a set of rules with
NAC in a HRPN. This becomes even more apparent when such a system part is reworked.
Where in the HRPN only a rule needs to be added, removed or altered, the modeler using the

54

5. Evaluation of HRPN in ReConNet

approach with local adjustments would often need to rethink all interactions between the
dynamic components.

In comparison to the non recon�gurable approaches the use of HRPN appears to be less
time consuming, less complicated and more clear-cut, which also reduces the chance for error.
The ability to quickly add, remove or recombine rules also gives more �exibility to the design.

One of the strong points of hierarchical Petri nets is the reusability of subnets. The use of
HRPN makes reusing subnets even more appealing since local rules can also be reused and
recombined, to suit new needs, as well. An example for this in the FMS evaluation example
would be adding a new laser cutter that produces clock handles, only uses aluminum sheets but
adds and removes a galvanizing step to its clock handle production. Altough this con�guration
does not yet exist in the system this could be achieved without the need to design any new
nets or rules by using the laser cutter net as template and adding the two rules responsible for
the galvanizing step switch in CNC2 (CNC2 rule1 and CNC2 rule2).

A disadvantage of the HRPN approach becomes apparent during validation and model
checking. Compared to a HPN, checking a HRPN requires a more complex algorithm that
incorporates the recon�guration rules. However the presented HRPN can be �attened into an
equivalent RPN and works like [Sch14] provide the algorithms necessary for model checking
of RPN and thus for HRPN in extension.

5.4.2. Hierarchy Modeling Capabilities of ReConNet

To evaluate the modeling capabilities of ReConNet we compare it to similar tools with the
capability to model hierarchical Petri nets. Common tools that can be used to model HPN are
for example snoopy [HHL+12], CPN tools [RWL+03] or HiPS [HiP17]. Since a complete survey
and comparison of HPN Petri net tools is not the purpose of this section one Petri net tool is
chosen as comparative example for ReConNet. A survey of di�erent Petri net tools can be
found in [TA15]. For this sections comparison the tool CPN tools is chosen, since it is well
documented and readily accessible. After some general di�erences between CPN tools and
ReConNet this section concentrates on aspects concerning the modeling of hierarchical Petri
nets.

First o� CPN tools uses colored Petri nets (CPN [Zim08]), which allows tokens to have a
data value attached to them. Since CPN are backward compatible any normal Petri net can be
modeled using a colored Petri net. ReConNet uses decorated Petri nets, this allows places to
have limited capacities and transitions to have additional labels. CPN tools also provides some
additional tools like syntax checking and state space analysis.

55

5. Evaluation of HRPN in ReConNet

(a) FMS main net in CPN tools.

(b) FMS CNC2 net in CPN tools. (c) FMS CNC3 net in CPN tools.

(d) FMS CNC1 net in CPN tools. (e) FMS CNC4 net in CPN tools.

Figure 5.15.: The start con�guration of the FMS evaluation example, modeled with CPN tools.

56

5. Evaluation of HRPN in ReConNet

For the hierarchy evaluation the FMS evaluation example is modeled using CPN tools. Since
CPN tools does not support dynamic changes the starting con�guration of the FMS evaluation
example described in Section 5.2 is used for the evaluation. Figure 5.15 displays the FMS
evaluation example modeled with CPN tools. Since CPN tools has no decorations the place
sorted parts in CNC4 that has a capacity of one must me modeled di�erently. The limited
capacity is achieved by using an additional place parallel to the place sorted parts but with
inverted arc directions and one initial token.
ReConNet and CPN tools use the same hierarchical Petri net concept. They both use

substitution transitions with connecting places organized in sets of two, one place in the
subnet and one place in the net with the subnets substitution transition, also known as the its
super net. In CPN tools the connecting place in the subnet is called port place and its partner
place in the super net is called socket place. Any place can be declared a port place and all
places connected to a substitution transition are considered socket places. If a port place is
in a subnet it can be assigned to one of the socket places of its substitution transition, thus
building a connection set. A socket place and a port place do not have to share the same name.
In ReConNet port places are automatically created. Also ReConNet has a stricter naming
convention due to its recon�guration rules and so port and socket places have to share the
same name. While ReConNet can create a subnet from an existing net, picking or creating
port places in the process, CPN tools has to create an empty net, copy the existing net into the
empty net and then assign port places to socket places.

Both of the tools can simulate the Petri net’s transition �ring. In both tools this simulation
behaves generally the same with the exception that CPN tools can rewind the simulation while
ReConNet has to reload the net. Of course ReConNet also has the ability to simulate dynamic
changes which CPN tools lacks.

Modeling the initial con�guration of the FMS evaluation example using ReConNet and CPN
tools reveals that ReConNets capabilities for the modeling of hierarchical Petri nets are quite
similar to comparable to tools like CPN tools. Yet ReConNet lacks some comfort functions
that other tools provide, functions like de�ning node groups, copying nodes and node groups,
snapping nodes to a grid or displaying multiple Petri nets simultaneously in di�erent windows.

57

6. Future Work

For future advancements of ReConNet there are several possible starting points. In Chapter 3
this work introduced hierarchy and hierarchy dependent rules in the form of global rules, layer
based rules and local rules. While local rules are now available in ReConNet the addition of
global rules and layer based rules could be a next step in the future development of ReConNet.
[LP18] discusses an approach using a HRPN with a labeling function with an order for subtyping
labels, which allows more abstract rules. Incorporating this ordered labeling could be a step to
add global rules to ReConNet.

The evaluation process of Chapter 5 revealed a couple of ReConNets weak spots. Although
ReConNet is formally sound a couple of additional features could improve ReConNets
modeling experience and streamline the design process. Especially features that result in a
faster process or more clarity could be useful. This could include features like

• coping nodes and node groups,

• displaying multiple nets at once,

• loading multiple nets or rules at once,

• a more elaborate management interface for local rules.

The dynamic graph drawing algorithm of ReConNet, also still has some issues. Especially
in larger nets with a higher number of nodes, after a net transformation many nodes of the
net seem to cluster on the borders of the Petri net. Although [Lor17a] tried to enhance the
graph drawing algorithm of ReConNet by introducing a node aging algorithm there is still
room for improvement. Further development that results in a better distribution of Petri net
nodes would increase the readability of ReConNets transformed Petri nets greatly.

Finally the model of substitution transitions can be extended to also include substitution
places as well. While substitution transitions already seem to cover most hierarchy design
solutions, exploring the use of places substitution could extend ReConNets design space
further.

58

7. Conclusion

This thesis presents a hierarchical recon�gurable Petri net (HRPN) model based on substitution
transitions that can be �attened into an equivalent non-hierarchical recon�gurable Petri
net (RPN) model. For net veri�cation and validation purposes the �at representation of the
hierarchical recon�gurable Petri net can be used. A central part of this thesis is the formal
de�nition of both the model and the �attening process in Chapter 3.

The HRPN model is then incorporated into a RPN modeling tool called ReConNet, in
Chapter 4, thus extending ReConNets RPN capabilities to allow the modeling and simulation
of HRPN as well.

The HRPN model and ReConNet tool are then evaluated using a typical use case in the form
of a �exible manufacturing system (FMS). For this, in Chapter 5, a simple FMS is introduced
and modeled using ReConNet and one additional similar tool. The second tool is called CPN
tools and it is capable of hierarchical Petri net (HPN) modeling and simulation.

Form the evaluation it can be concluded that the use of HRPN for the modeling of dynamic
systems can be quite bene�cial. A dynamic system can create a multitude of possible system
con�gurations during its operation and switch between these con�gurations on the �y. Which
is an aspect that a model without recon�gurability struggles with. The recon�gurability aspect
of the (H)RPN allows to unite all system con�guration into one model, which enables the
simulation and evaluation of the dynamic system as a whole.

The addition of hierarchy results in a clearer system model and signi�cantly improves the
reusability of reoccurring system parts. Which becomes more and more useful the larger the
system becomes. The black box behavior of subnets and their local rules also eases the design
process and modeling labor distribution.

The evaluation also reveals that the HRPN modeling capabilities added to ReConNet leave
room for improvement. ReConNet especially lacks some features that similar HPN tools
provide that would result in a more convenient and more expeditious modeling process. Future
advancements, that are highlighted in Chapter 6, could close this gap.

59

Bibliography

[BCGS04] Stefano Basagni, Marco Conti, Silvia Giordano, and Ivan Stojmenovic. Mobile ad

hoc networking. John Wiley & Sons, 2004.

[BCVH+03] Jonathan Billington, Søren Christensen, Kees Van Hee, Ekkart Kindler, Olaf
Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber.
The Petri net markup language: concepts, technology, and tools. In International

Conference on Application and Theory of Petri Nets, pages 483–505. Springer, 2003.

[Chr13] George Chryssolouris. Manufacturing systems: theory and practice. Springer
Science & Business Media, 2013.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-

mentals of algebraic graph transformation. (Monographs in Theoretical Computer

Science. An EATCS Series). Springer, 2006.

[EHP+07] Hartmut Ehrig, Kathrin Ho�mann, Julia Padberg, Ulrike Prange, and Claudia
Ermel. Independence of net transformations and token �ring in recon�gurable
place/transition systems. In ICATPN, volume 7, pages 104–123. Springer, 2007.

[EHP09] Hartmut Ehrig, Frank Hermann, and Ulrike Prange. Cospan DPO approach: An
alternative for DPO graph transformations. Bulletin of the EATCS, pages 139–146,
2009.

[HHL+12] Monika Heiner, Mostafa Herajy, Fei Liu, Christian Rohr, and Martin Schwarick.
Snoopy–a unifying Petri net tool. In International Conference on Application and

Theory of Petri Nets and Concurrency, pages 398–407. Springer, 2012.

[HiP17] HiPS : Hierarchical Petri net Simulator. https://sourceforge.net/projects/hips-
tools/, 2017.

[JK09] Kurt Jensen and Lars M Kristensen. Coloured Petri nets: modelling and validation

of concurrent systems. Springer Science & Business Media, 2009.

60

Bibliography

[JLL07] Gabriel Juhás, Fedor Lehocki, and Robert Lorenz. Semantics of Petri nets: A
comparison. In Simulation Conference, 2007 Winter, pages 617–628. IEEE, 2007.

[JR12] Kurt Jensen and Grzegorz Rozenberg. High-level Petri nets: theory and application.
Springer Science & Business Media, 2012.

[KJZJ08] Radek Koci, Vladimir Janousek, and Frantisek Zboril Jr. Object oriented Petri nets
modelling techniques case study. In Computer Modeling and Simulation, 2008.

EMS’08. Second UKSIM European Symposium on, pages 165–170. IEEE, 2008.

[KKR08] Hans-Jorg Kreowski, Sabine Kuske, and Grzegorz Rozenberg. Graph transforma-
tion units–an overview. Lecture Notes in Computer Science, 5065:57–75, 2008.

[KV10] Peter Kostal and Karol Velisek. Flexible manufacturing system. World Academy

of Science, Engineering and Technology, 53:825–829, 2010.

[LGB18] Learn and grow blog. http://www.learnandgrow.in/2015/05/fms-layout-
types.html, 2018.

[Lor17a] Jan-Uriel Lorbeer. Dynamic graph drawing and conception of recon�gurable
hierarchical Petri nets for ReConNet. DOI: 10.13140/RG.2.2.24513.66405, 2017.

[Lor17b] Jan-Uriel Lorbeer. Recon�gurable hierarchical Petri nets for ReConNet. DOI:
10.13140/RG.2.2.12769.61284, 2017.

[LP18] Jan-Uriel Lorbeer and Julia Padberg. Hierarchical, recon�gurable Petri nets. In
Workshops at Modellierung, 2018.

[LWL+06] Vincent Bardina Liu, Donald Louis Wires, Michael Joseph Lamping, Al-
bert Michael Fischer, and Gary Lee Miller. Flexible manufacturing system, Jan-
uary 31 2006. US Patent 6,990,715.

[MK05] Toshiyuki Miyamoto and Sadatoshi Kumagai. A survey of object-oriented Petri
nets and analysis methods. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, 88(11):2964–2971, 2005.

[MM88] José Meseguer and Ugo Montanari. Petri nets are monoids: A new algebraic
foundation for net theory. In Logic in Computer Science, 1988. LICS’88., Proceedings

of the Third Annual Symposium on, pages 155–164. IEEE, 1988.

61

Bibliography

[MP12] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent

systems: Speci�cation. Springer Science & Business Media, 2012.

[MRA10] V. Malhotra, T. Raj, and A. Arora. Excellent techniques of manufacturing sys-
tems: RMS and FMS. International Journal of Engineering Science and Technology,
2(3):137–142, 2010.

[Pad12] Julia Padberg. Abstract interleaving semantics for recon�gurable Petri nets.
Electronic Communications of the EASST, 51, 2012.

[Pad15] Julia Padberg. Recon�gurable Petri nets with transition priorities and in-
hibitor arcs. In International Conference on Graph Transformation, pages 104–120.
Springer, 2015.

[PEHP08] Ulrike Prange, Hartmut Ehrig, Kathrin Ho�mann, and Julia Padberg. Transfor-
mations in recon�gurable place/transition systems. Lecture Notes in Computer

Science, 5065:96–113, 2008.

[PEOH12] Julia Padberg, Marvin Ede, Gerhard Oelker, and Kathrin Ho�mann. ReConNet:
a tool for modeling and simulating with recon�gurable place/transition nets.
Electronic Communications of the EASST, 54, 2012.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1981.

[PH15] Julia Padberg and Kathrin Ho�mann. A survey of control structures for recon�g-
urable Petri nets. Journal of computer and communications, 3(02):20, 2015.

[RE97] G. Rozenberg and H. Ehrig. Handbook of Graph Grammars and Computing by

Graph Transformation: Foundations. Vol. 1. 1997.

[Ren03] Arend Rensink. The groove simulator: A tool for state space generation. In
International Workshop on Applications of Graph Transformations with Industrial

Relevance, pages 479–485. Springer, 2003.

[RPL+08] Alexander Rein, Ulrike Prange, Leen Lambers, Kathrin Ho�mann, and Julia
Padberg. Negative application conditions for recon�gurable place/transition
systems. Electronic Communications of the EASST, 10, 2008.

[RWL+03] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Jacob Frank
Qvortrup, Martin Stig Stissing, Michael Westergaard, Søren Christensen, and

62

Bibliography

Kurt Jensen. CPN tools for editing, simulating, and analysing coloured Petri
nets. In International Conference on Application and Theory of Petri Nets, pages
450–462. Springer, 2003.

[SCDB14] Pengfei Sun, Simon Collart-Dutilleul, and Philippe Bon. A formal modeling
methodology of the french railway interlocking system via HCPN. WIT Transac-

tions on The Built Environment, 135:849–858, 2014.

[Sch14] Alexander Schulz. Model checking of recon�gurable Petri nets. arXiv preprint
arXiv:1409.8404, 2014.

[Sti05] Marc Stiegler. Petname systems. HP Laboratories, Mobile and Media Systems

Laboratory, Palo Alto, Tech. Rep. HPL-2005-148, 2005.

[TA15] Weng Jie Thong and M.A. Ameedeen. A survey of Petri net tools. In Advanced

Computer and Communication Engineering Technology, pages 537–551. Springer,
2015.

[Tae99] Gabriele Taentzer. AGG: A tool environment for algebraic graph transforma-
tion. In International Workshop on Applications of Graph Transformations with

Industrial Relevance, pages 481–488. Springer, 1999.

[Tet90] Ulrich A. W. Tetzla�. Flexible manufacturing systems. In Optimal Design of

Flexible Manufacturing Systems, pages 5–11. Springer, 1990.

[TPCS12] Bogdan Târnaucă, Dan Puiu, Vasile Comnac, and Constantin Suciu. Modelling
a �exible manufacturing system using recon�gurable �nite capacity Petri nets.
In Optimization of Electrical and Electronic Equipment (OPTIM), 2012 13

th
Inter-

national Conference on, pages 1079–1084. IEEE, 2012.

[Zim08] Armin Zimmermann. Colored Petri nets. Stochastic Discrete Event Systems:

Modeling, Evaluation, Applications, pages 99–124, 2008.

[ZZ09] Yong Zhang and Jing Zhu. Product line system modeling of the cold-rolled mill
based on the hierarchy colored Petri nets. In Automation and Logistics, 2009.

ICAL’09. IEEE International Conference on, pages 1553–1557. IEEE, 2009.

63

A. Petri Nets and Rules of the FMS

Evaluation Example

Main Net

Figure A.1.: FMS evaluation example: main net

64

A. Petri Nets and Rules of the FMS Evaluation Example

CNC1 - Injection molder

Figure A.2.: FMS evaluation example: injection molder template net.

Figure A.3.: FMS evaluation example: subnet CNC1

65

A. Petri Nets and Rules of the FMS Evaluation Example

The Local Rules

Figure A.4.: FMS evaluation example: rule CNC1R1

Figure A.5.: FMS evaluation example: rule CNC1R2

66

A. Petri Nets and Rules of the FMS Evaluation Example

Figure A.6.: FMS evaluation example: rule CNC1R3

Figure A.7.: FMS evaluation example: rule CNC1R4

67

A. Petri Nets and Rules of the FMS Evaluation Example

CNC2 & 3 - Laser Cu�er1 and 2

Figure A.8.: FMS evaluation example: laser cutter template net.

Figure A.9.: FMS evaluation example: subnet CNC2

Figure A.10.: FMS evaluation example: subnet CNC3

68

A. Petri Nets and Rules of the FMS Evaluation Example

The Local Rules

Figure A.11.: FMS evaluation example: rule CNC2R1

Figure A.12.: FMS evaluation example: rule CNC2R2

Figure A.13.: FMS evaluation example: rule CNC23R1

69

A. Petri Nets and Rules of the FMS Evaluation Example

Figure A.14.: FMS evaluation example: rule CNC23R2

70

A. Petri Nets and Rules of the FMS Evaluation Example

CNC4 - Assembly Machine

Figure A.15.: FMS evaluation example: assembly machine template net.

Figure A.16.: FMS evaluation example: subnet CNC4

71

A. Petri Nets and Rules of the FMS Evaluation Example

The Local Rules

Figure A.17.: FMS evaluation example: rule CNC4R1

72

A. Petri Nets and Rules of the FMS Evaluation Example

Figure A.18.: FMS evaluation example: rule CNC4R2

73

A. Petri Nets and Rules of the FMS Evaluation Example

Flat Net

Figure A.19.: FMS evaluation example: �at net. Former subnets are marked in blue.

74

A. Petri Nets and Rules of the FMS Evaluation Example

Figure A.20.: FMS �at net left side.

Figure A.21.: FMS �at net right side.

75

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 28.05.2018 Jan-Uriel Lorbeer

	1 Introduction
	2 Background
	2.1 Hierarchical Petri Nets
	2.2 Reconfigurable Petri Nets
	2.3 ReConNet
	2.4 Flexible Manufacturing Systems
	2.5 Related Work

	3 Concept for Hierarchical Reconfigurable Petri Nets
	3.1 General Concept
	3.1.1 Hierarchical Model
	3.1.2 Transformation Rule Concepts

	3.2 Hierarchy and Flattening of HRPN
	3.2.1 The Hierarchical Reconfigurable Petri net
	3.2.2 Hierarchical Flattening

	3.3 Transformation Rule Concept
	3.3.1 Transformation Rules in HRPN
	3.3.2 Equality of Behavior

	4 HRPN in ReConNet
	4.1 HPN Structure
	4.2 Persistence
	4.3 Simulation
	4.4 Rule Application
	4.5 HRPN Flattening in ReConNet

	5 Evaluation of HRPN in ReConNet
	5.1 The FMS Evaluation Example
	5.2 The HRPN of the FMS
	5.3 Simulation
	5.4 Evaluation
	5.4.1 Usefulness of HRPN
	5.4.2 Hierarchy Modeling Capabilities of ReConNet

	6 Future Work
	7 Conclusion
	A Petri Nets and Rules of the FMS Evaluation Example

