
Bachelorarbeit
Eric Wohlgethan

Supporting Web Development Decisions by
Comparing Three Major JavaScript Frameworks:

Angular, React and Vue.js

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Eric Wohlgethan

Supporting Web Development Decisions by
Comparing Three Major JavaScript Frameworks:

Angular, React and Vue.js

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Wirtschaftsinformatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuende Prüferin: Prof. Dr. Ulrike Ste�ens

Zweitgutachter: Martin Behrmann geb. Knoblauch

Eingereicht am: 15. Mai 2018

Eric Wohlgethan

Thema der Arbeit
Entscheidungshilfe für die Webentwicklung anhand des Vergleichs von drei führenden

JavaScript Frameworks: Angular, React and Vue.js

Stichworte
JavaScript, Angular, React, Vue.js, Frontend, Webentwicklung

Kurzzusammenfassung
Das Gebiet der Webentwicklung hat sich in den vergangenen Jahren stark verändert.

Diese Thesis gibt einen Einblick in drei der aktuell populärsten JavaScript Frameworks:

Angular, React und Vue.js. Dabei wird jedes einzelne auf Vor- und Nachteile anhand

von vorde�nierten Kriterien hin untersucht und bewertet. Abschließend wird eine

Einschätzung abgegeben, welche Technologien für bestimmte Szenarien geeignet sind.

Eric Wohlgethan

Title of the paper
Supporting Web Development Decisions by Comparing Three Major JavaScript Frame-

works: Angular, React and Vue.js

Keywords
JavaScript, Angular, React, Vue.js, frontend, web development

Abstract
The area of web development has changed a lot in the past years. This thesis provides

an insight into the currently most popular JavaScript frameworks: Angular, React

and Vue.js. Each one of them will be investigated and evaluated based on pre-de�ned

criteria. Ultimately, a recommendation will be given on which technology is most

appropriate for certain situations.

Contents
List of Tables vi

List of Figures vii

List of Code Examples viii

List of Abbreviations ix

1 Introduction 1
1.1 JavaScript Frameworks . 2

1.1.1 De�nition . 3

1.1.2 Overview of Status Quo . 5

1.2 Aim of Thesis . 6

2 Framing the Comparison 8
2.1 Identi�cation Stage . 8

2.2 Criteria for Analysis . 9

2.2.1 Stability . 9

2.2.2 Learning Curve . 11

2.2.3 JavaScript Integration . 12

3 Angular 14
3.1 Background Information . 14

3.2 Structure . 17

3.3 Analysis . 22

4 React 28
4.1 Background Information . 28

4.2 Structure . 30

4.3 Analysis . 35

4.4 React 16 . 39

5 Vue.js 41
5.1 Background Information . 41

iv

Contents

5.2 Structure . 43

5.3 Analysis . 48

6 Comparison 54
6.1 Features and Technical Aspects . 54

6.2 Support and Accessability . 56

6.3 Community Statistics . 57

7 Conclusion 63

8 Outlook and Future Work 65

v

List of Tables
3.2 Angular releases . 23

vi

List of Figures
1.1 Most popular technologies in 2018 . 2

1.2 Di�erentiation of library and framework (own visualisation) 4

1.3 JavaScript ecosystem . 6

2.1 Mindmap of the criteria-related keywords (own visualisation) 8

2.2 Placement of TypeScript (own visualisation) 13

3.1 Angular binding types . 20

4.1 Browser usage in February 2018 . 30

4.2 ReactDOM.render() (own visualisation) 34

6.1 GitHub stars over time . 58

6.2 NPM downloads over time . 59

6.3 Most popular frameworks . 60

6.4 Most loved frameworks . 61

6.5 Most dreaded frameworks . 61

6.6 Most wanted frameworks . 62

8.1 Stack Over�ow trends . 66

8.2 Stack Over�ow trends . 66

vii

List of Code Examples

3.1 Basic JavaScript class . 15

3.2 Basic TypeScript class . 16

3.3 Parent component (case 1) . 18

3.4 Child component (case 1) . 18

3.5 Child component (case 2) . 18

3.6 Parent component (case 2) . 18

3.7 Simple service (case 3) . 19

3.8 Component using the service (case 3) 19

3.9 Routing module . 21

3.10 Simple form elements . 24

4.1 Props provided for and used by component 31

4.2 Initial state and setState() . 32

4.3 Assigning HTML to a JS element . 33

4.4 ReactDOM.render(): Code . 33

4.5 Router setup . 35

5.1 Simple component in Vue . 43

5.2 Single �le components . 44

5.3 Separation of concerns . 44

5.4 Example for v-bind . 45

5.5 Example for v-on . 45

5.6 Shorthands for directives . 45

5.7 Modi�ers on directives . 46

5.8 Example for v-model . 46

5.9 Example for props . 47

5.10 Minimal Vue setup . 50

5.11 Vue-Router implementation . 51

5.12 Vue with TypeScript . 52

viii

List of Abbreviations

API Application Programming Interface.

BSD Berkeley Source Distribution.

CDN Content Delivery Network.

CLI Command Line Interface.

CMS Content Management System.

CSS Cascading Style Sheets.

DI Dependency Injection.

DOM Document Object Model.

ES ECMAScript.

GPL GNU Public License.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

IDE Integrated Development Environment.

JS JavaScript.

MIT Massachusetts Institute of Technology.

MVC Model-View-Controller.

MVVM Model-View-Viewmodel.

NPM Node Package Manager.

PWA Progressive Web App.

ix

List of Abbreviations

SemVer Semantic Versioning.

SPA Single-Page Application.

TS TypeScript.

URL Uniform Resource Locator.

x

1 Introduction

‘Most JavaScript developers have heard of or experienced JavaScript fatigue. JS fatigue is

the overwhelming sense that we need to learn most of the hottest emerging technologies

in order to do our jobs well. This is unattainable and the stress we feel to achieve it is

unjusti�ed; so how do we manage and combat JavaScript fatigue?’1

History JavaScript started out as a small scripting language for the use in Netscape

Communicator back in 1995 when the World Wide Web was still a fresh invention and

the modern-day phenomenon of JavaScript fatigue was unfamiliar. The creators of the

Communicator decided that the web had to become more dynamic which led to the

development of the language Mocha by Brendan Eich
2
. Mocha is based on Scheme

which is a dialect of Lisp, a functional programming language. The requirements for

Mocha were manageable:

• Dynamic

• ‘Easy-to-grasp’ syntax

• Powerful

Shortly after its completion in May 1995, it was renamed to LiveScript for marketing

purposes
3
. About six months later, a deal between Netscape Communications and Sun

led to the �nal name which is globally known as JavaScript.

1
Cf. Maida, How to Manage JavaScript Fatigue.

2
Cf. Severance, JavaScript: Designing a Language in 10 Days.

3
Cf. Peyrott, A Brief History of JavaScript.

1

1 Introduction

Today More than 20 years have passed since then. Nowadays, JavaScript is the most

widely used programming language in the world as recently shown in a study issued

by the website Stack Over�ow which is shown in �gure 1.1 (for further information

see section 6.3):

Figure 1.1: Most popular technologies in 2018

With this increase in use and popularity, it was inevitable that a large amount of

tools and suchlike were published. They can be divided into di�erent categories such

as IDEs and editors, package managers, compilers, bundlers, libraries and frameworks.

While it would exceed the scope of this thesis to take a look at every single category,

there are two that this thesis will cover in its course: Libraries and frameworks. Still,

the other categories will appear in and contribute to the respective topics as additional

information.

1.1 JavaScript Frameworks

‘JavaScript UI frameworks and libraries work in cycles. Every six months or so, a new

one pops up, claiming that it has revolutionized UI development. Thousands of developers

adopt it into their new projects, blog posts are written, Stack Over�ow questions are asked

and answered, and then a newer (and even more revolutionary) framework pops up to

2

1 Introduction

usurp the throne.’4

The quote above verbalises exactly what JavaScript fatigue, which was mentioned

at the very beginning of chapter 1, is about. The release cycle for (new) frameworks is

relatively short which results in a large quantity of frameworks. Although the lack

of a distinct de�nition complicates determining how many JavaScript frameworks

exist in total, there are more than 50 listed on the website JSter
5

(only accounting for

Model-View-Controller (MVC) frameworks). Most of them are not even developed by

large �rms like Google or Facebook but are community-driven, often by individuals.

1.1.1 Definition

As mentioned above, there is no distinct de�nition which criteria a software has to

ful�ll to be considered a framework. At times, frameworks are being confused with

libraries. The following section will attempt to remove ambiguity.

Library A (third-party) library ‘[...] generally consists of pre-written code, classes,

procedures, scripts, con�guration data and more.’
6
. Mostly, it can be integrated in an

existing project with ease and used to shorten development time. This is due to the

fact that many issues concerning basic algorithms and functions have already been

solved by another expert programmer in the community. When these experts decide to

share their code as open-source (for more information see chapter 6), it spares time for

the developer to focus on more business-related issues rather than fundamentals. But

using a third-party library can also pose a potential risk to an application
7
. Developers

should always check �rst who published the code and how safe it is to integrate. This

can be done by checking download numbers and issues on Node Package Manager

(NPM) or GitHub, for example.

4
Cf. Allen, The Brutal Lifecycle of JavaScript Frameworks.

5
http://jster.net/

6
Cf. De�nition for software library.

7
Cf. Wisseman, Third-party libraries are one of the most insecure parts of an application.

3

1 Introduction

However, it cannot be stressed enough that libraries only enhance a software in

terms of speci�c functions but never cover the complete stack needed for development.

Figure 1.2: Di�erentiation of library and framework (own visualisation)

Framework In comparison to libraries, frameworks indeed o�er a complete stack

of helpful functions and take responsibility for decisions that otherwise the developer

would have to make prior to actually writing the application’s code. This includes

strategies for in-app routing of URL paths, state management, bundling and others. Fur-

thermore, frameworks provide work�ow improvements which include best practices

for basic development aspects like the overall structure of an application or generating

boilerplate code (e.g. compare Angular CLI in section 3.2). Most frameworks in the

MVC world are component-based. The thesis will cover how each of the discussed

technologies handles this part. The logic behind the concept of components is im-

portant because they alone describe the user interface. When changes occur to the

underlying data, the framework rerenders the complete UI component. The displayed

data should be up-to-date at any point in time. This approach can be summarised as

‘UI as function’.

It should be emphasised that libraries are being integrated and also used in frame-

works. The visualisation
8

in �gure 1.2 con�ates the above statements: The code is

called by the framework and it can make use of the integrated libraries. Meanwhile,

the framework is also responsible for providing the libraries as it handles the logic of

8
Based on this blog entry (https://medium.com/data�re-io/libraries-vs-frameworks-626cdde799a7,

visited on 05/03/2018)

4

1 Introduction

loading. This is known as Dependency Injection (DI) (for more information see section

3.2).

The ‘obstinacy’ of some frameworks, which seemed convenient at �rst, might yet

result in problems in the course of the project: This includes decisions with respect

to, e.g., state management, data binding or template handling. The selection of a

framework should be elaborate. Therefore, a team or even a single developer has

to evaluate the following question foresightful: Is the purpose or the extent of a

framework adequate for the task?

1.1.2 Overview of Status �o

According to Riehle
9
, ‘[...] frameworks promise higher productivity and shorter time-

to-market of application development through design and code reuse (than possible

with non-framework based approaches).’ But still, there are situations where utilising

a framework might result in an overhead with regard to the development. For example,

more static content can be displayed with a usual website or a Content Management

System (CMS) like WordPress
10

or TYPO3
11

.

In case the use of a framework is suitable for the project, a new problem arises.

Considering the past years in the JavaScript world, the market for frameworks is

highly competitive. However it has to be noted that competitive is rather meant in a

quantitative than in a monetary way. This is due to the fact that almost all frameworks

are open-source (for more information see Licensing in section 2.2.1) and therefore

are not connected to direct costs. Figure 1.3 only shows an excerpt of frameworks and

related technologies (compilers, bundlers, etc.) but foreshadows the wide range of the

JavaScript ecosystem.

9
Cf. Riehle, Framework Design: A Role Modeling Approach, page 1f.

10
https://de.wordpress.com/

11
https://typo3.org/

5

1 Introduction

Figure 1.3: JavaScript ecosystem

Being a developer nowadays does not only include the knowledge required for the

coding, but developers are increasingly forced to keep up-to-date with the current

trends. With more and more software being realised with JavaScript - be it in frontend

applications or in backend Node.js-based APIs - the job gets more complex along the

way. It also complicates the decision making regarding which technology should be

used in a project. Heads of IT are being confronted with a growing ecosystem that is

hard to oversee. This aspect leads to the aim of this thesis formulated in the following

chapter.

1.2 Aim of Thesis

This thesis aims to give an overview of the three technologies that currently have

the highest traction in the market
12

: Angular, React and Vue.js. While this does not

su�ce for a thorough study of the whole JavaScript ecosystem, it does provide an

indication to decision making as these three frameworks all follow di�erent core

principles. Ultimately, the following question should be answered: Does one of the

12
Cf. npm trends.

6

1 Introduction

aforementioned frameworks stand out so that it can be recommended for the majority

of use cases in terms of web development?

In chapter 2, the criteria that will be used for the analysis of the respective framework

will be presented. Also the process of how the criteria was chosen will be discussed.

The subsequent chapters deal with the earlier mentioned frameworks in no par-

ticular order. First Angular (chapter 3) then React (chapter 4) and after that Vue.js
(chapter 5) are described and analysed. Each of these chapters �rst provide background

information after which the general structure of the technology will be explained.

The closing analysis presents an important part of this thesis as the frameworks are

assessed based on the aforementioned criteria.

Chapter 6 contains the main comparison. While already various aspects are ex-

amined in the respective chapters for the frameworks, this chapter will discuss further

similarities as well as di�erentiations between the technologies. Moreover, the in�u-

ence and the standing of the open-source community and their related websites like

GitHub and Stack Over�ow will be shown.

Chapter 7 will summarise the result of the thesis. It will provide an elaborate answer

to the question mentioned at the beginning of this section.

In the last chapter 8, an outlook for the upcoming years in the JavaScript scene will

be provided. Also, possibilities for a future work will be discussed.

7

2 Framing the Comparison

2.1 Identification Stage

Figure 2.1: Mindmap of the criteria-related keywords (own visualisation)

8

2 Framing the Comparison

As a �rst foundation for this thesis, a mindmap was created (see �gure 2.1). This

mindmap helped choosing the appropriate criteria to be used in the analysis later

on. Every keyword in there is connected to an aspect of JavaScript frameworks or

the ecosystem in general. To ease the handling, the information of the mindmap

was condensed by grouping the keywords into their respective higher category. This

resulted in three superior areas, each dealing with a completely di�erent aspect of the

analysis.

2.2 Criteria for Analysis

The following sections will present the aforementioned areas. Each area will be split

up into several keywords including a reasoning for their involvement.

2.2.1 Stability

The �rst criterion for evaluating frameworks is summarised in the term Stability. It

includes the following parts:

Versioning Version numbers can tell a lot about a software if assigned properly.

Even with rather unusual concepts (see end of this paragraph), the most important

factor in versioning is consistency. The users of software (or with regard to this thesis

the developers who use third party libraries and frameworks) should be able to rely on

new releases and plan ahead if there is a breaking change to come. This is part of why

the project Semantic Versioning (SemVer) was introduced in 2011
1
. Currently (as of

March 2018), SemVer is at version 2.0.0. The main principles
2

of it are comprehensive

and limited in number:

• First number: Major release ⇒ Breaking changes

• Middle number: Minor release ⇒ New features, no breaking changes

• Last number: Patch release ⇒ No new features, mostly bug-�xes

1
https://github.com/semver/semver/tree/v1.0.0

2
https://semver.org/spec/v2.0.0.html

9

2 Framing the Comparison

The more developers follow these principles, the more reliable libraries and suchlike

will get. As criterion for the analysis later on, this will be used as an indicator as to

how stable the release policy of the respective developer is. However, versioning is

sometimes very opinionated and more of a philosophy. SemVer is not the only possible

approach to this topic. The opinions amongst developers are diversi�ed
3
.

Release Policy It can be determined how consistent new releases are both an-

nounced and then �nally released. The analysis will include the historical releases,

too. Furthermore, it should be evaluated how drastic breaking changes were and how

the overall ‘updatability’ was perceived.

Maintainability The included frameworks in this thesis will, of course, be viewed

from a technical stance. With regard to this, topics like structure, third party reliance

and the �le concept will be discussed. Maintainability plays an important role in the

development as it can determine, e.g., how consistent project structures are or how

e�ciently already engineered components can be re-used in future works.

Licensing Most often, JavaScript frameworks are published under the MIT license

that was originally developed at the renowned Massachusetts Institute of Technology.

The Berkeley Source Distribution (BSD) license, which was developed by the Berkeley

University, is resembling the MIT license in many parts
4
. Especially in terms of

liberality, these two licenses are di�erent to the popular GNU Public License (GPL),

which is the most widely used open-source software license.

Licensing is a relevant term for software as it de�nes how an external piece of code

may be implemented in and distributed with the company’s own software. This is also

connected to the aforementioned reliance on third party libraries.

3
Based on this discussion on StackExchange (https://softwareengineering.stackexchange.com/questions/3199/what-

version-naming-convention-do-you-use, visited on 27/03/2018)

4
Cf. Open-source licenses.

10

2 Framing the Comparison

2.2.2 Learning Curve

The second criterion for the evaluation is summarised in the term Learning Curve. It

includes the following parts:

Available Documentation A well written and comprehensive documentation is

often the key to the adoption of a library or framework. The more extensive, the better.

The analysis will cover of what quality the provided documentation is and also if it is

well locatable, structured and up-to-date. Moreover, it will deal with available tutorials

and open source examples on, e.g., GitHub.

Knowhow Requirements This part determines how well the frameworks can

be adopted. Depending on a developer’s background, the initial time to learn and

understand a certain technology can vary. In the world of web development, it is

expected that everyone is familiar with at least the ‘basics’ namely:

• HTML ⇒ For structure

• CSS ⇒ For styling

• JavaScript ⇒ For logic

A thorough knowledge of these is essential. But still, for some frameworks this might

not su�ce. Some require or are based on a more speci�c language (e.g., TypeScript) or

use special syntax enhancements (e.g., Angular).
Knowing the limitations and requirements of frameworks is crucial for a company

in terms of recruiting.

Human Resources and Recruiting Depending on the knowhow requirements

and the overall structure of a technology, companies should be aware of their own

team’s knowledge base. Also when acquiring new work forces, the amount of time a

developer needs to get familiar with a project can vary. More opinionated frameworks

can o�er a more consistent project structure and best practices rather than liberal ones

where strategic decisions can diverge heavily. This might result in a long adoption

process. Again, all this depends on the size and longevity of a project or application.

11

2 Framing the Comparison

2.2.3 JavaScript Integration

The third criterion for the evaluation is summarised in the term JavaScript Integration.

It includes the following parts:

Best Practices and Stacks Some frameworks already o�er a lot of tools and struc-

tures automatically, for example by using a Command Line Interface (CLI) for scaf-

folding the project structure. Others are more liberal: They allow the developer to

decide upon routing, state management, compilers, bundling tools, linting and more.

Also, the combination and compatibility of the aforementioned is relevant for e�cient

developing. With this freedom of choice, the responsibility also increases and so does

the risk. Developers who can choose anything strategic on their own need a whole-

hearted knowledge of the processes and technologies involved. The analysis of the

frameworks will cover how the technology behaves and what it provides. Furthermore,

the advantages and disadvantages of the behaviour will be discussed respectively.

Development Languages Especially in the world of web development, many dif-

ferent programming languages can be used interchangeably. Often, the selected one is

a personal preference of the developer. In regard to the observed frameworks, some

have a ‘main’ development language that can also be counted towards the best prac-

tices. Others are more liberal in terms of choice. However, the amount of considerable

programming languages is overseeable:

• Vanilla JavaScript (ES5/6/7)

• TypeScript

• JSX

• Dart

Syntax Features Depending on the main development language, di�erent syntax

features of JavaScript can be used. This is relevant in terms of browser support. Not all

browsers (especially older versions of the Internet Explorer) support the latest features

12

2 Framing the Comparison

of ECMAScript. ECMAScript is a standard published by the ECMA International
5

organisation. JavaScript is the most popular implementation of that standard. For

example, if one decides to use features of ES6 it is recommended to use a compiler

like Babel
6

to transform the code to ES5. This ensures a wide platform and browser

compatibility.

TypeScript, for instance, is a superset of the ECMAScript standard. Its placement

among the other mentioned versions can be seen in �gure 2.2:

Figure 2.2: Placement of TypeScript (own visualisation)

The following three chapters will be addressed based on these criteria. The aggre-

gate of all advantages and disadvantages will validate the standing of the respective

framework.

5
http://www.ecma-international.org/

6
https://babeljs.io/

13

3 Angular

This chapter centers on the framework Angular and it contains three parts. The �rst

deals with general information about the development history while the second is

about the overall structure. The last part analyses the framework with regard to the

criteria formulated in chapter 2.

3.1 Background Information

Angular was originally created by Google employees Misko Hevery and Adam Abrons

in 2008
1
. Back then it was referenced to as AngularJS and developed in plain JavaScript.

This was at a time when the majority of websites where based on the multi-page

application approach: When a user clicked on a link, the browser had to retrieve the

requested HTML document from the server. Depending on the internet connection

and the responsiveness of the server, it could take a fair amount of time until the user

could view the new page. Gradually user devices increased in overall performance so

that application logic could be executed in the browser. This led to the approach of

Single-Page Applications (SPAs).

AngularJS was one of the �rst frameworks for the development of SPAs. It was

able to supersede jQuery by o�ering developers features like two-way data binding

(for further information see Data Binding) and the possibility to organise modules for

importing external scripts
2
. One of its main advantages over most of the competitors

was its approachable nature. By simply inserting the CDN link into the HTML docu-

ment and adding the ng-app directive to the <body> tag, the application was ready.

1
Cf. Gudelli, History Of AngularJS.

2
Cf. Metnew, History of SPA frameworks: AngularJS 1.x and nostalgia.

14

3 Angular

Furthermore, the documentation and tutorials provided by the developer team were

very comprehensive and straight to the point.

In summer 2014, Angular 2 was announced. Angular 2 meant a complete re-write

of the framework. Alongside this re-write, a lot of the core concepts of the frame-

work changed as well. While AnjularJS was focused on scopes and controllers
3

as

architecture pattern, Angular 2 relies completely on a hierarchy of components.

TypeScript Another important novelty was the introduction of TypeScript (TS)

as successor to JavaScript as the main development language. TypeScript is being

transpiled into plain JavaScript code at compilation time. It is a superset of ECMAScript

(ES)6 that was originally introduced and is still maintained by Microsoft. It is notable

that TypeScript - as well as Angular 2 and AngularJS - are open-source. One of the

merits of using TypeScript is the ability to make use of advanced language features
4

of

ES6:

• ‘for...of’-loops

• Lambdas (more commonly known as arrow functions)

• Decorators

Especially Decorators play an important role in the Angular context (see code

example 3.4). They are used to add meta information which is indicated with the @

sign, e.g. @Component or @Input.

TypeScript has gained popularity because it adds a strong typing for the code. On

one hand, a basic class de�nition in JavaScript would look similar to example 3.1.

1 var Dog = (function () {
2 function Dog(colour) {
3 this.furColour = colour;
4 }
5 Dog.prototype.bark = function () {
6 return "Wooof";

3
https://docs.angularjs.org/guide/controller

4
see O�cial TypeScript Homepage, State of the art JavaScript.

15

3 Angular

7 };
8 return Dog;
9 }());

Code Example 3.1: Basic JavaScript class

On the other hand, the same class written in TypeScript has a more de�nitive struc-

ture. The attributes are typed and TypeScript will also detect the return type of the

bark() function as string (compare example 3.2).

1 class Dog {
2 furColour: string;
3 constructor (colour: string) {
4 this.furColour = colour;
5 }
6 bark() {
7 return "Wooof";
8 }
9 }

Code Example 3.2: Basic TypeScript class

As can be seen in code example 3.2, TypeScript establishes class-based, object-

orientated programming. This opens the web development for developers that work

mainly with C# or Java because TypeScript’s structure is familiar to them
5
.

Past Releases Alongside the release
6

of Angular 2.0.0 in September 2016, the de-

velopment team also proclaimed changes to the future release policy: They will be

following SemVer and the release cycle is pre-determined for the upcoming years,

releasing two major versions of the framework per year. More on this can be found in

the Analysis section of this chapter.

Current Version As of March 2018, Angular is at version 5.2.7.

5
Cf. Boyer, JavaScript - TypeScript: Making .NET Developers Comfortable with JavaScript.

6
Cf. Versioning and Releasing Angular .

16

3 Angular

3.2 Structure

Angular, like many other frameworks, is component-based. This means that compo-

nents are the main building blocks. They can display information, render templates

and perform actions on data. The best practice suggests that components consist of

three separate �les: A HTML �le for template, a CSS �le for styling and a TS �le for

controlling. By following this approach, a separation of concerns is implemented. Also,

it adds to a more organised project structure and code.

Components are organised hierarchically: Information can �ow between parent

and child nodes, between two or more child nodes as well as between two or more

completely decoupled ones. One special component is app-root. This represents the

top level node of the component tree and this is the entry point where the framework

initialises the application.

Component Interaction Angular has to handle the following situations in regard

to internal communications:

• Case 1: From parent to child component
7

• Case 2: From child to parent component
8

• Case 3: Between two unrelated components
9

While this does not cover all possible scenarios, it does cover the most common ones

in terms of a developer’s regular work. Also, the examples are simpli�ed to present

only the core concepts. This approach will be used throughout the thesis as a more

(technical) in-depth approach would exceed the aim of this thesis.

Case 1 The parent passes the property selectedDog to the dog property of the

child component which is enclosed in box brackets (compare example 3.3).

7
Cf. Master/Detail Components.

8
Cf. Parent listens for child events.

9
Cf. Parent and children communicate via a service.

17

3 Angular

1 <dog-detail [dog]="selectedDog"></dog-detail>

Code Example 3.3: Parent component (case 1)

In the child component, there has to be an import from the core package �rst (see

line 1 in example 3.4). After that, a property is declared using the imported @Input

decorator.

1 import { Component, OnInit, Input } from ’@angular/core’;
2 [...]
3 @Input() dog: Dog;

Code Example 3.4: Child component (case 1)

Case 2 Children can pass events (i.e., data) to their parent component via Event-

Emitter and an imported @Output decorator (compare example 3.5).

1 import { Component, OnInit, Output } from ’@angular/core’;
2 [...]
3 @Output() onBark = new EventEmitter<boolean>();

Code Example 3.5: Child component (case 2)

The parent can react with the method handleBarking(event) upon the �red

event (onBark) from the child as presented in the example 3.6.

1 <dog (onBark)="handleBarking(event)"></dog>

Code Example 3.6: Parent component (case 2)

Case 3 The last case contains the use of injectables to communicate between two

unrelated components. This is one of the core concepts of Angular : Services handle

this aspect of the application. Code example 3.7 shows the implementation of a simple

service that manages an array of Dogs.

18

3 Angular

1 import { Injectable } from ’@angular/core’;
2 @Injectable()
3 export class DogService {
4 private dogs: Dog[];
5 setDogs(dogs: Dog[]): void {
6 this.dogs = dogs;
7 }
8 getDogs(): Dog[] {
9 return this.dogs;

10 }
11 }

Code Example 3.7: Simple service (case 3)

Components can interact with this service by importing it (see line 1 in example

3.8), instantiating it in their constructor (line 3) and �nally using it by calling any the

provided methods (line 5).

1 import { DogService } from ’dog.service’;
2 [...]
3 constructor(private _dogService: DogService) {}
4 [...]
5 this._dogService.getDogs();

Code Example 3.8: Component using the service (case 3)

Data Binding The data binding within a component is also mentionable. Essentially

it concerns the data interchange between the view (i.e. the HTML template) and the

model (i.e., the TypeScript �le). Again, there are three di�erent types:

• Property binding:

Data �ow from the component to the template, i.e. [property].

• Event binding:

Data �ow from the template to the component, i.e. (event).

19

3 Angular

• Two-way binding:

Combination of both aforementioned types, i.e. [(...)].

The internal application’s communication as well as the data binding are funda-

mentals to understand when working with Angular. The following �gure shows a

summarised overview of the explained keywords:

Figure 3.1: Angular binding types

Angular keeps track of changes by adding watchers internally to components.

Moreover, it has an extensive lifecycle hook system implemented. This system runs

permanently in the background and is quite complex (the related part
10

of the o�cial

documentation gives an impression of this). In many cases, components only imple-

ment the ngOnInit interface which is also a default for generating components with

the CLI.

Command Line Interface The CLI is the ‘backbone’ of the framework. It serves

as an entry point for almost every Angular application. It can be installed with NPM,

for example: npm install @angular/cli -g. Creating a new project with

the CLI is straight forward too and sca�olds an entire project structure including all

relevant �les: ng new <my-application-name>. The tool also o�ers a lot of

useful commands to enrich the active developing process:

10
Cf. Lifecycle Hooks.

20

3 Angular

• ng serve:

Test the application locally on a simple, built-in webserver (including hot-

reloading
11

).

• ng build –prod/–dev:

Build the application with di�erent environment variables.

• ng generate service/component/module path/to/name:

Generate blueprints of Angular fundamentals.

Routing Routing plays an important role for the usability of a SPA. By de�ning

routes in a separate �le or module, Angular handles the logic of which component

should be displayed depending on the currently active URL path. An example �le

would look like the following:

1 [...]
2 import { Routes, RouterModule } from ’@angular/router’;
3 import { HomeComponent } from ’./home.component’;
4

5 const routes: Routes = [
6 { path: ’’, redirectTo: ’/home’, pathMatch: ’full’ },
7 { path: ’home’, component: HomeComponent }
8];
9 [...]

10 export class AppRoutingModule {}

Code Example 3.9: Routing module

The routing module handles an array of Routes which contain rules for di�erent

URL paths. Depending on the matching path, the de�ned component is loaded in the

<router-outlet></router-outlet>. As stated in the documentation, ‘[t]he

<router-outlet> tells the router where to display routed views.’
12

This tag can be placed

11
The CLI detects saved changes in the �les and re-compiles the application automatically.

12
Cf. RouterOutlet.

21

3 Angular

anywhere in the application. Furthermore, the RouterOutlet can be marked with

a name so that multiple tags can be addressed individually
13

.

3.3 Analysis

The following section deals with various aspects that de�ne the Angular framework.

Both positive and negative points will be discussed and assessed. The criteria was

de�ned in section 2.2.

Stability When looking at this criterion in regard to Angular, the �rst thing that has

to be mentioned is the naming confusion beginning with the announcement of version

2.0.0
14

. While the original framework was called AngularJS, the re-write was suddenly

called Angular 2. Many third-party libraries also started labelling their software with

an ng2 pre�x (which caused problems in some cases which will be explained later).

But with this announcement in September 2016, the team introduced a new versioning

scheme and a release policy too: Versions will be released under the SemVer approach

and there will be two major releases per year - one in March and the other one around

September/October. SemVer as well as the new policy could be seen as plannable for

companies that are interested in using the framework. Since then, the Angular team

almost
15

kept to their promises as can be seen in table 3.2.

Version Planned release Actual release

2.0.0 September 2016 14 September 2016

4.0.0 March 2017 23 March 2017

5.0.0 September/October

2017

01 November 2017

13
Cf. Angular 2/4 Named Router Outlet.

14
Cf. Versioning and Releasing Angular .

15
Cf. Angular Version 5 Release was Delayed.

22

3 Angular

Version Planned release Actual release

6.0.0 March 2018 not yet released

Table 3.2: Angular releases

However, it has to be criticised that the developer team made a jump and skipped

the version number 3.0.0. This is due to an inconsistency
16

at one point where the @an-

gular/core package was at version 2.x.x while the @angular/router package

was already at version 3.x.x. They uni�ed this with the release of Angular 4.0.0.

One mentionable aspect is that Angular 4 was backwards compatible with Angular 2.

This made it easy for developers to update their projects. However, as it was mentioned

above, there have been problems and confusions with third party libraries: Many pack-

ages from the NPM repository come with a pre�x for the targeted software/framework.

For example, a date picker for Angular 2 would be called ng2-datepicker. With

the step to version 4, suddenly it was not obvious anymore if a certain package with

ng2 pre�x would work in the new version despite the backward compatibility. This

is one of the reasons why the Angular team proclaimed that new releases and the

framework in general should be referred to as simply Angular17
. Also the pre�xes for

packages should follow this logic, i.e. ng.

Since the introduction of SemVer, updating is mostly �uent. The developer team

publishes information like release announcements and similar on their o�cial blog

which can be found under https://blog.angular.io/. They also provide an

online update helper
18

. On this page, it can be stated which version is currently used

and which version should be installed. Depending on this setting and a selection of

the application’s complexity, the tool gives a more or less detailed guide what to keep

in mind when executing the update process. However, the di�erentiation between the

three complexity levels ‘basic, medium, advanced’ is neither obvious nor described

16
Cf. Angular 4 and 5-6-7 Release Dates & Features.

17
Cf. Angular Presskit: Brand Names.

18
https://angular-update-guide.�rebaseapp.com/

23

3 Angular

on the page which might result in a bad user experience, especially for inexperienced

developers.

Another important aspect in terms of stability is the driving force behind the frame-

work. While many frameworks on GitHub and in the general open source world are

published and maintained by individuals and/or the community, Angular is promoted

and developed by Google. This is a huge bene�t and some kind of an insurance for the

users because Google itself plans to use the framework more widely in and for their

own applications
19

. Even prestigious and highly valuable projects like the AdWords

portal are being developed with Angular20
.

From a more technical point of view, Angular ensures a high maintainability by

using components as main building blocks. Also, concepts like services and two-way

data binding enforce a loose coupling between them. Furthermore, the multiple �les

approach results in a clear code structure and emphasises the framework’s philosophy

of separation of concerns. One point of criticism, though, is that the ‘syntactic sugar’

used in the HTML template can get complicated and hard to overlook.

1 <input type="text"
2 class="input-search"
3 placeholder="Last Name"
4 [(ngModel)]="name">
5 [...]
6 <button type="submit"
7 class="clear-input style-button-shadow"
8 (click)="clearForm()"
9 *ngIf="isFormValid">

10 </button>

Code Example 3.10: Simple form elements

In code example 3.10, there are elements of a form (input �eld and a submit

button. Both hold a special syntax from Angular :

19
Based on answer at Quora (https://www.quora.com/What-Google-products-make-use-of-AngularJS/

answer/Aaron-Martin-Colby?srid=33NW, visited 16/03/2018)

20
Cf. The new AdWords UI uses Dart — we asked why.

24

3 Angular

• [(ngModel)] is responsible for the two-way binding (for further information

see Data Binding).

• With *ngIf the button’s instantiation can be controlled via a boolean value.

• The (click) part is an event handler which calls a method of the component

when the button was clicked.

While this example is rather simple, it becomes obvious that in more complex com-

ponents the HTML is full of additional syntax. HTML tags can have various properties

and directives. Based on this situation, Angular is often accused of ‘[...] continu[ing]

to put JS into HTML’
21

which can be seen as one of their greatest weaknesses: If you

want to learn Angular you are forced to learn its special syntax.

Another aspect of this analysis is the ‘courage’
22

of Angular to be so heavily de-

pendent on third party technologies at the core of the framework’s functionality. First

there is TypeScript: While it is being developed by Microsoft and it is not foreseeable

to be dropped in near future
23

, the risk of using it is relatively small. Secondly, there is

RxJS. RxJS is ‘[...] a library for reactive programming using Observables, to make it

easier to compose asynchronous or callback-based code.’
24 Angular uses the concept of

Observables especially in the context of HTTP requests and similar which poses a

highly contemporary take on this topic. Observables are essentially the successor

to the long-time used Promises with the main advantage that the data response �ow

can be handled and altered more e�ciently and powerful in many di�erent ways.

Learning Curve In comparison to other technologies, Angular has a rather steep

learning curve. Although not right from the start. Setting up an initial project with

the CLI only takes a few minutes (assuming that the prerequisites are met including

an installed version of Node.js and NPM). From there on, new learners can take the

21
Cf. House, Angular 2 versus React: There Will Be Blood.

22
Based on this blog entry (https://medium.com/@cyrilletuzi/i-disagree-with-all-you-mention-da02

cb783040, visited 16/03/2018)

23
On the contrary: According to Chand, who is a Regional Director at Microsoft, the team behind TS

‘[...] has even bigger plans [for it]’. (https://www.c-sharpcorner.com/article/angular-2-or-react-for-

decision-makers/, visited on 16/03/2018)

24
http://reactivex.io/rxjs/

25

3 Angular

tutorial on the o�cial Angular homepage
25

. While the course covers lots of the most

common aspects, such as master/detail components, services, routing and HTTP, in

real world applications this knowledge will not su�ce. Shortly, topics like route guards,

pipes, lifecycle hooks and several other start to surface. It has to be mentioned that

the documentation
26

is extensive as well as comprehensive.

As Angular is a complete framework it provides a full set of homogeneous APIs.

It takes time to gain an overview of all possibilities that are o�ered. The framework

predetermines many decisions for the developer on how to handle certain situations.

This may be seen as limiting for some developers. ‘Opinionated’ is a keyword that

is often used to describe the nature of ‘thinking in Angular’. However, one could

argue that especially this argument poses an advantage for, e.g., companies that hire

new developers. In the Angular world, a new coworker, who has worked on Angular
projects before, will get familiar with the code base of the company relatively fast

as almost all Angular project structures are comparable. This is due to the majority

of developers using the sca�olding functionality of the CLI. Furthermore, developers

with a background in object-orientated programming will �nd TypeScript to be close

to, e.g., Java or C# and easy to access.

JavaScript Integration By using TypeScript as the main development language, ad-

vanced features of ES6 can be utilised. This might be one of the reasons why TypeScript

was among the top �ve most loved languages in the 2018 edition of Stackover�ow’s

survey
27

. Although it has to be mentioned that Angular can be used with Vanilla

JavaScript
28

and Dart
29

, too. Using TypeScript also means that web developers with

a background of only the basics (e.g., HTML, CSS and JS) may take longer to get

acquainted with the framework.

As mentioned earlier, Angular is an ‘opinionated’ framework. This continues in

terms of how it handles the static module bundling: Webpack
30

is used for this purpose.

Webpack is a module bundler released under the MIT license and widely backed in

25
https://angular.io/tutorial

26
https://angular.io/docs

27
https://insights.stackover�ow.com/survey/2018#most-loved-dreaded-and-wanted

28
Cf. Johnson, How to do Everything in Angular 2 using vanilla ES5 or ES6.

29
https://webdev.dartlang.org/angular/

30
https://webpack.js.org/

26

3 Angular

the community. Currently (as of March 2018) it is at version 4.1.1. One of its main

advantages is that developers may write their own loaders to de�ne what should be

included in the bundling process.

It has to be mentioned that in the course of the early Angular 2.x.x releases, the

developer team �rst used SystemJS
31

internally but later switched to Webpack
32

. This

caused some confusion back then, because the change resulted in inconsistent tutorials

and third party libraries’ documentations. Again this posed a problem especially to

inexperienced developers.

So far for the analysis of Angular. In chapter 6, the framework will be compared to

the other two frameworks that are contained in this thesis. Furthermore, numbers from

the open source community will be presented later on including popularity indices

and download statistics.

31
https://github.com/systemjs/systemjs

32
Cf. Jorge, Angular 2 CLI moves from SystemJS to Webpack.

27

4 React

This chapter centers on the framework React and it contains three parts. The �rst

deals with general information about the development history while the second is

about the overall structure. The last part analyses the framework with regard to the

criteria formulated in chapter 2.

Preface Before getting to the actual chapter, it has to be mentioned that the infor-

mation and, especially, the analysis including all code examples are based on version

15.4.2 of React. This is due to the circumstance that when the research for this thesis

started, the above mentioned version was the current. But in the course of research,

version 16 was released which meant a re-write of the framework. Section 4.4 will

cover the changes in more detail. The following chapter will therefore stick with the

prior major version as documentation and other resources were scarce for the newly

released one. Also for the sake of the comparative nature of this thesis, React will

often be referred to as framework. Actually, React is only a view library which will be

explained later on.

4.1 Background Information

React1
is a JavaScript library developed by Facebook which can be used to create user

interfaces for the web. It has been published as open source software in 2013 and has

gained a lot of traction in the developers world since then. Some of the most popular

use cases of React include Instagram and WhatsApp
2
. While React is often connected

to web development, its core (the react package
3
) is a standalone library and can be

1
https://reactjs.org/

2
Cf. Warcholinski, 10 Famous Apps Using ReactJS Nowadays.

3
https://reactjs.org/docs/cdn-links.html

28

4 React

used in a variety of scenarios including native applications (iOS and Android). Only in

combination with the react-dom, UIs for the web can be developed. JavaScript is an

inherent part of the framework because its the main development language
4
.

Due to React being only responsible for the view part of an application, the develop-

ment process requires a stack of various technologies to be e�ective:

• Compiler (for JSX
5
)

• Modules (and an appropriate loader) for the application structure

• Build process

• Routing

• State management

As a compiler, Babel is the most often recommended tool, e.g. by the Facebook

developers themselves
6
. By using a compiler, new language features of not yet im-

plemented ECMAScript speci�cations can be used in a today’s application. When

analysing a comparative table for browser support of di�erent vendors, it can be ob-

served that ES5, for instance, is widely accepted
7

with 100% of its features in almost all

major desktop browsers (i.e., Internet Explorer, Edge, Mozilla Firefox, Google Chrome).

ES6 gets close but fails to reach 100% compatability with any of the afore-mentioned

browsers
8
. These numbers should always be viewed parallel to the browser usage, as

can be seen in �gure 4.1.

4
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 3.

5
https://reactjs.org/docs/introducing-jsx.html

6
https://reactjs.org/docs/add-react-to-an-existing-app.html

7
http://kangax.github.io/compat-table/es5/

8
http://kangax.github.io/compat-table/es6/

29

4 React

Figure 4.1: Browser usage in February 2018

In regard to modules and bundling, Webpack is one of the best solutions. One

special merit is hot reloading which is an extremely important feature for an optimised

developing process. Options for routing and state management can be found in the

following section.

Current Version As of March 2018, React is at version 16.2.0. But as mentioned in

the preface of this chapter, the analysis is based on React 15.4.2.

4.2 Structure

The core of React is made of components and their composition. The overall goal

is to transform a certain state of the application to a view which can be displayed

in the browser. It is possible to write components with two di�erent approaches
9
:

Components as functions and components as ES6 classes.

Components as Functions Here, there are pure functions that return exactly one

ReactElement. The name of the component is as well the name of the function.

This approach, however, has its limitations: Neither can the state be altered nor can

lifecycle methods (e.g., componentDidMount) be used.

Components as ES6 Classes The name of the component is represented by the

name of the class. The class always has to extend the super class React.Component.

9
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 80�.

30

4 React

Furthermore, the visualisation logic should be contained in a render() method

which as well should only return one root element. The aforementioned limitations

of the �rst approach do not apply here: Classes can utilise states, lifecycle hooks and

more.

In general, the React developers recommend using the function components as

much as possible. That should support an e�cient re-usability of simple but often-

needed components. In practice, class components are placed at a high position in the

hierarchical tree of the application. They work as container components and handle

the various states that are then delegated to the lower level function components.

Props React components can be con�gured externally with properties and have a

mutable state internally
10

. However, properties inside a component are immutable

but can be set from an external point of the application at all times. Code example 4.1

shows the usage of props.

1 class Animal extends React.Component {
2 constructor(props) {
3 super(props);
4 }
5

6 render() {
7 const {type, name, legs} = this.props;
8

9 return (
10 <div className="animal">
11 <h1>Hello {name}</h1>
12 <p>He is a {type} and has {legs} legs</p>
13 </div>
14);
15 }
16 }
17 <Animal type=’dog’ name=’Rufus’ legs={4} />

Code Example 4.1: Props provided for and used by component

10
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 22.

31

4 React

The code example 4.1 contains the information about an Animal component. All

class components have to extend the React.Component base class (see line 1). This

concept will be explained further in later sections. Lines 2-4 contain theconstructor

where the properties are registered. The only method in this component is the render

method which is mandatory. Also, every render method should return exactly one

element
11

. This is the reason why the h1 and the p tags have to be enclosed with a

div tag (see lines 10-13). In line 17, the component is being initialised with the speci�c

props. Furthermore, this example shows that React uses one-way data binding to

forward information to the display unit by updating the model �rst and then rendering

the UI element (more on this topic can be read in section 6.1).

State The state is responsible for the data management within a component. An

example can be seen in 4.2.

1 class Dog extends React.Component {
2 constructor() {
3 super();
4 this.state = {
5 mood: null,
6 hunger: false
7 }
8 }
9 [...]

10 if(this.state.hunger == true) {
11 this.setState({
12 mood: angry
13 });
14 }
15 }

Code Example 4.2: Initial state and setState()

Here, the Dog component contains an initial state (lines 4-7) which is integrated in

the constructor. The state properties can be accessed in a familiar behaviour.

11
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 6.

32

4 React

The one speciality in the above example is the function setState(...) (see line

11) which is called in the if statement block. It has to be noted that this function

is a core principle of React. When this function is executed, a re-rendering of the

UI component is triggered (for more detailed information see ReactDOM.render()).

Furthermore, the update of the state does not have to alter each property: Partial

updates are possible (line 12). However, it has to be noted that the setState(...)

function is asynchronous which means that the updated values are only available as

soon as the re-rendering is completed
12

. This forces the developer to design the usage

very carefully.

JSX As the previous code examples show, React does not use a speci�c template

language but the JavaScript code can be enriched with HTML snippets. This extension

is called JSX which roughly translates to ‘Extensive JavaScript’. When using this

approach, a compiler is required to transform the JSX code to plain JavaScript. Code

example 4.3 shows a way where the const is neither just a string nor just HTML

but a combination of both.

1 const element = <h1>Hello, world!</h1>;

Code Example 4.3: Assigning HTML to a JS element

ReactDOM.render() This is one of the core functions of the framework. It takes a

ReactElement as �rst parameter (see line 2 in example 4.4) and mounts it behind

an element from the native DOM which is provided in the second parameter (line 3).

1 ReactDOM.render(
2 <Animal type=’dog’ name=’Rufus’ legs={4} />,
3 document.getElementById(’root’)
4);

Code Example 4.4: ReactDOM.render(): Code

This process is visualised in �gure 4.2.

12
Cf. Carnecky, Beware: React setState is asynchronous!

33

4 React

Figure 4.2: ReactDOM.render() (own visualisation)

After an alteration of the state, e.g. when the user enters a character in an input

�eld, or of the properties, React re-renders the complete UI of the component. However,

these changes are not applied to the native DOM. They are applied to what is called

a ‘Virtual DOM’ which is a representation of the entirety of all ReactElements
13

.

To avoid building the whole DOM again, the framework compares the new virtual

DOM to an earlier snapshot. Based on the deviations, React generates operations that

are being executed on the native DOM. This results in a minimal stress on the native

DOM which is the reason for React’s swiftness because operations on the native DOM

are expensive
14

.

As mentioned before, React on its own only handles the ‘V’ part of MVC. To develop

a complete application, more technologies are needed. As the framework’s approach is

quite liberal in terms of the decision responsibility of the developer, various di�erent

libraries can be used interchangeably. But as for most parts of the JavaScript ecosystem,

best practices and stacks have emerged. Two of these, routing and state management,

are mentioned in the following section.

Routing Routing can be handled with the React Router15
. Although React itself

was not in�uenced by the Ember framework
16

, the React Router is based on the same

principles as the Ember-Router
17

. The con�guration is straight forward as can be seen

in the code example 4.5.

13
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 60.

14
Based on paragraph ’DOM ine�ciency’ from this blog entry (https://medium.com/@hidace/

understanding-reacts-virtual-dom-vs-the-real-dom-68ae29039951, visited on 21/03/2018)

15
https://github.com/ReactTraining/react-router

16
https://www.emberjs.com/

17
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 183.

34

4 React

1 [...]
2 import {Router, Route, Redirect} from ’react-router’;
3 import createHashHistory from ’history/lib/createHashHistory’;
4 import {Home, About} from ’./components’;
5 [...]
6 const router = <Router history={history}>
7 <Redirect from=’/’ to=’/home’ />
8 <Route path=’/home’ component={Home} />
9 <Route path=’/about’ component={About} />

10 </Router>

Code Example 4.5: Router setup

Three imports from the react-router module are necessary alongside a router

element which contains the de�nitions of the routing logic, an element to store the

page history (createHashHistory) and, of course, the components to be displayed

(line 4). The Route, for instance, takes a path and assigns a component to it (lines 5

and 6).

State Management This aspect of developing an application increases in signi�-

cance the more a project grows in size and complexity. With the idea of one centralised

state logic (based on the architectural pattern call Flux
18

), React applications often use

Redux
19

. According to their homepage, Redux is ‘[...] a predictable state container for

JavaScript apps.’ The processing of data works solely via pure functions (also known

as Reducers). This approach is based on the programming language Elm
20

.

4.3 Analysis

The following section deals with various aspects that de�ne the React framework.

Both positive and negative points will be discussed and assessed. The criteria was

de�ned in section 2.2.

18
https://facebook.github.io/�ux/

19
https://redux.js.org/

20
http://elm-lang.org/

35

4 React

Stability With the release of React 15, React changed its versioning scheme
21

. While

the prior versions were called 0.14 and 0.13, the developer team adjusted to Semantic

Versioning. It has always been a misconception with the release numbers as a version

starting with 0.x.x is often treated as non-stable or non-production-ready. In terms of

React, this does not hold true. The framework has been stable since its initial release

in 2013
22

. One big point of criticism and adaption blocker has always been the BSD-

derived licensing of React. Facebook has often been criticised for releasing the library

under this kind of license because it contains some questionable passages
23

. More on

this topic can be read in section 4.4.

However, one disadvantage might be that there is no distinct release version for the

whole React framework as most libraries involved are loosely coupled. This results in

a constant struggle for developers to cross-check for dependency issues throughout

the project. For example, for implementing a routing structure into an application

there have to be two separate modules: react-router and history. The latter

is important to enable back and forth clicking of pages which is de�nitely a wanted

functionality.

For one thing React has an overseeable API and for another thing changes in the API

are being introduced carefully. Furthermore, incompatible or even breaking changes

are communicated beforehand on a reliable basis and APIs are just abolished when

they have a surrogate which results in a robust API
24

. The architecture behind React,
where the application state is centralised and data �ow is only one-directional, caters

for even larger projects beeing still readable and understandable
25

.

In regard to updatability, several sources state that there have not been larger

problems
26

. This is most probably connected to the aforementioned stability of the

o�cial API. Migrations should also be simple. It has to be noted, however, that an

eventual strong dependency of third party libraries from smaller development teams

21
https://reactjs.org/blog/2016/02/19/new-versioning-scheme.html

22
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 4.

23
Cf. Jorge, Your license to use React.js can be revoked if you compete with Facebook.

24
https://reactjs.org/docs/design-principles.html#stability

25
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 7.

26
Based on comments (https://www.reddit.com/r/reactjs/comments/5a45ai/is_react_a_good_choice_for

_a_stable_longterm_app/?st=jesl2tg7&sh=fd94a4c0, visited on 29/03/2018)

36

4 React

might hinder the update process because they can not ensure a fast compatibility

adjustment of their software.

One merit in terms of future release and bug �xing reliability is the fact that Facebook

is responsible for React. Similar to Angular, where Google is the driving force, Facebook

pushes the use of its own software by implementing it in their own applications as

well (for examples see Background Information).

The overall maintainability of React is given because of its use of components, al-

though this does not need to be valued too much as most of the other major frameworks

follow a similar approach. What indeed does need to be mentioned is that React excels

at handling ‘dumb’ components. This is due to the core principles of state and

props (for further information see section 4.2). Furthermore, the one-way binding

approach of React results in a better data overview because data only �ows in one

direction which also positively a�ects the debugging capability.

Learning Curve Due to using the virtual DOM approach, React is not only fast but

also o�ers a certain simplicity to the development process once the main principles

of the framework are understood. Developers do not have to deal with how the

UI transforms from one state to another one but rather the developer can describe

the anticipated state and React handles the steps that are needed to get there. This

facilitates both the developing and testing of an application
27

.

Developers who attempt to learn React do need to have a profound knowledge of

JavaScript because it is the main programming language for this framework. One could

say that React entails more JavaScript. This might become relevant when a company

has designers that work close to the code. In the real world, it could eventually be

hard to �nd designers that know how to modify JSX code in order to change structural

or styling related parts. For this task working with HTML templates would be much

easier. In a way, React breaks with long-term best practices: E.g., developers were

trying to separate UI templates and inline JS logic but the usage of JSX causes them

to be intermixed again
28

. Although this can be seen both positive and negative. As

stated in a talk by Pete Hunt in 2013, building components instead of templates results

27
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 24.

28
Cf. Neuhaus, Angular vs. React vs. Vue: A 2017 comparison.

37

4 React

in a better reusability and testability
29

. However, when switching jobs or projects,

developers might need more time to adjust as React projects structures have a high

probability of being di�erent.

The ‘anti-opinionation’ of React requires development teams to have experienced

leaders who can design a robust and well-proven setup for the application. The �exi-

bility of React starts with the simplicity of just adding the react.js and react-
dom.js to a base HTML �le and the minimum setup is done. It goes even further

with being able to reduce a certain SPA down to micro-services as an act of reusability

or project re-focusing. This absence of rules and limited guidance can, however, pose

a potential risk to the successful outcome of an undertaking.

The o�cial documentation
30

is comparably small but nevertheless good as a starting

point. It has to be noted that the documentation in question o�ers a large collection of

various examples and code snippets to the di�erent areas of React. In addition to that,

the complete API is displayed too (including more speci�c examples)
31

.

JavaScript Integration React focuses on the use of JavaScript with ES5 and ES6.

This leads to an inconsistency in some tutorials and similar online resources as it

sometimes is not obvious to which version of ECMAScript the code snippets refer to.

For advanced and recent syntax features, at least ES6 or ES8 is needed. To compile the

code to a browser compatible state, a compiler like Babel has to be used.

As this framework is very open to developer decisions, the amount of di�erent

stacks and best practices can not be covered in this thesis. However, one of the most

popular stacks for a project contains: React Router and Redux. As mentioned before,

Redux is a predictable state container for the use with React and it is popular among

the community. However, it is not the only implementation of Flux: There are at least

16 di�erent packages for state management to choose from in React alone
32

. It can be

hard to determine what the di�erences or merits of each of them are. Also, the usage

of Redux adds a lot of complexity to the code and project structure. Because of that,

it might not be needed in the �rst place as even its creator, Dan Abramov, stated in

29
Cf. Hunt, React: Rethinking best practices.

30
https://reactjs.org/docs/

31
https://reactjs.org/docs/react-api.html

32
https://github.com/voronianski/�ux-comparison

38

4 React

a comment on Medium
33

. This constitutes a di�culty especially for inexperienced

developers at what point in time or to what extent of complexity Redux is feasible.

To start of a project with pre-con�gured libraries and similar, the NPM package

create-react-app has to be mentioned which sca�olds a proven �le structure and

creates a build pipeline
34

. However, this package cannot be treated as a fully �edged

CLI because it only facilitates the initial setup but o�ers no functionality regarding

pre-con�gured boilerplate code.

4.4 React 16

Also referred to as React Fiber, React 16 is a complete rewrite of the framework and

it was released in September 2017
35

. According to their announcement, upgrading

from 15 to 16 will work �awlessly, stating: ‘With minor exceptions, if your app runs in

15.6 without any warnings, it should work in 16.’ Also, breaking changes should only

occur in a small number of uncommon cases. Dan Abramov also stated that ‘[React

16] is quite literally 99,9% [backward compatible].’
36

The main features of version 16.0
consist of:

• New core architecture (codename Fiber)

• New render return types: Fragments and strings

• Reduced �le size

• Support for custom DOM attributes

The release in terms of the licensing follows a great discussion and backlash
37

among

the developer community. When initially released in 2013, Facebook published React

33
Based on this comment (https://medium.com/@dan_abramov/you-might-not-need-redux-be4636

0cf367, visited on 29/03/2018)

34
https://reactjs.org/docs/add-react-to-a-new-app.html#create-react-app

35
https://reactjs.org/blog/2017/09/26/react-v16.0.html

36
Based on this blog entry (https://medium.com/@dan_abramov/hey-thanks-for-feedback-bf9502689ca4,

visited 29/03/2018)

37
Cf. Hughes, Facebook re-licenses React under MIT license after developer backlash.

39

4 React

under the Apache V2 OSS license
38

. Later, in 2014, the license was switched to a BSD

one. While these two licenses do not di�er too much in terms of permission and

general idea, it was hard to comprehend Facebook’s motives. Finally after years of

backlash and criticism of the community, Facebook decided to switch the license once

again to the MIT license.

So far for the analysis of React. In chapter 6, the framework will be compared to the

other two frameworks that are contained in this thesis. Furthermore, numbers from

the open source community will be presented later on including popularity indices

and download statistics.

38
https://www.apache.org/licenses/LICENSE-2.0

40

5 Vue.js

This chapter centers on the framework Vue.js and it contains three parts. The �rst

deals with general information about the development history while the second is

about the overall structure. The last part analyses the framework with regard to the

criteria formulated in chapter 2.

Preface Similar to React, Vue.js will often be referred to as a framework. Again, it

actually is only the view part of a complete application. The following sections will

show which technology stacks are needed in order to accompany Vue.js properly.

5.1 Background Information

Vue.js (in the following short: Vue) can be considered the newest framework in this

comparison although its initial release happenend two years before Angular 2. But

as the latter was built on various concepts of the �rst iteration (i.e., AngularJS), one

could argue that Vue indeed is the most recent in terms of currentness. It was released

in 2014
1

by Evan You who is a former employee of, e.g., Google where he worked a lot

with AngularJS. However, the 1.0.0 version only arrived in October 2015
2
.

Vue is often described as a progressive framework which can be used to build

user interfaces for the web. While it is not strictly associated with the Model-View-

Viewmodel (MVVM) pattern, the design principles of Vue were partly inspired by

it. According to their website
3
, the framework can be used both for small projects

where the core library is used among other technologies and for full-blown SPAs.

1
http://blog.evanyou.me/2014/02/11/�rst-week-of-launching-an-oss-project/

2
https://vuejs.org/2015/10/26/1.0.0-release/

3
https://vuejs.org/

41

5 Vue.js

The scalability is one of the main merits amongst others that will be discussed in the

analysis later on (see section 5.3).

One specialty aboutVue is that it is entirely developed by the open source community

and not a large enterprise. It started out as a hobby project by You until he decided

to quit his job and work full-time on it. In this context it has to be noted that the

�nancing was completely realised with the help of Patreon
4
. Patreon is a community

hub for content creators in various �elds (e.g., game development, music, writing,

photography and science) where people can become a subscriber for a speci�c project

that they want to support with a monthly payment. After a short period of time, the

supporters of the Vue project already contributed more than 4,000$ in total per month.

As of April 2018, this �gure has increased close to 15,000$
5
.

This rise in popularity can be understood by looking at other related community

pages: On GitHub
6
, an open source platform for hosting code in repositories to share

with other developers, success and popularity is displayed by the number of stars

a repository or project has. Vue has gained more than 40,000 stars in the course of

2017 making it the highest rising project overall
7
. Part of this derives from the strong

bonding and extensive support from the PHP community, especially Laravel
8
, where

Vue is used as the default view engine.

Past Releases The earliest releases in 2014 and 2015 were no major versions as they

were all labelled with 0.x.x. Vue started to gain traction after its 1.0 release in October

2015. This marked the point of production readiness which made the framework more

interesting for larger companies.

Current Version As of April 2018, Vue is at version 2.5.16.

4
https://www.patreon.com/

5
https://www.patreon.com/evanyou

6
https://github.com/

7
Cf. Motroc, The rising star of JavaScript: Vue.js takes control of the game.

8
https://laravel.com/

42

5 Vue.js

5.2 Structure

Vue is a component based framework. The code example 5.1 shows a simple imple-

mentation of such a component.

1 Vue.component(’dog-info’, {
2 data: function () {
3 return {
4 legs: 4
5 }
6 },
7 template: ’<h1>A dog has {{ legs }} legs.</h1>’
8 })

Code Example 5.1: Simple component in Vue

As can be seen in the above example 5.1, the data was not provided directly whereas

in code example 5.10 it is provided directly as an object. Instead, the legs property is

part of the data function. This is needed because each instance of a component has to

manage an independent copy of information. If this rule would not exist, components

would alter the data of other instances. The reason why the �rst example does not

have to obey this rule is because it does not deal with being a component but with

being an instance. Furthermore, all Vue components are also instances which means

that they accept the same options object
9
. On creation of a Vue instance, all properties

that can be found in its data object are added to the frameworks underlying reactivity

system.

It has to be mentioned that Vue components are very similar to Custom Elements

which are part of the Web Components Spec
10

). This relatively new approach to web

development allows developers to create new HTML tags or modify existing ones

with additional functionality only using vanilla JavaScript, HTML and CSS. Vue is

loosely shaped after this draft but di�ers in some key aspects and o�ers advantages:

The approach for Custom Elements is currently still in draft status, not �nal and

therefore not supported in every browser. Vue works reliable in all supported browsers

9
https://vuejs.org/v2/guide/instance.html#Creating-a-Vue-Instance

10
https://www.w3.org/wiki/WebComponents/

43

5 Vue.js

(including IE9 and above) and for this to be working, components do not rely on

poly�lls
11

. Furthermore, Vue components add functionality that Custom Elements

cannot provide, i.e, custom event communication and cross-component data �ow.

In terms of structuring the components, the Vue guide suggests using a single �le

approach (compare example 5.2).

1 <template>
2 [...]
3 </template>
4

5 <script>
6 [...]
7 </script>
8

9 <style>
10 [...]
11 </style>

Code Example 5.2: Single �le components

The above example visualises this approach. Files like these are saved under the

.vue extension. However, this is only a suggestion by the developer team. A separa-

tion of concerns is also possible as can be seen in example 5.3.

1 <!-- component-a.vue -->
2 <template>
3 [...]
4 </template>
5 <script src="./component-a.js"></script>
6 <style src="./component-a.css"></style>

Code Example 5.3: Separation of concerns

Another important aspect is that every component must have a single root element

in the template section
12

.

11
"Replicate an API using JavaScript [...] if the browser doesn’t have it natively" - Remy Sharp

(https://remysharp.com/2010/10/08/what-is-a-poly�ll, visited on 10/04/2018)

12
https://vuejs.org/v2/guide/components.html

44

5 Vue.js

Internally, the templates are compiled into Virtual DOM render functions. In com-

bination with the reactivity system, Vue is able to e�ciently determine the minimum

amount of components to re-render and apply the necessary number of DOM manipu-

lations when the application’s state changes.

Directives Similar to Angular, Vue uses directives in its templates. They can be used

for data binding, event handling and more. In the template, they are visually marked

with a v- pre�x. The v-bind directive, for example, is used to reactively update an

HTML attribute (compare example 5.4).

1 <a v-bind:href="url"> ...

Code Example 5.4: Example for v-bind

Events like click actions by the user can be handled with the directive shown in the

code snippet 5.5.

1 <a v-on:click="doSomething"> ...

Code Example 5.5: Example for v-on

Vue o�ers special shorthands for the two mentioned directives as they are heavily

used in applications (compare example 5.6).

1 <!-- shorthand for v-bind -->
2 <a :href="url"> ...
3

4 <!-- shorthand for v-on -->
5 <a @click="doSomething"> ...

Code Example 5.6: Shorthands for directives

Another specialty of Vue is the approach of modi�ers
13

. These are special post�xes

which are denoted by a dot. This indicates that a directive, for example, should be

bound in a way di�ering from the default. Furthermore, multiple modi�ers can also be

13
https://vuejs.org/v2/guide/events.html#Event-Modi�ers

45

5 Vue.js

chained. Code example 5.7 shows two possible options to leverage the modi�er feature.

1 <!-- only fire an event when the ’Enter’ key is pressed -->
2 <input @keyup.enter="onEnter">
3

4 <!-- execute the function of this button only one time -->
5 <button @click.once="submit"> ... </button>

Code Example 5.7: Modi�ers on directives

Data Binding Vue provides two options to bind data between model and view:

• One-way: v-bind (compare code example 5.4)

• Two-way: v-model

The latter synchronises view and the model no matter where the change initially

occured. An input �eld, for example, can be altered in the view when the user enters

something but also the value for the �eld can be set and modi�ed within the script.

An example for v-model can be seen in 5.8.

1 <template>
2 <input v-model="name" placeholder="How do you name your dog">
3 <p>My dog is called {{ name }}</p>
4 <button @click="setDefaultName">Set default!</button>
5 </template>
6

7 <script>
8 [...]
9 methods: {

10 setDefaultName: function () {
11 this.name = ’Rufus’
12 }
13 }
14 </script>

Code Example 5.8: Example for v-model

46

5 Vue.js

The example above shows the registration of functions within a component, too.

Similar to data of Vue instances, functions are arranged in an object that is passed to

the component. This approach to registering methods is relatively unique amongst the

JavaScript framework ecosystem. Furthermore, in addition to the methods object, Vue
provides the possibility to de�ne a computed object which also contains functions

14
.

The di�erence between those two is the fact that the results of the latter are cached and

can be re-used. The merit of this is that, for example, computing-intensive operations

only have to be executed once and can later be accessed faster.

Props This aspect of Vue reminds of React. To send data from parent to child com-

ponents, one option is to make use of props. They can be passed in either a static or

a dynamic manner
15

. However, it has to be noted that any kind of value can be passed

to a prop (including type checking), as the example 5.9 shows.

1 <template>
2 <dog-detail name="Rufus" age="7"></dog-detail>
3 </template>
4

5 <script>
6 [...]
7 Vue.component(’dog-detail’, {
8 props: {
9 name: String,

10 age: Number
11 },
12 template: ’<h3>My dog {{ name }} is {{ age }} years old</h3>’
13 })
14 [...]
15 </script>

Code Example 5.9: Example for props

14
https://vuejs.org/v2/guide/computed.html

15
https://vuejs.org/v2/guide/components-props.html#Static-and-Dynamic-Props

47

5 Vue.js

Command Line Interface Vue provides an o�cial CLI to enhance the development

process. NPM can be used to install it: npm install -g vue-cli. To sca�old

a new application, one simply has to execute the following command: vue init

<template> <my-application-name>. One specialty of this CLI is the fact

that the developer team o�ers a set of pre-con�gured templates for various use cases.

What kind of options are available and more can be found in section 5.3.

As mentioned before, the core library is focused on the view layer only. Therefore,

additional libraries are needed to enhance the functionality of the application. Similar

to React (both in terms of approach and naming), Vue recommends the use of the

following two libraries for the respective parts: Vue-Router and Vuex. These two will

not be discussed in this section as they are both similar to approaches by Angular and

React. Instead, they will be analysed in the following section where the inspiration for

the development of Vue will be discussed, too.

5.3 Analysis

The following section deals with various aspects that de�ne the Vue framework. Both

positive and negative points will be discussed and assessed. The criteria was de�ned

in section 2.2.

Stability Back in 2015 alongside the release of version 1.0.0, Evan You stated that

‘[Vue] is a personal project. So if you are looking for an enterprise backed dev team,

Vue is probably not the one.’
16

However, he also mentioned that the statistics for Vue
in the �rst year were solid:

• Code coverage
17

of 100% on every commit since 0.11 release

• More than 1,400 issues on GitHub closed

• Issues on GitHub were closed within an average of 13 hours

16
http://blog.evanyou.me/2015/10/25/vuejs-re-introduction/

17
Measurement of how many lines of the code base are called while running automated tests against it.

48

5 Vue.js

Especially in regard to the adaption willingness of larger companies, it is crucial for

such a small project in terms of man power to be consistent. This includes regular and

transparent releases including extensive testing. The numbers presented by You back

in 2015 suit these premises. In comparison, the numbers of the current version 2.5.x in

2018 do not seem to show a sign of degradation:

• Still a code coverage of 100%
18

• More than 6,200 issues closed
19

• Average closing time for issues reduced to six hours
20

Other indicators for the stability of the framework are the consistent release cycles
21

and the highly supported Patreon campaign that was mentioned earlier. Overall, it can

be noted that Vue is very active in development and evolving. Also according to their

lead developer, ‘there is really no incentive for [them] to just suddenly stop [with]

that.’

While it can be seen as a downside that Vue is not backed by a large company of the

technology industry, this fact can also have its own advantages. Decisions to where

the framework is heading in the future are not tied to corporate interests. Only the

community in consultation with the development team determines changes and new

features. However, this can also pose a risk to the adaption of Vue: It is always possible

that another fresh framework is published that all of a sudden catches the interest of

the community. In that case, the popularity could be slowed down or even stagnate.

Google or Facebook on the other side can almost ensure a long-term commitment both

in terms of active development and �nancial aspects to their respective frameworks.

In the JavaScript world, adapting a certain technology can always be considered a bet

of how well and long the technology will persist. Again, decisions regarding this of

course depend on various circumstances like projects sizes, for example.

18
https://codecov.io/gh/vuejs/vue

19
https://github.com/vuejs/vue/issues

20
Number is assumingly from 2017 but still a good indication (http://issuestats.com/github/vuejs/vue,

visited on 11/04/2018)

21
https://github.com/vuejs/vue/releases

49

5 Vue.js

Learning Curve Vue has a small learning curve and is very easy to integrate. As it

uses mainly ES6 for developing, the most simple example (as can be seen in 5.10) is

straight forward and understandable.

1 <div id="app">
2 <p>{{ message }}</p>
3 </div>
4

5 <script src="https://unpkg.com/vue"></script>
6 <script>
7 new Vue({
8 el: ’#app’,
9 data: {

10 message: ’Hello Vue.js!’
11 }
12 })
13 </script>

Code Example 5.10: Minimal Vue setup

In this form, it does not require any additional compilers or transpilers as it only

utilises the basic web technologies.

The documentation is extensive and has an ‘Essentials’ section that covers the most

important concepts in a very concise and elaborate way
22

. It has to be mentioned that

the guide and the API are also part of the open source project and therefore open

for everyone who is interested to contribute and improve. While this option is also

available for the other two frameworks, Vue and its creators put a lot more emphasis

on this feature and encourage the people to actively participate.

As mentioned earlier, Vue provides a CLI. With the command vue init <tem-

plate> <my-application-name>, it is simple to generate a new project from

scratch with many best practices automatically set up. Furthermore, the <template>

represents a valuable feature as it accepts a number of pre-con�gured setups developed

by the development team. They include setups for applications with module bundling

22
https://vuejs.org/v2/guide/

50

5 Vue.js

(either Webpack or Browserify
23

, including both a fully-featured setup or a simple

one for prototyping) as well as a con�guration for a Progressive Web App (PWA).

This in particular is an interesting aspect because the popularity of PWAs is steadily

increasing
24

. In short, PWAs are web applications that can be installed on a smartphone

through the browser, they feel almost like a native app and are able to even work

o�ine, which is due to the concept of service workers. Furthermore, push noti�cations

are also possible. Especially due to PWAs being a relative novelty it de�nitely helps

their propagation if popular frameworks like Vue emphasise their adaption by o�ering

a template for it.

JavaScript Integration Regarding best practices and stacks, Vue took quite a few

ideas and incentives from the big players: Angular and React. The single �le concept,

for example, derives in parts from the latter while the general idea of splitting up JS,

HTML and CSS to ensure a separation of concerns derives from the �rst. An advantage,

however, is that Vue manages to just recommend approaches to the developer but also

accepts di�erent takes (e.g., organising the aforementioned technologies in separate

�les).

Furthermore, additional libraries can also be traced back to the other frameworks.

As mentioned earlier, the suggested routing library on the o�cial Vue website is Vue-
Router25

. Looking at the simple example 5.11, the proximity to the Angular counterpart

becomes obvious.

1 [...]
2 import Router from ’vue-router’;
3 import Home from ’@/components/Home’;
4

5 Vue.use(Router);
6

7 export default new Router({
8 routes: [
9 { path: ’/’, name: ’Entry point’, component: Home, },

23
http://browserify.org/

24
Cf. Roy, Progressive Web Apps: What they are and why you should care.

25
https://router.vuejs.org/en/

51

5 Vue.js

10],
11 });

Code Example 5.11: Vue-Router implementation

In regard to a solution for state management in larger applications, Vuex26
is the

recommended library. Vuex is a Flux-like implementation which is comparable to

React’s Redux. Again, the developers took an existing, well-proven idea and built

an own solution on the same approach. However, this should not be considered as

‘stealing’ of mindset because all technologies involved are open source and therefore

people are encouraged to build upon existing ideas and projects. Vue’s success is partly

based on the fact that Evan You took his knowledge of web development and �ltered

out the best approaches to various aspects of modern-day applications to create a

wholesome new framework. The next chapter will show that this strategy left an

impact on the JavaScript community.

Vue uses mainly JavaScript ES5 or ES6. However, with the release of version 2.5.0
the developer team announced that TypeScript will be o�cially supported by the

framework
27

. According to this, components in Vue can be implemented as displayed

in example 5.12.

1 import Component from ’vue-class-component’
2

3 @Component({
4 template: ’<button @click="bark">Click!</button>’
5 })
6 export default class Dog extends Vue {
7 name: string = ’Rufus’
8

9 bark (): void {
10 window.alert(this.name + ’ barks!’)
11 }
12 }

Code Example 5.12: Vue with TypeScript

26
https://vuex.vuejs.org/en/

27
https://vuejs.org/v2/guide/typescript.html

52

5 Vue.js

This possibility adds yet another merit to Vue and makes it a very �exible framework

to �t any kind of use case and developer background knowledge.

So far for the analysis of Vue. In chapter 6, the framework will be compared to the

other two frameworks that are contained in this thesis. Furthermore, numbers from

the open source community will be presented later on including popularity indices

and download statistics.

53

6 Comparison

The following sections will cover various aspects of decision making in terms of

adapting a new framework. While the preceding chapters contained many, more

technical related parts of the technologies, this comparison chapter will pick the most

relevant ones and furthermore include insights to community statistics. As all of the

evaluated frameworks are open source, the community aspect plays an important role.

6.1 Features and Technical Aspects

In terms of general approaches, the frameworks do not di�er very much. All of them are

component based which already counts for a relevant part of their overall philosophy.

However, there are also di�erences that are often, of course, subjective. This includes

strategies in regard to �le concepts (single vs. multiple) or the main development

language. While Vue is liberal in this case o�ering developers more than one way

to write their code (e.g., ES5/6 or TypeScript since 2.5+) and also emphasises doing

that, Angular is more restrictive: Although it is possible to develop an application

with vanilla JS or even Dart, all o�cial resources as well as most of the available

tutorials and code snippets require the usage of TypeScript. While this also means

an advantage in terms of being familiar for developers with any object-orientated

background, it may make simpler projects more complex. This goes on with Angular
being dependent on Dependency Injection, a concept which is not wide-spread among

the JavaScript ecosystem
1
. React, for example, does not rely on it. However, React also

comes with a quasi restriction by enforcing the use of JSX for developing. It de�nitely

is the most diverse approach of all three frameworks as JSX implies that HTML is

strongly intermixed with JS. Also, the concept of states can be a barrier to adaption.

1
Cf. Zeigermann and Hartmann, Die praktische Einführung in React, React Router und Redux, page 37.

54

6 Comparison

Vue and Angular share a relatively similar approach to structuring their components:

Both split up template (HTML), style (CSS) and logic (JS). While both o�er the option

to handle these parts either in one �le or in three separate, Angular de�nitely prefers

the separation while Vue emphasises the single �le approach even o�ering a special

�le extension for this purpose: .vue. Single �le components have the advantage

as they ‘enforce’ the developer to write components as slim as possible to ensure

simplicity and re-usability. Both frameworks also use special syntax enhancements

for the template �les (i.e., *ngFor/v-for or *ngIf/v-if). Vue, however, o�ers

additional shorthands for the most used directives which can slightly tidy the code.

This gains importance as projects move forward and template �les grow accordingly.

Another aspect in terms of data handling is the approach to binding. React uses

one-way data binding only. Angular and Vue o�er both ways by recommending the

implementation of ngModel and v-model, respectively. However, two-way binding

may seem convenient at �rst but can cause di�culty the more the application grows in

terms of size and complexity. With two-way binding it can sometimes be hard to track

which data gets updated where. Also, side e�ects may occur more often
2
. Therefore

it is recommend to use one-way binding as extensively as possible even though this

results in a generally higher coding e�ort for the developer.

One important thing that has to be mentioned at this point is the general classi�ca-

tion of the presented technologies: While Angular is the only fully-featured technology

in this comparison which indeed lives up to being called a framework, React and Vue
are just view libraries that are often named in the same contexts as full-blown frame-

works because they o�er best practices for a complete development setup. However,

both are very similar in this regard especially when looking at suggested external

libraries for routing and state management:

• State management: Vue ⇒ Vuex, React ⇒ Redux

• Routing: Vue ⇒ Vue-Router, React ⇒ React-Router

This classi�cation results in another comparison aspect: Opinionated vs. liberal.

While Angular on the one hand provides a full set of homogeneous features and helpful

2
Cf. Greene, Two-Way Data Binding: Angular 2 and React.

55

6 Comparison

strategies for development, it also leaves less room for own decisions. When a team

or a company tends to adapt this framework, it means that a lot of mindset has to be

adjusted to cover Angular’s philosophy. On the other hand, React and Vue are very

liberal and �exible. They can be used in various scenarios and technology stacks

as they can, e.g., only be integrated to handle the view part of an application. This

freedom of choice, however, also requires a high level of responsibility and experience

from the project leaders. All decisions have to be made on an elaborate basis and

accounting for future proof, too.

6.2 Support and Accessability

The biggest di�erence regarding the topics support and accessability has been discussed

extensively in the preceding chapters but it has to be noted again as it may be one of

the top reasons to lean towards a technology or not: Who is behind the framework?

React is controlled by Facebook and Angular is controlled by Google. While there are

merits when companies are �nancially supporting a certain software, it always has to

be considered that these companies are still based on pro�t which, of course, impacts

their decision making. Their concern does not ultimately have to match the needs and

requests of the user base. Although they can possibly ensure a longer support and less

probability of stagnation. In Vue’s case, the project is completely funded and supported

by the open source community. Here, the concerns of the developers have a higher a

chance of aligning with the users
3
. However, due to this project being dependent on

few people in terms of responsibility, the risk of failure is higher in comparison with

larger companies. More on community and open source numbers can be found in the

following section.

In terms of accessability, Vue has a small learning curve. It focuses on well proven

practices and o�ers a great documentation online which is co-developed with the

community. React is easy to adapt for developers with a background in or an extensive

knowledge of the JavaScript language as almost everything is adjusted to using JSX.

Otherwise it can be di�cult to get acquainted with React. Furthermore, the state

management especially for larger projects can have a high complexity. Angular has

3
https://blog.hackages.io/https-blog-hackages-io-evanyoubhack2017-cc5559806157

56

6 Comparison

the steepest learning curve among the discussed frameworks. While setting up new

projects with the CLI is concise and the fundamentals are easy to learn, the logic can

get complicated quickly. Concepts of services, pipes and interceptors are powerful

but also hard to master. However, for a company Angular can still be a viable choice

because project structures around the scene are often very similar and therefore new

coworkers can be integrated without further complications.

Job o�erings can also indicate where the interest of companies lies. The following

numbers are based on the business portal LinkedIn
4
. The evaluation has been limited

to Germany only (search parameters are provided):

• React: 1,840 o�erings
5

• Angular : 1,081 o�erings
6

• Vue: 307 o�erings
7

React is by far the most mentioned technology in this context; Angular is a de-

cent amount behind. Vue can not quite compete with the numbers of the other two

frameworks. This can partly be explained with their time-on-market: Vue released

its 1.0.0 version in 2015 while React was released in 2013. The current Angular has

not been released until 2016 but its predecessor AngularJS has been around since 2012

which already made the brand more established. However, the numbers for React align

with several aspects of community statistics which will be discussed in the following

section.

6.3 Community Statistics

GitHub When it comes to the success story of open source, GitHub is among the

�rst websites that have to be mentioned. In terms of statistics, the star system of

GitHub is particularly of interest for this comparison as they indicate the popularity

4
https://www.linkedin.com/

5
Query: React OR ReactJS OR React.js

6
Query: Angular4 OR "Angular 4" OR Angular2 OR "Angular 2" OR Angular NOT AngularJS NOT

Angular.JS

7
Query: Vue OR VueJS OR Vue.js

57

6 Comparison

of a project. Furthermore, the change over time has to be discussed, too.

Figure 6.1: GitHub stars over time

As can be seen in �gure 6.1 above, React leads the �eld again. However, Vue is just

shortly behind but what is most noticeable is the historic development of it: Only in

the last year (2017), Vue has gained more than 40,000 stars making it the highest rising

framework
8
. It also does not show any indication of slowing down. React’s progress

does not have to be diminished either: Considering the amount of time it has been

on the market, it still ranks second in the competition with more than 27,000 stars

8
https://risingstars.js.org/2017/en/#section-all

58

6 Comparison

added. Angular can not reach these regions at all making it the least favoured project

among the three. Furthermore, the historic development does not indicate any sudden

increase at all. This is supported by the fact that Angular has the highest number of

open issues at the moment (see footnotes):

• React: 346 issues
9

• Angular : 1,962 issues
10

• Vue: 107 issues
11

It seems as if the users encounter far more problems with Angular than with the

other two. A further interpretation can also be that React and Vue work more actively

on resolving issues.

NPM Another source to assess the standing of a framework are the download statis-

tics on NPM. With NPM being the most popular place to install third party libraries and

suchlike from, its download numbers (including history) can provide viable informa-

tion on how well a technology is perceived and used among the community. The data

of the �gure 6.2 is again based on the last twelve months to align with the previous one.

Figure 6.2: NPM downloads over time

9
https://github.com/facebook/react/issues, visited on 12/04/2018

10
https://github.com/angular/angular/issues, visited on 12/04/2018

11
https://github.com/vuejs/vue/issues, visited on 12/04/2018

59

6 Comparison

React has undeniably the most downloads and this by far. While Angular and

Vue stay close to the 50,000 download mark, React manages to even surpass 200,000

downloads per day. The history proves that this is no snapshot but there has been a

consistent increase over the past twelve months. The other frameworks struggle with

their download numbers to reach relevant increases.

Stack Overflow This popular website among developers does a yearly study on

everything related to favourite technologies, work preferences and coding habits
12

.

The results of the study which is renewed every January are presented in the following.

In regard to this thesis, one interesting part of the study is the section about the most

popular technologies (see �gure 6.3) and within this section the ‘Most Loved, Dreaded,

and Wanted Frameworks, Libraries, and Tools’. Both contain valuable insights to the

frameworks discussed in the preceding chapters.

Figure 6.3: Most popular frameworks

Figure 6.3 shows which framework was most popular representing the general usage

amount. As can be seen, Angular was the most intensively used frontend framework

voted with 36.9% by the participating developers (excluding Node.js as it is a backend

framework). React places second with 9.1% behind. However, �gure 6.4 shows that

although Angular was widely implemented it does not have the top standing in the

community.

12
https://insights.stackover�ow.com/survey/2018

60

6 Comparison

Figure 6.4: Most loved frameworks

The �gure above represents the appreciation the developers had for the technologies

they used in the course of the year. It becomes obvious that the ranking of the �rst

graph has switched: While many developers appreciate using React (only second to

TensorFlow
13

which has gained a lot of traction in regard to the machine learning

‘hype’), they do not quite seem to enjoy Angular that much in relation to the high

market share. Figure 6.5 continues with this aspect as Angular is among the top four

most dreaded frameworks (�rst in terms of frontend) which means that developers

who already worked with it would not want to use it again.

Figure 6.5: Most dreaded frameworks

The last �gure 6.6 displays the opinions of developers in terms of which framework

they would like to use in future projects resulting in the �rst place for React as being

the most wanted. However, the interest in Angular is still present whereas not as

strong as in React.

13
https://www.tensor�ow.org/

61

6 Comparison

Figure 6.6: Most wanted frameworks

One thing that stands out regarding all these statistics is that Vue is completely

missing. This is because the rise discussed earlier in this chapter just happened in

2017 and is therefore not re�ected in the developer survey which covers the same year.

Assumably, Vue will show up in the next iteration as it is already in heavy use at, e.g.,

the three largest Chinese technology companies (i.e., Alibaba, Tencent and Baidu)
14

.

14
Based on answer at Quora (https://www.quora.com/How-popular-is-VueJS-in-the-industry-Will-

becoming-a-Vue-expert-be-useful-career-wise, visited 13/04/2018)

62

7 Conclusion

As this thesis presented extensive comparisons and statistic insights for the regarded

frameworks, this conclusive chapter will return to the question formulated at the end

of the introduction chapter: Does one of the frameworks stand out so that it can be

recommended for the majority of use cases in terms of web development?

The answer clearly is no. Decisions for and against a certain technology depend

heavily on the use case and other varying circumstances: Sizes of projects, worker

knowledge, previous experiences and terms like these a�ect this process. As especially

the last but also the three framework chapters have shown, Angular, React and Vue do

not stand far apart from each other. While the �rst two di�er mainly in their preferred

development language and �le separation philosophy, they have the similarity of a

large tech company sponsoring their development which ensures a certain level of

trust for the user base or those that plan on using them. Vue in this regard is the

complete opposite as it is developed with mainly the community interest in mind. Also

it took some of the best features from already existing frameworks and managed to

create something new that saw an enormous rise in popularity in 2017 and ongoing.

To summarise a few relevant use cases and their respective recommendations in

terms of framework choice, see the following collection:

• High TypeScript appreciation ⇒ Angular

• Emphasising guidance and structure across projects ⇒ Angular

• Coming from an object-orientated programming background ⇒ Angular

• High importance of �exibility ⇒ React or Vue

• Large scale of applications ⇒ All three

63

7 Conclusion

• Shallow initial learning process ⇒ Vue

• Emphasis on using the newest, most popular technologies ⇒ Vue

• Large ecosystem ⇒ React

• Separation of concerns in one �le ⇒ Vue

• Designers required to work with HTML code ⇒ Angular or Vue

• Strong focus on using JavaScript ⇒ React

Again, it can not be emphasised enough that the above collection only represents

recommendations and not strict rules. Deciding to adopt a new framework always

has to be an elaborate process as it probably determines the success of future projects.

However, in the JavaScript world where new frameworks are published on a regular

basis it may not be smart to wait too long with the adoption of a new technology as it

might be outdated by then. Although this, of course, depends largely on the size of a

company: Whereas smaller development teams can test and adopt a new framework

more quickly, larger companies need more time for the assessment as a wrong decision

might result in �nancial struggles in hindsight.

64

8 Outlook and Future Work

As of now, the three frameworks discussed in the course of this thesis seem to play

an important role for the frontend development. Of course, nobody can tell where

they are heading in the future or if another framework follows the example of Vue
and rises to the top. However, what can already be viewed is the evolution of the

JavaScript language and its superior speci�cation ECMAScript: As the consortium

plans on releasing a new major version every year, the �ow of interesting features

continues. So far, the newest among them is the ES2017 version which was released

in June 2017
1
. It contains new major features like async functions. However, while

this release is still very fresh, only few of the major browsers support the speci�cation

natively so far
2
. Future ES versions are often called ‘ES.Next’ which is a dynamic term

and a reference for the respective next major release of ECMAScript. It has also to be

noted that JavaScript is not the only implementation of the standard. Further examples

are V8
3
, ActionScript

4
and SpiderMonkey

5
.

In terms of the future of JavaScript frameworks, their general lifecycle can be an

indicator for how long they will be around. Stack Over�ow is a good measurement

tool to visualise this lifecycle as can be seen in �gure 8.1. Both of the following graphs

present the percentage of all questions asked on Stack Over�ow over time with the

framework tag, respectively.

1
https://www.ecma-international.org/ecma-262/8.0/index.html

2
http://kangax.github.io/compat-table/es2016plus/

3
https://developers.google.com/v8/

4
https://www.adobe.com/devnet/actionscript/learning.html

5
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

65

8 Outlook and Future Work

Figure 8.1: Stack Over�ow trends

For this comparison, there are three frameworks with Ember.js6
, Knockout.js7

and

Backbone.js8
that have almost completed their lifecycle. Vue is part of this graph to

show a framework that has just begun its lifecycle. For completeness purposes, �gure

8.2 visualises the current lifecycle standing for the most popular frameworks, Angular
and React.

Figure 8.2: Stack Over�ow trends

6
https://www.emberjs.com/

7
http://knockoutjs.com/

8
http://backbonejs.org/

66

8 Outlook and Future Work

Future and additional work on the whole topic of JavaScript frameworks can contain

the assessment of more relevant frameworks. Also, the analysis part of the chapters

can be deepened as a lot of the mentioned keywords were only touched on a �at level

to keep this thesis at a reasonable length. Aspects like further explanation of core

mechanics and speed comparisons are imaginable. However, the approach may vary

for a future work as the requirements for web applications and their development are

under constant change.

67

Bibliography

Allen, Ian. The Brutal Lifecycle of JavaScript Frameworks. Jan. 2018. url: https:
//stackoverflow.blog/2018/01/11/brutal- lifecycle-
javascript-frameworks/ (visited on 15/02/2018).

Angular 2/4 Named Router Outlet. url: https://www.concretepage.com/
angular- 2/angular- 2- 4- named- router- outlet- popup-
example (visited on 15/03/2018).

Angular 4 and 5-6-7 Release Dates & Features. Jan. 2017. url: http://www.new
sjox.com/angular-4-5-6-7-release-date-features/141/
(visited on 16/03/2018).

Angular binding types. url: https://angular.io/guide/architectur
e (visited on 13/03/2018).

Angular Presskit: Brand Names. url: https://angular.io/presskit#
brand-names (visited on 16/03/2018).

Angular Version 5 Release was Delayed. Sept. 2017. url: https://dormoshe.
io/articles/angular-version-5-release-was-delayed-21
(visited on 16/03/2018).

Boyer, Shayne. JavaScript - TypeScript: Making .NET Developers Comfortable with Java-
Script. Jan. 2013. url: https://msdn.microsoft.com/en-us/magaz
ine/jj883955.aspx (visited on 15/02/2018).

Browser usage in February 2018. url: https://www.w3counter.com/glob
alstats.php (visited on 21/03/2018).

68

https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/
https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/
https://stackoverflow.blog/2018/01/11/brutal-lifecycle-javascript-frameworks/
https://www.concretepage.com/angular-2/angular-2-4-named-router-outlet-popup-example
https://www.concretepage.com/angular-2/angular-2-4-named-router-outlet-popup-example
https://www.concretepage.com/angular-2/angular-2-4-named-router-outlet-popup-example
http://www.newsjox.com/angular-4-5-6-7-release-date-features/141/
http://www.newsjox.com/angular-4-5-6-7-release-date-features/141/
https://angular.io/guide/architecture
https://angular.io/guide/architecture
https://angular.io/presskit#brand-names
https://angular.io/presskit#brand-names
https://dormoshe.io/articles/angular-version-5-release-was-delayed-21
https://dormoshe.io/articles/angular-version-5-release-was-delayed-21
https://msdn.microsoft.com/en-us/magazine/jj883955.aspx
https://msdn.microsoft.com/en-us/magazine/jj883955.aspx
https://www.w3counter.com/globalstats.php
https://www.w3counter.com/globalstats.php

Bibliography

Carnecky, Tomas. Beware: React setState is asynchronous! Feb. 2016. url: https:
//medium.com/@wereHamster/beware-react-setstate-is-
asynchronous-ce87ef1a9cf3 (visited on 28/03/2018).

De�nition for software library. url: https://www.techopedia.com/defi
nition/3828/software-library (visited on 07/05/2018).

GitHub stars over time. url: http://www.timqian.com/star-histor
y/#vuejs/vue&facebook/react&angular/angular (visited on

12/04/2018).

Greene, Eric. Two-Way Data Binding: Angular 2 and React. Nov. 2016. url: https:
//www.accelebrate.com/blog/two-way-data-binding-angu
lar-2-and-react/ (visited on 12/04/2018).

Gudelli, Arunkumar. History Of AngularJS. Mar. 2017. url: http://www.angu
larjswiki.com/angularjs/history-of-angularjs/ (visited on

07/02/2018).

House, Cory. Angular 2 versus React: There Will Be Blood. Jan. 2016. url: https:
//medium.freecodecamp.org/angular- 2- versus- react-
there-will-be-blood-66595faafd51 (visited on 16/03/2018).

Hughes, Matthew. Facebook re-licenses React under MIT license after developer backlash.

2017. url: https://thenextweb.com/dd/2017/09/25/faceboo
k-re-licenses-react-mit-license-developer-backlash/
(visited on 29/03/2018).

Hunt, Pete. React: Rethinking best practices. 2013. url: https://www.youtube.
com/watch?v=x7cQ3mrcKaY (visited on 29/03/2018).

JavaScript ecosystem. url: https://hackernoon.com/how-it-feel
s-to-learn-javascript-in-2016-d3a717dd577f (visited on

27/03/2018).

69

https://medium.com/@wereHamster/beware-react-setstate-is-asynchronous-ce87ef1a9cf3
https://medium.com/@wereHamster/beware-react-setstate-is-asynchronous-ce87ef1a9cf3
https://medium.com/@wereHamster/beware-react-setstate-is-asynchronous-ce87ef1a9cf3
https://www.techopedia.com/definition/3828/software-library
https://www.techopedia.com/definition/3828/software-library
http://www.timqian.com/star-history/#vuejs/vue&facebook/react&angular/angular
http://www.timqian.com/star-history/#vuejs/vue&facebook/react&angular/angular
https://www.accelebrate.com/blog/two-way-data-binding-angular-2-and-react/
https://www.accelebrate.com/blog/two-way-data-binding-angular-2-and-react/
https://www.accelebrate.com/blog/two-way-data-binding-angular-2-and-react/
http://www.angularjswiki.com/angularjs/history-of-angularjs/
http://www.angularjswiki.com/angularjs/history-of-angularjs/
https://medium.freecodecamp.org/angular-2-versus-react-there-will-be-blood-66595faafd51
https://medium.freecodecamp.org/angular-2-versus-react-there-will-be-blood-66595faafd51
https://medium.freecodecamp.org/angular-2-versus-react-there-will-be-blood-66595faafd51
https://thenextweb.com/dd/2017/09/25/facebook-re-licenses-react-mit-license-developer-backlash/
https://thenextweb.com/dd/2017/09/25/facebook-re-licenses-react-mit-license-developer-backlash/
https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d3a717dd577f
https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d3a717dd577f

Bibliography

Johnson, Nicholas. How to do Everything in Angular 2 using vanilla ES5 or ES6. 2016.

url: http://nicholasjohnson.com/blog/how-to-do-everyth
ing-in-angular2-using-es6/ (visited on 16/03/2018).

Jorge. Angular 2 CLI moves from SystemJS to Webpack. Aug. 2016. url: https://re
act-etc.net/entry/angular-2-cli-moves-from-systemjs-
to-webpack (visited on 16/03/2018).

– Your license to use React.js can be revoked if you compete with Facebook. July 2016.

url: https://react-etc.net/entry/your-license-to-use-r
eact-js-can-be-revoked-if-you-compete-with-facebook
(visited on 29/03/2018).

Lifecycle Hooks. url: https://angular.io/guide/lifecycle-hooks
(visited on 13/03/2018).

Maida, Kim. How to Manage JavaScript Fatigue. Mar. 2017. url: https://auth0.
com/blog/how-to-manage-javascript-fatigue/ (visited on

15/02/2018).

Master/Detail Components. url: https://angular.io/tutorial/toh-
pt3 (visited on 07/03/2018).

Metnew, Vladimir. History of SPA frameworks: AngularJS 1.x and nostalgia. Apr. 2017.

url: https://medium.com/@vladimirmetnew/history-of-spa
-frameworks-angularjs-1-x-and-nostalgia-2e4a00df5ee2
(visited on 14/02/2018).

Most dreaded frameworks. url: https://insights.stackoverflow.c
om/survey/2018#technology-most- loved- dreaded- and-
wanted-frameworks-libraries-and-tools (visited on 17/04/2018).

Most loved frameworks. url: https://insights.stackoverflow.com/s
urvey/2018#technology-most-loved-dreaded-and-wanted-
frameworks-libraries-and-tools (visited on 17/04/2018).

70

http://nicholasjohnson.com/blog/how-to-do-everything-in-angular2-using-es6/
http://nicholasjohnson.com/blog/how-to-do-everything-in-angular2-using-es6/
https://react-etc.net/entry/angular-2-cli-moves-from-systemjs-to-webpack
https://react-etc.net/entry/angular-2-cli-moves-from-systemjs-to-webpack
https://react-etc.net/entry/angular-2-cli-moves-from-systemjs-to-webpack
https://react-etc.net/entry/your-license-to-use-react-js-can-be-revoked-if-you-compete-with-facebook
https://react-etc.net/entry/your-license-to-use-react-js-can-be-revoked-if-you-compete-with-facebook
https://angular.io/guide/lifecycle-hooks
https://auth0.com/blog/how-to-manage-javascript-fatigue/
https://auth0.com/blog/how-to-manage-javascript-fatigue/
https://angular.io/tutorial/toh-pt3
https://angular.io/tutorial/toh-pt3
https://medium.com/@vladimirmetnew/history-of-spa-frameworks-angularjs-1-x-and-nostalgia-2e4a00df5ee2
https://medium.com/@vladimirmetnew/history-of-spa-frameworks-angularjs-1-x-and-nostalgia-2e4a00df5ee2
https://insights.stackoverflow.com/survey/2018#technology-most-loved-dreaded-and-wanted-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018#technology-most-loved-dreaded-and-wanted-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018#technology-most-loved-dreaded-and-wanted-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018#technology-most-loved-dreaded-and-wanted-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018#technology-most-loved-dreaded-and-wanted-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018#technology-most-loved-dreaded-and-wanted-frameworks-libraries-and-tools

Bibliography

Most popular frameworks. url: https://insights.stackoverflow.c
om/survey/2018#technology-frameworks-libraries-and-
tools (visited on 17/04/2018).

Most popular technologies in 2018. url: https://insights.stackoverflo
w.com/survey/2018%5C#technology-programming-scriptin
g-and-markup-languages (visited on 27/03/2018).

Most wanted frameworks. url: https://insights.stackoverflow.c
om/survey/2018#technology-most- loved- dreaded- and-
wanted-frameworks-libraries-and-tools (visited on 17/04/2018).

Motroc, Gabriela. The rising star of JavaScript: Vue.js takes control of the game. Jan.

2018. url: https://jaxenter.com/vue-js-journey-to-big-
leagues-140489.html (visited on 10/04/2018).

Neuhaus, Jens. Angular vs. React vs. Vue: A 2017 comparison. Aug. 2017. url: https:
//medium.com/unicorn-supplies/angular-vs-react-vs-
vue-a-2017-comparison-c5c52d620176 (visited on 15/03/2018).

NPM downloads over time. url: http://www.npmtrends.com/react-vs-
vue-vs-@angular/core (visited on 12/04/2018).

npm trends. url: http://www.npmtrends.com/react-vs-vue-v
s-@angular/cli-vs-ember-cli-vs-polymer-cli (visited on

05/03/2018).

O�cial TypeScript Homepage. url: https://www.typescriptlang.org/
(visited on 15/02/2018).

Open-source licenses. url: http://whatis.techtarget.com/definiti
on/MIT-License-X11-license-or-MIT-X-license (visited on

05/03/2018).

Parent and children communicate via a service. url: https://angular.io/
guide/component-interaction#parent-and-children-comm
unicate-via-a-service (visited on 07/03/2018).

71

https://insights.stackoverflow.com/survey/2018#technology-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018#technology-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018#technology-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018%5C#technology-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2018%5C#technology-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2018%5C#technology-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2018#technology-most-loved-dreaded-and-wanted-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018#technology-most-loved-dreaded-and-wanted-frameworks-libraries-and-tools
https://insights.stackoverflow.com/survey/2018#technology-most-loved-dreaded-and-wanted-frameworks-libraries-and-tools
https://jaxenter.com/vue-js-journey-to-big-leagues-140489.html
https://jaxenter.com/vue-js-journey-to-big-leagues-140489.html
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
http://www.npmtrends.com/react-vs-vue-vs-@angular/core
http://www.npmtrends.com/react-vs-vue-vs-@angular/core
http://www.npmtrends.com/react-vs-vue-vs-@angular/cli-vs-ember-cli-vs-polymer-cli
http://www.npmtrends.com/react-vs-vue-vs-@angular/cli-vs-ember-cli-vs-polymer-cli
https://www.typescriptlang.org/
http://whatis.techtarget.com/definition/MIT-License-X11-license-or-MIT-X-license
http://whatis.techtarget.com/definition/MIT-License-X11-license-or-MIT-X-license
https://angular.io/guide/component-interaction#parent-and-children-communicate-via-a-service
https://angular.io/guide/component-interaction#parent-and-children-communicate-via-a-service
https://angular.io/guide/component-interaction#parent-and-children-communicate-via-a-service

Bibliography

Parent listens for child events. url: https://angular.io/guide/compone
nt-interaction#parent-listens-for-child-event (visited on

07/03/2018).

Peyrott, Sebastián. A Brief History of JavaScript. Jan. 2017. url: https://aut
h0.com/blog/a-brief-history-of-javascript/ (visited on

15/02/2018).

Riehle, Dirk. Framework Design: A Role Modeling Approach. ETH Zürich, Switzerland,

2000.

RouterOutlet. url: https://angular.io/tutorial/toh-pt5#add-
routeroutlet (visited on 13/03/2018).

Roy, Soumik. Progressive Web Apps: What they are and why you should care. Feb. 2018.

url: http://techwireasia.com/2018/02/progressive-web-
apps-care/ (visited on 11/04/2018).

Severance, Charles. JavaScript: Designing a Language in 10 Days. 2012. url: htt
ps : / / www . computer . org / csdl / mags / co / 2012 / 02 / mco
2012020007.pdf (visited on 15/02/2018).

Stack Over�ow trends. url: https://insights.stackoverflow.com/
trends?tags=ember.js%5C%2Cknockout.js%5C%2Cbackbone.
js%5C%2Cvue.js (visited on 17/04/2018).

Stack Over�ow trends. url: https://insights.stackoverflow.com/
trends?tags=angular%2Creactjs (visited on 17/04/2018).

The new AdWords UI uses Dart — we asked why. Mar. 2016. url: https://news.
dartlang.org/2016/03/the-new-adwords-ui-uses-dart-
we-asked.html?m=1 (visited on 16/03/2018).

Versioning and Releasing Angular. Oct. 2016. url: https://blog.angularjs.
org/2016/10/versioning-and-releasing-angular.html
(visited on 15/02/2018).

72

https://angular.io/guide/component-interaction#parent-listens-for-child-event
https://angular.io/guide/component-interaction#parent-listens-for-child-event
https://auth0.com/blog/a-brief-history-of-javascript/
https://auth0.com/blog/a-brief-history-of-javascript/
https://angular.io/tutorial/toh-pt5#add-routeroutlet
https://angular.io/tutorial/toh-pt5#add-routeroutlet
http://techwireasia.com/2018/02/progressive-web-apps-care/
http://techwireasia.com/2018/02/progressive-web-apps-care/
https://www.computer.org/csdl/mags/co/2012/02/mco2012020007.pdf
https://www.computer.org/csdl/mags/co/2012/02/mco2012020007.pdf
https://www.computer.org/csdl/mags/co/2012/02/mco2012020007.pdf
https://insights.stackoverflow.com/trends?tags=ember.js%5C%2Cknockout.js%5C%2Cbackbone.js%5C%2Cvue.js
https://insights.stackoverflow.com/trends?tags=ember.js%5C%2Cknockout.js%5C%2Cbackbone.js%5C%2Cvue.js
https://insights.stackoverflow.com/trends?tags=ember.js%5C%2Cknockout.js%5C%2Cbackbone.js%5C%2Cvue.js
https://insights.stackoverflow.com/trends?tags=angular%2Creactjs
https://insights.stackoverflow.com/trends?tags=angular%2Creactjs
https://news.dartlang.org/2016/03/the-new-adwords-ui-uses-dart-we-asked.html?m=1
https://news.dartlang.org/2016/03/the-new-adwords-ui-uses-dart-we-asked.html?m=1
https://news.dartlang.org/2016/03/the-new-adwords-ui-uses-dart-we-asked.html?m=1
https://blog.angularjs.org/2016/10/versioning-and-releasing-angular.html
https://blog.angularjs.org/2016/10/versioning-and-releasing-angular.html

Bibliography

Warcholinski, Matt. 10 Famous Apps Using ReactJS Nowadays. url: https://bra
inhub.eu/blog/10-famous-apps-using-reactjs-nowadays/
(visited on 28/03/2018).

Wisseman, Stan. Third-party libraries are one of themost insecure parts of an application.

Apr. 2016. url: https://techbeacon.com/third-party-librar
ies-are-one-most-insecure-parts-application (visited on

05/03/2018).

Zeigermann, Oliver and Nils Hartmann. Die praktische Einführung in React, React
Router und Redux. dpunkt.verlag, 2016.

73

https://brainhub.eu/blog/10-famous-apps-using-reactjs-nowadays/
https://brainhub.eu/blog/10-famous-apps-using-reactjs-nowadays/
https://techbeacon.com/third-party-libraries-are-one-most-insecure-parts-application
https://techbeacon.com/third-party-libraries-are-one-most-insecure-parts-application

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig ver-
fasst und nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 15. Mai 2018 Eric Wohlgethan

	List of Tables
	List of Figures
	List of Code Examples
	List of Abbreviations
	1 Introduction
	1.1 JavaScript Frameworks
	1.1.1 Definition
	1.1.2 Overview of Status Quo

	1.2 Aim of Thesis

	2 Framing the Comparison
	2.1 Identification Stage
	2.2 Criteria for Analysis
	2.2.1 Stability
	2.2.2 Learning Curve
	2.2.3 JavaScript Integration

	3 Angular
	3.1 Background Information
	3.2 Structure
	3.3 Analysis

	4 React
	4.1 Background Information
	4.2 Structure
	4.3 Analysis
	4.4 React 16

	5 Vue.js
	5.1 Background Information
	5.2 Structure
	5.3 Analysis

	6 Comparison
	6.1 Features and Technical Aspects
	6.2 Support and Accessability
	6.3 Community Statistics

	7 Conclusion
	8 Outlook and Future Work

