Hochschule fur Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Fakultdt Technik und Informatik Faculty of Engineering and Computer Science
Studiendepartment Informatik Department of Computer Science

Falco Winkler

Image Representation Learning with Generative Adversarial
Networks

Bachelorarbeit eingereicht im Rahmen der Bachelorpriifung

im Studiengang Bachelor of Science Angewandte Informatik
am Department Informatik

der Fakultdt Technik und Informatik

der Hochschule fiir Angewandte Wissenschaften Hamburg

Betreuender Priifer: Prof. Dr. Michael Neitzke
Zweitgutachter: Prof. Dr. Olaf Zukunft

Eingereicht am: 27. Juli 2018

Falco Winkler

Thema der Arbeit

Image Representation Learning with Generative Adversarial Networks

Stichworte
Maschinelles Lernen, Generierende Modelle, Bildverarbeitung, Neuronale Netze, Automatisie-

rung

Kurzzusammenfassung

Mit generierenden Machine Learning - Modellen ist es moglich, neue Daten aus einem Da-
tensatz zu gewinnen. Es gibt viele Anwendungen in der Bildverarbeitung, wie zum Beispiel
Auflésungserh6hung und Bildvervollstindigung. Aber auch in der Medizin oder in anderen
Machine Learning - Algorithmen finden sie Anwendung. Ein generative adversarial network
(GAN) wird trainiert, indem ein neuronales Netz, welches Daten aus einem zufilligen Rauschen
generiert, gegen einen Gegner ausgespielt wird. Dieser versucht dann, falsche von echten
Daten zu unterscheiden. Die Arbeit handelt von der Theorie der GAN’s und deren Anwendung
auf die Datensétze MNIST und CIFAR10 in sowohl uniiberwachter als auch halb-tiberwachter
Weise. Eine dem Stand der Technik entsprechende und vollautomatisierte Implementierung
wird verwendet um hochqualitative Bilder zu generieren.

Falco Winkler

Title of the paper

Image Representation Learning with Generative Adversarial Networks

Keywords

machine learning, generative models, image processing, neural networks, automation

Abstract

Generative machine learning models make it possible to derive new data from a dataset. There
are many applications in image processing, such as super-resolution and image completion.
But they also find application in engineering and in other machine learning algorithms. A
generative adversarial network (GAN) is trained by pitting a neural net that generates data
out of a noise input, against an adversary, that tries to discriminate between fake and real
data. This thesis is about the theory of GAN’s and their application on the datasets MNIST
and CIFAR10 in an unsupervised and semi-supervised fashion. A state of the art and fully

automated implementation is used to achieve high quality image generation.

Contents

1

2

3

Introduction

1.1 Deep Learning
1.2 Representation Learning
1.3 Unsupervised Learning

1.4 Objective

Generative Modelling

The theory of generative adversarial networks

3.1 Architecture
3.2 The adversarial process
3.3 Loss functions

33.1 CrossEntropy L
3.3.2 Minimax game
3.3.3 Heuristic, non-saturating game
3.4 Advanced techniques
3.4.1 Rectifier activation function L. Lo oL
3.4.2 Leaky rectifier activation function,
3.43 Adam Optimizer Algorithm
3.44 Transposed convolutional layer
3.4.5 Batch normalization,
3.4.6 Semi-Supervised GAN training
Experiments

4.1 Implementation
4.2 Testing strategy
4.3 Automatic Deployment

44 Monitoring and Results management

45 GPU Computing
4.6 Pre- and post-processing
4.7 MNIST dataset

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5

One Layer Architecture

Neuron Saturation . . .

Improved Architectures

Convolutional GAN’s . .

Developing a convolutional architecture for MNIST

iv

Contents

4.8

CIFAR10 dataset
4.8.1 Grayscale CIFAR images
4.8.2 Colored CIFAR images
4.8.3 Semi-Supervised GAN

5 Summary

5.1
5.2

Results . .
Conclusion

28]

Listings

4.1 At the heart of the implementation, the network is trained in very few lines of
code. . .o

vi

1 Introduction

Machine learning algorithms have seen most of their success in tasks that are easy for a human
to perform, but are hardly expressible in a formal language. The location of a face in a picture
for example, might be easily recognized by a human. For a machine this could only work with
exact arithmetic rules, which makes it a hard problem. Every face looks different and every
picture might have a different view angle, shadows, brightness, colors and so on. Early face
recognition algorithms [5]] used mostly manually extracted and coded features. As of today, it
is common knowledge that problems like this can be solved more efficiently by learning those
features on a set of training data.

Following the AI winter [[8] there was a lot of progress on artificially classifying data. On
many datasets, the classifier algorithms achieved human-level performance [23] [7]. The
interest in data-generating models has been simultaneously growing. In this thesis, a specific
algorithm for generation is examined.

Machine learning algorithms are categorized in a lot of ways. Generative neural networks
fall under the category of deep learning algorithms. They learn a representation of a dataset in

an unsupervised or semi-supervised fashion with the possibility to sample new data.

1.1 Deep Learning

Deep learning is an approach to artificial intelligence. It refers to algorithms that infer more
complex representations out of simpler ones, using a computational graph of many layers [[14}
p. 1-8].

An image classifier for example, will learn to recognize edges in the first layer. In the second
layer it can use the knowledge of how an edge in an image looks like and infer contours. In the
third layer it may be able to infer even more complex shapes using knowledge about common
contours and so on [35]. Feedforward neural networks are widely used for this purpose, and
have seen huge success in inferring knowledge about a dataset without human intervention
[28| chap. 6]. They are known to perform well on many classifying tasks. ImageNet, one of
the biggest challenge for classifier algorithms, has been mostly approached with deep neural
networks [23]].

1 Introduction

1.2 Representation Learning

To succeed in classifying huge datasets like ImageNet, the neural network has to somehow
learn how the visual world looks like. This is done using inference rules encoded in the millions
of its parameters. More specifically, the parameters in the network have to be adapted to some
sort of generalization or representation of the dataset [[14, p. 525]. This is process is called

representation learning.

1.3 Unsupervised Learning

Unsupervised learning is a term that refers to machine learning algorithms that do not require
additional annotation of the data that they learned from [14} chap. 5]. The GAN framework
in its basic form also falls under this category. Supervised learning, in contrast, mostly refers
to algorithms that learn a mapping from a data item to a hand-coded label. Neural network
classifiers, where the expected class of an image is manually added to the data item, are the
classic example for this. Some algorithms use both labeled data and unlabeled data. This is

called semi-supervised learning. A semi-supervised GAN framework is examined in

1.4 Objective

The main goal of this thesis is to train the classical GAN and its extended versions (Semi-
Supervised GAN, Deep Convolutional GAN) on the datasets MNIST [25] and CIFAR10 [21]
[22] and try to to maximize the visual image quality. Techniques that are used in GAN’s should
be carefully explored for their effect and understood. From the technical point of view, the
aim is to create a reusable, maintainable and testable implementation. Experiments and results

management should be automated as much as possible.

2 Generative Modelling

Generative models learn a training data distribution with the possibility to draw new, similar
data out of the learned distribution.

They are especially interesting for image processing tasks, such as sharpening, superresolu-
tion, image completion and generation of new images, sometimes based on a textual description
[13]. In medicine, they have been found useful to find new types of molecules that can be used
in drugs [19]]. There are also lots of use-cases in content-generation. For example, generative
models can save a lot of working hours by generating game content based on some training
data [31].

Generative Models can also be used as part of other machine learning algorithms. They
can help to improve the training of a neural network classifier when only a part of the data is
labeled

This thesis examines the generative adversarial network. Apart from that, a variety of
generative models with some similarities exist.

Autoencoders [[4] consist of an encoder function e and a decoder function d modelled by a
neural network. They are trained to approximate the identity function, so that d(e(z)) = z,
but with some constraints on the network. The number of hidden layers between input and
output layer (the output of e and the input of d) is set lower than the size of input and output.
Consequently, the encoder learns to map data to low dimensional representations while the
decoder learns to reconstruct data items out of the encoder output. In the classical autoencoder,
training is achieved using a gradient based method with the mean squared error [14] p. 693-
696] between real data and decoder output. Variational Autoencoders [[10] add a constraint
to the training process, which makes it possible to generate new images out of the learned
representations. Apart from minimizing the loss between real and decoded images, they also
minimize the KL-Divergence [14]] between the representation and a unit gaussian distribution.
In result, the distribution of the found representations will be close to a gaussian, and drawing
new vectors from the gaussian distribution allows to generate new images using the decoder.

PixelRNN and its variant PixelCNN are in the category of autoregressive models, that means

that their outputs depend on previous values [32]. Autoregressive Models are important for all

2 Generative Modelling

types of sequential generation. The look of a handwritten letter in a word for example, can
vary dependent on what was written before and a music note only sounds good if it aligns
well with the notes before it. An image can be seen as a pixel sequence from top to bottom,
left to right. In this way it makes sense to model each pixel value in terms of the previous
ones. To do that, Pixe]RNN and PixelCNN use various neural network architectures to model a
conditioned probability distribution on each pixel value. This probability is calculated as the

product of conditional probabilities of individual pixel values.

plx) = Hp(a:i|x1, ey i)
i=1
One approach is to use Recurrent Neural Networks [14, chap.10] to model this distribution.
Empirically this model was found to capture local features of the training data relatively well.
It also captured some global structure trained on large datasets, but most of the samples were
not really recognizable.

A downside of the recurrent network approach is that it is slow in generation and training.
The reason is that both training and generation are impossible to do in parallel. Each pixel
value calculation requires a forward pass in the network with all the previous pixels already
calculated. In the PixelCNN architecture [32] [33], a variant of the former, a convolutional
neural network is used to model the conditional distribution of each pixel. The probability
for each pixel will be calculated with a convolutional kernel on the image, and is thus not

dependent on every single previos pixel. This leaves some options for parallel calculation.

3 The theory of generative adversarial

networks

3.1 Architecture

Generative Adversarial Networks consist of two sub-networks. A generator G(z), and a
discriminator D(z). The generator has the purpose to generate fake data from a random noise
z. The discriminator distinguishes between real data from the training dataset and fake data
from the generator.

Specifically, GG takes random noise of arbitrary dimension as input and outputs a data element
while D takes a data element as input and outputs a scalar denoting the probability estimation
of the input being real. This estimation can then be used as a gradient signal for the generator.
[15]

random noise — Generator \

Figure 3.1: A high level overview of Generative Adversarial Networks.

Probability of input

Discriminator —» being real

Real Dataset

3.2 The adversarial process

An analogy to the generative adversarial learning process is the fight of a money counterfeiter
(generator) with a police officer (discriminator). The counterfeiter wants to produce real
looking money, while the police officer wants to be able to tell real money and fake money

apart. Both are locked in a battle and will develop techniques to better produce or identify

3 The theory of generative adversarial networks

fake money. At some point, the counterfeiter will produce perfect looking samples, which the
police officer cannot tell apart from the real money. Neither police officer nor counterfeiter
can improve their strategy [[15]].

In order to simultaneously train the discriminator and generator network, they are alternately
trained using a gradient based update rule. During each training step on either D or G, a batch
of samples (from the real dataset or from the generator) is used to calculate the loss and the
gradient for the corresponding network. The parameters of the network are then updated
using the gradient. Training the discriminator can be repeated & - times, but & = 1 is the only
value used in this paper.

The two training steps repeated in a loop are defined as follows.

Update D by ascending its stochastic gradient

Vo > log D(w:) +log(1 — D(G(=1)
i=1

Update G by descending its stochastic gradient
1 n
Vo,- 3 log(1 - D(G(=1)))
i=1

where x; is a real sample and z; is a noise distribution from the minibatch [15]].

3.3 Loss functions

Mathematically, the GAN framework aims to reduce some distance measure of two probability
distributions, the real data distribution and the distribution estimated by . The cross-entropy
function is commonly used to define this distance in neural networks [28]], and it is the only
distance measure used in this paper. However, most of the extensions to the classical GAN

framework are attempts to define a better distance measure (or loss function) [[6] [3].

3.3.1 Cross Entropy

In the classical GAN framework, the discriminator and generator loss are defined using the cross-
entropy. There are however some different variations and notations that require explanation.
As shown in the following, the cross entropy is equivalent to the loss seen in the training
algorithm. The cross entropy between to discrete probability distributions P and () is defined

as

H(P,Q) = - Z P(i)log(Q(i)) (3.1)

3 The theory of generative adversarial networks

The sum is over all classes for which P and () are defined, in case of the discriminator these
are 'real’ and 'fake’. P denotes a ’true’ and () an empirical distribution.

As stated earlier, D outputs a scalar ¢/, the probability of the input being real. Conclusively,
the probability of the input being fake is 1 — 3//. For a datapoint x, D can be modeled as
a probability distribution () where D(z) = Q(real) = y' and Q(fake) =1 -9y =1 —
Q(real) = 1 — D(x). Likewise, the expected perfect output of D can be modelled as a
distribution P where P(real) = y and P(fake) = 1 — y. Here y denotes the assigned label,
hence it will be either 1 or 0.

Applying 3.1|for a single datapoint x yields

H(P,Q) = —(P(real)log(Q(real)) + P(fake)log(Q(fake)) =
—ylog(y’) — (1 — y)log(1 —y')
= —ylog(D(z)) — (1 — y)log(1 — D(x))

Averaging over the entire batch of size n, this becomes
1 n
- > —ilog(D(2:)) — (1 — ;) log(1 — D(x,))) = (32)
i=1

3 wilog(D() + (1 - yi)log(1 — (1))
=1

Here it can be seen that this is equivalent to the loss in the training algorithm. If the sample is
from the real data distribution, the second term will be 0. So the first x; is always sampled from
Pjatq- If the sample is from the generator, the first term is 0, so the second z;’s can be only from
the generators distribution. This is G(z;) where z is sampled from an random noise, usually
the random uniform distribution. Applying this to the sum yields the equation from chapter 1,

only that it is now a loss function, hence the sign is flipped and it needs to be minimized:

" log D(ai) +log(1 — D(G(=:))) (5.3)
=1

There is another notation for the discriminator loss which is not obvious to be equivalent to

the cross-entropy.

_%Emm [1og ()] - %Ez [1og(1 — D(G(2)))] (3.4)

3 The theory of generative adversarial networks

(3] [15]
This is just the cross entropy cost in the notation of a probabilistic expectation. To understand

this notation, one can rewrite [3.2| as follows.

n

1o 1
—— log(D(z;))) — — 1 —y;)log(l — D(G(2;
2 D uogD()) = 1 331~ i)log1 = DG (2)
The term y; will be 1 for the real data samples and O for the generator samples, vice versa for

(1 — y;). Therefore, they will in average be % Data samples from the real data and generator
distribution will be drawn uniformly, which means that each data sample will be drawn with
the same probability. Hence the expectations of log(D(z)) and (1 — log(D(G(z)))) will be
just the average function value, and the sums can be replaced with expectations, resulting in
the notation of formula[3.4

3.3.2 Minimax game

One way to specify the generator loss ¢ is to view GAN training as a minimax game [15]].
mingmazpV (D, G) = Egepyor. [1og D(w)} ~E, [1og(1 — D(G(2)))

The factors of % found in are omitted here, as they just scale down the value function.
Defining the GAN training as minimax game means setting up the networks with opposite

objectives. Conclusively £g can be specified as the negative discriminator loss /p.
leg=—Ilp

Using this loss, the generator will effectively minimize log(1 — D(G(%;))), as G is not present

in the first expectation.

3.3.3 Heuristic, non-saturating game

In practice, it has some advantages to let G maximize the loss log(D(G(z))) instead of mini-
mizing log(1 — D(G(z;))). The reason being that log(D(G(2))) has a high derivative near
x = 0 and therefore gives a strong gradient signal when the discriminator thinks that the
given sample is fake. As a result, the early learning process will be more stable and efficient.
Mathematically, this means that the opposite objective is used to construct the cross-entropy

cost. The generator GG will maximize the likelihood of D being wrong instead of minimizing

3 The theory of generative adversarial networks

the likelihood of D being right. This changes nothing about the learning process because the

goal of making D fail stays the same [15]].

Generator Loss Functions

generator loss
[=]
i

Hog(D(x))
log(1-D(x))

T T
0.0 0.2 0.4 0.6 0.8
discriminator output

Figure 3.2: Using —log(D(G(z))) for the generator loss has the advantage of strong gradients

in early learning

3.4 Advanced techniques

This section describes techniques that are used in the experiments to the extent in which they

are relevant. The practical impact of using these techniques will be understandable from the

experiment results.

3.4.1 Rectifier activation function

The rectifier activation function addresses the problem of neuron saturation. It is defined as

f(z) = max(0, x)

1.0

3 The theory of generative adversarial networks

This function is linear in the positive region and constant for negative inputs. In comparison
to the logistic sigmoid, it is easier to compute and cannot saturate in the positive region. A

neuron activated by this function is also called rectified linear unit, in short form 'ReLU’.

3.4.2 Leaky rectifier activation function

Rectified linear units still face the saturation problem in negative regions. The leaky rectifier

activation function solves this. It is defined as
f(x) = max(e- z,x)

The multiplication of x with a small factor (for instance € = 0.01) results in a non-zero gradient

for negative inputs, avoiding the neuron saturation in the region below 0.

3.4.3 Adam Optimizer Algorithm

ADAM is an optimization algorithm that can be used instead of the stochastic gradient method.
The main difference is that ADAM optimizes a learning rate for every single weight parameter
in the network and that these learning rates can adapt over time. An intuitive explanation for
why this speeds up learning is to imagine the optimization goal of a weight parameter as a
landscape. The goal is then to find the lowest spot in the landscape, though it might be that the
landscape is a huge flat desert and the optimum lies in a rather complex part of the landscape
with rocks and mountains. In order to get to the minimum, the classical stochastic gradient
decent algorithm would take a lot of same-sized steps through the desert and then find the
optimum. With ADAM, the step size through the desert can be picked large, so that it will
arrive at the more complex gradient landscape quicker, where it can pick a smaller step size to
find the optimum [9].

In the experiments, the stochastic gradient optimizer performed poorly and sometimes failed
to converge. The ADAM optimizer is a good replacement and improves convergence speed

and training stability, especially for very high dimensional problems.

3.4.4 Transposed convolutional layer

Convolution is a well known technique for classifying neural networks. But in a GAN, the
generator has to learn a transformation from a noise that goes in the opposite direction of a
classical convolutional layer. Transposed convolutional layers do exactly that. For example,

a 3 X 3 convolution over a 4 x 4 input has an output of dimension 2 x 2. The equivalent

10

3 The theory of generative adversarial networks

transposed convolution takes a 2 x 2 input, adds a padding of size 2 to the borders and computes
a 3 x 3 convolution, resulting in a 4 x 4 output.

A convolution can be expressed as a matrix operation with the matrix C. Forward and
backward passes in the network can then be computing by multiplying with C and C7. A
transposed convolution is then the same operation as the normal convolution, except that
the multiplication is done with C” in the forward pass and C' in the backward pass [11].

Transposed convolutional layer are used in deep convolutional GAN’s [2].

3.4.5 Batch normalization

Batch normalization layers can be added between neuron layers to aid gradient flow, neuron
saturation problems and generalization. To understand batch normalization, it is helpful to
look at some methods that speed up the learning process by transforming the input in a non-
destructive way. Consider a neural network classifier that has been trained to recognize simple
RGB images, where the images have been de-colorized (meaning that the classifier works with
black-and-white images in RGB format). If this classifier is exposed to the same images it has
successfully been trained on, just with color, it will fail to classify these images correctly. The
reason is that the input data distribution (or the statistics of the data) has changed dramatically,
commonly referred to as covariance shift [18].

Making the classifier work again could be done by performing a normalization operation on
the input (in this case a de-colorization). This works, since after the normalization operation
the training data and test data distributions are close again and the network can better deal
with the input. Common and long known optimizations to the network input have the same
goal of reducing the shift between the training data and test data distribution. For example,
transforming images to have zero mean and a variance of 1 has been found to improve both
training speed and generalisation of the learned model.

With this in mind, consider for example a hidden layer of a deep and (for simplicity) fully-

connected neural network. The activation of a neuron in this layer is calculated as
o=o(w-x+0b)

with o the activation function, x the activations of the previous layer, w the learned weight
matrix and b the bias [28]]. During the optimization of the weights of previous layers, the
statistics of « change constantly, which is referred to as internal covariance shift. This can slow
down learning or even make it impossible, just as different training and test data distributions

on a classifier. The idea behind batch normalization is to remedy internal covariance shift by

11

3 The theory of generative adversarial networks

normalizing x. Specifically, the activations of a hidden layer are normalized to have the mean

of zero and the variance of 1 using the formula

, T—u

x:
VU + €

where x are the activations, v is the mean and v is the variance. The epsilon term is added for

numerical stability in computation.

Simply forcing the activations to change would lead to problems, as this change affects all
layers behind the batch-normalized one. This would deform features that the network has just
learned to represent. That is why for each activation 2F that is normalized, two additional
parameters v*, 3¥ are introduced that are also learned by the network. These parameters are

then used to scale and shift the normalized activation:
k k_k k
y =yt +p

This gives the network the ability to mitigate the effects of the normalization. It may even
change the batch normalization to an identity transformation by learning v* = /v + € and
B = —u. Informally, this implies that the network can discard any effects of the layer if it is
interfering with the learning process.

Batch normalization layers are adopted largely and are especially useful in deep neural
network with many layers. They improve the gradient flow during backpropagation and keep
neurons from saturating. In the experiments for GAN training with convolutional architecture,

they were necessary for a stable training success.

3.4.6 Semi-Supervised GAN training

Classifier networks usually output a class probability distribution for an input data item. The
discriminator in the described GAN framework does the same, just with one class. To make
use of labels that distinguish between K classes in the input data, this can be extended to

K + 1 classes, one of which being a newly introduced class named ’generated’.

12

3 The theory of generative adversarial networks

class probability
'

cat

random noise [—» Generator
\ dog real classes

Discriminator —»— car

class for data

generaled | coming from the Generator

Labeled Dataset

Figure 3.3: The discriminator from the classical GAN framework is extended to classify the

real classes and a "generated” class.

The ideal discriminator changes accordingly. When presented a real image, the ideal dis-
criminator should output 1 for the correct class label and 0 for every other class including the
‘generated’ class. When presented a fake image from the generator, it should should output 1
for the ’generated’ class. The generator now has the goal to get the assigned probability for
the "generated’ class as low as possible for it’s outputs.

In comparison to the original GAN framework, the loss function changes in terms of which
distance measures are minimized. The generator minimizes the distance between the discrimi-
nators output on label K + 1 for generated pictures and the one-hot label for the ’generated’
class. Also a supervised loss term is added to the discriminator.

The supervised loss, similar to a classifier network, is the distance between the one-hot
labels for the real class and the output without the additional class. This loss is only calculated
on real images with disregard of the extended ’generated’ class.

If the goal is to train a classifier, this method can improve the generalization of the learned
model [16]. It is also useful to learn from very small datasets. Experiments with the MNIST
dataset restricted to a very small amount of training images have shown an improvement of
about 5% in classification compared to a normal classifier [29]. In the case of a partially labelled
dataset, this method makes it possible to train classifiers even if just a small percentage of
the training data is annotated. Consequently, the loss has to be extended to unlabeled data.
The goal for the unlabeled images is to assign a low probability in the ’generated’ label [20]].
For generative models, this method appears to improve image quality and training stability.
The reason for the quality improvement is not yet fully understood [16]. It could be explained
with the fact that a classifier takes features of the whole image in consideration. Only if all
the identified features together form an object, the classifier will assign a high probability to

that class. In the original GAN framework there is no restrictions on this, which causes the

13

3 The theory of generative adversarial networks

generator to learn local features well, but sometimes they don’t harmonize with the rest of the

image to form a whole object [16].
The classification accuracy can act as a measure of training success but only for the discrim-
inator itself. As described previously, a strong discriminator can outperform the generator

which would cause the network to produce no reasonable images.

14

1

4 Experiments

In this chapter, multiple GAN architectures will be applied to the problem of generating images
out of the MNIST and CIFAR-10 Datasets.

4.1 Implementation

The implementation of the GAN framework follows the object oriented paradigm. It also
adheres to the commonly known principle of dependency inversion. That means that every
responsibility in the training and sampling process is extracted into a class. Objects of those
classes are then passed as a dependency to constructors of other classes that need their
functionality. This approach aligns well with the single responsibility principle [27] and
vastly improves readability due to the separation of different abstraction layers. To build the
computation graph, the machine learning framework tensorflow [1]] is used.
def build_graph(self):

X, labels = self.input_queue

d_logit_real = self.D.inference(self.preprocessing(x))

d_logit_fake = self.D.inference(self.G.inference(self.z))

self.d_loss, self.g loss =

self.loss_functions(d_logit_real, d_logit_fake)

self.d_solver, self.g solver = self.optimizers

self.d_solver.minimize_operation(self.d_loss)

self.g _solver.minimize_operation(self.g_loss)

def train(self):
for it in range(self.training iterations):
self.g solver.minimize()
for _ in range(self.k):
self.d_solver.minimize()
Listing 4.1: At the heart of the implementation, the network is trained in very few lines of

code.

15

4 Experiments

4.2 Testing strategy

Another advantage of the object oriented approach is that each component is easier to test as a
small object rather than a long script. Tests for the GAN algorithm for example, can be written
without the use of any library. Owing to the fact that executing the algorithm is completely
decoupled from dependencies to the machine learning framework and other functions such
as logging and image saving, dependencies that are unimportant in the current test can be
exchanged with mock objects. These mock objects can then make assertions, or count method
calls without actually training a full network, or writing images to disk.

The implementation contains mainly numeric computations. While the numeric correctness
of computations done by tensorflow [1]] is already under unit-test, it has proven useful to test
the correctness of chained computations such as the loss function. As it would not be feasible
to check for every possible function input, most of the tests are boundary value analysis tests.
This is a well-known testing strategy in the field and arises from the observation that functions
often behave incorrectly with inputs at the bounds of their input space, or inputs around zero.
For instance, it makes sense to write a test for the case that the discriminator loss is very
high. In the case of two classes, the discriminator outputs a vector containing (in order) the
probability of these classes and the fake probability. If the discriminator’s output is (0, 0, 10)
for real and (0, 10, 0) for fake data, the error should be very high. In fact, it should be close
to 20, as one can easily derive. The semi-supervised loss function for the discriminator is the
cross-entropy function applied on the softmax of discriminator logits and labels. Given the
softmax function softmax(z); = % and the cross-entropy [3.1| the output for the label
(0,1,0) is

H((0,1,0), softmaxz((0,0,10))) =

e0 60 610
H((07170)7(2+61072+610’ 2+€10)
0
e
—1 [
09(2+610)

—(0 —1log(2 + €'0)) ~ log(e'?) = 10.

This is the same for both real and fake data and as the error is the sum of real and fake data
loss, the test can check the result against 20 with a small tolerance value.

The need for unit testing is generally recognized, but especially in GAN’s, tests like these
are of very high importance, as even small numeric errors can have a devastating effect and

can be very hard to find.

16

4 Experiments

4.3 Automatic Deployment

The setup for the GAN framework utilizes a variety of tools to automate the deployment
and execution of the written algorithms. All code is under version control and is kept in
synchronization with an online repository. Each time new code is published to this repository,
scripts are automatically executed to perform the following tasks. In the first stage of the
continuous integration, all written unit tests are executed. If the tests fail, all following stages
will not be run. If they pass, the application is packaged in a container together with necessary
dependencies. The container will be published to a registry, which provides easy access and
allows for execution on demand. In the last step, the contained application is deployed to a
worker node in a computation cluster. The nodes in the cluster that allow for GPU computing
are preferred, as they allow for a much faster execution of the algorithm [4.5 After the training
algorithm reaches the maximum amount of training iterations, the process is shut down

automatically. Multiple instances of the GAN framework can run in parallel.

. Create Application Deploy to Container Start Container in Run lests
Container Reqgistry Compute Cluter
Write results to
@ eg{E}(SCUl& AIgc'nmm)_’(persislem smrage)

no

®

Figure 4.1: Every experiment is fully automated.

4.4 Monitoring and Results management

While the deployment and execution is fully automated, it has proven useful to create a central
service to which all GAN framework applications can upload their results. Similar to the the
GAN framework, this service is an application that is deployed automatically to the same
computation cloud as a container. This service provides a REST Interface [12] to the GAN
trainer. Every time the trainer generates a new image or new summary data, it publishes it
to the service. The data is then persisted in separate folders for each training process, along
with a configuration file that keeps track of the job and its progress. Along with this data,
the GAN trainer also publishes the commit hash which can be used to review the exact code
changes that triggered the automatic deployment. To persist an exact mapping of code and

algorithm output was crucial for keeping an overview after many experiments have been run.

17

4 Experiments

The monitoring service also exposes a website that shows training processes in overview, as

well as an image results and training data overview for each job.

User ‘gan-monitoring ‘gan-trainer

|
|
0 train()
register{job_id, timestamp)

persist_image()

Fy

upload_image(job_id, image)

F Yy

update_status("running”, percent: 50)

save_summary()
upload summary(job_id, summary_file)

update_statusg("succeeded”, percent: 100)

F Y

overview()

jobiList

-1

Figure 4.2: The GAN framework uploads results and status messages automatically

4.5 GPU Computing

Graphic Processing Units (GPU’s) can run machine learning algorithms quicker than CPU’s.
That is because they are optimized for graphics computation, in which it is necessary to execute
a high number of operations on vectors, matrices and tensors. They are also optimized for
parallel computation. Most machine learning algorithms do the same and with GPU driver,

one can make use of the optimized computation.

4.6 Pre- and post-processing

Image data for all experiments are the floating point format, meaning the RGB or brightness
values are in the interval [0, 1]. These values have to be scaled to the range of tanh, the output
activation of G. Therefore each image value i is pre-processed with 2i — 1 and post-processed

with (7 + 1) /2. No other pre-processing is applied to the images.

18

4 Experiments

4.7 MNIST dataset

4.7.1 One Layer Architecture

To find out what would be a minimal setup for a successful image generation and to examine
some failure modes of the GAN framework, this first experiment uses a similar network
architecture to the one that seems to be the minimum to accomplish a reasonable error rate on
MNIST. A description of a very simple MNIST classifier network accomplishing a 6% error rate
can be found in [28]]. This architecture was copied for the discriminator and just inverted for

the generator. Precisely, the test setup is as follows:

Generator

96-dimensional input

fully connected layer of size 30, sigmoid activation

fully connected layer of size 28 x 28, tanh activation

Discriminator

28 x 28-dimensional Input

fully connected layer of size 30, sigmoid activation

fully connected layer of size 1, linear activation

Stochastic gradient decent with a heuristically chosen learning rate of 0.3 and a batch size of
128 is used. From iteration 40.000 the loss values stagnate and learning freezes. Some generated
images are shown in

Generated images clearly represent handwritten digits but the generator outputs just items
of one class. This class changes during learning, although at each parameter setting the outputs
look almost equal for various noise distribution inputs. In the first training run, the generator
first learned to output images of twos, and then switched to outputting zeros. In a second run,
the generator learned to output first zeros, then switched two nines and back to zeros again.
On repeatedly training the model, the same behaviour occurs, but with different numbers,
where interestingly the number zero occurs very often. This problem is commonly known
as mode collapse. In this failure mode, the GAN learns a parameter setting that maps every
noise distribution to the same output. This usually occurs rarely and is triggered seemingly
randomly. In this case however, the GAN collapses in every training attempt. This can be
explained as follows.

The discriminator learns to output high values for samples close to the dataset. For one of

the classes, the discriminator will learn fast that it is real. Usually this will be the case for a

19

4 Experiments

2212|12
22(2[2

22(2[2
212/2(2

Figure 4.3: Image output at training iteration 6.000 and 18.000

class that is easily distinguishable from the others. This indicates that when presented a real
image of that class, the discriminator does especially well and outputs a high probability of the
input being real. The generator model lacks of expressive power to represent all 10 classes and
learns that it can fool the discriminator by outputting exactly that class. This results in the
generator learning to map every noise input to this class. After mode collapse occurred, the
discriminator will learn that it has been fooled and it cannot be sure if an image of the collapsed
class is real or not. Precisely, D(x) for x resembling the collapsed class, will descend to 0.5.
This increases the generator loss. In consequence, the generator will switch to outputting
images of another class for which D outputs a high value. D will then learn again that it is
fooled and the cycle will start over. Without countermeasures, this behavior will continue
forever. The stochastic gradient descent optimizer can just minimize the loss of G but it will
be unable to introduce more entropy and to separate the identical outputs [16].

Interestingly the quality of the outputs of the collapsed network are good and visually even
better that samples generated with a fully connected architecture that does not collapse and
shows all 10 classes. As the generator just focuses on learning to generate one class, it can
use all its variables for just one representation. AdaGAN’s exploit this behavior by training
multiple GAN with a priority on the modes that are missing in each iteration, and adding them

together to a mixture model [[17]).

20

4 Experiments

4.7.2 Neuron Saturation

In about half of the training runs, it can be observed that only one number is learned. During
every training run, learning freezes completely at a high number of iterations. Inspecting the

outputs of the discriminators hidden layer during the freeze shows the problem cause.

01/18 6:17:24 PM
01/18 6:17:24 PM
01/18 6:17:24 PM
01/18 6:17:24 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM

01/18 6:17:25 PM

01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM
01/18 6:17:25 PM

Figure 4.4: The two graphs show the distributions of outputs of the discriminators fully con-
nected layer before applying the sigmoid activation function. The distributions are
shown over time (back to front), from the beginning to iteration 1500 (left) and from
iteration 13.500 to 15.000 (right). The logits in the discriminator tend very early
towards the saturated domain of the sigmoid. In later iterations, logits of both the

discriminator and generator tend towards high values spread between -75 and 35.

For extremely positive or negative values, the derivative of the sigmoid converges to zero.

As a result, the weights in the discriminator will hardly change, as the gradient during back-

21

4 Experiments

propagation is too small. This also causes the generator to receive a small gradient signal (the

loss function includes the discriminator) with the effect that learning freezes completely.

4.7.3 Improved Architectures

The described problem is well known as neuron saturation and can be addressed by using
batch normalization[3.4.5 or a different activation function that does not saturate such as ReLU
or leaky ReLU

In the next experiment, the activation functions are replaced first by ReLU and then by
leaky ReLU with a leak parameter of 0.01. This makes a change in the learning rate required,
empirically 0.1 is a good fit.

This change is already enough to remedy mode collapse and neuron saturation. The outputs
get much more diverse, and even at iterations beyond 40.000 the training does not stop. The
error rates of both discriminator and generator are steady, in other words the training process
is balanced. This serves as an example how crucial the activation function can be for training

success.

Figure 4.5: Results with the minimal fully connected architecture after replacing sigmoid
activations with ReLU. (Iterations 4000 and 15800)

Due to less saturated neurons in the model, both generator and discriminator can make full
use of their representative power, which explains the avoidance of mode collapse.
On the other hand the results present a lack of representative power in the networks,

especially in the generator.

22

4 Experiments

Restructuring D and G to use more parameters results in another problem: training with a
high amount of parameters is not stable anymore and yields unrecognizable results. By the
error rates it can be observed that the discriminator is outperforming the generator by a big
margin.

The stochastic gradient decent method is the main cause for that. Compared to newer
optimization techniques it is quite slow [9] and therefore it is hard for the networks to find
equilibrium. Introducing an Adam Optimizer [9] instead with a learning rate of 172, 31 = 0.5,
B2 = 0.999 and € = 1~% a vast improvement of learning speed can be observed. Empirically,
two dense layers (with 256 units in the discriminator and 1024 units in the generator) work
well for a fully-connected architecture. Giving the discriminator more hidden units throws the
training process out of balance. Interestingly, this requires more parameters than the classifier
network needed, in order to achieve a reasonable error rate of 6%. Apparently, much less
knowledge is required to keep image classes apart than to represent human-readable numbers.
With this architecture, the results become human-recognizable after 3000 iterations.

The GAN architecture, which uses a very minimal number of neurons, performs poorly. It
suffers from mode collapse, neuron saturation and slow learning, and results in low sample
quality. By adding another hidden layer with more nodes, applying the ADAM optimizer and

introducing the ReLU activation to the network, these problems have been solved.

Figure 4.6: Results with the fully connected architecture at iteration 2000 and 3000.

4.7.4 Convolutional GAN’s

Training with the previously described architecture is stable and yields human-recognizable

samples. However, the samples show two flaws: the numbers appear deformed and not in a

23

4 Experiments

shape as a human would write them, and there are small white spots around the numbers.
The structure of the networks, which are all fully connected, makes it hard to learn spatial
structure, and causes the problem mentioned above.

The performance of classifying neural networks on image datasets can be drastically im-
proved using convolutional layers. Using this technique on the MNIST dataset, over 99 %
classification accuracy has been achieved [26]. On the CIFAR10 Dataset, a convolutional
network produces a state of the art performance of 95.56 % accuracy [30]].

The benefits of using convolution on datasets with spatial structure can also be exploited in
GAN architectures. For architectures of this kind, some guidelines have been proven to work

well [2].
« Use ReLU’s in the generator, leaky ReLU’s in the discriminator.

« Use batch-normalization in every layer except the generator output and discriminator

input layer.

« Use convolutional layers in the discriminator and transposed convolutional layer in the

generator.

« Do not use pooling layers, to minimize parameters, instead use strided (transposed)

convolutional layers.

« Use dense layers only to connect to discriminators output and generators input.

The next experiments are attempts to bring these guidelines into practice and infer a good
architecture for MNIST with them.

4.7.5 Developing a convolutional architecture for MNIST

The guidelines help on deciding, which kind of layers and activations should be used. They
do not however answer the question of how many layers, of what size are performing well.
The best network structure varies for each dataset, and can only be empirically constructed,
following some guidelines. A basis for empirical research can be an architecture that performs
well on classifying the dataset. For MNIST, a simple convolutional architecture reaches 99.6 %

classification accuracy [28].

24

4 Experiments

20 5 x 5 convolutions, stride 1

2 X 2 max-pooling, stride 1, ReLU activation

40 5 x 5 convolutions, stride 1

2 X 2 max-pooling, stide 1, ReLU activation

fully connected layer of size 1000, 0.5 % dropout, ReLU activation

fully connected layer of size 1000, 0.5 % dropout, ReLU activation

softmax layer, 0.5 % dropout

Strictly applying the previously stated guidelines, the following discriminator architecture can

be inferred.

20 5 x 5 convolutions, stride 1

20 2 x 2 convolutions, stride 1, leaky ReLU activation, batch normalization

40 5 x 5 convolutions, stride 1, batch normalization

40 2 x 2 convolutions, stride 1, leaky ReLU activation, batch normalization

fully connected layer, size 1, 0.5% dropout

Finding a good architecture for the generator can require a bit more research. As a guideline,
G should have the same number of layers in roughly the same structure. A good starting
point is to just mirror the discriminator architecture. Instead of downsampling an image to
a probability, the generator will upsample images from a noise distribution, therefore using
transposed convolutional layers in place of convolutional layers. The inferred discriminator
architecture transforms the input to 40 7 x 7 layers. In order to mirror that, the inputs will be
connected fully to a layer with 7 x 7 x 40 neurons and upsampled with the same strides and

kernel sizes as in the discriminator. Specifically, the mirrored architecture for the generator is:

fully connected layer of size 7 x 7 x 40, ReLU activation, batch normalization, 0.5 % dropout

40 5 x 5 transposed convolutions, stride 1, ReLU activation, batch normalization

40 2 x 2 transposed convolutions, stride 2, ReLU activation, batch normalization

20 5 x 5 transposed convolutions, stride 1, ReLU activation

one 2 x 2 transposed convolution, stride 2, tanh activation

Using the described setup, the following results are obtained.

25

4 Experiments

4004

Figure 4.7: Results with the convolutional architecture at iteration 2000 and 3000

7Y 07

It can be observed that the generated samples show sharp lines and little noise. Some
of the samples clearly resemble a handwritten number, but most of the samples are hardly
recognizable by a human. The cause for this behaviour has to be found heuristically and
empirically. For GAN’s, this process can be very experimental. The two loss functions used are
dependent on the performance of the other network, therefore they are just a rough measure
of training success. An unusual behavior observed is that the generator loss alternates quickly
between high and low values. This suggests that the generator has problems fitting the dataset.
Training is stable and converges, so it is unlikely that hyperparameters need to be adapted.

Contrary to the guidelines, adding a dense layer of size 1024 right after the noise input to
the generator seems to aid the training stability. However, the poor visual quality remains.

Another point to improve seems to be the number of convolutional layers. Common convo-
lutional architectures for MNIST seldom use more than three convolutional layers. Therefore,
the convolution is simplified into two transposed convolutions with stride two and kernel size
4 x 4, with the filter count of 64 and 1 in the output layer. Consequently, the jitter of both
loss functions vanishes and most of the samples are readable, but still worth improving. The
architectural change causes the discriminator error rate to increase, which shows that the
generator now performs much better after the simplification has been made.

Increasing the filter amount from 20 and 40 in the first and to 32 and 64 in the second
convolutional layer, lowers the discriminators error value. Combined with an additional dense

layer before the output layer, the best visual results so far are achieved (shown below).

26

4 Experiments

Figure 4.8: Final results on the MNIST Dataset at iteration 2000 and 3000.

Another attempt using the exact MNIST classifier architecture for D (described at the
beginning of the chapter) with one dense layer yields the same quality of images. At this point,
it gets increasingly harder to compare the approaches for quality, as there is no exact metric
defining the performance of the generator. The human eye is a very inaccurate measure of
quality, as it is subject to individual judgement. Another approach could be to let classifier
networks determine the quality of generated images by checking that there are diverse classes
generated that can be recognized with a high confidence score [16].

Interestingly, dropout does not make any recognizable difference, neither in image quality
nor in training stability. Dropout is seldom used in popular GAN architectures, as overfitting
is rarely a problem [34].

Batch normalization seems to be crucial in the generator architecture. Removing it results
in a very high generator loss, a completely unstable training process and unusable images.
Surprisingly, this is not the same for the discriminator. Another training run with batch
normalization removed in the discriminator produces high quality images in a stable training
process like before. This can be explained by the fact that the discriminator uses leaky ReLU
as activation function, which does not saturate for negative values as the ReLU does, and this
could be the reason that removing batch norm does not change much about the gradient flow
in the discriminator. In fact, repeating the experiment with no batch norm in the generator, but
leaky ReLU activation instead of ReLU, leads to well recognizable results. The discriminator is

still stronger in this setup, but training is stable and convergent.

27

4 Experiments

It is difficult to compare these subtle changes for image quality, but the best results seem to
be obtained by the below architecture, which will also be evaluated and improved on CIFAR10
in the following chapter.

fully connected layer of size 1024, ReLU activation, batch normalization

fully connected layer of size 7 x 7 x 128, ReLU activation, batch normalization

64 4 x 4 transposed convolutions, stride 2, ReLU activation, batch normalization

one 4 x 4 transposed convolution, stride 2, tanh activation

32 5 x 5 convolutions, stride 1, leaky ReLU activation

32 2 x 2 convolutions, stride 2, leaky ReLU activation

64 5 x 5 convolutions, stride 1, leaky ReLU activation

64 2 x 2 convolutions, stride 2, leaky ReLU activation

fully connected layer, size 4 x 4 x 64

fully connected layer, size 1

In short, it was possible to empirically find a GAN architecture that works well for the
MNIST dataset. Following guidelines can help to accomplish a stable training process and good

results. But often one has to deviate from these to achieve better visual quality of the samples.

4.8 CIFAR10 dataset

The CIFAR10 dataset consists of 60000 32 x 32 color images (10000 images for validation, and
50000 images for training) from 10 different classes. Compared to the MNIST dataset, the
structure of the data samples is far more complex. In comparison, one should expect a larger
network architecture to work well. GAN training on more complex datasets is usually harder

to balance.

4.8.1 Grayscale CIFAR images

The first training setup evaluates the performance of the convolutional architecture for MNIST,
described previously. In order to fit the data to the architecture, every RGB value will be

transferred to a single grayscale value using the luminosity formula.

y = 0.2989r + 0.5870g + 0.1140b

28

4 Experiments

Some changes are required to fit the image size. The generator is changed to upsample from a
8 x 8 x 40 instead of 7 x 7 x 40 dense layer, resulting in an output size of 32 x 32 instead of

28 x 28. The discriminator is solely changed to reshape into the correct output dimension.

Figure 4.9: Grayscale cifar results at iteration 20000 and 22000 with the convolutional architec-

ture previously used on MNIST

From some results, it seems like the network performs reasonably well, as some shapes and
forms become visible. On the other hand, what becomes clear in most of the images is that the

network has problems representing the more complex features of a CIFAR image.

4.8.2 Colored CIFAR images

In the next experiment, the same architecture will be applied to colored images. This requires
just the change of the color dimension from one to three. As the colored version of the images
contains considerably more information, the network is found to perform slightly worse on

them.

29

4 Experiments

Figure 4.10: Results at iteration 20000 and 22000 with the same architecture applied to the
colorized version of the dataset. A slight tendency towards mode collapse can be

seen.

The generator is able to express some features, but they seem a little bit less distinct than
before. In some training runs, the image tends towards a certain color and structure, which
seems like a slightly less critical version of the collapsing mode failure that was explored
previously on the MNIST dataset.

An obvious limitation of this architecture is the number of filters. As described in [35], every
filter in a convolutional network learns to detect a certain meaningful feature. In the current
setup, the network is not capable of learning every feature that a CIFAR image has. It can
detect straight and round edges, but simply has no more filters available to learn more complex
features like for example the face of a dog.

In the next experiment, one more (transposed) convolutional layer is added to the generator
and discriminator. Specifically, a layer with kernel size 5, stride 1 and 128 features is added
right after the last dense layer of the generator and right before the first dense layer of the
discriminator. In this case, the padding is chosen in a way that it keeps the input dimensions,
so the other layers do not have to be modified. Using this approach, the visuals become more
clear, the outputs become more diverse, and one can observe actual objects in some of the
images.

The architecture can be further simplified. In the current state, the network contains two
convolutional layers with kernel size and stride 2, and no batch normalization. Another training

run without those layers (with 2 convolutional layers of kernel size 5 and stride 2) shows

30

4 Experiments

comparable results. With this setup, it has been necessary to add batch normalization to the

discriminator.

Figure 4.11: Final results at iteration 20000 and 21500.

For completeness, the generator and discriminator architecture for obtaining the final results
on CIFARI10 are specified as follows.

fully connected layer of size 1024, ReLU activation, batch normalization

fully connected layer of size 8 x 8 x 128, ReLU activation, batch normalization

128 5 x b transposed convolutions, stride 1, ReLU activation, batch normalization

64 4 x 4 transposed convolutions, stride 2, ReLU activation, batch normalization

one 4 x 4 transposed convolution, stride 2, tanh activation

32 5 x 5 convolutions, stride 2, leaky ReLU activation

64 5 x 5 convolutions, stride 2, leaky ReLU activation, batch normalization

128 5 x 5 convolutions, stride 1, leaky ReLU activation, batch normalization

fully connected layer, size 4 x 4 x 64, batch normalization

fully connected layer, size 1

The quality of the images can hardly be improved with the classical GAN framework, as it

is comparable to state of the art results [16]].

4.8.3 Semi-Supervised GAN

In this experiment, the architecture and hyperparameters are the same as in the previously

described setup. The only changes are that the discriminator outputs a probability distribution

31

4 Experiments

over 11 classes instead of 1, and that the error function changes as described in[3.4.6] To get a
rough measure of the disciminator quality, the accuracy is computed by taking the average over
correct predictions in one minibatch. The accuracy goes up to 100% in some iterations, but that
is not to be confused with the test error of a classifier. The test error determines the accuracy
over a whole dataset and not just a minibatch. Therefore, it is a metric for determining training

success, but not a good measure of the actual quality of the discriminator-classifier.

Figure 4.12: CIFAR 10 results at iteration 10000 and 14000. Some images clearly resemble some
objects. Results in earlier iterations also look promising, but the algorithm seems

to need more time to train well.

The results do not seem to differ much from the previous ones, though for some images it
can be said that they are a bit more recognizable. This aligns with the statement that human
annotators seem to recognize images generated with this approach a bit better [[16]].

From the error rate and the average of correct classifications it is apparent that the discrimi-
nator training is successful, though that does not necessarily mean that the GAN training is
stable. The discriminator is still just an aid for the generator to find a parameter setting, which
captures the training data distribution best. In other words, the fact that the discriminator
does well on classifying real and fake data does not necessarily mean that the generator has

found a good representation of the dataset.

32

4 Experiments

0.00 [1.00

300 -0.100
-0.200
200 | 00 0.600
1.00 -0.400
0,500 0.200
0.00 0,600 000 |

06:51 PM 06:55 PM 06:51 PM 06:55 PM 06:51 PM 06:55 PM

0.800

0.400

Figure 4.13: Graphs for (left-to-right) the discriminator error, the generator error, and the

training classification accuracy.

The output of generative models are also of interest if one wants to examine problems with
classifier architecture. Previous experiments with fully connected networks have shown that
the impossibility to learn neighbourhood information about pixels is problematic. Convolu-
tional networks can learn the spatial structure of features. Though, as a result of the feature
map having high activation, regardless of how many times the feature is present, the network
has problems learning the count of features. For example, it is unable to learn that a dog has

just two eyes.

-

Figure 4.14: This picture seems to resemble a dog, but with a incorrect number of eyes.

Similar problems were also reported on the larger IMAGENET dataset [16].

33

5 Summary

5.1 Results

DEEE AR EIE N/EE
B e
s .-.- P :
CODE EERE EE-T e
R AR » }
SEEE SRR . A
BREE EERR cmEE o= o
ﬂ... .-r i, S

% e ™ 54 % m EE HE
= S e
ﬂlﬂ. SRR mn-ﬂ S>3

DEDE ppnm A8 0E
CEBE 3 9 - m_w“
Lo
e
I

E
% lﬂﬂ ‘!EE& II%.I EE

m.snmmmsmnun1.n

pa1oauuoo-A|n} [2UOIIN|OAUOD [BUO[N|OAUOD _uww_?_wa:w

0

4

2000

1000

34

Figure 5.1: Visualization of the described training processes. The label under each picture
denotes the iteration.

5 Summary

Every implemented architecture was sufficient to generate images that, more or less, resemble
the dataset. As there were not only large differences in image quality but also in convergence
speed, is is necessary to make a comparison on the training processes.

Convolutional GAN’s show what has been visualized in classifier networks before [35]]:
during early training, only the most basic features like edges and contours are learned in
layers close to the input. Deriving the more complex features to generate complete images
takes more time and requires previous layers to already have learned some basic features. The
semi-supervised GAN generates better images faster, because the discriminator is forced to
learn features that are important to keep the classes apart. This forces the generator to create
more distinct features [16]].

Differing the most were the fully-connected and the convolutional architecture on MNIST.
The fully-connected architecture learned a recognizable representation after 2000 iterations.
In comparison, the convolutional architecture managed to generate clearly better results in a
tenth of the iterations. While this shows the suitability of convolution for image processing
with neural networks, the results have also pointed out the problem that a count of a feature is
hard to learn.

To determine if the approach was successful, it is of interest how well some generated
examples are represented. Or, in other words, if it is possible to find similar images in the
dataset. Even though the goal of the generator was not to generate good copies of real images,
this experiment shows what features have been learned and what similar images in the dataset
look like.

An arithmetic measure for image similarity can be defined as
Lh(l,I2) = Z 17— 13|
P

where I is the image pixel value matrix and the iteration is over all pixel indices p. In short,
11 defines the distance between image samples as the difference between pixel values. The

images with a minimal /; distance to a sample image are thus similar.

35

5 Summary

fake real

Figure 5.2: Some cherry-picked generated examples of the semi-supervised training runs are
compared with their nearest /; distance neighbor in the training dataset of CIFAR10
(50000 images).

The results clearly show a resemblance between learned distribution and training data.
Although the fake pictures are cherry-picked from multiple training runs, it can be said that
random pictures also have nearest neighbors that are quite similar, but they are not so well

human recognizable.

5.2 Conclusion

For an inexperienced reader most of the results may seem pretty bad. On most of the images
there are just seemingly random blobs of color. There is a big difference when comparing them
with a random selection of CIFAR10 images. Generated images are not nearly as sharp as the

original images.

36

5 Summary

Figure 5.3: 16 randomly picked CIFAR10 images.

To see why learning a representation of CIFAR10 is difficult, one has to understand that the
described models had to learn to represent a dataset containing 50000 images with extremely
complex relationships in the data. Images from one class can be numerically vastly different in
CIFAR10 [21] [22]. In addition to that, some original images from the dataset are of bad quality
and hardly recognizable.

Seen under these aspects, it is amazing what generative models are capable of. They learn an
accurate representation of datasets and can show what the visual world looks like to a neural
network. Although these algorithms are based on well defined mathematical rules, generative
models are a sort of artificial creativity; they can combine visual features in new ways that are
unseen in the dataset.

The results in this paper are comparable with state of the art implementations of the classical
and semi-supervised GAN framework [16]]. GAN’s are easy to sample from and require less
computing power than other approaches [10]. The downside is that the probabilities of
pixel values are not explicitly learned. Conclusively, GAN’s are impossible to validate by an
exact metric. Training GAN’s also has to be carefully balanced. That is why, depending on the
dataset, GAN’s can be a very poor choice of a generative model. In content generation and
image processing they have been proven useful, and their use-cases extend even into other
domains, such as medicine [19]. In 2016, Yann LeCun described GAN’s as ’the most interesting
idea in the last 10 years in ML’ [24] which supports my own conclusion that GAN’s are highly
intriguing to study.

37

Bibliography

(1]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian J.
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Gordon Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqgiang Zheng. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. CoRR, abs/1603.04467, 2016.

Soumith Chintala Alec Radford, Luke Metz. Unsupervised representation learning with

deep convolutional generative adversarial networks.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. CoRR,
abs/1701.07875, 2017.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures, 2012.

Roberto Brunelli and Tomaso Poggio. Face recognition: features versus templates. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042-1052, 1993.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative
adversarial nets. CoRR, abs/1606.03657, 2016.

Yangqing Jia Pierre Sermanet Scott Reed Dragomir Anguelov Dumitru Erhan Vincent Van-
houcke Andrew Rabinovich Christian Szegedy, Wei Liu. Going deeper with convolutions,
2015.

Daniel Crevier. Ai: The Tumultuous History Of The Search For Artificial Intelligence. Basic
Books, 1993.

38

Bibliography

[9] Jimmy Ba Diederik P. Kingma. Adam: A method for stochastic optimization.

[10]

[11]

[12]

[20]

[21]

Carl Doersch. Tutorial on variational autoencoders, 2016.

V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. ArXiv

e-prints, March 2016.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, 2000. AAI9980887.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 2672-2680. Curran Associates, Inc., 2014.

Wojciech Zaremba Vicki Cheung Alec Radford Xi Chen Ian J. Goodfellow, Tim Salimans.

Improved techniques for training gans.

Olivier Bousquet Carl-Johann Simon-Gabriel Bernhard Schélkopf Ilya Tolstikhin, Syl-

vain Gelly. Adagan: Boosting generative models.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

Artur Kadurin, Sergey Nikolenko, Kuzma Khrabrov, Alex Aliper, and Alex Zhavoronkov.
drugan: An advanced generative adversarial autoencoder model for de novo generation
of new molecules with desired molecular properties in silico. Molecular Pharmaceutics,
14(9):3098-3104, 2017. PMID: 28703000.

Diederik P. Kingma, Danilo Jimenez Rezende, Shakir Mohamed, and Max Welling. Semi-
supervised learning with deep generative models. CoRR, abs/1406.5298, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for

advanced research).

39

http://www.deeplearningbook.org

Bibliography

(23]

[25]

[26]

(27]

(28]
[29]

(30]

[31]

[32]

[33]

[34]

(35]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097—
1105. Curran Associates, Inc., 2012.

Yann LeCun. What are some recent and potentially upcoming breakthroughs in deep

learning?, 2016.
Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Zhibin Liao and Gustavo Carneiro. Competitive multi-scale convolution. CoRR,
abs/1511.05635, 2015.

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1 edition, 2008.

Michael Nielsen. Neural networks and deep learning, 2010.
Augustus Odena. Semi-supervised learning with generative adversarial networks, 2016.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller.
Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806, 2014.

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgard, Amy K.
Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural content generation

via machine learning (pcgml), 2017.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural

networks, 2016.

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and

Koray Kavukcuoglu. Conditional image generation with pixelecnn decoders, 2016.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger B. Grosse. On the quantitative
analysis of decoder-based generative models. CoRR, abs/1611.04273, 2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks,
2013.

40

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstindig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 27. Juli 2018 Falco Winkler

	1 Introduction
	1.1 Deep Learning
	1.2 Representation Learning
	1.3 Unsupervised Learning
	1.4 Objective

	2 Generative Modelling
	3 The theory of generative adversarial networks
	3.1 Architecture
	3.2 The adversarial process
	3.3 Loss functions
	3.3.1 Cross Entropy
	3.3.2 Minimax game
	3.3.3 Heuristic, non-saturating game

	3.4 Advanced techniques
	3.4.1 Rectifier activation function
	3.4.2 Leaky rectifier activation function
	3.4.3 Adam Optimizer Algorithm
	3.4.4 Transposed convolutional layer
	3.4.5 Batch normalization
	3.4.6 Semi-Supervised GAN training

	4 Experiments
	4.1 Implementation
	4.2 Testing strategy
	4.3 Automatic Deployment
	4.4 Monitoring and Results management
	4.5 GPU Computing
	4.6 Pre- and post-processing
	4.7 MNIST dataset
	4.7.1 One Layer Architecture
	4.7.2 Neuron Saturation
	4.7.3 Improved Architectures
	4.7.4 Convolutional GAN's
	4.7.5 Developing a convolutional architecture for MNIST

	4.8 CIFAR10 dataset
	4.8.1 Grayscale CIFAR images
	4.8.2 Colored CIFAR images
	4.8.3 Semi-Supervised GAN

	5 Summary
	5.1 Results
	5.2 Conclusion

