
Bachelorthesis
Alex Mantel

Risk Management System Prototype based on an Extended
Time-To-Compromise (TTC) Metric

Fakultät Technik und Informatik
Studiendepartment Informatik

Faculty of Engineering and Computer Science
Department of Computer Science

Alex Mantel

Risk Management System Prototype based on an Extended
Time-To-Compromise (TTC) Metric

Bachelorthesis eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Angewandte Informatik

am Department Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Klaus-Peter Kossakowski

Zweitgutachter: Prof. Dr. Stefan Sarstedt

Eingereicht am: 14. Juli 2018

Alex Mantel

Thema der Arbeit
Risk Management System Prototype based on an Extended Time-To-Compromise (TTC) Metric

Stichworte
IT-Sicherheit, Metriken, Time to Compromise, Modellierung, Risiko Management, Prototyp,

β-Time-To-Compromise, Schwachstellenmanagement, CVE, CPE, Version

Kurzzusammenfassung
Ziel dieser Arbeit war es ein Riskomanagementsystem zu entwickeln, welches sich der Metrik

β-Time-To-Compromise (Andrej Zieger (2018)) und einer Advisory Datenbank bedient. Von der

Au�istung der Anforderungen bis hin zur Implementation wurde ein Riskomanagement Prozess

begleitet (Stoneburner u. a. (2002)). Ein System soll demnach für eine Bewertung persistent

modelliert werden und nicht, wie es bisher üblich ist, aus �üchtigen Schwachstellenscans. Die

Arbeit hat den Anspruch für Sicherheitsbeauftragte, Riskomanager und Critical Emergency

Response Teams interessant zu sein.

Alex Mantel

Title of the paper
Risk Management System Prototype based on an Extended Time-To-Compromise (TTC) Metric

Keywords
IT-Security, Metrics, Time to Compromise, Asset Modeling, Risk Management, Prototype,

β-Time-To-Compromise, Vulnerability Management, CVE, CPE, Version

Abstract
Goal of this work was the creation of a risk management system, with the use of β-Time-To-

Compromise metric (Andrej Zieger (2018)) and an advisory datbase. During the process from

requirements analysis till the end of the iplementation we aim to support a risk management

process (Stoneburner u. a. (2002)). A system is rated by a persistent model, not as common by

a impersistent vulnerabiliy scan. This work is relevant for security managers, risk managers

and critical emergency response teams.

Contents

1 Introduction 2
1.1 Goal . 2

1.2 Thesis structure . 2

2 Vulnerability management 4
2.1 Background . 4

2.1.1 Risk . 4

2.1.2 Risk Management- and Vulnerability Management System (VMS) . . . 5

2.1.3 Common Vulnerabilities and Exposure (CVE) 5

2.1.4 Common Platform Enumeration (CPE) 6

2.1.5 CPE dictionary & the National Vulnerability Database (NVD) 7

2.2 Matching CPEs and CVEs . 7

2.3 IT-Security metrics . 8

2.3.1 Common Vulnerability Scoring System (CVSS) 8

2.3.2 Time-To-Compromise (TTC) . 8

2.3.3 β-Time-To-Compromise (βTTC) . 10

2.3.4 Accepting that time is running . 10

2.3.5 Typed Time-To-Compromise . 11

2.4 BSI-Schwachstellenampel . 11

3 Requirements analysis 12
3.1 Given advisory database . 12

3.2 Supporting the process . 13

3.2.1 System Characterization . 13

3.2.2 Threat Identi�cation . 14

3.2.3 Vulnerability Identi�cation . 14

3.2.4 Control Analysis . 14

3.2.5 Likelihood Determination . 14

3.2.6 Impact Analysis . 14

3.2.7 Risk Determination . 15

3.2.8 Control Recommendations . 15

3.3 Analysis of BSI-Schwachstellenampel . 16

3.4 Dashboard and ScoreCards . 16

4 So�ware design 18
4.1 Design goals . 18

iv

Contents

4.2 Architecture . 18

4.2.1 Adding entities . 19

4.2.2 Adding components . 20

4.2.3 Choosing a microservice architecture 22

4.3 Frameworks & tools . 23

4.3.1 Web- & RESTful API . 23

4.3.2 Object Relational Mapper . 24

4.3.3 wkhtmltopdf . 25

4.3.4 rufus-scheduler . 25

4.3.5 Technology stack . 25

5 Implementation 27
5.1 Project structure . 27

5.1.1 Managing mircoservices with compose.sh and tmux 27

5.2 Services . 29

5.2.1 Stakeholder Repository and Asset Repository Service 29

5.2.2 Catalog Repository Service . 31

5.2.3 Metrics Service . 33

5.2.4 Con�guration Service . 34

5.2.5 ScoreCard Service . 35

5.2.6 Dashboard Service . 36

5.3 General Implementation Critique . 36

6 Conclusion & Future Work 39
6.1 Conclusion . 39

6.2 Future Work . 39

v

List of Figures

2.1 Screenshot of BSI-Schwachstellenampel speci�ed for a few Adobe products . . 11

3.1 Datamodel: Partial entity relationship model of the advisory database 13

3.2 Fictional sparkline for TTC . 17

4.1 Overview of new entities . 19

4.2 Grouped entities by context . 20

4.3 Sequence diagramm of the modeling process 20

4.4 Sequence diagramm of fetching βTTC and CVE informations 21

4.5 Overview of all microservices . 22

4.6 Technology stack with used frameworks . 26

5.1 Overview of the projectstructure . 28

5.2 Screenshot: Editing an asset . 35

5.3 Screenshot: Overview of all assets within the dashboard 38

5.4 Screenshot: Asset details within dashboard . 38

vi

Listings

2.1 CPE 2.2 examples. First one is has been deprecated by the second one. The

version �eld has been wrongly used. 6

4.1 Code: "Hello, world!" in Ruby’s Sinatra . 23

4.2 Code: Simple use of Ruby’s Sequel with a SQLite3 database 24

4.3 Usage of wkhtmltopdf . 25

4.4 Usage of rufus-scheduler . 25

5.1 Code: Simple service management with tmux 29

5.2 Code: Snippet of router.rb in stakeholder_repository 30

5.3 Code: Snippet of stakholder_repository.rb . 30

5.4 Code: CPE �lter with argument preperation 31

5.5 Code: An order implementation named newer_version? 33

5.6 Code: Calculation of all βTTCs of the past days 34

5.7 Code: Snippet of ScoreCard . 36

vii

Acknowledgments

I never lose. I either win or I learn.

Nelson Mandela

Thank you for your patience and love in every situation,

for having bad �ghts and good laughs

and for standing by me.

Anna Mantel

Eleonora Mantel

Alexander Mantel

Niko Thielebein

Mirco Helbing

I am grateful to my thesis mentor Andrej Zieger for the mutual understanding und sym-

pathy.

1

1 Introduction

Taking care of computer systems within the context of it-security is a task we want to make

easier. New releasing products, work�ows, requirements and the discovery of new vulner-

abilities are continuously changing factors of that task. Depending on the domain, people

are not always aware of software which is deprecating or becoming vulnerable. Also not

security related domain experts, do tend to underestimate the risk of compromising. The

common way of vulnerability management is using scanners e.g. metasploit in order to rate

eventually found vulnerabilities. According to the impact of an asset, those vulnerabilities are

not weighted in a reasonable way. Thus they indicate a potential vulnerability of an asset, not

the actual risk of compromising. Our approach is modeling an asset and estimate the risk of

that asset, by assigning an impact to it. That way asset informations and vulnerabilities are kept

persistent and not temporary within the scan context. Which promises a faster vulnerability

detection. For the risk estimation a metric named β-Time-To-Compromise is used, because of

its simplicity.

1.1 Goal

Objective of this work is the creation of a risk management system named ettcs. ettcs is an

acronym for Extended Time-To-Compromise System. This system is supporting a risk man-

agement process, by o�ering two interfaces to the user. First the asset modeling and impact

assigning. Second a risk overview, based on β-Time-To-Compromise and control recommenda-

tion. All that using an advisory database, which is providing details about vulnerabilities of

speci�c products. The resulting software product is a prototype, as a �rst implementation itera-

tion. Part of that iteration is the description, requirements analysis, design and implementation.

Finding and naming problems and possible �aws is the actual goal of this prototype.

1.2 Thesis structure

This work is organized as follows. Section 2 describes the process ettcs is supporting. It

also provides an overview of the terminology, it-security metrics and details of vulnerability

2

1 Introduction

management. Within section 3, the requirements analysis, we describe a given advisory

database, list requirements regarding the risk management process and analyse an existing

vulnerability dashboard which is based on CVSS (Mell u. a. (2007)). Those requirements

are considered in the system design, which is described in section 4. Not only the general

architecture and its components descriptions �nds explanation here, also used frameworks

are introduced. The general implementation of the prototype, which is described in section 5,

contains partial code information. Also our way to manage microservices for this prototype is

introduced, as well as a brief description of every component implementation and an interface

overview. Finally we evaluate and conclude with problems occurred during the creation process

of the prototype, in the last section 6 and give a brief outlook of future related work.

3

2 Vulnerability management

First of all we give an introduction about the terminology of vulnerability management. Also

we will have a look at related it-security metrics including the Time-To-Compromise and its

extension, the β-Time-To-Compromise.

2.1 Background

Within this section we introduce well known abbreviations and ubiquitous words within

vulnerability management, as well as their purpose and issues.

2.1.1 Risk

Risk within the context of information technology systems has been described by Stoneburner

u. a. (2002, Section 3) as follows:

Risk is a function of the likelihood of a given threat-source’s exercising a partic-

ular potential vulnerability, and the resulting impact of that adverse event on the

organization.

Within this thesis such an adverse event is the purposed exploitation of an vulnerability for

a computer system. So the only risk we handle is the risk of an compromising asset. Also

de�ned by Stoneburner u. a. (2002) is a process to manage risks within information technology

systems:

1. System Characterization is the description of the asset.

2. Threat Identi�cation is naming a possible threat. As mentioned before, in our case it is

the adverse event, that a person is exploiting a vulnerable asset. For instance a machine

hosting a customer database becomes compromised.

3. Vulnerability Identi�cation is the active search of vulnerabilities.

4

2 Vulnerability management

4. Control Analysis of current and planed actions to minimize the likelihood and therefore

the possible impact.

5. Likelihood Determination of the probability that the threat is actually occurring.

6. Impact Analysis is the possible damage that might happen regarding the loss of three

criteria: Integrity, Availability and Con�dentially.

7. Risk Determination known as the combination of Likelihood Determination and Impact

Analysis. Determined within a Risk-Level Matrix, resulting into three possible results:

high, medium and low.

8. Control Recommendations changing the next Control Analysis. Quite common is an

upgrade or a temporary disable of the component.

9. Results Documentation - “Once the risk assessment has been completed [...], the results

should be documented in an o�cial report or brie�ng.”

2.1.2 Risk Management- and Vulnerability Management System (VMS)

Vulnerability management systems like nmap (Lyon (2009)), metasploit (Maynor (2011)) or

w3af (Riancho (2011)) are also named as vulnerability scanners or audit tools. Those systems

do help with the process step Vulnerability identi�cation, but not with the actual risk handling

since they take no asset impact into account. Also a setup, manual run and interpretation of

the resulting CVSS scores are often required. Which takes too much e�ort for e�cient risk

management. That said, non-technical stakeholders do need support.

2.1.3 Common Vulnerabilities and Exposure (CVE)

Luis Alberto Benthin Sanguino (2017) gives a good introduction about Common Vulnerabilities

and Exposures (CVEs): “CVE, [...] is a method used to assign identi�ers to publicly known

vulnerabilities found in IT products and to provide information (e.g., a�ected products) about

the vulnerabilities. Across organizations, anti-virus vendors, and security experts, CVE has

become the de facto standard to share information on known vulnerabilities and exposures.”

Within this work we do use CVE and vulnerability as a synonym. Identifying products which

are vulnerable to a known vulnerability is done by CPEs.

5

2 Vulnerability management

2.1.4 Common Platform Enumeration (CPE)

A CPE Name from now on simply called CPE, speci�ed by Andrew Buttner (2009) is an

abbreviation for Common Platform Enumeration. Currently there are two CPE speci�cations

for version 2.2 and 2.3 (Brant A. Cheikes (2011)) available. In order to enable matching of

it-products and give them a common name, CPEs have been speci�ed. Within that order are

those �elds separated by a colon as shown in listing 2.1. In that listing we two CPE a common

known software product named Windows Vista. Its vendor Microsoft does not supply a version

nor update informations. Thus those �elds are blank, as we can see colons next to each other.

1 cpe:/o:microsoft:windows:vista::x86-enterprise
2 cpe:/o:microsoft:windows_vista:::x86-enterprise

Listing 2.1: CPE 2.2 examples. First one is has been deprecated by the second one. The version

�eld has been wrongly used.

Also speci�ed is a CPE deprecation process, which allows to mark an CPE as invalid and

state a replacement, as it can be seen in listing 2.1. However, the �rst CPE wrongly uses

the version �eld to give information about the operating system. Deprecated through the

deprecation process, it is invalid and has been replaced by the second CPE. To address a few

purposes of this deprecation process. A product can be renamed or an existing CPE might

contain a typo. It does hold following information as speci�ed by Andrew Buttner (2009):

1. Part speci�es what kind it is, separated into three sections. It is either a hardware

component, operating system part or an application part.

2. Vendor is the vendor or supplier of the platform.

3. Products common known name.

4. Version to state a release.

5. Update is used for update or service pack information.

6. Edition is used to determine the products edition. For instance Windows XP pro.

Therefore equal CPEs with di�erent are di�erent products.

We do note that the version and update are �elds to mark a history for a product. In fact

both �elds do hold information about a release state.

6

2 Vulnerability management

2.1.5 CPE dictionary & the National Vulnerability Database (NVD)

The united states of America run an public database which lists known vulnerabilities and

also a public database for CPE entries. This National Vulnerability Database is abbreviated to

NVD and contains informations about vulnerabilities, their related CPEs and a CVSS scoring.

Similar to Section 2.1.3 gives Andrew Buttner (2009) a great introduction: “Its purpose is to

provide a source of all known CPE Names as well as bind descriptive prose and diagnostic

tests to a CPE Name.”

2.2 Matching CPEs and CVEs

Matching CPEs and CVEs is not easy as speci�ed by Andrew Buttner (2009). As described by

Luis Alberto Benthin Sanguino (2017), there are di�erent issues:

• CVE entries without CPE entries are a problem, since VMS do only use CPEs to

match CVEs to CPEs.

• Software Products without assigned CPE does concern us, because we might have

software running without such an identi�cation.

• CPE Dictionary Deprecation Process makes it harder to match, since values of the

identi�e and therefore the identi�er itself, r might change.

• NVD Synchronization is the exchange of information between the o�cial CPE dictio-

nary and the NVD. So there are at least two seperate services creating CPEs. Mistakes

can be made on both sides.

A lot of e�ort is placed into CPE care. We say that the current CPE speci�cation are

representing CPEs as domain keys, since they hold the name of the product, the version and

more information. Having a look from the database perspective we say that, in fact every

CPE is an actual database row, without referential integrity and an unique identi�er. We also

say that the second state Software Products without assigned CPE can not be avoided, since

it-companies do write, maintain and manage their own software or software modules.

A system named Inventory Vulnerability Analysis (IVA) has also been introduced by Luis

Alberto Benthin Sanguino (2017). That system matches CPEs without total correctness.

7

2 Vulnerability management

2.3 IT-Security metrics

Within this section we give a brief overview of some IT-security metrics, including CVSS,

time-to-compromise metric and its extension the β-TTC.

2.3.1 Common Vulnerability Scoring System (CVSS)

Common Vulnerability Scoring System (CVSS) is a metric which is specifying the possible

danger of a vulnerability. It is the result of the base metric group, temporal metric group and

the environmental metric group (Mell u. a. (2007)). Ignoring the CVSS version, CVSS became

the standard in vulnerability ranking. It supplies a scoring between 0.0 and 10.0. It provides

an answer to the question: How dangerous is this speci�c vulnerability? To point it out, note

that CVSS does not take an system into account.

2.3.2 Time-To-Compromise (TTC)

Time-To-Compromise de�ned by McQueen u. a. (2006) is a it-security metric which rates

the security-state of an asset. In contrast the CVSS metric we did mention before is rating

vulnerabilities. It states the time until an adverse event (Section 2.1.1) occurs. To sum possible

scenarios which lead to such an event, three possible compromise processes have been described.

Process 1 for an existing vulnerability and an existing exploit by hand, as the most simple

attack. Process 2 for an existing vulnerability without an existing exploit. Process 3 without

an existing vulnerability nor an existing exploit, also known as a zero day exploit. Note that

TTC is measured as a daily unit. The TTC-metrics gives an answer to the question: How

long does it take to compromise a system with v vulnerabilities, when the total amount of known

vulnerabilities is k and the attacker has a skill of s? Following de�nition is a summary of

McQueen u. a. (2006) made by Andrej Zieger (2018).

De�nition 1 (Original Time-to-compromise (TTC) (see McQueen u. a. (2006))) LetS =

{novice, beginner, intermediate, expert} be a set of discrete skill levels. Let the number of vulner-

abilities of the component be v ∈ N, and let s ∈ S be the skill level of the adversary, and k ∈ N
the total number of vulnerabilities, then the time-to-compromise

TTC : N× S × N→ R

is de�ned as

TTC(v, s, k) = t1 · P1 + t2 · (1− P1) · (1− u) + t3 · u · (1− P1)

8

2 Vulnerability management

with

• t1 = c1 as the average time it takes to tune an available exploit,

• P1 = 1− e−v·
m(s)
k as the probability to have an exploit at hand,

• t2 = c2 · E(v, s) as the time to write an exploit times the estimated tries it takes,

• t3 = (1
f(s) − 0.5) · c3 + c2 as the time to �nd/wait for a new usable vulnerability and

creation of a working exploit, and

• u = (1− f(s))v as the probability that process 2 is unsuccessful.

The estimated tries in process 2 as a function of vulnerabilities and skill are de�ned as follows:

E(v, s) = f(s) ·

1 +

v−v·f(s)+1∑
t=2

[
t ·

t∏
i=2

(
v · (1− f(s))− i+ 2

v − i+ 1

)]
with f andm as function of skill:

• m : S → N giving the number of readily available exploits for the given skill level,

• f : S → [0, 1] providing the fraction of vulnerabilities usable at the given skill level,

with the following constants:

• c1 = 1d as the time to tune and use a readily available exploit

• c2 = 5.8d as the time to develop a new exploit

• c3 = 32.42d as the avg. time for a new vulnerability to occur

Fixing the TTC

Andrej Zieger (2018) found problems regarding TTC and improved the TTC de�ned before, by

doing following steps:

1. Making TTC continuous by replacing the four given skills {novice, beginner, intermediate,

expert} with an interval of [0, 1].

2. Making TTC monotonous by adjusting the function for estimation of tries E (See

de�nition 1) to result in natural numbers only.

ξ(a, v) =
a

v
·

1 +

bv·(1−a
v
)c+1∑

t=2

[
t ·

t∏
i=2

(
v · (1− a

v)− i+ 2

v − i+ 1

)]

9

2 Vulnerability management

E(s, v) = ξ(bf(s)·vc, v)·(df(s)·ve−f(s)·v)+ξ(df(s)·ve, v)·(1−df(s)·ve+f(s)·v)

2.3.3 β-Time-To-Compromise (βTTC)

Same as the TTC de�ned before, the βTTC de�ned by Andrej Zieger (2018), is a metric which

provides information about the security-state of an asset. It takes two arguments already

known from TTC. First one v which is the amount of known vulnerabilities for an asset and as

the second one, k which is the total amount of vulnerabilities.

Comparing TTC to βTTC, the parameter s (skill) is not passed as an argument to β-TTC, as

you can see in De�nition 2. Instead a β-distribution with the values α = 1.5 and β = 2 is used

as skill. The area under the curve of the β-distribution as the skill distribution, multiplied with

the TTC is a abstraction of the classic TTC. By doing so all skills of attackers are attacking at

the same time, with a certain probability.

De�nition 2 (β-time-to-compromise (see Andrej Zieger (2018)))

βTTC(v, k) =

∫ 1

0
TTC(v, s, k) · Beta1.5,2.0(s)ds

This metric gives an answer to the same question for the TTC (Section 2.3.2) without the

variable s for the skill: How long does it take to compromise an asset?

2.3.4 Accepting that time is running

By using any TTC metric we do generate a static number. When ever a vulnerability is added,

this number decreases, meaning that the systems compromising risk increased. However, we

should also keep in mind that the risk of a running system is increasing over time as well. In

other words: The chances for a system to become compromised are increasing over time.

Therefore we suggest to decrease the TTC over time. Since McQueen u. a. (2006) described

the TTC to be in a daily unit, we decrease the TTC daily. However, another question comes

into our mind, when we follow this suggestion: At which point of time does the risk start, that

an asset becomes compromised? Zieger verbally approached the time of the last published CVE.

Using the oldest known vulnerability might be a good idea. Recollecting that the TTC does

actually work without a known vulnerability, we would have a discontinuity. For now, we

leave this question open. A discussion can be found in Section 3.2.7.

10

2 Vulnerability management

2.3.5 Typed Time-To-Compromise

Also introduced by Andrej Zieger (2018) is a Time-To-Compromise typed by the three impact

types con�dentially, availability and integrity. A fourth type for execution has been introduced

as well. All those typed TTC metrics rely on a subset of the vulnerabilities. Such a subset is

partitioned by the type of a vulnerability.

2.4 BSI-Schwachstellenampel

The German agency Bundesamt für Sicherheit in der Informationstechnik (BSI) is hosting a

system called BSI-Schwachstellenampel (Vulnerability-tra�clight). That system shows infor-

mations on a de�ned set of software products, grouped by vendors. It rates those systems on

the current state of their vulnerabilities by the CVSS (Section 2.3.1) metric. Every row has a

tra�c light which visualizes the risk for the product. Within BSI (2012) three thresholds have

been de�ned for the tra�c light:

• If there exists one critical vulnerability with a CVSS score bigger then 7.0, the light turns

red.

• It turns yellow when an minor-critical vulnerability with a CVSS between 4.0 and 6.9

does exist.

• Else the light is green. It represents the state of not existing vulnerability or minimal-

critical vulnerabilities.

However, those vulnerabilities are determined for the most recent version or update of a

product. In �gure 2.4 we see an example of the vendor Adobe with the two products Adobe

Reader and Flash Player. So this light gives an answer to the following question: Exists a

unpatched, critical or minor-critical vulnerability for this product at this moment?

Figure 2.1: Screenshot of BSI-Schwachstellenampel speci�ed for a few Adobe products

11

3 Requirements analysis

After we gave an introduction into vulnerability management, including a few it-security met-

rics, we do analyse given components and existing software. An advisory database containing

vulnerability and product information belongs to such existing software. Same as the already

introduced BSI-Schwachstellenampel.

3.1 Given advisory database

The only component we have to analyse of the actual state is an advisory database provided

by the DFN CERT Services GmbH. A postgres database of version 9.3. It does hold information

about CPEs, vulnerabilities including CVSS scores and also the advisories itself. In �gure 3.1

a brief overview of the following tables is given. Note that not all tables of the database are

shown. Tables we actually need are: cpe_vendor as the vendors of cpe_products.

cpe_cpe for CPEs itself, is related to authoring_vulnerability trough the table

authoring_vulnerabilitycperelation. So a vulnerability can occur in more

then one CPE and a CPE can has more then one vulnerability. Some tables have a �eld with

a name ending to displayname, which are �elds for UI elements of another application.

Those display�elds are not complete for every cpe_cpe. Another �eld worth stating is

the comparsion within authoring_vulnerability. It contains order relations, to

make vulnerability-range speci�cations possible. Those are useful for specifying which CPEs

are e�ected. No write permissions will be granted on the advisory database in production.

As described before, CPEs do have a deprecation process. That process is taken care of within

table cpe_cpe trough the �elds deprecated_by_id and deprecated_on_date.

With that given advisory database we do have the luck, that we do not have to match CVEs

and CPEs on our own, since authoring_vulnerabilitycperelation does state

the relation already.

12

3 Requirements analysis

Figure 3.1: Datamodel: Partial entity relationship model of the advisory database

3.2 Supporting the process

We give an overview of how steps of the process introduced in Section 2.1.1 shall be supported

by ettcs. Following sections do describe the user interaction with ettcs. The last process step

Results Documentation will be skipped by us.

3.2.1 System Characterization

As described in Section 2.1.1, the �rst step of the risk management process is the System

Characterization. The system we want to characterize is a computer with running software

components. From now on we name such a system an asset.

Within the process a user shall model an asset. To make it identi�able for humans, a unique

name and a description are required for the creation. After the initialization components

representing a part of the asset might be added.

13

3 Requirements analysis

Adding a component is done by searching for a product with release informations like

version and update. But as we �gured out before in Section 2.2, not all software products do

have a CPE assinged. On �rst thought, we have the urge to use CPEs to clarify what software

that component is.

Modeling that asset shall be extendable in the context computer networks (McQueen u. a.

(2006)).

3.2.2 Threat Identification

The step Threat Identi�cation can be skipped, since the only adverse event we handle is, as

already mentioned, the exploitation of a vulnerability. Within the prototype implementation

as in this work, we will not take care of other threats.

3.2.3 Vulnerability Identification

Identi�cation of vulnerabilities shall be dropped for the ettcs user completely. This is possible,

since CERTs and other organizations are gathering information of those vulnerabilities. Using

an advisory database, the NVD or any other vulnerability source for identi�cation of new

vulnerabilities, we do not have to identify them on our own. Since those vulnerabilities do

hold informations about CPEs, ettcs shall use that link. That way it only fetches such asset

vulnerabilities and makes a manual identi�cation redundant.

3.2.4 Control Analysis

Taking current controls and planned controls into account, is not part of ettcs.

3.2.5 Likelihood Determination

Stoneburner u. a. (2002) described a way to partition likelihood into high, medium and low.

However, by calculating the TTC of an asset, we in fact do calculate the likelihood. So within

ettcs the likelihood is determined by βTTC. As we already mentioned in Section 2.3.4, we shall

keep in mind, that for every passing day the chances are increasing. By doing that, the user is

not part of this process step anymore.

3.2.6 Impact Analysis

The simpli�ed question is “What is the possible damage when this asset is compromised?” or

even simpler “How important is this asset?”.

14

3 Requirements analysis

In every organization are assets with more and less business impact. However, the ones we

rate an higher impact are simply more important and shall be treated with more carefulness. In

order to give the modeler the possibility to rate an impact of an compromised asset, we supply

an importance of an asset. So ettcs shall not actually help with the Impact Analysis process,

but helps clarifying which assets have been rated with an importance. Also we ignore the fact,

that for a proper analysis we shall categorize for the three aspects integrity, availability and

con�dentially. We do justify our ignorance, with the fact that the Typed TTCs (Section 2.3.5

shall be implemented in future implementations. However implementing those would be too

much for this work and thus it is procrastinated.

Summing up:

• An assets impact is rated by an importance.

• importance hints the possible impact of a compromised system.

• There are CRUD (Create, Read, Update & Delete) operations for importance.

3.2.7 Risk Determination

Using the importance as impact and the βTTC for the likelihood, we do combine them to risk.

That combination must be shown to the stakeholders through a dashboard or scorecards.

However, as described in Section 2.3.4 we have an increasing risk over time. We still have

to de�ne at which point the risk starts. Remembering the simpli�ed question: At which point

of time does the risk start, that an asset becomes compromised? Instead of using the time of the

last published CVE, we decide to let the user enter a date since when the system has been

patched for the last time. Another option is the date of the oldest patch of all components

within an asset. For this prototype we choose the �rst option because of simplicity.

3.2.8 Control Recommendations

The whole goal of advisory management is the actual control recommendation. Most advisories

do contain a simple message to either switch o� the software, switch o� a certain feature or

patch the system.

Ideally ettcs would �nd a corresponding advisory, if such an advisory exists. However,

instead of matching such an advisory we simplify our task by answering the question: Exists a

newer version of the it-product?

15

3 Requirements analysis

3.3 Analysis of BSI-Schwachstellenampel

What can we learn from the BSI-Schwachstellenampel which has been introduced in Section 2.4?

First of all, the general overview is decent. The tra�c light for every product allows to see the

danger on �rst sight. A disadvantage is the grouping by vendors. Overall rating the vendors is

not helpful for an estimation of the asset or vulnerability risk. We group a similar view by assets.

Also we use the products version/update for the rows, because we might decide not to update a

product in production. Another point we do criticize is the column geschlossene Schwachstellen

(closed vulnerabilities), since it gives no security related information to a stakeholder.

We sum up those requirements for the risk presentation:

• An asset represents a host.

• A component is the representation of a running product release.

• A component does belong to an asset.

• A whole asset will be rated trough a tra�c light, by its importance.

• The importance holds two threshold to de�ne which result of the βTTC is high,

medium or low. By doing so, we combine the estimated likelyhood with the impact

resulting in a risk.

• If a product is vulnerable to an known CVE, that CVE shall be noted.

• There is an overview of all assets in a single view.

3.4 Dashboard and ScoreCards

Before we did de�ne a few requirements for the risk presentation. Whilst mentioning those

requirements, we actually talked about dashboards only. However, Shikha Shahi (2018) men-

tioned that it is a lot of e�ort for companies to introduce a dashboard and that is questionable

from of the information-security perspective to introduce such a public information system.

Instead or additional to a dashboard solution, do ScoreCards o�er enough privacy, with the

same amount of informations. According to Shikha Shahi (2018) shall a ScoreCard �t on a DIN

A4 page and contains graphs, e.g. a sparkline.

In �gure 3.2 we can see a sparkline for a imaginary TTC history of an asset. That scenarios

date is the 19th May 2018 and the running TTC arrived zero. Within that sparkline we can see

16

3 Requirements analysis

Figure 3.2: Fictional sparkline for TTC

three kinks, indicating at which time vulnerabilities have been published. At the three kinks

of that sparkline we can see at which time vulnerabilities have been published.

17

4 So�ware design

This chapter gives insight about the design of the prototype. We discuss a few frameworks,

including Ruby on Rails, Pythons Django and so on. We have a look at the general architecture,

its components and the used frameworks.

4.1 Design goals

What is important to us, while planing the software we are going to write?

• Low coupling of components and high cohesion of those

After prototyping, we might want to keep some components. On the other hand, it is

likely that components might get replaced or removed. In order to ease that task, those

components shall depend as less as possible and as much as needed to each other. To do

so, we separate as much as needed and place

• Adaptive for distributive systems

Asset models are sensible informations. Depending on the organization, there might exist

restrictions or policies depending on that data. We set the goal to build ettcs distributive,

so components hosting sensible data can run within such organizations. Also in future

we might want to interact with various vulnerability management or any other systems.

• Integration of the provided advisory database

The provided advisory database must �nd place and use within the architecture.

4.2 Architecture

Within this section we create and discuss about software architecture for ettcs . First we statisfy

previously stated requirements, then move to the architecture step by step.

18

4 Software design

Figure 4.1: Overview of new entities

4.2.1 Adding entities

In �gure 4.1 we list the entities to add, resulting from the previously de�ned requirements. As

most important we have the asset entity, which is related to all other entities. It is the container

for all running software an has various components running. Those components represent

the product on a speci�c version or update. We simplify the asset modeling task, by using a

CPEs supplied from the advisory database. We do rate the whole asset by giving it an speci�c

importance. Every importance holds two �elds minor_critical_from and critical_from.

Their values are used by the tra�c light, similar to the BSI-Schwachstellenampel (Section 2.4).

When the TTC is lower critical threshold, the light is red. When the TTC is lower than the

minor-critical threshold and bigger than the critical threshold, the light is yellow. The light is

green when TTC bigger then the minor-critical threshold. As the last entity we introduce the

stakeholder. Its purpose is adding a recipient for the scorecards.

We group those entities in order to shape them into set boundaries for component contexts.

While the advisory database is an external service, we put all their entities into in a separate

context. We group the component and asset, because components do aggregate to their asset.

Importance is also a part of that context, because an impact without is questionable. Thus the

stakeholder is the single, new entity context. However, we also make the relation subscribes to

an entity we name Subscription, as it can be seen in �gure 4.2.

19

4 Software design

Figure 4.2: Grouped entities by context

4.2.2 Adding components

Tasks like modeling an asset and rating it with an importance, such as adding a stakeholder

and subscribing it to an asset are requirements, speci�ed before. However, not listed as an

requirement but pretty important to us, is the ease of con�guration. Having a single access

point for such a con�guration is our �rst design decision. We name it con�guration_service

Figure 4.3: Sequence diagramm of the modeling process

20

4 Software design

Figure 4.4: Sequence diagramm of fetching βTTC and CVE informations

and specify for now, that it provides a website for those tasks. For the entities stakeholer,

importance and asset shall be CRUD operations provided.

One of the most complex communications between the components is the creation of

an asset with components. In �gure 4.3 we can see such a creation with the search of a

component. Note that �lter_results purpose is providing all informations we want to show,

after �ltering. We do so to minimize tra�c and implementation e�ort. The three repository

services asset_repository, stakeholer_repository and catalog_repository are instances

of database adapters for the contexts described in �gure 4.2. Note that the catalog o�ers only

read-only operations.

We also specify that the dashboard, listed within the requirements is providing the infor-

mations trough a website. Justifying that choice with the argument, that we do not know if

that system shall run for the stakeholders in a private matter only or in a public place. Also

the metrics calculation is done by a separate component named metrics.
The last service we describe is the scorecard_service. The only purpose is sending an email

noti�cation to subscribed stakeholders. That email noti�cation contains a ScoreCard, which is

a PDF containing the current dashboard informations.

21

4 Software design

Figure 4.5: Overview of all microservices

An overview of all components and its dependencies speci�ed before, is given in �gure 4.5.

Since the services con�guration_service, dashboard and scorecard_service are there for

human interaction, we specify them as interface components.

4.2.3 Choosing a microservice architecture

Since we did set as a design goal to be distributive, we choose a microservice architecture. It is

quite common to use RESTful APIs for microservices (Newman (2015)), we just adapt to that

decision, because we have no need to do di�erent.

For the repository microservices, we use the classic pattern (Fredrich (2012)). That patterns

corresponding CRUD (Create, Read, Update and Delete) equivalences are shown in table 4.2.3.

22

4 Software design

CRUD Method Endpoint Requestbody Responsebody

C POST /entities entity to create created entity with assigned id

R GET /entities all entities

R GET /entities/:id entity with passed id

U PUT /entities/:id entity to update

D DELETE /entities/:id

4.3 Frameworks & tools

Until now made functional design decisions. Following we give a brief introduction into

frameworks we use and the choice of using them.

4.3.1 Web- & RESTful API

What is the best Web- and RESTful API framework in Ruby, for us to prototype with? In order

to choose a RESTful API for prototyping, we do compare Ruby on Rails and Sinatra. Ruby

on Rails (Bächle und Kirchberg (2007)) is a popular, full stack web-framework. It provides an

Object Relational Mapper, named ActiveRecord out of the box. It is also the de facto standard

to prototype websites. Rails relies heavily on convention over con�guration. Another great

point is, that we can patch an application during runtime, without reloading. However, Sinatra

(Harris und Haase (2011)) is a plain Web- and RESTful API framework. Same as Rails, it

provides templating, a simple routing technique and allows patching during runtime. Within

�gure 4.1 we see a simple web application, containing the routing to root ”/” and returning a

”Hello,World” within the response body.

1 require ’sinatra’
2

3 get ’/’ do
4 "Hello, world!"
5 end

Listing 4.1: Code: "Hello, world!" in Ruby’s Sinatra

Since we decided to build microservices, choosing a full stack framework is oversized; even

for prototyping. We apply the same argument pattern for the two python frameworks django
and flask. Similar to Ruby on Rails does Django provide a full stack functionality. Flask on

the other hand is a simple web framework similar to Ruby’s Sinatra.

23

4 Software design

So for microservices using Ruby, we choose Sinatra as a RESTful API framework. In case of

python �ask is used.

4.3.2 Object Relational Mapper

What is the best database adapter for us to prototype with? Before in Section 4.3.1, we listed

advantages and disadvantages of Rails and Sinatra. Now we discuss which ORM (Object

Relational Mapper) we shall use. ActiveRecord and Sequel are popular Ruby ORMs.

ActiveRecord as part of Rails, also relies on convention over con�guration (Pytel u. a. (2007)).

Within ActiveRecord the model itself is also the repository. Also the models name is the

database tables name.

Adapting to our given advisory database might get out of hand with con�guration over

con�guration.

Sequel on the other hand, is a light weight ORM, without a lot restrictions. Ruby’s Hash

implementation is used heavily used by Sequel. In listing 4.2 is an example session shown

(Evans (2018)). We do choose Sequel, because of it simplicity and �exibility.

1 require ’sequel’
2

3 DB = Sequel.sqlite # memory database, requires sqlite3
4

5 DB.create_table :items do
6 primary_key :id
7 String :name
8 Float :price
9 end

10

11 items = DB[:items] # Create a dataset
12 # Populate the table
13 items.insert(:name => ’abc’, :price => rand * 100)
14 items.insert(:name => ’def’, :price => rand * 100)
15 items.insert(:name => ’ghi’, :price => rand * 100)
16

17 # Print out the number of records
18 puts "Item count: #{items.count}"
19 puts "The average price is: #{items.avg(:price)}"

Listing 4.2: Code: Simple use of Ruby’s Sequel with a SQLite3 database

24

4 Software design

4.3.3 wkhtmltopdf

As mentioned before, we do need a functionality to convert the webpage of our dashboard

into a PDF, in order to send it to its stakeholders. For converting HTML pages to PDF �les,

a tool named wkhtmltopdf (Truelsen) is used. An example usage is found in listing 4.3,

Given arguments specify rotation of the resulting PDF, the source website and the result �le.

1 # using vertical paper alignment and a remote address
2 wkhtmltopdf -O Landscape ’http://www.dfn-cert.de/’ ’dfn-cert.pdf’

Listing 4.3: Usage of wkhtmltopdf

4.3.4 rufus-scheduler

The ScoreCard service has to check the risk of all assets frequently. We manage this frequency

with the Ruby gem rufus-scheduler. This gem allows us to write cronjobs in Ruby

notation. Listing 4.4 contains an example provided by Mettraux (2018) on the project site, in

the wild.

1 # quickstart.rb
2

3 require ’rufus-scheduler’
4

5 scheduler = Rufus::Scheduler.new
6

7 scheduler.in ’3s’ do
8 puts ’Hello... Rufus’
9 end

10

11 scheduler.join
12 # let the current thread join the scheduler thread

Listing 4.4: Usage of rufus-scheduler

4.3.5 Technology stack

Within �gure 4.3.5 we can see all choosen frameworks and applications. When trying to access

a wide spectrum of users, like in online shops there is a need to support as many browsers

as possible. Since we have no such a need, we set the browser requirements to a minimum

version supporting HTML5. HTML5 supplies a date picker out of the box (Pilgrim (2010)). For

the cascade style sheet, we do use W3CSS. It is responsive out of the box and easy to handle.

25

4 Software design

Since the ScoreCard service is actually sending emails, a email client might be shown on the

�gure.

Figure 4.6: Technology stack with used frameworks

26

5 Implementation

Within this chapter we do describe our way to orchestrate microservices and implemented parts

of the dashbaord, catalog service, asset model service and the β-TTC. Service, microservice

and component are used as synonyms.

5.1 Project structure

Our projects hierarchy is organized as follows. For every component is a single subfolder given,

as we can see in �gure 5.1. Every component folder contains a start.sh script for managing this

instance. Depending on the microservice, a Gem�le is given in order to state the dependencies.

Repository services using SQLite3 contain the database �le, which do end with *́.db´.

5.1.1 Managing mircoservices with compose.sh and tmux

Docker (Anderson (2015)) is a great tool to orchestrate, deploy and ship software. It became

the de facto standard in the microservices world. However, since shipping software is not part

of our prototype implementation, we do not have a real need for Docker.

Instead of using docker as a container manager we do use tmux, a terminal multiplexer

to orchestrate the microservices. Using tmux, all services will run on the same space, with

same resources on one single host. We wrote a simple script named compose.sh which

iterates over all directories within the project and calls a start.sh script. It allows us to

start, restart and stop all services.

That start.sh is started within a tmux session. The script itself is simply starting

the service. With those scripts we did replace docker-compose for prototype purposes.

A similar approach can be found in the wild, using pmux (programmable tmux) (Jenson

(2015)). Instead of using bash scripts, pmux uses a JSON �le for con�guration, holding various

parameters for orchestration. We decide to not use pmux, because it seems exorbitant for our

purposes.

In listing 5.1 we list tmux’s equivalent commands compared to docker. Note that within that

listing services and containers are used as synonyms.

27

5 Implementation

Figure 5.1: Overview of the projectstructure

28

5 Implementation

1 # list running containers
2 tmux ls
3 docker ps
4

5 # start a specific service. in this example ’catalog_repository’.
6 cd catalog_repository;
7 tmux new-session -d -s "catalog_repository" ./start.sh "start";
8 cd ..
9 docker start "catalog_repository"

10

11 # start within container ’catalog_repository’ a bash shell.
12 # not needed with tmux bacause we do run within the same environment.
13 docker exec -t -i "catalog_repository" /bin/bash
14

15 # stop service/container
16 tmux kill-session -t "catalog_repository"
17 docker kill "catalog_repository"
18

19 # start all services/containers
20 ./compose.sh start
21 docker-compose up
22

23 # stop all services/containers
24 ./compose.sh stop
25 docker-compose down

Listing 5.1: Code: Simple service management with tmux

5.2 Services

Within this section we describe details about the implemented services. At the end of ev-

ery service description, we discuss service related issues and problems occurred during the

implementation.

5.2.1 Stakeholder Repository and Asset Repository Service

We list these services in one section, because they have the same technical structure. Both

repositories supply CRUD operations for their assigned entities, which have been described in

29

5 Implementation

section 4.2.1. Those CRUD operations ful�l the presented RESTful API operations described in

section 4.2.3. Also both services do have a SQLite3 database backend. The initialization of the

database in the Stakeholder Service is shown in listing 5.2.

1 if ARGV.include? "init"
2

3 DB.create_table :stakeholders do
4 primary_key :id
5 String :name
6 String :surname
7 String :email
8 end
9

10 DB.create_table :subscriptions do
11 primary_key :id
12 foreign_key :stakeholder_id, :stakeholders
13 # id of advisory productversion
14 Integer :asset_id
15 end
16

17 end

Listing 5.2: Code: Snippet of router.rb in stakeholder_repository

Our stakeholder_repository does supply those URIs for the entity stakeholder and sub-

scription. Similar does the asset_repository supply it for asset, component and importance

1 # StakeholderRepository#update
2 # Hash -> Hash
3 def update(stakeholder)
4 @stakeholder_policy.verify(stakeholder)
5 @stakeholders.where(id: stakeholder["id"].to_i).
6 update(name: stakeholder["name"],
7 surname: stakeholder["surname"],
8 email: stakeholder["email"])
9

10 end

Listing 5.3: Code: Snippet of stakholder_repository.rb

In listing 5.3, see the update implementation of the CRUD operations. @stakeholders
is a Sequel representation of the stakeholders table, on which SQL-like operations are executed.

30

5 Implementation

Instead of implementing models, we do use Ruby’s Hash implementation. For model validation

we do use the verify method, which is a implementation of the policy pattern (Evans

(2004)). In fact @stakeholder_policy contains policy methods only. For instance the

veri�cation of the email type.

5.2.2 Catalog Repository Service

The catalog_repository supplies GET requests only, because of the read-only permission of

the advisory database. Within table 5.2.2 we see all those supplied resources. Corresponding

from the read-only access ony are possible. Note that in no case a request body has been

supplied and therefore not shown within the table.

Method Endpoint Request Parameters Responsebody

GET /cpes/:id vendor, product, cpe with related vulnerabilities

version

GET /products/:id product containing a list of possible

vulnerabilities

GET /vulnerabilies/:id vulnerability informations

GET /vulnerabilies vulnerability statistics including the

total amount of all vulnerabilities

CPE search

In order to search within the advisory database for CPE entries, we �lter those with the SQL

statement in listing 5.4. Since such a query would be complicated and ine�cent to write in

Sequel notation, we pass it a postgres SQL statement. We join the tables cpe_cpe, cpe_cpeproduct

and cpe_cpevendor. After joining those, we �lter with the passed parameters for vendor, product

and version. Those parameters can be seen within the where clause as :vendor, :product
and :version. We pass that query to Sequel, the parameters are prepared to prevent SQL

injection attacks. Also, a modeler must not model assets with deprecated CPEs. Within the

where clause, as the last conjunction we ensure that no deprecated CPEs will be shown when

�ltering.

That query might be optimized by restrict the sets before joining them.

1 select cpe_cpe.id as cpe_id,
2 cpe_cpe.uri as cpe_uri,
3 cpe_cpe.versiondisplayname as cpe_version,
4 prod_vendor.vendor_id as vendor_id,

31

5 Implementation

5 prod_vendor.vendor_displayname as vendor_displayname,
6 prod_vendor.vendor_name as vendor_name,
7 prod_vendor.product_id as product_id,
8 prod_vendor.product_name as product_name,
9 prod_vendor.product_displayname as product_displayname

10 from cpe_cpe full outer join (
11 select cpe_cpeproduct.id as product_id,
12 cpe_cpeproduct.name as product_name,
13 cpe_cpeproduct.displayname as product_displayname,
14 cpe_cpevendor.id as vendor_id,
15 cpe_cpevendor.displayname as vendor_displayname,
16 cpe_cpevendor.name as vendor_name
17 from cpe_cpeproduct full outer join cpe_cpevendor
18 on cpe_cpeproduct.vendor_id = cpe_cpevendor.id
19) as prod_vendor on cpe_cpe.product_id = prod_vendor.product_id
20 where (vendor_name like ’%’ || :vendor || ’%’
21 or vendor_displayname like ’%’ || :vendor || ’%’) and
22 (product_name like ’%’ || :product || ’%’
23 or product_displayname like ’%’ || :product || ’%’) and
24 (cpe_cpe.versiondisplayname like ’%’ || :version || ’%’
25 or cpe_cpe.uri like ’%’ || :version || ’%’) and
26 cpe_cpe.deprecated_by_id is null"

Listing 5.4: Code: CPE �lter with argument preperation

Fetching vulnerabilities and successor CPEs

Whilst we do not use the comparsion �eld provided by the advisory database, for �nding

CPEs which are threatened by a vulnerability, a workaround is needed. We set following rule:

Every vulnerability of every successor CPEs, are also vulnerabilities for a speci�c vulnerability.

We implement this rule by �rst fetching all successor CPEs, then merge all vulnerabilities of

the successor CPEs into a set. That way we have a unique set for a CPE. All that is done within

the class CpeRepository. Also the determination of successor CPEs is done in this class.

We �nd the successor CPEs of a CPE by selecting all CPEs then selecting those which have a

higher version number. Selecting those CPEs is predicated with the methodnewer_version?.

Its implementation can be found in listing 5.5. Similar implementations can be found for ruby in

the wild (https://github.com/dazuma/versionomy). However, we later argue

why we will drop this in another iteration.

32

5 Implementation

The method newer_versions within catalog_repository takes a given CPE

and returns a list of CPEs for the same, linked product with the fact of a higher, lexical version

number. This will also compare characters at the end of the version.

1 # "1.1.1" > "1.1"
2 # "1.1.1a" > "1.1.1"
3 # "1.1.1b" > "1.1.1a"
4 #
5 # str x str => bool
6 def self.newer_version?(new_version, old_version)
7 return false if new_version.nil? || new_version == ""
8 return true if old_version.nil? || old_version == ""
9

10 splited_new_version = new_version.split(".")
11 splited_old_version = old_version.split(".")
12 splited_new_version.each.with_index do |new_num, index|
13 old_num = splited_old_version[index]
14 # if old_num does not exist, left one is ’longer’ thus newer :)
15 if !old_num then return true
16 elsif new_num > old_num then return true
17 elsif old_num > new_num then return false
18 end
19 end
20 false
21 end

Listing 5.5: Code: An order implementation named newer_version?

Also we want to state that this must be changed in future versions. As with a release of the

operating system openSUSE Brown (2017) wrote as follows:

“On behalf of the openSUSE Board and Leap Release Management I am pleased to announce

the next version of openSUSE Leap after 42.3 will be: openSUSE Leap 15”

So the successor of version 42.3 is 15. This fact leads to a need of a version database which

contains version links as successors.

5.2.3 Metrics Service

We do use the βTTC implementation provided by Andrej Zieger (2018) for themetrics_service.

The service contains a python module for βTTC calculation. In order to supply a running TTC,

33

5 Implementation

we need to keep the vulnerabilities and the daily risk increasion in mind. In fact we calculate

all values for the sparkline on demand.

1 # calculates beta_ttcs beginning from assets last_patched_at till now.
2 # asset - to calculate beta_ttc of
3 # total_amount_of_vulnerabilities - known as beta-TTCs k
4 # returns a Map of dates in a string format like ’2018-03-30’
5 # and the beta_ttc for that date.
6 def running_beta_ttcs(asset, total_amount_of_vulnerabilities):
7 date_format = ’%Y-%m-%d %H:%M:%S %z’
8 last_patched_at = datetime.strptime(asset["last_patched_at"],
9 date_format)

10 last_patched_at = last_patched_at.replace(tzinfo=None)
11 delta = timedelta(days=1)
12 i = 0
13 accu = {}
14 now = datetime.now()
15 while last_patched_at < now:
16 last_patched_at = last_patched_at.strftime(’%Y-%m-%d’)
17 vulnerability_quantity = vulnerability_quantity_at_date(asset,
18 now)
19 beta_ttc_result = beta_ttc(vulnerability_quantity,
20 total_amount_of_vulnerabilities)
21 accu[updated_at_str] = beta_ttc_result - i
22 last_patched_at = last_patched_at + delta
23 i = i + 1
24 return accu

Listing 5.6: Code: Calculation of all βTTCs of the past days

One disadvantage of this code is, that when we dont keep track of what happened before the

last_patched_at �eld. Which leads to a loose of information of perviously calculated TTC

values. Thus the dashboard sparkline for the running TTC is never growing, resulting in a

partial use of it. Storing daily calculated TTCs is a better approach. Those calculated values

might be helpful for data analysts.

5.2.4 Configuration Service

This service interacts with all non interface services. For every services it communicates with,

has been an adapter written.

34

5 Implementation

Figure 5.2: Screenshot: Editing an asset

Within �gure 5.2 we see the form for editing an already created asset. Changing the name,

description, select another importance, edit the date when the asset has been patched the last

time. Also we can add and remove components of that asset. Also a sidebar has been added to

the left hand side, containing the entities Importance, Asset and Stakeholder.

5.2.5 ScoreCard Service

The ScoreCard service is the only microservice, which is not o�ering a RESTful API. When

the time passed by, In listing 5.7 the daily poll is shown, which is checking if the stakehold-

ers need to be noti�ed. The method notify_stakeholders generates a PDF using

wkhtmltopdf of the Dashbaord. It also fetches all subscribed stakeholders from the stake-
holder_service and sends the generated PDF to those.

The combination of wkhtmltopdf and a on JavaScript relying chart framework like

chartkick, leads to a problem. Resulting in a missing sparkline chart in the ScoreCard. While

we make a requirement to the client, that the browser is able to run JavaScript and HTML5,

the tool wkhtmltopdf is not able to plot because it has no JavaScript engine running. There

are two general possibilities to handle it for a successor version of ettcs prototype. The �rst

35

5 Implementation

option might be to rely on another chart framework, which serves plotted images. This option

is gives us the opportunity to keep the state of simply serving the dashboard as a ScoreCard.

1 require ’rufus-scheduler’
2

3 scheduler = Rufus::Scheduler.new
4

5 scheduler.every ’1d’ do
6 asset_repository_adapter.all_assets.each |asset|
7 beta_ttc = metrics_adapter.calculate_metrics(asset)
8 if minor_critical?(asset, beta_ttc) || critical?(asset, beta_ttc)
9 notify_stakeholders(asset)

10 end
11 end
12 end
13

14 scheduler.join

Listing 5.7: Code: Snippet of ScoreCard

5.2.6 Dashboard Service

Within Figure 5.3 on page 38, we can see the asset overview of the dashboard. The assets

are sorted by their ids and simple overview of the current security state is provided. A more

detailed description of the security state can be found on within Figure 5.4. Not only all

informations which are found within that overview are provided, also a detailed overview of

the components is given. Also the �eld newer_version_available? can be found

there, as the support of the process step Control Recommendations.

5.3 General Implementation Critique

Whilst we list critique within the sections of the components, we also had issues regarding all

components. Such critique is listed below:

1. Missing HATEOAS

While we speci�ed that the services must ful�l RESTful APIs, we did not achive that

goal. Regarding to Fowler (2010) a RESTful API has to provide Hypermedia Controls, also

known as HATEOAS. Instead of passing the IDs of an object, the corresponding link to

36

5 Implementation

request the resource shall be provided. Which has not been implemented by us. In fact

we achived level 2.

2. Missing component tests

Whilst prototyping we did add unit tests for parts of the components. For instance the

introduced method newer_version? Although it has been described before, that relying

on such a method for ordering releases is a bad idea. However, when iterating another

prototype or continue working on this one, component tests are required.

3. Leak of performance

Although not listed within the requirements, running into performance issues must be

avoided. But calculating TTC values for past dates is an time consuming task, which

depends on the last patched date. The longer that date passed, the longer does the

calculation need. To counter this problem, we could introduce redundancy to Metrics

Service, which is our bottleneck.

37

5 Implementation

Figure 5.3: Screenshot: Overview of all assets within the dashboard

Figure 5.4: Screenshot: Asset details within dashboard

38

6 Conclusion & Future Work

In this work we implemented a risk management system based on a Time-To-Compromise ex-

tension, named β-Time-To-Compromise. We did list requirements, designed and implemented

ettcs.

6.1 Conclusion

During this work we analysed a risk management process and created a system to support this

process. For this creation we listed requirements and speci�ed which process steps have to be

done by ettcs and which do need user interaction.

To keep the system �exible we choose a microservice architecture with two user interface

components. As the �rst service, we described a service for the con�guration of the process

support. Modeling assets, giving them an importance or impact and let stakeholders subscribe

to those assets are part of that service. Second service is a dashboard for supplying risk

informations of those de�ned assets. A third service named ScoreCard checks the risk daily.

If the TTC of a speci�c asset is smaller then a threshold speci�ed within the importance, an

e-mail will be send to the subscripted stakeholders.

There are four services not directly interacted by the user. Three repository services for the

context of stakeholder, catalog and asset. The fourth component is responsible for calculating

metrics for the modeled assets.

The use of ettcs did show that the project is still under development and not ready for

production use yet. Encountering problems, for example realizing that the sparkline within

the dashboard never grows, were the goal of this thesis. Another problem is located in the

ScoreCard, which is a dashboard representation, leaking all sparklines. As the last issue we

note performance issues, because of a backward TTC calculation.

6.2 Future Work

In order to make ettcs useable for production, we need to make some changes and extensions.

39

6 Conclusion & Future Work

1. Add user- and permission management

We built a system, without any authentication of identity. Those asset informations must

be treated sensible. Giving a blueprint of the software landscape to an attacker has to be

avoided. This explains the need for such authentication in production, including roles.

2. Improve Control Recommendations

Stored advisories within the advisory database are currently not used within ettcs. Instead

we provide the simple information if there exists a newer release. Extend ettcs to provide

those advisories as control recommendations.

3. Use typed TTCs

In section 2.3.5 we introduced Ziegers typed TTCs. Whilst the βTTC we used does not

di�erentiate integrity, con�dentially and availability, although this is needed within the

process step Impact Analysis. Implement the use of typed TTCs in ettcs.

4. Compare TTC values to real data

Andrej Zieger (2018) mentioned that “Nevertheless, the results of the time-to-compromise

model [...] are not heavily supported and tested against real-world data.” To validate the

correctness of TTC, Zieger also approaches to set up a honeypot network and measure

the real TTC. We cite this in order to clarify the importance of the βTTC validation.

5. Extend the asset model

The current asset model represents a single host. Those hosts are connected through a

network. Andrej Zieger (2018) already mentioned that in future we should “extend the

formal model of time-to-compromise to a network and more complex systems”. To do

so, the asset model has to be extended for network purposes. Extend the asset model for

network purposes.

6. Simplify Asset Modeling

Some organisations already have information about the asset model, even if partial. Is the

e�ort worth modelling an asset and keeping it up to date. Where can we �nd information

about assets in an organisation?

a) Packet managers

contain detailed informations about the software product. We unify package and

product in that context. Packages do provide dependencies, which is a great help

for asset modeling. Installed packages indicate that a product is part of our asset.

Write an adapter for packet managers. Modeling an asset by simply installing a

package and its dependencies sounds fair.

40

6 Conclusion & Future Work

b) Enterprise architecture management

EAM is the combination of �ve contexts. Business, process, integration, software

and technical contexts named layers (Winter und Fischer (2006)). Those layers

are modeled within a meta-model. Within the meta-model entities relate to other

entities unbounded to their contexts. Thus a network-switch is related to a web

server, whose is related to a process and so on. Within this work we worked

on the technical and software context only. However, integreating to an EAM

framework gives us an answer to the question: How long does it take until an

attacker compromised this work�ow?

c) Use existing vulnerability management systems

Although �ngerprinting is not the way we want to go, it can help creating the asset.

Those resulted �ngerprints might be matched on the CPEs, to persist that asset for

ettcs. Write adapters for vulnerability management systems.

7. Create a product catalogue

Managing CPEs is as already mentioned a pretty hard task. The deprecation process

screams for an actual revision system. Often such products d have dependencies on other

products, which are also not speci�ed within CPEs. Such a product catalogue is also

interesting for EAM. Create a public product catalogue compatible to the speci�cations

of CPE 2.2 and CPE 2.3.

8. Go Event-Driven

Instead of polling frequently, reacting on events would increase the performance and

allow a �uent processing of the risk. Change to a Event-Driven Architecture (Michelson

(2006)) brings bene�ts. Such events include the release of a new vulnerability or a change

of an asset. Adapt ettcs to an event-driven architecture.

9. Store calculated TTCs

Instead of recalculating passed values, storing those values is a better approach in

perspective of performance, complexity and correctness. This informations might be

also interesting for data analysts and �t into a data warehouse.

41

Bibliography

[Anderson 2015] Anderson, Charles: Docker [software engineering]. In: IEEE Software 32

(2015), Nr. 3, S. 102–c3

[Andrej Zieger 2018] Andrej Zieger, Klaus-Peter K.: The β-Time-to-Compromise Metric

for Practical Cyber Security Risk Estimation. In: 11th Internaional Conference On It Security

Incident Management And It Forensics, IEEE, 2018. – ISBN 978-1-5386-6632-6

[Andrew Buttner 2009] Andrew Buttner, Neal Z.: Common Platform Enumeration CPE

Speci�cation. URL http://cpe.mitre.org/files/cpe-specification_
2.2.pdf, 2009

[Bächle und Kirchberg 2007] Bächle, Michael ; Kirchberg, Paul: Ruby on rails. In: IEEE

software 24 (2007), Nr. 6

[Brant A. Cheikes 2011] Brant A. Cheikes, Karen S.: Common Platform Enumer-

ation CPE Speci�cation. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.696.7787&rep=rep1&type=pdf, 2011

[Brown 2017] Brown, Richard: [opensuse-factory] openSUSE Leap’s Next Major Version

Number. openSUSE mailing list. 2017

[BSI 2012] BSI: In: Schwachstellenampel - Produktsicherheit auf einen Blick. URL

https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/
downloads/BSI-CS_028.pdf?__blob=publicationFile&v=3, 2012. –

[Online; accessed 12-July-2018]

[Evans 2004] Evans, Eric: Domain-driven design: tackling complexity in the heart of software.

Addison-Wesley Professional, 2004

[Evans 2018] Evans, Jeremy: Documentation for Sequel. 2018. – URL http://sequel.
jeremyevans.net/documentation.html

42

http://cpe.mitre.org/files/cpe-specification_2.2.pdf
http://cpe.mitre.org/files/cpe-specification_2.2.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.7787&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.7787&rep=rep1&type=pdf
https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/downloads/BSI-CS_028.pdf?__blob=publicationFile&v=3
https://www.allianz-fuer-cybersicherheit.de/ACS/DE/_/downloads/BSI-CS_028.pdf?__blob=publicationFile&v=3
http://sequel.jeremyevans.net/documentation.html
http://sequel.jeremyevans.net/documentation.html

Bibliography

[Fowler 2010] Fowler, Martin: Richardson Maturity Model: steps toward the glory of REST.

In: Online at http://martinfowler.com/articles/richardsonMaturityModel.html (2010), S. 24–65.

– [Online; accessed 12-July-2018]

[Fredrich 2012] Fredrich, Todd: RESTful Service Best Practices. Pearson eCollege,

2012. – URLhttp://www.restapitutorial.com/media/RESTful_Best_
Practices-v1_1.pdf

[Harris und Haase 2011] Harris, Alan ; Haase, Konstantin: Sinatra: Up and Running: Ruby

for the Web, Simply. " O’Reilly Media, Inc.", 2011

[Jenson 2015] Jenson, Graham: In: Testing microservices

with pmux and TravisCI. URL https://maori.geek.nz/
testing-microservices-with-pmux-and-travisci-8d3c42ce995c,

2015. – [Online; accessed 12-July-2018]

[Luis Alberto Benthin Sanguino 2017] Luis Alberto Benthin Sanguino, Rafael U.: Software

Vulnerability Analysis Using CPE and CVE. Mai 2017

[Lyon 2009] Lyon, Gordon F.: Nmap Network Scanning: The O�cial Nmap Project Guide

to Network Discovery and Security Scanning. USA : Insecure, 2009. – ISBN 0979958717,

9780979958717

[Maynor 2011] Maynor, David: Metasploit toolkit for penetration testing, exploit development,

and vulnerability research. Elsevier, 2011

[McQueen u. a. 2006] Mc�een, Miles A. ; Boyer, Wayne F. ; Flynn, Mark A. ; Beitel,

George A.: Time-to-Compromise Model for Cyber Risk Reduction Estimation. In: Gollmann,

Dieter (Hrsg.) ; Massacci, Fabio (Hrsg.) ; Yautsiukhin, Artsiom (Hrsg.): Quality of Protection:

Security Measurements and Metrics. Boston, MA : Springer US, 2006, S. 49–64. – URL

http://dx.doi.org/10.1007/978-0-387-36584-8_5. – ISBN 978-0-387-

36584-8

[Mell u. a. 2007] Mell, Peter ; Scarfone, Karen ; Romanosky, Sasha: A complete guide

to the common vulnerability scoring system version 2.0. In: Published by FIRST-Forum of

Incident Response and Security Teams Bd. 1, URLhttp://www.nazimkaradag.com/
wp-content/uploads/2014/11/cvss-guide.pdf, 2007, S. 23

[Mettraux 2018] Mettraux, John: rufus-scheduler. 2018. – URL https://github.
com/jmettraux/rufus-scheduler

43

http://www.restapitutorial.com/media/RESTful_Best_Practices-v1_1.pdf
http://www.restapitutorial.com/media/RESTful_Best_Practices-v1_1.pdf
https://maori.geek.nz/testing-microservices-with-pmux-and-travisci-8d3c42ce995c
https://maori.geek.nz/testing-microservices-with-pmux-and-travisci-8d3c42ce995c
http://dx.doi.org/10.1007/978-0-387-36584-8_5
http://www.nazimkaradag.com/wp-content/uploads/2014/11/cvss-guide.pdf
http://www.nazimkaradag.com/wp-content/uploads/2014/11/cvss-guide.pdf
https://github.com/jmettraux/rufus-scheduler
https://github.com/jmettraux/rufus-scheduler

Bibliography

[Michelson 2006] Michelson, Brenda M.: Event-driven architecture overview. In: Patricia

Seybold Group 2 (2006)

[Newman 2015] Newman, Sam: Building microservices: designing �ne-grained systems. "

O’Reilly Media, Inc.", 2015

[Pilgrim 2010] Pilgrim, Mark: HTML5: Up and Running: Dive into the Future of Web Devel-

opment. " O’Reilly Media, Inc.", 2010

[Pytel u. a. 2007] Pytel, Chad ; Yurek, Jonathan ; Marshall, Kevin: Pro Active Record:

Databases with Ruby and Rails. Apress, 2007

[Riancho 2011] Riancho, Andrs: w3af-web application attack and audit framework. In:

World Wide Web electronic publication (2011), S. 21

[Shikha Shahi 2018] Shikha Shahi, Matthias H.: Sicherheitskennzahlen in der Praxis. 2018

[Stoneburner u. a. 2002] Stoneburner, Gary ; Goguen, Alice Y. ; Feringa, Alexis: SP 800-30.

Risk Management Guide for Information Technology Systems. Gaithersburg, MD, United

States : National Institute of Standards & Technology, 2002. – Forschungsbericht

[Truelsen] Truelsen, Jakob: wkhtmltopdf–Convert html to pdf using webkit (qtwebkit)

[Winter und Fischer 2006] Winter, Robert ; Fischer, Ronny: Essential layers, artifacts,

and dependencies of enterprise architecture. In: Enterprise Distributed Object Computing

Conference Workshops, 2006. EDOCW’06. 10th IEEE International IEEE (Veranst.), 2006, S. 30–

30

44

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 14. Juli 2018 Alex Mantel

	1 Introduction
	1.1 Goal
	1.2 Thesis structure

	2 Vulnerability management
	2.1 Background
	2.1.1 Risk
	2.1.2 Risk Management- and Vulnerability Management System (VMS)
	2.1.3 Common Vulnerabilities and Exposure (CVE)
	2.1.4 Common Platform Enumeration (CPE)
	2.1.5 CPE dictionary & the National Vulnerability Database (NVD)

	2.2 Matching CPEs and CVEs
	2.3 IT-Security metrics
	2.3.1 Common Vulnerability Scoring System (CVSS)
	2.3.2 Time-To-Compromise (TTC)
	2.3.3 -Time-To-Compromise (TTC)
	2.3.4 Accepting that time is running
	2.3.5 Typed Time-To-Compromise

	2.4 BSI-Schwachstellenampel

	3 Requirements analysis
	3.1 Given advisory database
	3.2 Supporting the process
	3.2.1 System Characterization
	3.2.2 Threat Identification
	3.2.3 Vulnerability Identification
	3.2.4 Control Analysis
	3.2.5 Likelihood Determination
	3.2.6 Impact Analysis
	3.2.7 Risk Determination
	3.2.8 Control Recommendations

	3.3 Analysis of BSI-Schwachstellenampel
	3.4 Dashboard and ScoreCards

	4 Software design
	4.1 Design goals
	4.2 Architecture
	4.2.1 Adding entities
	4.2.2 Adding components
	4.2.3 Choosing a microservice architecture

	4.3 Frameworks & tools
	4.3.1 Web- & RESTful API
	4.3.2 Object Relational Mapper
	4.3.3 wkhtmltopdf
	4.3.4 rufus-scheduler
	4.3.5 Technology stack

	5 Implementation
	5.1 Project structure
	5.1.1 Managing mircoservices with compose.sh and tmux

	5.2 Services
	5.2.1 Stakeholder Repository and Asset Repository Service
	5.2.2 Catalog Repository Service
	5.2.3 Metrics Service
	5.2.4 Configuration Service
	5.2.5 ScoreCard Service
	5.2.6 Dashboard Service

	5.3 General Implementation Critique

	6 Conclusion & Future Work
	6.1 Conclusion
	6.2 Future Work

