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Kurzzusammenfassung
Diese Arbeit untersucht die Verwendbarkeit von Inertialsensoren für Benutzerinteraktionen
auf einer Schreibtischplatte. Kombinierte Beschleunigungs- und Drehsensordaten mehrerer
inertialer Messeinheiten werden verwendet, um die Position einer Benutzereingabe zu ermit-
teln. Dazu wird zunächst versucht mittels Triangulation die Peilung der Quelle zu ermitteln,
dann werden Machine-Learning Algorithmen angewendet.
Matthias Lösch
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Abstract
This bachelor’s thesis evaluates the use of inertia sensors for turning the desktop surface into a
detector for user activity or input. Combined accelerometer and gyroscope data frommultiple
inertia mesurement units is used to dertermine the location of the user interaction. Two
approaches are evaluated, triangulation using the relative bearing of the input location relative
to the sensors and machine learning strategies.
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1. Introduction

1.1. Motivation

In recent years human-computer interaction has changed. While a few decades ago mechani-
cal switches, rotary controls and sliders directly influencing an analogue electric circuit were
the norm, the miniaturization and advancements in microprocessors and sensors allowed the
development of a number of new input interfaces.
Touch screens and touch pads are wide spread in consumer electronics.

1.2. Approach

To denote a location on a surface, the natural human interaction is to tap there with the finger.
This tapping creates vibrations which are detectable by sensors.

1.3. Theory

Tapping on a table creates acoustic waves. They propagate with the speed of sound circular
from their origin. As the wave front has to travel different distances to arrive at each sensor
and incoming angle of the wave front differs and the location of the origin can be inferred
from these differences.

1.4. Purpose

This thesis will evaluate the whether it is possible to determine the location of finger tapping
on any tabletop using consumer-grade inertia sensors. It will be evaluated whether the com-
bination of accelerometer and gyroscope data can increase the accuracy of the calculation.
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2. Related works

As shown by Braun u. a. (2015) the acoustic waves transmitted by a tabletop can be used to
determine the location and even type of interaction (2.1.6). While their approach requires only
a single sensor to localize the input after some calibration, it picks up only the longitudinal
component of the acoustic wave.
By measuring the deflection on multiple axes geologists use different waveforms to gain more
details from their only means of observation.

To try to compensate the difference in sample rate in order of two magnitudes that is found
in cheap consumer grade inertial sensors, both approaches are combined. It will be evaluated
if there is an obvious correlation between the readings or if machine learning strategies similar
to those used by Braun u. a. (2015) can be used.

2.1. Input localization on surfaces

There are numerous existing technologies to detect the location of touch or tap input on sur-
faces. The most widespread and common applications are in touch screens such as smart
phones, vending machines, and touch pads in laptops. In those settings the input area is
defined and can be fitted with sensing technology. There are different approaches to this
problem, resulting in a wide range of solutions differing in durability, sensitivity, size, energy
consumption and cost. In some settings it might be desirable to turn an existing surface such
as a tabletop into a touch input device, without adjusting the input area to the needs of the de-
tection method. In this case, many properties of the material, such as stiffness and luminosity,
are unknown and some kind of calibration is necessary. Colegrove (2010)

2.1.1. Electric Potential

Electric potential is the most widely used method for input localization.

2



2. Related works

Resistive

Resistive touch pads consist of two layers. If a force is applied to the upper layer it comes into
contact with the lower layer and closes a circuit, allowing to measure the change in electric
potential difference along the x- and y-axis of the sensor. Can be used with gloves, pens, etc.,
because it only requires force on the upper layer. These touch pads can be used with gloves
and pens, but are not very resilient and does not react very fast.

Capacitive

Capacitive touch sensors use the electric properties of the human finger to detect changes in
an electric field. A finger has a much higher electric permittivity than air, mainly due to the
high water content of organic matter. This is usually archived by electrode arrays below the
touch field, but in recent years the projective touch field technology also relies on measuring
the change of potential difference along the two axes.

2.1.2. Optical

Infra-red Array

A very simple and cost-efficient solution is to surround the input area with an array of infra-
red emitting diodes and receivers. The location of the input is directly given by the shadowed
receivers on the x and y axis. (Dohse u. a., 2008, p 297)

Video Tracking

Deriving from human experience optical tracking seems to be a natural solution. Most of these
systems project an infra-red grid onto the surface to determine their viewing angle. Letessier
und Bérard (2004)

2.1.3. Near Field Sensors

There are several inexpensive devices promising to turn any surface into a smart surface by
using ultrasound distance sensors to measure the position of fingers in front of the sensor.
The area is mostly very limited. (Nonaka und Da-te, 1995, p 754)

3



2. Related works

2.1.4. Acoustic

2.1.5. Active

Surface Acoustic Wave touch panels use two receivers to measure the frequency pattern of
ultrasound SAW stimulated by an emitter. (Benali-Khoudja u. a., 2004, p 6) This is very ro-
bust against humidity and like resistive touch can be operated with gloves etc. while being
insensitive to water drops, making it good for wet environments.

2.1.6. Passive

Braun u. a. (2015) shows how touch/tap and even swipe input can be recognized using a single
piezoelectric microphone on any tabletop surface. The frequency spectrum in the signal is
analysed and machine learning is used to map the signals to positions.
There are also gadgets like Mogee Play or Pulsecontroller, which use a similar approach to
convert the measured acoustic waves to input to a music synthesizer. They don’t map their
input signal to a defined area.

2.2. Other Applications of Acoustic Waves in Solids

2.2.1. Geology

The field of geology relies heavily on measurement of seismic waves. The low permeability
of electromagnetic waves into the ground allow the use of classic image generating methods
like radar only for depths up to 100m.

Seismology

In the event of an earthquake seismic waves propagate away from the epicentre in a spher-
ical manner. Because the longitudinal waves (3.2.1) travel much faster than the transversal
waves (3.2.1), they are named P-(primary) and S-waves (secondary) respectively. The distance
to the epicentre can be calculated solely from the difference in arrival time without requir-
ing a second measurement for triangulation. Their different propagation speeds cause the
waves to diffract differently when the composition of the medium changes. (Anstey, 1977, p.
128) The liquid core of earth doesn’t transmit S-Waves and by comparing signals from seis-
mometers around the globe allows geologists to approximate the composition of the earth.
Measuring the grounds rolling movement with gyroscopes has not been done until recently,
as gyroscopes become more precise. (Suryanto, 2006, p 16)

4



2. Related works

Seismic

Similar methods are used to get a better understanding of the topmost layers of earth’s crust,
but the seismic event is induced artificially by detonations or simply by dropping a large mass.
Geophones are used to measure the signal around the source of the waves and by interpreting
reflections and refractions of the waves on different layers of stone or sediment it is possible
to detect aquifers, oilfields, ore deposits or the progress of tunnel construction (Schmidt und
Wuttke, cf 4.1).

2.2.2. Engineering

Ultrasonic testing is a technique to detect material deficiencies in components. A probe emits
short ultrasonic impulses into the material and measures the reflections received. Deficiencies
change the refractive behaviour of the ultrasonic waves and can be imaged from the recorded
reflections. (Deutsch u. a., 2013, p 4)

2.2.3. Explosion Detection

Shock waves caused by explosions, for example in mines, can be detected using inertial sen-
sors. While conventionally geophones are used to map a mine this can also be done with well
aligned smartphone sensors (Thandu, 2016, cf)

5



3. Physical and Technical Prerequisites

The following section explains the physical principles of position detection, structure-borne
sound, as well as the mechanics of inertial sensors.

3.1. Triangulation

To determine the position of point C relative to the known locations of two pointsA andB, a
triangle with a known base can be constructed. If the angles α and β can be determined, the
location of C is then known to be at the intersection of sides a and b.

Figure 3.1.: Triangle

6



3. Physical and Technical Prerequisites

3.2. Acoustic Waves in Solids

Tapping onto the surface of a solid object creates pressure waves in the structure of the solid.
They propagate spherically from their origin. The following section describes how waves
travelling through a solid object change with distance travelled.

3.2.1. Types of Waves

(Lothar Cremer, cf)

Longitudinal Waves

Also called compression waves, these waves displace the molecules of the medium along the
propagation axis of the wave. Examples are sound waves in air or the oscillation of a spring.

cL =

√
E

ρ
(3.1)

E is the module of elasticity, also called Young’s module. It is a property of the material with
the density ρ

Transverse Waves

Also called shearing waves, these waves displace the medium orthogonally to the propagation
axis.

cT =

√
G

ρ
(3.2)

with G being the material-specific modulus of shear

Surface Acoustic Waves

Surface acoustic waves (SAW) occur on the surface of solids. They can be considered to extend
circular from the origin and carry longitudinal (3.2.1) and transversal (3.2.1) components. They
can be represented as Rayleigh-Waves, resembling the movement of the surface of liquids.
Their propagation velocity cR can be approximated with

cR ≈ cT
(0, 874 + 1, 12µ)

1 + µ
(3.3)

7



3. Physical and Technical Prerequisites

with Poisson’s ratio µ denoting the ratio of the transversal expansion to the longitudinal com-
pression. Lothar Cremer

3.2.2. Properties of Waves

In the following section the relevant properties of acoustic waves in solids are described

Propagation Delay

Differences in arrival time of acoustic waves are commonly used for localization (Diamant und
Lampe, 2013, p 5). The difference δtmax is greatest when the source is located on the extension
of the line between the sensors, i.e. not in the space between the sensors. By comparing any
measured δt with δtmax the bearing of the source can be calculated. (Lothar Cremer, p 87)

Dispersion

The speed of sound in a medium depends on the wavelength and the type of the wave. Com-
bined with the greater dissipation of higher frequency waves this leads to a widening of the
signal, not only further reducing the amplitude but also increasing the wavelength λ (Anstey,
1977, p 126).

The dispersion relation describes the relationship f between the angular frequency ω and
wave number k.

ω = f(k) (3.4)

As shown by (Lothar Cremer, 92,99) the phase velocity depends on the mass per distance
traversedm′

c =
4

√
G

m′ ·
√
ω (3.5)

Dissipation

Dissipation or dampening is caused by friction of the molecules of the medium excited by the
wave. The amplitude decreases relative to the distance that the wave has travelled.

The amplitude ψ decreases between locations r⃗0 and r⃗d (Demtröder, 1998, p 393)

r⃗0 : ψ (3.6)

r⃗0 + dr⃗ : ψ + dψ = ψ + δψ
δz dr⃗ (3.7)

8



3. Physical and Technical Prerequisites

Reflection and Refraction

Because waves are refracted or reflected on the boundaries of the mediumwe have to consider
those as well. Due to the high speed of sound in hardwood (4.1) compared to the sample
rate (4.2.1) of the sensors it can be assumed that most of the signal received will consist of
reflections. Unfortunately the reflections will be scattered from all directions.

9



3. Physical and Technical Prerequisites

3.3. Inertial Sensors

Inertial sensors measure their displacement in reference to their own resting frame. Motion
sensors (accelerometers) and rotation sensors (gyroscopes) are required to measure the six
degrees of freedom when moving in three dimensional space and are often combined into one
IMU (inertial measurement unit).

While IMU have been used for naval and air navigation for decades, new types of sensors
are small and energy efficient enough to be present in almost every smart phone. These are
based on MEMS (micro electro-mechanical system) technology. (Bernstein u. a., 2003, cf)

3.3.1. Gyroscope

A rotation sensor measures the change of rotation over time. All MEMS-gyroscopes are based
on measuring the Coriolis force acting on either current or oscillations.

Draper Tuning Fork Two forks with interlocking prongs are stimulated to oscillate in op-
posing directions. If this structure is rotated, a Coriolis force acts on the mass of the forks and
the prongs shear against each other. this results in a change of electric capacity which can be
measured.Reilly u. a. (2006)

Figure 3.2.: Draper Tuning Fork
Reilly u. a. (2006)

10



3. Physical and Technical Prerequisites

Hemispherical Resonator Gyroscope A thin hemisphere anchored by a thick stem is
stimulated to resonate. This causes the circular opening to oscillate its shape between two
ellipses with orthogonal semi-axis. If the aperture is rotated in the plane of the oscillation the
oscillation follows the rotation with a delay, which can be measured.

3.3.2. Accelerometer

Accelerometers measure the force acting upon them. Most accelerometers depend on measur-
ing the force exerted by a proof mass on its attachment.

Capacitive The proof mass is acting as an electrode of a capacitor. If the container is accel-
erated the distance between the proof mass and the containment changes proportionally to
the accelerating force acting upon it. In sensors with MEMS technology the displacement of
the mass is measured using capacitors. Zhang (1998)

Figure 3.3.: Simplified diagram of MEMS-accelerometer

Piezoelectric The proof mass directly exerts its inertia onto a piezoelectric element, either
by inducing an electric potential or by changing its resistance Howe und Cutkosky (1989).

11



4. Experiments

To detect the location of knocks on a table, a table was fittedwith two InverseMPU5600 senors,
which are connected over an I2C bus with a Raspberry Pi Model 3 B+.

4.1. Set-up

Figure 4.1.: Experimental set-up of the sensors on the table

The sensors are installed to a metal plate. The mass of the plate acts as a seismic mass, pre-
venting the sensors from being influenced by minor disturbances. The metal plates are fitted
with three feet that are kept from moving by adhesive tape. A three-legged design provides
greater stability over a four-legged design.
The sensors are connected to the Raspberry Pi using Cat5e cables, reducing electromagnetic
disturbances on the bus.
Due to the stiffness of the cables they were prevented from moving by weighting them down.

12



4. Experiments

Sensor Placement The speed of sound in wooden panels ranges between 2700ms in certain
types of hardboard up to 3500ms in massive oak panels. Typical parameters for hardboard are
c = 3000ms for the speed of sound, a density of ρ = 600 kg

m3 and a modulus of elasticity of
E = 5.4 · 109 kg

ms2
Lothar Cremer

The sample rate can be used to calculate the minimum distance between sensors and detect
a propagation delay between the sensors.

fSensor = sample rate

cL = Speed of sound

d = distance between sensors =
cL

fSensor

with

c = 3000ms

f = 1500Hz

d =
c

f =
3000ms
15001

s

= 2m

To detect a delay of 1 sample, the sensors need to be placed at least 2m apart from each other.
As this exceeds the size of an average tabletop, this approach will not be followed further.

For a more practical experiment the sensors were placed 1m apart, 0.5m from the long side
of the table.

4.1.1. Tabletop

The tabletop has the dimensions 2000mm·900mm·250mm and seems to be made of multiple
layers of hardwood. It is resting on two bars and is additionally hindered from oscillating by
two further fixation points in the middle.

4.1.2. Sensors

Two Invensense MPU6500 were used. They are fitted with a 3-axis accelerometer and a 3-axis
gyroscope, a typical low-cost motion processing unit for mobile devices. It comes with several
features such as preprocessing, wake-on-motion and a low-power mode, which are not used
here.

13



4. Experiments

Figure 4.2.: Tabletop resting on the frame

The configuration and data registers are accessible via the I2C interface. Each value con-
sists of 16 bits split over two adjacent registers and is stored in two’s complement format.
InvenSense (2015)

Digital Motion Processor

The Digital Motion Processor implements the features mentioned above. If left to default
settings it also applies a digital low-pass filter (DLPF) to the signal, smoothing the signal at
the cost of a lower sample rate.

Gyroscope

Depending on the configuration the effective measuring range of the gyroscope is ±250°/s,
±500°/s, ±1000°/s and ±2000°/s. Its native sample rate is 8kHz, but even when smoothing the
signal with the DLPF it still outputs 3600 samples per second. Start-up time from sleep mode
is 35 ms.

Accelerometer

The accelerometer can be configured to cover ±2g, ±4g, ±8g and ±16g measuring ranges. De-
fault output sample rate is 500Hzwith DLPF enabled and 4000Hzwhen the DLPF is bypassed.
Start-up time is 30 ms.
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4. Experiments

Temperature

The temperature sensor can be used to calibrate the sensor in settingswith a temperaturemuch
higher (or lower) than room temperature, as those conditions might influence the accuracy of
the MEMS.

I2C

The sensors primary interface is I2C. By connecting a pin on the breakout board to V0 its
address can be incremented by 1, allowing two sensors of the same type to share one bus. The
fastest supported transfer mode is fast-mode, allowing 400kbit/s.

Other Features

The following features were considered to be used, but ultimately discarded.

I2C Master Mode The chip can act as an I2C master, buffering values read from slave de-
vices in its own registers. As the bus limits the output sample rate (4.2.1), sending more data
over the same bus would reduce the effective sample rate even further.

FIFO An internal first in first out (FIFO) queue allows buffering up to 512 bytes. If we
wanted to save all axes we could buffer 85 datasets in the FIFO. This was considered too small
a sample size to do meaningful analysis.
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4.1.3. Raspberry Pi

A Raspberry Pi 3 Model B+ is used to collect and analyse the data. The sensors are connected
to the Raspberry via the I2C-bus. Power is also delivered by the Raspberry.

Raspberry Pi Foundation (2014)

Hardware

CPU Broadcom BCM2836B0 Arm Cortex-A53 64-bit Soc @1.4 GHz

RAM 1GB LPDDR2 SDRAM

GPIO The Raspberry Pi can be expanded using the 40 exposed GPIO pins. Unfortunately
only one I2C-Bus is exposed, so both sensors will have to share a bus.

Figure 4.3.: Raspberry Pi Model 3 B+ GPIO header
Harvey

Software

Operating system TheRaspberry Pi runs Raspbian, a version of the popular DebianGNU/Linux
distribution.

16



4. Experiments

Python All software is written in the Python programming language (version 3.5) The code
is interpreted by the CPython reference implementation by www.python.org (Van Rossum
und Drake Jr, 1995, cf)

Modules To capture the output of the sensors and interpreting the signals multiple third
party python modules were used. Jones u. a. (2001–)

• matplotlib

• numpy

• scipy

• smbus

• scikit-learn

4.1.4. Data collection

Each dataset consists of 4000 samples. A python program running on the Raspberry Pi polls
the sensors sequentially. Due to the limited data rate on the shared bus the transmission rate
of the readings to the control unit is below the actual sample of 4kHz and therefore polling
both sensors as fast as possible is the best option to get the maximum sample rate (4.1).
Using the data-ready interrupt provided by the MPU-6500 was not an option because the
execution time of the ISR would surpass the rate of incoming interrupts and the sensors kept
hogging the bus and blocking each other.

After each capture period the data is stored in CSV-file. Due to the limited processing power
of the Raspberry Pi the data was processed externally.
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4.2. Sensor Configuration

To determine the optimal sensor configuration, several experiments with varying settings
where conducted. This section describes the relevant insights gained through those experi-
ments.

4.2.1. Sample Rate

A dataset consists of values for 6 axes plus temperature with a length of 2 bytes each, so total
length of 112 bits. Because the two sensors share a bus the calculated sample rate must be
divided by 2.

400000 bits
112bit

= 3571.41
s (4.1)

3571.41
s

2
= 1785.7Hz (4.2)

Additionally the overhead of addressing the device and register (one byte each) and acknowl-
edgements cost additional time.

Multi-Byte Reading

The Linux I2C driver smbus supports the I2C bus due to similarities in the SMBus and I2C bus
protocol. In contrast to byte wise reading, where every register has to be addressed individ-
ually, the master requests a number of bytes following the start register, therefore reducing
control overhead and leaving more cycles for data transfer for the bus.

The temperature sensor’s data register is unfortunately placed between the two axis sets of
the inertia sensors. To skip those 16 bits would cost more time on the bus for sending control
commands.

4.2.2. DLPF

Gyroscope

TheDLPF can be configured to allow an output sample rate of 3600Hz for the gyroscope data,
well above our 1.7kHz (InvenSense, 2015, 4.5)
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Accelerometer

The maximal output sample rate of the accelerometer is 460Hz when using the DLPF, so the
best solution is to bypass the DLPF for the accelerometer data path allowing a maximal output
sample rate of 4000Hz (InvenSense, 2015, 4.8)

4.2.3. Measuring Range

The measuring ranges for both inertial sensors can be configured individually.

Gyroscope

As very small readings on the gyroscope axes are expected, using theminimal range of ±250°/s
seems warranted. The least significant byte (LSB) corresponds to 1

131°/s (InvenSense, 2015,
Table 1)

Accelerometer

The accelerometers Z-axis measuring range is limited naturally by the 1g offset of earth’s grav-
ity, so when using the smallest measuring range ±2g accelerations greater 1g might exceed
the scale. The impulse created by knocking on the table presumably creates just a fraction of
that. The LSB corresponds to 1

16,384g (InvenSense, 2015, Table 2)
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4.3. Measurements

According to the Nyquist sampling theorem the sampling frequency should be greater or equal
the highest frequency of the signal. The sensors output rate is far below the expected frequen-
cies of an acoustic signal. (Mishali und Eldar, 2010, p 4)

Reducing the Number of Bytes to be Transferred

To increase the effective sample rate we could read fewer axes. The accelerometers Z axis
and the two horizontal gyroscope axes were chosen to be read as they seem to be the most
relevant.

4.3.1. Sensing Area

After finding the best configuration, sample data was collected.
25 points were chosen within the 50cm · 100cm area between the sensors. A coordinate

system was defined so the left sensor A is located at the origin (0, 0), the right sensor B is
located at (100, 0) 10 of those points are located parallel to the x-axis at y = 25. In case
location in two dimensions proves to be too difficult, those points can be used to try to at least
determine the location along the x-axis. (See 4.1)

For each of the points P 20 measurements were taken, 10 with the full dataset, 10 with the
reduced data set, each consisting of 4000 samples.

The tap events were given with one finger. This leads to varying intensity for the impulses.
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5. Analysis

To detect the position of a knock on a table, the following techniques were considered.

5.1. Preprocessing

To smooth the signal recorded by the sensors and to analyse the data some preprocessing was
required.

5.1.1. Savitzky-Golay Filter

The Savitzky-Golay filter was described first in Savitzky und Golay (1964). It’s a commonly
used filter in digital signal processing to increase the signal to noise ratio (SNR). Compared to
a simple moving average filter the advantages the peaks get less deformed. Press u. a. (1992)

Yj =

m−1
2∑

i=−m−1
2

Ci yj+i,
m− 1

2
≤ j ≤ n− m− 1

2
(5.1)

This project uses the scipy.signal.savgol_filter implementation Jones u. a. (2001–).
All further operations were applied to the smoothed signal.

Mean

Themean is required to determine the offset for standardizing the signal. this project uses the
numpy.mean implementation.

5.1.2. Standardization

The sensors do not read mean zero even when resting. While the AcZ axis is expected to
measure gravity at around 9.81m

s2
, all other axes also have some offset. To standardize the

signal the mean is subtracted from every reading.
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5.1.3. Signal Detection

To detect the impact event the maximal amplitude of the accelerometer’s Z axis is assumed to
be the start of the signal.

5.1.4. Planar Components

As the position of the origin of the signal is known to be in the plane of the x and y compo-
nents of the sensors, we can calculate a vector ⃗vx,y with the scalar length r (5.3) and the angle
θ (5.4).
The vector is used when trying to read the bearing of the origin directly, as features for clus-
tering only the 20 values with the greatest r are used.

⃗vx,y = ⃗xx,0 + ⃗y0,y (5.2)

r = ||v⃗|| =
√
||x⃗||2 + ||y⃗||2 (5.3)

θ = arccos ||x⃗||
r

(5.4)

5.2. Feature Extraction

The selection of features is based on the in (Braun u. a., 2015, p 3) described feature set. The
microphone used in their paper provides a much higher sample rate, which can hopefully be
compensated for in this work by looking at 5 more axes.

5.2.1. Variance

The variance for each axis is calculated using the numpy.var implementation.

5.2.2. Standard Deviation

This project uses the numpy.std implementation.

5.2.3. Frequency Components

Fast Fourier Transform

To divide a signal into it’s frequency components the fast Fourier transform algorithm is used.
The algorithm divides a continuous signal into its frequency components.
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5. Analysis

fm =

2n−1∑
k=0

xk e
− 2πi

2n
mk m = 0, . . . , 2n− 1 (5.5)

Cochran u. a. (1967)

1 # n_samples, samplerate, values
2 freqs = numpy.fft.fftfreq(n_samples, 1 / samplerate)
3 freqs = numpy.fft.fftshift(freqs)
4

5 result = numpy.fft.fft(values)
6 result = numpy.abs(result))
7 result = numpy.fft.fftshift(result)

Compared with Braun u. a. (2015) the lower sample rate translates into a lower Nyquist-
frequency up to about 400Hz.

5.3. Bearing

To determine the real direction of the forces in the plane of the table, the X and Y components
of the signal must be treated as a vector. Transferred to polar coordinates the angle θ at the
largest elongations of ⃗vx,y might be correlated to the x, y location of the source.

5.4. Machine Learning

There are two types of machine learning algorithms: Supervised and unsupervised algorithms.
Supervised algorithms are used for classification and regression tasks, based on whether the
data is discrete (classification) or continuous (regression). Supervised algorithms require that
the right classifications are known and that the data set is labelled with those classifications.
The data is usually split into a training set and a test set. The algorithm then learns a model
for classification or regression based on the training data. The accuracy and precision of the
found model is then evaluated on the test set.

In unsupervised learning, the data set is not labelled. Unsupervised algorithms split the
data into groups based on found similarities. What constitutes these similarities depends on
the algorithm that is used. In clustering, some algorithms require that the number of groups
is known beforehand, while others find the number of clusters themselves.
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5. Analysis

5.4.1. Unsupervised

To find relations between a big number of features clustering methods are used.

At first it is evaluated if the measurements taken for the 25 individual locations will be
clustered into the sets they belong to, in which case the chosen feature set contains enough
information to create distinct clusters. The features are transformed into a vector which de-
notes a point in a multi-dimensional space, where the number of dimensions is equal to the
number of features. To find groups or clusters of data different algorithms can be used.

K-means Clustering

K-means is a very simple algorithm to find clusters. It was popularized by MacQueen (1967).
there are different implementations, but Lloyd’s algorithm is the most common implementa-
tion. For each assumed cluster a centre point is assumed within the data range. The initial
position of those centroids should be chosen so their distance from each other is maximized.
Each data point is then assigned to its nearest centre point (5.6). The centroid is then moved
to the centre of the cluster (5.7). these steps are repeated until the assignments of the data
points no longer change. Steinbach u. a. (2000)

S
(t)
i = {xp : ||xp −m

(t)
i ||2 ≤ xp −m

(t)
j ||2 ∀j, 1 ≤ j ≤ k} (5.6)

m
(t+1)
i = 1

|S(t)
i |

∑
xj ∈ S

(t)
i xj (5.7)

Clusteringwas done for the X and Y component of the location separately, using the sklearn
.cluster.KMeans implementation.

Agglomerative Hierarchical Clustering

Hierarchical cluster analysis provides a more flexible approach than K-means clustering. Ini-
tially every feature vector is considered to form its own cluster. By agglomerating clusters
iteratively until the requested number of clusters is reached. While K-means clustering only
considers the euclidean distance of each data point to the cluster centroids, agglomerative
hierarchical clustering can use different measures as a distance and linkage function between
two clusters. As clusters aren’t defined by a centroid, but the set of data points they con-
tain, linkage measurement can be calculated using the minimal distance between any two
points (Single Linkage), the largest distance between two points (Complete Linkage) or any
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5. Analysis

weighted combination of the distances of multiple point pairs (Ward). Euclidean and Man-
hattan distance were used as distance measures with multiple linkage strategies each. The
sklearn.cluster.AgglomerativeClustering implementationwas used. Steinbach
u. a. (2000)

5.4.2. Supervised

If matching the measurements to the coordinates of the acoustic source succeeds, supervised
learning approaches can be used to evaluate whether the feature vector can be reduced to the
continuous two dimensional values of the location.
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6. Results

Analysis of the data was first done separately for the measurements over all axes (Normal)
and the reduced set of axes AcZ, GyX, GyY (Fast), then the datasets were combined (All).

6.1. Triangulation

Triangulating the event source was unsuccessful. Adding x and y components of the data as
vectors and using the calculated angles α and β (3.1) to find the bearing of the tapping did not
yield the desired results. Linear interpolation of the vectors with the greatest length r was
not strongly correlated to the location (B.1). The intersection points fluctuate around the (50,
25) position, but are too weakly correlated to the location to determine a definitive trend
As B.1 shows with the two points P0,25 and P100,25, chosen because they are aligned with
the sensors y axes, the angles relative to each other hardly change. The noticeably greater
spread of the left sensor can be explained by the left sensor being fixed to the table differently
than the right one. The three-legged support of the sensors might reduce the sensitivity of the
sensor by observing the deflection not in a single point but as a function of the thee contact
points to the table. The centre of the sensing area also is roughly in the middle between the
two bars supporting the tabletop, increasing its ability to oscillate more freely.

6.2. Machine Learning

The different machine learning strategies also yielded no result. While the problems men-
tioned above probably also apply here, the number of samples is also rather small compared
to the complexity of the data. Neither K-Means clustering nor hierarchical clustering suc-
ceeded in classifying measurements taken for the same point into the same cluster. The found
clusters seem to be totally random, but might represent some hidden variable. As the tap
events were not standardized and their intensity was not recorded this might be the hidden
variable the clusters are found for.
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6. Results

6.2.1. K-Means Clustering

As shown in A.1 the algorithm can’t findmany similarities between clusters for the full dataset.
Fo the reduced axes set results seem more promising (A.2): P0,88 can be predicted for 10 of
the 10 available measurements when using the other nine as training data. P0,50 and P0,21

are close as well with 8/10 and 7/10 correct predictions respectively. Interestingly the 3 false
predictions for P0,21 are clustered with P0,50. This suggests that the gyroscope data might be
useful to detect the location of tap events on the y-axis.

6.2.2. Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering yielded vastly different results depending on the dis-
tance function used (A.4). In contrast to K-Means clustering, the measurements are spread
unevenly among the clusters, overpopulating a few clusters while leaving many containing
only one or zero measurements. This is a strong indicator that the set of features chosen was
not distinct enough. A better selection or normalisation of the chosen features might yield
better results.

6.2.3. Supervised learning

The regression analysis was not conducted, as the unsupervised clustering strategies proved
unsuccessful and the sample set was considered to be too small to result in a meaningful
model.
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7. Conclusion

This thesis is unable to give a conclusive statement whether consumer-grade inertia sensors
can be used to detect and localize input on tabletops.

The material and construction of the table, as well as the objects on top of it, have a larger
influence on its acoustic properties than anticipated. This problem might be mitigated if the
sensors provided a higher sample rate to distinguish between the real signal and its reflections.

Set-up The influence of the locations of the suspension points of the table top was under-
estimated. Using an empty table without multiple heavy objects on top of it would decrease
random scattering due to refraction where the thing on top exerts pressure onto the plate
influencing its density.

Signal Generation The unequal intensity of the tap event should not matter in the end, but
using a tap with predefined strength would make comparison of the readings much easier.
This could be combined with an interrupt to the Raspberry to start capturing immediately, as
opposed to the system used here where the system informs the user to prepare giving an input
during the sample period.

Hardware While the three legged design of the mounting plates may prevent the sensors
from wobbling along the axis of two feet it also greatly reduces the spacial resolution of the
sensor. By resting on three legs approximately 3 cm from each other the sensor can only detect
common wave fronts as belonging together if they arrive perpendicular to the line between
the legs. Overall the sample rate and sensitivity reached by low-cost inertia sensors is far
below the required sample rate and the reflections of the vibrations within the table are far
too random to accurately detect the source of a tap. While their frequency rangesmight be just
enough the limited throughput of the bus is hindering using them to their full potential. The
effects of under sampling are obvious even in the raw data and distort the data (4.3). Using
a dedicated I2C bus or I2C high-speed-mode for each sensor would be more preferable. As
described in 6.2.1 there are significant results under special circumstances.
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7. Conclusion

Real Time Data Collection Because the data capture was run as a user process on the
system and simply relied on polling as fast as possible the script could be interrupted by the
operating systems scheduler, leading to uneven spacing between the samples. This makes
the Savitzky-Golay filter (5.1.1) and the frequency analysis (5.2.3) unreliable. Using an inter-
rupt, either triggered by a timer or provided by the sensor to read data with constant sample
distance would help a lot

Calibration Even if these problems can be mitigated, calibration still would be an issue to
deal with, as the propagation of acoustic waves depends on the material of the table, location
and form of the support points, and objects placed on the table, as their weight will change
the tensions and forces within the tabletop and thereby its acoustic properties. This would
require retraining the machine learning models for every change to the surface.
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B. Plots

Figure B.1.: The angles of the 100 greatest scalar values for x⃗+ y⃗
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B. Plots

Figure B.2.: The angles of the 100 greatest scalar values for x⃗+ y⃗
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B. Plots

Figure B.3.: The angles of the 100 greatest scalar values for x⃗+ y⃗

51



Bibliography

[Anstey 1977] Anstey, Nigel A.: Seismic Interpretation: The Physical Aspects. 1. Springer
Netherlands, 1977. – URL http://gen.lib.rus.ec/book/index.php?md5=
2EB4DAC397F1364DDA303CA72E4F9024. – ISBN 978-0-934634-18-2,978-94-015-
3924-1

[Benali-Khoudja u. a. 2004] Benali-Khoudja, Mohamed ; Hafez, Moustapha ; Alexandre,
Jean-Marc ; Kheddar, Abderrahmane: Tactile interfaces: a state-of-the-art survey. In: Int.
Symposium on Robotics Bd. 31 Citeseer (Veranst.), 2004, S. 23–26

[Bernstein u. a. 2003] Bernstein, Jonathan u. a.: An overview of MEMS inertial
sensing technology. In: Sensors-The Journal of Applied Sensing Technology 20
(2003), Nr. 2, S. 14–21. – URL https://www.sensorsmag.com/components/
overview-mems-inertial-sensing-technology

[Braun u. a. 2015] Braun, Andreas ; Krepp, Stefan ; Kuijper, Arjan: Acoustic tracking of
hand activities on surfaces. In: Proceedings of the 2nd internationalWorkshop on Sensor-based

Activity Recognition and Interaction ACM (Veranst.), 2015, S. 9

[Cochran u. a. 1967] Cochran, William T. ; Cooley, James W. ; Favin, David L. ; Helms,
Howard D. ; Kaenel, Reginald A. ; Lang, William W. ; Maling, George C. ; Nelson,
David E. ; Rader, Charles M. ; Welch, Peter D.: What is the fast Fourier transform? In:
Proceedings of the IEEE 55 (1967), Nr. 10, S. 1664–1674

[Colegrove 2010] Colegrove, Jennifer: The state of the touch-screen market in 2010. In:
Information Display 26 (2010), Nr. 3, S. 22–24

[Demtröder 1998] Demtröder, Wolfgang: Experimentalphysik. Bd. 1. Springer, 1998

[Deutsch u. a. 2013] Deutsch, Volker ; Platte, Michael ; Vogt, Manfred: Ultraschallprü-

fung: Grundlagen und industrielle Anwendungen. Springer-Verlag, 2013

52

http://gen.lib.rus.ec/book/index.php?md5=2EB4DAC397F1364DDA303CA72E4F9024
http://gen.lib.rus.ec/book/index.php?md5=2EB4DAC397F1364DDA303CA72E4F9024
https://www.sensorsmag.com/components/overview-mems-inertial-sensing-technology
https://www.sensorsmag.com/components/overview-mems-inertial-sensing-technology


Bibliography

[Diamant und Lampe 2013] Diamant, Roee ; Lampe, Lutz: Underwater localization with
time-synchronization and propagation speed uncertainties. In: IEEE Transactions on Mobile

Computing 12 (2013), Nr. 7, S. 1257–1269

[Dohse u. a. 2008] Dohse, K. C. ; Dohse, T. ; Still, J. D. ; Parkhurst, D. J.: Enhancing
Multi-user Interaction with Multi-touch Tabletop Displays Using Hand Tracking. In: First
International Conference on Advances in Computer-Human Interaction, Feb 2008, S. 297–302

[Harvey ] Harvey, Ian: Pi-GPIO-header. – URL https://elinux.org/File:
Pi-GPIO-header.png

[Howe und Cutkosky 1989] Howe, Robert D. ; Cutkosky, Mark R.: Sensing skin acceler-
ation for slip and texture perception. In: Robotics and Automation, 1989. Proceedings., 1989

IEEE International Conference on IEEE (Veranst.), 1989, S. 145–150

[InvenSense 2015] InvenSense: MPU-6500 Product Specification. : , 2 2015. –
URL https://www.invensense.com/wp-content/uploads/2015/02/
MPU-6500-Datasheet2.pdf. – Revision 1.1

[InvenSense 2015] InvenSense: MPU-6500 Register Map. : , 2 2015. –
URL https://www.invensense.com/wp-content/uploads/2015/02/
MPU-6500-Register-Map2.pdf. – Revision 2.1

[Jones u. a. 2001–] Jones, Eric ; Oliphant, Travis ; Peterson, Pearu u. a.: SciPy: Open

source scientific tools for Python. 2001–. – URL http://www.scipy.org/. – [Online;
accessed 2018-06-22]

[Letessier und Bérard 2004] Letessier, Julien ; Bérard, François: Visual tracking of bare
fingers for interactive surfaces. In: Proceedings of the 17th annual ACM symposium on User

interface software and technology ACM (Veranst.), 2004, S. 119–122

[Lothar Cremer ] Lothar Cremer, Manfred Heckl (.: Körperschall: Physikalische Grundla-
gen und technische Anwendungen

[MacQueen 1967] MacQueen, J.: Some methods for classification and analysis of mul-
tivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathemati-

cal Statistics and Probability, Volume 1: Statistics. Berkeley, Calif. : University of Cali-
fornia Press, 1967, S. 281–297. – URL https://projecteuclid.org/euclid.
bsmsp/1200512992

53

https://elinux.org/File:Pi-GPIO-header.png
https://elinux.org/File:Pi-GPIO-header.png
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6500-Datasheet2.pdf
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6500-Datasheet2.pdf
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6500-Register-Map2.pdf
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6500-Register-Map2.pdf
http://www.scipy.org/
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992


Bibliography

[Mishali und Eldar 2010] Mishali, Moshe ; Eldar, Yonina C.: From theory to practice: Sub-
Nyquist sampling of sparse wideband analog signals. In: IEEE Journal of Selected Topics in

Signal Processing 4 (2010), Nr. 2, S. 375–391

[Nonaka und Da-te 1995] Nonaka, H. ; Da-te, Tsutomu: Ultrasonic position measure-
ment and its applications to human interface. In: IEEE Transactions on Instrumentation and

Measurement 44 (1995), Jun, Nr. 3, S. 771–774. – ISSN 0018-9456

[Press u. a. 1992] Press, William H. ; Teukolsky, Saul A. ; Vetterling, William T. ; Flan-
nery, Brian P.: Numerical recipes in Fortran 77: the art of scientific computing. Bd. 2.
Cambridge university press Cambridge, 1992. – URL http://www.nrbook.com/
a/bookfpdf.html

[Raspberry Pi Foundation 2014] Raspberry Pi Foundation: Raspberry Pi 3 Model

B+. : , 5 2014. – URL https://static.raspberrypi.org/files/
product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.
pdf. – Revision 1.1

[Reilly u. a. 2006] Reilly, SP ; Leach, RK ; Cuenat, A ; Awan, SA ; Lowe, M: Overview of
MEMS sensors and the metrology requirements for their manufacture. In: National Phsycial
Laboratory (2006)

[Savitzky und Golay 1964] Savitzky, Abraham ; Golay, Marcel J.: Smoothing and differ-
entiation of data by simplified least squares procedures. In: Analytical chemistry 36 (1964),
Nr. 8, S. 1627–1639

[Schmidt und Wuttke ] Schmidt, Hans-Gottfried ; Wuttke, Frank: Seismische Stan-
dorterkundung für Anwendungen in der Geotechnik. In: Messen in der Geotechnik

[Steinbach u. a. 2000] Steinbach, Michael ; Karypis, George ; Kumar, Vipin u. a.: A com-
parison of document clustering techniques. In: KDDworkshop on textmining Bd. 400 Boston
(Veranst.), 2000, S. 525–526

[Suryanto 2006] Suryanto, Wiwit: Rotational motions in seismology, theory and application,
Ph. D. thesis, Ph. D. dissertation, Dep. of Earth and Environ. Sci. Geophys., Univ. of Munich,
Munich, Germany, Dissertation, 2006

[Thandu 2016] Thandu, Srinivas C.: Algorithms leveraging smartphone sensing for analyz-

ing explosion events. Missouri University of Science and Technology, 2016

54

http://www.nrbook.com/a/bookfpdf.html
http://www.nrbook.com/a/bookfpdf.html
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-Product-Brief.pdf


Bibliography

[Van Rossum und Drake Jr 1995] Van Rossum, Guido ; Drake Jr, Fred L.: Python tutorial.
Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands, 1995. – URL www.
python.org

[Zhang 1998] Zhang, Gang: Design and Simulation of a CMOS-MEMS Accelerometer. In:
project report, Carnegie Mellon University, Pittsburgh, PA, May (1998)

55

www.python.org
www.python.org


Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 23. June 2018 Matthias Lösch


	Introduction
	Motivation
	Approach
	Theory
	Purpose

	Related works
	Input localization on surfaces
	Electric Potential
	Optical
	Near Field Sensors
	Acoustic
	Active
	Passive

	Other Applications of Acoustic Waves in Solids
	Geology
	Engineering
	Explosion Detection


	Physical and Technical Prerequisites
	Triangulation
	Acoustic Waves in Solids
	Types of Waves
	Properties of Waves

	Inertial Sensors
	Gyroscope
	Accelerometer


	Experiments
	Set-up
	Tabletop
	Sensors
	Raspberry Pi
	Data collection

	Sensor Configuration
	Sample Rate
	DLPF
	Measuring Range

	Measurements
	Sensing Area


	Analysis
	Preprocessing
	Savitzky-Golay Filter
	Standardization
	Signal Detection
	Planar Components

	Feature Extraction
	Variance
	Standard Deviation
	Frequency Components

	Bearing
	Machine Learning
	Unsupervised
	Supervised


	Results
	Triangulation
	Machine Learning
	K-Means Clustering
	Agglomerative Hierarchical Clustering
	Supervised learning


	Conclusion
	Tables
	Plots

