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1. Introduction

Agent-based modeling is a method of simulating complex environments from the prospective

of an individual (Wooldridge 2009). Each, so called agent has parameters and actions, which

de�ne it’s state. The agents interact with each other and their underlying environment to

reach the next state. This approach allows to scale the number of agents, depending on the

individual use-case.

Viewing each agent separately requires detailed information about it’s behavior. This data in-

cludes the current position at a certain point in time, which makes it a good �t with Geographic

Information Systems (GIS).

GIS is the process of storing, processing and visualization geographical data with reference

in time and space (Maguire 1991). It is being used in several recent publications. Among them

are city planing (Giles-Corti et al. 2016), remote sensing (Ghorbani Nejad et al. 2017; Pinto et al.

2017), bioclimatic comfort (Cetin et al. 2018) and simulations (Wang and Zlatanova 2016).

GIS provides the capabilities to handle complex geo-spatial operations, which are of great

value to agent-based Systems.

Multi-Agent Research & Simulation (MARS) is the name of a working and research group at

the HAW (University of applied Sciences) in Hamburg, Germany. It conducts in research on

multi-agent simulations and develops its own simulation platform (Hüning, Wilmans, et al.

2014).

Most of the input data used to initialize models for MARS rely on GIS data. However, this data

has to be converted to custom �le formats before it can be uses.

This work focuses on introducing native GIS support to the MARS system. This increases

versatility, by enabling the direct use of standardized GIS formats. The generic implementation

allows to cover additional modeling use-cases without introducing new data layers. The design

and implementation is done with the performance of the old system in mind, which ensures

that the overall performance is not sacri�ced.
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1. Introduction

The following section discusses hypotheses which will be examined during the process, to

ensure the statements above.

1.1. Hypotheses

The MARS simulation system is a powerful framework that allows large-scale simulations and

covers a wide variety of models. Adding GIS functionality is meant to improve the versatility.

It’s following hypotheses will be used to validate the changes which are being introduced.

H1 GIS data can be made usable in the simulation system, while retaining all functionalities

and allowing to ful�ll additional use-case.

The layers currently in existence inside the LIFE simulation system have a very narrow usage,

where every layer covers a speci�c use-cases:

• A grid-based „Obstacle Layer“ that is capable of detecting obstacles between two points.

• The „Grid potential Field Layer“ manages a pre-generated raster that allows agents to

sense a nearby location (e.g. water sources for animals).

• The „Geo potential Field Layer“ has the same functionality, but uses Global Positioning

System (GPS) coordinates instead of a grid.

• The „TimeSeries Layer“ can store a single value for several timestamps.

These speci�c layers can be consolidated and replaced by a generic solution, that is able to be

used for new use-cases.

H2 The import types can be replaced by one generic importer.

Each layer has it’s own data type that has to be selected during import. This can be optimized

to automatically select the proper type. Doing so reduces potential errors the users can make.

H3 It is possible to remove the custom �le generators by relying on standardized GIS �le

formats.

2



1. Introduction

Currently di�erent types of data can be used inside a simulation. Each type needs a dedicated

generator that converts data into the correct format. Relying on standardized GIS formats

allows to make those converters obsolete.

Due to the environmental focus of MARS, most model developers, are already familiar with

GIS. This allows to easily create, view and edit a given �le with software, existing in the market

today, like QGIS or ArcMap.

H4 The use of one generic GIS import and two generic GIS layers does not diminish simula-

tion performance by more then 10%.

Massive simulations, for whom the MARS system was designed for, can contain of up to

several million agent, with simulation times covering many years. Such runs can take weeks

to complete. Therefore it is important that the changes introduced by the GIS layers don’t

reduce the performance of the overall system.

The generic structure of these layers have a certain disadvantage, compared to �les that have

been explicitly created for one thing. Therefore performance tests will have to be created, for

comparison to the old system.

1.2. Motivation

This work focuses on integrating GIS capabilities into MARS. This increases the versatility

of the system and makes it more appealing for a wider audience. This is being achieved by

reducing the amount of tools and components involved in creating simulations. The use of

standardized input types makes it easier to bring existing data into the system.

This approach also reduces complexity for the developers by decreasing the number of services

that have to be updated and maintained. As a result, the number of potential fault locations is

also minimized which allows the team to focus on other things.

My personal motivation for choosing the topic is the interest in GIS and the technical details

of the system. Replacing a complex and error prone work�ow with a generic solution, is a

worthy challenge.

The topic also touches a wide area of the system. During the design and realization of the

project, most parts of the systems were involved in some way. This made the project both

challenging and interesting.

3



1. Introduction

1.3. Structure Outline

The thesis is divided into several main parts. Chapter 2 provides the reader with fundamental

knowledge on which this work is built upon. It covers the scienti�c background, as well as the

technical basis. The analysis in Chapter 3 covers use-cases that the resulting product has to

ful�ll and the scope of this work. Chapter 4 is about the overall design of the software as well

as the methods used. It is followed by Chapter 5 that covers the realization of the design. The

experiments in Chapter 6 benchmark the use-cases speci�ed previously. This is done by small

deterministic models that cover each use-case and evaluate it, in comparison to the previous

layers. This thesis ends with a summary, including the hypotheses validation and an outlook

into future work.

4



2. Related Work

This chapter covers fundamental concepts, techniques ideas and technologies in the geospatial

research area, as well as an overview of the MARS system. Section 2.1 covers di�erent type

of spatial data types, fundamentals of Coordinate Reference System (CRS) and renown tech-

nologies in the environmental space. Section 2.3 is about the MARS simulation system and its

infrastructure.

2.1. Geographic Information System (GIS)

In the past years, mobile devices have revolutionized the way we work and interact with our

environment. These mobile devices, like GPS, microphone, camera, accelerometer and many

more, are equipped with sensors, which allow them to collect data in various ways. These

modern devices are always connected to the Internet and transmit information about their

location and other data to remote services.

This leads to vastly increased amount of data that is being gathered. Since Raw data is of little

use, the value is generated by analyzing, categorizing and making the data able to be searched.

The research involved in improving such techniques relies on GIS to a large extend.

GIS is the combination of all techniques that help store, analyze, manipulate and visualize

geo-referenced data on earth.

2.1.1. Geo References and Projection

Standard imaging formats display data on a plane. This is the case for basically any picture or

diagram, since it was created to be displayed on a screen or paper. That kind of data does not

usually have a reference to speci�c locations. Exceptions like Geo-tagged images exist.

GIS data on the other hand is geo-referenced. Stored information does not only have a size,

but every datum has a reference on a speci�c position on Earth. For this to work, the arc of

Earth has to be taken into consideration.

Depending on the location and scale of data, di�erent solutions have to be applied. When

displaying at a small scale, like 1:200 for a city the arc of earth is a minor problem that one

5



2. Related Work

might decide to ignore. On larger scales that involve opposed continents it is simply impossible

to display them on a 2-dimensional surface like a paper or screen without distortion.

Map Projection Classes

Depending on the area being displayed, di�erent types of distortions produce more accurate

results. The most typical shapes are cylindrical, conical and planar projections as shown in

�gure 2.1.

Cylindric projection are best at the Equator, where depending on the implementation, there

is minimal to no distortion. The accuracy decreases to a maximum at the poles, where the

distortion becomes in�nite and therefore is not usable anymore. This distortion makes areas

at the poles appear far bigger than they really are. Greenland (2.34 million km
2
) appears to be

as big as Africa (30.37 million km
2
), while in fact it is 1/13th of the size.

Fortunately for normal mapping purposes these thinly inhabited areas at the poles are not of a

mayor interest. Therefore this type of projection is best for general usage.

When displaying data at the poles a planar projection produces the best results. It visualizes

the desired pole the highest accuracy and decreases towards the equator. This type of projection

cannot display the whole world in one image as seen in the corresponding graphic letter „c“.

This makes the method unusable for general purposes. As a result, it should only be used for

showing the poles.

The conical projection shown in the middle of �gure 2.1 obtains the best results, when

displaying either the Northern or Southern Hemisphere around ±45° latitude. When focusing

on Europe, areas like Greenland seem smaller than they are and everything south of 45° latitude

seams larger than it is. This results in everything below -45° latitude to not be usable anymore.

6



2. Related Work

Figure 2.1.: The three most common shapes to project the Earth to. Source: qgis.org (2018)

Mercator Projection

Mercator is a cylindric projection with all the advantages and disadvantages mentioned in

section 2.1.1. It is named after it’s founder Gerardus Mercator, who �rst created the projection

in 1569 (Meer 2012).

It quickly became popular because of its rhumb line course capabilities. This means that a

straight line on the map is an actual straight course which was useful for nautical purposes.

Also, the shortest course between two points on Earth is the direct straight line on the map.

The original map from 1569, as seen in �gure 2.2, was already quite accurate for Central

Europe, but had major �aws on continents further away. Over time, it has been optimized

in accuracy. Today, it is the most used projection for general use, because it provides a good

compromise overall. Figure 2.3 shows the modern Mercator map from 82° latitude to -82°

latitude.

7
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Figure 2.2.: Original Mercator projection from 1569. Source: Meer (2012)

Figure 2.3.: Mercator projection of the world between 82° S and 82° N. Source: Strebe (2011)

8
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WGS 84 (EPSG:4326)

The World Geodetic System 1984 (WGS 84) is an ellipsoidal coordinate system used for navi-

gational purposes created by Decker (1986). It was �rst created in the 20th century, but has

been improved in accuracy over time. 84 refers to the year 1984, when the latest revision of

the WGS system was published. This version was improved with higher-�delity data from the

Earth Gravitational Model 2008 (EGM2008) (Pavlis et al. 2012). WGS 84 is also known as an

European Petroleum Survey Group (EPSG) standard with the name EPSG:4236.

The coordinates origin in the center of Earth and are measured in degree latitude and longitude.

The map on �gure 2.4 shows the coordinates discussed in the following paragraphs.

Latitude has its 0° origin, also called prime meridian, in Greenwich England and increases east

to a maximum of 180°, as well as west to -180°. Each vertical line connects the two poles. The

maximum distance for one degree Latitude is 111 km at the Equator, decreasing to zero at the

poles. Each meridian has a length of 20,003.93 km (half the Earth’s perimeter).

Longitude has its 0° on the equator, and increases to the North Pole with a maximum of 90° and

a minimum of -90° on the South Pole. One degree longitude is approximately 111 km at any

point. The length of an Antimeridian varies from 20,003.93 km at the Equator to 0 on the poles.

Figure 2.4.: The degrees of WGS 84 on a World map. Source: mapserver.org (2018)
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WGS 84 / Web Mercator (EPSG:3857)

Web Mercator is an coordinate system based on WGS 84. While EPSG:4326 uses an ellipsoidal

representation, EPSG:3857 is a projected, spherical version. It was created by Grafarend (1995).

In di�erence to WGS 84 it uses Cartesian coordinates that are measured in meters. Web

Mercator does not cover the whole Earth, but only ±85.06° latitude. This cuts o� the poles but

allows a square projection with a range of ±20,026,376.39m on both axis. The projection is

not considered a geodetic system due to the missing 10 degree and its projection inaccuracies

(National Geospatial Intelligence Agency 2014).

The Web Mercator projection was created for displaying the world on a screen in the web.

The square shape allows the creation of so called Mercator Tile pyramids. This transfers the

map data into tiles of identical size, like 265x265 pixel. On level 0 there is one image to show

the world. On each level the number of tiles increases by a factor of 4 compared to the previous

level. Figure 2.5 shows an example of such a Mercator pyramid.

This allows to load the required number of tiles in the desired level of detail without transferring

gigabytes of data to the user. The mentioned approach was �rst used in Google Maps and is

used by all renown map providers like OpenStreetMap, Microsoft’s Bing Maps and Esri.

Figure 2.5.: A Mercator Tile Pyramid. Source: Schwartz (2018)
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Although the projected version of WGS 84 is widely used, it is also criticized by GIS experts

for its lag of accuracy. The projection not only sacri�ces the poles, but it is also distorts the

original projection. Web Mercator uses mathematical formulas and parameters that make it

incompatible to WGS 84 (National Geospatial Intelligence Agency 2014). The errors increase

with a larger distance from the Equator and can reach an o�set of up to 40,000 meters. Figure

2.6 shows an overlay map of the United Kingdom, where it becomes most visible how severe

di�erences are. The South of the UK shows an o�set of 33,000 meters, while the North shows

36,700 meters.

For the reasons mentioned above, Web Mercator should only be used to visualize spatial data

to the user, but never as a reference system for relevant calculations.

Figure 2.6.: Visual Example of Overlaying Ellipsoid Mercator and Web Mercator. Source: Na-

tional Geospatial Intelligence Agency (2014)

2.1.2. Spatial Data Sources

GIS data is always geo-referenced, meaning each dataset has a location, and ideally a point

in time, where it is valid. Nowadays, such data is almost always digital and since it has to be
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persisted in an e�cient way, there are two ways GIS data is represented. These methods di�er

in their capabilities, accuracy and storage size.

Raster Data

Raster data represents information in a grid of, either square or rectangular shape with identical

cell size. The grid cells are called pixels. Each pixel has a numeric value. 8 bit pixel depth is a

common size for greyscale images, allowing a range of 256 values. Color is represented in 3

bands, each with a 8 bit value, leading to a 24 bit color depth. The bands are the red, green and

blue (RGB) values.

GIS formats like GeoTIFF support a larger number of bands, since they are not pure image

formats but are meant for storing data. A raster �le could have two bands, one storing an

elevation map in meters and another containing humidity values in percent.

Raster images are easy to understand and fast to read and write from, since no complex

algorithms are involved. It is best for storing data with unde�ned structure in it. This includes

images, and anything with a gradient of shapes and colors.

However, due to the nature of a grid system, storage consumption is not very e�cient for

certain types of information. E.g. when storing the position of values in a bitmap style, with 0

being no value and 1 being the location of a building. The grid size would have to cover the

whole area and the cell size determines the accuracy of the position. This increases the �le

size, which is why raster data can become very big. Another disadvantage is the fact that the

resolution is �xed.

When creating a �le, a compromise between level of detail and �le size has to be made. This

cannot be changed afterwards. Figure 2.7 shows a shape, that is displayed in raster. Depending

on the chosen number of pixels, the image is either �ne (left) or coarse (right).
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Figure 2.7.: Rasterization of a vector. Source: arcgis.com (2018)

Vector Data

Aside from storing data in a raster, it is possible to store it in mathematical vector functions.

While raster data is very static, since the resolution has to be chosen when creating the �le,

vector data types are more �exible. Data is stored in a function that describes the location and

the shape of data, which makes it ideal for concrete objects.

This permits storage of data that is needed. Coming back to the previous example, the location

of a building would simply be stored by the speci�ed coordinate. To better distinguish data

they are grouped in features. A feature can have one of the following types:

Point:
Points are the most simple type of feature. It consists of one coordinate.Figure 2.8 presents the

usage of points for wells.

LineString:
LineStrings consist of a number of points that are connected by a line that does not have to be

closed. In the example image, it represents the river.

Polygon:
Polygons are like LineStrings, except that the shape has to be �lled. The example images uses

a polygon to display the lake.
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Figure 2.8.: Showcase of the di�erent vector types. source: Toews (2007)

2.2. GIS Technologies

Given the properties of the mentioned projections and various coordinate systems with their

di�erent revisions in the previous section, it is necessary to use appropriate tools to reduce the

complexity when Handling GIS. These include �le formats, command line tools, libraries for

programming languages and databases.

2.2.1. Formats

When working with GIS, it is necessary to have a reference to the used projection and coordinate

system built inside the �le. Over the years, many di�erent types have been created, however,

there are some very common types that are either fast, or convenient. The remaining part

of the section introduces four formats, a text-based and a binary format for each vector and

raster data.

GeoTIFF

Georeferenced Tagged Image File Format (GeoTIFF) is a binary raster �le format, based on TIFF.

It was created by N. Ritter and M. Ruth (1997) and the standard was de�ned by Niles Ritter

et al. (2000). GeoTIFF is fully compatible to TIFF 6.0 and extends its tags to store geospatial

information. It supports a vast variety of projections and coordinate systems. GeoTIFF supports

di�erent bands, like the ones explained in section 2.1.2.

The fact, that the format stores information in binary and relies on the TIFF compression
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algorithms, results in a smaller �le size, compared to formats like AsciiGrid. This advantage

becomes particular valuable, when large areas of the image do not contain data or otherwise

have high amounts of redundant values.

For the reasons mentioned, GeoTIFF is the most popular format for storing geospatial raster

data.

Esri AsciiGrid

AsciiGrid is a text based raster �le format created by the company Esri. In comparison to

GeoTIFF it is a very simple format. The spatial reference system is EPSG:4326 and cannot be

changed since it is not part of the �le’s metadata. Multiple bands and compression are also not

supported.

The advantage of AsciiGrid is it’s simplicity. The �le can be created in a simple text editor and

can be easily parsed. Listing 2.1 shows an example �le. ncols, which speci�es the number

of values per row, while nrows de�ne the number of rows. xllcorner and yllcorner specify

the lower left corner of the image in degrees. The cellsize is also measured in degrees, it

speci�es the size of one pixel. the nodata_value de�nes a value that is considered to be of

no information, it should be chosen outside the range of normal values. The listing below

provides the data of the example. The delimiter between two data entries is a space.

1 ncols 4
2 nrows 2
3 xllcorner 10.001389
4 yllcorner 53.565278
5 cellsize 1
6 nodata_value -999
7 1 2 3 4
8 5 6 7 -999

Listing 2.1: An example AsciiGrid �le.

Esri Shapefile

Shape�le is a binary �le type for vector GIS data and was created by ESRI (1998). It supports

the three data types Point, LineString and Polygon, which were mentioned in section 2.1.2.

Besides storing the actual vector GIS, it is possible to store information in a data table for

each feature. This allows to add information like size of a shape or population in an area. A

Shape�le contains several �les. shp, shx and dbf are mandatory and others are optional. The

mandatory �les and the most common optional �le are listed below.
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• The .shp contains the geometry with all the features.

• The .shx holds the index of geometries for better lookup performance.

• The dbf �le is a sBASE database �le that contains the data table.

• The projection is stored in the .prj �le. While this is optional, it is usually supplied.

Today Shape�le is the most used �le format for vector data. It is however, criticized for its

limitations in length of names and number of entries in the data table, together with multiple

�les and a hard 2GB �le size limit. A prominent replacement for the future could be GeoPackage

(Consortium 2014).

GeoJSON

GeoJSON is a text-based format for storing vector GIS data. It is a convention based on

JavaScript Object Notation (JSON) created by Howard Butler et al. (2008). It is also de�ned as

the Internet Engineering Task Force (IETF) standard RFC 7946 (H. Butler et al. 2016). It supports

all the features of a Shape�le without the limitations mentioned above. Due to it’s text-based

nature it is no replacement for a Shape�le since it has to be parsed. Another disadvantage is

the missing compression, which causes �le-sizes to be much greater.

Listing 2.2 shows an example of a GeoJSON �le. In shows one layer (myLayer) with 3 features,

one for each type.

1 {
2 "type": "FeatureCollection",
3 "name": "myLayer",
4 "crs": {
5 "type": "name",
6 "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" }
7 },
8 "features": [
9 {

10 "type": "Feature",
11 "properties": { "id": 1, "name": "Point feature" },
12 "geometry": {
13 "type": "Point",
14 "coordinates": [ 20, 20 ]
15 }
16 },
17 {
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18 "type": "Feature",
19 "properties": { "id": 1, "name": "LineString feature" },
20 "geometry": {
21 "type": "LineString",
22 "coordinates": [[30, 10], [10, 30], [40, 40]]
23 }
24 },
25 {
26 "type": "Feature",
27 "properties": { "id": 1, "name": "Polygon feature" },
28 "geometry": {
29 "type": "Polygon",
30 "coordinates": [[[30, 10], [40, 40], [20, 40], [30, 10]]]
31 }
32 }
33 ]
34 }

Listing 2.2: A GeoJSON example �le.

2.2.2. Libraries

The following tools are most common, when working with GIS.

GDAL/OGR

The Geospatial Data Abstraction Library (GDAL) and OpenGIS Simple Features Reference

Implementation (OGR) is the combination of two libraries with various comand-line tools that

allows manipulation of geospatial data. GDAL manipulates raster and OGR vector data. In

it’s latest version (2.3.0) it support 154 raster and 93 vector formats, among them are the 4 �le

types mentioned before.

GDAL is an The Open Source Geospatial Foundation (OSGEO) project and the most broadly

use command-line tool for manipulating GIS. Many libraries and applications rely on GDAL

for their spatial implementations. Among them are Esri ArcMap, QGIS, GRASS GIS, Google

Earth and the programming language R.

The library is capable of displaying detailed information about GIS �les, which includes geo-

referencing, reprojecting and converting one type to another. It can also create tile maps and

rasterize images.
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NetTopologySuite

NetTopologySuite (NTS) is a ASP.NET implementation of the JTS Topology Suite (Java Topol-

ogy Suite). It is a library for geospatial vector data manipulation and complies to the Simple

Feature Access speci�cation from Consortium et al. (2010) published by the Open Geospatial

Consortium (OGC). NTS is one of the few options that support geospatial editing for ASP.NET

Core.

GeoTools

GeoTools (Bledsoe, Brown, and Ra� 2007) is a Java library for geospatial manipulation. It is an

OSGEO project and complies to the OGC standards. The library supports various raster and

vector formats for read and write operations. GeoTools is the most used GIS library for the

Java programming language.

2.2.3. Storage Solutions

The following databases are most common in the GIS domain.

PostGIS

PostGIS is a spatio-/ temporal database, based on PostgreSQL. It supports storing vector and

raster GIS data. Like PostgreSQL, the query language is SQL (Toups 2016).

The import process is done with speci�c tools that come as command-line applications which

are bundled into the installation. The geometry type allows spatial queries regarding certain

areas. These allow to extract single pixel values from raster �les as well as feature extraction

from vector �les.

To read more about PostGIS and PostgreSQL see Obe and Hsu (2011) and Momjian (2001).

MongoDB

MongoDB is a document-based (NoSQL) database. Data is stored in Binary JSON (BSON).

Input, as well as output data is in JSON format.

As of version 3.4.9 MongoDB supports vector GIS. It does not support a wide range of format

types, but only GeoJSON (H. Butler et al. 2016). However, it is quite easy to convert vector

�les to GeoJSON using GDAL.

18



2. Related Work

GeoServer

The GeoServer is a web-based application that allows storing and managing GIS data. It is not

a database, but it can manage data storage in the �le-system, as well as connect to PostGIS

(Růžička 2016).

Using this software, it is possible to view the imported GIS �les in a WebBrowser, using

OpenLayers. It also allows searching, managing and converting data types. File conversion

is done, using the OGC standard APIs Web Feature Service (WFS) and the Web Coverage

Service (WCS).

2.3. Multi-Agent Research and Simulation (MARS)

MARS is the name of a working and research group at the HAW (University of applied Sciences)

in Hamburg, Germany. It conducts in research on multi-agent simulations as described by

Wooldridge (2009) and develops its own simulation platform.

The MARS system is build from several components and services that are bundled together in

a micro-services infrastructure. Conceptually there are two groups that are to be distinguished,

the LIFE simulation system and the supporting services around it. While LIFE is a monolithic

application, the support services are split into micro-services and form, what is called the

MARS Cloud System.

2.3.1. MARS Cloud System

The MARS Cloud is a collection of micro-services designed around the MARS LIFE simulation

core. They handle all the preparative tasks, as well as analysis after the simulation.

Import Services

They handle the initial upload of all data into the system. This includes validating the input

�les, conversion between �le types and �nally the persistence of data.

Web UI

The UI is the center piece of the cloud system. This component provides the interface between

the back-end services and the user.
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Scenario Configuration

The Scenario con�guration is responsible for combining the input data with the model, as well

as de�ning the simulation parameters like the resolution, duration of a simulation and the

number of agents.

Result Output

The „Result Output“ de�nes the data that is written to the database during the simulation. This

data is later used for the visualization.

Data Analytics

During and after the simulation, this component provides real time data analysis and visualiza-

tion of the data tagged for the result output.

2.3.2. MARS LIFE

MARS LIFE is a large scale, multi-agent simulation system developed by the MARS group

(Hüning, Adebahr, et al. 2016; Hüning, Wilmans, et al. 2014). It is capable of handling up

to several million agents (Hüning 2016) with interactions between each other. For a better

scalability, it was designed with distribution in mind. Currently there are two ways of creating

models for LIFE.

Models can be written in plain ASP.NET Core. This approach allows the model developer to

use the full potential of the C# language and gives best performance and versatility.

Many domain experts are not pro�cient in writing code, so the use of C# is a barrier of entry.

The MARS Domain Speci�c Language (DSL) created by Glake (2018) allows an alternative path

that reduces the complexity for the user and allows the domain experts to create large scale

simulations without them being expert programmers.
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The MARS system, as described in section 2.3 is a complex environment with many parts

involved. This chapter describes the current state of the system and de�nes use-cases as well

as requirements that the GIS layers have to ful�ll. This approach is based on standardized GIS

formats.

3.1. Current State

In order to use data inside a simulation, it has to be import via the WebUI. It is then processed

by the appropriate service and made available for the simulation in LIFE. This thesis focuses

on replacing the existing layer infrastructure with a generic, GIS-based approach. In order to

fully understand the process, a brief understanding of the current system is needed.

Figure 3.1 shows the services and their relations. Data is uploaded through the WebUI into

the File-svc. The File-svc is the central component for handling imports. It persists all �les as

GridFS inside the MongoDB and creates a metadata entry for the upload. Afterwards, it calls

the responsible import service. That service requests the �le, and handles it’s type speci�c

import. In the process the metadata is updated accordingly.

In case of a model upload, the re�ection-svc stores the detected constructor types from the

layers of the model in the Metadata Service.

In the next step, the user maps the uploaded data �les with the model, according to the re�ection

results and de�nes global simulation parameters. This part is realized by the Scenario-svc.

The following step con�gures the result output, by using the Result Con�guration Service.

Finally the Sim Runner Service starts the simulation.
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Figure 3.1.: Overview of the service infrastructure

The original idea was to have an easy process to add new layers to the system. Unfortunately

the work�ow described above, involves the developer to make changes to the following services

and potentially create a new import service:

• Api-svc (Golang)

• File-svc (Java + Spring)

• Metadata-svc (Java + Spring)

• Re�ection-svc (ASP.NET Core)

• Scenario-svc (Python)

• ResultCon�g-svc (ASP.NET Core & TypeScript)

• WebUI-svc (TypeScript)
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• A new Layer in LIFE (ASP.NET Core)

To sum up, the process of creating a new layer type for simulations involves the creation of

one micro-service, including a new layer in LIFE, as well as altering 7 existing micro-services

that were written by 6 people in 5 di�erent programming languages.

The need for new layers was eliminated by creating a generic layer. The �rst version of this

GIS-based layer was created by the author of this work (Karsten 2018).

3.2. Use-Cases

The existing layers in the LIFE system ful�ll certain use-cases. The GIS layer is a generic

layer, that does not only have to ful�ll the existing use-cases, but also to be apply-able to new

circumstances. The following list covers features of the old layers and includes new use-cases

brought to attention by the model developers. These use-cases and the requirements which will

be derived from them, are the bases for the implementation in chapter 5 and the experiences

in chapter 6.

Use Case 1 GIS type detection

Scope: File import

Level: Raster and vector detection

Primary Actor: User

Stakeholders and Inter-

ests:

• User: Wants to upload a vector �le.

• User: Wants to upload a raster �le.

Preconditions: • The user has a GIS �le of one of the following types:

GeoTIFF, AsciiGrid, Shape�le or GeoJSON

• The �le is geo-referenced.

Postconditions: • The type of GIS is determined.

• The process is transparent to the user.

Main Success Scenarios:
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1. The user uploads a �le like a GeoTi�.

2. The type raster gets detected and is used in the simulation.

Use Case 2 File type independence

Scope: File import

Level: File conversion on import

Primary Actor: User

Stakeholders and Inter-

ests:

• User: Wants to upload a vector �le as a Shape�le or

GeoJSON.

• User: Wants to upload a raster �le as a GeoTIFF or

AsciiGrid.

Preconditions: • The user has a GIS �le of one of the mentioned

types.

• The �le is geo-referenced.

Postconditions: • The �le gets converted to the right type.

• The process is transparent to the user.

Main Success Scenarios:

1. The user uploads a �le like a GeoTIFF.

2. The �le gets converted to AsciiGrid.

3. It is used in the simulation without user interaction.
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Use Case 3 Obstacles

Scope: Simulation

Level: Movement

Primary Actor: Agent

Stakeholders and Interests: Elephant: Wants to move within the Kruger National Park

(KNP) without crossing the fence.

Preconditions: • The elephant is a movable agent.

• A obstacle layer exists.

• Position is within bounds or outside.

Postconditions: • The movement path does not cross the fence.

• The elephant did not enter or leave the KNP.

Main Success Scenarios:

1. The agent wants to move to a position inside the fence.

2. The path does not cross the fence.

3. He arrives at the destination.

Alternative Success Scenarios:

1. The agent wants to move to a position outside the fence.

2. The path crosses the fence.

3. He cannot move.
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Use Case 4 Overcome Obstacles

Scope: Simulation

Level: Movement

Primary Actor: Agent

Stakeholders and Interests: Elephant: Wants to go to KNP’s fence if it is weak enough.

Preconditions: • The elephant is a movable agent.

• A obstacle layer exists.

• His path crosses the fence.

• The resistance value of the part of the fence is

smaller than his strength.

Postconditions: • The elephant crosses the fence.

• His new position might still be inside the KNP.

Main Success Scenarios:

1. The agent wants to move to a position outside the fence.

2. The fence cannot hold him.

3. He crosses the fence.

Alternative Success Scenarios:

1. The agent wants to move to a position outside the fence.

2. The fence holds him.

3. He does not cross the fence.

4. He cannot move.
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Use Case 5 Sensing water

Scope: Simulation

Level: Sensing

Primary Actor: Agent

Stakeholders and Interests: Elephant: Wants to sense the closest water source within

a radius.

Preconditions: • A water source layer exists.

• The elephant is within range of a water source.

Postconditions: The elephant knows were the next water source is.

Main Success Scenarios:

1. The elephant desires water.

2. He �nds the closest water source within his range.

3. He walks towards that source.

Use Case 6 Sensing shadow

Scope: Simulation

Level: Sensing

Primary Actor: Agent

Stakeholders and Interests: Elephant: Wants to �nd the closest shadow that covers

him completely within his visual range.
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Preconditions: • A shade layer exists.

• The elephant see the closest shadow with the de-

sired coverage.

Postconditions: The elephant knows were the next shadow is.

Main Success Scenarios:

1. The elephant seeks shadow.

2. He �nds a shadow with enough coverage.

3. He walks towards that source.

Use Case 7 Consume Biomass

Scope: Simulation

Level: Parallel write access

Primary Actor: Agent

Stakeholders and Interests: Elephant: Wants to consume biomass in his area.

Preconditions: • A biomass layer exists.

• There is biomass left.

Postconditions: • The biomass is reduced.

• The value does not go below zero.

Main Success Scenarios:
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1. The elephant reduces the biomass at his position.

2. Other agents do the same at the same time.

3. No biomass is consumed twice.

Alternative Success Scenarios:

1. The elephant tries to reduce the biomass at his position.

2. No biomass is left.

3. Nothing was consumed.

Use Case 8 Time series

Scope: Simulation

Level: variable values over time

Primary Actor: Agent

Stakeholders and Interests: Tree: Wants to grow based on precipitation.

Preconditions: • A precipitation layer exists.

• There is data for the current time.

Postconditions: The tree grows.

Main Success Scenarios:

1. The tree requests the precipitation for the current time.

2. It grows accordingly.
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Use Case 9 Distance calculation

Scope: Simulation

Level: Abstract from projection

Primary Actor: Agent

Stakeholders and Interests: Elephant: Wants to move towards a GPS coordinate.

Preconditions: The target gps coordinate exists.

Postconditions: The distance in meters is known.

Main Success Scenarios:

1. The Elephant knows about a water source and wants to determine it’s distance.

2. The layer calculates the distance and converts it from degree to kilometers.

3. The Elephant starts walking.

3.3. Requirements

The use-cases in the previous section focus mainly on the model developers desired features.

Apart from those, there are requirement determined by the environment, the �nal application

has to run in. The following section combines all requirements into functional and non-

functional.

3.3.1. Functional Requirements

F1 GIS Import: Has to be able detect the CRS.

F2 GIS Import: Has to automatically converted raster GeoTIFF into AsciiGrid.

F3 GIS Import: Has to automatically converted vector Shape�les into GeoJSON.

F4 GIS Import: Has to be integrated into the MARS Cloud.

F5 GIS Import: Has to be able to handle any type of input as a Zip �le.
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F6 GIS Import: Should be able to detect the GIS type (raster or vector) transparent to the

user.

F6.1 This reduces the necessary to specify the type on upload.

F7 GIS Import: Should interpret �les as WGS 84 if no CRS could be detected.

F8 GIS Layer: Has to be able to calculate if a vector feature is contained by another.

F9 GIS Layer: Has to support obstacles that allow to limit agent movement.

F9.1 Di�erent types of obstacles have to be supported.

F9.2 Variant strengths of obstacles are needed.

F10 GIS Layer: Has to to be able to calculate the closest coordinate that meets a criteria,

around a speci�c point.

F10.1 Find the highest adjacent coordinate (needed for potential-�eld maps).

F11 GIS Layer: The altering of provided data has to be supported.

F11.1 Parallel access needs to be possible and scale with increasing amounts of agents.

F12 GIS Layer: Time-series data has to to be handled by the layer

F13 GIS Layer: Distance calculation between points has to be supported.

F13.1 Return distance in degree.

F13.2 Support conversion to kilometers.

F14 GIS Layer: Has to be able to read data at a position.

F14.1 GPS.

F14.2 Cartesian.

F15 GIS Layer: Has to be able to calculate if vector features intersect.

F15.1 Complex paths need to be supported.

F16 GIS Layer: Has to be able to calculate if vector features are inside other features.

F17 GIS Layer: Has to be integrated into MARS LIFE.
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3.3.2. Non-Functional Requirements

NF1 GIS Layer: Has to be written in ASP.NET Core.

NF2 GIS Layer: Has to not diminish the read performance by more than 10% in any scenario.

NF3 GIS Layer & Import: Have to be tested with unit tests, to allow extensibility for future

changes.

NF4 GIS Layer: Should Errors are handled to prevent simulation crashes.

NF5 GIS Layer: Should Log messages are written to standard out.
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This chapter covers the process of �nding the right design and technologies to ful�ll the

requirements gathered in the previous chapter. The Solution Statements cover possible ways

of solving the problem. The last section covers the �nal design.

4.1. Methodology

Based on the requirements a technical research has been carried out to �nd the right technolo-

gies. These �ndings have been compared by features and then tested in terms of performance.

The technologies required for the import and the GIS layer implementation during the sim-

ulation, have to ful�ll di�erent requirements (section 3.3). This is why they are looked at

independently in the following sections

4.2. Solution Statements – Import

The File Import needs to detect the type of GIS that was uploaded, handle zipped data, determine

the coordinate system, fall back to WGS 84 if none was detected and convert data to the right

type. This �nal result needs to be integrated into the MARS Cloud.

4.2.1. Detection of the file type

Detection of the correct GIS type can be done by checking the �le ending. Files in a zipped

container have to be extracted before doing so. The process is very basic and therefore can be

done in any technology. The �le formats with their corresponding endings are listed below:

Zip files:

• .zip

GeoTIFF:

• .tif
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• .geoti�

Esri AsciiGrid:

• .asc

GeoJSON:

• .json

• .geojson

Shapefile:

• .shp

• .shx

• .dbf

13 additional, non-mandatory �le su�xes exist. For more details, refer to ESRI (1998).

4.2.2. Validating File Types & detecting CRS

Once the type of �le has been determined, it has to be validated and the coordinate system

needs to be detected. This requires the program to be able to read and understand the detected

type.

As described in section 2.1, a large amount of projections and coordinate systems are possible.

Implementing those types would be an act of reinventing the wheel, so an existing library will

be used to handle this task.

There are libraries for a few languages, but since GIS is a very specialized �eld, many of them

lack essential features. The biggest set of proper tools are o�ered for „R“ and „Python“. For

Java there is one feasible option, called GeoTools (see section 2.2.2).

4.2.3. Converting File Types

Due to the shortcomings of GIS libraries, there is currently no way to read GeoTIFF inside

MARS LIFE, which is written in ASP.NET Core. Therefore the �les have to be converted to a

supported format. This conversion can be done in a variety of ways. The methods that were

taken into closer consideration are the GeoServer and GDAL. In the following paragraphs, the

two are being compared by features and performance.
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GeoServer

The GeoServer, as introduced in section 2.2.3 that allows the conversion of types. Unfortunately

it is done via the WFS API which does the conversion upon retrieving the �le. While this

makes the process of retrieving �les very �exible, it leads to recurring conversions for multiple

simulations with the same �le.

GDAL/OGR

GDAL, as described in section 2.2.2 is a C library with bindings for all common languages.

Compared to the GeoServer, it is a more light-weighted solution, since it does not introduce

it’s own service.

Persistence

Currently the GeoServer is being used for GIS persistence. It has many more features, but the

only ones being used are the persistence and �le conversion capabilities. For more detail check

the previous work of the author (Karsten 2018).

The work�ow of the current import already persists data before it is handed over to the GIS

import service. This allows to make the GeoServer obsolete by replacing the stored �le with

the converted version.

Performance

The main reason the GeoServers usage was questioned in the past, is it’s poor performance in

certain scenarios (for further information refer to Karsten (2018)). This is why a benchmark

was created that measures the execution time of the technologies GIS �le conversion.

The performance test was done with 3 vector Shape�les and 3 raster GeoTIFF �les of small,

medium and large size. The Shape�le was converted to GeoJSON and the GeoTIFF to AsciiGrid.

The tests were done three times. Figure 4.1 and 4.2 show the averaged results in seconds.
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Figure 4.1.: GeoServer vs. GDAL/OGR Vector conversion

Figure 4.2.: GeoServer vs. GDAL/OGR Raster conversion

36



4. Software Design

Figure 4.1 shows the vector conversion results. Surprisingly the performance of the GeoServer

was better than GDAL, when converting the shape�les. This is especially worth noting, since

the data had to be send over the network from a remote server. The reason for this is that the

GS runs as a separate service. The network latency also explains why the GeoServer is slower,

when converting the small �le. Overall the performance of the GS is better, but not by a huge

margin.

The conversion of raster data in �gure 4.2 shows entirely di�erent results. GDAL is about

16 times faster on a small �le, 53 times faster on the medium �le size test and almost 65 times

faster on the large �le. The conversion of the big �le took over 8.5 minutes compared to 8

seconds with GDAL. The time complexity of the GeoServer’s algorithm is O(2N). As a result,

converting a �le of 1GB in size would take an estimate of 2.76 hours, which is not acceptable.

4.3. Solution Statements – GIS Layer

The GIS layer is a data layer inside the MARS LIFE simulation system, as explained in section

2.3.2. This means that the GIS component has to be written in ASP.NET Core.

The raster and vector component are able cover a similar functionality, but they approach a

given problem in di�erent ways. Raster GIS is less complex and therefore generally faster, but

also less accurate. Vector GIS is more precise but relies on complex algorithms to function.

The data structure and the libraries used to read and process the raster and vector data vary

by big margin. For this reason the two components have been separated into individual

components.

4.3.1. GIS Raster Layer

The most fundamental functionality of the layer is the capability to read values from geo-

referenced raster �les. The constraints are explained in section 2.1.2.

This requires the functionality to interpret the given �le. The implementation of a predicate

based cell selection algorithm is also required, as well as the support for time-series data.

File parsing

GeoTIFF would be the preferred format, as it stores data in binary. However, there is currently

no library that supports reading the format. Creating a parser is out of scope for this thesis,

due to the following reasons.

Implementing a parser requires decoding the TIFF compression algorithm and adding the
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spatial logic on top. Neither exist in the standard or any other GIS library for ASP.NET Core,

since it is no trivial task. The performance gain on the other hand would only e�ect the time

of initialization which is done once for every simulation.

The alternative is using an AsciiGrid �le, as described in section 2.2.1. Currently, there exists

no library for reading AsciiGrid in ASP.NET Core however, the format is text-based, has a

simple header, does not support multiple bands or coordinate systems and no compression

algorithms. This results in a reduced complexity to write the parser, which makes it worth the

a�ord.

Potential Field

Potential �eld data are pre-generated �les that allow spatial routing to a certain cell based on

the highest adjacent cells. This is needed for detecting the shortest path on raster �les. The

expensive part is the creation of the layer, which is done ahead of time and the lookup times

are fast.

The current MARS use-case are agents, sensing water in the distance. During runtime, it

requires to check the adjacent cells in order to get the highest value. This is done repeatedly

until the destination, e.g. 100% is found. The number of checks for every step is n <= 8.

Figure 4.3 shows a potential �eld image for water sources. The bottom right cell has a value of

100% black, indicating a water source. The gray areas are the area an agent can sense water

from. The white area is outside the sensing reach of the agent.

To navigate to the water source, the layer has to provide the capability to �nd the closest

adjacent cell. The agent can then go there, if it wishes to drink.
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Figure 4.3.: Example potential �eld

Finding the closest Cell

In the �rst version of the calculation, as speci�ed by the author of this work, it was only

possible to �nd a cell with speci�c values. This has been changed to predicate based logic,

allowing the user to pass a boolean function into the layer. This allows to not only check for a

speci�c value, but also to verify or check value ranges and more complex operations.

The function is evaluated and returns true, if the correct cell is found. This is done from the

origin cell outwards until the maximum distance is reached or no cells are left to evaluate. In

the example shown in �gure 4.4 the origin cell contains a 0. It is located in the third row of the

�rst column. The target cell is marked black. Each iteration, called level of the algorithm is

labeled with a number in the image.

For each level, a list of surrounding cells is generated and the predicate expression is evaluated

against those cells. If no match is found, a new list with cells, surrounding the previous one is

generated and reevaluated. If a match is found the coordinates of the cell are instantly returned.

On the forth level, the black target cell matches the expression. The coordinates are returned

as a result, which terminates the algorithm. The last cell on level 4 is not evaluated.
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Figure 4.4.: Find a Cell by pattern matching

Time-series

Time-series data changes over time. There is a need to have changing layers over the duration

of the simulation. AsciiGrid does not support more than one band like GeoTi� (see section

2.2.1), therefore multiple �les have to be used and swapped during runtime.

The LIFE systems design strictly separates model code and initialization data. This means that

a given model can be executed with di�erent input �les. The implementation of the logic to

swap out �les in the layer code, would break with this paradigm. Therefore the layer has to

swap �les based on the input.

The design of the MARS system allows to only pass and map one �le to a given layer, so the

raster �les have to be combined in a zip-�le. To control the duration of the validity, time-series

raster �les have to contain a „metadata.csv“. This �le has two columns. A time stamp that

marks the beginning of validity and the corresponding �le name. The example in listing 4.1

shows biomass data for the years 1979 and onwards. Each year has its own �le. For the year

2000 the �rst �le is being reused.

1 Date;File
2 1979-01-01T00:00:00;1979.asc
3 1980-01-01T00:00:00;1980.asc
4 1981-01-01T00:00:00;1981.asc
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5 ...
6 2000-01-01T00:00:00;1979.asc
7 ...

Listing 4.1: An Example metadata.csv.

Parallel write Access

Parallel write access on �les requires logic that takes care of con�icts, alternatively each �le

has to be locked during a write access. This is not an option for performance critical operation

with >1 million parallel writes. Instead, a value based locking mechanism has been introduced.

The values are stored in memory inside a thread safe data structure that handles each �eld

individually. To guarantee the isolation of changes, it is important that the structure is not

exposed directly to the user. Parallel threads that read the value and set it to the new value

could create inconsistencies that are hard to debug.

4.3.2. GIS Vector Layer

The vector layer allows geo-spatial requests on desired �les. As mentioned before, it covers

basically the same features as the raster layer above. Additionally it o�ers geo-spatial operation

regarding shapes and their interactions.

File Parsing

The �le parsing is done with NetTopologySuite. This is a result of the performance tests done

by the author of this work ahead of time (Karsten 2018). The default for vector data is the Esri

Shape�le. However the compatibility in NTS was removed when the library was migrated to

ASP.NET Core and this feature is still not available yet. The parsing of GeoJSON is supported

and works without any restrictions.

GIS Operations

As de�ned by the requirements in section 3.3.1 certain GIS features have to be supported. The

API has to expose methods that allow these calculation. Among others, these involve checking

if paths intersect and rather a feature is inside another. Distance calculation between points is

also required.
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Nearest Neighbor Calculations

The default nearest neighbor calculation of NTS iterates over every point in every feature

and then calculates the distance between all of them. This calculation takes along time and

there is no way to terminate the process, once the closest point has been found. This means

the algorithm always compares every feature with every other, making the algorithm have a

O(N2) complexity class in any case.

An alternative provides the k-dimensional (k-d) tree algorithm by Bentley (1975). It o�ers

excellent performance for nearest neighbor lookup on static positioned points. The GIS vector

layers cannot change during the simulation, which makes it a perfect �t.

The algorithm is a space-partitioning data structure for organizing points in a k-dimensional

space. The implementation is based on a multidimensional Binary search tree (BST). Inserts

and lookups have an average complexity of O(log n) and O(n) in the worst case.

Time-series

It is possible to store time-series data inside GeoJSON and the Shape�le’s data table. Unfor-

tunately the dBase that is used for the Shape�le data table has very small limits in terms of

characters and number of columns that can be added. Removing compatibility with Shape�le

is also not an option.

An alternative is the use of a simple csv-�le that is stored inside the �les zip-container and gets

interpreted during initialization. This �le is similar to the metadata �le for raster time-series

data, but here only one �le is needed, since there was no use-case for multiple points on a

certain timestamp. Listing 4.2 shows an example.

1 date;precipitationInMm
2 1989-01-01T00:00:00Z;14.3
3 1989-02-01T00:00:00Z;286.3
4 1989-03-01T00:00:00Z;57.6
5 1989-04-01T00:00:00Z;6.8

Listing 4.2: An example vector time-series csv-�le.

Parallel write Access

The write access regard only the data table, since there are currently no plans to change vector

�les during runtime. Therefore the data table must be stored in a concurrent data structure for

fast memory reads and writes that provides thread safe access.
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4.4. Final Design

Figure 4.5.: New MARS Cloud Service overview

The previous sections discussed the design decisions based on the requirements in chapter

3. This section sums up the previous detailed explanations into the �nal design. Figure 4.5

shows the new service overview. The services surrounded with a red box have been created or

changed by this design.

4.4.1. GIS Data Service

The GIS Data Service handles the import of any GIS based imports. It covers the following

tasks:

1. Extract �les from zip container.

2. Detect the type of GIS.
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3. Check the validity of the �les.

4. Convert raster �les to Esri AsciiGrid and vector �les to GeoJSON.

5. Delete not supported �les.

6. Compress the converted �les.

7. Persist the converted �les.

8. Update the �les metadata entries.

Steps 4 to 7 are optional and only happen, if the �le has to be converted.

The service is written in Java, because GeoTools is a well supported solution for working

with GIS data. The application will use the Spring Boot framework to create a web applica-

tion. It is required to expose a Representational State Transfer (REST) API for establishing

communication with other services.

Persistence

The persistence was previously handled by the GeoServer, but due to problems discussed

in section 4.2.3 and 4.2.3 it has been removed. Files are persisted by the File Service upon

upload. It’s REST API has been adjusted, so the converted �les could be stored in the Service’s

persistence. This removes one service from deployment and reduces friction between di�erent

import types.

4.4.2. GIS Raster Layer

The raster layer is a component inside the LIFE simulation system that is initiated with a

metadata ID of a AsciiGrid raster �le. Upon initialization it retrieves the actual �le or multiple

�les in case of time-series data.

The �le is parsed using the AsciiGrid Parser described below. The Layer exposes a ASP.NET

Core API that ful�lls the requirements de�ned before. All endpoints are documented in order

to be used by model developers. A full API description can be found in section 5.2. No further

dependencies are required for the layer to work. The handling of time-series data is done

automatically, so the user will always get the proper data for the current simulation time.

AsciiGrid Parser

Due to missing core libraries for image processing, there currently is no library that support

any common GIS raster format. This is why a parser for Esri AsciiGrid has been created.
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It copies the data from each cell of the �le into a concurrent data structure to allow parallel

access on the �le. This approach allows to reduce the scope of potential collisions from the �le

down to a single value, which decreases the amount of locking and increases performance.

4.4.3. GIS Vector Layer

The GIS vector layer is initialized just like the raster layer, except that it uses a GeoJSON �le to

initiate. The layer also stores its data in-memory, but since the vectors cannot change, thread

safety is not a concern. The vector layer’s data table on the other hand can change, therefore it

is held in a parallel data structure like the raster data.

The Layer uses NTS as a data abstraction library to be able to support a wide range of geo-spatial

coordinate systems and GIS algorithms and calculations.
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This chapter covers the implementation of the previously de�ned design. Each of the GIS

Data Service components, raster and vector layer are looked at individually. For each service

the implementation details are discussed, a sequence diagram is shown and the detailed API

reference is shown.

5.1. GIS Data Service

As mentioned before, the GIS Data Service is written in Java. It uses Spring Boot to con�gure

the Spring framework, which is used for the REST API. GeoTools is used for the interpretation

of GIS �les and the �le conversion is done by GDAL. The used versions are listed in the

following table.

Technology Version Release Date

Java 10 2018-03-20

Spring Boot 2.0.2 2018-05-09

GeoTools 19.1 2018-05-21

GDAL 2.3.0 2018-05-04

5.1.1. Build Process

The application uses maven as a con�guration and dependency management tool and the

source code is checked into the the department’s GitLab. The process for building the appli-

cation locally does not require the user to follow any speci�c steps however, there are a few

considerations, when developing and deploying the service.
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Build and Run Locally

It is possible to start the service locally. To do so, the JAR can be compiled using the following

command:

1 mvn clean package

Listing 5.1: Build the application

This downloads all the dependencies, compiles the application into a Java Archive (JAR) and

runs the unit tests. Afterwards the app can be started using:

1 java -jar target/gis-data-svc-2.2.*.jar

Listing 5.2: Run the application

This allows to start the service, run the applications unit tests and do manual tests of it’s

REST API. When testing against other services, it is useful to deploy the service in the beta

deployment of the MARS group.

Build and Run inside the MARS Beta Deployment

The way this can be done is by changing the deployed version in the beta to dev, push a Docker

image to the GitLab registry and apply the changes.

First the „gis-data-svc.yml“ �le inside the „mars-beta“ has to be altered.

1 - image: <registry>/mars/mars-gis-data-svc/gis-data-svc:28143
2 + image: <registry>/mars/mars-gis-data-svc/gis-data-svc:dev

Listing 5.3: Change gis-data-svc version

This change has to be applied using

1 kubectl -n mars-mars-beta -f gis-data-svc.yml

Listing 5.4: Apply changes to Kubernetes

Afterwards the application has to be build, the images needs to be pushed to GitLab and the

service in the cluster has to be restarted. To streamline the process the following script can be

used. It can also be found in the „start.sh“ script inside the repository.

1 DOCKER_REGISTRY="docker-hub.informatik.haw-hamburg.de"
2 PROJECT="mars/mars-gis-data-svc"
3 SERVICE_NAME="gis-data-svc"
4

5 mvn clean package
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6

7 docker build -t ${DOCKER_REGISTRY}/${PROJECT}/${SERVICE_NAME}:dev .
8 docker push ${DOCKER_REGISTRY}/${PROJECT}/${SERVICE_NAME}:dev
9

10 kubectl -n mars-mars-beta delete pod -l service=${SERVICE_NAME}

Listing 5.5: Apply changes to Kubernetes

5.1.2. API Reference

This section discusses the REST API of the GIS Data Service and the changes made to the File

Service.

File Service: POST /files/replace

The File Service has one new endpoint for replacing converted �les, which is shown by �gure

5.1. It’s purpose is to allow to replace �les during the import. This is used by the GIS Data

Service, when it converted a �le.

The other endpoints are not shown here, since they are not part of the authors work.
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Figure 5.1.: The File Service’s REST API

GIS Data Service: POST /gis

The changes that removed the GeoServer also eliminated the necessary for retrieving data from

the GIS Data Service. This is because, persistence is handled by the File Service. Therefore the

GIS Data Service has only one endpoint left. This endpoint is being used by the File Service to

trigger the import. Figure 5.2 shows this endpoint. It requires to specify the dataId, the name

of the �le and its title.
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Figure 5.2.: The GIS Data Service’s REST API

Status Codes:

Both services have the same status codes for handling responses. They are listed in the follow-

ing table.

Code Description

200 OK.

201 Created

400 Wrong parameter

404 Not Found

5.1.3. Sequence Diagram

Figure 5.3 covers the whole process of importing a GIS �le. The user in the WebUI triggers an

import. This uploads the users �le along with the form data to the File Service. It �rst inserts

the �le into MongoDB and creates the metadata entry. Afterwards the control is handed to

one of the import services, in this case the GIS Data Service.

The service does its detection of the GIS type and conversion of �les, like described before.

In case a �le has been converted, it will be send to the File Service, to replace the originally

uploaded �le. In order for this functionality to work, a new endpoint, called „/�les/replace“,

was added to the File Service’s REST API.
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Figure 5.3.: Sequence diagram of the GIS import process
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5.2. GIS Raster Layer

This section documents the implementation details of the GIS Raster Layer. It covers the use of

time-series data, the AsciiGrid parser and a documentation of the API.

5.2.1. Time-series Data

During initialization, the time-series metadata �le is parsed and sorted by date. The result is

a list of dates with their corresponding time-series �les. This means that whenever the time

advances to a point, where the �le has to be changed, the index reference has to be incremented

by one.

In every tick of the simulation, the current timestamp (n) is calculated. The layer then simply

has to compare this timestamp to the next (n+ 1) in the list. If the next timestamp is larger,

meaning later in time, nothing has to be done. In case the next timestamp is before the current

�le, it checks to make sure the n+ 2 timestamp is after the current time to prevent errors with

time-series �les that do not line up with the tick duration.

If the new time-series �le di�ers from the old, it is automatically loaded and parsed without

the model developers in�uence. This removes a potential error source, but also does not give

the user the possibility to in�uence �le loading.

5.2.2. AsciiGrid Parser

The parser is part of the layer and serves the purpose of reading the AsciiGrid �le. It also

transfers the data to a concurrent dictionary for parallel write access. The data is stored with

an IGridCoordinate as a key. This allows to directly access the �eld at any time. Methods

for converting GPS coordinates to grid coordinates and vice versa are supported to improve

usability.

5.2.3. API Reference

The following section explains the most important API endpoints, as they can be found in

„LIFE-API / Layer / GIS / IGISRasterLayer.cs“ inside the LIFE repository. A full list of endpoints

and the metadata API can be found in appendix section A.3.1.

1 IReadOnlyDictionary<IGridCoordinate, double?> Grid { get; }

Listing 5.6: Raster API – IReadOnlyDictionary

The Read only dictionary allows direct access to the grid representation. It is meant for result

output or debugging during development.
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1 IAscMetadata Metadata { get; }

Listing 5.7: Raster API – Metadata

The grids metadata can be accessed the same way the actual grid can be.

1 void AddToGridField(IGridCoordinate coord, double value);
2 void AddToGridField(IGeoCoordinate gps, double value);

Listing 5.8: Raster API – AddToGridField

This method allows the user to increment or decrement values in a way that is thread safe.

The grid cell can be provided via a Cartesian grid coordinate, speci�ed in x and y or using a

GeoCoordinate, using latitude and longitude. In case the speci�ed cell is outside the bounds, a

„ArgumentOutOfRangeException“ is thrown, as this is usually a user error that should not be

suppressed.

1 double GetValue(IGridCoordinate coord);
2 double GetValue(IGeoCoordinate gps);

Listing 5.9: Raster API – GetValue

„GetValue“ is the central method which allows retrieving a value at a speci�c location. Just like

the previous method, it throws an „ArgumentOutOfRangeException“ if the cell does not exist

in the grid.

1 IGridCoordinate GetNeighbourCellWithMaxValue(IGridCoordinate positon);
2 IGeoCoordinate GetNeighbourCellWithMaxValue(IGeoCoordinate positon);

Listing 5.10: Raster API – GetNeighbourCellWithMaxValue

This method retrieves the adjacent cell with the highest numeric value. This allows the potential

�eld �les to be used.

1 IGridCoordinate GetClosestCellWithValue(IGridCoordinate coord,
2 Func<double, bool> predicat, int maxDistance);
3 IGeoCoordinate GetClosestCellWithValue(IGeoCoordinate gps,
4 Func<double, bool> predicat, int maxDistance);

Listing 5.11: Raster API – GetClosestCellWithValue

This method allows the detection of the closest cell with a value, matching a predicate. This is

used for exploration. Due to the capability to pass a function as a parameter, it is possible to

de�ne e.g. ranges of values.
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5.3. GIS Vector Layer

This section describes the implementation of the GIS Raster Layer. It features the use of NTS,

the solution to the nearest neighbor lookup times, the handling of time-series data and a

description of the major API endpoints.

5.3.1. NetTopologySuite

The NetTopologySuite was used to implement the GIS functionality. As shown in the following

table, the currently used version is still a pre-release. This is due to the fact that current stable

versions are still not compatible to ASP.NET Core. However the version did not cause issues

during development, testing or �nally usage.

Technology Version Release Date

NetTopologySuite 1.15.0-pre063 2018-05

5.3.2. Initialization Process

During initialization the whole GeoJSON �le is read and parsed to a collection of features. This

is held in memory and is being used throughout the simulation.

The Data table gets extracted from the feature collection into a concurrent dictionary to allow

the desired parallel write access. In case, time-series data exist, it gets parsed afterwards, for

details see section 5.3.3. Finally, a k-dimensional tree is created for increased nearest neighbor

lookup performance (see section 5.3.3).

5.3.3. Time-series Data

The process of detecting the time-series value for the current tick works exactly like explained

in the raster layer section. However, while the time-series raster data requires a reinitialization

of the whole layer, this is not required in case of the vector layer. This is because the data that

changes is a single double value for each timestamp. This means that instead of storing the �le

that will be used at a given point in time, the actual value is being stored and returned.

5.3.4. Nearest Neighbor Detection

As mentioned before, the default nearest neighbor detection of NTS is very ine�cient. The

reason for this is that several features can exist, which can contain of multiple points. This

information is stored in nested lists which have no order. Therefore the distance calculation
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has to compare the current point with every existing point in all features. The complexity in

any case is O(n) where „n“ is the number of points.

The algorithm stores the currently closest point and it’s distance. On every iteration the new

result is compared to the closest one, until all coordinates have been checked. Then the current

closest point is returned, if it is within the max distance.

In a unit-test, using a river GeoJSON from the KNP model with 7,985 features, resulting in

24,593 single points, the execution time was 70 ms per calculation. The mentioned model has

15,000 elephants executing this lookups every time they searched for water. This resulted in

greatly increased tick durations, compared to the previous implementation, using a non-GIS

layer.

As a result of research, the k-d tree was chosen. The reason for this, is the excellent nearest

neighbor detection for static points. During initialization of the simulation, all points of every

feature have to be added to the tree. In comparison to the previous implementation, this had

to be done only once.

During the simulation the nearest neighbor lookup is done by traversing the tree. This allows

nearest neighbor detection without having to search every node, resulting in an average

complexity of O(log n). The distance calculation has to be done on the resulting point, to

ensure it is within the maximum range.

The test, using the scenario mentioned above improved the lookup time from approximately

70ms to 2ms, which is an increase by factor 35.

5.3.5. API Reference

This section explains the most important API endpoints for the vector layer. A full list can

be found in the appendix in section A.3.2. Note that features are represented as „IEnumer-

able<IGeoCoordinate>“. This makes understanding and constructing features easier for users

of the API. The layer understands this representation and it makes the API independent from

NTS.

1 IGeoCoordinate GetClosestPoint(GeoCoordinate gpsCoordinate,
2 double maxDistance);

Listing 5.12: Vector API – GetClosestPoint

This method returns the coordinate of the nearest neighbor with the speci�cation of a max

distance in km.

1 double Distance(int featureIndex, IEnumerable<IGeoCoordinate> coords);
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2 double DistanceInKm(int featureIndex, IEnumerable<IGeoCoordinate> coords);

Listing 5.13: Vector API – Distance

This calculates the distance between two features in degree. Since the unit is not very intuitive,

an overloaded function exists, which converts the result to kilometers.

1 bool IsMultiPointInside(IEnumerable<IGeoCoordinate> coords);
2 bool IsLineStringInside(IEnumerable<IGeoCoordinate> coords);
3 bool IsMultiPointCrossing(IEnumerable<IGeoCoordinate> coords);
4 bool IsLineStringCrossing(IEnumerable<IGeoCoordinate> coords);
5 bool IsMultiPointIntersecting(IEnumerable<IGeoCoordinate> coords);
6 bool IsLineStringIntersecting(IEnumerable<IGeoCoordinate> coords);
7 bool IsMultiPointOverlapping(IEnumerable<IGeoCoordinate> coords);
8 bool IsLineStringOverlapping(IEnumerable<IGeoCoordinate> coords);

Listing 5.14: Vector API – Correlations

The methods listed above allows to calculate a wide variety of correlations between features.

1 double GetAccumulatedPathRating(IGeoCoordinate source,
2 IGeoCoordinate target, int distance);
3 double GetAccumulatedPathRating(IGeoCoordinate source,
4 int distance, double bearing);

Listing 5.15: Vector API – Path Rating

The path rating is a special method designed to make movement in an obstacle environment

easier. It takes a source coordinate and a distance, as well as either a target coordinate or a

bearing in degree (0-359). It calculates, if the line between the points cross a feature. If that is

the case, the crossed feature’s data table is checked for a „resistance“ value. If such a value

exist, it is the result of the method, otherwise the path rating is 0.

1 object GetTimeseriesDataForCurrentTick();

Listing 5.16: Vector API – Time-series Sata

This returns the time-series value for the current tick. The use of the type „object“ allows the

user to store more complex values than simple numbers.

1 object GetFromDataTable(int featureId, string key);
2 void AddToDataTable(int featureId, string key, object value);

Listing 5.17: Vector API – Data Table

The methods above allow reading and writing from a feature’s data table. The use of the

„object“ type has the same reason as above.
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The experiments chapter covers a practical test with minimal models. It also contains a

performance test that compares the new layers to the previous one, to show that the GIS

implementation does not sacri�ce the simulation’s performance.

6.1. Experimental Setup

The experiments consist of the four main use-cases, which are described in section 3.2. They

are obstacle detection, sensing, time-series and writing data to the raster.

Each use-case has three models, one for each type, the old implementation, the GIS Raster

Layer and the GIS Vector Layer. The only exception is the write data use-case. Since it is not

supported by any of the old layers, there will be no test, which leads to 11 tests in total.

For each test, a model was created. The models are a minimal implementation using one layer

and 15,000 agents with latitude, longitude and a reference to one of the layer types. For each

tick, every agent executes an action depending on the use-case.

The simulation were done in the production cluster with LIFE version 2.5.9. This environment

contains of several notes. Each note was run on an Apple Mac Pro (2013) with a 6 core (12

including hyper-threading) Intel Xeon processor and 64 GB memory.

The fact that the server cluster is used by others can lead to varying results. In order to reduce

this factor, the simulation have been run three times. To eliminate peaks hours, the simulation

were done at di�erent times over 2 days.

Every model was simulated for 31 days with a tick duration of one hour, resulting in 744 total

ticks. The total number of simulation sums up to 33 with 24,552 simulated ticks.

The result output, which takes approximately one second per tick was disabled to increase

accuracy of the results. Measurements were taken from the simulations console output that

logs the execution time of every tick.
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6.2. Execution

All models were created in one ASP.NET Core solution and the code can be found in a project

called „thesis-experiments“ inside the MARS GitLab. This contains all the compiled models, as

well a the input �les.

The execution of each test was done by uploading model and data to the WebUI. The data was

then mapped to the model and executed. The console log shows the execution time of each

tick.

6.2.1. Obstacle

The obstacle use-case is meant to simulate agent movement withing boundaries. During each

tick an agent calculates a position from a random distance between 20 meters and 7 kilometers

and a random direction between 0 and 359 degrees.

The path from the current to the new location is then checked for interfering obstacles.

6.2.2. Sensing

Sensing expresses the agents capabilities to detect an area or object of interest and move

towards it. It does not matter if sensing is done by line of sight, smelling or other methods of

detecting the target.

In case of the GeoPotential Field layer and the GIS Raster Layer, it requires an already initiated

�le with increasing values towards the target. The layers check for the surrounding cells and

move towards the highest, until reaching the maximum is reached. The GIS Vector Layer does

a nearest neighbor lookup within a speci�c radius.

6.2.3. Time-series

Both the old time-series layer and the GIS Vector layer can only store one value for a certain

point of time. The Raster layer allows to store one �le for a point in time.

The Layer replaces it’s current value automatically, depending on the simulation time. This

guarantees that a requested value is always the current one.

6.2.4. Write to Raster

Writing to the raster �le in parallel allows agents to add values to the raster or subtract them.

Setting to a speci�c value is not supported, since it would interfere with the parallelism.

In the test, each agent increments the value of the cell at his position by one on every tick.
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6.3. Results

The results show the execution time of the tests as described before.

6.3.1. Obstacle

The performance metrics in �gure 6.1 show that the original Obstacle Layer performs the best.

It consistently provides tick times of about 11ms less than the GIS Raster implementation,

which works in a similar way. This adds up to 8 seconds of additional simulation time per

month.

However 11ms are not something that will be noticeable in a real environment, where approxi-

mately 1,000ms of time is added for persisting results and other operations.

The Vector layer o�ers performance values that are in the middle, making it a slightly better

alternative to the GIS Raster Layer.

Overall, the performance of the three layers are in the same range. This being said, the

type of layer being used, will be de�ned by the data, the user has available and not the layer

performance.

Figure 6.1.: Obstacle performance

6.3.2. Sensing

The sensing performance values, as seen in �gure 6.2 show much diverse results than the

previous test.

As expected, the nearest neighbor detection of the GIS Vector Layer does not perform as good,

as the implementation of a raster �le that was specially created for this use-case.
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However, the bad performance of the Potential Field Layer is surprising, since it’s implementa-

tion relies on a raster �le, just like the GIS Raster Layer.

Figure 6.2.: Potential Field performance

6.3.3. Time-series

The Timeseries Layer and the the GIS Vector Layer’s time-series implementation both rely on a

single value, explaining the comparable performances. The GIS Raster Layer has to reinitialize

the input �le that is being used, depending on the current tick. Therefore it is slightly slower

than the other implementations shown in �gure 6.3.

Figure 6.3.: Timeseries performance
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6.3.4. Write to Raster

The write performance as shown in �gure 6.4 does not include a previous layer, as such a layer

does not exist.

Writing data in case of the GIS Vector Layer changes the �les data table and in case of the GIS

Raster Layer the cell values of the �le. The GIS Raster Layer performs better. This is the case,

because the raster agents cannot simply increment a value, but have to read and parse the

current value before setting a new one.

Figure 6.4.: Write Data performance
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This chapter concludes the thesis and gives an outlook of future work.

7.1. Conclusion

This thesis introduced two data layers to the MARS simulation that allow model developers to

take advantage of GIS based input data �les. The use-case speci�c layers, together with their

custom �le formats and specialized converters are therefore obsolete.

The new layers were integrated into the KNP model which is the biggest model for the MARS

system. Also the DSL created by Glake (2018) makes use of the GIS Raster Layer, allowing

users without advanced knowledge in programming to create simulations using GIS. The

implementation of GIS Vector support is currently planned. With this being said, the work is

already a central part of the MARS ecosystem.

The validity of the hypotheses, de�ned in section 1.1 will be discussed in the following section.

7.1.1. Hypotheses Validation

H1 – Introduce GIS and retain existing Functionality

GIS was successfully added to the LIFE simulation system and is capable of ful�lling all

the desired use-cases. Those include both the previous features and the writing of data to

raster layers during runtime. The implementation also improves upon previous features. E.g.

detection of the closest cell, supports �xed value and function parameters to discover cells in

ranges of values. This hypothesis is therefore validated.

H2 – Create a generic Importer

A uniform importer that supports both types of GIS was created. It automatically detects the

GIS type and is capable of converting input data to the formats, required by the GIS layers.

Hypothesis 2 is therefore valid.
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H3 – Make custom Generators obsolete

The native support for GIS as GeoJSON, Shape�le, AsciiGrid and GeoTIFF is supported. This

Allows direct use of the mentioned �le types. However, the support for time-series data requires

to provide additional �les, in a form that is not supported by default GIS applications. The

�les do not alter the original input and consist of standardized CSV �les which don’t require

special processing. Therefore it can be concluded that hypothesis 3 is still valid.

H4 – GIS does no diminish the Performance

The metrics in section 6.3 show varying results. The obstacle performance could not be reached

by either of the GIS layers. The Raster Layer performed worst, results being 12.79% (11ms)

slower than the obstacle layer.

The sensing of the Potential Field Layer and the GIS Vector Layer were about the same, but the

GIS solution showed slightly better performance and the GIS Raster Layer being substantially

faster.

The time-series performance was about the same, with the Vector layer slightly ahead and the

Raster Layer being the slowest.

Overall performance of the GIS implementation was better, but due to the obstacle performance,

the validity of this hypothesis is debatable.

7.2. Future Work

Although the layers that were introduced in this work, function as desired, they could be further

improvement. The GIS Raster time-series implementation uses a metadata �le to associate

input �les with the current point in time. In the future it might be required to allow multiple

�les for a certain period. This could be useful, if one input �le has a higher accuracy than

another in certain conditions.

Currently the GIS Raster Layer supports sensing by �nding the highest adjacent cell. This

could be extended by accepting a function as a parameter which would allow route �nding

between grid cells, based on a predicate logic (e.g. routing through a mountain area with

minimal elevation change).

The initialization speed could be improved in the future, by implementing readers for binary

input �les. The GIS Raster layer could then be initialized by a GeoTIFF �le and the GIS Vector

Layer by using an Esri Shape�le. This is particular valuable for the GIS Raster Layer, because

it’s �les tend to be larger and therefore take an increased amount of time to initialize.
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The performance of the obstacle detection could potentially be optimized. This would involve

introducing more advanced algorithms. Leveraging the power of Graphics processing unit

(GPU)s might also be a vital option.
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A.2. Acronyms

API Application programming Interface

CRS Coordinate Reference System

GIS Geographic Information Systems

GPS Global Positioning System

MARS Multi-Agent Research & Simulation

MAS Multi-Agent Simulation

WGS 84 World Geodetic System 1984

EPSG European Petroleum Survey Group

EGM2008 Earth Gravitational Model 2008

NGA National Geospatial-Intelligence Agency
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GeoTIFF Georeferenced Tagged Image File Format

JSON JavaScript Object Notation

GDAL Geospatial Data Abstraction Library

OSGEO The Open Source Geospatial Foundation

OGR OpenGIS Simple Features Reference Implementation

NTS NetTopologySuite

OGC Open Geospatial Consortium

IETF Internet Engineering Task Force

DSL Domain Speci�c Language

KNP Kruger National Park

WFS Web Feature Service

WCS Web Coverage Service

BST Binary search tree

REST Representational State Transfer

JAR Java Archive

GPU Graphics processing unit
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A.3. API Documentation

A.3.1. GIS Raster Layer

1 /// <summary>
2 /// The structure storing the grid data.
3 /// </summary>
4 IReadOnlyDictionary<IGridCoordinate, double?> Grid { get; }
5

6 /// <summary>
7 /// The metadata of the layer.
8 /// </summary>
9 IAscMetadata Metadata { get; }

10

11 /// <summary>
12 /// Adds a value to an existing grid cell.
13 /// If the Cell does not exist, an ArgumentOutOfRangeException
14 /// is thrown.
15 /// </summary>
16 /// <param name="coord">The grid coordinate</param>
17 /// <param name="value">The value you are adding.</param>
18 void AddToGridField(IGridCoordinate coord, double value);
19

20 /// <summary>
21 /// Adds a value to an existing grid cell on the gps position.
22 /// If the Cell does not exist, an ArgumentOutOfRangeException
23 /// is thrown.
24 /// </summary>
25 /// <param name="gps">The gps coordinate</param>
26 /// <param name="value">The value you are adding.</param>
27 void AddToGridField(IGeoCoordinate gps, double value);
28

29 /// <summary>
30 /// Substracts a value from an existing grid cell.
31 /// If the Cell does not exist, an ArgumentOutOfRangeException
32 /// is thrown.
33 /// </summary>
34 /// <param name="coord">The grid coordinate</param>
35 /// <param name="value">The value you are substracting.</param>
36 void SubtractFromField(IGridCoordinate coord, double value);
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37

38 /// <summary>
39 /// Substracts a value from an existing grid cell on the gps position.
40 /// If the Cell does not exist, an ArgumentOutOfRangeException
41 /// is thrown.
42 /// </summary>
43 /// <param name="gps">The gps coordinate</param>
44 /// <param name="value">The value you are substracting.</param>
45 void SubtractFromField(IGeoCoordinate gps, double value);
46

47 /// <summary>
48 /// Try to reduce a cell rating by a given value
49 /// </summary>
50 /// <param name="coord">The grid coordinate</param>
51 /// <param name="amountToTake">value by which the cell rating should
52 /// be reduced</param>
53 /// <returns>the amount that was took or 0 if there isn’t
54 /// enough left</returns>
55 double TryToSubtractFromField(IGridCoordinate coord,
56 double amountToTake);
57

58 /// <summary>
59 /// Try to reduce a cell rating by a given value
60 /// </summary>
61 /// <param name="position">gps position to find the cell</param>
62 /// <param name="amountToTake">value by which the cell rating should
63 /// be reduced</param>
64 /// <returns>The amount that was took or 0 if there isn’t
65 /// any left</returns>
66 double TryToSubtractFromField(IGeoCoordinate position,
67 double amountToTake);
68

69 /// <summary>
70 /// Retrieves the value from a pixel at a position.
71 /// </summary>
72 /// <param name="coord">pixel coordinate.</param>
73 /// <returns></returns>
74 double GetValue(IGridCoordinate coord);
75

76 /// <summary>
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77 /// Retrieves the value from a GPS position.
78 /// </summary>
79 /// <param name="gps">GPS position of the the target
80 /// location.</param>
81 /// <returns>Target value.</returns>
82 double GetValue(IGeoCoordinate gps);
83

84 /// <summary>
85 /// Get the coordinate positon of the the adjacent cell
86 /// with the highest value
87 /// </summary>
88 /// <param name="coord">pixel coordinate.</param>
89 /// <returns>position of the cell with the highest value</returns>
90 IGridCoordinate GetNeighbourCellWithMaxValue(IGridCoordinate coord);
91

92 /// <summary>
93 /// Get the gps positon of the the adjacent cell with the
94 /// highest value
95 /// </summary>
96 /// <param name="positon">gps position where the
97 /// search starts</param>
98 /// <returns>position of the cell with the highest value</returns>
99 IGeoCoordinate GetNeighbourCellWithMaxValue(IGeoCoordinate positon);

100

101 /// <summary>
102 /// Returns the closest cell with the specified value
103 /// </summary>
104 /// <param name="coord">Initial cell</param>
105 /// <param name="value">Desired value</param>
106 /// <param name="maxDistance">The maximum distance of cells
107 /// to search</param>
108 /// <returns></returns>
109 IGridCoordinate GetClosestCellWithValue(IGridCoordinate coord,
110 double value, int maxDistance);
111

112 /// <summary>
113 /// Returns the closest cell coordinate with the specified value
114 /// </summary>
115 /// <param name="gps">Initial cell coordinate</param>
116 /// <param name="value">Desired value</param>
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117 /// <param name="maxDistance">the maximum distance of cells
118 /// to search for</param>
119 /// <returns></returns>
120 IGeoCoordinate GetClosestCellWithValue(IGeoCoordinate gps,
121 double value, int maxDistance);
122

123 /// <summary>
124 /// Returns the closest cell with the specified predicat
125 /// </summary>
126 /// <param name="coord">Initial cell</param>
127 /// <param name="predicat">Expression that is checked to find
128 /// the cell</param>
129 /// <param name="maxDistance">the maximum distance of cells
130 /// to search</param>
131 /// <returns></returns>
132 IGridCoordinate GetClosestCellWithValue(IGridCoordinate coord,
133 Func<double, bool> predicat, int maxDistance);
134

135 /// <summary>
136 /// Returns the closest cell coordinate with the specified value
137 /// </summary>
138 /// <param name="cell">Initial cell coordinate</param>
139 /// <param name="value">Desired value</param>
140 /// <param name="maxDistance">the maximum distance of cells
141 /// to search</param>
142 /// <returns></returns>
143 IGeoCoordinate GetClosestCellWithValue(IGeoCoordinate cell,
144 double value, int maxDistance);
145

146

147 /// <summary>
148 /// Retrieves all data.
149 /// </summary>
150 /// <returns>Metadata in string representation.</returns>
151 string PrettyPrintGrid();

Listing A.1: GIS Raster Layer API

Metadata

1 int WidthInGridCells { get; }
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2

3 int HeightInGridCells { get; }
4

5 IGeoCoordinate UpperRightBound { get; }
6

7 IGeoCoordinate LowerLeftBound { get; }
8

9 double CellSizeInDegree { get; }
10

11 int NoDataValue { get; }
12

13 bool IsInsideBounds(IGridCoordinate coord);
14

15 bool IsInsideBounds(IGeoCoordinate gps);
16

17 string PrettyPrintMetadata();

Listing A.2: Raster Layer Metadata API

A.3.2. GIS Vector Layer

1 /// <summary>
2 /// The complete dataTable accessible
3 /// </summary>
4 ConcurrentDictionary<string, object>[] DataTable { get; }
5

6 /// <summary>
7 /// The complete TimeseriesData accessible
8 /// </summary>
9 SortedList<DateTime, double> TimeseriesData{ get; }

10

11 /// <summary>
12 /// Gets the current Index of timeseries file
13 /// </summary>
14 int CurrentTsIndex { get; }
15

16 /// <summary>
17 /// Writes the DataTable back to the original structure and returns
18 /// it as JSON. This opperation is not threadsafe, so don’t call
19 /// this function in paralles, e.g. in the agent logic. It is meant
20 /// to be used for result output between ticks.
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21 /// </summary>
22 /// <returns>All features with datatable in JSON</returns>
23 string GetFeaturesAsJson();
24

25 /// <summary>
26 /// Gets a feature at a certain index.
27 /// </summary>
28 /// <param name="featureIndex">Index of the requested feature</param>
29 /// <returns>The feature</returns>
30 IEnumerable<IGeoCoordinate> GetFeature(int featureIndex);
31

32 /// <summary>
33 /// Gets the closest point to a GPS position from all features.
34 /// </summary>
35 /// <param name="gpsCoordinate">GPS coordinate</param>
36 /// <param name="maxDistance">Distance in KM</param>
37 /// <returns>The feature</returns>
38 IGeoCoordinate GetClosestPoint(GeoCoordinate gpsCoordinate,
39 double maxDistance);
40

41 /// <summary>
42 /// Calculates the closest distace between a feature and
43 /// other features.
44 /// </summary>
45 /// <param name="featureIndex">Index of the source feature.</param>
46 /// <param name="coords">List of target features.</param>
47 /// <returns>Distance to the closest feature in Degree.</returns>
48 double Distance(int featureIndex,
49 IEnumerable<IGeoCoordinate> coords);
50

51 /// <summary>
52 /// Calculates the closest distace between a feature and
53 /// other features.
54 /// </summary>
55 /// <param name="featureIndex">Index of the source feature.</param>
56 /// <param name="coords">List of target features.</param>
57 /// <returns>Distance to the closest feature in KM.</returns>
58 double DistanceInKm(int featureIndex,
59 IEnumerable<IGeoCoordinate> coords);
60
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61 /// <summary>
62 /// Determines if a point is inside the current feature.
63 /// </summary>
64 /// <param name="coord">A coordinate that is interpreted
65 /// as a unique point.</param>
66 /// <returns>True, if the point is inside.</returns>
67 bool IsPointInside(IGeoCoordinate coord);
68

69 /// <summary>
70 /// Determines if points are inside the current feature.
71 /// </summary>
72 /// <param name="coords">List of coordinates that are interpreted
73 /// as unique points.</param>
74 /// <returns>True, if any point is inside.</returns>
75 bool IsMultiPointInside(IEnumerable<IGeoCoordinate> coords);
76

77 /// <summary>
78 /// Determines if a LineString are inside the current feature.
79 /// </summary>
80 /// <param name="coords">List of coordinates that are interpreted
81 /// as LineString</param>
82 /// <returns>True, if any point is inside.</returns>
83 bool IsLineStringInside(IEnumerable<IGeoCoordinate> coords);
84

85 /// <summary>
86 /// Determines if coords are crossing the current feature.
87 /// </summary>
88 /// <param name="coords">List of coordinates that are interpreted
89 /// as MultiPoint.</param>
90 /// <returns>True, if any two points are crossing.</returns>
91 bool IsMultiPointCrossing(IEnumerable<IGeoCoordinate> coords);
92

93 /// <summary>
94 /// Determines if coords are crossing the current feature.
95 /// </summary>
96 /// <param name="coords">List of coordinates that are interpreted
97 /// as LineString.</param>
98 /// <returns>True, if any two strings are crossing.</returns>
99 bool IsLineStringCrossing(IEnumerable<IGeoCoordinate> coords);

100
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101 /// <summary>
102 /// Determines if coords are intersect the current feature.
103 /// </summary>
104 /// <param name="coords">List of coordinates that are interpreted
105 /// as MultiPoint.</param>
106 /// <returns>True, if any two points are intersection.</returns>
107 bool IsMultiPointIntersecting(IEnumerable<IGeoCoordinate> coords);
108

109 /// <summary>
110 /// Determines if coords are intersect the current feature.
111 /// </summary>
112 /// <param name="coords">List of coordinates that are interpreted
113 /// as LineString.</param>
114 /// <returns>True, if any two lines are intersection.</returns>
115 bool IsLineStringIntersecting(IEnumerable<IGeoCoordinate> coords);
116

117 /// <summary>
118 /// Determines if coords are overlaping the current feature.
119 /// </summary>
120 /// <param name="coords">List of coordinates that are interpreted
121 /// as MultiPoint.</param>
122 /// <returns>True, if any two points are overlapping.</returns>
123 bool IsMultiPointOverlapping(IEnumerable<IGeoCoordinate> coords);
124

125 /// <summary>
126 /// Determines if coords are overlaping the current feature.
127 /// </summary>
128 /// <param name="coords">List of coordinates that are interpreted
129 /// as LineString.</param>
130 /// <returns>True, if any two lines are overlapping.</returns>
131 bool IsLineStringOverlapping(IEnumerable<IGeoCoordinate> coords);
132

133 /// <summary>
134 /// Calculates the path rating for a given path. This checks if any
135 /// paths are crossing. If that is the case, the "resistance" value
136 /// is read from the features data table. These values are added up.
137 /// </summary>
138 /// <param name="source">Source position</param>
139 /// <param name="target">Target position</param>
140 /// <param name="distance">The speed.</param>
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141 /// <returns>the pathrating(resistance) of the path</returns>
142 double GetAccumulatedPathRating(IGeoCoordinate source,
143 IGeoCoordinate target, int distance);
144

145 /// <summary>
146 /// Calculates the path rating for a given path. This checks if any
147 /// paths are crossing. If that is the case, the "resistance" value
148 /// is read from the features data table. These values are added up.
149 /// </summary>
150 /// <param name="source">The starting point.</param>
151 /// <param name="distance">The speed.</param>
152 /// <param name="bearing">The front facing direction messured
153 /// in degree.</param>
154 /// <returns>the pathrating(resistance) of the path.</returns>
155 double GetAccumulatedPathRating(IGeoCoordinate source,
156 int distance, double bearing);
157

158 /// <summary>
159 /// Returns the timeseries data for the current tick if available.
160 /// </summary>
161 object GetTimeseriesDataForCurrentTick();
162

163 /// <summary>
164 /// Reads data from the file’s data table.
165 /// Note: for performance and concurrency this is just done in
166 /// the memory representation and not in the file.
167 /// </summary>
168 /// <param name="featureId">Feature to be queried.</param>
169 /// <param name="key">Key to be searched.</param>
170 /// <returns>The value object of the request.</returns>
171 object GetFromDataTable(int featureId, string key);
172

173 /// <summary>
174 /// Write data to the file’s data table.
175 /// Note: for performance and concurrency this is just done in
176 /// the memory representation and not in the file.
177 /// </summary>
178 /// <param name="featureId">Feature to be queried.</param>
179 /// <param name="key">Key to be inserted.</param>
180 /// <param name="value">Value to be inserted.</param>
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181 /// <returns>The value object of the request.</returns>
182 void AddToDataTable(int featureId, string key, object value);

Listing A.3: GIS Vector API
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