
Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Faculty of Engineering and Computer Science
Department of Information and

Electrical Engineering

Petar Krastev

Design and implementation of a microservice for
deletion of resources in the Multi-Agent Research

and Simulation distributed system

Bachelor Thesis

Petar Krastev

Design and implementation of a microservice for deletion of
resources in the Multi-Agent Research and Simulation

distributed system

Bachelor Thesis based on the examination and study regulations
for the Bachelor of Engineering degree programme
Information Engineering

at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner : Prof. Dr. rer. nat. Henning Dierks
Second examiner : Prof. Dr. rer. nat. Thomas Clemen

Day of delivery July 23rd 2018

Petar Krastev

Title of the Bachelor Thesis

 Design and implementation of a microservice for deletion of resources in the
Multi-Agent Research and Simulation distributed system

Keywords

Distributed deletion; Distributed systems; Microservices; Multi-Agent Research and
Simulation (MARS); ASP.NET Core; C#

Abstract

The work presented in this document provides a distributed deletion solution for
the MARS simulation framework in the form of a microservice. MARS is a
distributed system that has adopted a microservice-based architecture. The
deletion service deals with issues related to concurrent access of resources by users
and by other services within the system, while the deletion process takes place.

Petar Krastev

Thema der Bachelorarbeit

 Design und Implementierung eines Microservices zum löschen von Ressourcen im
verteilten Cloud System des MARS Frameworks

Stichworte

Verteiltes Löschen; Verteilte Systeme; Microservices; Multi-Agent Research and
Simulation (MARS); ASP.NET Core; C#

Kurzzusammenfassung

Die vorliegende Arbeit demonstriert eine Lösung zum verteilten Löschen im Cloud
System der MARS Gruppe auf Basis eines Microservies. MARS ist ein verteiltes
System auf Basis der Microservice-Architektur. Der Lösch-Service (deletion-service)
ist so gebaut dass er alle potentiellen Probleme des parallelen Zugriffs durch Nutzer
oder anderer Services beachtet und sicherstellt dass der Lösch-Vorgang vollständig
erfolgt.

Table of contents 4

Table of contents

List of tables ... 7

List of figures .. 8

Acronyms and abbreviations ... 10

1 Introduction .. 11

1.1 Problem statement .. 11

2 Theoretical background ... 13

2.1 Distributed systems .. 13

2.2 Microservices ... 14

2.3 MARS .. 16

2.3.1 MARS Cloud .. 17

2.3.2 Related technologies .. 18

3 Requirement analysis .. 20

3.1 Functional requirements .. 20

3.1.1 Atomic deletion .. 22

3.1.2 Avoiding race conditions .. 23

3.1.3 Integration into the system .. 24

3.2 Non-functional requirements .. 24

3.2.1 Robustness against sudden changes in the service life cycle 24

3.2.2 High maintainability ... 25

3.2.3 High performance output .. 25

4 Planning & software design ... 26

4.1 Event-driven approach ... 26

4.1.1 Infrastructure changes ... 28

Table of contents 5

4.1.2 Summary .. 28

4.2 Marking approach .. 28

4.2.1 Infrastructure changes ... 29

4.2.2 Summary .. 30

4.3 Separation of concerns .. 30

4.4 Development framework ... 31

4.5 Marking service .. 31

4.5.1 Additional requirements .. 31

4.5.2 Workflow .. 31

4.5.3 Optimizations ... 38

4.5.4 Scalability ... 38

4.5.5 Overview .. 39

4.6 Deletion service .. 41

4.6.1 Additional requirements .. 41

4.6.2 Workflow .. 41

4.6.3 Optimizations ... 44

4.6.4 Scalability ... 44

4.6.5 Overview .. 45

4.7 Design patterns .. 46

4.7.1 Hosted services .. 46

4.7.2 Long running background jobs ... 46

4.7.3 Dependency injection .. 47

5 Implementation ... 49

5.1 Infrastructure changes ... 49

5.2 Marking service .. 49

5.3 Deletion service .. 49

5.4 Integration into the MARS system ... 49

6 Testing .. 51

6.1 Unit tests .. 51

6.2 Testing environment resembling the MARS Cloud 51

6.3 Integration tests ... 52

Table of contents 6

6.4 End-to-end tests & results ... 52

7 Conclusion ... 54

7.1 Future work .. 54

References ... 56

Appendix A ... 59

Appendix B ... 60

Appendix C ... 61

Appendix D ... 62

List of tables 7

List of tables

Table 1: Resources produced by the MARS system together with definitions for each one 22

Table 2: Infrascture changes for the MARS Cloud required by the marking approach 30

Table 3: Status codes together with their reasoning, produced by the marking service 41

Table 4: Status codes together with their reasoning, produced by the deletion service 46

Table 5: Performance metrics for the marking and deletion services 53

List of figures 8

List of figures

Figure 1: A taxi-hailing company‘s infrastructure represented as a monolith application (to
the left) and as a microservice-based application (to the right) [8] 14

Figure 2: A taxi-hailing company’s infrastructure represented by micoservices together with
their database schema [8].. 15

Figure 3: Component diagram representing an overview of the MARS system 16

Figure 4: Component diagram representing a simplified version of the MARS Cloud 17

Figure 5: Use case diagram for the main functional requirements of the deletion process . 20

Figure 6: MARS resource dependency and relation diagram .. 21

Figure 7: Sequence diagram representing a partial deletion process 23

Figure 8: Sequence diagram representing a race condition during the deletion process 24

Figure 9: Sequence diagram representing a deletion process using the event-driven
approach .. 27

Figure 10: Sequence diagram representing the deletion process using the marking approach
 .. 29

Figure 11: Activity diagram representing the workflow of the marking service 32

Figure 12: Sequence diagram representing the workflow of the marking service 33

Figure 13: State diagram representing all states of a mark session and their transitions 34

Figure 14: Class diagram representing the MarkSessionModel and
DependentResourceModel classes .. 35

Figure 15: Sequence diagram representing a stopped marking process and its recovery after
a sudden change in the marking service life cycle ... 36

Figure 16: Sequence diagram representing unfair allocation of resources by the marking
service .. 37

Figure 17: Class diagram representing the MarkSessionForReturnDto and
DependentResourceModelForReturnDto classes .. 38

List of figures 9

Figure 18: Class diagram representing the POST methods of the REST API associated with
the mark sessions ... 39

Figure 19: Class diagram representing the DELETE methods of the REST API associated with
the mark session .. 40

Figure 20: Activity diagram representing the workflow of the deletion service 42

Figure 21: Sequence diagram representing the workflow of the deletion service................ 43

Figure 22: Sequence diagram representing a stopped deletion process and its recovery after
a sudden change in the deletion service life cycle ... 44

Figure 23: Class diagram representing the DELETE methods of the REST API associated with
the deletion service .. 45

Figure 24: State diagram representing the states of a long running background job and the
state transitions ... 47

Figure 25: Screenshot of the MARS Web UI illustrating the simulation plans and simulation
runs view .. 50

Acronyms and abbreviations 10

Acronyms and abbreviations

API Application Programming Interface

DTO Data Transfer Object

GIS Geographic Information System

HTTP Hypertext Transfer Protocol

IDL Interface Definition Language

IoC Inversion of Control

MSaaS Modelling and Simulation as a Service

MARS Multi-Agent Research and Simulation

NoSQL Non Relational, Non SQL, Not only SQL

RPC Remote Procedure Calls

REST Representational State Transfer

SOA Service-Oriented Architecture

SQL Standart Query Language

UI User Interface

Introduction 11

1 Introduction

Distributed systems play a major role in our lives. They are widely used in areas such as the
Internet, healthcare, education, science, eCommerce, financial trading and others. The
prime motivation for constructing and using distributed systems is the desire to share
resources. The term ‘resource‘ is characterized by the range of things that can be usefully
shared in a networked computer system. The definition spans from hardware components
such as powerful processors and storage devices to software-defined entities such as files,
databases and data objects of all kinds. It includes the stream of video frames, produced by
a digital video camera, and the audio connection that a mobile phone call represents.
However, there are challanges when designing and building distributed systems. A major
concern is concurrency. The presence of multiple processes and users in a distributed
system is a source of concurrent requests to its resources. Each resource must be designed
to be safe in a concurrent environment [1].

The Multi-Agent Research and Simulation (MARS) framework, part of the Computer Science
Department, Hamburg University of Applied Sciences, is designed as a tool for work groups
that are considering multi-agent modelling and simulation. The framework provides a
complete tool chain from data import to result visualization and analysis, which allows for
large-scale model development in a web environment and execution in a high-performance
cloud [2].

Since the storage capacity of any system is limited and complex simulations produce data in
large volumes, the need for a solution, which removes data from the MARS system, is
highly desired. This work presented in this document aims to present a distributed deletion
solution, in the form of a microservice, for the MARS system.

1.1 Problem statement
The main objective of this thesis is to provide a deletion solution for the MARS system.
MARS is a distributed system that has adopted the microservice architecture pattern. All of
the application’s logic is separated into multiple independent services that communicate
with each other via network calls. A major challenge is the concurrent usage of resources by
microservices during the deletion process. Furthermore, multiple users can have access to
the same resources. All factors specified impose risks of race conditions that could occur
while the deletion process takes place. The current infrastructure and the workflow of the
MARS system are examined in-depth for the purpose of providing a tailored solution that is

Introduction 12

most beneficial. The deletion service gives users the ability to delete any resource they
have uploaded or created, which in return allows them to manage their cloud space in a
more efficient manner.

Theoretical background 13

2 Theoretical background

This chapter introduces the concept of distributed systems in Section 2.1 and microservices
in Section 2.2. The MARS system is analyzed in-depth in Section 2.3.

2.1 Distributed systems
A distributed system is a collection of autonomous computing elements that appear to its
users as a single coherent system. This definition refers to two characteristic features of
distributed systems [3].

The first characteristic is that a distributed system is a collection of computing elements,
each being able to behave independently of the others. However, it must be noted that if
they ignore each other, there is no use in putting them together. Modern distributed
systems can consist of all kinds of computing elements, ranging from high-performance
computers to small plug computers or event smaller devices. The computing elements are
programmed to achieve common goals, which are realized only by exchanging messages
with each other. A consequence of dealing with independent computing elements is that
each one will have its own notation of time. In other words, there is no single global
notation of time within a distributed system. This leads to challenges in synchronization and
coordination within the system [3].

The second characteristic is that a distributed system should appear as a single coherent
system. End users must believe that they are dealing with a single system and they should
not notice that processes and data are dispersed across a computer network. A single
coherent system, which is made of multiple computing elements, has to operate in the
same way, no matter how the interaction between the user and the system takes place.
However, in reality this is an extremely complex task to achieve. Since distributed systems
consist of multiple autonomous computing elements, at any point in time, any of them can
fail. This would leave the application running with only partial functionality, which is
common to complex systems [3].

Some of the main goals and challenges worth considering when designing distributed
systems is to support resource sharing, to make the distribution transparent, to achieve
high openness and to achieve scalability [3].

Theoretical background 14

2.2 Microservices
The microservice architecture pattern is a paradigm for programming applications by the
composition of small independent services, called microservices. Each microservice runs its
own process and communicates with other services via network calls. To establish the
exchange of information between the microservices, each one must expose an Application
Programming Interface (API). The microservice pattern is built on the concepts of Service-
Oriented Architecture (SOA), which puts an emphasis on the design and development of
highly maintainable and scalable software. Microservices manage growing complexity by
decomposing large systems into a set of services. This approach focuses on loose coupling,
high cohesion and it is beneficial in terms of modularity, maintainability and scalability [4].
Company names, such as Netlix, Amazon and others, have joined the trend of decoupling
large monolithic systems into a set of independent services [5] [6] [7]. Figure 1 shows a taxi-
hailing company’s infrastructure represented as a monolith application and a refactored
version, which uses microservices.

Figure 1: A taxi-hailing company‘s infrastructure represented as a monolith application
(to the left) and as a microservice-based application (to the right) [8]

By enforcing the microservice architecture pattern, the application can leverage the
following advantages.

First, the application benefits from faster deployment cycles. Individual services can be
changed and deployed independently of the rest of the system, while monolith applications
require a deployment of the whole system for a single change [9].

Second, the cost to replace or completely rework any of the services is lower, because of
the smaller unit of work that each service has. In contrast, monolith applications tend to
grow in complexity and maintenance because of large codebases and legacy code [9].

Theoretical background 15

Third, the application is more resilient. Compared to monolith applications, where if one
component fails, the whole system fails, microservices carry on working if a single service
fails, since they are independent of each other [9].

Finally, a system composed of multiple, collaborating services, gives the developers the
chance to choose the correct tools and development stack for each one. In a monolith
application, the development stack is usually the same throughout the project. The
technology heterogeneity advantage allows microservices to utilize different database for a
specific purpose. In Figure 1, the microservice-based application does not show the
database schema for the microservices, because each service has its own [9].

Figure 2: A taxi-hailing company’s infrastructure represented by micoservices together
with their database schema [8]

Figure 2 represents the microservices together with their database schema. By enforcing
each service to use its own database schema, loose coupling can be achieved, which in
return increases the scalability of the overall system. Scaling individual services according to
the system’s needs is far easier to accomplish, rather than scaling everything together at
once, which is usually the case in a monolith application [9].

Even though there are many advantages gained by enforcing the microservice architecture
pattern, there are also drawbacks. First, maintaining multiple services, which utilize
different development stacks, can become a very complex task. Second, since each service
has its own database schema, updating multiple database entries at once cannot be easily
resolved. Additional functionality is needed to develop transactions that span multiple
services. In a monolith application, this is not a big concern, since, usually, there is only one
database for the whole application. Finally, testing a microservice-based application is quite
a challenge. Automated end-to-end tests are hard to develop, since the application is
composed of many parts that must work together in the testing environment [8] [9].

Theoretical background 16

2.3 MARS
MARS is conceptualized as a Modelling and Simulation as a Service (MSaaS) system. It
follows the trend of moving massive-scale simulations into the cloud, which enables users
to gain access to all functionality of the MARS system through a user-friendly web interface
[2]. MARS is a massive multi-agent platform that can support up to millions of agents per
simulation [10]. The simulation models must be created in the C# programming language
and they must obey the rules and constraints of the simulation engine [11].

MARS is a distributed system, which has adopted the microservice architecture pattern. All
services are packaged into Docker containers, deployed and orchestrated by Kubernetes.

Figure 3: Component diagram representing an overview of the MARS system

Figure 3 presents an overview of the key components of the MARS system. The definition
of each one is as follows:

MARS Web UI: Represents the User Interface (UI) for the whole system. It is accessible
through the web browser and it acts as a client for all other components.

Theoretical background 17

MARS API Gateway: The API Gateway encapsulates the internal system architecture and
provides an API that is tailored for the client. In addition, it contains extra functionality such
as authentication [8].

MARS Cloud: Contains all application logic, which is split into microservies.

MARS LIFE: The simulation engine, responsible for running simulations.

2.3.1 MARS Cloud
The MARS Cloud is built from multiple microservices, which encapsulate the application’s
logic. Each service exposes an API, either REST (Representational State Transfer) or gRPC
(Remote Procedure Calls), which all other services use to establish communication. At the
time of writing, there are no restrictions on the inner-service communication. Any service
can call any service. Figure 4 illustrates some of the services, together with their database
connection and the type of API that they expose. For reasons of simplicity, only the services
relevant to the deletion process are included.

Figure 4: Component diagram representing a simplified version of the MARS Cloud

An overview of each service is as follows:

Project service: Contains all project related logic.

Theoretical background 18

File service: Responsible for manipulating uploads of type Model or Data Layer (TimeSeries,
Geographic Information System (GIS), etc.). Depending on the type, the upload is stored
into a specific database.

Metadata service: Responsible for manipulating meta-information belonging to an upload.
Metadata is generated as soon as an upload functionality is started.

Scenario service: Contains logic for manipulating scenarios.

Result configuration service: Contains all result configuration related logic.

Simulation runner service: Contains logic for manipulating simulation plans and simulation
runs. In addition, the service is responsible for managing the simulation processes.

Database utility service: Provides an automation tool, which enables tasks such as backups,
for various databases used in the system, such as MongoDB and PostgreSQL. In addition, it
contains logic for manipulating result data collections.

MongoDB database: MongoDB is an open-source, non-relational (NoSQL) database that is
powerful, flexible and scalable. The database offers users ease of use and ease of scaling
without sacrificing performance [12]. These are among some of the factors why MongoDB
is the most widely used database in the MARS system.

PostgresSQL database: PostgresSQL is an open-source, relational database that supports
the Standard Query Language (SQL). The database is reliable and performant with support
for transactions [13].

2.3.2 Related technologies
This section presents a brief introduction, together with the usage of some of the
technologies used within the MARS system.

REST

Representational State Transfer (REST) is an architectural style defined to help create and
organize distributed systems. It is a set of constraints, most commonly associated with the
Hypertext Transfer Protocol (HTTP). REST is a resource-based architecture, where a
resource is accessed via a common interface based on the HTTP standard methods [14].
Most services in the MARS Cloud expose a REST interface, which all collaborating services
use to exchange information.

gRPC

gRPC is a modern, open-source, high performance Remote Procedure Calls (RPC)
framework, which can run in any environment. The framework is used to connect services
within data centers, distributed computing environments and many more [15]. gRPC uses
protocol buffers as the Interface Definition Language (IDL) for describing the service

Theoretical background 19

interface and the structure of the payload messages [16]. Only a few services, namely
project and user, expose a gRPC interface.

Docker

Docker is an open-source engine that automates the deployment of applications into
containers. It is designed to provide a lightweight and fast environment that enables
developers to build, run, collaborate and deploy different programs seamlessly into
different environments – local, test, production, etc. [17] All services inside the MARS
system are packaged into Docker containers.

Kubernetes

Kubernetes is an open-source project and an orchestration tool for containerized
applications. It helps organizations deal with some of the major operations and
management concerns such as resource utilization, high availability, updates, patching,
networking, service discovery, monitoring and logging [18]. Kubernetes is used to
orchestrate all microservices within the MARS system.

Requirement analysis 20

3 Requirement analysis

3.1 Functional requirements
The deletion service would give users the possibility to delete any resource they have
uploaded or created. Figure 5 illustrates the main functional requirements of the deletion
service.

Figure 5: Use case diagram for the main functional requirements of the deletion process

Proper planning of deletion in any system requires specifying what kind of resources does
the system produce and use. For simplicity, only the resources relevant for the deletion
process are taken into consideration.

Requirement analysis 21

Figure 6: MARS resource dependency and relation diagram

The resources, together with their hierarchy and relations, are shown in Figure 6. The
definition for each is presented in Table 1.

Requirement analysis 22

Resource Definition

Project Provides access to all project contents to members.

Upload Model upload: Provides the definition of the simulation.
Data Layer upload: Provides data for the creation of the
model, it can be of different types (GIS, TimeSeries, etc.).

Scenario Gives the opportunity to set and alter the simulation
parameters. It can be created based on a Model upload only.

Result configuration Acts as a filter for the simulation result data. It can be created
based on a Model upload only.

Simulation plan Combines an upload, scenario and result configuration into
one entity, which can be run as a simulation.

Simulation run Produces result data based on a simulation plan.

Result data Represents the result of the simulation run.

Table 1: Resources produced by the MARS system together with definitions for each one

All specified resources have a dependency on each other. A scenario cannot be created
without an upload; a simulation plan cannot be created without a scenario and so on. When
deleting any of the resources, the deletion process must ensure that the desired resource is
deleted together with all dependent resources. Otherwise, the system will be cluttered with
data that cannot be used.

3.1.1 Atomic deletion
A crucial aspect that must be considered when designing the deletion service is the
distributed nature of the MARS system. Since all MARS services run on multiple machines,
there is a chance that any service could be killed and rescheduled on a different machine at
any time. Reasons for this could be workload, optimization of resources, machine failure,
etc. This imposes risks of partial completion for a deletion process. Partial deletion would
produce inconsistencies in the MARS system, because of the resource dependencies.

Requirement analysis 23

Figure 7: Sequence diagram representing a partial deletion process

Figure 7 presents a scenario where the deletion process is partially successful in deleting
resources belonging to a project. The scenario service is killed during the deletion process,
which does not give the deletion service the chance to delete all resources. Since scenarios
have a dependency on uploads, they cannot be used (refer to Figure 6). At some point in
time, Kubernetes will reschedule the scenario service and the deletion of the pending
resources would be possible.

The deletion process must be executed as an atomic one. The process must succeed or fail
as a complete unit; it must never be partially complete.

3.1.2 Avoiding race conditions
Multiple users can have access to the same project and its resources. Furthermore, there
are no restrictions on the usage of resources within the system, multiple services can use
the same resource at the same time. All listed factors lead to the possibility of race
conditions in certain cases during the deletion process.

Requirement analysis 24

Figure 8: Sequence diagram representing a race condition during the deletion process

Figure 8 illustrates a race condition in which a new resource is created based on a resource
that will be deleted. The assumption is made that the deletion service gathers all
dependent resources first and starts to delete them afterwards. This leads to the result that
the newly created resource is not deleted. If this occurs, the newly created resource cannot
be used, because its dependent resources are deleted. Such race conditions must be
avoided and a solution must be found that restricts the usage of resources by multiple
services at the same time during the deletion process.

3.1.3 Integration into the system
For the purpose of usability, the deletion service must be integrated into the MARS system.
Appropriate UI elements, in the form of buttons, must be added to the MARS Web UI.
Furthermore, to make the deletion service accessible from the MARS Web UI, the service
must also be integrated into the MARS API Gateway.

3.2 Non-functional requirements

3.2.1 Robustness against sudden changes in the service life cycle
Since the deletion service runs in a distributed environment, where at any point in time,
any service can be killed and rescheduled, the processes of the service must be designed to
recover in such events. Figure 7 illustrates a case where an external service, namely
scenario, is killed during the deletion process. However, it is possible that the deletion
service is killed and rescheduled instead of the scenario service. The deletion service must
be robust against sudden changes in the life cycle of the service.

Requirement analysis 25

3.2.2 High maintainability
At the time of writing, MARS has more than 20 services. Each one utilizes a different
programming language, framework and external libraries. Some even have a custom
database schema. Maintenance of the whole system grows in complexity with each new
feature and service added. This is the prime reason why the deletion service must be highly
maintainable. The development stack and tools must be familiar to the MARS developers,
because they will be the ones maintaining the service in the future.

3.2.3 High performance output
The deletion service must be highly performant. Appropriate software techniques must be
considered when designing and building the service. A higher performance for the service,
would yield a better user experience.

Planning & software design 26

4 Planning & software design

This section presents the different approaches considered for assuring safe deletion in
Section 4.1 and Section 4.2. The software design phase is discussed in-depth from Section
4.3 to Section 4.6, together with the utilized design patterns in Section 4.7.

4.1 Event-driven approach
The event-driven architecture enforces microservices to publish events when something
notable happens such as a change in a resource. The term ‘resource’ is defined as any data
entity stored into a database. Other microservices subscribe to these events. When a
microservice receives an event, it can update its own resources, which might lead to
publishing more events. All events are transferred through a message broker. The events
can be used to implement transactions that span multiple services if two conditions are
met. First, each service must atomically update its database and publish an event. Second,
the message broker must guarantee that the events are delivered at least once to each
subscribed service [8].

Atomicity could be achieved in a number of ways, but focus is given to event sourcing.
Instead of storing the current state of a resource, the application will store a sequence of
state-changing events. Whenever a resource is changed, a new event will be stored to the
collection of events. The current state of a resource entity can be reconstructed by
replaying the events. Since saving an event is a single operation, it is also an atomic one [8].

All events are persisted to an event store, which exposes an API for adding and retrieving
events for any resource. The event store behaves similarly to the message broker; it
provides logic for subscribing and delivering events to all subscribers [8].

Planning & software design 27

Figure 9: Sequence diagram representing a deletion process using the event-driven
approach

Planning & software design 28

Figure 9 presents the workflow of the deletion process, specified in Figure 8, using the
event-driven approach. The deletion process deletes resources starting from the project
and ending with the result data, according to the dependency tree in Figure 6. The order of
deleting resources is crucial for the success of the deletion process, since new resources
cannot be created on already deleted ones. This strategy is used to avoid the race
conditions indicated in Figure 8. The message broker is responsible for passing events
among the different services. Once a service receives an event, it can execute some logic
and publish a new event.

4.1.1 Infrastructure changes
A tool, which can be used to realize the message broker, already exists in the MARS system.
However, most of the services must be changed completely for this approach to work.
Instead of storing the current state of each resource, each service must store the state-
changing events for the resource entity. In addition, each service must include logic for
publishing events to the message broker and reacting to them accordingly when
subscribing. An event model must be introduced and integrated in the whole application.

4.1.2 Summary
The event-driven approach enforces services to publish events when a resource entity has
changed and to react accordingly when an external event is received. This approach would
allow transactions that can span multiple services. The event-driven approach would be a
perfect solution for the deletion process. It would even solve issues related to data
consistency in the MARS system. However, it requires massive changes to the infrastructure
of the MARS Cloud. The time limitation and complexity of this approach led to the search of
another, which would take bigger advantage of the current architecture of the MARS Cloud.

4.2 Marking approach
The marking approach requires the introduction of a ‘to be deleted’ flag to each resource
definition, specified in Figure 6. The flag would be an indication for all services whether the
resource could be used. The resources must be marked first before they are deleted. The
deletion process would mark resource according to the dependency tree (refer to Figure 6),
starting with projects and ending with result data. This method provides assurance that if
the services obey the flags, the race conditions defined in Figure 8 can be avoided.

Planning & software design 29

Figure 10: Sequence diagram representing the deletion process using the marking
approach

Figure 10 presents the workflow of the deletion process, specified in Figure 8, using the
marking approach. Since a mark is placed on the project resource and all other services
obey the mark, the race conditions are avoided and the deletion process is successful in
execution.

4.2.1 Infrastructure changes
Table 2 summarizes all infrastructure changes required by the marking approach.

Planning & software design 30

Service name Required changes

Project A ‘to be deleted’ flag must be added to the project resource
definition.

Metadata The metadata resource definition already contains a ‘to be deleted’
state, no changes are required here.

File Must deny the upload of any files to a marked project

Scenario A ‘to be deleted’ flag must be added to the scenario resource
definition.
Must deny the creation of a scenario based on a marked metadata.

Result
configuration

Must deny the creation of a result configuration based on a marked
metadata.
The result configurations will reuse the ‘to be deleted’ state of the
metadata resource definition, no additional flag is needed here.

Simulation runner A ‘to be deleted’ flag must be added to the simulation plan and
simulation run resource definitions.
Must deny the creation of a simulation plan based on a marked
metadata, scenario or result configuration.
Must deny the start of a simulation run based on a marked
simulation plan.

Database utility A ‘to be deleted’ flag must be added to the result data resource
definition.

Table 2: Infrascture changes for the MARS Cloud required by the marking approach

In addition, appropriate API endpoints must be introduced to each service for retrieving and
changing the ‘to be deleted‘ flag, wherever needed.

4.2.2 Summary
The marking approach introduces the concept of marking resources. Prior to deleting a
resource, it must be marked as ‘to be deleted’. The marks can be used as an indication for
all services whether the resources can be used or not. Due to the lower complexity and
fewer infrastructure changes, the marking approach has been chosen to limit the usage of
resources by multiple services and to avoid the race conditions that could occur during the
deletion process.

4.3 Separation of concerns
Following the marking approach in Section 4.2, the deletion service would consist of two
main processes: marking all resources first and then deleting them. However, marking all
resources and guaranteeing that no other service can alter them at the same time could
possibly be utilized by other services as well. At the time of writing, the archive service [19]
is being developed in parallel and would require similar functionality. This is the main

Planning & software design 31

reason why the marking logic has been separated from the deletion service into a separate
one called the marking service.

4.4 Development framework
The ASP.NET Core framework is chosen to realize the marking and deletion services,
because the MARS LIFE simulation engine is also implemented using the same framework.
The conclusion can be drawn that MARS developers are familiar with the C# framework and
they will be able to maintain it in the future. Furthermore, the framework is rich in utilities
for development and testing purposes.

4.5 Marking service

4.5.1 Additional requirements
The introduction of a marking service leads to uncertainties of the requirements and
specifications for the service. This section aims to address these issues.

The main responsibility of the marking service is to find and mark all dependent resources
belonging to a root resource. Since the marking service places the marks on all the
resources, it must also pay attention to them. This is of high importance, because it
removes the possibility that two external services can manipulate the same resources at the
same time.

Furthermore, while the marks are in place, any changes to the marked resources should be
restricted. This is less relevant for the deletion service, but the archive service [19] demands
this restraint. In the current MARS system, users are able to alter the scenarios and result
configurations. An additional requirement to the scenario and result configuration services
is that while the marks are in place, any changes to the scenarios and result configurations
must be denied.

4.5.2 Workflow
As stated above, the main responsibility of the marking service is to find and mark all
dependent resources belonging to a root resource. In order to achieve this goal, the
marking service must go through the dependency tree. If an already marked resource is
encountered, the current marking process must be aborted and the marks reverted. In this
case, the implication can be made that some other service is already using the marked
resource and only it can alter the resource at any given time. The workflow of the marking
process is described in Figure 11.

Planning & software design 32

Figure 11: Activity diagram representing the workflow of the marking service

Figure 12 presents all services that are involved in the marking process. Each step is
represented by a call to an external service, where the response is awaited. Once the
service responds, the program execution continues. However, if the response is awaited
forever, there could be possible deadlocks. For this reason, the interfaces used for
establishing the inner-service communication have a timeout for the requests. If the
external service fails to reply within the given time, an exception is thrown.

Planning & software design 33

Figure 12: Sequence diagram representing the workflow of the marking service

Planning & software design 34

The marking process is done in steps. If the user would like to mark the contents of a
project, the project must be marked first, after that the uploads, then scenarios and so on
according to the dependency tree, specified in Figure 6. This logic together with the
changes from Section 4.2.1 and Section 4.5.1 prevent the race conditions defined in Figure
8. While the marks are in place, the marked resources cannot be altered and their usage is
restricted to other services.

Most services have a database connection, which allows them to persist their current
progress. In the event that the service is killed and rescheduled, the service can continue or
abort the previous process. A similar strategy is used for the marking service, which has a
connection to the MongoDB database. MongoDB is chosen, because of its simplicity, high
scalability and wider usage within the MARS Cloud.

The service creates a mark session, which is persisted into the MongoDB database and it
collects all marked dependent resources. In order to judge the completeness of a marking
process, the following states are introduced to the mark session. Figure 13 summarizes the
states of the mark session and their transitions.

Figure 13: State diagram representing all states of a mark session and their transitions

Each step of the marking process (refer to Figure 12) is immediately persisted into the mark
session and the MongoDB database. A similar strategy is used for the unmarking process,
but there as soon as a resource is unmarked; it is removed from the mark session and the
MongoDB database.

Figure 14 shows a class diagram of the MarkSessionModel class together with the marked
resources, which are represented by the DependentResourceModel class.

Planning & software design 35

Figure 14: Class diagram representing the MarkSessionModel and
DependentResourceModel classes

The marking service incorporates a hosted service (refer to Section 4.7.1). The hosted
service will verify if any mark sessions are incomplete using the ‘State’ and the
‘LastesUpdateTimestampInTicks’ attributes, part of the MarkSessionModel class. The logic
specified so far is used to resolve all terminated marking processes due to a sudden change
in the life cycle of the marking service.

Figure 15 demonstrates a case, where the marking service is suddenly killed during a
marking process. Upon starting the service again, the hosted service removes the
incomplete mark session and the marked dependent resources are unmarked as well.

Planning & software design 36

Figure 15: Sequence diagram representing a stopped marking process and its recovery
after a sudden change in the marking service life cycle

In addition, the marking service uses long running background jobs (refer to Section 4.7.2)
for the unmarking process. At any point in time, any of the services in the MARS Cloud
could be unavailable. Since the marks impose restrictions on the usability of resources in
the MARS system, they must be removed if they are not in use. The long running
background jobs make continuous attempts to remove the marks until the job is successful.

Furthermore, the marking service creates mark sessions according to the ‘first come, first
serve’ policy. This means that the service, which first requests resources, would always get
them. All other services would have to retry later if they would like to get access to the
same resources. In most common cases, this policy is sufficient. However, there are
scenarios where this policy is unfair at allocating resources to some services.

Planning & software design 37

Figure 16: Sequence diagram representing unfair allocation of resources by the marking
service

Figure 16 presents a scenario where multiple services are competing to create a mark
session for the same project. The specific order of requests, does not allow Service B to
perform at all. The conclusion can be drawn that the ‚first come, first serve‘ policy is unfair
in this precise case. To solve this issue, a distributed queue data structure can be used,
which would store the denied services. The creation of mark sessions would be coordinated
with respect to the services in the queue. With this policy, Service C would be denied and
placed on the queue, then Service B would get a chance to exetuce the requested
funationality (refer to Figure 16). However, this approach raises further issues. A queue
utlity built in mind for distribution must be used. Otherwise, questions regarding the
manipulation of the queue arise by multiple replicas of the marking service. Furthermore,
most requests in the system are triggerred upon user interaction. There is no quarantee
that a certain functionality would be requested once again after it is denied, it all depends
on the user. This means that the queue should remove the services, which are not
requesting further allocation of resources.

Planning & software design 38

Due to the complexity of realizing a fair policy, the time limitation and the fact that a
scenario, like the one defined in Figure 16 is extremely rare to appear in real life
curcumstances, this topic is no longer investigated and it will be proposed as future work.

4.5.3 Optimizations
The marking service goes through the resource dependency tree at least once in order to
find and mark all resources belonging to a root resource. By passing the mark session,
which contains all marked resources, to the caller services, the guarantee can be made that
no other service will have to go through the dependency tree once again. This optimization
saves unnecessary calls to multiple services.

In addition, since most of the attributes are used internally by the marking service (refer to
Figure 14), a data transfer object (DTO) [20] is used to hide all specific implementation
details of the mark session from the external services.

Figure 17: Class diagram representing the MarkSessionForReturnDto and
DependentResourceModelForReturnDto classes

Furthermore, the performance of the service is enhanced by performing all mark requests
in parallel (refer to Figure 12), rather than waiting for the previous one to finish and then
performing the next.

4.5.4 Scalability
Higher scalability is achieved for the service by enforcing the ‘ResourceId’ attribute, part of
the MarkSessionModel class (refer to Figure 14), to be unique. Even if there are multiple
replicas of the service running, only one of them can create a mark session for a specific

Planning & software design 39

resource at a time. Furthermore, the long running background jobs are also persisted to the
MongoDB database. However, everything regarding this process is handled internally by the
library; no additional functionality is needed.

4.5.5 Overview
The marking service is responsible for gathering and marking all dependent resources for a
given root resources. It persists a mark session, which contains all information about a
marking process to a MongoDB database. It integrates techniques such as hosted services
and long running jobs to recover from sudden changes in the service life cycle.

The marking service exposes a REST API, which all other services use to communicate. REST
is chosen over gRPC, because of its wider usage within the MARS system.

Figure 18 represents the available API endpoints for creating a mark session using the
marking service. If the requested resources are available, a mark session is returned to the
caller service. Otherwise, the caller service would have to retry at a later time.

Figure 18: Class diagram representing the POST methods of the REST API associated with
the mark sessions

Figure 19 presents the available API endpoints for deleting a mark session. Since the marks
impose a restriction on the usability of resources within the system, they must be removed
as soon as the resources are not needed. The deletion process for a mark session is started
as a long running background job, which unmarks all dependent resources. However, since
the deletion service deletes all dependent resources, an extra endpoint is added for
deleting empty mark sessions. An empty mark session is simply removed from the
MongoDB database.

Planning & software design 40

Figure 19: Class diagram representing the DELETE methods of the REST API associated
with the mark session

Furthermore, the marking service exposes API endpoints for retrieving and updating a mark
session, together with an API endpoint for retrieving state information about a background
job (refer to Section 4.7.2).

Table 3 presents a summary of the status codes, together with the possible reason to
receive them from the marking service.

Planning & software design 41

Status code Reasoning

200 – OK The desired operation has successfully been executed.

202 – Accepted The desired operation is being processed, immediate
feedback cannot be given.

400 – Bad Request A required parameter is not specified.
A wrong value is given for a required parameter.

404 – Not Found The desired resource does not exist.

409 - Conflict A mark session already exists for the resource.
A marked resource is encountered during the marking
process.

500 – Internal Server Error A service, used internally by the marking service, is currently
unavailable.
An error has occurred within the marking service.

Table 3: Status codes together with their reasoning, produced by the marking service

4.6 Deletion service

4.6.1 Additional requirements
An additional requirement for the deletion service is that projects must not be deleted. This
restriction is imposed by the archive service, which is developed in parallel. The archive
service relies heavily on the project resource definition to perform archives and later
archive restores. The user resource definition does not contain any information about the
projects that each user has access to. This leads to difficulties for restoring user access to
projects once they are deleted. Since the deletion service is restricted to deleting projects,
it will remove the project contents instead. This would give users the ability to reuse their
projects [19].

4.6.2 Workflow
The main purpose of the deletion service is to delete all dependent resources gathered in a
mark session. Refer to Figure 20 for an overview of the deletion process.

Planning & software design 42

Figure 20: Activity diagram representing the workflow of the deletion service

Figure 21 presents all services that are involved in the deletion process. Each step is
represented by a call to an external service, where the response is awaited. Once the
service responds, the program execution continues. However, if the response is awaited
forever, there could be possible deadlocks. For this reason, the interfaces used for
establishing the inner-service communication have a timeout for the requests. If the
external service fails to reply within the given time, an exception is thrown.

Planning & software design 43

Figure 21: Sequence diagram representing the workflow of the deletion service

Planning & software design 44

The deletion service also makes use of a hosted service. When the deletion service starts,
the hosted service requests all mark session that should be deleted. Afterwards, it starts a
long running job for deleting every one of them. At any point in time, any of the services
could be unavailable. The deletion process stops only if all dependent resources are
deleted.

Figure 22: Sequence diagram representing a stopped deletion process and its recovery
after a sudden change in the deletion service life cycle

Figure 22 illustrates a scenario in which the deletion service is killed right before it starts
deleting resources from a mark session. Upon service restart, it requests all mark sessions
that must be deleted and starts a long running background job for each of them.

4.6.3 Optimizations
To further improve the performance of the service, all delete requests are done in parallel
(refer to Figure 21), rather than waiting for the previous one to finish and performing the
next.

4.6.4 Scalability
The deletion service is stateless, nothing is persisted to a database. This makes the service
highly scalable. An exception are the long running background jobs, but all related logic is
handled internally by the library. The jobs are automatically restarted together with the
service if they have not finished execution.

Planning & software design 45

4.6.5 Overview
The main responsibility of the deletion service is to delete all dependent resources
belonging to a mark session. It incorporates hosted services and long running jobs to
recover from sudden changes in the service life cycle.

The deletion service exposes a REST API, which all other services use to communicate. REST
is chosen over gRPC, because of its wider usage within the MARS system.

Figure 23 represents the main functionality of the deletion service exposed by a REST API.

Figure 23: Class diagram representing the DELETE methods of the REST API associated
with the deletion service

Table 4 presents a summary of the status codes, together with the possible reason to
recieve the specified status code from the deletion service.

Planning & software design 46

Status code Reasoning

202 – Accepted The desired operation is being processed, immediate
feedback cannot be given.

400 – Bad Request A required parameter is not specified.
A wrong value is given for a required parameter.

409 – Conflict A mark session could not be created for the specified
resource.

500 – Internal Server Error A service, used internally by the deletion service, is currently
unavailable.
An error has occurred within the deletion service.

Table 4: Status codes together with their reasoning, produced by the deletion service

4.7 Design patterns
This section outlines common design patterns used for both, marking and deletion,
services.

4.7.1 Hosted services
A hosted service provides a mechanism for running background tasks within the lifetime
scope of an ASP.NET Core application. The hosted service is started on application start and
stopped on application shut down [21].

Hosted services are used to resolve unfinished tasks due to a sudden change in the service’s
life cycle (refer to Section 4.5.2 and Section 4.6.2).

4.7.2 Long running background jobs
A long running background job is a process that is executed in the background. Since the
ASP.NET Core framework provides limited functionality for background processing, an
external library is used called Hangfire.

Hangfire is an open-source software, used to perform background processing in ASP.NET
Core applications. Some of its key advantages are simplicity, reliability and persistence. The
library is quite easy to set up and use. Background jobs are regular static or instance
method, no base classes or interfaces are required. The background jobs are created in a
persistent storage. Old records are removed automatically. Furthermore, Hangfire takes
care of re-trying a background job if the application is terminated [22].

Long running background jobs are used for the unmarking process, by the marking service,
and for the deletion, by the deletion service. Both processes rely on several external
services, which can be unavailable at any point in time, because of the distributed nature of
the MARS system. Both processes are designed to be atomic and they must run until
completion. If there is an error encountered, the processes are restarted within a short

Planning & software design 47

period of time. It is of high importance for the unmarking process to finish, because it
imposes restrictions on the usability of resources. As for the deletion process, the deletion
must fully complete or it should not start at all.

Since the long running background jobs are not deterministic, additional functionality is
needed to monitor their progress. Hangfire already takes care of persisting the jobs
together with their state. However, external services need to access this information in
order to adjust their functionality accordingly. Hangfire has multiple states for each job;
nevertheless, since the jobs are running until completion, a simplified state model is
introduced in Figure 24.

Figure 24: State diagram representing the states of a long running background job and the
state transitions

Both services expose an API endpoint, which enables external services to get the state
information about any background job.

4.7.3 Dependency injection
Dependency injection is a design pattern that allows instances of objects to be passed to
other objects, which require them at runtime. Instead of expecting a concrete
implementation of a dependency, all objects can expect an interface, which abstracts all
implementation details. This leads to higher level on modularity and maintainability in the
applications. In addition, mocking of dependencies for testing purposes becomes easier
[21].

Planning & software design 48

ASP.Net Core implements dependency injection as a first-class citizen in its infrastructure
and has an Inversion of Control (IoC) container built into its core. All required dependencies
and their instances must be registered in the IoC container. The IoC container cakes care of
passing the correct instance of an object requested during runtime [21].

Implementation 49

5 Implementation

5.1 Infrastructure changes
The infrastructure changes required by Section 4.2.1 and Section 4.5.1 have been
implemented into the MARS Cloud. An emphasis has been given to the requirement that all
services must obey the marks of the resources. In addition, the verification has been made
that the newly added changes did not break old working functionality.

5.2 Marking service
Appendix A shows the implementation of the core feature of the marking service, namely
the marking process (refer to Figure 12 for an overview). The process finds all resources
belonging to a project and marks them. The resources are converted into requests, which
are executed in parallel. Afterwards, all successful results are included into the mark
session and persisted into MongoDB.

Refer to the mars-marking-svc project, part of the mars-marking-svc solution, for all specific
implementation details regarding the marking service.

5.3 Deletion service
The implementation of the core feature of the deletion service, namely the deletion
process (refer to Figure 21 for an overview), is presented in Appendix B. The deletion
process takes place after a mark session has been created by the marking service. The mark
sessions contains all marked dependent resources. The process is started as a long running
background job, which does not end until it is completed. The delete requests for all
resources, part of the mark session, are done in parallel to yield better performance. After
all resources are deleted, the mark session is also removed.

All specific implementation details for the service can be found in the mars-deletion-svc
project, part of the mars-deletion-svc solution.

5.4 Integration into the MARS system
The deletion service has been integrated into the MARS Web UI and MARS API Gateway as
required by Section 3.1.3.

Implementation 50

Figure 25: Screenshot of the MARS Web UI illustrating the simulation plans and
simulation runs view

Figure 25 illustrates the view with the simulation plans and simulation runs, part of the
MARS Web UI. The deletion service is accessible through visual elements in the form of
buttons. Such elements have been added to all other resources. In addition, the status of
the deletion process is presented to the user in the form of notifications.

Testing 51

6 Testing

6.1 Unit tests
The marking and deletion services have a UnitTests project, part of each service’s solution,
which contains all unit tests. All methods for both services have at least one unit test. The
unit tests are conducted with the help of the xUnit tool [23]. Testing a single unit of work
can become complicated if it has external dependencies. To deal with this issue, a mocking
framework is used, Moq [24], which abstracts the external dependencies. This approach is
very successful, because all dependencies are supplied through dependency injection.

Appendix C shows a unit test, which tests the method for marking uploads. Internally the
method retrieves the metadata for an upload from the metadata service, then checks if the
upload is already marked. If not, the method performs a mark request, again to the
metadata service. If an error is encountered or the upload is already marked, an exception
is thrown. This method relies on several API calls to the metadata service. However, the
metadata service is not accessible into the UnitTests project, it is available only in the MARS
Cloud. To resolve this issue, the call and response to the metadata service are mocked. The
mocked response returns an already marked upload. This test verifies if an exception is
thrown when an already marked resource is encountered. This requirement is of high
importance, because it removes the possibility that two services can manipulate the same
resources at the same time.

6.2 Testing environment resembling the MARS Cloud
To properly test, the marking and deletion services, a testing environment that resembles
the MARS Cloud must be made. Both services heavily rely on functionality and data from
external ones. Further testing strategies, such as integration tests, would not be possible
without such an environment.

Docker Compose is a tool for defining, launching and managing services. A service is defined
as one or more replicas of a Docker container. Docker compose enables developers to
describe full environments and service component interactions [25]. Docker compose is
used to start an environment, similar to the MARS Cloud, with all services from Figure 4.
However, the marking and deletion services need data to function. Two extra services are
introduced to the testing environment that seed data into the MongoDB database. A major
difficulty was encountered when trying to seed data into the PostgresSQL database. The

Testing 52

complexity and time limitation led to not including the project service, which relies on
PostgresSQL, into the tests ahead.

6.3 Integration tests
Integration testing ensures that the components of an application work as expected when
they are all put together. Unlike unit testing, integration testing involves testing all
implementations of individual components together, which may include infrastructure
concerns [21].

The marking and deletion services have an IntegrationTests project, part of each service’s
solution, which contains all integration tests. Inside each project, the testing environment is
specified within the docker-compose.yaml file. All integration tests can be run locally using
the run-tests-locally.sh script. Upon starting the script, the testing environment is build,
together with all services. Data is seeded into the MongoDB database and the integration
tests within the project are executed. The integration tests are also conducted with the
help of the xUnit tool [23]. However, the mocking framework has been excluded, since all
services, part of the MARS Cloud, are accessible in the testing environment.

Appendix D presents an integration test, which tests the creation of a mark session.
Internally the method finds all resources based on a root resource and marks them. This
functionality is very similar to the workflow described in Figure 12 and the implementation
included in Appendix A. When the mark session is created, the verification is made whether
the root resource is actually marked. The purpose of a mark session is to ensure that all
resources are gathered and marked.

6.4 End-to-end tests & results
End-to-end tests for both services have been conducted manually. The complexity of the
MARS system, including the creation of an automated test for the MARS Web UI, led to
performing tests as an end user inside the MARS beta deployment. This is possible, because
the deletion service is integrated into the MARS Web UI. Since the deletion service relies
heavily on the marking service to perform its functionalities, starting a deletion process
from the MARS Web UI involves a complete end-to-end test for both services.

Prior to all tests, resources have been uploaded or created to a project. Since the result
data, produced by simulation runs, are largest in volume, they are the most widely used
resource for all test cases. Each end-to-end test is conducted by deleting the contents of a
project. Table 5 summarizes the number of resources belonging to a project together with
the duration of the marking and the deletion processes.

Testing 53

Service Process Number of
resources

Duration in seconds

Marking Marking 10 1.16

Deletion Deletion 10 0.25

Marking Marking 25 1.17

Deletion Deletion 25 1.05

Marking Marking 50 1.41

Deletion Deletion 50 2.22

Table 5: Performance metrics for the marking and deletion services

The data for the performance metrics of both services has been taken from the each
service’s log output. The marking and deletion services have a logging strategy that logs all
requests and background jobs together with the duration of the process.

Conclusion 54

7 Conclusion

The work presented in this document provides a distribution deletion solution for the
MARS simulation framework. MARS is a distributed system that had adopted the
microservice architecture pattern. The functionality of the whole system is split into
multiple independent microservices that communicate via a network interface. The current
infrastructure of the MARS system has been examined in-depth for the purpose of
providing the optimum solution, in the form of a microservice.

The main challenge encountered when designing the deletion microservice was
concurrency. Multiple services and users can have access to the same resources at the
same time. This imposes risks of race conditions when performing deletion. To resolve this
issue the concept of marking resources has been introduced. Prior to deleting any
resources, they are marked as ‘to be deleted’. This ensures that if all services obey the
marks, the concurrent access to the resources can be restricted. For the purpose of
modularity and reusability, the marking logic is placed into a separate microservice, called
the marking service. This permits other microservices to easily reuse functionality from the
marking service that include avoiding issues related to concurrent requests for resources
together with avoiding possible race conditions within the system.

Finally, for the purpose of usability, the deletion service has been integrated into the MARS
Web UI. This allows users to delete any resources they have uploaded or created, which in
return gives them the possibility to manage their cloud storage in a more efficient manner.

7.1 Future work
The marking service allocates resources to other services using the ‘first come, first serve’
policy. In most use cases, this approach is sufficient. However, is it worth to mention that in
certain scenarios, this policy is unfair and certain services might not get a chance to execute
some requested functionality (refer to Figure 16). A solution that utilizes a distributed
queue is proposed. If a service is denied resources, it will be placed on the queue. The next
allocation of resources by the marking service will be coordinated with respect to the
services within the queue. However, there is no guarantee that any service within the
queue would request resources once again, since most services are triggered upon user
interaction. The queue must be able to remove services that do not request resources once
again.

Conclusion 55

Furthermore, the MARS Web UI could be improved. In the current version, only the root
resource is removed immediately upon successful deletion. All other dependent resources
remain and the user is forced to hard reload the page.

References 56

References

[1] George Coulouris, Jean Dolimore, Tim Kindberg, Gordon Blair, "Distributed Systems,
Concepts and design", 5th ed., Addison-Wesley, 2012, ISBN: 978-0-13-214301-1.

[2] Christian Hüning, Mitja Adebahr, Thomas Thiel-Clemen, Jan Dalski, Ulfia Lenfers, Lukas
Grundmann, "Modeling & Simulation as a Service with the Massive Multi-Agent System
MARS," in Agent-Directed Simulation Symposium, Pasadena, California, 2016,
ISBN: 978-1-5108-2315-0.

[3] Andrew Tanenbaum, Maarten van Steen, "Distributed Systems", 3rd ed., Maarten van
Steen, 2017, ISBN: 978-90-815406-2-9.

[4] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fabrizio
Montesi, Ruslan Mustafin, Larisa Safina, "Microservices: Yesterday, Today, and
Tomorrow," Present and Ulterior Software Engineering, pp. 195-216, 2017,
ISBN: 978-3-319-67424-7.

[5] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, "Migrating to Cloud-Native
Architectures Using Microservices: An Experience Report," Communications in
Computer and Information Science, vol. 567, pp. 201-215, 2015,
ISBN: 978-3-319-33313-7.

[6] Paolo Di Francesco, Ivano Malavolta, Patricia Lago, "Migrating towards Microservice
Architectures: an Industrial Survey," in IEEE International Conference on Software
Architecture, Seattle, USA, 2018.

[7] Mojtaba Shahin, "Microservices: Architecting for DevOps and Continuous
Deployment," in IEEE International Conference on Software Architecture, Seattle, USA,
2018.

[8] Chris Richardson, Floyd Smith, "Microservices, From Design to Deployment", NGINX
Inc., 2016.

[9] Sam Newman, "Building Microservices: Designing Fine-Grained Systems", O'Reilly
Media, 2014, ISBN: 978-1-491-95035-7.

References 57

[10] Christian Hüning, "Analysis of Performance and Scalability of the Cloud-Based Multi-
Agent System MARS", Hamburg: HAW Hamburg, 2016.

[11] Daniel Glake, Julius Weyl, Carolin Dohmen, Christian Hüning, Thomas Clemen,
"Modeling through model transformation with MARS 2.0," in Agent-Directed
Simulation Symposium , Virginia Beach, Virginia, 2017.

[12] Kristina Chodorow, "MongoDB, The Definitive Guide", 2nd ed., O'Reilly Media, Inc.,
2013, ISBN: 978-1-449-34468-9.

[13] Regine Obe, Leo Hsu, "PostgreSQL: Up and Running", 2nd ed., O'Reilly Media, Inc.,
2015, ISBN: 978-1-449-37319-1.

[14] Sanjay Patni, "Pro RESTful APIs: Design, Build and Integrate with REST, JSON, XML and
JAX-RS", Apress Media LLC, 2017, ISBN: 978-1-4842-2665-0.

[15] Google Inc., "About gRPC," [Online]. Available: https://grpc.io/about/.
[Accessed 22 07 2018].

[16] Google Inc., "gRPC Concepts," [Online]. Available:
https://grpc.io/docs/guides/concepts.html#service-definition. [Accessed 22 07 2018].

[17] James Turnbull, "The Docker Book", James Turnbull, 2014, ISBN: 978-0-9888202-0-3.

[18] Jonathan Baier, "Getting Started with Kubernetes", Pack Publishing Ltd., 2015,
ISBN: 978-1-78439-403-5.

[19] Prannoy Mulmi, "Design and Implementation of an Archive Microservice solution for
the Multi-Agent Research and Simulation Distributed System", Hamburg: HAW
Hamburg, 2018.

[20] Robert C. Martin, "Clean Code, A Handbook for Agile Software Craftsmanship",
Pearson Education, Inc., 2009, ISBN: 978-0-13-235088-4.

[21] Fanie Reynders, "Modern API Design with ASP.NET Core 2, Building Cross-platofrm
Back-End Systems", Apress, 2018, ISBN: 978-1-4842-3518-8.

[22] Sergey Odinokov, "Hangure Overview," Hangfire, [Online]. Available:
https://www.hangfire.io/. [Accessed 22 07 2018].

[23] "About xUnit.net," .NET Foundation, [Online]. Available: https://xunit.github.io/.
[Accessed 22 07 2018].

[24] "Moq," GitHub Inc., [Online]. Available: https://github.com/moq/moq4. [Accessed 22
07 2018].

References 58

[25] Jeff Nickoloff, "Docker in Action", Manning Publications Co., 2016,
ISBN: 978-1633430235.

Appendix A 59

Appendix A

The following code snippet has been taken from DependentResourceHandler.cs class,
which can be found in the path:
../mars-marking-svc/mars-marking-svc/DependentResouce.

private async Task MarkResourcesForProjectMarkSession(

 MarkSessionModel markSessionModel

)

{

 var projectId = markSessionModel.ProjectId;

 markSessionModel.SourceDependency = await _projectClient.MarkProject(projectId);

 await _markSessionRepository.Update(markSessionModel);

 var metadataForProject = await _metadataClient.GetMetadataForProject(projectId);

 await MarkResourcesThenUpdateMarkSession(metadataForProject, projectId, markSessionModel);

 var scenariosForProject = await _scenarioClient.GetScenariosForProject(projectId);

 await MarkResourcesThenUpdateMarkSession(scenariosForProject, projectId, markSessionModel);

 var resultConfigsForMetadata = new List<ResultConfigModel>();

 foreach (var metadataModel in metadataForProject)

 {

 resultConfigsForMetadata.AddRange(

 await _resultConfigClient.GetResultConfigsForMetadata(metadataModel.DataId)

);

 }

 await MarkResourcesThenUpdateMarkSession(resultConfigsForMetadata, projectId,

markSessionModel);

 var simPlansForProject = await _simPlanClient.GetSimPlansForProject(projectId);

 await MarkResourcesThenUpdateMarkSession(simPlansForProject, projectId, markSessionModel);

 var simRunsForProject = await _simRunClient.GetSimRunsForProject(projectId);

 await MarkResourcesThenUpdateMarkSession(simRunsForProject, projectId, markSessionModel);

 await MarkResultDataThenUpdateMarkSession(simRunsForProject, markSessionModel);

}

Appendix B 60

Appendix B

The following code snippet has been taken from MarkSessionHandler.cs class, which can
be found in the path: ../mars-deletion-service/mars-deletion-service/MarkSession.

public async Task StartDeletionProcess(

 string markSessionId

)

{

 var isMarkSessionDeleted = false;

 var taskExecutionDelayInSeconds = 1;

 var restartCount = 0;

 var stopwatch = new Stopwatch();

 while (!isMarkSessionDeleted)

 {

 try

 {

 _loggerService.LogBackgroundJobInfoEvent(

 $"Deletion job for mark session with id: {markSessionId} will start in

{taskExecutionDelayInSeconds} second/s, restart count: {restartCount}"

);

 await Task.Delay(TimeSpan.FromSeconds(taskExecutionDelayInSeconds));

 stopwatch.Start();

 var markSessionModel = await

_markingServiceClient.GetMarkSessionById(markSessionId);

 await

_dependantResourceHandler.DeleteDependantResourcesForMarkSession(markSessionModel);

 await _markingServiceClient.DeleteEmptyMarkingSession(markSessionId);

 stopwatch.Stop();

 isMarkSessionDeleted = true;

 }

 catch (MarkSessionDoesNotExistException)

 {

 stopwatch.Stop();

 isMarkSessionDeleted = true;

 }

 catch (Exception e)

 {

 stopwatch.Stop();

 _loggerService.LogBackgroundJobErrorEvent(stopwatch.Elapsed.TotalSeconds, e);

 taskExecutionDelayInSeconds = taskExecutionDelayInSeconds * 2 %

MaxDelayForJobInSeconds;

 restartCount++;

 }

 }

 _loggerService.LogBackgroundJobInfoEvent(

 stopwatch.Elapsed.TotalSeconds,

 $"Deletion job for mark session with id: {markSessionId} completed!"

);

}

Appendix B 61

Appendix C

The following code snippet has been taken from MetadataClientTests.cs class, which can
be found in the path:
../mars-marking-svc/UnitTests/ResourceTypes/Metadata.

[Fact]

public async void MarkMetadata_ToBeDeletedMetadataModel_ThrowsException()

{

 // Arrange

 var httpResponseMessage = new HttpResponseMessage

 {

 StatusCode = HttpStatusCode.OK,

 Content = new StringContent(MetadataModelDataMocks.MockToBeDeletedMetadataModelJson)

 };

 var httpService = new Mock<IHttpService>();

 httpService

 .Setup(m => m.GetAsync(It.IsAny<string>()))

 .ReturnsAsync(httpResponseMessage);

 var metadataClient = new MetadataClient(httpService.Object);

 Exception exception = null;

 try

 {

 // Act

 await metadataClient.MarkMetadata(It.IsAny<string>());

 }

 catch (ResourceAlreadyMarkedException e)

 {

 exception = e;

 }

 // Assert

 Assert.NotNull(exception);

}

Appendix D 62

Appendix D

The following code snippet has been taken from MarkingServiceClientTests.cs class, which
can be found in the path: ../mars-deletion-service/IntegrationTests/MarkingService.

[Fact]

public async void CreateMarkSession_NotMarkedResources_ReturnsMarkSessionModel()

{

 // Arrange

 var resourceType = ResourceTypeEnum.Metadata;

 var resourceId = "45db3205-83be-42a1-af14-6a03df9d9536";

 var projectId = "73fcb3bf-bc8b-4c8b-801f-8a90d92bf9c2";

 var markSessionType = MarkingServiceClient.MarkSessionTypeToBeDeleted;

 var httpService = new HttpService(new HttpClient());

 var markingServiceClient = new MarkingServiceClient(httpService);

 // Act

 var result = await markingServiceClient.CreateMarkSession(

 resourceType,

 resourceId,

 projectId,

 markSessionType

);

 // Assert

 // Verify that the mark session is created

 Assert.NotNull(result);

 var metadata = await ResourceTypeHelper.RetrieveMetadata(resourceId);

 // Verify that the metadata is marked

 Assert.Equal(MetadataModel.ToBeDeletedState, metadata.State);

}

Declaration

I declare within the meaning of section 25(4) of the Ex-animation and Study
Regulations of the International De-gree Course Information Engineeting that: this
Bachelor report has been completed by myself inde-pendently without outside help
and only the defined sources and study aids were used. Sections that reflect the
thoughts or works of others are made known through the definition of sources.

Hamburg, July 23rd 2018

City, Date Signature: Petar Krastev

