

Bachelor Thesis
Prannoy Mulmi

Design and Implementation of an Archive
Microservice solution for the Multi-Agent

Research and Simulation Distributed System

Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Faculty of Engineering and Computer Science
Department of Information and
Electrical Engineering

Prannoy Mulmi

Design and Implementation of an Archive
Microservice solution for the Multi-Agent Research

and Simulation Distributed System

Bachelor Thesis based on the study regulations
for the Bachelor of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the Hamburg University of Applied Sciences

Supervising examiner : Prof. Dr. rer. nat. Henning Dierks
Second Examiner : Prof. Dr. rer. nat. Thomas Clemen

Day of delivery 23. Juli 2018

Prannoy Mulmi

Title of the Bachelor Thesis
Design and Implementation of an Archive Microservice solution for the Multi-Agent
Research and Simulation Distributed System

Keywords
Distributed System, Microservice, Two-Phase commit protocol, Archive, Decentrali-
zed data, Multi-Agent Research and Simulation (MARS)

Abstract
This thesis introduces the design and implementation of an Archive Microservice in
the Multi-Agent Research and Simulation (MARS) framework. Due to the distributed
architecture of the system, the process of the archive and restore is complex to imple-
ment and maintain as there multiple possibilities of failure. This thesis uses different
strategies to tackle the issues present in the system and provide an Archive service.

Prannoy Mulmi

Titel der Arbeit
Konzeption und Implementierung einer Archiv Microservice Lösung für die Multi-
Agent Research and Simulation Verteiltes System

Stichworte
Verteilte Systeme, Microservice, Zwei-Phasen-Commit-Protokolle, Archiv, Dezentrale
Daten, Multi-Agent Research and Simulation (MARS)

Kurzzusammenfassung
Diese Arbeit zeigt den Entwurf und die Implementierung eines Archiv Microservice
im Multi-Agent Research and Simulation Research und Simulation (MARS). Aufgrund
der verteilten Architektur des Systems ist der Prozess des Archivierens und Wieder-
herstellen komplex zu implementieren und zu pflegen, da es mehrere Möglichkeiten
eines Ausfalls gibt. Diese Thesis verwendet verschiedene Strategien, um die im Sys-
tem vorhandenen Probleme anzugehen und einen Archivierungsdienst bereitzustel-
len.

Acknowledgment

I would like to express gratitude towards my supervising mentors Prof. Dr. Henning Dierks
and Prof. Dr. Thomas Clemen for their expertise, guidance and, encouragement which
played an important role in the success of this thesis.

Also, I thank Julius Weyl and Lennart Karsten from the MARS team who were always ready
to help out during difficult situations by providing constructive ideas. Also, I am grateful to
the MARS team for being very cooperative and giving me opportunities to get a hands-on
experience with this state-of-the-art technologies. During this period I learned a lot about
these technologies, therefore gaining valuable experience for the future.

Lastly, I would like to thank my family without their support I would not have came to Germany
and pursued my higher education.

Contents

List of Tables 8

List of Figures 9

1 Introduction 11
1.1 Motivation . 11
1.2 Goals . 12
1.3 Problem Statement . 12
1.4 Thesis Overview . 13

2 Background 14
2.1 Multi-Agent Research and Simulation . 14

2.1.1 MARS Resource Hierarchy . 14
2.2 Distributed Systems . 18

2.2.1 Advantages of a Distributed System 19
2.2.2 Challenges . 20

2.3 Microservices . 21
2.3.1 Data Sovereignty in Microservice . 23

2.4 Archive . 23

3 Requirement Analysis 25
3.1 Functional Requirements . 25

3.1.1 Archive Project Resources . 25
3.1.2 Retrieve Project Resources . 26
3.1.3 Archive and Retrieve Process Status 27
3.1.4 Download Archived Data as a Compressed File 27
3.1.5 Fault-Tolerant Design . 27

3.2 Non Functional Requirements . 28

4 Planning and Software Design 29
4.1 API Design . 29
4.2 Archive Process Design . 31

4.2.1 Preconditions Required for an Archive 31

Contents 6

4.2.2 Decision for Not Archiving the Project 31
4.2.3 Data Format . 32
4.2.4 Archive Workflow . 35

4.3 Retrieve Process Design . 39
4.3.1 Decision of File Upload via File-svc 39
4.3.2 Retrieve as an Atomic Action . 41

4.4 Status Retrieve Design . 46
4.5 Fault-Tolerance Design . 47

5 Implementation 49
5.1 Archive Process Implementation . 49
5.2 Retrieve Process Implementation . 52

5.2.1 Addition of Functionalities in Other Services 52
5.3 UI Integration . 55
5.4 Fault-Tolerance and Maintenance Implementation 57

6 Testing 60
6.1 Unit Testing . 61

6.1.1 Archive and Retrieve process test 62
6.1.2 Test Coverage . 67

6.2 Integration Test . 68
6.2.1 Challenges . 68
6.2.2 Correctness of Received Data . 69
6.2.3 Correctness for Uploading Data . 70
6.2.4 Correctness of Response . 70
6.2.5 Integration with the Database . 70
6.2.6 Test Coverage . 70

6.3 System Test . 71
6.3.1 Successful Archive Process Start 71
6.3.2 Archive with a More Complex Model 71
6.3.3 Successful Data Archive in Synology 71
6.3.4 Successful Retrieve Process Start 71
6.3.5 Correctness of the Restored Project 72
6.3.6 Fault-Tolerance Test . 72

6.4 Performance Test . 72
6.4.1 Archive Performance . 72
6.4.2 Retrieve Performance . 74

7 Conclusion 76
7.1 Further Work . 76

Contents 7

References 78

8 Appendix 81

List of Tables

2.1 MARS Resource Hierarchy Elementary Services Overview 18
2.2 Advantages and disadvantages of microservices [21] 22
2.3 Differences between archive and backup 24

3.1 MARS resources . 26
3.2 Technical requirements for the Archive service 28

4.1 CRUD interaction over an HTTP in the Archive service 29
4.2 API Endpoints description for Archive service 30
4.3 Possible errors which could occur in the Archive service 47

5.1 Functionality implemented to the other services for retrieve process 53

6.1 Modules available for unit testing . 67

List of Figures

2.1 MARS Resource UML dependency graph 16
2.2 Chen notation Entity Relation Diagram for MARS resources 17
2.3 A distributed system extended over multiple devices with same application

interface [33, p. 5] . 19
2.4 An service oriented architecture in a distributed system [33, p. 62] 21
2.5 Illustration of services as fine grained independent entities 22
2.6 Data management approach in a Monolithic application vs microservice [21] . 23

3.1 Archive service’s communication structure 26

4.1 HDF5 Groups and Datasets [8] . 33
4.2 Example of an HDF5 dataset . 33
4.3 Activity Diagram of MARS project Archive process 35
4.4 State Diagram of MARS project Archive process considering empty states . . 36
4.5 Sequence Diagram for the Archive process 37
4.6 File Upload in MARS Cloud [3] . 39
4.7 Activity Diagram for retrieving a project . 41
4.8 State Diagram of MARS project retrieval process considering empty states . . 42
4.9 Sequence Diagram for the restore process 45
4.10 Activity Diagram of status acknowledgement process 46
4.11 Activity Diagram for failure mitigation for the Archive service 48

5.1 Repository Pattern overview . 50
5.2 Class Diagram for the Archive process (Top level) 51
5.3 Class Diagram for the Restore process (Top level) 54
5.4 MARS cloud overview with the UI . 55
5.5 Archive service UI controls in the MARS Teaching UI 56

6.1 MARS Continuous Integration Pipeline build 60
6.2 Overall performance of the archive process (compressed simulation results) . 73
6.3 Overall performance of the archive process (uncompressed simulation results) 73
6.4 Overall performance of the retrieve process (compressed simulation results) . 74
6.5 Overall performance of the retrieve process (uncompressed simulation results) 75

Abbreviations

AOP Aspect Oriented Programming

API Application Programming Interface

CI Continuous Integration

HTTP Hyper Text Transfer Protocol

JSON JavaScript Object Notation

MAMS Multi-Agent Management System

MARS Multi-Agent Research and Simulation

NAS Network Attached Storage

OOD Object Oriented Design

RPC Remote Procedure Call

SOA Service Oriented Architecture

UI User Interface

1 Introduction

Nowadays consumers and businesses are increasingly aware of the value of archives, as
the archived data has also proven to be a valuable asset in the field of scientific research
where an expert could archive their data for future reference. Having said that, the MARS1

framework offers an easy interactive platform for a domain expert, i.e., ecologist, biologist,
chemist to simulate complex real-life scenarios (e.g., reproduction of bacteria in a body)
based on the concept of Agent-based modeling and simulation (MAMS2) [2].

1.1 Motivation

The inspiration for this work comes from the fact that an archive adds excellent value to the
existing system by allowing the experts to store their results and projects and use them in the
future. Additionally, the MARS system requires a large number of computational resources
and an Archive service would provide an opportunity for the MARS system to improve their
performance because this service would move some part of data from the primary storage
(Ceph cluster [34]) to the secondary storage (NAS Synology [1]).

However, the underlying structure of the MARS system is also quite challenging to archive
a given simulation with its resources. The system design is based on a microservice archi-
tecture [25] having a decentralized data-access [28] structure. The MARS Resources have
a hierarchical structure (Section 2.1.1) which has to be followed so a successful simulation
can occur. As per the design of MARS, these resources are stored separately in different
storages/databases which should be accessed only by a certain API. Section 1.3 describes
those difficulties.

1MARS: Multi-Agent Research and Simulation
2MAMS: Multi-Agent Management System

1 Introduction 12

1.2 Goals

The primary goal of this thesis is to design and implement an Archive service which would
deal with the decentralized structure of the MARS framework and provide an easy interface
for users to archive and restore the projects and simulations back into the system.

At the time of writing this thesis, the project resources are stored in a Ceph distributed file
system [34]. It provides more efficiency, reliability, and scalability by separating data and
metadata using a pseudo-random data distribution function [34, p. 307] to store data in a
distributed system [33]. It is financially more expensive to possess such a system in larger
volumes although it is efficient and scalable. In contrast to its continuous data production,
the primary storage volume available to the system is very limited. Additionally, a high level
of correlation has been observed between the operating cost of a software system and its
data volume. Therefore, the Archive service would move the requested data from the Ceph
storage to the slower NAS3 Synology [1]. MARS owns the cloud storage, which is used for
backup and archive purposes.

1.3 Problem Statement

MARS is a complex distributed system which brings upon different levels of complexities for
this thesis. The problems being dealt within the thesis are as follows:

1. Data distribution: In contrast to a monolithic application [31, p. 94] where there is only
one database for the whole system, every microservice in the MARS system owns a
separate database which should be accessed only by itself to be scaled independently
[32, p. 27]. As a result, the archive service is coupled with the other services to get and
post data into their respective databases creating more risk to failures.

2. Data consistency and coherence: By design of the MARS system, it is necessary
for the Archive service to have a distributed transaction. Therefore, it is tough to main-
tain strong data consistency and coherence as the change of data in one database
is unknown to the other service since an ACID [14, p. 290] transaction between the
databases does not exist. Thus, the archiving process can unintentionally be led to a
false state in case of failure during the communication process.

3. Understanding MARS resource hierarchy: The MARS Resource Hierarchy is the
order in which the assets in the system have to be created. Understanding this complex
hierarchy(Section 2.1.1) is vital since restoring or archiving data may lead to corrupted
states.

3NAS: Network Attached Storage

1 Introduction 13

4. Additional changes to MARS services: Also, for the Archive service to operate as in-
tended, additional functionalities have to be added into the other services. The Archive
service is only allowed to communicate via an API gate i.e. HTTP or RPC as accessing
another service’s database directly is considered an anti-pattern [32, p. 27]. It imposes
another challenge in understanding the structure and algorithms of services which are
drafted in various technologies.

1.4 Thesis Overview

Here is a brief description of the thesis, providing a short overview on what each chapter
contains.

Chapter 2: "Background:" this chapter describes the design of the MARS system, the
hierarchical structure of the resources and the technologies used to run it.

Chapter 3: "Requirement Analysis:" this chapter describes the functional and non-
functional objectives of the Archive service.

Chapter 4: "Planning and Software Design:" this chapter explains, the methodologies for
data storage, the archive process, and the software design.

Chapter 5: "Implementation:" this chapter is where the details of the implementation deci-
sion are explained.

Chapter 6: "Testing:" this chapter explains in detail some test cases and result validation
that were carried out to give more credibility to the designed system.

Chapter 7: "Conclusion:" this chapter presents the outcomes and some suggestions for
improvements which can be applied in the future.

Appendix, provides a brief description of how the archive service can be built and deployed
locally for future development.

2 Background

This chapter introduces the MARS project with the intention to provide a detailed insight
into the architecture, technologies, and the structure of the system. These details play a
crucial part in understanding this project. The systems architecture and technologies used to
orchestrate the architecture including the a relationship between the services is explained.

2.1 Multi-Agent Research and Simulation

The MARS is a simulation framework developed in HAW Hamburg as a part of a student
research project. The project can be classified as a distributed system [33] designed to
carry out simulations of a given model [16]. A model describes a digital prototype of physical
agents, i.e., wolves, sheep, grass which can be simulated to predict a real-world scenario. A
simple model would be the Wolves and Sheep; using this prototype one can simulate the in-
teraction between the animals. As a result, one can analyze the population change between
them.

2.1.1 MARS Resource Hierarchy

To leverage the MARS framework, specific steps have to be carried out chronologically. It
has to follow a specific sequence, which is the MARS Resource Hierarchy.

1. Create a project: A project is a collection of all the resources and the simulation re-
sults. The resources include models, scenario description, result configurations, sim-
ulation plans, simulation runs, simulation results, and different layers required by the
model. Different layers are available for the use of the models from a basic generic layer
to additional layers. At the time of writing, the available layers to the MARS framework
are as follows [13, p. 8] :

• The Geographic Information System (GIS) Layer [12, p. 1] provides geospatial
data to the agents.

2 Background 15

• The Time series Layer enables the agents to get a data point relative to a time
point (e.g. weather data of Hamburg over a day) [26].

• The Obstacle Layer provides the definition of the geographical/spatial boundaries
(e.g. fish agents having a watershed boundaries).

• The Potential Field Layer provides the agents to find and follow a defined poten-
tial. This can be used to depict an agents spatial boundaries.

2. Upload models and its corresponding layers: The model upload is the first step
required for a simulation to take place. The model contains information of the behavior
about the agents for a simulation run. The input files containing initialization data of the
layers, i.e., GIS, Time series, Obstacle, Potential field are also uploaded in this step.

3. Create a scenario: A scenario of a project initializes a model. In the process of creat-
ing a scenario, attributes like the number of agents, i.e., wolves, sheep are specified.
The initialization data files like the GIS, Time series are assigned to the scenario when
required. The global parameters such as start date and end date of a simulation are
also specified.

4. Configure result configuration: The result configuration represents the settings of
the desired simulation result. In this step, the desired parameters, i.e., agent properties
are selected. As a result, only the enabled properties are stored in the database which
could be used for further analysis.

5. Create simulation plan and run: The simulation plan is a complete description of
the simulation which includes, scenario and result configuration. For the execution
of a simulation, one must run the simulation plan, which creates a simulation run. A
simulation run contains all the metadata, i.e., simulation id, simulation job status. Using
the simulation run, one can analyze the simulation results.

2 Background 16

Figure 2.1: MARS Resource UML dependency graph

Figure 2.1 shows the dependencies between MARS resources. It can be observed that the
order of existence of the resources has to be from the project to the simulation results
(bottom to top) when adding a new simulation. Failure to follow this hierarchy results in an
unsuccessful simulation.

2 Background 17

Figure 2.2: Chen notation Entity Relation Diagram for MARS resources

Figure 2.2 shows the data flow of the MARS Resources. From this figure, it is obvious how
the resources are dependent upon each other. This follows the hierarchical structure seen
in Figure 2.1, where the project data is at the top, and no other entity can exist without it. A
pattern for the cardinality of the entities can be observed. The lower level entity can only have
a reference to one parent entity, whereas the parent can have multiple children. An exception
to this pattern is between simulation run and simulation results. A simulation run does not
have multiple results because it represents a job which produces the output, i.e., simulation
results. It is also to be mentioned that every entity except the project is identified as a weak
entity because they do not cease to exist without its parent entity.

2 Background 18

Furthermore, the different data flows mentioned in Figure 2.2 are handled by various services
in the MARS framework. Table 2.1 gives an overview of the elementary services which are
responsible for creating and running simulations. For simplicity reasons, only the services
which have direct dependency with Archive service is mentioned.

Service Name Description
Project Service Handles project resources.
File Service Handles the import and export of different file resources i.e.

models, GIS1, Time series.
Metadata Service Manages all the metadata resources.
Result Config Service The Result configurations handles which properties of a model

will be stored in the database for a simulation.
Scenario Service The Scenario services handles the mapping from the model

constructor type to the imported files.
Sim Runner Service Handles simulation plans and simulation run.
Database Utility Service Handles all the simulation results and is responsible to backup

the project data.
Marking Service Handles the marking of the resources, so that when the re-

source is marked by one service it cannot be altered.
Deletion Service Handles deletion of the resources.

Table 2.1: MARS Resource Hierarchy Elementary Services Overview

2.2 Distributed Systems

The MARS cloud is architectured as a distributed system. Thus, it is of great importance to
understand this architecture, so that one can anticipate the operations of the MARS frame-
work and the technical challenges that could occur due to its complex structure.

A distributed system can be defined as a number of autonomous computing elements which
appear to a user as a single coherent system [33, p. 2]. This definition implies that the system
is split into meaningful domains which behave independently from each other and that the
system supports resource sharing in order to appear as single coherent application to the
user. For the system to appear as a single coherent system, the individual units must estab-
lish some kind of collaboration with each other usually done by exchanging messages over a
network. This enables the system to share different resources that are physically separated,
as an element in the system can be controlled by passing messages.

2 Background 19

Figure 2.3: A distributed system extended over multiple devices with same application inter-
face [33, p. 5]

Distributed Systems can be utilized to realize a complex application dispersed across multi-
ple machines which communicates via a network protocol (e.g. HTTP [23], GRPC [10]). The
components interact with each other to achieve a common goal. It also provides more relia-
bility compared to a non-distributed system because there is no single point of failure when
a system is designed properly.

Figure 2.3 shows an example of an application being distributed amongst different comput-
ers. It can also be seen that the different parts of the application are allowed to communi-
cate via a common middleware whose main responsibility is to efficiently manage resources
across the distributed applications. This kind of system makes most sense for deployment
which require high performance computing power, as this system can allow an application
to share different resources (e.g CPU power, memory and storage) located in another ma-
chine.

2.2.1 Advantages of a Distributed System

Reliability and Availability

One of the main reasons for building a distributed system is to make the application free
from single failure events. Since the application is generally spread across different nodes
connected via a network, failure of a single node will not crash the system completely. This
makes a distributed system more available, reliable, and independent to a user as the avail-
ability of the application is not hindered completely.

2 Background 20

Scalability

Scalability is an important step in software development process, as the requirements for an
application tends to change by time and also requires more resources (e.g. more processing
power, more data volume). In contrast to a single system, where the computer has to be re-
placed completely by a really high end device, there is a possibility to just expand the system
by adding another device in the network. Since the application in a distributed system can
communicate, it is easier to scale and add more resources and also scale down if required.

2.2.2 Challenges

Data Coherency

The data is said to be coherent when it is uniform across an entire network. In other words,
data is coherent when all the resources between a server and a client is synchronized. Since
a distributed system is susceptible to network failures, a network partition [9, p. 59] cannot
be avoided. In presence of a network partition the change in data will not be synchronized
to all of its client leading to inconsistent data. Furthermore, the complexity to maintain this
coherency increases drastically when the system has more clients trying to gain access to
the data. This phenomena must be taken into consideration while designing an application
for this kind of system.

Network Issues

Generally in a distributed system, different applications communicate via network protocols,
i.e., HTTP, GRPC. It is to be noted that communication via a network is not always reliable.
This is because managing a distributed network is rather complex. Also due to external
reasons the communication can break leading to loss of messages which disables some
parts of the application. This phenomena is also not seen in a single system.

Error Handling

Errors are imminent in every application and to continue working normally again it has to
detect and recover from them. Detecting errors in a distributed system requires a different
approach since the application is spread across multiple systems. It is not enough that each
service ensures its own correctness because the system is interconnected via a network
connection. Due to the fact that the network is also involved in a distributed system there

2 Background 21

are additional error detection methods that have to be implemented. This brings up more
complications in comparison to a single system where an error is contained within a single
system.

2.3 Microservices

Microservice is a specialized implementation of Service Oriented Architecture(SOA) [5, chap-
ter 3]. Service in an SOA is a functional unit that performs a specific business action (e.g.,
user authentication) accessed typically via a network that encapsulates its state and the
operations performed on the data. Figure 2.4 illustrates an example of Service Oriented Ar-
chitecture (SOA) in a distributed system where different services call each others interface
to perform a particular action. Although microservices are built using the SOA paradigm,
they have their differences. In a microservice, a service can be deployed and operated in-
dependently because the services are designed to be more fine-grained with a single pur-
pose, unlike SOA. Also, they are lightweight and domain driven [6] that makes the application
simple to understand, develop, and test. The smaller set of services can be developed au-
tonomously by different teams and be deployed quickly as they are usually lightweight in
nature. This architecture promises to bring loose coupling by separating an application into
smaller logical units.

Figure 2.4: An service oriented architecture in a distributed system [33, p. 62]

Figure 2.5 shows an example of how a service is domain bounded, and there is flexibility in
choosing different technologies for the isolated services [25]. Each service is encapsulated
with their own life cycles, which communicates with each other using protocols (e.g. HTTP
[23], websockets [24], GRPC [10]).

2 Background 22

Figure 2.5: Illustration of services as fine grained independent entities

A single monolithic application [31, p. 94] is built as a large unit where all the logic lies
within a single system. This is considered the most natural way to develop a server-side
application. When the application scales in size, it gets harder to keep up with the changes
as an entire system scaling is required. This is where microservices can be beneficial, as
only the required bounded module can be scaled up as needed. There are different factors
to be considered before going for a microservice architecture as improper planning could
lead to an unstable system.

Advantages Disadvantages
The services can be developed with differ-
ent languages

A mature team must be present to maintain
large number of services

A strong modular boundaries is present
which reinforces a modular structure.

All the services must manage data consis-
tency amongst the services which is harder
to manage in a large distributed system.

Independent deployment is easier since the
services are autonomous.

Harder to program since remote calls must
be made.

Table 2.2: Advantages and disadvantages of microservices [21]

2 Background 23

2.3.1 Data Sovereignty in Microservice

It is an essential guideline for a microservice architecture to own its domain data and logic
[32, p. 29]. Decentralized data would assist a microservice to become solely independent and
help them evolve separately. The approach of each microservice owning its own database
is also know as Polyglot Persistence [22]. Applying this pattern would imply that the data
belonging to one service is available to the others only via the API of the microservice.

Figure 2.6: Data management approach in a Monolithic application vs microservice [21]

In Figure 2.6, it can be observed how a Monolithic application owns only a single database for
the whole application. Meaning, the application has a centralized database which are shared
amongst the services. Whereas, in microservices, each service owns a single database or
few services share databases which are easier to manage. Having said that data sovereignty
is very beneficial, it also brings various difficulties, i.e., coordination between services, which
is very challenging to tackle and creates data coherency issues in the system.

2.4 Archive

Archiving in computer science is an act of storing single or a collection of data with its meta-
data for long-term retention. The data being archived is not needed currently in the active
system. Generally, these data are valuable for an organization or an individual which is not
to be discarded but are seldom needed. This brings forward the need of relocating the data

2 Background 24

into a cheaper storage, i.e., archiving. Traditionally, these kinds of data were stored in mag-
netic tapes but nowadays due to the availability of cheaper NAS2 primary storage, these
storage means are being preferred. The advantages of using NAS (e.g., Synology [1]) are
listed below:

1. Easy File Sharing It is easier for many users to access the archived data because
the storage is connected to the cloud. Whoever has access to the network can get the
data compared to magnetic tapes where one needs to physically posses the tape in
order to get the required data.

2. Easy Usability The system is easy to manage since it provides an easy installment
procedure, and also a graphical interface for file access.

Often an archive can be confused with a backup of a system. The key differences for archive
and backup are mentioned in Table 2.3.

Archive Backup
It is unused but a desired copy of the data
useful for future use.

It is a copy of the current active data used
to recover from data corruption.

The data is relocated from the current
storage system onto a less expensive
storage.

The data is just a copy of the working copy
and may or may not be stored in the same
storage as the active system.

The duration for keeping an archive is
longer since it would in most cases not
change frequently.

The duration of the backup would be
short compared to archiving since it would
be updated frequently (e.g. daily, weekly,
monthly) to have the newest working copy.

Table 2.3: Differences between archive and backup

2NAS: Network Attachted Storage

3 Requirement Analysis

The primary requirement of this thesis is to design and implement an Archive service, i.e.,
backend web service for the MARS framework. The service’s role is to archive the MARS
resources mentioned in Subsection 2.1.1 from the Ceph cluster [34] to the Network Attached
Storage (NAS) Synology drive [1]. This service targets any user who desires to archive the
MARS resources. The Archive service would expose its API, calling it, one can archive and
restore the resources.

3.1 Functional Requirements

This section describes the functional requirements for the Archive service. The functional
aspects which carve the Archive service are mentioned below.

3.1.1 Archive Project Resources

The designed system must be able to archive the MARS resources from the active system
(Ceph cluster at the time of writing) into the Synology [1]. The application must also archive
a partial project (e.g., no simulation runs have been triggered). This must be supported since
it could be the case that the user wants to archive only some of the resources. Table 3.1
mentions the resources which need to be archived.

Assurance of Correct Data

MARS being a distributed system, data coherency (Subsection 2.2.2) is one of the big is-
sues which this thesis faces. As a consequence, wrong or unwanted data could be archived.
Therefore, the Archive service must ensure that while an archive is running the data is not
altered.

3 Requirement Analysis 26

Resource Name Description
Metadata This resource stores the metadata (e.g. file id, file name). It gives the

system the information about existing files in the system.
Files This resource correspond to the models (e.g. wolves and sheep model)

and input files (e.g. GIS, Time series) which describe a simulation.
Scenarios This resource defines the parameters for the model which would be sim-

ulated (e.g. simulation run time, number of agents).
Result Configura-
tions

This resource defines which parameters of a model and layers are going
to be stored in the database that will be used for visualization and result
analysis.

Simulation Plans This resource contains the scenario and the result configuration which
can be executed. The simulation plan could be configured to have differ-
ent scenario and result configuration to produce different kind of output.

Simulation Runs This resource contains the metadata for a simulation results i.e. simula-
tion id, simulation status.

Simulation Re-
sults

This resource is the output and contains the results for a single simula-
tion run.

Table 3.1: MARS resources

3.1.2 Retrieve Project Resources

The designed software must support the retrieval of the archived projects from the Synology
into the active system. The system must be able to restore the project given that, the services
support the data format which is archived in the Synology.

Figure 3.1: Archive service’s communication structure

3 Requirement Analysis 27

Figure 3.1 illustrates that the Archive service must only use the volume assigned for archiving
and nothing more. This requirement must be fulfilled to comply with the MARS development
standard. It also has to be made sure that the retrieved resources are usable (e.g., the
restored simulation plans should be able to run a simulation again).

3.1.3 Archive and Retrieve Process Status

The archive and retrieve processes are long running tasks. The designed software must
run these processes in the background to avoid long waiting time for other requests. Given
this, an API endpoint must be made available which gives the current status of the archive or
retrieve job. Using the status a user can determine whether the job is running or is finished.

3.1.4 Download Archived Data as a Compressed File

It is of great importance for a domain expert, i.e., an ecologist who are not technical experts
to have a graphical interface. In this interface, it must be possible to navigate to the project of
interest and easily download the project as a zip file. There could be cases where the MARS
system is out of order. Then it must be accessible by anyone with basic knowledge of the
system.

3.1.5 Fault-Tolerant Design

One on hand, the Archive service has to communicate with many services in the system.
This could lead to a higher rate of failure in comparison to a system which does not depend
on other services. A breakdown of one service would cause the whole process of archive/re-
trieve to stop unexpectedly. On the other hand, it is also possible that a running Archive
service terminates due to some unexpected reason. Therefore, fault tolerance mechanism
has to be included in the archive system, so that it has a chance of recovery.

3 Requirement Analysis 28

3.2 Non Functional Requirements

The requirements specified in this section present us the technical/non-functional aspects
of the Archive service. A tabular description (Table 3.2) is presented below. The detailed
description depicts the benchmarks of how the system should be designed to meet the needs
for a better sustainable system. The result from this work delivered must comply with the
following technical requirements.

Requirement Description
Build and deploy-
ment

The service should be deployable in the MARS Kubernetus [11] cluster
using the Gitlab1 pipeline as seen in Figure 6.1 which is valid at the time
of writing this thesis. Also, the build stages for the pipeline also have to
be written.

Extensibility The system must be made extensible so that future requirements can be
easily added.

Robustness The system must be able to cope with different kinds of errors during
execution.

Logging The service must provide logging information.
Usability The system should be integrated into the MARS UI so that it is easily

usable by all end users.
Make a Swagger
API interface

The Archive service should have a Swagger [30] interface available so
that other developers can use the service with ease.

Follow Microser-
vice patterns

The service should follow the data sovereignty pattern for Microservices
mentioned in (Subsection 2.3.1).

Responsiveness The API should give some feedback to the user never the less if the
request cannot be made an error message should be returned instead
of no result.

Table 3.2: Technical requirements for the Archive service

4 Planning and Software Design

The chapter discusses the decisions, design patterns and, architectures utilized for this the-
sis, following the requirements mentioned in Chapter 3.

4.1 API Design

The Archive service must expose its web API so that an interaction between its clients and
the application can occur. The Representational State Transfer (REST) [7, Chapter. 5] ar-
chitectural approach is chosen to design its API. This is a conventional approach to build
a distributed system as it is technology independent. Therefore using this architecture, the
system can later support any system, providing a broader layer of flexibility to the Archive
service. Also, the standardized aspect of a RESTful service enables a software to create
reusable elements [4]. A combination of HTTP with REST to do a CRUD (Create, Read,
Update, Delete) operation is preferred because most clients (e.g., web browsers) and pro-
gramming languages readily support it. The CRUD over HTTP consists of few uniform noun
based interactions that a client can execute [4, p. 13]. Table 4.2 describes the API endpoint
for archive, retrieve, and job status with a brief description and Table 4.1 mentions the HTTP
CRUD noun based operations used for the Archive service.

HTTP Verb Description Application
POST Creates a new re-

sources and dependent
resources.

The POST request will be used to archive
and retrieve the projects because new re-
sources are being created for these requests.

GET Reads the resource. The GET request will be used to check the
status of the archive and retrieve process.

PUT Updates the resource. The PUT request will be used to update the
status of the archive and retrieve process.

DELETE Deletes the resource. The DELETE request will be used to delete a
running archive or retrieve process.

Table 4.1: CRUD interaction over an HTTP in the Archive service

4 Planning and Software Design 30

API Endpoint Description
archive/archiveProject/projectId Archives a project given an id. This is an HTTP

POST method.
retrieve/retrieveProject/projectId Restores a project given an id. This is an HTTP

POST method.
job/status/projectId Gets the status of the archive or retrieve pro-

cess, given a project id. This is an HTTP GET
method.

job/status/jobId Gets the status of the archive or retrieve pro-
cess, given a job id. This is an HTTP GET
method.

delete/project/projectId Deletes the archived project from the Synology
drive, given a job id. This is an HTTP DELETE
method.

Table 4.2: API Endpoints description for Archive service

The API endpoints are designed considering the fact that more functionality could be added
to the archive service without significant changes needed in the client. For example, the end-
point "archive/archiveProject/projectId" is designed thinking an archive could be also ex-
tended for other resources besides the whole project. When the Archive service would like to
support, archiving only the simulation results, the endpoint for it would be "archive/archiveS-
imulationResult/SimulationId". Hence, it would make it more flexible for the client to add
the functionality without much effort. Also, to avoid multiple API calls and increase the per-
formance of the server, the get status (Table 4.2) endpoint combines vital information in one
request (See Listing 4.1).

1 {
2 "status": "PROCESSING",
3 "projectId": "70C961b7-89bf-4bd5-bf61-31b6a17a15d9",
4 "error": "NO ERROR",
5 "lastUpdate": "2018-06-17T10:05:50.216Z",
6 "archiveName": "NONE",
7 "markSessionId": "AK5961b7-89bf-4bd5-bf61-31b67a15d88",
8 "jobId": "855961b7-89bf-4bd5-bf61-31b6a17a15d3",
9 "currentProcess": "Archive"

10 }

Listing 4.1: Successful GET request for an archive status

4 Planning and Software Design 31

4.2 Archive Process Design

4.2.1 Preconditions Required for an Archive

The archive process requires certain preconditions to be fulfilled to ensure the correctness
of the data which are mentioned below:

1. Mark resources: The MARS framework is a multi-user application meaning many
users can access a project at the same time. As multiple users can modify the data si-
multaneously, it could be possible that someone changes a resource during an archive
and the Archive service has no way to detect this modification. It would lead to in-
consistent data being archived. Therefore, to avoid this situation the resources must
be marked before the start of an archive. The marking would ensure that no other
process except the Archive service has access to modify the marked contents during
archiving. The marking process would be handled using the Marking service.

2. Get Metadata for the project: The metadata contains all necessary information about
the different resources. The scenarios, files, and the result configuration depend on
these metadata to retrieve their respective data. If the metadata cannot be obtained
the archive process cannot continue.

3. Get Simulation runs: The simulation run contains the simulation id which is required
to archive the correct simulation.

4.2.2 Decision for Not Archiving the Project

The resources depicted in Table (Table 3.1) must be archived following the MARS resource
hierarchy (Figure 2.1). Following the hierarchy, it is arguable why the project is not being
archived, despite it being present. The project lies at the top of the hierarchy meaning no
other resources are usable without its existence. Section 3.1.2 mentions the requirement
that the Archive service must restore all the archived resources back into the system.

During a restore, if a project is unavailable, then other resources cannot be brought back
into the system. Therefore, for a successful restore process, the project data is not archived
which now acts as a point of reference to bring back the children resources. If the project was
to be archived then an additional mechanism is needed to ensure the users referenced in
the archive also existed in the Mars system (active system). It could be possible that during
a retrieve the users in an archived project may not exist anymore as they were removed
causing the process to fail. Additionally, this decision also reduces the complexity of the
archive and restore as this mechanism can be avoided.

4 Planning and Software Design 32

4.2.3 Data Format

A suitable file format for archiving must be chosen because it determines how the data ac-
cess would be realized and whether it meets the functional requirements outlined in Section
3.1. The different types of data archived are the metadata for files, scenarios, result configu-
rations, simulation plans, simulation run including the input files, models, and the simulation
results. The data formats being discussed in this section focus on the metadata, and they
are received initially as a JSON document. The metadata is crucial because they give the
system vital information that the retrieve process requires.

HDF5

HDF5 is a file format for storing and managing data which has support for various data types
designed for efficient I/O, compression, portability and, big data [8]. Many scientific projects
involving simulations have successfully applied this file format (Efficient for simulation data
[29, p. 11]). This file can also be defined as an abstract data container which includes building
blocks for data organization. This file system can hold a variety of heterogeneous objects like
images, graphs, documents, tables. It also has support for an n-dimensional Table [8, p. 2].
The HDF5 format has two primary objects which define the data storage structure:

1. Groups: They are responsible for organizing the data objects in the HDF5 file format.
A Group is comparable to a directory in Windows or Unix system [8]. Figure 4.1 shows
an example of a Group (e.g., project1) in a HDF5 file. Using the API of the HDF5
library a Dataset (e.g., scenario Metadata) can be accessed via the pathname (e.g.,
/Root/project1/scenario Metadata).

2. Datasets: A Dataset can be defined as a multidimensional array of data. This ob-
ject contains the raw/actual data (e.g., simulation results). These data are stored in
a n-dimensional array format, where one can specify the different data types for the
raw data, i.e., integer, float, character, variable length strings [8]. Figure 4.2 shows an
example of a Dataset in an HDF5 file stored in an array.

Figure 4.1 also shows how the Groups and Datasets can be used to archive the MARS
projects. Every new project to be archived will be added as a new Group as depicted in the
figure and the datasets are the resources, i.e., scenario, file, simulation results.

4 Planning and Software Design 33

Figure 4.1: HDF5 Groups and Datasets [8]

Figure 4.2: Example of an HDF5 dataset

JSON

JSON(JavaScript Object Notation) is a data format which is very easy for humans and ma-
chines to read and write. This format is entirely language independent which follows the
conventions used in different programming languages, i.e., C#, Java, Python, and more. The
REST API implemented in the MARS framework supports this format with ease making this
a very suitable candidate. This format is widely accepted and MongoDB supports it without

4 Planning and Software Design 34

any problem. Also, MongoDB seems to be a good candidate, but the requirement (Section
3.1.4) states that the archived data should be readily accessible to a non-expert and using
MongoDB requires some amount of technical expertise.

Conclusion

All the attributes of the metadata in JSON must be parsed in an n-dimensional array struc-
ture which can be understood by the HDF5. It is important to understand that MARS supports
numerous models which makes it impossible to predict the structure of a resource. To elab-
orate, the Wolves and Sheep [16] model has a different metadata structure than the KNP
[16] model as the Agents and Layers involved are different. Due to this reason, the resources
must be parsed every time into an n-dimensional array by writing each field. Also, at the time
of restore, this has to be converted back to a JSON as the MARS system does not under-
stand the HDF5 structure. In addition, to avoid parsing the data, a one-dimensional array of
size one was created (type variable string), and all the unparsed JSON data was stored in
this array. The main intention of this experiment was to see how the HDF5 files would react
as it is easy to get the string from a 1d array (e.g., exprimentArray[0]). This also did not bring
any positive result; instead, it created so much overhead to the file as a JSON file with the
size of 2 KB had a file size of around 512KB for the HDF5 variant. This made the HDF5 file
system very inconvenient to use. Despite the HDF5 file providing different benefits, i.e., fast
I/O, portability, support for big data and, compression on a dataset it does not seem suitable
in the MARS system due to the amount of complexity that needs to be dealt with for the
archive and restore process.

Considering the factors mentioned above the file format for the metadata is planned to be
JSON instead of the HDF5 file. Different advantages such as easy handling, no extra parsing
required for the MARS system and, easy conversion to different types of file format, i.e.,
CSV used often in the MARS for analysis, makes it more suitable for this purpose. To aid
the performance, the meta files for each type of resources are going to be stored separately
(e.g., scenario.json, resultConfiguration.json). Splitting the JSON files like this would improve
the faster serialization and deserialization as only the required resource can be loaded into
the memory. As the input files and the simulation results do not need to be read they are just
zipped.

4 Planning and Software Design 35

4.2.4 Archive Workflow

Figure 4.3: Activity Diagram of MARS project Archive process

Figure 4.3 illustrates an activity diagram of archiving an entire project in the MARS system.
As mentioned in Section 4.2.1, marking the resources for the project is the first require-
ment needed to start the process. If the project resources are marked successfully, then the
archive process is initialized as a background job, and the job id is sent to the client. In case
the marking fails, the error message will be sent to the client, and the archive process will
halt. The archiving process is visioned to be a background job because a single process
could take a long period of time and block the server for additional requests. Following the

4 Planning and Software Design 36

successful job creation, the process checks if an archive already exists. After the archive
folder creation, the metadata, files, scenarios, result configurations, simulation plans, simu-
lation runs, and the simulation results are retrieved respectively. After a successful archive
process, the resources are deleted from the Ceph cluster. Lastly, in case of some failures
while archiving the exception will be logged which can be later analyzed for maintenance.

Figure 4.4: State Diagram of MARS project Archive process considering empty states

Figure 4.4 illustrates the transitions that can occur during the archive process. The idle state
is when no archive process is being executed. Additionally, the state diagram also considers
how the state changes if one of the resources is empty. In the case of an empty resource
(e.g., no scenarios available for the project), the archive process stops gracefully by logging
the error and transitions to the idle state.

4 Planning and Software Design 37

Figure 4.5: Sequence Diagram for the Archive process

4 Planning and Software Design 38

Figure 4.5 illustrates the Sequence diagram for a complete archive process. The first step
after an archive request is to check whether an archive or retrieve process for the current
project is under progress. In case the process is in progress, the archive request is denied
to the user with a conflict message. If no process with the project is running, then an archive
job (a separate thread) is created, and a message to the client with "start of archive process"
is sent.

Following the job creation, the project will be marked so that during archive no changes to
the project resources could be made. If this step fails the archive process stops by logging
the error. After the marking step completes, the archive process receives a mark session id
and the dependent resources. This allows the archive to make changes to the resources.
Using the dependent resources, the process retrieves metadata, files, scenarios, result con-
figurations, simulation plans and, simulation runs respectively and persists them in Synology.
Lastly, the simulation result dump action will be called which will archive the result data. The
process waits until all the result data is archived. After a successful archive, a request to
delete the project data is made so that the system memory can be freed.

A significant issue to be discussed is when the archive process fails, which requires
a rollback by unmarking the project. As mentioned earlier the project is marked as
"TO_BE_ARCHIVED" so that no other processes can modify the contents during the archive
process. This is an excellent strategy if everything goes as planned but often this is not the
case, and it is mandatory that an unmarking of the project be done otherwise the project is
unusable.

It also happens since the marking service is dependent upon many services, it has a high
possibility of failure as well. This brings upon the problem, how would the archive service
behave if the unmarking of the project fails. It seems very natural to repeat the process until
the unmarking request succeeds since it is necessary to unmark a project. If this happens
only with a single process, it does not make a huge difference. However when thinking of the
bigger picture if this occurs with 100 different processes at the same time, it uses valuable
processing resources as it may be stuck in a deadlock condition until an outside interruption
occurs. To avoid this, a fixed number of retries to unmark the project at the specified time
interval is made.

Although, this solves the issue of using up resources, the problem that the project is unusable
is still there. Except a manual unmarking, no other solution can be seen, so it is decided that
the archive process would persist the marking session id which can be used to call the
unmarking endpoint. With the use of this id, a manual trigger is possible as soon as the
error is fixed. The marking session id can be easily retrieved also from the GUI as it will be
included in the status request of the archive job.

4 Planning and Software Design 39

4.3 Retrieve Process Design

This section describes the design and behavior for restoring the archived project from the
Synology back to the system so that it can be used again using the MARS UI.

4.3.1 Decision of File Upload via File-svc

Figure 4.6: File Upload in MARS Cloud [3]

Figure 4.6 illustrates a file upload in the MARS cloud done at the time of writing this thesis.
The MARS cloud consists of many microservices and databases at its disposal. It is a point
of interest how the project is restored back as there are different possibilities for it. However,
it is a requirement for the Archive service to call the corresponding service to access, add, or
modify the resources (Chapter 3). As mentioned in earlier chapters, the MARS system has
different types of files (e.g., models, timeseries, GIS) which are managed by their respective
services. There are two different methods to upload a file and they are mentioned below :

4 Planning and Software Design 40

1. Upload files via File-svc The File-svc is a service which accepts all kind of inputs,
i.e., GIS, models, timeseries. It communicates to the concerning service by checking
the file type. This methodology is the only way possible through the UI for a file upload.

2. Upload the respective file via its service This method requires the Archive service to
communicate with each service of the file type. The archive service can communicate
to any service provided an endpoint (interface). Therefore, it is also possible to upload
the different kinds of files using the corresponding service instead of the File-svc. If a
file type model is to be uploaded, an API call to the reflection service has to be made.
Similarly, a GIS file needs the GIS Data service.

The File-svc is an abstraction layer for uploading different types of files. This layer reduces
the number of direct dependencies to the Archive service because it does not call the other
services directly. Choosing the File-svc also provides an additional advantage if a new file
type is added in the future. In this case, the archive service does not need to modify any code
to upload the new file type. Given the reasons to have cohesion and easy maintenance, file
uploads via File-svc deemed to be a better choice.

4 Planning and Software Design 41

4.3.2 Retrieve as an Atomic Action

Figure 4.7: Activity Diagram for retrieving a project

Figure 4.7 depicts the activity diagram for restoring a project. The retrieving process is also
a background job due to the same reason as for the archive, i.e., long running times. The
first step after creating the retrieve job is to get the metadata from the Synology and then
upload all the files. All the files have to be finished uploading and processing; otherwise,
the sequential steps would not have the references of the files. After all the uploads are
complete, the scenarios get the reference to the file id so that it could be uploaded. Following
the scenarios, the result configurations are also uploaded for the corresponding models. As
the simulation plan is dependent on the scenario and the result configuration, this is the next

4 Planning and Software Design 42

resource which will be uploaded. Lastly, the simulation runs and the simulation results are
uploaded respectively.

In case an error occurs, a Two-phase commit protocol [28] is adopted. This strategy is taken
into consideration to bring atomicity on decentralized data as it tries to roll back if the dis-
tributed transaction fails. Due to chances of failure, an incomplete data restore process could
occur. In the MARS system, one cannot work with having incomplete data since the re-
sources are dependent upon each other. Having an atomic transaction for the retrieve pro-
cess is a simple mechanism to overcome this issue. In case of any failure during retrieval, the
partially restored resources is deleted to make the retrieve process as an atomic action.

Figure 4.8: State Diagram of MARS project retrieval process considering empty states

Figure 4.8 illustrates the transitions that can occur in the retrieval process. The state diagram
has a very similar procedure to the archive (Figure 4.4), as both execute their actions in the
same order. Also, marking of the resources is not done before the start process in contrast
to the archive, because data coherency issues are not present as the archived data is stored
in a centralized storage, i.e., Synology which is accessed only by the Archive service.

Figure 4.9 illustrates the sequence diagram for the retrieve process. The starting step is
similar to the archive process as it makes a check if a process for the project is running
or not. If a process is found running, then the restore process is denied. After a successful

4 Planning and Software Design 43

job creation, the file metadata are fetched from the archives. Using them, the corresponding
files are uploaded one after the other. In this process, different types of input files such as
GIS, Timeseries, and models can be uploaded. Section 4.3.1 mentions that the files are
uploaded via the File-svc (In the UI) which determines the input file type and forwards it for
processing which requires additional time. It is mandatory that all the uploaded files have a
"FINISHED" status which can be acknowledged by making another request using the data
id received when uploading the file. Then, the restore file process waits until all the files
have a "FINISHED" status. The request will be made in a designated time interval to avoid
many network calls. In the case of a status "FAILED," request timeouts, unknown status, and
internal server error the whole restore process will halt. This step is necessary because the
children resources cannot use the failed/incomplete files.

The next step is to get the scenario metadata. Restoring this data back to the system is
not entirely straightforward because it needs some additional work to be done. The problem
arises from the fact that the archived data have attributes like the resource id which changes
as a new resource is uploaded. For more clarification, Listing 4.2 presents an example of the
archived metadata of a file. This resource is needed so that the restore process can deter-
mine the different attributes (e.g., title, project id) while uploading a new resource. During a
new file upload its data id changes, as a new id is assigned by the File-svc (See Listing 4.3).
This is a big problem because the other resources such as a scenario cannot be uploaded
until it knows the new data id that was assigned to the model it depends on. Listing 4.4 shows
the archived scenario which has a reference to the data id from the archived file metadata.
This is only one example as many attributes must be considered.

To solve this, a map using the old attribute as the key and the new id as the value is made
(See Listing 4.5). This way, while uploading, the scenario resource gets the new data id by
searching the key, i.e., old id, from the map and replaces it during upload.

Following a scenario upload, the other resources, i.e., result configuration, simulation plan,
simulation run uses the same mapping strategy to replace the attributes required for restor-
ing. Lastly, the simulation results will be restored from the archives. The restore process also
waits until all the simulation runs are finished. Using a job id retrieved from the Database
Utility service the status of the simulation restore can be known. Similar precaution for the
file uploads are taken into consideration which prevents an infinite running of this process.

4 Planning and Software Design 44

1 {
2 "DataId":"7cae6055-d7fd-418e-9ba0-bdc2980ffb4c",
3 "Title":"KNPGIS.zip",
4 "Description":null,
5 "ProjectId":"c5deed87-dd03-45c3-a0c4-fdf9f1a307a0",
6 "UserId":"af7e045f-edf4-4df5-a9c8-6327186e6ddb",
7 "Privacy":"PROJECT_PRIVATE",
8 "State":"TO_BE_DELETED"
9 }

Listing 4.2: Snippet of archived MARS metadata resource

1 {
2 "DataId":"27765261-8a65-45ab-bdeb-db8b5b7f8f43",
3 "Title":"KNPGIS.zip",
4 "Description":null,
5 "ProjectId":"c5deed87-dd03-45c3-a0c4-fdf9f1a307a0",
6 "UserId":"af7e045f-edf4-4df5-a9c8-6327186e6ddb",
7 "Privacy":"PROJECT_PRIVATE",
8 "State":"TO_BE_DELETED"
9 }

Listing 4.3: Snippet of the uploaded MARS metadata resource

1 {
2 "MetaDataId":"7cae6055-d7fd-418e-9ba0-bdc2980ffb4c",
3 "Description":"No description available.",
4 "ClearName":"gis_vector_percipitation.zip",
5 "AllowedTypes":["SHAPEFILE","GEOJSON"],
6 "ParameterMapping":[]
7 }

Listing 4.4: Snippet of the archived MARS scenario resource

1 {
2 "7cae6055-d7fd-418e-9ba0-bdc2980ffb4c":"27765261-8a65-45

ab-bdeb-db8b5b7f8f4"
3 }

Listing 4.5: The mapped key value attributes that the scenario metadata needs

4 Planning and Software Design 45

Figure 4.9: Sequence Diagram for the restore process

4 Planning and Software Design 46

4.4 Status Retrieve Design

This section describes the design and behavior for querying the status of an archive or re-
trieve process.

Figure 4.10: Activity Diagram of status acknowledgement process

Figure 4.10 illustrates the activity diagram for the status acknowledgement of a project (List-
ing 4.1). Firstly, the status for the project id is searched and if any error is caught (e.g., unable
to connect to database) a message is returned to the client. If the status is not found a mes-
sage stating the "project not found" is sent. Lastly, if the status is found it will be sent to the
client.

4 Planning and Software Design 47

4.5 Fault-Tolerance Design

This section describes the design of the archive service in case of different kinds of fail-
ures. The system being part of a large distributed system, faces different difficult situation
which must be handled for a stable application. Table 4.3 lists the possible errors which may
occur with a brief description, i.e., network issues, failure of a dependent service, sudden
termination of the archive service.

Errors Description
Network glitches The communication between the services happen via a net-

work (e.g., HTTP, RPC) in the MARS system. It is a possi-
bility that the connection is not available for a small period
due to network problems. This phenomenon would lead the
archive service to fail even though all the services are func-
tioning.

Failure of a dependent
service

There is a possibility that a service which the archive ser-
vice is dependent upon goes down temporarily due to an
unexpected failure or is in maintenance. The failure of the
dependent service to reply also generates an error in the
Archive service.

Sudden failure of the
Archive service

Like all the other services the Archive service is also prone
to getting an unexpected restart. This restart causes the run-
ning job to stop and lose its current progress.

Table 4.3: Possible errors which could occur in the Archive service

Figure 4.11 illustrates the activity diagram which describes the Archive service’s design that
recovers from errors mentioned in Table 4.3. The main strategy for the failure mitigation is
to re-run the process again from the beginning once an error occurs. A programmer can
configure the number of restarts and its cumulative wait time. It is designed in such a way so
that the service avoids a deadlock situation with infinite restarts.

4 Planning and Software Design 48

Figure 4.11: Activity Diagram for failure mitigation for the Archive service

5 Implementation

This chapter describes in depth about the programming languages, Object Oriented Design
patterns, libraries, and tools used to achieve the intended system design outlined in Chapter
4.

5.1 Archive Process Implementation

This section gives an overview of the architecture of the archive process that is responsible
for moving the project data to the Synology.

The archive process is a complex task, thus involves many operations and communications.
Figure 5.2 illustrates the class diagram for the archive process. This diagram depicts only the
top level classes which perform actions (e.g., archiving files, archiving simulation result). The
operations include HTTP GET request to an external service, storing of received data into
the Synology, and forwarding the received data to the next component which requires it. This
involves a large number of classes and cannot be illustrated in a single diagram. This diagram
is shown to point out the order of complexity that the archive process undergoes and the way
in which it is implemented. Also, to make the modules of the archive service more reusable
the components are separated into several classes like ArchiveMetadata, ArchiveScenarios
etc. This separation of classes later allows an easier extension. It could be the case that
in future a new requirement that involves the Archive service to only archive the input files
arises. In this case, as the components are already separated, one can use the interface of
ArchiveFile for a quick implementation. Also, different design patterns have been used in the
Archive service like the Repository pattern [20] to help make the software more coherent.

Repository Pattern Implementation

Many components require access to the Synology storage to archive their respective data,
that presents a problem of having data persistence logic duplication in many components. To
solve this, the repository pattern will be implemented where there would be an abstraction
layer, i.e., a repository provides the query interface to the component. This abstraction layer

5 Implementation 50

is injected to the required components and they can call the method to carry out persistence
actions (CRUD). Also, this also decouples the component from the type of storage being
used ,i.e., Synology, so it does not matter for the component if the type of storage is changed
from Synology to something else since it just needs the interface for persistence. Figure 5.1
illustrates how the repository acts as an abstraction layer for the client aiding the system to
be more cohesive.

Figure 5.1: Repository Pattern overview

5 Implementation 51

Figure 5.2: Class Diagram for the Archive process (Top level)

5 Implementation 52

5.2 Retrieve Process Implementation

This section gives an overview of the architecture of the retrieve process which restores
the data back to the active system from the Synology, so that it can be used for running
simulations and analyze the results.

Figure 5.3 illustrates the class diagram for the retrieve process. The structure for the order
of retrieve is very similar to the archive process since it has to follow the MARS resource
hierarchy (Section 2.1.1). All the dependencies for the retrieve project class are injected
using the Dependency Injection Container of ASP .NET framework. The restoring is done by
getting the data from the Synology and then posting it back to the system using the respective
service.

5.2.1 Addition of Functionalities in Other Services

The restore needs to call many endpoints to upload the respective resource. After analyzing
the MARS cloud and their available endpoints, it was seen that some functionalities, which
are needed for restoring the complete system, are not present in the current system. These
functionalities are added to the services for a successful restore. Table 5.1 describes the
functionalities that have been added to the required services.

Service Functionality Description
Project ser-
vice

Add archived and is being archived
mark in the project

The archived mark is necessary be-
cause it provides the user informa-
tion if the queried project, is already
archived, or is in the process of
archiving. This is implemented us-
ing a GRPC communication, since
this is the protocol in the project
service, compared to the other ser-
vices.

Scenario
service

Return scenario id with the full sce-
narios

It is the case when a full scenario is
requested the scenario id is not re-
turned. The id is required while re-
trieval because the service needs to
map the old scenario id with the new
one. If the mapping fails the simula-
tion plans cannot be created since
they are dependent upon scenarios.

5 Implementation 53

Sim runner
service

Upload a simulation run without run-
ning a simulation

The Sim-runner service executes
the simulation run producing an out-
put (simulation result) when it is
created. This is not desired by the
Archive service because a simula-
tion result is already available that
needs to be restored. Therefore, an
added functionality which uploads
the simulation runs without running
a simulation is implemented.

Database
utility ser-
vice

Dump and restore for result
database

The simulation results are signifi-
cantly large, so it is faster to perform
a database dump for this. The dump
and restore functionality is added,
so that the archive service can re-
store and archive the simulation re-
sults.

Database
utility ser-
vice

Make the dump and restore a back-
ground job

It is crucial that the dumping and
restoring process is implemented as
a background task because this pro-
cess is time-consuming in compari-
son to the other resources, i.e., sce-
nario.

Table 5.1: Functionality implemented to the other services for retrieve process

5 Implementation 54

Figure 5.3: Class Diagram for the Restore process (Top level)

5 Implementation 55

5.3 UI Integration

The MARS system has a User Interface (UI) where one can create a project, manage the
different resources, run the simulation, and analyze the results. The different backend ser-
vices (See Section 2.1) are integrated into a Graphical User Interface (GUI) so that domain
expert, (e.g., ecologists) who are not computer experts could utilize the powerful tools that
the framework offers. The aspect that this framework is intended for users with less technical
expertise makes it an absolute necessity that the functions which the Archive service delivers
be part of the graphical system.

Figure 5.4: MARS cloud overview with the UI

Figure 5.4 illustrates a high-level communication between the UI and the backend services. It
is to be noted that the backend services are running in a self-contained environment which is
not available to the external ports and other clients. Therefore, to make the services available
the Ingress1 is present. Ingress contains a set of rules which allow inbound connections to

1https://kubernetes.io/docs/concepts/services-networking/ingress/

5 Implementation 56

reach the services that are inside the cluster (encapsulated from outside). In the MARS
system, the Ingress creates a reverse proxy for the teaching API. The teaching API is the
bridge between the different backend services and the GUI. The purpose of making the
requests via the Teaching API is to have a secure system as it authenticates whether the
client making the requests is the rightful owner or is an intruder. This check is done as the
teaching API provides an authentication token, i.e., Bearer token to the GUI and this token
has to be included in the header of every request, making it more secure as only the clients
having the tokens can make a successful request. After a successful request to the Teaching
API, the request is forwarded to the concerning web service.

The first step needed for a complete integration of the Archive service in the UI is to deter-
mine which endpoints are going to be exposed to the outside ports, i.e., web browser. The
endpoints decided to be exposed for the thesis are archive project, retrieve project, and get
status. These endpoints are also programmatically added in the Teaching API written in GO
Lang. Lastly, after the endpoints are made available to the UI components, the functions are
implemented in the Teaching GUI service using the Angular 4 framework.

Figure 5.5: Archive service UI controls in the MARS Teaching UI

Figure 5.5 illustrates the integrated Archive service in the MARS Teaching GUI where a
retrieve job is executed. The archive process status can be seen in the same area where the
retrieve information is shown, when an archive is running.

5 Implementation 57

5.4 Fault-Tolerance and Maintenance Implementation

The MARS system is very susceptible to different kinds of errors due to the structural factors
mentioned in the previous chapters. Therefore, a fault tolerant system is needed which tries
to recover in case of any transient error. For the Archive service, an open source framework
named Hangfire is used for implementing the design in Section 4.5. This framework is used
because it provides the functionality mentioned in the design section including many addi-
tional features, i.e., reliability, easy maintainability, and simplicity. It is called reliable because
when a background process is created, this framework persists the input parameters, retry
times, method name, in a database. This is also known as the Forget and Fire [27]. It ensures
that the jobs triggered once are always executed and re-tried. As an example, if the Archive
service restarts during a running process, in the general case the job cannot be recovered.
However, this framework will check if there are any incomplete jobs and will start them auto-
matically, fetching the stored job information from the database. The Forget and Fire feature
ensures that the triggered processes would always run compared to the native threading
offered by ASP .NET Core. Listing 5.1 shows the simplicity of how a job retry can be config-
ured in case of an exception. However, one of the biggest disadvantages of this framework
is that it is tightly coupled with a database. If there is a connection issue present between
the Archive service and the database, the whole service faces a downtime. Nonetheless, the
benefits this framework provides outweighs its disadvantages.

1 private IServiceCollection BuildServices(IServiceCollection
services)

2 {
3 // hangfire job filter
4 GlobalJobFilters.Filters.Add(new AutomaticRetryAttribute

{ Attempts = 4 });
5 }

Listing 5.1: Hangfire retry attempt configuration

AOP Logging

Logging is a very important part of the service as it gives the maintainers essential informa-
tion on the status of the service. This makes logging necessary in each part of the system
which leads to the copying of the logging logic to the different components of the archive ser-
vice, violating the SOLID [18] principles. To solve this issue, the interceptor pattern is used.
Using this pattern, a decorator is added to the class which wants to include the common log-
ging logic. Listing 5.3 shows the implementation of the decorator "Intercept("logger")" which
is injected in the class. The classes decorated with this attribute would have a logging logic

5 Implementation 58

triggered. Listing 5.3 shows the main logic for the logging. In this logic, a success message
with all the method arguments, time elapsed are printed in case of a successful run, and an
exception would be logged in case of failure. This aids in the maintenance of the system as a
new feature is added only the decorator must be added to log the start, success, or exception
of the method.

1 [Intercept("logger")]
2 public class ArchiveFile: IArchiveFile
3 {
4 public ArchiveFile(IFileClient fileClient)
5 {
6 _fileClient = fileClient;
7 }
8 }

Listing 5.2: Interceptor decorator example

1 private async Task InterceptAsync(IInvocation invocation)
2 {
3 //Before method execution
4 var stopwatch = Stopwatch.StartNew();
5

6 try
7 {
8 //Calling the actual method, but execution has not been

finished yet
9 invocation.Proceed();

10

11 //Wait task execution and modify return value
12 if (invocation.Method.ReturnType == typeof(Task))
13 {
14 try
15 {
16 await InternalAsyncHelper.

AwaitTaskWithPostActionAndFinally(
17 (Task) invocation.ReturnValue,
18 exception =>
19 {
20 if (exception == null)
21 {
22 Console.WriteLine("Success: Class

Name: {0} Method: {1} Duration:

5 Implementation 59

{2:0.000} ms, Arugments: {3}",
GetClassName(invocation),

23 invocation.
MethodInvocationTarget.Name,
stopwatch.Elapsed.
TotalMilliseconds,
GetMethodArguments(invocation
));

24 }
25 else
26 {
27 Console.WriteLine(exception);
28 throw exception;
29 }
30

31 });
32 }
33 catch (Exception)
34 {
35 Console.WriteLine("Exception occured in async

call");
36 }
37

38 }
39 }

Listing 5.3: Interceptor logger logic implementation

6 Testing

This chapter presents the methodology used for testing the correct functionality of the ap-
plication. The validation consists of a set of automatic test i.e. unit test, and integration test,
including a manual system test to ensure the proper functioning of the service. The verifica-
tion is done on both the functional aspects of the backend logic and also on the GUI controls
for the Archive service.

Figure 6.1: MARS Continuous Integration Pipeline build

Figure 6.1 presents the Continuous Integration system which is followed by the MARS de-
veloper community. This pipeline plays an important role for the maintenance of the service
because the automatic tests are executed here. The CI1 pipeline is triggered as soon as a
new commit is pushed to the remote GitLab2 repository. This builds the Docker image of
the service with the new changes. The next step is to run the unit tests written for the ser-
vice, which is a mandatory step. Lastly, if the pipeline passes, the docker image is pushed

1CI: Continuous Integration
2https://about.gitlab.com

6 Testing 61

to the GitLab registry3. If this is successful, then the image can be used in one of the MARS
Kubernetes clusters, i.e., MARS beta, MARS production environments.

6.1 Unit Testing

These tests are designed to verify the individual components of the software which validates
that each unit of the software performs as intended. A White Box Testing methodology has
been applied for the unit testing. This method is used as the internal structure/requirements
are known beforehand. In this process, the specific inputs and outputs are predetermined,
and the tests are run to verify if that input produces the expected output.

Figure 6.1 above depicts unit testing as a mandatory step for deployment of the Archive
service. Running this test with every build process will boost the confidence in changing
and maintaining the code for the Archive service. The ASP .NET platform offers a lot of
unit-testing frameworks (e.g., XUnit, Nunit, MSTest/Visual Studio). NUnit is chosen as the
preferred the testing framework for this service as it has an excellent reputation for fast testing
and it is already integrated the IDE, i.e., Rider (JetBrains) used for this work.

Making mocks/fake objects is one of the important steps to do a proper unit testing. This
statement can be backed up saying that unit tests are used to analyze only one mod-
ule/method. To check only one module, the other dependent objects have to be faked. The
Archive service is designed following the SOLID [18] principle, the D stands for Dependency
Inversion Principle where classes depend upon abstractions i.e. Interfaces not concrete
implementation. The application of this principle has allowed an easy method to fake objects
as the depending classes are just abstractions and the ASP .NET Dependency Injection
framework injects the concrete implementations. A framework named Moq 4 is used to fake
objects i.e.Interfaces and return the desired output from them.

1 [Fact]
2 public async Task Archive_CorrectDataId_NoExceptions()
3 {
4 // Arrange
5 var fileRepoMock = new Mock<IFileRepo>();
6 var fileClientMock = new Mock<IFileClient>();
7 // Injecting the mock interfaces
8 var archiveFile = new ArchiveFile(fileRepoMock.Object,

fileClientMock.Object);
9 var testFileName = "test.zip";

3https://about.gitlab.com/2016/05/23/gitlab-container-registry/
4https://github.com/Moq/moq4/wiki/Quickstart

6 Testing 62

10 var testDataId = "4a97bd47-7713-4f4d-89c4-aacf04ae5d20";
11

12 // Act
13 // Using the Moq framework to return desired output to

the method Archive
14 fileRepoMock.Setup(m => m.AddFileForProject(It.IsAny<

string>(), It.IsAny<byte[]>())).Returns(Task.
CompletedTask);

15 fileClientMock.Setup(m => m.GetFileAsync(It.IsAny<string
>())).ReturnsAsync(new byte[]{1});

16

17 Exception ex = null;
18 try
19 {
20 await archiveFile.Archive(testFileName, testDataId);
21 }
22 catch (Exception e)
23 {
24 ex = e;
25 }
26

27 // Assert
28 Assert.Null(ex);
29 }

Listing 6.1: Example of faking objects using Moq framework

Listing 6.1 illustrates an example of a unit test which is done on the Archive method for a file.
The Moq framework injects the dependencies, and in the setup method, one can return the
desired output from the methods. This unit test verifies if all the dependent methods work as
expected.

6.1.1 Archive and Retrieve process test

The unit test designed for these processes are aimed to test the components responsible for
each type of resource (See Table 3.1) and it’s dependent module. The class overview can
be seen from Figure 5.2 and 5.3. Although, the figure does not show all the classes that the
archive process is using but when one sees the attributes that a class is using it gives a good
idea of the remaining classes under use.

6 Testing 63

Test if an background job is enqueued

For this test, after a successful API request for archiving a project, the module should create
a background job using Hangfire. This test checks if the background tasks were created or
not. As it is a requirement for the archive process to run a background job, so it must be
ensured that a background job is created after a successful request. Listing 6.2 shows how
the test was written to verify the creation of the background job.

1 [Fact]
2 public async Task

ArchiveProject_SucessfulRun_ShouldBeEnqueued()
3 {
4 // Arrange
5 var client = new Mock<IBackgroundJobClient>();
6 var iArchiveRepoMock = new Mock<IArchiveStatusLoggerRepo

>();
7 var mockMarkProject = new Mock<IMarkProject>();
8 var mockStatusHandler = new Mock<IBackgroundHandler>();
9 var controller = new ArchiveApiController(client.Object,

iArchiveRepoMock.Object, mockMarkProject.Object,
mockStatusHandler.Object);

10 var projectId = Guid.NewGuid().ToString();
11 var model = new ArchiveRetrieveStatusModel(){Status = "

FINISHED"};
12

13 // Act
14 iArchiveRepoMock.Setup(mo => mo.AddInitialStatus(model))

.Returns(Task.CompletedTask);
15 mockMarkProject.Setup(mark => mark.

MarkAllResourcesForProjectAndGetMarkSession(It.IsAny<
string>()))

16 .Returns(Task.FromResult(Guid.NewGuid().ToString()))
;

17 iArchiveRepoMock.Setup(mo => mo.GetStatusForId(projectId
)).ThrowsAsync(new ResourceNotFoundException(It.IsAny
<string>()));

18

19 // Assert
20 await controller.ArchiveProject(projectId);
21 client.Verify(x => x.Create(
22 It.Is<Job>(job => job.Method.Name == "Archive" && (

6 Testing 64

string) job.Args[0] == projectId && job.Args[1]
== JobCancellationToken.Null),

23 It.IsAny<EnqueuedState>()));
24

25 }

Listing 6.2: Hangfire Job creation test

Return Conflict Message in Case a Process for the Project is Running

This test checks, the denial of an archive or retrieve job creation when it is in "PROCESSING"
state. It is of high priority that this check for conflict works as expected otherwise there could
be cases of unwanted data loss.

Exception Catch

For this test, different checks are made in many modules whether the expected exception is
caught in case of an error. It also includes as well a check for the general exception class.
This test ensures that some method will not just consume an exception when an unexpected
error occurs. This is important because if the exceptions are not caught, it would be tough to
fix bugs if some are introduced shortly.

6 Testing 65

1 [Fact]
2 public async Task

MarkAllResourceAndGetSessionId_MarkingSvcClientReturnEmpty_ThrowsMarkingFailedException
()

3 {
4 // Arrange
5 var markingSvcClientMock = new Mock<IMarkingSvcClient>()

;
6 var iArchiveRepoMock = new Mock<IArchiveStatusLoggerRepo

>();
7 var markProject = new MarkProject(markingSvcClientMock.

Object, iArchiveRepoMock.Object);
8

9 // Act
10 markingSvcClientMock.Setup(mock => mock.

MarkAndGetProjectResources(It.IsAny<string>())).
ReturnsAsync(string.Empty);

11

12 // Assert
13 await Assert.ThrowsAnyAsync<MarkingFailedException>(

async () =>
14 await markProject.

MarkAllResourcesForProjectAndGetMarkSession(It.
IsAny<string>()));

15 }

Listing 6.3: Exception catch test example

Expected Value Checks

For this test, different modules are tested with mock inputs (e.g., data id, mock models) and
then the method under test is executed with an expected value. These tests are designed to
ensure that the methods deliver correct results when a correct input from other modules are
received. These tests help to discover a faulty implementation according to the requirements
mentioned for this work.

6 Testing 66

Null or Empty Checks

For this test, the different modules are tested against the most famous Null pointer excep-
tion in the different modules and how it is handled. This is an important test case as the
archive/retrieve process should still run and terminate accordingly if some resources are
null. As an example, during a normal archive run if the result received from the scenario
service is empty, i.e., no scenarios in the project, the archive process should not fail due to a
null pointer exception, instead, finish the archive process as there are no children resources
(See Figure 2.1). Listing 6.4 shows an example that, if the scenario client returns null the
process does not break, but instead the method for archiving scenarios is not triggered.

1 [Fact]
2 public async Task Archive_NoScenarios_ScenariosNotAdded()
3 {
4 // Arrange
5 var scenarioRepoMock = new Mock<IScenarioRepo>();
6 var scenarioClientMock = new Mock<IScenarioClient>();
7 var markProjectMock = new Mock<IMarkProject>();
8 var archiveScenario = new ArchiveScenario(

scenarioRepoMock.Object, scenarioClientMock.Object,
markProjectMock.Object);

9

10 // Act
11 markProjectMock.Setup(m => m.GetModelsForResourceType(It

.IsAny<string>()))
12 .Returns(DependantResourceMock.

GetFilteResourceModels("scenario"));
13 scenarioClientMock.Setup(m => m.GetScenariosById(It.

IsAny<string>()))
14 .ReturnsAsync(null);
15 await archiveScenario.Archive(It.IsAny<string>());
16

17 // Assert
18 scenarioRepoMock.Verify(m => m.AddProjectScenarios(It.

IsAny<string>()), Times.Never);
19 }

Listing 6.4: No scenarios added if resource empty

6 Testing 67

File Read Tests

For this test, the module for reading files from the Synology is tested. To do so, dummy files
were added (mocking the existence of Synology without a network connection) in the build
for the unit tests. This test reads the file and then compares it with the expected result. This
test is designed to check the file reading algorithm. Unfortunately, the module to write the
data could not be verified because when the test builds they are packed into a .dll file where
a write operation is not allowed.

6.1.2 Test Coverage

A total of 174 unit test cases were made on the different modules existing in the Archive
service at the time of writing this thesis. The total time for running all the test cases measured
on average is 1m50s. For a proper calculation of the Test coverage by available features in
the service, Table 6.1 gives a short overview of the type of modules and the different features
available.

Modules Features
Http communica-
tion client

File service client, Metadata service client, Scenario service
client, Result configuration client, simulation plans client,
simulation runs client and simulation results client.

API controller Archive, Retrieve and background jobs.
Archive Files, Metadata, Scenario, Result configuration, simulation

plans, simulation runs and simulation results.
Retrieve Files, Metadata, Scenario, Result configuration, simulation

plans, simulation runs and simulation results.
File repositories Read and Write.
Utilities AOP loggers and HTTP helpers.

Table 6.1: Modules available for unit testing

Out of the 28 different features of the given modules, the unit tests were made for 26 of them.
This gives a testing coverage of about 92%. Some Test cases could not be carried out due
to the complexity of making the tests ,i.e., AOP5 loggers, HTTP helpers, File Writers.

5AOP: Aspect Oriented Programming

6 Testing 68

6.2 Integration Test

The main aim of this test is to verify the communication between the different services that
the Archive service is dependent upon. This test is designed in such a way that it calls all the
endpoints which are used to create a simulation run. As a result of checking these endpoints,
it gives an additional benefit of detecting errors introduced by other services in the area of
resource creation. As an example, assuming a service (excluding the Project, User, Marking,
and Deletion service) made some changes which have some bug with resource creation
and then if the Archive service integration test is executed, it would try to recreate the mock
resource and would result in a fail.

6.2.1 Challenges

The Integration Tests are very beneficial to have a more stable system but realizing this test
posed enormous challenges which took considerably long time with some constraints follow-
ing. Due to the microservice architecture of the MARS framework, the services are deployed
as an independent entity which has its own databases. It was an enormous task to figure
out how to combine all these independent services and have them running in a testing envi-
ronment. The solution to this issue was to create a multi-container Docker application using
Docker-compose. Here, the images of the services required are loaded and the MongoDB
database is seeded with mock data. It is also essential for the order for the services and the
seeding to load in a specific order since the services are dependent upon each other.

1 archive_svc_tests:
2 image: nexus.informatik.haw-hamburg.de/microsoft/dotnet:

2.0.0-sdk
3 volumes:
4 - ../:/mars-archive-svc
5 entrypoint:
6 - sh
7 command:
8 - ./mars-archive-svc/IntegrationTests/run_tests.sh
9 links:

10 - mongodb
11 - metadata-svc
12 - scenario-svc
13 - file-svc
14 - reflection-svc
15 - resultcfg-svc

6 Testing 69

16 - sim-runner-svc
17 - sim-runner
18 - mongo-seed
19 - result-mongodb
20 - result-mongo-seed
21 - database-utility-svc
22 - marking-svc
23 depends_on:
24 - mongodb
25 - metadata-svc
26 - scenario-svc
27 - file-svc
28 - reflection-svc
29 - resultcfg-svc
30 - sim-runner-svc
31 - sim-runner
32 - mongo-seed
33 - result-mongodb
34 - result-mongo-seed
35 - database-utility-svc
36 - marking-svc

Listing 6.5: Docker compose configuration snippet for Archive service Integration Test

Listing 6.5 shows a snippet of the docker compose file for running the Integration test.
The depends_on attribute for the Archive service has many services in it. This means the
archive_svc_test is waiting for the other services to load and the MongoDB to be seeded
with mock data. Unfortunately, since the Project service does not use MongoDB but instead
Postgres SQL as a database, for some unknown reason the synchronization of the seeding
of the data did not succeed. Therefore the tests could not be executed. The Marking service
and Deletion service endpoints used by Archive service have a dependency with the Project
service which resulted in an unsuccessful test for them. Although, it is a point of interest in
the future to investigate and to figure out the reason for this and complete the whole test.

6.2.2 Correctness of Received Data

For this test, the GET endpoints of the services were tested. A dummy model for the data
which the Archive service expects is compared to the result form the GET endpoints. This
check would aid to verify whether the services return a data model which the service expects.

6 Testing 70

If any changes to the other services related to the data model is made, this test would detect
it.

6.2.3 Correctness for Uploading Data

For this test, the POST and PUT endpoints were tested. It is designed to verify during the
restoring process, if the expected data model is still compatible with the services or if there is
some error introduced after a new change. The process is conducted by uploading the data
models and in return expecting a success status.

6.2.4 Correctness of Response

This test is designed to check the interface of the API provided by the other services. This
check would aid to validate if the API of the service returns a correct status as described
by their swagger interface. As an example, while posting a scenario in the scenario service
if the name and the data id of the model are already existing, a conflict status code will be
returned by the request. Therefore, for this example, an existing model would be uploaded
and the test would verify if a conflict status is returned. Likewise, the other responses are
also verified by this test.

6.2.5 Integration with the Database

This test is designed to verify the proper integration between the MongoDB and Archive ser-
vice. The Archive service stores necessary metadata which give the client information about
the status of the job and many other data that it needs. This check confirms the correctness
of the read and write operations done with the database.

6.2.6 Test Coverage

A total of 81 tests were made to verify the integration of the Archive service with the depen-
dent services and the database. The total time for running the test measured is on average
7m38s at the time of writing. Table 2.1 mentions the services that the Archive service has
dependency towards. 6 out of 9 services were successfully tested. Among the total services
which were supposed to be tested only 67% were carried out. It is also a point of interest
in the future to complete these requirements which would boost the reliability of the Archive
service by investigating the issue.

6 Testing 71

6.3 System Test

This test verifies the requirements mentioned in Section 3.1 by performing manual GUI tests.
System test are manual tests which ensures the correct behavior of the system.

6.3.1 Successful Archive Process Start

For this test, it is verified that the archive process can be started from the MARS Teaching
GUI with the precondition of no other process for this project is running. One Wolves and
Sheep model is uploaded including the resources i.e. scenario, result configuration, simula-
tion plan, simulation run, simulation result. As this test was to verify the successful execution
of the process, only one of each resources were uploaded and checked.

6.3.2 Archive with a More Complex Model

For this test, the Kruger National Park (KNP) model is used instead of the Wolves and Sheep
because the KNP is more complex since it requires more layers i.e. GIS, Timeseries, Geopo-
tential layers. The successful archive of this model with all its resources i.e. scenario, result
configuration, simulation plan, simulation run, simulation results were verified.

6.3.3 Successful Data Archive in Synology

For this test, the Synology drive where the archives were supposed to be uploaded were
verified. The successful archive process of the Wolves and Sheep model was correctly stored
in the archive folder inside the drive.

6.3.4 Successful Retrieve Process Start

For this test, it is verified if the retrieve process could be successfully started from the MARS
Teaching GUI when no process for the project is running. Both the KNP and Wolves and
Sheep models with its resources were restored back to the system.

6 Testing 72

6.3.5 Correctness of the Restored Project

For this test, it is verified if the retrieved data are the same as for the archive. Also, a check is
done whether the restored files can be used in the active system to produce further results
(e.g. a simulation was ran from the restored simulation plan, a new scenario is created from
the model).

6.3.6 Fault-Tolerance Test

For this test, a intentional error is created to verify if the implemented strategy for fault tol-
erance is executed. A successful verification for this strategy was checked. Also a check
was done by removing the server from the cluster while a job was being processed. This
checked and verified that the Archive service would restart the job in case of sudden failure
after the server has be revived. This is the case only if the defined number of retires are not
exceeded.

6.4 Performance Test

This test verifies the performance metrics of the Archive service by analyzing different num-
bers of files, file sizes, and archive strategies.

6.4.1 Archive Performance

For this test, an archive process is executed and repeated 4 times to get an average general
performance overview. Figure 6.2 illustrates a bar diagram for running an archive process
(zipped simulation results) with 7 files, 2 scenarios, 2 result configurations, 2 simulation plans,
12 simulation runs, and results. The results seen in the figure shows that it took about 34.9s
on average to run this process. It is also to be noted that the simulation results are zipped
making their total size about 86 Mb. Figure 6.3 shows the archive process of the same
project without compressing the simulation results. It can be seen that the file sizes for the
uncompressed process are significantly higher in contrast to the compressed process with
file size on avg about 683 Mb and 43s of processing time.

6 Testing 73

Figure 6.2: Overall performance of the archive process (compressed simulation results)

Figure 6.3: Overall performance of the archive process (uncompressed simulation results)

Unfortunately, simulation results with larger file sizes could not be tested as no such simula-
tion results were available at the moment. However, with this metrics, it can be said that for

6 Testing 74

smaller file sizes, it is better to compress the simulation data while archiving it since there is
a significant volume save and the time taken for the archive does not differ by much. It is also
seen that the I/O is a bottleneck because the larger file (uncompressed) needed more time
to archive than the smaller (compressed) file.

6.4.2 Retrieve Performance

For this test, the same project that was archived is restored to analyze the performance of
the retrieve process. Figure 6.4 illustrates the results of the retrieve process with the com-
pressed simulation results which takes 4.3 mins on average. Figure 6.5 illustrates the results
of the retrieve process using the uncompressed simulation results which took on average of
4 mins.

Figure 6.4: Overall performance of the retrieve process (compressed simulation results)

6 Testing 75

Figure 6.5: Overall performance of the retrieve process (uncompressed simulation results)

Also, to verify the complexity of the processes, the number of simulations were doubled,
i.e., 24 simulation and the performance was recorded and an average of 55 sec for archive
and 8.2 mins for retrieve was observed. As a result, the processing time was doubled as
expected.

7 Conclusion

This work presents the design and implementation of the Archive service within the MARS
framework. The ideas shared in Chapter 4 concentrates on aspects of archiving and restoring
the MARS resources stored in a distributed storage, managing the synchronization – control
of the MARS Resources hierarchy mentioned in Section 2.1.1 and failure recovery using
the Two Phase Commit strategy on decentralized data [28]. Also, a brief overview of the
challenges and introduction to MARS system.

All the requirements mentioned in Chapter 3 were tested thoroughly using different testing
strategies (See Chapter 6). The test done verify the correct functioning of the Archive service
which can be used via the MARS teaching UI to archive and restore a project.

Finally, in the process of developing this system a deep understanding of distributed system,
microservice together with the state-of-the-art technological stacks such as Kubernetes [11],
Docker, etc., has been established. Together with this knowledge, an Archive service for
the MARS framework has been implemented and integrated which aids in improving the
performance of the MARS system by moving inactive data into the Synology storage.

7.1 Further Work

It is a point of interest that the Archive service would be further enhanced. Firstly, it is seen
that the current UI design of the archive process is not very convenient for the users as
the archived and unarchived projects are grouped which may produce some confusion. One
proposal could be to design a separate section where the archived projects could be shown.
To aid this process, the implementation of the mark showing if the project is archived or not
is already included, which is changed via the Archive service.

Secondly, improving the performance of the archive and retrieve would also be a factor to be
considered next. The archive and retrieve process are implemented as an atomic operation.
Therefore, in case of failure, the process is repeated from the beginning, causing significant
performance loss for larger projects. More research and effort have to be put forward to
obtain a solution for this issue.

7 Conclusion 77

It can be noticed from the sequence diagram that the resources are being persisted right
after they are successfully retrieved rather than a bulk operation (e.g. sequence number
1.8 in Figure 4.5). This is implemented considering a possibility that in the near future the
archive service would archive the project as a snapshot. In case of archive failure the process
could be resumed from the snapshot in contrast to the current atomic implementation of the
process.

Lastly, to strengthen the stability when deploying this service the test i.e. Unit, Integration
tests must increase the test coverage so that more potential errors could be avoided.

References

[1] DiskStation Manager | Synology Inc. [Online] https://www.synology.com/
en-global/dsm.

[2] Q. A. Chaudhry. An introduction to agent-based modeling modeling natural, social,
and engineered complex systems with NetLogo: a review. Complex Adaptive Systems
Modeling, 2016. Springer Berlin Heidelberg, ISSN: 9780262328111.

[3] Confluence HAW Hamburg. Mars cloud.

[4] T. Eizinger and M. D. Bernhard Löwenstein Lukasz Juszczyk Vienna. API Design in
Distributed Systems: A Comparison between GraphQL and REST, 2017. University of
Applied Sciences Technikum Wien.

[5] T. Erl, P. Merson, and R. Stoffers. Service-Oriented Architecture. Prentice Hall, 2016.
ISBN: 978-0-13-385858-7.

[6] E. Evans. Domain Driven Design Quickly. Addison-Wesley, 2006. ISBN: 978-0-321-
12521-7.

[7] R. T. Fielding. Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, 2000. University of California, Irvine.

[8] F. Format, D. Model, T. P. Software, and P. Model. High Level Introduction to HDF5
Introduction to HDF5. pages 1–25, 2016.

[9] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM Computing Surveys, 33:51, 2002. ISSN:
01635700.

[10] Google. [Online] https://grpc.io.

[11] Google. Production-Grade Container Orchestration - Kubernetes. [Online] https:
//kubernetes.io/.

[12] B.-C. GRAEME F. Geographic Information Systems For Geoscientists. PERGAMON,
2016. ISBN: 0 080 418 678.

https://www.synology.com/en-global/dsm
https://www.synology.com/en-global/dsm
https://grpc.io
https://kubernetes.io/
https://kubernetes.io/

References 79

[13] L. Grundmann. Globale Sensitivitats und Unsicherheitsanalyse mit MARS. page 114,
2018. HAW Hamburg.

[14] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM
Computing Surveys, 15(4):287–317, 1983. ISSN: 0360-0300.

[15] M. Hauck. NoSQL Databases Explained. [Online] https://www.mongodb.com/
nosql-explained, 2014.

[16] HAW Hamburg. - MARS Group. [Online] https://mars-group.org/.

[17] H. Holzmann, V. Goel, and A. Anand. ArchiveSpark: Efficient Web Archive Access,
Extraction and Derivation. Proceedings of the 16th ACM/IEEE-CS on Joint Conference
on Digital Libraries, pages 83–92, 2016. ISBN: 978-1-4503-4229-2.

[18] H.-J. Hotop. Software Engineering Contents (main subjects) HAW Hamburg. 2015.

[19] iso. Warc file format. [Online] http://archive-access.sourceforge.net/
warc/warc_file_format-0.16.html. IIPC Framework Working Group.

[20] P. Lalanda. Shared repository pattern. In Proc. of the 5th Pattern Languages of Pro-
grams Conference (PLoP 1998), page 10. Thomson-CSF Corporate Research Labora-
tory, 1998.

[21] F. Martin. Microservices Guide. [Online] https://martinfowler.com/
microservices/.

[22] Martin Fowler. PolyglotPersistence. [Online] https://martinfowler.com/
bliki/PolyglotPersistence.html, 2011.

[23] Mozilla. [Online] https://developer.mozilla.org/en-US/docs/Web/
HTTP.

[24] Mozilla. [Online] https://developer.mozilla.org/en-US/docs/Web/
API/WebSockets_API.

[25] S. Newman. Building Microservices. Oreilly, 2015. ISBN: 978-1-491-95035-7.

[26] U. North Carolina State University. Definition and examples of time series. [On-
line] https://www.stat.ncsu.edu/people/martin/courses/st782/
Notes/Definition.

[27] S. Odinokov. Hangfire. [Online] https://www.hangfire.io.

[28] D. P. Reed. Implementing atomic actions on decentralized data. ACM Transactions on
Computer Systems, 1(1):3–23, 1983. ISSN: 07342071.

https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained
https://mars-group.org/
http://archive-access.sourceforge.net/warc/warc_file_format-0.16.html
http://archive-access.sourceforge.net/warc/warc_file_format-0.16.html
https://martinfowler.com/microservices/
https://martinfowler.com/microservices/
https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/bliki/PolyglotPersistence.html
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://www.stat.ncsu.edu/people/martin/courses/st782/Notes/Definition
https://www.stat.ncsu.edu/people/martin/courses/st782/Notes/Definition
https://www.hangfire.io

References 80

[29] D. Savic, F. Potorti, F. Furfari, M. Pustiek, J. Beter, and S. Tomazic. A tool for packaging
and exchanging simulation results. Recent Advances in Modeling and Simulation Tools
for Communication Networks and Services, pages 443–462, 2007. ISBN: 978-0-387-
73907-6.

[30] SmartBear Software. Swagger. [Online] https://swagger.io/.

[31] R. Stephens. Beginning Software Engineering. John Wilez and Sons Inc., 2015. ISBN:
9781119209515.

[32] C. D. L. Torre, B. Wagner, and M. Rousos. .NET Microservices: Architecture for Con-
tainerized .NET Apllications Edition 1.0. 2017.

[33] M. Van Steen and A. S. Tanenbaum. Distributed Systems. Number 3. Maarten van
Steen, 2017. ISBN: 978-90-815406-2-9.

[34] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn. Ceph: A scalable,
high-performance distributed file system. pages 307–320, 2006.

https://swagger.io/

8 Appendix

This appendix shows one how to build the archive service locally.

Build Archive service

• Clone the mars-archive-svc from the MARS gitlab repository.

• Install Kubernetes command line tool using the guide https://kubernetes.
io/docs/tasks/tools/install-kubectl/

• Install Docker.

• Login to docker and nexus see MARS Confluence documentation.

• Make sure to check the Kubernetes deployment file to check the image name i.e. it
should be with the dev tag (See Listing 8.2)

• Make changes and run the bash script called start.sh inside the archive folder

1 #!/usr/bin/env bash
2 GITLAB_REGISTRY="docker-hub.informatik.haw-hamburg.de"
3 PROJECT="mars/mars-archive-svc"
4 SERVICE_NAME="archive-svc"
5

6 rm -rf out
7

8 dotnet publish -o out
9

10 cd ..
11

12 docker build -t ${GITLAB_REGISTRY}/${PROJECT}/${
SERVICE_NAME}:dev .

13 docker push ${GITLAB_REGISTRY}/${PROJECT}/${SERVICE_NAME
}:dev

14

15 kubectl -n mars-mars-beta delete pod -l service=${
SERVICE_NAME} --force

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

8 Appendix 82

Listing 8.1: Archive service local build script

1 spec:
2 serviceAccount: mars-group-serviceaccount
3 containers:
4 - image: docker-hub.informatik.haw-hamburg.de/mars/

mars-archive-svc/archive-svc:dev

Listing 8.2: Archive service deployment file snippet

Declaration

I declare within the meaning of section 25(4) of the Ex-amination and Study Regulations of
the International De-gree Course Information Engineering that: this Bachelor report has been
completed by myself inde-pendently without outside help and only the defined sources and
study aids were used. Sections that reflect the thoughts or works of others are made known
through the definition of sources.

Hamburg, July 23, 2018
City, Date sign

	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Problem Statement
	1.4 Thesis Overview

	2 Background
	2.1 Multi-Agent Research and Simulation
	2.1.1 MARS Resource Hierarchy

	2.2 Distributed Systems
	2.2.1 Advantages of a Distributed System
	2.2.2 Challenges

	2.3 Microservices
	2.3.1 Data Sovereignty in Microservice

	2.4 Archive

	3 Requirement Analysis
	3.1 Functional Requirements
	3.1.1 Archive Project Resources
	3.1.2 Retrieve Project Resources
	3.1.3 Archive and Retrieve Process Status
	3.1.4 Download Archived Data as a Compressed File
	3.1.5 Fault-Tolerant Design

	3.2 Non Functional Requirements

	4 Planning and Software Design
	4.1 API Design
	4.2 Archive Process Design
	4.2.1 Preconditions Required for an Archive
	4.2.2 Decision for Not Archiving the Project
	4.2.3 Data Format
	4.2.4 Archive Workflow

	4.3 Retrieve Process Design
	4.3.1 Decision of File Upload via File-svc
	4.3.2 Retrieve as an Atomic Action

	4.4 Status Retrieve Design
	4.5 Fault-Tolerance Design

	5 Implementation
	5.1 Archive Process Implementation
	5.2 Retrieve Process Implementation
	5.2.1 Addition of Functionalities in Other Services

	5.3 UI Integration
	5.4 Fault-Tolerance and Maintenance Implementation

	6 Testing
	6.1 Unit Testing
	6.1.1 Archive and Retrieve process test
	6.1.2 Test Coverage

	6.2 Integration Test
	6.2.1 Challenges
	6.2.2 Correctness of Received Data
	6.2.3 Correctness for Uploading Data
	6.2.4 Correctness of Response
	6.2.5 Integration with the Database
	6.2.6 Test Coverage

	6.3 System Test
	6.3.1 Successful Archive Process Start
	6.3.2 Archive with a More Complex Model
	6.3.3 Successful Data Archive in Synology
	6.3.4 Successful Retrieve Process Start
	6.3.5 Correctness of the Restored Project
	6.3.6 Fault-Tolerance Test

	6.4 Performance Test
	6.4.1 Archive Performance
	6.4.2 Retrieve Performance

	7 Conclusion
	7.1 Further Work

	References
	8 Appendix

