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Thema der Arbeit
Design and Implementation of a Generic 3D Visualization Pipeline for Large-Scale Simulations

on the MARS Platform
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Kurzzusammenfassung
In einer Welt von steigender Komplexität werden Simulationen immer häu�ger eingesetzt, um

Systemverständnis zu erlangen und fundierte Entscheidungen zu ermöglichen. Insbesondere

Multi-Agenten-Simulationen sind in vielen Anwendungsgebieten der Soziologie, Ökologie und

Verkehrssimulation stark vertreten. Die 3D-Aufbereitung der Simulationsergebnisse würde

einen intuitiven Einblick in die Abläufe gewähren und so ein besseres Verständnis über die

Wechselwirkungen des Systems fördern, �ndet in der Praxis bisher jedoch wenig Anwendung.

Diese Arbeit präsentiert eine solche modellunabhängige Visualisierung für die Simulations-

plattform MARS. Entwurf und Implementation werden erläutert und es �ndet eine umfassende

Untersuchung des Nutzens für die Anwender und der technischen Leistungsfähigkeit statt.

Title of the paper
Design and Implementation of a Generic 3D Visualization Pipeline for Large-Scale Simulations

on the MARS Platform

Keywords
3D visualization, Multi agent simulation, result analysis, MARS, WebGL

Abstract
In a world full of complexity, simulations are frequently used to gain insights into sophisti-

cated systems and to allow profound decisions. Especially multi agent simulations are used

extensively in many domains like sociology, ecology and tra�c simulation. The use of 3D

visualization to present the simulation results may grant an intuitional view on the events

taking place in the simulation and the involved entities, yet it is rarely used. This work presents

such a model-independent 3D visualization for the modeling-and-simulation platform MARS.

It discusses the requirements, design choices and the implementation. Afterwards an analysis

of the added bene�ts for the simulation evaluation and the performance takes place.
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1 Introduction

Our world of today is full of sophisticated and tightly coupled systems. Regardless of whether

it is in the social sector, environment protection and ecology or in infrastructural domains like

transportation: Complexity is always present and will even increase in the future. This makes

it di�cult to allow educated guesses about the progress of such systems and how present

actions will a�ect it.

However, exactly this is expected from many key players in leading positions. These

individuals have to make sound and often fast decisions, for which it is important to know as

much as possible about the direct impact of a decision and its long-term consequences. For

such a precise forecast, it is crucial to get insights into a system and and to acquire a good

understanding of its correlations.

1.1 Simulations on the Rise

One way of getting this information is to create a model of the system to be examined and

all related links. It is essential to choose the right level of abstraction, this means the model

has to feature all aspects relevant to investigate the central issue but should be stripped of

unimportant or minor in�uences in order to reduce complexity and disruptive factors (Law

(2008), Thiel-Clemen (2013)). With this model, simulations can be made by parametrizing the

model with input data and running it for a number of execution steps. Given the accuracy and

validity of the model, this process allows to predict the system’s development in regard to the

input values supplied and thus pointing out their consequences.

When talking about simulations, several fundamentally di�erent approaches exist. Numerical

simulations are based on mathematical equations that describe a (mostly nonlinear) physical

system and are widespread used for weather forecasts and climate models. If it is up to determine

the probability a chain of events might occur, the stochastic (or Monte-Carlo) simulation is

used. The dynamical simulation models the change behavior of a system over time, with a

di�erentiation between continuous and discrete time representation.

The foundation to this work is the multi agent-based simulation, which can be considered

as a subset of the discrete simulation. Its underlying simulation model is built using a tech-
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1 Introduction

nique called agent-based modeling (ABM), which employs software agents (autonomously

acting programs) to depict real-world entities. Expedited by Grimm and Railsback (2013), the

individual-based modeling (IBM) is a re�nement that says that every simulation individual is

represented as an own agent. Illustrative examples for such an agent might be a prey animal

in a hunting simulation, a tree in a forest model or a pedestrian in an evacuation scenario.

Contrary to the simulation methods named above, this "bottom-up" modeling approach

focuses on describing how the individuals behave and what actions they can undertake in order

to in�uence their environment and other agents (Drogoul et al. (1994)). Taking advantage

of the rapid increase of computation power, a large number of agents with complex internal

logic can easily be instantiated during runtime (hence multi agent simulation). The simulation

results arise out of the interplay of all these agents and emergent behavior and dynamic

interdependencies can become visible.

1.2 MARS – Multi-Agent Research & Simulation

Emanating from the demand for simulation tooling, many software publishers try to meet these

needs by developing use-case oriented and specialized simulation frameworks. Aside from

many commercial products distributed by companies, also several academic and community-

driven solutions exist. Among them is the MARS (Multi Agent Research & Simulation) research

group, situated at the Hamburg University of Applied Sciences (HAW). Primarily consisting of

bachelor, master and PhD students, the MARS Group is developing an innovative modeling-

and-simulation-as-a-service (MSaaS) platform (the same-titled MARS system, hereinafter just

called "MARS") for agent-based simulation (Hüning et al. (2016)).

With its origins in the �eld of movement ecology simulations (e.g. evacuation scenarios),

MARS evolved into a general-purpose simulation platform with a focus on versatility and ease

of use. MARS aims to provide the tools for the entire simulation process – from model creation,

data import and simulation execution right up to result evaluation. Uni�ed in a web interface,

the user can accomplish each of these steps in their web-browser without having the need to

install anything. This online workspace also o�ers cooperation and data integration features

and enables the user to build, run and analyze simulations from all over the world.

The necessary power to run such a system is provided by a cloud computation cluster also

operated at the HAW. In combination with a simulation engine designed for distribution and

scalability, MARS is able to run arbitrary large-scale simulations with millions of simulation

entities.

A detailed explanation of the MARS platform and the work�ow follows in section 2.4.
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1 Introduction

1.3 A 3D View into the Simulation World

The process of building and running a simulation is purpose-driven: Whether it is to prove

or falsify a claim or to get a better understand of a complex system, the simulation model is

built to serve a speci�c set of goals. As such, it has to be validated and the simulation results

need to be investigated in terms of plausibility and peculiarity. MARS, striving to serve as an

all-in-one solution, o�ers a result �le download and a web-based, con�gurable visual analytics

dashboard to this end.

Apart from analytical methods, the display of results using 3D techniques could be also a

practicable way. In a representation form similar to those of video games or CGI movies, the

simulation run can be rendered as a three-dimensional scene with the 3D objects in it depicting

simulation entities. The user is equipped with a free-�oating camera and video player-style

controls, which allow them to freely move around in this virtual world, play back and rewind

the simulation steps and look at the individuals at arbitrary angles (Bijl and Boer (2011)).

Though not often used for the scienti�c evaluation, the 3D visualization may provide a

very natural and straightforward way to get a �rst impression of the events happening in a

simulation. This is especially true for multi agent based simulations with geospatial relatedness,

e.g. in an ecological domain: An agent can easily be represented by choosing a �tting 3D model;

the environment might consist of a heightmap expressing the terrain elevation, optionally

enhanced with additional landmarks and textures like street overlays or satellite imagery. It

also allows to visualize the actions an agent undertakes (e.g. walk around, chop a tree, hunt an

animal) by using computer animation.

This way, a spectator can intuitively grasp complex system behavior by just looking at

the scene and how its actors behave. With simulations getting increasingly signi�cant for

economical and political planning, such a tool could prove useful to help external stakeholders

like decision makers and sales managers to understand the model and thus promoting its

acceptance beyond simulation expert circles (Banks and Chwif (2011)).

1.4 Goals

The goal of this work is to provide a 3D visualization as mentioned in 1.3 for the MARS

simulation platform. MARS is currently lacking such an option, though the author deems it to

be a valuable addition to the portfolio of evaluation tools. In order to be of use the end-user, a

set of speci�cations have to be kept in mind, both regarding what the subject of visualization

is and how it is presented. These demands are detailed in chapter 2.2 and transformed into

requirements in chapter 3.1.
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Regarding the domain openness of the MARS platform, the visualization should adhere to

this generality as well. Large-scale applications are to be expected, so big-data processing

and careful result selection algorithms are needed. A smooth integration into the MARS

modeling-and-simulation work�ow is desired, making it an optional component that shall be

usable with minimal con�guration overhead. This also implies that the visualization should

be accessible directly in the web browser, resulting in the necessity for browser-based 3D

rendering technologies and server-to-client streaming techniques. Details on the planned

integration and component draft are given in section 3.2.

1.4.1 Hypotheses

The above section mentioned a set of goals that a 3D visualization for a multi-agent simulation

system should ful�ll and several MARS-related aspects that have to be considered. These

goals are now further re�ned into a set of separate hypotheses. This allows a more precise

investigation, if and to what extent the stated goals were achieved.

H1: It is possible to develop a model-independent 3D visualization

With the generality concept of MARS platform and its claim to be applicable in a wide range of

domains, the same has to be true for the output visualization. This means that the visualization

is not built for a speci�c simulation model and as such, no prior knowledge of the agent types,

terrain characteristics and environments facets is available. Even though a 3D visualization may

not be purposeful for every domain so far simulated on MARS (e.g. the immune system model

developed by Grundmann (2018)), it should be certainly suitable for any simulation model

within the scope of ecology and tra�c simulation, which is by now the principal application

�eld of MARS.

H2: The number of agents and terrain extents have no e�ect on feasibility and
performance

Beside the afore-mentioned broad range of applications, another unique selling point of the

MARS platform is its scalability. As most notably described and examined in Hüning (2016), the

scale of multi-agent simulations is of importance and hence the MARS system was designed to

support large amounts of agents and vast terrains. These requirements of course also apply for

any result processing step and demand suitable big-data streaming and reduction algorithms

to facilitate a web-based exploration of the simulation results.
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H3: The usage of a 3D visualization is valuable for the simulation evaluation

The use of 3D visualization tools for simulation evaluation currently only plays a minor role,

though the author expects it to be a useful addition to visual analytics dashboards. Especially

for decision makers, who often are non-scientists, such a tool may give an opportunity to grasp

complex model behavior. In order to prove this assumption, the visualization has to be used

by stakeholders, which were not involved in its design and implementation. Also some kind

of survey has to be developed in order to make this added value measurable and comparable.

Suitable candidates for these tests can be found in (1) the external users of the MARS system

to investigate the value for domain specialists, (2) MARS platform developers to prove design

comprehensibility and maintainability and (3) outside persons to assess the ease-of-use and

the presentation value.

H4: The simulation platform can automatically carry out the majority of the
required parameterization

As a consequence of the model independency stated in H1, there is no information on the

entities to be visualized available at the time the design and implementation takes place. This

requests for a parameterization during setup, where both user-related settings (e.g. initial

camera position or 3D models to use) and technical information (agent types, attributes,

resource identi�ers etc.) have to be speci�ed.

With the 3D visualization being an optional component in the modeling and simulation

work�ow, it means that this con�guration overhead should range from zero (no 3D visualiza-

tion desired) to only the minimal input necessary. Because the MARS platform is designed as an

ecosystem of loosely coupled services, it should possible to obtain all the required information

from the model import stages and to provide suitable defaults for the user settings.

1.4.2 Work Not Covered by This Thesis

This section mentions all these aspects and components, which are used throughout the thesis,

but are not part of it. With MARS being a complex ecosystem of intercoupled services, a

majority of these components provide necessary functionality for the MSaaS work�ow but

have no relation to the visualization itself. This concerns �rst and foremost the import pipeline,

the parameterization and simulation run setup services and the actual simulation engine. All

these parts are given "as is" and are inevitably used, but not further discussed apart from the

short presentation about MARS in the next chapter.

5



1 Introduction

The same is true for the cloud-based runtime environment: Whenever necessary for the

visualization pipeline, peculiar details are mentioned in the design and implementation chapters,

but the underlying hardware, infrastructure, overall cluster orchestration and roll-out of the

MARS system is clearly out of scope for this work.

Alongside with the simulation platform, some kind of showcase model is needed to have a

visualizable scenario for development and testing. To support the generality claim, two models

from di�erent domains are used for that purpose: A savannah ecology model developed by

members of the MARS Group together with the ARS AfricaE project (Falge et al. (2012)) and a

tra�c model which depicts the commuting tra�c in the city of Hamburg (developed as a joint

project between HAW and Hamburg University). These models are made available for this

work; however their design, implementation and contentual signi�cance are not examined.

Each of these models also requires a set of input �les (climate measurements, street maps,

census data...) and parameterization in order to start a simulation run. Again, the validity of

these input data and mappings is not relevant to this thesis, because the models are in this case

just a means to an end – to facilitate the development of the 3D visualization. Their exploration

and scienti�c evaluation is up to the respective domain experts.

1.5 Document Structure

After this short introduction into the background and objectives here in chapter 1, the document

continues with a more comprehensive overview on the topic, existing solutions, the targeted

area of application and an in-depth presentation of the MARS platform in chapter 2.

Once these fundamentals were discussed, chapter 3 turns towards the design of the visual-

ization pipeline. Starting with a requirements analysis for the system to be build, this chapter

proceeds with a rough sketch of the overall pipeline and its partitioning into subcomponents.

Based on that outline, the implementation is detailed in chapter 4. Divided into upfront con-

�guration, result output and visualization, the individual components and their technical

realization are presented.

With the system at this stage being completely built, it is time to conduct some experiments

in order to prove the hypotheses. Chapter 5 �rst describes the common boundary conditions

and then outlines several experiments for that purpose. The results of these experiments are

presented and subsequently discussed in chapter 6.

Finally, chapter 7 closes this thesis by drawing a conclusion and giving an outlook on possible

improvements and extension points for those who may want to continue this work.

6



2 Material & Methods

This chapter gives a more thorough introduction into the principles of agent-based simulation

(ABS), individual-based modeling and (massive-)multi-agent frameworks, upon which this

work is based. It discusses why a 3D visualization may be of use, especially in the �eld of ABS.

Beside the advantages, it also lists several key aspects that have to be considered regarding

credibility and signi�cance. Afterwards some prominent simulation frameworks are presented

that have a 3D visualization and it is talked about their features and drawbacks. The concluding

section introduces the MARS platform in detail, which is the targeted application area for this

3D visualization. It presents the unique selling points, use cases and the system architecture of

MARS and thereby provides the basics for the following design and implementation chapters.

2.1 Agent-based Simulation

Before we dive into the details of agent-based simulation, it is worthwhile to de�ne what an

agent actually is. Their working principle is a relatively straightforward one, and probably

every reader has already dealt a number of times with agents: Whether it is consulting an

employment center, making use of a travel agency, searching online for a �ight or booking a

hotel – in each of these cases the client asks somebody or some service to act on their behalf.

No matter of the agent being a real-life job broker or a software search agent, the same

fundamental rules apply. The agent takes the role to represent its client while performing the

assigned task. In order to do this job e�ciently and conveniently, an agent is equipped with

a certain level of autonomy. It breaks down the task into a set of obtainable goals, observes

the current situation and plans its actions accordingly. This plan is constantly revised to take

the achieved progress and changing external in�uences into account. The following cite from

Franklin and Graesser (1997) condenses the main characteristics of an agent:

"An autonomous agent is a system situated within and a part of an environment

that senses that environment and acts on it, over time, in pursuit of its own agenda

and so as to e�ect what it senses in the future."

Stan Franklin & Art Graesser, 1997

7



2 Material & Methods

According to Wooldridge (2002) there is no consensus on a uniform de�nition for the term

“(software) agent”. However, the following four properties are widely recognized:

1. Autonomy: An agent decides on its own, it is not controlled (contrary to an actor).

2. Independence: An agent sets and follows its own agenda.

3. Evolution: An agent strives to maximize its advantage by adapting its behavior.

4. Environmentally-related: An agent is a part of its surroundings and cannot be re-

garded as isolated, because the environment de�nes its perception and action options.

In addition to these characteristics expressed in Green et al. (1997), an agent may have

further attributes, such as learning algorithms to optimize its planning or mobility features.

Another distinguishing criterion is the degree of proactivity and reactivity in its behavior. The

standard reference “Arti�cial Intelligence: A Modern Approach” by Russell and Norvig (2003)

di�erentiates agent behavior into �ve categories based on the complexity of the reasoning

function. This taxonomy ranges from the simple re�ex agent, which only uses the current

percepts and acts according to a set of condition-action rules, over the model-based re�ex agent

(has knowledge about of the world), goal- and utility-based agents (have explicitly modeled

goals, attainment strategies and utilization functions) up to learning agents that incorporate a

learning element into the agent function. The latter group is the most sophisticated one, able

to evolve and improve over time by discovering new solution strategies.

Regardless of the agent’s complexity, its main loop is often split up into three phases,

called sense, reason and act (SRA). As recapitulated in Gat and Bonnasso (1998), SRA is a long-

established partitioning pattern emanating from robot control that provides a clean separation

of concerns. Figure 2.1 depicts the agent cycle: First the agent percepts its environment through

its attached sensors. Afterwards the reasoning phase takes place, in which the perceptions

are evaluated and a response action is determined. This decision logic may be arbitrarily

complex and can range from simple decision trees to sophisticated mechanisms like goal-

oriented action planning (GOAP), as stated above. Finally, the returned action is executed and

thus the in�uence on the agent itself, other agents and/or the environment is applied.

Figure 2.1: Basic sense-reason act (SRA) cycle.
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2 Material & Methods

The autonomy and responsiveness of agents entail a number of bene�ts, which come in

handy for the design of complex and adaptive systems. Agent-based software engineering

(Jennings (2000)) exploits these properties by using hierarchies of autonomous and interacting

agents to model such a system. The interplay between the agents achieves various emergent

e�ects, like self-organization or convergence. If the intended purpose is to run a computer

simulation, often the related term agent-based simulation (ABS) is used.

The core concept of ABS is the realization of the simulation entities as agents, and as such it

belongs into the category of micro-simulation techniques. Its heart is the agent-based model

(ABM), in which the speci�c behaviors of the simulated individuals are explicitly modeled.

Agent-based modeling allows to maintain the structure of the depicted reality in the model

and to express pro-active behavior, by which means it found many applications in social and

ecological domains (Davidsson (2001)). In contrary to the mathematical models of macro

simulations that use averaged input values instead of individuals, the structure of an ABM

emergently arises from the agents’ interplay. According to Parunak et al. (1998), this makes

ABM well-suited for domains dominated by discrete decisions and with a high degree of

localization and distribution, whereas equation-based modeling is more suitable for systems in

which the dynamics are dominated by physical laws rather than information processing.

While ABM by itself simply implies that agents are used, no statement is made on what an

agent portrays: It could be a depiction of a real-world entity as well as a complete (sub-)model

or controller class. Most of the time, the individual-based modeling (IBM) is used, a re�nement

characterized by Grimm and Railsback (2013) and predominantly used in ecology domains. The

main point of IBM is the focus on the individuals, stating that an agent should only represent

a real-world entity, e.g. a human, plant, animal or vehicle. This conceptual similarity makes

agent development straightforward for domain experts, because in many �elds of ecology

and sociology the behavior of individuals has been researched exactly while crowd behavior

remains unclear. However, caution has to be exercised during modeling in order to produce

desired emergent e�ects. A set of rules also framed by Grimm (1999) give some guidelines

by emphasizing the signi�cance of proper modeling and suggesting a scale-down approach,

starting with a coarse model and re�ning it consecutively by adding details.

With the agents being single individuals, it is essential to create a su�cient amount of agents

in total, so that emergent behavior can arise. Many phenomena become only visible at a certain

scale and investigations made by Yamamoto et al. (2008) showed that massively increasing

the amount of agents can signi�cantly change the outcome of the simulation. Other scenarios

are inherently large-scale and can only be done using thousands or millions of individuals,

e.g. tra�c �ow simulation, disease-spread forecasts or predictions for the development of an
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urban sector. Because of this necessity for many agents, ABS it is also often referred to as

multi-agent simulation (MAS) or even massive (M-)MAS, in case very large simulations are

run. Together with the rapid increase of compute power, the ever-growing complexity and the

need for forecasts in many domains, multi-agent simulations are becoming more and more

popular. In response, a wide choice of MAS platforms emerged over the last decades, from

which a few are presented in 2.3.

2.2 Benefits of 3D Result Visualization

“A picture is worth a thousand words” – this famous proverb puts it into a nutshell, how

important it is to explain complex issues using graphical methods. In many occasions it is

far more easy to express information with imagery than in a comprehensive text, because for

humans it is natural and intuitive to perceive information visually (Tory and Moller (2004)).

“Seeing is believing” is another one, meaning that the process of observation leads to a being-

there experience, which leaves a strong impression and a high credibility.

When running complex and large-scale multi agent simulations, the result preparation and

presentation is of high importance to make e�cient use of the generated data. For these reasons,

it seems obvious to make use of visualization techniques for simulation result exploration.

Subject of this thesis is the 3D visualization, which displays the "virtual world" of the simulation

model as a three-dimensional scene. This scene comprises of all simulation entities, rendered

with appropriate 3D models at their respective positions. As the simulation advances, the

behavior of the entities is displayed using computer animation, so it can be actually seen how

they move and interact. A free-�oating virtual camera provides a view onto the scene and

allows the spectator to explore the world and look at the individuals from arbitrary angles

(Robertson et al. (1993)). Additional information may be delivered purposefully by clicking

at the object of interest, e.g. in form of a tooltip. Together with a timeline or video-player

controls (play/pause, forward, back), the user has the ability to freely discover and (re-)play

every simulation step and from every perspective.

As it gets evident from the above paragraph, 3D visualization is hardly useful for any other

use case apart from individual-based simulation models. For that purpose, however, it �ts

extremely well, especially for geospatial-related simulations with the agents representing real-

world beings (Bijl and Boer (2011)). In these scenarios, there is a natural one-to-one relationship

between the real-world entity (let’s say, a pedestrian in an evacuation scenario), the agent

representing that being (an instance of the PedestrianAgent) and the 3D object depicting it (an

instance of a human 3D model, equipped with animations like walking, running, crouching

10
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and so on). Because of the indispensable coupling between agents and the environment, also

the surroundings have to be visualized, e.g. terrain elevation, roads, buildings and all other

parts that are of importance for the agents. These features may be optionally enriched with

auxiliary data (e.g. terrain landmarks) or visual e�ects (lighting, weather) to create a realistic

atmosphere that eases orientation and also makes the visualization more appealing to use. All

these measures combined can culminate in an intuitive simulation data explorer which makes

result evaluation similar to watching an animation movie or playing a serious game (Michael

and Chen (2005)).

The utilization of a visualization can be categorized into three purposes, as done by Bijl

(2009). The �rst cause is validation, which is the process of ensuring that the implemented

model is a correct depiction of the targeted domain. According to Balci (1997), visualization

belongs to the dynamic validation techniques, which render images of the model’s behavior

during simulation. With regard to the 3D visualization, this means that the user can get an

impression of the ongoing interactions and is able to discover errors by simply observing the

scene and looking for discrepancies. Such an option provides a very convenient way to check

for movement patterns, agent distributions or if areal boundaries are adhered. Beside the

evaluation of the overall validity, a 3D visualization could also be used by the agent modeler

during development as some kind of “visual debugger”. For example, he or she can perform

a simple small-scale simulation run and track a speci�c agent over time by following its 3D

model. The visualization expresses the agent’s actions in terms of animation and movement

and enables the developer to easily compare the actual (model) behavior with the expected

(real-world) behavior.

After the validity of the results is ensured, the analysis takes place. Again, a 3D visualization

o�ers a straightforward way to comprehend a model’s interdependencies by just investigating

what’s going on in the scene. The adjustable viewing angle plays an important role for the

observation: A higher perspective allows to watch a large crowd from above, seeing patterns

and emergent phenomena, whereas a zoom close to earth reveals the individuals and their

behavior and properties. At this point it should be noted that a 3D visualization is more of

supportive character – it does not make common visual analytics methods super�uous, which

display population curves, state distributions and much more over time. The main bene�t of

3D visualization is the easy-to-understand presentation form that makes the evaluation of

simulation results also accessible to non-scientists.

This directly leads to the third application, marketing & presentation. Simulation is done

purposefully and in almost all cases, external stakeholders like decision makers or sales

managers are involved (Padilla et al. (2014)). These groups often have no scienti�c background
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or at least little experience with agent-based simulation techniques and its evaluation. Here, a

3D visualization can prove useful to allow these groups to understand the model. Although

they may not be capable of reading out numbers or quoting math formulas, from observing

the behavior they get able to predict events and thereby gain con�dence in the model, thus

promoting its acceptance beyond simulation expert circles. Another large �eld of application are

interactive training simulators, especially used in the military sector or for medical education

(Kincaid et al. (2003)). For these domains, 3D visualization plays a very important role because

it is essential to have an intuitive interface that allows to grasp the simulation output in

real-time and to react to it.

As mentioned before, it is also feasible to add additional elements to the visualization, e.g.

3D models displaying points of interest (reference points for orientation) or texture overlays

(like a road network projected unto the terrain). This information integration of simulation

results and auxiliary data sources helps to create a close resemblance to the real world and

may grant further insights into the model’s correlations. Such a high-quality visualization

tends to have an impressive and mesmerizing e�ect, resulting in a valuable presentation tool.

However, Banks and Chwif (2011) warned that it is also necessary to exercise caution at this

point, because users may be misled by a visualization enriched with additional data – especially

if they are not familiar with the simulation domain. In order to create a useful visualization, it

is therefore important to attend that the visualization should facilitate insight into the data and

provide a knowledge gain to the viewer. This is achieved by accurately re�ecting the simulation

model and its input data, marking all supplementary data sources appropriately (Vernon-Bido

et al. (2015)).

This chapter gave a concise outline on how 3D visualization works, what bene�ts it intro-

duces and for which use cases and domains it is applicable. It also mentioned several aspects

that have to be kept in mind when building such a visualization. The concrete requirements

for this solution are collected in chapter 3.1 and applied in the draft in 3.2. Prior to that, the

following section introduces some existing MAS frameworks o�ering 3D visualization and

examines their features and conditions.

2.3 Existing Simulation Frameworks using 3D Visualization

This chapter lists a number of related multi agent simulation platforms and surveys their

features and characteristics, with a special regard to their 3D output capabilities. These

frameworks are grouped according to availability into free-to-use (open source) software,

commercial products for civil use and military solutions.
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2.3.1 Open Source Frameworks

One of the most renown open-source simulation tools is NetLogo. Developed by Wilensky

(1999), NetLogo is a stand-alone application that combines a model editor and simulation

runtime in a common interface. It quickly became a de-facto standard for small agent-based

models in the academic sector, especially for student projects and low-budget research groups.

Sklar (2007) summarized the features of NetLogo and highlighted its availability (JVM-based,

so it runs on any major platform) and its ease-of-use ("simple enough for children to program").

Notwithstanding, NetLogo is capable of building and running sophisticated models, using

popular multi-agent modeling languages such as StarLogo and a large library of pre-written

sample simulations that are shipped with it. In addition, NetLogo is very extensible and allows

experienced users to write their own modules in order to add required functionality.

NetLogo has numerous visualization options, among others also 3D capabilities. Kornhauser

et al. (2007) reviewed these options, but it becomes clear that NetLogo’s presentation options

focus on the analytical display and 2D grid-style visualization. Though 3D is possible, it is only

rarely used and little support is provided, with the o�cial documentation advising against it.

Next in popularity comes GAMA, the GIS & Agent-based Modeling Architecture. GAMA is a

Java-written open source modeling and simulation platform for agent-based models in complex

environments (Drogoul et al. (2013)). Its strengths are in spatial simulations and many features

for the integration of GIS data are provided. Moreover, GAMA has ready-to-use abstractions for

the most common needs (e.g. decision architectures and generic behaviors, such as movements)

and also o�ers a dedicated high-level modeling language (GAML) that allows non-programmers

to create complex models. The platform is built in a multi-level architecture and, like NetLogo,

it can be easily extended by writing custom Java plug-ins.

Compared to other famous open-source and Java-based ABS frameworks like JADE (Bel-

lifemine et al. (2007)) or MASON (Luke et al. (2005)), which have either no or very little 3D

presentation options, GAMA supports at least a very basic 3D visualization. Agents can be

displayed as simple, textured 3D objects that are rendered on a �at terrain or GIS map. Though

it is a tedious task to set up a scene and a lot of coding is involved, GAMA has a 3D tutorial

and a comprehensive documentation and outcomes as in �gure 2.2 can be achieved.

While the simulation execution of the above frameworks can be considered as "linear", Vigueras

et al. (2013) proposes a scalable MAS architecture for interactive applications. The simulation

is spread across multiple execution nodes that work in an (almost) autonomous fashion. Each

node manages a part of the environment and the agents residing in that area, synchronizing

itself with the neighbor nodes only in case of an overarching interaction or transition. The
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visualization takes advantage of this partitioning and only queries those nodes that are in

the current �eld of view, allowing a potentially massive data reduction and a delivery of near

real-time scenes. Few information can be found on the performance of the actual 3D engine,

but �gure 2.2 suggests that it is of a more basic character.

Figure 2.2: Basic 3D capabilities of GAMA (left), a Vigueras evacuation scenario (middle) and

the impressive rendering of DIVA/MANTISSE (right). First and last screenshots

were taken from the homepages, the middle image originates from the linked paper.

DIVAs 4.0 is a multi-agent based simulation framework developed by the University of Texas at

Dallas. It is designed for large-scale ABS in open environments and o�ers a modular approach

to create reusable, extendable components for the control and visualization of simulations

(Al-Zinati et al. (2013)). As many other frameworks, DIVAs comes with a set of domain-speci�c

libraries to allow rapid simulation development. The system uses a micro-kernel approach with

a pluggable architecture, providing a �exible way to add or remove self-contained modules.

DIVAs is fully implemented in Java and uses enterprise-scale technologies (e.g. ActiveMQ and

JavaFX) to ensure good scaling properties suited for massive simulations.

Obedient to the modular architecture, DIVAs’ 2D and 3D visualizers are separate units,

loosely connected to the simulation by means of a message transport service. Both visualizers

receive the simulation states through the message bus and generate 2D respectively 3D scenes

out of it. Beside displaying the current state, DIVAs also features an interactive editing system,

which allows the user to build or modify an environment during simulation run-time.

An application for DIVAs is the MATISSE (Multi-Agent based Tra�Ic Safety Simulation

systEm) project, also led by Al-Zinati and Zalila-Wenkstern (2015). It employs the DIVAs

platform to conduct M-MAS simulation models for intelligent transportation systems (ITS).

These models are made of a complex tra�c network and agents representing the autonomous

vehicles, human drivers, intersection controllers and more. Figure 2.2 also contains a screenshot

of the result exploration tool, which o�ers a quite stunning and game-like experience.

14

http://www.utdmavs.org/divas/


2 Material & Methods

2.3.2 Commercial Products

With multi-agent simulations getting more popular in a broader �eld of application, an increase

in modeling and simulation frameworks for civil usage could be noted. Much e�ort is put into

accessing complex domains by employing multi-agent simulation and reasonable visualization –

be it in physics simulation, the prediction of disease spread or the optimization of transportation

processes. The following frameworks are taken from the 2017 Swain List, a regular series that

surveys and compares contemporary simulation software.

AnyLogic is one of the leading simulation platforms for business applications. It is a multi-

method modeling and simulation platform that supports System Dynamics, event-based and

agent-based simulations in any combination. A wide range of industries employ AnyLogic for

the simulation of e.g. supply chains, transportation, rail logistics or passenger management.

The simulations can be run locally on any major operating system or remotely in a cloud

environment that allows high-performance computing and online simulation analytics from

any device. In addition, the company behind AnyLogic o�ers a number of support services,

ranging from training sessions to modeling assistance.

To make an easy and fast modeling possible, a wealth of industry-speci�c libraries exist that

can be incorporated. For example, process and material libraries can be used for a supply chain

simulation or the tra�c and pedestrian libraries to build a road network simulation. It is also

possible to integrate GIS maps within the simulation models or to use any major data storage

as model input. Furthermore, AnyLogic is fully extensible at Java level and features a concept

of reusable models by separating between the model’s internal logic and input data.

For visualization purposes, AnyLogic features analytical, 2D and 3D display options. All

visualization forms may be integrated seamlessly, as portrayed in the picture series 2.3 and

both arti�cial and real-world environments can be displayed. For the latter it is also possible

to use streaming APIs to visualize the terrain with texture overlays (e.g. satellite imagery) and

project the simulation entities as 3D objects on top of it.

Figure 2.3: Visualizations types in AnyLogic. Left-to-right: 3D, 2D and real-world projections.

All images taken from the showcase section of the AnyLogic web page.
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Of similar characteristics is FlexSim. According to a product comparison conducted by Capterra

Inc. (2018), these two solutions o�er an almost identical feature set regarding the simulation ca-

pabilities, with FlexSim being restricted to the Windows platform and without cloud execution

support. It lacks AnyLogic’s extent of data interoperability and import/export options, though

it supports the fundamental formats. FlexSim also comes with a large library that contains

ready-to-use entities and operations. The software is available as a free trial (limited to 30

objects) and in an enterprise edition.

An advantage of FlexSim is its clean user interface. Many users claim that FlexSim is easier

to use than AnyLogic and requires a shorter training period. The model is built in an object-

oriented approach and the UI allows drag-and-drop activities to edit an object’s properties or to

add assets to the model. The logic can be done using pre-built logic building blocks, so that very

little or no computer code is required. FlexSim also comes up with a decent 3D visualization

that supports more than thirty 3D formats and delivers a superb visual performance. Figure 2.4

shows a screenshot of FlexSim (left side) and one of Simio, which is introduced next.

Figure 2.4: Flexsim’s 3D visualization (left) and Simio modeling. Images taken from homepages.

The third option presented here is Simio. Like FlexSim, it is also an object-based ABM platform

that o�ers a rich set of pre-built objects and actions with the opportunity to model processes

without the need for programming. Simio can be obtained for free for personal and academic

use, for the enterprise editions a license fee applies (which is by far the cheapest compared

to the two preceding solutions). The company behind Simio operates a SaaS cloud platform

called Simio Portal that runs on Microsoft Azure and is similar in terms of functionality to

AnyLogic’s cloud service.

Simio has a large list of well-known companies as customer references, ranging from car and

aircraft manufacturers to crude oil companies, healthcare institutions and (air-)ports. On the

downside, it does not support the combination of continuous and discrete simulation techniques
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nor has it the interconnectivity of the above platforms. Regarding the 3D capabilities, Simio

lacks behind and few showcases could be found. It has an interface to Google’s 3D Warehouse

in order to incorporate models, but the main usage of 3D visualization is for the modeling

itself, as shown in �gure 2.4 (right screenshot). Still, it is possible to use 3D rendering and

animation for the result visualization, though this does not seem to be Simio’s primary focus.

Beside these general-purpose platforms, a broad range of specialized MAS software exist. A

majority of these packages focus on tra�c simulation, e.g. the TransModeler road simulator,

the AMATRAK project to envision intelligent autonomous cargo delivery, or CAST, an airport

simulation and planning software. Many of these simulation tools also o�er a 3D visualization,

partly with quite impressive graphics. But because this thesis aims for a universal visualization

solution, these specialist systems are not considered here.

2.3.3 Military Solutions

Military and defense organizations have been powerful development drivers in many research

branches. This is also true for the computer simulation domain, where endeavors are made since

the 80’s to harness the computational power for soldier training and to virtually go through

di�erent crisis scenarios. Arising from decades of military research in the �eld of Distributive

Interactive Simulation (DIS) conducted by the US Department of Defense, a set of protocols

and architectures like the High Level Architecture (HLA) emerged, which also became an IEEE

standard. HLA o�ers an interface for data transfer between multiple simulation environments

(Dahmann et al. (1997)) and supports interactions between the simulation operators and

the computer-generated forces. The systems compliant to HLA are primarily designed for

combat simulation and early frameworks, such as ModSAF (Modular Semi-Automated Forces)

by Ceranowicz (1994) had no 3D visualization, but only tactical and strategic displays. 3D

engines were still in its infancy and the few add-ons available (e.g. CommandVU ) had a very

limited visual appearance.

One of the �rst attempts to utilize 3D game engines was the UTSAF project by Manojlovich

et al. (2003). It is based on the Unreal Tournament video game (hence the UT in the name),

which was (back then) both cheap to a�ord and easily extensible due to its design to be open for

modding. Though the integration into the distributed simulation network by means of a custom

DIS connector succeeded, the overall solution su�ered of several shortcomings regarding the

scalability and rendering performance of that early engine. Since then, computing power

and the capabilities of 3D engines have grown rapidly. Two prominent solutions capable of

high-realism visuals are presented on the next page.
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VT MÄK is a leading company for modeling and simulation software in the military sector.

They develop a broad range of products for distributed simulations, which can be �exibly

integrated with each other to meet the customer’s needs. Beside the products themselves,

VT MÄK o�ers training and simulation building services. Their solutions are used by the US

Armed Forces, NASA, aviation industries and armament manufacturers.

The heart of the VT MÄK product suite is VR Engage, a multi-role virtual simulator that

runs on top of commercial-o�-the-shelf (COTS) hardware and is compliant to the IEEE HLA

and DIS standards. Around the simulator exists a number of add-ons, ranging from physically

accurate sensor and radar models to data integration plugins, modeling tools for characters and

environments and analysis clients. The 3D visualization is of game-like quality with detailed

human characters, realistic animations and remarkable visual e�ects, such as changing weather,

waves and dynamic lighting. See the �rst two images in �gure 2.5 for a few impressions.

Figure 2.5: Impressions of the visual quality in VT MÄK (left side) and Virtual Battlespace 3.

Images taken from their respective web sites, as linked in the text.

Another widespread solution is Virtual Battlespace, developed by Bohemia Interactive Sim-

ulations. Currently available in its third version, VBS3 is a tactical trainer that is used by

major military organizations, such as the U.S. Army, U.S. Marine Corps and the UK Ministry of

Defence. It features a desktop-based simulator that runs on commodity hardware and uni�es

tactical training, experimentation and mission rehearsal in a comprehensive package. If desired,

the functional range can be extended with a multitude of additional plugins, e.g. arti�cial

intelligence toolkits or interfaces for virtual reality hardware.

The core of VBS3 is a distributed multi-agent simulation system that o�ers interoperability

with external HLA/DIS networks. It can simulate any environment for military training and

supports massive terrains with large numbers of entities. VBS3 comes with level and scenario

editors to create custom missions and provides a huge 3D model library with over 10,000

detailed and animated models, making it a virtual sandbox. The 3D rendering is based on a

self-developed engine (which is also used in the tactical shooter game ARMA 3) and o�ers a

highly immersive user experience, as also showcased in �gure 2.5.
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2.4 The MARS Simulation Platform

The output and visualization concept presented in this thesis is intended to �t into the MARS

system. A brief overview on MARS was already given in the introduction. This section now

deepens this knowledge by delivering more details on the platform, its unique selling points,

the typical user work�ow and the internal structure. Many of these characteristics are of

importance for the design and implementation decisions explained in the following chapters.

2.4.1 Why You Should Use MARS – Characteristics and Use Cases

MARS is a highly-performant platform for multi-agent simulations, developed by the MARS

Group at the Hamburg University of Applied Sciences. It comprises of the simulation engine

itself (codenamed LIFE, developed by Hüning (2016)), a set of optional components and a

service and execution infrastructure, uni�ed under a common interface.

The front end to the MARS platform is a web-based interface, o�ering a sleek and functional

user experience. Because large and complex simulations are usually developed in teams, this

web suite is multi-tenant capable and supports collaborative work with project sharing options,

visibility settings and user role policies. Apart from the modeling itself (see 2.4.2), all steps can

be accomplished in the web browser, so the installation of separate tooling is not necessary.

This means the simulation preparation, execution and evaluation can be done from every

device and all over the world, as long as an internet connection is available. Also the compute

power directly available to the user is of no importance, because the simulations are run in the

cloud.

This makes MARS especially well-suited for large-scale simulations. The simulation run is

executed in a Kubernetes cluster and supports a number of distribution strategies, making it

very easy to scale both horizontally and vertically. Big-data features like complex event stream

processing (CEP) and distributed storage ensure that the result �ood is kept under control. All

this complexity is abstracted away from the user with the WebUI being the single point of

access to simulation run administration and result evaluation. The analysis tools currently

available comprise of a visual analytics dashboard, a 2D map projection, a python interpreter

and plain CSV �le download for o�ine evaluation. The visualization presented in this thesis

shall extend this portfolio with 3D capabilities.

As an example use-case for both the distributed cooperation and the large-scale requirements

serves the interdisciplinary research project ARS AfricaE. Started in 2015, this joint project of

European, African and US-American research institutes aims to model South African savannah

ecosystems in order to investigate their resilience to external interferences and employs MARS
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to run massive multi-agent simulations with more than 5 million agents. Another very recent

project initiative named Smart Open Hamburg targets to model urban tra�c �ows, making

use of MARS’ numerous GIS integrations, which are detailed later.

In addition to these technical features, MARS also o�ers an intuitive modeling paradigm.

The core of that concept is the separation of the model’s ingredients into agents and layers.

Every type of self-acting entity (in other words: individual, refer to 2.1) is expressed as an agent

type which gets instantiated and executed during runtime. Agents are grouped onto layers,

which partition the model into its distinct aspects. A layer can be thought of an information

overlay, similar to those known from map services like GoogleMaps, and contains either one or

more agent types or environmental data. This separation of concerns is a proven methodology

from the software engineering and eases the model conception and implementation as well as

its future extensibility.

Figure 2.6 illustrates this partitioning for a model used in the ARS AfricaE research project.

It features elephants, trees and water holes realized as agents, using terrain elevation and

various time series data. Every agent type resides on its own layer, as well as the data sources.

Figure 2.6: The MARS layer concept, exemplarily shown for the ARS AfricaE savannah model.

The image was taken from Hüning et al. (2016).
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To speed up the model development, MARS o�ers a set of base types that provide core

functionality and can serve as a basis for custom implementations. For the agents, the author

developed a BasicAgents package, which incorporates the SRA agent cycle and is detailed in

Dalski (2017b). Advanced proactive behavior can be achieved by integrating using goal-oriented

action planning (GOAP), elaborated by Niemeyer (2016)). Such logic building blocks come in

handy to model human behavior, e.g. for pedestrian dynamics and evacuation scenarios.

For the majority of the mentioned domains, it is essential to handle geospatial data. The

agents are located at real-world positions that need to be represented within the simulation

framework. The BasicAgents package named above provides support for GPS placement and

movement modules, featuring coordinate calculation and conversions. In addition, MARS

comes with CPU and GPU based environment representations, providing position management

and optional collision detection features with 2D grid, 3D cartesian and GPS capabilities.

Almost all but the most basic simulations rely on external time-series data. To make these

measurements or prognoses available to the agents, MARS allows to import CSV �les into

time-series layers, expressing e.g. climate data such as temperature or precipitation. Beside the

temporal resolution, many time-series data also have a spatial reference, specifying the place

and the time period they are valid for. In order to access a time-series value, two transformations

are required: The corresponding real-world time has to be calculated from the simulation tick

counter and a rasterization of the querying agent’s (continuous) GPS position to a (discrete)

grid cell is needed, taking the resolutions of the time-series for both dimensions into account.

Figure 2.7 depicts this rasterization for the spatial dimension, leaving the time aspect out of

consideration.

Figure 2.7: Grid & GPS support to express real-world data and spatial rasterization

MARS provides a simple time-series layer as well as performant GIS vector and raster layers

developed by Karsten (2018), which can be found in the optional Components package. All of

these layers are con�gurable and can be initialized from CSV respectively SHP and ASC �les.
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2.4.2 Typical Modeling & Simulation Workflow

The work with MARS can be split up into several stages consisting of model development,

parametrization, simulation, analysis and error correction or parameter �ne tuning, until the

desired outcome is achieved. Drawing 2.8 shows an overview of the phases and cycles in a

usual modeling and simulation work�ow.

Figure 2.8: The MARS MSaaS work�ow

The work�ow starts with the model: At the beginning, the model design and conceptional

draft is done, splitting the di�erent aspects into layer and agent types according to the MARS

modeling paradigm. Though several "modeling as a service" approaches are in discussion,

currently the only way to build a simulation model is by writing program code on the modeler’s

local machine. This can occur either in plain C# or in the MARS DSL (domain-speci�c language)

developed by Glake (2018). At the current stage of the MARS project, there is no graphical

model editor available, but such a modeling frontend is feasible and will likely come up in

the future. Until then, the previously mentioned tandem concept o�ers a makeshift for those

unfamiliar with writing code on their own.

After the model (or a �rst draft of it) is executable (syntax checks OK), it has to be compiled,

compressed and uploaded to the MARS cloud. For this and all following steps, the user needs

an account for the MARS platform and has to be logged in to the web interface available

at https://mars.haw-hamburg.de. The platform is organized in projects and holds all models,

related data, con�gurations and results.
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Beside the model code, also all �les referenced in the model (data sources for layers or

initialization �les for agents) need to be imported. With all required �les present, it is time

to bind them to the respective simulation entities: This data-to-variable mapping, hereinafter

called scenario de�nition, is done by performing straightforward drag-and-drop operations

(data �le → layer; CSV column → agent constructor parameter). Also the simulation interval

comprising of start and end date as well as the tick resolution have to be set here, specifying

the number of ticks to execute and the query range for time-series layers.

Based on the scenario de�nition, one or more simulation runs can be instantiated. A sim-

ulation run is a distributed execution in the MARS computing cluster (see also 2.4.3). The

simulation results are saved in a database, the log messages (console output) are directly fed

back to the web UI and can be read and tracked. As soon as the �rst results become available,

the user may browse to the evaluation tools and analyze the simulation outcome. Screenshot

2.9 below gives an impression on the corresponding UI dialogues in this work�ow.

Figure 2.9: Work�ow in UI: (1) parameter mapping, (2) execution, (3) evaluation

Building a simulation model is an incremental process and it is unlikely that the simulation

outcome is as expected in the very �rst run. Probably some abnormalities or strange behavior

can be observed, resulting from some sort of error: The model code may have some logical

�aws or careless mistakes or the conceptual model could be based on misguided assumptions.

Also the input �les might be faulty or some parameter adjustments are necessary. It is the task

of the model developer [and tandem partner] to localize the cause of the error and handle it

accordingly.

As soon as the error has been identi�ed and �xed, the cycle repeats until the results are

trustworthy and satisfying. It is the hope of the author that this process might be eased and

speeded-up with a 3D visualization as exploration tool.
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2.4.3 System Architecture

The overview in section 2.4.1 already mentioned that MARS consists of two major parts, the

cloud platform for setup, execution & evaluation and the simulation framework called LIFE.

Figure 2.10 gives a more in-depth insight into the structure.

Regardless whether the DSL or plain code is preferred, the modeling project itself is an

executable C# program for the .NET Core platform. It contains the model code and several

binaries of the LIFE package. Mandatory are the LIFE Core, which is the actual simulation

engine with the execution logic and the LIFE API, providing the interfaces necessary for the

generic core to access the model. LIFE Components contains the pre-built assets and is optional.

All three parts are distributed through the NuGet package manager and can be easily installed.

The compilation is compressed and then uploaded to the cloud platform.

The MARS Cloud is composed of a number of services and databases, which run as Docker

containers inside a Kubernetes cluster operated by the HAW. Following the microservice ap-

proach (detailed in chapter 4), every service has its own task, e.g. data import, user management

or simulation run control. An Angular 4 application serves as gateway and encapsulates the

access to all functionality in an integrated web interface. The simulations themselves also run

as Kubernetes pods in the cloud, connected to the various input databases, the output target

and the supporting services. Internally, the run container includes the .NET Core runtime as

well as the uncompressed simulation code previously uploaded.

Figure 2.10: Overview on the MARS Cloud and LIFE package.
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3 Design

Now that the groundwork has been laid, this chapter presents the draft for the MARS 3D

visualization system. First, it collects the requirements that the solution has to ful�ll and how

the integration into the remaining MARS ecosystem should happen. On that basis, the system

gets partitioned into several subcomponents which are outlined afterwards.

3.1 Requirements

This section states all the demands put on the 3D visualization and the underlying output

system. They are divided into functional requirements, specifying what range of functions is

expected from the solution, and non-functional requirements or system qualities, expressing

constraints and how the solution should perform. The subsequent lists name the requirements

and explain what they mean and why they are considered important.

3.1.1 Functional Requirements

• User-controlled output & visualization: Because of its generic nature, MARS does

not have any information on the concrete simulation model, so a con�guration system

for the simulation output and the 3D visualization is needed. In this dialogue, all essential

aspects of the agents and the environment have to be presentable, while allowing the

user to pick those relevant to him or her. The simulation engine has to be extended with

a dynamic output module that adheres this selection and only persists the requested

data. In addition, the 3D visualization needs to be con�gured, e.g. the 3D models or

camera properties have to be set. However, the visualization system shall be optional

and pluggable – if not desired, it should provide no additional overhead to the user.

• Agent visualization: With agents being the core entities in multi-agent simulations,

their visualization is undoubtedly the main focus. An agent is portrayed using a pre-

viously de�ned 3D model, rendered at the position and orientation the agent has at

that moment. It should be possible to select an agent in order to highlight it. When

highlighted, the visualization shall allow to inspect the agent’s custom attributes and
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follow that agent if the scene advances. An agent grouping according to their home

layer seems useful, for this allows a layer-based toggle whether a speci�c agent type

shall be displayed or not.

• Terrain visualization: In order to display a realistic visualization scene, also the terrain

has to be rendered. In its basics, the terrain is a mesh representing the elevation with

a texture laid on top of it. Regarding the elevation and texture, it should be possible

to either specify custom data (GIS �le or image) or to tap open data APIs to stream

real-world scenery. In the latter case, the scene is augmented with auxiliary data not

used by the simulation, which has to be marked accordingly to prevent user confusion.

• Layer visualization: Apart from agents and terrain, it is deemed useful to display the

property of time-series or GIS raster layers as well. They represent information sources

like temperature or precipitation, which may be visualized using coloring algorithms.

• Geospatial (GPS) support: MARS’ strengths are the simulation of geospatial real-

world scenarios, which makes GPS support mandatory. Because 3D engines operate in a

cartesian coordinate system, an internal abstraction and conversion algorithms have to

be developed. In this context a high level of accuracy is crucial, because even very small

coordinate deviations may result in several meters of incorrect positioning.

• Cartesian (3D / 2.5D) support: Apart from real-world scenarios, MARS also allows

arbitrary cartesian environments. Regardless whether it is a continuous (X,Y,Z) space,

or just a 2D grid-based system – since MARS can simulate these environments, the

visualization should handle it as well. 2D scenarios might be rendered using 3D objects

on a �at plane (also called "2.5D"). Similar to above case, conversions from the simulation

coordinate space into the engine space and vice versa have to be de�ned.

• Browser-based access: The entire MARS platform is accessed by means of its web

interface, so it must be possible to also run the 3D visualization from within the browser

to allow a proper integration. No installation of additional plug-ins (Adobe Flash, web

players etc.) shall be necessary and the visualization shall run in every major browser in

order to avoid any restrictions regarding the accessibility.

• Simulation live tracking and play-back: The visualization shall serve as an evalua-

tion tool for both past and present simulations. Saved simulation runs are presented to

the user and can be loaded from a database, o�ering playback and seeking options for all

ticks. Equally, the connection to a live-running simulation shall be possible, visualizing

ticks in real-time as soon as they have been simulated.

26



3 Design

• Unrestricted simulation exploration: One of the unique features a 3D visualization

o�ers is the ability to explore every step of the simulation from arbitrary angles and

positions. The user shall be able to freely move around, inspecting the scene from

any point and zoom level while a set of tick selection controls allows to choose which

simulation step is displayed.

3.1.2 Non-functional (�ality) Requirements

• Maintenance: This point comprises all practices of good software engineering: The

output subsystem is a central part of the simulation system and the visualization hopefully

will be used beyond this thesis, so it should be easy to modify and extend the software.

Further development, such as adding features or replacing parts (e.g. swapping out the

3D engine with a better one) can be archived by a profound architecture using a modular

approach with well-de�ned responsibilities and a loose coupling.

• Extensibility: Whereas above point relates to modi�cations of the software itself, this

item is about content: It should be possible to add or modify 3D models and others assets

(e.g. skyboxes) without requiring any program changes.

• Scalability & e�ciency: MARS is designed for large-scale simulations and hypothesis

H2 (section 1.4.1) claims that this should pose no problem for a 3D visualization. This

makes it crucial to apply data reduction and caching algorithms on the visualization side

as well as a performant rendering engine. For the output system, an e�cient storage

format has to be found and streaming techniques for the transmission plane are needed.

• Usability: As stated in section 2.2, a 3D visualization shall allow a straight-forward

result evaluation, also suited for non-scientists. This means the visualization should be

easily operable with no learning in advance necessary. Therefore the focus is set on

sleek and comprehensible user interfaces limited to the essential data and an intuitive

3D space exploration. The controls and their function should be self-explanatory and

the tick selection and movement in the 3D space shall be inspired by video and game

controls, creating a familiar setting for many users.

• Visual performance (Look & Feel): Beside the ease of use, the 3D visualization should

also be an enjoyable experience. This shall be accomplished by providing an appealing

and convenient user interface as well as a decent 3D quality. Beside the visual appearance,

a low response time is desired to allow a smooth exploration.

27



3 Design

3.2 Outline of the Visualization Pipeline

This section presents the pipeline that was devised to equip the MARS system with 3D vi-

sualization capabilities. It aims to provide a simple, yet e�ective solution while meeting the

requirements listed aforesaid. For that, several strategies were developed, which are detailed

in the succeeding section 3.3. But because it is easier to grasp the concepts if there is an

understanding of the overall layout, the overview on the pipeline is given �rst. It consists of a

�ve-tiered approach as shown in �gure 3.1 and explained subsequently.

Figure 3.1: The output and visualization pipeline in overview

Because the modeling phase currently occurs o�ine (see section 2.4.2), the MARS platform

has no knowledge on the user’s simulation model and its attributes. This makes it hard to

o�er any purposeful output or visualization, for the simulation has no opportunity to access

the model-speci�c agents and their properties. That is why the entire process starts with a

simulationmodel analyzer (1). As a new addition to the MARS cloud infrastructure services,

this tool has the task to perform a model code scan and generates an exhaustive description

on all simulation entities and their properties. Invoked automatically on model import, these

information are stored alongside with the model in the database and are made accessible to all

further processing.

The next part of the visualization pipeline is the output & visualization con�gurator (2).
It plays a signi�cant role in resolving the large-scale issues mentioned before by incorporating

several storage saving strategies, which are detailed in 3.3.1. In a nutshell, the basic idea
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is to o�er the users a choice of what to output and how often that should occur. For that

purpose, the con�gurator reads the model description generated by (1) and generates an output

con�guration dialogue, presenting the layers, agents and their attributes in a selectable fashion.

Integrated into this view is also the visualization setup, which is split up into a general section

for the common settings (camera, terrain, movement speed) and in type-speci�c options that

are presented alongside with the output con�g, such as the 3D model to choose or its scale.

Because of their resemblance and dependence (you can only visualize an agent if you have

chosen to output it), it was considered appropriate to put these two in itself distinct setups

into a joint interface that gets part of the MARS WebUI.

As soon as everything is set up, the simulation run can start. On simulation bootstrapping,

the simulation output component (3) acquires the output con�guration and prepares itself

to be able output the mentioned types. At that point a technical problem arises, because it is

not feasible to access a concrete agent attribute (e.g. the biomass value of a tree) from within a

generic runtime. A solution is sketched in 3.3.2, it rests upon dynamic code generation and

self-expansion in order to gain the required output capabilities. Once initialized, the output

component loops after each simulation step over all entities and writes their results into the

database, making them available for visualization.

The 3D visualization system consists of two parts, a server and a client component. The

visualization back-end service (4) runs in the MARS infrastructure and forms the link

between the visualization clients (the users) and the database containing the simulation results.

Its responsibility is to acquire and prepare the requested data and to provision it to the clients

over the network. For that purpose it o�ers an WebSocket endpoint, facilitating information

queries and data retrieval via a full-duplex connection. Because a wide range of query, control

and supply messages have to be sent, a lightweight and e�cient information interchange

protocol was designed, which is detailed in 3.3.4.

Finally to the actual 3D visualization: The frontend is a browser-based client (5) that

contains the 3D rendering engine and the user interface to control the visualization. When a

user starts the 3D visualization client by opening its web page, it automatically establishes

a connection to the backend service and queries the available simulations. Heeding the

requirements of section 3.1, the visualization allows the user to freely explore the simulation

output in a continuous, three-dimensional space by showing all the agents and environmental

features like terrain and obstacles.

Because a large number of entities is expected, the visualization has to incorporate load-

reducing techniques on both sides. Section 3.3.3 presents several strategies for the rendering

and the asset management to handle the big-data issues.

29



3 Design

3.3 Concepts

Building on the collected requirements and preceding component draft, this section presents

several ideas to meet the demands put on the visualization pipeline. It begins with a storage-

e�cient result output approach, proceeds to the components accessing and visualizing these

data and also details the network protocol used for the server-client communication.

3.3.1 Storage Saving Strategies

The savannah ecosystem model used in section 2.4.1 for the explanation of the layer methodo-

logy is of a very large scale and contains over 5.5 millions of agents in total. A complete output

by simply dumping the entire attribute space of every individual to the database would result

in more than 700MB of data to be written in each tick. Beside the waste of storage space, also

the simulation process is slowed signi�cantly and the evaluation tools have to process this vast

output, making them slow as well. Especially for a real-time capable and browser-based (thus

streamed) 3D visualization, this naive approach is not feasible and a more advanced solution is

urgently needed.

This section proposes three major improvements in order to reduce the data volume. First

of all, instead of always saving everything, the user has to explicitly enable the output for an

agent or layer type. In this selection, they also specify the output frequency (if a more coarse

resolution su�ces, there is no need to save in every tick) and the actual data to output, like

the spatial attributes (if available) and the output-eligible properties. The latter are con�ned

by convention to be publically readable, primitive attributes (i.e. plain values, no complex

structures) to make them programmatically determinable. This process allows to save storage,

bandwidth and runtime by limiting the data to those relevant for the evaluation and is integrated

as a new con�guration dialogue into the MARS web-suite. Refer to the overview in section 3.2

or to section 4.2.1 for implementation details and screenshots.

A second strategy focusses on the change behavior of the attributes and distinguishes

between static (also called "�xed") and dynamic output properties. Static properties are those

of immutable character; like meta information on the agent (e.g. type, GUID, layer reference)

and all user-de�ned attributes that are only set once during initialization – e.g. the herd ID of

an animal read from a CSV �le, a randomly chosen sex or the GPS position of a tree loaded from

a spreadsheet. Whereas the �rst two examples refer to custom agent attributes, the latter is a

special case. The di�erentiation between moving and stationary entities is not only relevant

for an optimized storage, but also for the 3D visualization: An immobile object will always

keep its initial position and orientation (trees normally won’t move) and thus can be rendered
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much more e�ciently by keeping them in the scene hierarchy between frame transitions.

Though this static/dynamic di�erentiation allows to massively reduce redundancy, it also has

two drawbacks. First, this process has to be done manually and therefore results in additional

user interactions by marking the static attributes in the result con�guration dialogue. Second,

it introduces a possible error source resulting from incorrect con�gurations. If the user fails to

mark a �xed attribute accordingly, it results in storage waste with this property being written

unnecessarily often (old output behavior). On the other hand, if a dynamic property is marked

as static, it is only written once and ignored for the rest of the simulation. This case is especially

dangerous, because it results in missing data and the user may implicitly assume that the

results are correct and just no change occurred. A feasible alternative detailed in section 7.3

would be an improved model code analysis, which traces write operations for each attribute

throughout the entire source code and automatically determines the right setting.

Building upon the di�erentiation between static and dynamic properties, it can even be

expected that not all dynamic properties change in every tick. With this in mind, a third

strategy introduces a re�nement that is based on full state and delta state outputs, a technique

borrowed from the realm of video formats. It uses key frames (I-frame in the video domain) to

save full-state expressions of an entity in regular intervals and delta frames (P-frames), which

are sparse structures and only contain the changes in respect to the previous frame (Le Gall

(1991)). This technique comes in handy to further reduce the amount of result data by focusing

on the state changes between the simulation ticks, but also adds to complexity: In order to �nd

out what has changed, some sort of comparer is needed that tracks all variables. Every time a

variable changes, the new value has to be recorded in the delta frame and adopted for the next

comparison. The changes are saved as absolute values, thereby eliminating the needs for o�set

calculation at output and value summation at retrieval.

In order to facilitate a quick search on the results, the key frames have to be written in regular

intervals (every n-th tick). The key frame to delta frame ratio is an additional con�guration

parameter with signi�cant impact on the amount of data and the processing time needed for

retrieval. These two goals are con�icting – a high delta proportion helps to reduce redundancy,

but craves for an extensive and thus computationally expensive aggregation. In Dalski (2017a),

several experiments were conducted, showing that a high ratio is better suited for simulations

with few state changes per time step or only a small amount of entities involved, leading to

storage savings of up to 66%. Models with lots of interactions, however, have less potential for

savings (30-40%) and frequent key frames seem favorable in terms of data access.

Details on the data output and retrieval using key- and delta frames are given alongside

with an example in the implementation chapter in section 4.2.2.
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3.3.2 Dynamic Output Module Generation

Regarding the output of the simulation results, basically two ways exist. You could either build

a component that is part of the simulation system and iterates over all entities or you could

shift the responsibility to the entity itself. In the �rst case a generic output solution is needed,

because at design time of the simulation system no information on the user-written agents and

their properties is available. The other way, however, would mean that the user has to take

care of the output by either implementing some result interface for every type or by accessing

the database directly. This is not only cumbersome and error-prone, but also contradicts the

idea of providing a domain-independent and convenient simulation platform.

For these reasons, only the �rst alternative is considerable for MARS. It raises a problem,

though: How is it possible to access a concrete agent attribute (e.g. the biomass value of a

tree agent) from a generic runtime? Furthermore, in order to implement the storage saving

strategies from 3.3.1 some logic exploiting the fact that an attribute is either static or dynamic

is needed, as well as a comparer to detect changes in an attribute’s value. As a consequence,

there is no other way but to build speci�c output modules for each agent type that are tied to a

concrete instance during runtime.

The solution to obtain these type-speci�c output modules (in the following called "logger")

is to create them on-demand during the simulation system initialization. With the model

structure analyzed on import and the output con�guration done by the user (components 1 and

2 in �gure 3.1 of the outline), the system has all the required information on the agent types,

properties and change behavior to its avail. On startup, these information are downloaded

and then used to write logger code for every type. This is done by using a default logger

template and �lling its method stubs with the particular details. The purpose of the template is

to provide a class frame that complies to a common logger interface used by the generic part

of the output component. In this interface, three output returning functions are demanded,

respectively addressing the agent’s metadata (containing also the static properties), key frames

and delta frames.

After the logger de�nitions are done for all types, the sources are compiled by using a

compiler-as-a-service technology that generates a binary containing the logger code. This

binary is then re-injected into the runtime context and its contents are made available through

a technique of source code re�ection, similar to that one used in the model code analyzer. After

this process, the output component is aware of the concrete loggers, retrieves their executable

modules from the assembly and stores them in an agenttype → loggertype mapping.

Equipped with the logger modules, the output system is now fully initialized and ready for

the registrations of the simulation entities. On registration, the entity’s type is determined and
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the corresponding logger module fetched from the mapping. A new instance of this module is

created and tied to the simulation entity by passing its reference along. The output component

maintains a list of all instantiated loggers and iterates over them to gather all results. More

about the output process can be found in the implementation chapter, section 4.2.1.

3.3.3 Visualization Performance Improvements

The requirements analysis in section 3.1 made clear that the pipeline has to handle large-scale

scenarios as well as multiple data sources. After the previous solutions aimed for a reduction

of the output volume, this part treats the visualization components.

As already sketched in the outline in 3.2, the visualization is made up of a browser-based

client and a backend service. The server-side part does the preprocessing and reduces the

amount of acquired and transmitted data by restricting them to those perceptible by the user.

This interest management uses the client’s camera position plus an additional bu�er zone for

spatial queries of agents and terrain. To allow such a �ltering, a client management has to

be implemented that keeps track of the clients’ positions, settings and selections, as well as

a record on the data already sent. Whenever changes occur, the visualization client noti�es

the server and receives the new payload in turn. All this communication is done using the

network protocol speci�ed in 3.3.4.

In order to reduce the network overhead, batch-loading is used for data transfer. The agents

and terrain data to transmit are collected and transmitted as chunks. For this purpose, the

server build various zones around the camera position. Beside the already discussed �eld-of-

view and bu�er zone a third zone is introduced, which is bigger and contains all objects that

are pre-selected for the next transmission. An even larger fourth zone de�nes the caching

area: All entities in it are kept in memory on client side to allow an immediate re-rendering,

if necessary. This helps to reduce the retransmission of previously sent data in case the user

returns to an area recently visited before, e.g. on zoom operations.

On the server side, caching is mainly for the terrain streaming of importance. The usage of

external data sources introduces an additional bottleneck, because the data queried by the client

have to be fetched via internet �rst before they can be delivered. Since almost all simulations

take place in a de�ned area, a terrain visualization without caching would cause recurring

queries of always the same elevation and texture tiles. A local availability helps to circumvent

these time-consuming downloads and allows a high degree of independence from external

sources. To keep the server’s disk space in check, a con�gurable cache manager is used that

employs two deletion policies, LU (least used) and LRU (least-recently-used - longest idle time

since last access).
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Whereas all previous techniques targeted to accomplish an e�cient preliminary selection,

also the rendering can be improved. To further con�ne the area to render, the visualization

client performs view frustum culling (Assarsson and Möller (2000)), which reduces the number

of entities to those actually visible. It uses the camera view cone + viewing range and also skips

all objects concealed by others. Only the agents, objects and terrain tiles which e�ectively

appear on the screen remain in this selection. It still would be a waste of performance to draw

all these models with the same level of detail (LOD), because models far away only take in few

pixels of the image and a lot of details would diminish. As a consequence, a simpli�ed model

with a reduced the polygon count (lower LOD level) would be much faster to draw without

reducing visual quality. Further optimization can be achieved with instancing, which performs

an aggregation based on 3D model and LOD to allow a batch processing in the engine’s internal

main loop. A once loaded 3D model can be reused for all entities of the same kind, resulting in

less GPU bu�er uploads and drawing calls.

3.3.4 Network Protocol

For the communication between visualization client and server it is necessary to allow an

independent data transfer in both directions: User inputs like simulation- or tick selection

are relayed to the server as well as position updates or agent selections. The server replies

with data packets, which can be sent asynchronously or as direct response. But it must also

be able to push data to the client (on automatic play-back) and to send update messages on

simulation availability and progress. This would not have been possible using conventional

HTTP connections since these are client-initiated and only allow responses from the server.

Consequently, a bidirectional connection is needed. Whereas a prototypical implementation

used a legacy XHR Long Polling technique, the current version rests on the WebSocket protocol,

compliant to RFC 6455. It allows an upgrade of an HTTP connection to a full-duplex channel

with both sides capable of sending and receiving data at the same time. Nowadays almost

all browsers support the WebSocket protocol and the sockets can be easily used from plain

JavaScript without the need to install any additional libraries.

On connection establishment, the server o�ers a list of all available simulations to the

client and provides it with progress updates (via broadcast). As soon as a selection is made,

additional information on simulation structure and visualization initialization are given. The

client constantly reports changes in its settings, movements and tick queries, the server replies

with payload packets. These contain static positions, key- and delta frames and terrain tiles

according to the OSM format. To save bandwidth, only the minimum of data required for

rendering are transferred and further information are provided on separate request.
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Because the messages are transferred as bytestreams, some sort of minimal header is needed

for packet di�erentiation. For the sake of simplicity and e�ciency, this header consists of a

single byte which is prepended to every message and speci�es its content. A byte allows to

express the values from 0-255 and the following numbering scheme is used for disambiguation:

1xx Client messages

2xx Server messages

x1x Control instructions

x2x Visualization core data

x3x Additional data

x4x System and status messages

The subsequent depiction in �gure 3.2 gives an overview on the packet types, their codes,

responses and payloads. Please note that this diagram might be outdated due to changes or

extensions during development. An up-to-date schematic and detailed descriptions (in German)

can be found online in the documentation branch of the WebGLvis project repository.

Figure 3.2: Messages and responses of the visualization network protocol
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4 Implementation

This chapter describes the implementation of the 3D visualization pipeline. It is based on the

components elaborated in section 3.2 and re�nes them in order to integrate them into the

MARS infrastructure and the MSaaS work�ow.

4.1 Upstream Services

The visualization and output con�guration takes place by means of two upstream services,

which are deployed as part of MARS’ automated cloud deployment: The Re�ectionService does

some background preprocessing on the simulation model, providing the necessary information

for the ResultCon�gService to show a con�guration dialogue to the user.

Following the MARS architectural guidelines, both components are designed as microservices.

Predominantly shaped by Fowler and Lewis (2016), this concept splits an application into a

couple of separate services, where each service has its designated purpose. This allows for an

independent development and adds interchangeability using a loose coupling via a common

interface, often realized as HTTP REST calls (Masse (2011)). The diagram below shows an

overview on the con�guration stage, a detailed explanation is given on the next pages.

Figure 4.1: Overview: Import, analysis and result output con�guration
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4.1.1 ReflectionService

The necessity for the Re�ectionService is owed to the fact that MARS is a generic multi-purpose

simulation platform: Because the system’s components are developed without any reference

to a speci�c domain, MARS cannot "know" what type of model the user builds and of what

entities and properties it contains. Still, this model-speci�c knowledge is anyway required to

facilitate the con�guration phases (e.g. the output con�guration described in the next section

has to know about the agent types and their attributes). Therefore a mechanism is needed to

gather model intelligence upon request.

Responsible to obtain these essential data is the Re�ectionService. As all microservices in

the MARS ecosystem, it is a containerized application, built as a Docker image and run inside

of a Kubernetes pod. Internally, the re�ection service uses Microsoft’s .NET Core 2.1 runtime,

which is a modular and platform-independent framework for the C# programming language.

The latter is also mandatory because all MARS models are compiled into that language.

The re�ection service is linked to the model import and automatically triggered by the

FileService on upload of a new model. For that purpose, it provides a REST-style API hosted

by an inbuilt ASP.NET / Kestrel web server. This endpoint is cluster-internally available and

expects a model identi�er as parameter. On invocation, the referenced model archive is �rst

downloaded and then extracted into container memory. These actions are conducted by the

main execution thread that also runs the API.

After extraction, the re�ection service performs a code analysis on the model’s C# binaries

in order to detect all simulation-related types. This reverse-engineering technique of looking

into compiled code and extracting the type names, headers and signatures is called ’re�ection’,

hence the service’s name. For reasons of dynamic DLL loading and unloading, the re�ection

has to be done in an isolated process for each model. These child processes are spawned and

orchestrated by the main (API) thread, the inputs and results are piped using data stream

redirection.

Inside the re�ection process, all DLLs are crawled for MARS-related interfaces in order to

�nd the model’s agent and layer type de�nitions. For every type, its properties (public attributes

expressing the externally observable state), the constructor signature (parameters required for

initialization) and the inheritance hierarchy (appropriate creation order) are analyzed. After

the re�ection has passed for all libraries, the parser result is forwarded as a JSON-formatted

meta description to the MetadataService, which stores it alongside with the model’s other

information in the database. Building on this, the subsequently detailed ResultCon�gService

has the necessary information to provide a custom-tailored con�guration dialogue to the user.
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4.1.2 ResultConfigService

Before a simulation can be run, the user has to decide what output data they want to collect

during execution. As mentioned in section 3.3.1, the full output of *everything* is in the vast

majority of cases not feasible and for that reason, the output con�guration was incorporated

into the MARS MSaaS work�ow. Also, the 3D visualization needs several parameters (e.g. what

to visualize and which 3D models to use) and an interface where this con�guration takes place.

Both jobs are accomplished by ResultCon�gService; another microservice running container-

ized in the MARS cloud. It provides a server-side endpoint for con�guration management

and a web interface to display the appropriate dialogues to the user. The screenshot 4.2 at the

bottom of this page gives an impression of this UI.

A result con�guration comprises of two distinct �les, an output and a visualization con�gu-

ration, which may be separately updated and changed. The visualization con�g can be changed

anytime and immediately takes e�ect, this means it is possible to change the visualization

defaults for a saved simulation run. Output con�g changes on the other hand naturally require

a new simulation execution in order to be incorporated.

Figure 4.2: User interface for the output & visualization con�guration
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The backend for the result con�guration service is also running on the .NET Core 2.1 platform

and it provides a REST API supporting CRUD operations on result con�gs. It is linked to the

MetadataService to query a model’s meta information with the structural description (that

were the data obtained by the Re�ectionService) and generates a suitable con�g with preset

values upon �rst call. Existing con�gurations are stored in a MongoDB database, for which

the common MARS con�g instance is used. The database is also utilized as an update system,

using capped collections and tailable cursors. This way, the con�guration consumers (output

adapter and visualization service) can subscribe and react for changes – e.g. the visualization

can perform a reload in order to auto-apply camera initialization values.

The frontend is implemented as an Angular 4 app and integrated into the MARS web suite,

directly accessible from the side panel which depicts the MSaaS work�ow. Because of their

logical connexion, both con�gurations are displayed in a common UI and are partitioned into

a general settings section and type-speci�c preferences. The General Settings tab contains an

output column that allows to set the database target and optional parameterization, as well as

several visualization defaults. These are type-overarching settings, like camera position, world

and movement scaling, the terrain setup (texture, elevation source and preloading settings)

and several augmentation features, e.g. a background skybox.

Next to these common settings are tabs for the type-speci�c con�guration (one tab per

type). Screenshot 4.3 displays such a type-speci�c con�guration dialogue, in this case for an

elephant agent. The blue switch button governs whether the agent type should be output or

not, the settings below control the output frequency and the spatial type (moving or stationary).

Visualization-related settings follow afterwards and allow 3D model and scale speci�cations.

The right pane lists all available properties and here the user can make their output selection.

Figure 4.3: Agent type-speci�c output and display settings
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4.2 Simulation Output

After the simulation setup services were discussed, this section now proceeds with describing

the actual output and storage components. It introduces the ResultAdapter, which is the part

of the simulation engine responsible for output elicitation and write out. Following this, the

database scheme and the storage & retrieval algorithms are presented.

4.2.1 LIFE ResultAdapter

Rooted within the simulation engine LIFE, the ResultAdapter is the component that manages

the data acquisition and its storage in the result database. Like the other engine parts, it is

realized as a .NET Core project, written in the C# language and compiled together with the

rest of the system into a single execution unit. The output logic is triggered from the main

simulation loop, which is located in the RTEManager. This loop consists of an encapsulated

three-tier routine (for every simulation step / for every layer / for every agent) that calls the

result adapter after each completed tick and for each simulation entity. Additional calls are

performed for the agents spawned or deleted during tick execution.

Before the simulation output can begin, the result adapter needs to be initialized with a

suitable result con�guration (as explained in section 4.1.2). When LIFE is started, it gets several

parameters supplied, amongst other things the result con�guration ID. This identi�er is passed

along to the result adapter, which downloads the respective �le from the ResultCon�gService

and parses its JSON structure. With the containing information, the result adapter knows

about all agent and layer types, their attributes and the user’s desired output. It still has no

output capabilities yet, because the output registration function for the simulation entities has

to be de�ned at compile-time, so it can only assume the vague ITickClient interface (which

just says that an entity it executable).

To overcome this gap, the knowledge about the concrete types obtained from the result

con�g has to be injected in an executable fashion. This is done using on-the-�y code generation

as supposed in section 3.3.2. A logger generator reads the simulation structure and creates

output modules for all agent and layer types by writing source code. Every simulation type

gets its own class, taking the names and datatypes of the actual properties into account, as

well as the user’s output wishes. All loggers are uni�ed under a common output interface,

demanding the following functionality (see savings strategy presented in 3.3.1):

• GetMetatableEntry(): Meta structure with agent information and immutable properties.

• GetKeyFrame(): Complete output with all selected agent states for the current tick.

• GetDeltaFrame(): Output containing only states changed since the last tick.

40



4 Implementation

These methods are �lled with the type-speci�c implementations, thus allowing to output the

respective entity type. All class de�nitions are pooled in a single C# source code �le, which is

compiled using the .NET compiler platform Roslyn into executable binary code. The compiled

DLL is then loaded and injected into the runtime, making the new logger types available for

instantiation. This way, the generic core of the ResultAdapter is able to enhance itself with the

output capabilities needed to write out user-speci�c simulation types. Figure 4.4 illustrates

this initialization process and the further usage:

Figure 4.4: The simulation output system

The injected logger templates are stored in a mapping (C#: dictionary), establishing a relation

simulation type → logger type for all simulation entities to expect. This mapping is consulted

every time a new entity is created and registered at the result adapter (mainly during simulation

bootstrapping, in case of agents also possible during runtime) to lookup and instantiate a

corresponding logger. The created loggers are managed in a collection, categorized into groups

according to output frequency.

The actual output logic happens in a routine that is triggered after each simulation step.

First, the meta information of all newly added entities are written to the database, afterwards

it loops in parallel over all active output groups and the loggers they contain. For every logger,

either a key- or delta frame (see 4.2.2) is produced. These output packets are accumulated and

batch-written into a data sink, which can be either a single database or a complex event stream

processing pipeline. In addition, a noti�cation is sent to inform potential output consumers

(e.g. the visualization backend) about the availability of new data.
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4.2.2 Database & Storage Formats

MARS uses the NoSQL database MongoDB (from "humongous", referring to its scalability

and �exibility) for the storage of both con�gurations and simulation results. Unlike relational

database such as MySQL, the NoSQL approach goes without �xed tabular relations and uses

other data structures, e.g. key-value or document-based storage. This o�ers a greater �exibility

and, thus, is well suited for the storage of arbitrary simulation results. With regard to the

MongoDB, a database is partitioned into a set of collections which hold the data in form of

JSON objects. These objects use the common key-value syntax to hierarchize and express the

information.

In place of a MongoDB, it is also possible to use MARS with a complex event processing

(CEP) pipeline. The ecosystem provides two services, Kafka (a data streaming platform, used

as immediate data sink) and Cassandra (a resilient and distributed database for huge data, used

as persistency layer) for that cause. Especially large-scale simulations with a very high data

output can bene�t from such a two-part storage solution.

From the ResultAdapter’s perspective, the write-out target is transparent to the output

routine and it provides implementations for both use cases. What output target shall be used

can be set in the result con�guration dialogue and this setting is taken into account during

result adapter initialization. For most simulations, the default con�guration employing a

MongoDB is used. For large simulations, this database is distinct from the con�g database and

gets distributed (in MongoDB terminology: sharded) across multiple instances in the cluster.

The experiments described in this thesis, however, use a single instance in favor of simplicity,

because data throughput performance is neglectable.

As mentioned above, NoSQL databases use collections instead of tables as the unit of organi-

zation. The result database has a SimulationRuns collection, that keeps track of all performed

simulation runs. For every run an entry is made, telling about the model and con�guration

speci�cs, the layer and agent hierarchies, key frame ratio, tick counter and simulation progress.

This collection gets updated as the simulation progresses and is the primary information source

for all MARS evaluation and visualization tools.

For the agent output, the result adapter di�erentiates between three output formats: Meta

entries, key frames and delta frames (see the interface in 4.2.1). These formats pick up the

storage savings idea from 3.3.1 and are stored in the following collections on a per-run basis:

Meta description table (<SimID>-meta)
Though actually a collection, this structure can be imagined as a table, holding entries

for every agent that was present in the simulation run. It contains the agent identi�er
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and its type, the layer it resides on, creation and deletion tick info and all of its static

properties. If the agent is stationary, also its position and orientation are stored here.

Key frame collection (<SimID>-kf)
This collection holds a series of key frames for every agent. A key frame is a full-state

output of all varying agent attributes, i.e. the position data for moving agents and all

properties �agged as non-static. The key frames are organized and retrieved by using

the agent identi�er and frame index number.

Delta frame collection (<SimID>-delta) (optional)
The delta frame table is in terms of structure similar to the key frame table, but instead

of a complete speci�cation it only contains the attributes changed since the last tick.

This collection is optional and can be omitted in case no deltas are used.

In order to write and read the output of an agent for a given tick, the distribution over the

above-mentioned collections has to be kept in mind. The meta entry is written once, updated

on agent deletion and can be cached from the reader’s side. For the varying properties, the key

frame interval K has to be taken into account to decide whether a full-state and delta output is

required. When reading, the frame F for a tick T is obtained by using the following formula:

FT = KFT/K +
T∑

i=K·(T/K)+1

DFi

with KF and DF being an entry in the key- respectively delta frame table. Figure 4.5 shows

an example query for tick T=13 with an interval of K=5. The complete frame F13 is retrieved

by getting KF (2) and accumulating the deltas for tick 13, 12 and 11.

Figure 4.5: Write and read operations for the tick-based storage formats
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4.3 The Visualization Service

Resting on the con�guration done in 4.1.2 and the results saved in 4.2.1, this section presents

the visualization back-end service responsible for data aggregation and provisioning. In its

basics, it consists of a web endpoint for client connections, accessors for the data sources

and noti�cations and a middleware in between, responsible to handle and answer the clients’

queries. This overview is depicted in �gure 4.6, detailed explanations follow afterwards.

Figure 4.6: Components of the visualization back-end

4.3.1 Client Connection Handling

The visualization service is an application running on .NET Core 2.1, both stand-alone exe-

cutable and containerizable for cloud deployment. It employs the ASP.NET in-built "Kestrel"

server to provide HTTP- and WebSocket endpoints. HTTP is used for the initial negotiation

and for the asset downloads, including the resources for the user interface (HTML, CSS, JS) and

– on visualization start – the 3D models to be displayed. After connection establishment, the

client performs an upgrade to a full-duplex WebSocket connection to allow bidirectional tra�c,

as detailed in section 3.3.4. WebSocket connection handling is done by the WebSocketeer, a

custom module injected into the Kestrel server and called on WebSocket packet reception.

It controls the active handles, deserializes the inbound tra�c (1xx codes) and delegates the

queries and instructions to the respective client control module.

Every time a new client connects to the back-end, an own independent representation is

created to remember the simulation selection, camera position, viewing range and playback

mode of that client. This proxy has access to the service-internal submodules for scenario-,

agent-, terrain- and auxiliary data retrieval and parameterizes them with the properties of its

client in order to deliver custom-tailored query responses. The forwarding of the queries from

the WebSocket handler to the proxy requires the latter to implement the IClientCmdReceiver
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interface which is registered as query processor in the WebSocket handler and mapped to that

client. To send messages, every client representation has its own Communicator, created by the

WebSocket handler and set up to communicate over the negotiated channel. It o�ers interfaces

to send the 2xx packets and is used to transmit the replies to the front-end visualization.

Figure 4.7 shows the networking internals (left side):

Figure 4.7: Connection handling (left) & data acquisition (right)

4.3.2 Data Acquisition and Stockpiling

For the data retrieval the visualization service has multiple connectors which tap into MARS’

databases. These operations are encapsulated in the acquisition plane, providing a simple

query API to the other subcomponents. At the current stage only MongoDB instances are

used, resulting in a common database adapter and three concrete implementations. During

initialization, the back-end establishes connections to the result database, the con�guration

store and the noti�cation bus. It queries all available simulations and maintains them in an

internal structure, ready to be delivered to connecting clients. Afterwards the acquisition plane

works on an on-demand basis, as depicted in �gure 4.7.

The �rst and foremost task is of course to load the simulation results by accessing the key

and delta frame collections in the result database. Besides, also the con�guration database is

accessed to load the visualization con�gs. Whenever a client selects a new simulation, the

database adapter checks �rst if the visualization init con�g is already in memory and otherwise

downloads it. Henceforth, this con�g is provided with updates from the noti�cation system.

Via the MongoDB also several events are propagated: Simulation starts, progresses and

con�guration updates are announced as short messages in a capped collection. The visualization
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service subscribes to this noti�cation bus by means of a tailable cursor and updates its internal

simulation list, agent metatables and cached con�gurations on an update announcement.

Changes regarding the simulation list are automatically broadcasted to the attached clients via

code 211/212 messages, new visualization defaults require a client-side reset.

4.3.3 Provisioning of Terrain Assets

The provisioning of terrain data is an essential part for the visualization because it helps to

reconcile the simulation entities with the real-world and eases user orientation. To this end,

the visualization service supports multiple terrain sources. If a custom GIS elevation �le is used

in the simulation, this �le shall later be loadable for the visualization (not yet implemented).

In case no elevation is used but a GPS reference exists and the user desires to project the

result space to earth terrain, the MapBox API is accessed to facilitate streaming of real-world

heightmaps and textures. Or, if the terrain is irrelevant (e.g. for a simple, grid-based simulation),

also a �at plane can be used, optionally with a texture overlayed.

As map tile reference system, the visualization service uses the OSM tiling for real-world

terrain data or a custom, OSM-compatible system for other sources. In order to create an

unifying abstraction from the di�erent data sources so that the origin is transparent for the

client-side visualization, a coordinate conversion service is o�ered. For every client, an own

TileCalculator gets instantiated which is tied to the selected simulation and converts between

the camera- and simulation coordinate space. Internally, it maps between the GPS or self-

chosen cartesian system, the various zoom levels and the 3D engine coordinates by taking a

scaling factor into account, which can be set during visualization con�guration.

4.3.4 Map Tile Caching

Because the terrain streaming from external data sources may impose a bottleneck, a tile cache

is integrated into the visualization service. It helps to reduce the network load and improves

response time signi�cantly by saving real-world elevation and texture tiles on the server’s hard

disk. Only on cache miss, the �le has to be downloaded �rst via streaming API and otherwise

can be immediately returned.

Regardless whether the service in run on a local machine or in the cluster, memory is a

�nite resource and thus a deletion mechanism for unneeded tiles is needed. This job is done

by a cache manager that tracks all stored �les and the accesses to them. On program startup

a maximum cache size is stated (by default 350 MB) and this limit is enforced by the cache

manager by means of two deletion policies: The �rst and default option is the LRU (least-
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recently used) policy which looks upon the time of last access for a �le. It lists all cache �les

in a table, sorted in ascending order by the timestamp of last retrieval. If a new �le has to be

downloaded and the total cache size exceeds the memory threshold, the topmost entries are

removed until the limit is ful�lled again. As a second option, the LU (less used) policy may be

chosen which acts in accordance to the utilization of a terrain tile and deletes the �le with the

lowest access counter. This may lead to an undesired behavior, because new �les would be

deleted again almost immediately. As a remedial action, an immunity �ag is set to prevent the

deletion of a just downloaded �le for a limited time span. By default, this interval is set to 10

minutes of immunity.

In order to keep the cache consistent between executions, it needs some kind of persistency

to retain the entries and their properties. For that purpose a text �le is used that has a tabular

structure and contains all �les present on disk and their caching-relevant attributes (access

time, counter, path, �le size and immunity �ag). This table is sorted according to the current

deletion policy to allow a fast resumption on the next program start. Its contents are updated

in regular intervals and on service shutdown.

4.3.5 Logging & Configuration

To allow traceability and debugging, a logging system is incorporated into all components

that can be used to write messages to the standard output (console) and to a log �le. Five

logging levels are available to specify the criticality of the output; they range from critical

errors, exceptions and warnings to informative messages and tracing output. For both logging

targets the importance thresholds are set on a sub-component basis (system, networking,

client management...) during startup in the Logger service, which then is used throughout the

program. This logger is accessible from anywhere and log messages can be posted by calling

the logger with the message content and its log level.

With its many parameters, the visualization service o�ers a broad basis for con�gurations:

Data base paths, logging levels, hosting ports and terrain cache thresholds can be adjusted

to �t the current environment. All these options are preset with default values and may be

overwritten by means of a con�guration �le: The Con�gReader looks in the working directory

for a visconf.ini �le, which contains the parameters to be overwritten. If such a �le is found, it

is parsed and the defaults are substituted with the customized settings. The con�g �le uses a

simple key = value syntax, a complete reference of all parameters and their valid assignments

may be found in the repository. Please note that changes to the con�guration �le require a

program restart in order to take e�ect.
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4.4 WebGLvis – the Front-End 3D Visualization Client

Last but not least to the actual visualization: After the previous sections discussed the con�gu-

ration, output and aggregation stages, this one presents WebGLvis, the �nal link in the chain.

It is a 3D visualization based on WebGL technology and renders the simulations results in the

web browser. This section �rst describes the user interface and how it is used, before it then

proceeds with a detailed description of design decisions and realization.

4.4.1 Interface Layout and Usage

The subsequent screenshot 4.8 provides an impression of theWebGLvis visualization. It displays

an elephant herd gathered around a water hole from a savannah model.

Figure 4.8: Screenshot of the WebGLvis 3D visualization

As seen above, all user interface controls are clearly arranged one below the other at the

right side of the screen. The box on top displays the current camera position and orientation

as well as a menu for visualization-speci�c settings, like lighting, view range or manual

positioning. Below follows the simulation selection drop-down. When the user makes a choice

the visualization initializes itself to the presets, which were de�ned in the con�guration stage

(see 4.1.2) and can be updated any time. The camera gets positioned accordingly and the

speci�ed start tick is loaded (not necessarily but by default the tick 0). Also the next two UI

elements become active: The �rst selection lists all layers of the simulation together with the
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number of agents contained on them and a checkbox in order to activate or deactivate the

visualization of that layer. Beneath the layer section follow the playback controls. They have

a structure similar to the control panel of a video player and consist of four buttons which

allow the automatic stepping through the simulation (play/pause), manual navigation (one

tick forward/back) and jumps to the �rst respectively last tick. It is also possible to directly

specify the tick to render and to set the playback speed.

The camera movement in the 3D scene is made using the arrow keys or – as it is common in

many games – using W,A,S,D with the option for sideways movement by means of Q and E.

The height can be adjusted with the mouse wheel or alternatively with the +/- keys. For camera

panning the mouse is used with the right mouse button pressed down. Apart from that, the

mouse cursor can be moved freely in order to interact with the interface or for agent selection.

An agent may be focussed with a left click; it then gets highlighted in the visualization and its

additional properties are queried from the back-end. As soon as the response is received a small

tooltip window shows up in the lower right, displaying the agent’s attributes. This window

gets automatically updated on tick changes and queries the new information independently.

4.4.2 Design Decisions

At the beginning, the initial plan was to build the 3D visualization client with the popular

game engine Unity3D. After a few experiments, however, this attempt was abandoned: Even

though it may be tempting to utilize an extensive and well-known game engine, a number of

problems arise in this particular context. Unity comes with a full-�edged IDE, which o�ers a

lot of powerful features for game design, but also craves for a profound training in order to be

productive. It puts several demands on the internal structuring (e.g. the way how game objects

are built and the UI is designed) and saves the project in proprietary formats only editable by

Unity. A lot of the provided functions are not needed, because in this use-case we have no

game logic and just want is to bulk-load our entities which were preprocessed by the back-end

into the game loop to get them rendered.

Another problem is posed by the build pipeline: As it is common for games, Unity’s main

compile targets are platform-speci�c stand-alone clients. This contradicts the requirements

from section 3.1. While there is a WebGL export functionality, at the time of evaluation it only

worked for the Firefox. Furthermore, the build pipeline takes quite some time (5+ minutes)

and performs numerous compile steps from C# via assembler to mini�ed JavaScript. Because

several e�ects only occur in the production build and not in the IDE’s preview runtime, the

code is very tedious to debug, which makes the overall development a time consuming and

frustrating endeavor.
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Although the 3D engine is a vital part, it is also just one component among many others.

Apart from the rendering, an input handling is needed, networking, an internal world represen-

tation, model loaders and a lot more. For these reasons it was deemed appropriate not to focus

too much on the engine itself and that a self-developed WebGL engine – limited to the essential

features, performant and proven in previous applications – should be more than su�cient for

a �rst draft. A reasonable encapsulation assumed, the engine may be easily replaced with a

more promising solution in the future (see outlook 7.3).

Another goal is the ease-of-use, realized by means of a concise and simple user interface. This

interface shall be integratable into the MARS WebUI and should still be independently accessible

to keep the development process fast and easy. For these reasons it was decided to refrain

from utilizing sophisticated web application frameworks, such as Angular or React. Indeed,

the visualization has no external dependencies, apart from the (embedded) high performance

math library glMatrix used for OpenGL vector and matrix calculations and the Icomoon font

builder for the interface icons.

As a result, the visualization is a complete self-development, built on pure HTML5, CSS3

and JavaScript (ES5). It runs in all common browsers and thanks to the absence of third-party

modules, its core is very lightweight. The custom engine has several performance optimizations

and delivers enough power to run visualizations also on older machines. On deployment, a

custom compressor joins all visualization code in a single JavaScript redistributable with less

than 80KB of size. This allows the visualization core to load and initialize almost instantly,

even on slower connections.

4.4.3 Realization

On �le level, the visualization consists of an HTML document, a style sheet, an icon font and a

set of JavaScript classes that form the actual program. All classes are instantiated and linked

together in an initialization function, which is triggered automatically as soon as the user opens

up the visualization. The application itself is structured according to the three-tier-architecture,

a widespread software design pattern that divides a program’s components into presentation,

application logic and data layer.

In this case the lowest (level 1) tier is the provisioning layer. It contains the WebSocket

adapter that automatically connects to the visualization back-end during initialization. This

connector encapsulates the transmit and receive functionality by incorporating the network

protocol presented in section 3.3.4. To facilitate a loose coupling, the adapter works on the

publish-subscribe principle and maintains lists for all message types received. By subscribing

50

http://glmatrix.net
https://icomoon.io/#home


4 Implementation

to these lists, all further components may register for those packets relevant for them and get

called back via delegate invocation on message reception.

The opposite tier is the user interface (level 3). The structure and arrangement of the interface

controls is expressed in the HTML, the CSS describes their appearance and on JavaScript side

the behavior is speci�ed. To allow here a good modularity and separation of concerns as

well, every UI element has its own controller class. The controllers take care of their display

elements and evaluate the user input. For the purpose of communication with the middle

tier, two facades are used: The QueryRelay serves as gateway for the downstream tra�c and

has access to the relevant core components. It is exposed to the controllers and performs the

respective calls on the logic layer to put the user interactions into practice. For the reverse

direction the ResultForwarder is used. It is registered in the output-emitting core components

and in turn has access to the UI controller in order to pass changes back upwards.

In the middle between data access plane and UI is the core layer (tier 2). It performs all

the asset management as well as the actual rendering. In its heart, the WebGLEngineV3 is

located. It is a simple, yet performant 3D engine that uses the WebGL API. WebGL is an open

and cross-platform standard to make OpenGL ES 2.0 calls accessible for JavaScript and as

such allows hardware-accelerated rendering from within the browser. Drawing is done using

fragment (2D) and vertex (3D) GLSL shaders which are compiled and uploaded to the GPU.

The engine comes with inbuilt shaders, but also can be parametrized from the outside.

The engine’s main loop is a four-stage rendering routine: First the skybox is drawn, followed

by the terrain. To increase performance, the terrain tiles’ meshes are drawn as triangle strips.

Afterwards the agents and optional "doodads" (decoration objects to embellish the world) are

rendered. These entities are grouped by 3D model, so that the model is loaded once and then

reused for all objects. For that purpose the engine maintains render groups for the world assets.

On user left-click, the rendering loop executes a fourth stage, which draws a color map to an

o�screen bu�er with RGBA-encoded entity identi�ers. This allows agent de-referencing by

reading the color at the cursor position and comparing it with the o�screen VBI’s.

In order to rasterize the 3D space onto the 2D screen, the engine needs the CameraController.

This class is responsible for the camera positioning and view cone projection. It uses the

glMatrix library to calculate the model-view and projection matrices based on the current

position and orientation. Also related to the engine are the 3D structures and the ModelLoader :

The latter keeps track of all 3D assets in use and also fetches new models on demand. On �rst

use, the loader retrieves the model �le asynchronously via HTTP and loads all vertices, vectors

and textures into OpenGL array bu�ers. Internally, multiple types of scene components are

used for representation, their hierarchy is shown in �gure 4.9.
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The 3D models are stored in a .m4l �le, a custom format that features a JSON-based structure

to allow an easy parsing. It is a merge of OBJ/MTL and inspired by Blizzard’s MDX/M3 formats,

supporting submeshes, bones and animations. An broad selection of 3D models is available

and can be chosen during visualization con�g, the user-upload and conversion of additional

models is in principle possible (see outlook 7.3).

During runtime, all loaded entities are contained in the World class. They are managed by a

set of display modules, with every module having its designated task. Currently visualizers for

agents and the environment exist (layers as stub). These modules register for the respective

messages and create, modify and delete the 3D objects accordingly. The terrain is constructed in

the environment visualizer and uses a threefold loading mechanism. After a tile load instruction

was received, the visualizer inserts a (neighbor-aligned) �at tile and adds elevation and textures

when they become available. The zoom levels are managed in a hierarchy tree with transitions

to active rendering taking place as soon as all subtiles have been completely loaded.

Figure 4.9: Internal structure of the visualization client
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In order to investigate the hypotheses claimed in section 1.4.1, this chapter presents several ex-

periments. It begins with some notes on the common setup by introducing the reference model,

its parametrization and runtime environment and then details the individual experiments.

5.1 Setup

5.1.1 The Reference Model

Basis for the scalability experiments is the Wolves and Sheep model, a simple predator-prey

scenario which runs "out of the box" at an arbitrary scale and without any external data sources

required. It is a derivative of the showcase model built for the MARS-Fest held at the University

of Florida in May 2017 and consists of simple re�ex agents which use the SRA cycle mentioned

in Dalski (2017b) and incorporate a multi-tier rule-based reasoning logic.

Three agent types are accommodated in a continuous, 2D spatial environment with collision

detection: Grass, sheep and wolf agents. These types form a primitive ecosystem with the

grass being the most simple one. It is spawned at random positions in the environment based

on a restricted-growth distribution function and serves as a food source for the sheep agents.

Every sheep has a health value (game-style life points), an energy attribute and a hunger level.

These properties express the sheep’s condition and a�ect the actions it can undertake. The

decision making happens in a four-staged rule system, where the available targets and the

need for food are considered. Beside random movement (no hunger or no target perceived),

the sheep can move towards a tuft of grass, eat it, and – if a certain energy level is satis�ed

and retained for a while – reproduce themselves, resulting in an additional sheep agent.

The above actions are implemented according to the IODA (Interaction-Oriented Design of

Agents concept, developed by Kubera et al. (2011). By de�ning interaction primitives, the

actions are not bound to speci�c agent types and can be re-used in a polymorphic fashion.

This allows for the wolf agent to basically work in the same way. It lurks for sheep instead of

grass by setting a di�erent target �lter, has slightly di�erent energy values and an increased

perception range. Apart from that, it is in terms of structure identical.
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5.1.2 Parameterization

The table on the next page shows the default parameterization for the simulation model used

throughout the experiments. Please note that several rows are marked with an asterisk: This

means that the concrete value is subject to the speci�c experiment and may di�er.

Model Parameter General Grass Sheep Wolf
Simulation steps 500

Tick resolution (∆T ) 1 second

Scale * 100.000 agents

Environment * 500x500 continuous 2D

Initial distribution 60% 25% 15%

Life points 60 80 100

Initial energy 2 50 70

Viewing range - 8 10

Procreation min. energy rnd. 60 80

Procreation duration - 5 8

When using a carefully balanced parameterization (such as the values above), the Wolves

and Sheep model gets into an almost steady state and shows up the characteristic predator-prey

population �uctuations known from the Lotka-Volterra equations (as resumed by Itoh (1989)).

Figure 5.1 gives an impression of the population dynamics:

Figure 5.1: Population dynamics and execution time for a 1k run
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Although the population densities are volatile, the total number of agents largely remains

constant. For this reason it is expected to get comparable results despite the �uctuations.

Furthermore, for the visualization it is of secondary importance whether a logically complex

wolf agent or a simple grass agent is displayed. Obviously it is less costly to render a tuft of

grass, but the same streaming, rendering and update routines apply. The 3D visualization uses

the following presets for the experiments:

Visualization Parameter Value
Field of view 6500

Query range * 50

Translation mode cartesian

Elevation source none (�at terrain)

Terrain preloading 8

Initial position (25, -6, 5) (bottom left corner)

5.1.3 Simulation Configuration, Execution & Platform Specs

The reference model makes use of the LIFE Components library and is run with LIFE Core v2.7.2.

This version o�ers the con�gurable result output as presented in section 4.2.1 with all features

available. However, in this case a complete output is preferred to have all agent information as

tooltip in the visualization available. In addition only key frames are used to eliminate the need

for result preprocessing prior to delivery. Regarding the execution, two di�erent platforms

are used for the experiments. As a matter of course, a full-scale run has to be done on the

Kubernetes cluster in order to prove integration, scaling capabilities and suitability for the

MARS cloud. But unfortunately it is not possible to reserve computing power on the cluster,

nor is it guaranteed to have the same preconditions for all experiments.

For that reason, the actual comparisons are done in a smaller scale on the local machine, a

2017 13-inch MacBook Pro with a 3.5 GHz Intel Core i7 and 16 GB DDR3 RAM running Docker

18.06.0-ce. The databases are on an internal 500 GB PCI-Express �ash storage and as for the

3D visualization, an Intel Iris Plus Graphics 650 with 1536 MB RAM does its duty. To keep the

resources under control, not the entire cloud setup but only the essential services are started.

For the simulation and for experiments including live visualization, these are full-pipeline

setups (consisting of databases, model analyzer, result con�gurator, simulation engine and

visualization parts), whereas a pure visualization experiment only requires a reduced setup,

containing of a pre-�lled database and the visualization service plus browser frontend. Details

are given in the concrete experiment descriptions underneath.
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5.2 Scalability Experiments

The �rst number of experiments targets the visualization’s suitability for large agent counts

and further investigates the interplay of its settings and the resulting performance. For each of

these experiments, three runs are conducted. The averaged results are presented in section 6.1.

S-1: Large-scale feasibility
The �rst experiment measures the in�uence of the total number of simulation entities on

the overall visualization performance and responsiveness in order to prove hypothesis

H2 to be true. To achieve comparability, it uses the Wolves and Sheep model executed on

the local machine. Based on the default parameterization, three deviations regarding the

total agent count and the environmental extents are made:

• S-1.1: 1000 agents, 50x50 environment

• S-1.2: 10.000 agents, 150x150 environment

• S-1.3: 100.000 agents, 500x500 environment (default)

• S-1.4: 1.000.000 agents, 1500x1500 environment

For every setup, the average frames-per-second (FPS) of the rendering engine are mea-

sured as well as the initialization time (time from HTTP loading request until �rst tick

is visualized) and the responsiveness ("time-to-tick", the waiting time tick query → tick

display). Because a very long simulation execution time has to be expected for the last

two experiments, these are run upfront and only for 10 ticks. This means that during

benchmarking time, only the reduced setup is active.

S-2: Impact of the query range
After the scale independence has hopefully proven true, the second experiment series

aims at examining the impact of the query range on the performance and responsiveness.

The simulation results of the 100k runs of S-1.3 are re-used in the local visualization

setup and this time varying query ranges are applied:

• S-3.1: query range 25

• S-3.2: query range 50 (default)

• S-3.3: query range 100

• S-3.4: query range 150

• S-3.5: query range 200

For all experiments the averaged engine FPS, the network tra�c required to download

the visualization data and the time-to-tick as well as the number of entities visible on

the screen are monitored.
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S-3: Autoplay bandwidth requirements
The two experiments above used the manual playback for tick visualization. This third

series investigates the bandwidth requirements for various autoplay settings as well

as the processing load on both sides. This time the results of the 10k runs (experiment

S-1.2) are visualized, because we want to try out even high TPS settings which might

not be possible on the 100k run. Still, the same the visualization presets apply.

• S-4.1: 0 ticks / second (o�)

• S-4.2: 2 ticks / second

• S-4.3: 5 ticks / second

• S-4.4: 10 ticks / second

• S-4.5: 15 ticks / second

S-4: Cluster integration and visualization over internet
Given that the previous experiments succeeded, the last trial is executed in the MARS

cloud and shall demonstrate that the visualization is completely integrated and cluster-

capable. It uses the same setup and measured values as the 100k run (S-1.3), with the

di�erence that the simulation is executed in the Kubernetes cluster. The results are

displayed live, using the visualization service deployed in the MARS infrastructure and

the integrated frontend with all tra�c being routed through the internet.

5.3 Proof of the Generality Claim

Hypothesis H1 claims that this visualization shall be of a general character and applicable to a

variety of di�erent simulation models. In order to prove this, it is attempted to visualize two

selected models which di�er considerably from the predator-prey scenario. Both models are

developed and elaborated by the MARS Group in cooperation with external stakeholders and

use geospatial real-world data.

5.3.1 Transfer to the Smart Open Hamburg Model

The �rst real-world showcase is the Smart Open Hamburg model, a tra�c simulation developed

by Weyl et al. (2018) of the MARS Group. As a part of the ahoi.digital initiative to promote

local cross-university research projects in the �eld of computer science, this model is developed

together with the Hamburg University (UHH). It features a random car driver model taking

place in the streets of Hamburg. An arbitrary number of car agents can be instantiated in

the vicinity of the Bramfeld district, located in the north-eastern part of the city. The street
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network is expressed as a graph stored in an ArangoDB and made available to the agents

by means of a custom spatial graph environment. The cars move along these edges with a

resolution of one second per tick which allows a real-time simulation and visualization.

At every intersection, a car chooses randomly a new road to continue its journey. Though

this behavior produces no meaningful results, it generates street tra�c and o�ers a good

opportunity for 3D visualization of urban scenarios. A car possesses several static attributes,

like its length, acceleration and the safety distance to adhere to the preceding vehicle. Dynamic

output properties are the current speed, targeted speed, current tra�c lane and of course the

position, expressed as a (long, lat) GPS coordinate.

The tra�c simulation is run online with the latest version of LIFE currently available (v2.7.2),

all properties �agged for output and in a full-pipeline setup. 500 cars are spawned and simulated

for 1000 ticks with the visualization switched on as soon as results become available. The car

positions form the connecting link between the simulation results and auxiliary data, because

they allow the streaming of real-world terrain information with the cars projected on top of it.

The backend’s terrain provisioning service delivers map tiles for the query area as presented

in section 4.3.3 and renders them using street textures and satellite imagery of Hamburg.

5.3.2 Transfer to the Kruger National Park Model

A simulation model of the Kruger National Park in South Africa (in short: KNP model) serves

as the second showcase for the visualization’s versatility. It is developed as part of the joint

research project ARS AfricaE which aims to investigate the resilience of Southern African

savannah ecosystems to land use and climate changes in order to predict ecosystem dynamics

and to develop sustainable management strategies. Together with three other German and six

South African partner institutions, the HAW Hamburg participates in this project with MARS

situated in the third work package responsible for data integration and IBM.

The KNP model features two agent types: Elephants, which live in herds and roam the

park in search for food and water and Marulas, a dominant tree species serving as food and

shade source for the elephants and also usable as biomass indicator. The elephant agents

incorporate several movement patterns, herd a�liation and a nutrition and maturing lifecycle.

They move, drink and eat the Marula fruits, through the latter they also spread the Marula

trees to new regions. Real-world elephant data containing position, herd a�liation, sex and

age were in advance collected, allowing to instantiate 7500 elephant agents from a CSV �le.

The Marulas, on the other hand, express a growing function, fruit generation and aging and

also are initialized from a CSV �le. By means of image recognition and random distribution,

roughly 5 millions of Marula trees were generated and can be deployed to the simulation.
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Apart from these two agent types, also manageable water holes were realized as agents

which can be optionally integrated to allow the simulation of di�erent water management

strategies. KNP utilizes a multitude of data layers fed by source �les to integrate environmental

features: IPCC time-series data are used to depict di�erent scenarios for precipitation and

temperature changes. Shade and biomass distributions are available as GIS raster layers (ASC

�les), the borders of the national park and its rivers are expressed using GIS vector layers

(SHP �les). The total area of KNP spans almost 20.000 square kilometers, making it certainly a

large-scale simulation.

For initialization, the KNP model requires the above-mentioned agent init CSVs, time-series

and GIS �les as well as a mapping in the WebUI, which assigns all these �les to their respective

simulation entities (agents and layers). A full scale run with all �ve millions of agents is

attempted and due to the resource requirements it has to be executed and visualized online.

100 ticks are simulated with an hourly resolution, beginning at midnight of August 1st, 2010.

Regarding the output and visualization con�guration, all agent data are written out in every tick.

The movement types (elephants: mobile, trees and water holes: stationary) are appropriately

set, all static attributes �agged accordingly and the visualization con�g assigns �tting stock 3D

models. It uses the default camera settings, real-world terrain and satellite imagery as overlay.

5.4 Added Value for Simulation Evaluation

In the course of the introduction it was multiple times emphasized that a 3D visualization

should be particularly suitable for non-scientist users and shall o�er an intuitive and simple-

to-use result presentation tool. H3 claims this added value for the evaluation purpose and

suggests a survey of di�erent user groups to support this statement. This section elaborates

the survey by de�ning the user groups, the tasks they shall carry out and the questions asked

in order to get feedback.

5.4.1 Conduct of Survey

Three target groups are formed for the survey. These audiences shall represent di�erent

knowledge levels, �elds of activity and objectives to be achieved with the visualization:

1. Domain specialists: The main focus lies on the MARS end users, mainly involved in

building and evaluating simulation models. For that reason people from the application

domain form the principal user group. Modelers of the KNP scenario and guest students

were asked to evaluate the visualization for their needs and to give feedback of how

useful it is for their purposes.
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2. MARS developers: Next to the opinions of end users, also the appraisal of the MARS

platform development team is of importance. They know the structure and realization

of the entire MARS system and can direct their attention to technical features, such as

extensibility, performance and maintainability during the survey.

3. External people / bystanders: As a third group, persons with no a�liation to MARS and

the simulation business are surveyed. Unbiased by technical or domain aspects, this

group will most likely rate the visualization on how intuitive the controls are, clarity of

the user interface and visual quality and gives insights on the suitability for presentation

purposes and usefulness for external stake holders and decision makers.

For each group, multiple individuals shall be asked to conduct the tasks mentioned below

and to give feedback by answering a couple of questions during or after the evaluation. The

survey is done in the online deployment and covers the following activities:

• Basics (movement and playback):

– load the 3D visualization (the direct link for a publically available, pre-simulated

Wolves and Sheep scenario is supplied)

– change the perspective by moving the camera around

– select an agent to retrieve additional information

– use manual playback to display the next ticks

– enable the autoplay feature and change playback speed

• Con�guration:

– open the result con�guration dialogue for the model (link given)

– change the 3D models

– set a new initial camera position and change the skybox

– perform a live-reload with the new settings

• Advanced (scenario switching and display settings):

– use the top-down view camera lock

– increase the query range

– switch to another simulation (link for small-scale tra�c scenario given)

– set the camera to a speci�c real-world position

– change the terrain texture overlay

The actual task description is embedded in a short tutorial and can be accessed as HTML

document (survey.html) on the server.

60



5 Experiments

5.4.2 Survey Criteria Definition

The user’s satisfaction with the 3D visualization shall be made measurable by compiling

a questionnaire. This form is divided into four sections and asks concrete questions to be

answered by using rating scales. Five options are presented, ranging from "strongly disagree"

over "neutral" to "strongly agree" and the questions intentionally vary between positive and

negative statements to encourage a more thorough reading and consideration. In addition, free

text �elds are provided to allow the respondent to give own feedback.

• Usability:

– The user interface looks sleek and clean
– I �nd the panels and buttons descriptive and had no problems following the tasks
– The camera movement and interaction options are straightforward and intuitive
– The visualization worked correctly on my device and in my browser
– The external result and visualization con�g tool is easy to use
– I would still prefer an integrated solution instead of a separate tool

• Evaluation:

– The 3D scene makes it easy to understand the model’s behavior
– I used the agent tooltip to track the agents and their properties
– The automatic playback mode is bene�cial to validate movement pattern
– [For modelers:] I would use the 3D visualization for my simulations

• Visual quality:

– The visualization is appealing and pleasant to watch
– Auxiliary features (terrain textures, skybox) help to create immersion
– I think the lack of animations is a serious shortcoming
– I would like an interpolation between the ticks during automatic playback
– What about custom models? I want an uploader!

• Performance:

– The visualization initialized fast
– The rendering and camera movement was smooth
– I experienced some breakdowns and had to reload everything
– I consider the ine�ective terrain loading algorithm a major showstopper

The questionnaire was built using the online form builder JotForm and is embedded in the

survey.html �le. Section 6.3 of the next chapter presents the result of the survey, averaged over

all participants in their respective group.
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6.1 Scalability Evaluation

The �rst set of experiments dealt with the scaling capabilities of the 3D visualization and

its backend. Section 5.2 presented a series of local and remote benchmarks regarding the

implications of di�erent agent counts, query ranges and autoplay settings. In order to get

sound results, for each experiment three simulation runs and three visualization repetitions

were made, resulting in nine measurements. This evaluation is based on the averaged data.

6.1.1 Local Test Series

Series S-1 examined the large-scale feasibility by running local simulation & visualization

setups with up to 1 million of agents. The loading times (�rst start, reload, backend initialization

and time to next tick) were tracked as well as the frames per second of the 3D engine.

Agent Count Init Time Reload Time AMT Init Time-to-Tick FPS
1.000 1.721 ms 1.361 ms 360 ms 43 ms 60

10.000 3.281 ms 1.363 ms 1.918 ms 162 ms 58

100.000 3.662 ms 1.205 ms 2.457 ms 500 ms 58

1.000.000 26.567 ms 6.392 ms 20.175 ms 5.283 ms 57

As the above table and the data charts �gure 6.1 on the next page show, the in�uence of

the agent count on the visualization is very minor. There is always some basic e�ort of 1-2

seconds for initial loading needed (HTTP request, data transfer, JavaScript parsing etc) which

shows up in the 1k initialization and the reloading times. For 10k and 100k, the initial loading

times doubled, but though the agent counts for these runs deviate by factor 10, the loading

times stay relatively close. The reloading times for 1k, 10k and 100k are almost identical,

meaning that the frontend setup is mostly una�ected by the total agent count. The di�erence

between initialization and reload is that in the former case, the backend has to create the agent

meta table (AMT) for that session, while in the latter case it is only necessary to perform a

recalculation of the camera’s �eld of view and an alignment with the provided data.
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Figure 6.1: Impact of agent count on loading time and FPS

This gap between frontend and backend init time manifests in the last run with 1 million of

agents: An increase in frontend init, reloading and backend init time was observed, ranging

between factor 5 and factor 8 of the 100k run loading times. Considering that the agent count

was raised by factor 10, this growth is of linear time complexity. The critical factor in that case

is the AMT initialization, which takes 3/4 of the total loading time. If this could be optimized

(see section 7.2), the initialization time may drop signi�cantly. Notwithstanding, the higher the

agent count, the more data have to be processed in the backend for the query range evaluation

and for that reason, the reloading and tick-query times inevitably increase with the number

of simulation entities. On frontend side, nothing of this backend preprocessing is witnessed

(despite the increased waiting time) and the engine runs smoothly at around 60 frames per

second all the time.

As next local experiment, di�erent query ranges were evaluated. Series S-2 measured the

network tra�c required for initialization (T0) and next tick updates as well as the time until

the requested tick is actually rendered. It also recorded the number of agents on screen and the

engine performance. The data are presented as table and charts in �gure 6.2 on the next page.

Both tick inquiries comprise a query for the complete area around the camera, whereby the

initialization download includes both stationary and mobile agents. For further tick updates

only the moving agents need to be considered, resulting in messages with approximately one

third of the original size. A doubling of the query radius increases the packet size by factor 3

to 4 for both cases. Note that on camera movement additional messages would have to be sent,
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causing the update measurements to vary. The size of these additional messages depends on

movement speed and direction but is de�nitively and signi�cantly lower than the loading of

the complete area, because only the new bu�er zones have to be loaded. To avoid this trouble,

the recordings for the above experiments were done with the �xed position stated in the setup.

The last experiment uses the eightfold of the query range compared to the �rst trial and

the time-to-tick exhibits a restricted growth, not more than doubling itself. As was pointed

out above, the time-to-tick is mainly caused by the backend-side intersection of the �eld-of-

view. The same query routines apply, the range only a�ects the number of agents selected for

retrieval and thus does not raise the response and processing time too much. It still increases

the number of objects visible to the user exponentially, putting a heavy load on the 3D engine.

As consequence, the frames-per-second drop down to less than 20 FPS for the last trial. This

being the case, the FPS drop makes higher query ranges pointless.

Query Range Init DL (T0) Update Tick Time-to-Tick Visible Objects FPS
25 19 KB 6 KB 399 ms 388 60

50 66 KB 20 KB 480 ms 1.355 57

100 236 KB 70 KB 626 ms 4.817 36

150 507 KB 152 KB 778 ms 10.257 24

200 877 KB 263 KB 837 ms 17.648 19

Figure 6.2: Query range e�ects comparison

After careful consideration the query range can be determined as the most important factor

for rendering performance and network load. That being said, it depends on the average agent

density which has to be determined separately for every simulation!
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The last local test series S-3 observed the impact of various autoplay settings to the resource

demands of the visualization. Based on the 10k run, the loads for the client’s CPU (packet

processing), GPU (rendering performance) and the server load (result preprocessing) as well as

the packet downstream were recorded. The results are presented and visualized below.

Ticks per Second Frontend Load Rendering Load Server Load Bandwidth
0 15 % 53 % 1 % 0 KB/s

2 17 % 55 % 2 % 26 KB/s

5 23 % 54 % 6 % 71 KB/s

10 27 % 57 % 10 % 138 KB/s

15 32 % 63 % 13 % 165 KB/s

Figure 6.3: Processing and network load generated through autoplay

From the measurements it gets evident that an increase of the autoplay speed also craves

for more resources. This behavior was expected, because just like for the manual playback,

for each tick a range query on the entire data pool has to be made. With the server being

responsible for this data pre-selection, it takes the main share of the load and its CPU demand

rises the more frequently a tick is queried. The graph shows an almost linear increase from 1%

when idle up to 13% at 15 TPS.

For the visualization client, every received tick requires to be incorporated into the 3D scene.

The measured data above display almost the same increase for the CPU load, shifted by 15%

base load (spent for user interface, network listeners and scene maintenance). Though the
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maximum load of 32% for 15 FPS seems to be much higher than the server load, the client’s

total increase is roughly by factor 2, whereas the server load had multiplied more than tenfold.

Regarding the GPU load, an increase from 53% running idle up to 63% at 15 TPS could be noted,

showing that the autoplay frequency only has a minor in�uence on the 3D rendering.

The most important measured value for the autoplay is the bandwidth requirement. With

the majority of users presumed to be connected via internet, the available bandwidth speci�es

the upper limit for the TPS. For this 10k run with the default query range of 50, it showed a

linear increase of ~13 KB per tick and second. The graph �attens out at the end, indicating that

the time-to-tick was overshot and the actual tick rate would be more likely 12-13 TPS.

Recapitulating, it can be said that the autoplay setting plays a sensitive role for the frontend

and backend performance. In order to prevent users from setting ridiculously high TPS values,

the control element is restricted to 15 as the maximum value. Another self-regulating value

is the latency ("time-to-tick") which impedes more frequent queries for large simulations or

locally dense agent populations and thus automatically con�nes the load on server and client.

6.1.2 Cluster Integration

After the local scalability experiments delivered good results, it was then time to move to

remote execution and to prove the cluster integration (experiment S-4). As stated in 5.2, a 100k

version of Wolves and Sheep was uploaded, simulated with LIFE v2.7.2 and displayed with the

VisualizationService in v3.0.9 (special version with benchmarking output enabled).

The experiment succeeded and is depicted in image 6.4 on the next page. The simulation

run proceeded swiftly and the visualization initialized in about 2.7 seconds on average, which

is 1/3 faster than the local run conducted during S-1.3. First, this seemed odd, because the

visualization was run via internet and larger loading times were expected after all. The reduced

loading time, however, was owned to the fact that the construction of the agent meta table

takes a considerable amount of time, if it is not yet present (refer to the evaluation of S-1). With

the visualization service running in the cloud infrastructure, it has more computing power to

its disposal and gets this job done in about 60% of the time needed in the local setup.

The more potent host also allowed faster database queries and view range calculations,

which dropped the time-to-tick by approximately 30%. Regarding the FPS, it has no e�ect

whether the data originate from a local or remote source, which was as expected. But the

reloading time was almost doubled (2.2 seconds), caused by the inevitably slower network

connection. Though the university’s network in general has more than enough bandwidth

available and the WebSocket-via-Ingress con�guration worked well, two connection failures

arose and the link had to be re-established.
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Figure 6.4: Execution of the Wolves and Sheep 100k run in the ICC cluster.

The wolf and sheep 3D models are property of Blizzard Entertainment.

6.1.3 Scalability End Result

Considering the results of the local test series and the online execution, it can be concluded that

the 3D visualization has good scaling capabilities and it delivers a decent performance for the

most scenarios. Of course the performance cannot be completely independent of the simulation

scale, because at some stage a processing of the complete result space has to be done and this

task inherently grows in expense the larger the data are. However, the visualization copes very

well with high agent counts, has low bandwidth requirements and o�ers a convincing client

performance on commodity hardware. Regarding the server-side, the cluster execution proved

that more resources allow for a faster pre-processing and the outlook in section 7.3 provides

additional hints on performance optimizations.

Due to the above restrictions, it shall be said that hypothesis H2 (scale/performance independence)

is "largely" true.
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6.2 Universality and Portability to Other Use Cases

The goal of the portability experiments was to prove the generality claim of hypothesis H1. To

this end, two real-world models were executed and 3D-visualized.

6.2.1 Visualization of Smart Open Hamburg

The �rst real-world showcase was the Smart Open Hamburg tra�c simulation, described in

experiment section 5.3.1. The required graph database was already running in the cluster and

no model changes were needed, so the only thing left to do was to upload the model archive to

the MARS cloud and to create the con�gurations. A total number of 500 car agents was set,

running for 1000 ticks and with full output. As visualization setup, a yellow car 3D model was

chosen to represent the car agents and the camera was preset to give a perspective view on

the Bramfeld district.

Right after simulation start, the visualization was enabled. It loaded the cars at their initial

positions very fast, although it took some time to fetch the surrounding terrain tiles. The

camera movement was smooth and the engine ran constantly at a high frame rate, providing

55-60 FPS at any time. The time-to-tick stayed around 50 ms, allowing hypothetical autoplay

settings of up to 20 ticks per second. With the camera staying at a �xed position or moving

within close proximity to the loaded area, the overall performance was quite satisfactory.

One of the biggest problems perceived was the streaming of the real-world terrain (elevation

and textures). The current algorithm loads a radius of map tiles for the given zoom level and has

no transitions between these levels, e.g. to render tiles far away in a lower detail or to perform

a smooth zoom in and out. This causes an unnecessarily high waiting time, in particular on

zoom level change, which currently requires a complete reload. Especially when using satellite

imagery, whose textures are about 5 times bigger in size, the loading times increase rapidly.

Beside the large �le size, satellite textures also made it more complicated to recognize the car

agents, which is why the default street map overlay was chosen instead.

During the automatic playback, the visualization proved its value for debugging purposes. It

showed up that the cars’ orientation values were not properly updated when choosing a new

road. This bug – probably hard to �nd when working with the plain data – became totally

obvious by mere observation.

Screenshot 6.5 gives an impression of the visualization in action. The scene shows a view on

Bramfeld at the intersection Bramfelder Chaussee / Steilshooper Allee in northern direction

right after simulation setup (tick 3/1000). At the time of the screenshot, the simulation was

still running and provided the visualization with a constant update stream.
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Figure 6.5: Smart Open Hamburg scenario visualized

6.2.2 Visualization of the Kruger National Park

The second showcase was the Kruger National Park (KNP) model which was described in

section 5.3.2. Compared to the original model and experiment description, two small alterations

were made: First, for the time-series data an in-memory time-series layer was used, which

directly reads the CSV �les for temperature, precipitation etc. and does not require an external

In�uxDB instance. With this modi�cation, the model was uploaded to the MARS platform and

initialized as a large-scale run. This run, however, was aborted after a while in order to speed

up the setup and execution time. Instead, a 12k run with all 7500 elephants and 5000 marula

trees was performed.

The visualization was started as soon as the �rst few ticks were done and initialized in

reasonable time. As default camera position an area east of the Skukuza Camp was chosen for

observation. Several zoom levels, camera angles and view settings were tested and in general

the 3D visualization came up to the expectations. Two takes are presented in �gure 6.6 on the
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next page, one giving a map overview of the scenery and the other one featuring a ground-level

view portraying an elephant in close-up.

A more thorough look at the scene from above also helped to discover some potential �aws

in the model. As it gets visible from the upper screenshot, the reduced marula agent count did

not lead to a more sparse yet even distribution, but rather resulted in one elongated patch with

a very dense vegetation. Furthermore, the placement does not take any other terrain features

into account, resulting in trees standing on the road and growing in the middle of a river.

Regarding the elephants it seems that the herd a�liation does not work as expected, because

when looking at groups of elephants standing closely together, the individuals most often have

distinct herd IDs. For the latter observation it also turned out that an hourly resolution is not

so suitable for the visualization in 3D because it allows the elephants to interact and move

over large distances, which makes it hard to track an individual.

For the visualization itself, a few shortcomings could be noted. Right now, the marula

trees have a huge impact on the rendering performance, because the current model is way

too detailed (around 64k polygons) and another level-of-detail for far-range trees is urgently

needed. As a remedy, an adjustment of the query range to 0.1 helped to cull a majority of those

trees further away and gave an acceptable performance of 6-10 FPS for roughly 2000 entities

to be rendered. When disabling the marula layer, the FPS rebounded to the usual 55-60.

Another problem was the terrain loading mechanism and the same problems as for the

Smart Open Hamburg model occurred. In addition, it seems that for some tiles and zoom levels

no elevation maps are available from the Mapbox API, resulting in zero-elevation tiles ruining

the scenery. For that reason, the elevation on the two screenshots was disabled by setting the

height source to "none / �at area" in the ResultCon�gService.

6.2.3 Assessment of the Generality Claim and Usefulness

In summary, the 3D visualization worked very well for these two very disparate simulations.

Despite the terrain streaming problems discussed above, the visualization proved to be capable

of both cartesian and real-world geospatial scenarios, independent of the domain and simulation

scale. When it comes to model evaluation and debugging, the 3D view turned out to be a

bene�cial and intuitive tool. And last but not least, the usage of the 3D visualization only

requires a minimal con�guration overhead from the user. For every agent type a model needs

to be chosen, the initial camera position has to be set and that’s it!

In conclusion, the hypotheses H1 (generality claim), H3 (evaluation/debugging value) and H4 (low

con�guration overhead) can be con�rmed to be true.
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Figure 6.6: Map view on the Kruger National Park and elephant in close portray
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6.3 External User Feedback

The user survey of section 5.4 was forwarded to roughly 35 persons across several channels.

Unfortunately, the survey found little reaction and only four submissions were received.

Looking back, the question arises whether the public interest was too low, the time requirement

too high or if maybe the long description text scared away people right from the start. A

statistical interpretation is senseless for four submissions, but nevertheless these results shall

not be ignored because they o�er a very positive feedback and valuable suggestions.

The survey started with usability questions and on the topic of ease-of-use and interface

design the attitudes varied widely. This was just as expected – what seems to be pretty and

intuitive for one person, may be functional for the other and counterintuitive for the third.

However there were no negative answers, but largely positive votes and the visualization

worked trouble-free on all systems (apart from some network problems, see below). Regarding

the separate con�guration tool, some contradictory views came up and the majority would

favor an integrated solution, though at this point in time it is unclear how the overall pipeline

may be altered to serve this task.

Outstanding feedback was received on the questions regarding the visualization’s bene�t

for result evaluation. All participants stated that they would de�nitely employ this tool and

extolled the knowledge gained by 3D rendering. The possibility for automatic playback enjoyed

popularity and also the tooltip-based agent attribute explorer was met with a very positive

response. After that, the solution’s visual quality was rated. The overall reception ranged from

good to very good, but regarding future extensions, opinions tend to di�er sharply: While most

respondents consider animation as a non-vital but helpful addition, one person was completely

against it. In a similar way, one half does not care about the movement interpolation, while

the other half judged it irritating. More consensus could be reached for the uploading tool for

custom 3D models: Nobody thinks negative of it and for many this is a requested feature.

Though several bottlenecks exist, all participants were content with the current performance

and loading times. The ine�cient terrain loading algorithm was still tolerable for the most

users and the engine and movement smoothness was satisfying. But many people su�ered of

network problems and for further development, the elimination of this cause of trouble should

be given priority before additional features are implemented.

As last action, the surveyed users were asked to rate their overall level of satisfaction. For

this rating, the visualization achieved a gratifying value of over 90%! Also the comment text

�eld provided helpful insights into desired additions or changes, e.g. for other control options

or new 3D models. In summary, the survey took a disproportionate e�ort but was bene�cial.
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With all the experiments conducted and evaluated, the time has come to draw a conclusion of

what was done and achieved in this thesis. This chapter comments in retrospect on the goals

de�ned at the outset and also presents some starting points for future work.

7.1 Achievements

At the beginning, this thesis made four assertions the visualization shall adhere to: First

and foremost it claimed that it should be possible to design and build a model-independent

visualization that works regardless of the simulation’s scale and thus can cope with millions of

agents situated in vast, real-world terrains. Of course, such a visualization is not an end in

itself, but should rather serve as a valuable evaluation and demonstration tool for modelers

and non-expert users alike, which requires a high degree of usability.

When looking at the results from chapter 6 and the subsequent discussion, it becomes

clear that these goals were by and large reached. The portability experiments proved an

independence of the domain and showed that the visualization handles arti�cial and real-world

scenarios equally well and does not make a di�erence whether it is a predator-prey scenario, a

tra�c simulation or an ecology model. Also the scaling experiments had the desired outcome

and con�rmed that the client’s query range around its current camera position is the pivotal

factor for visualization load and performance, not the total agent count itself. However, the

large-scale runs showed that there is no complete independence – as conclusively discussed

in section 6.1.3, all data have to be processed which inevitably leads to longer loading and

waiting times the larger the datasets are. The next chapter 7.2 addresses this shortcoming more

detailed. Until then, the visualization only provides limited scale-independence.

That a 3D visualization is useful for simulation debugging and evaluation became apparent

multiple times: For instance, the bugs found during the portability experiments manifested

almost on their own by mere observation. Furthermore, the user survey returned a very

positive feedback. Though the degree of participation was less than hoped and expected, the

public opinions were across-the-board impressed and uplifting. Almost all participants praised

the evaluation capabilities and the majority liked the user interface and a�rmed its usability.
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To sum it all up, the solution designed and built during this thesis satis�es most of the self-

de�ned goals. As a concluding remark and as a personal perception, I am very content with the

achieved result. Even though the current state of the visualization is still far from �nished and

the road to it was long and winding – this endeavor was challenging, instructive and loads of

fun at the same time! I hope that this visualization does a good service for the MARS platform

and in particular for all fellow students maintaining the project and all modelers building on

MARS. The next two sections shall guide a way to future improvements and further additions.

7.2 Unresolved Issues

During experimentation and test evaluation a couple of issues came up that should be tackled in

near future. The main culprit for the long loading times is the construction and maintenance of

the agent meta table (AMT). For the current solution, this in-memory table is the key structure

to manage the agent data and essential to avoid database queries for every single action the user

performs. Still, for the initial creation all agent metadata have to be retrieved from the database

and need to be processed, which adds to the waiting time for the �rst client connection (0.3s

for 1.000 agents, 20s for 1.000.000 agents, refer to section 6.1).

Even worse, when live-watching a simulation, its AMT is not read-only but gets constantly

updated. For every spawned agent an entry has to be added and for removed agents, the

deletion �ags have to be set. Ultimately, if these changes a�ect stationary agents, they have to

be synchronized with all watching clients which are in viewing range. All these maintenance

measures require a high degree of work, especially for fast-paced simulations or when doing

this task for multiple simulations at once. As a consequence, the server load raises and the

connection latency increases as well, but currently no more elaborate algorithm was devised.

Another problem with serious impact are the occasional connection failures which occur

when the visualization service is deployed in the ICC cluster and accessed externally. These

failures require a re-connection, but often the users don’t realize what’s wrong right away

and �rst wonder why nothing works anymore. Without Kubernetes or when running in a

local cluster no problems occur, so potential causes of failure may be the university network

which is known to be liable to break down, the ICC cluster’s internal networking or the Ingress

con�guration. To narrow down the options, one might run the services in another cluster or

host it in the HAW network directly and a possible remedy would be to automatically detect

connection failures on the client-side and to negotiate a new connection. Nonetheless it makes

sense to �rst investigate the source of the connection problem.
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7.3 Outlook

The current visualization solution is far from perfect, but rather a practical and purpose-

oriented �rst draft. This section presents a number of ideas for usability and performance

optimizations for the complete pipeline in general and for the 3D visualization in detail.

Pipeline Optimization & Simpli�cation

• Automated change behavior analysis: One major downside of the current output system

with the storage saving strategies of section 3.3.1 is the increased overhead for the user to

�ag the static agent attributes accordingly. This process is both laborious and error-prone

and may be replaced by an automated mechanism. In order to determine the change

behavior programmatically, the Re�ectionService of section 4.1.1 needs a major overhaul

and has to perform a tracking of all attribute assignments throughout the code in order

to detect whether it is only written once or may be changed during runtime.

• Improved service coordination: The ResultCon�gService, the ResultAdapter and the Visu-

alizationService form the backbone for the 3D visualization and work closely together.

Right now they use a ring-bu�er messaging system to propagate change events among

themselves. A more elaborate communication with interest management could help

to reduce unnecessary communication and increases performance. For example, no

simulation updates with agent details have to be sent if there is no client live-watching

that simulation and therefore no AMT has to be maintained.

• Custom heightmap loader: Initially it was planned to provide a �le loader for custom

heightmaps. Unfortunately, such a loader could not be realized in the available time. Still,

it would be considered bene�cial to o�er this opportunity to the user, because currently

no terrain for simulations with custom coordinate reference can be used. Such a loader

would be realized as a terrain provider plugin for the backend service and should o�er

support for common GIS formats (such as ASC) and maybe PNG or RAW image �les.

• 3D model uploader: The addition of new 3D models is currently a manual process, re-

quiring a number of preparation steps and a fundamental understanding of 3D modeling.

Tools like Blender and a custom converter have to be used and the generated model

needs to be uploaded and added to the model index. This task is tedious and a model

uploader tool which accepts OBJ models and automatically takes care of these conversion

processes may be of great bene�t.
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3D Visualization Improvements

• Professional game engine: With the 3D engine being just one small building block in

the entire system, it was deliberately decided to keep it as plain and simple as possible.

This weighting of a quick "DIY" solution versus an external subsystem with complex

API, update and build processes was detailed in section 4.4.2. Nonetheless it can be

worthwhile to start a second attempt to incorporate e.g. Unity 3D, Unreal Engine 4 or

Unigine to deliver a stunning and state-of-the-art visual experience.

• Animation: The usage of 3D animation to express an agent’s actions may help the

spectator to discover what happened in the simulation and gives the impression of a

vivid world, resulting in a higher immersion. However, it also poses a serious implication

for the model design, because the rei�cation of (inter-)actions becomes obligatory and

an action-animation mapping is required. On 3D model side, a basic set of animations for

commons actions is needed, such as walk, run, idle, die, spawn, and maybe eat or drink.

It remains questionable how to add custom animations for concrete simulation models.

Fortunately, the majority of the surveyed users rated this as a rather unimportant feature.

• Interpolation: Owing to the fact that the simulation is executed in discrete time intervals,

the 3D entities cannot move smoothly between the ticks but jump though the scene. This

makes it more di�cult to track the agents and also has a negative impact for presentation

purposes. A possible remedy could be to use (linear) interpolation between the positions

for tick transitions, though this adds massively to complexity and implies an agent

movement not covered by the simulation. For that reason, a considerable part of the

users doubt if this is useful.

• Layer visualization: In the current release, the layer visualizer is just a stub, providing

no functionality. It has to be implemented on both client- and server side in order to

transmit and render layer information, such as time-series values. Beforehand it needs

to be elaborated how these data shall be visualized.

• Touch screen control: Currently, the 3D scene navigation only works with keyboard and

mouse or touchpad input. With tablets and smartphones becoming omnipresent, the

support for touchscreen devices would be a suitable extension. Technically this is an

easy task, but prior to the realization a clever navigation concept has to be developed.
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