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Abstract 

This thesis deals with the possibilities to learn from medicine how to apply deep learning 
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Abstract 

Although artificial intelligence has had its neuroscientific beginning with artificial neu-
rons more than three quarters of a decade ago, it still remains a promising research field 
with highly anticipated applications. Deep learning in particular has shown rapid devel-
opment over the course of the last five years.  

This thesis deals with the advantages of this progressive technology using deep neural 
networks over traditional machine learning approaches. In addition to an introduction to 
artificial intelligence, common machine learning algorithms were described for a better 
understanding. The main focus lied on the transfer of technology not only from academia 
to the private sector, but also from the medical industry to aviation. Given the background 
in aviation and engineering, the problems regarding the aviation industry were known. 
Moreover, methods of problem understanding were used on-site in the maintenance shop 
based on Toyota’s model of genchi genbutsu to understand the problems profoundly. On 
top, creativity sessions helped detect novel use cases worth considering. The use case of 
autonomous visual inspection with the help of deep learning, referred to as AutoInspect, 
was described extensively in this thesis, alongside with the similar medical use case of 
exon detection to build transfer links. The research subject was detecting damages, in 
particular lightning strike damages to the aircraft’s skin, with deep learning. Additionally, 
the preprocessing was done for one example of lightning strike damage to show how an 
image input to a machine optimally should look like. From the findings, it was derived 
that medicine and aviation have a lot in common when it comes to implementing a pow-
erful AI technology. Throughout the aircraft’s and patient’s journey, there are many dock-
ing points that allows deep learning to enhance services, predict states and fulfill tasks 
that are difficult for a human or traditional machine learning approaches, and derive val-
uable knowledge from data in a dimension that was impossible until now. 

The thesis ends with the description of future research topics of the AutoInspect concept, 
which includes an autonomous unmanned aerial vehicle, online detection function, and a 
mapping of the findings on a three-dimensional aircraft map. Of further research interest 
is also the integration of a deep learning system in a complex real-world environment like 
the maintenance hangar, and a standardized process for high-quality data acquisition to 
relieve the bottleneck of deep learning.
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1 Introduction 

Artificial intelligence (AI) is seen as one of the forward-looking technologies of the next 
ten years. Despite that since several decades there are efforts to intelligently design a 
machine, the issue still remains interesting and seems to create added value in action with 
other promising technologies. While applications like chat bots and translation tools are 
already in use today, other fields like predictive analytics and general machine intelli-
gence are still topics of the future. Exactly the latter seem to be very interesting for in-
dustries like general mechanical engineering and production, automotive, aviation and 
other focal subjects like industry 4.0, machine communication and piloted driving. 

In the 2017 Gartner hype cycle for emerging technologies (fig. 1.1), the extensive imple-
mentation of machine intelligence in autonomous vehicles for example, is expected for 
the coming ten years (Panetta, 2017). Machine learning was at the climax of the hype 
curve, the peak of inflated expectations, in 2016 and one year later still remains near that 
point, with just deep learning topping it as the most hyped technology for now. However, 
it is expected that there will be different difficulties in implementing these future technol-
ogies. Through joint research of industry and science as well as committee work and con-
sortia like the 5G Automotive Association, foreseeable obstacles like data transfer are 
already being tackled today (Voigt, 2017). It is hoped that key findings of the transfer of 
already developed technology from medicine to aviation makes this process less risky. 

 

Fig. 1.1: Gartner hype cycle for emerging technologies 2017 (Gartner, 2017) 
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As Gartner states, Artificial intelligence is viewed as one of three mega trends, apart from 
digital platforms and transparently immersive experiences. It is said that executives and 
technology leaders should explore these three mega trends to evaluate future impacts to 
their business and get competitive advantages (Panetta, 2017). AI as such augments sev-
eral present technologies and enables much more opportunities for the future. As of today, 
computers outperform humans in a large number of calculation-wise operations. The goal 
of AI is to expand this superiority to more complex tasks like image recognition (machine 
vision), extracting the essence of a certain text (text mining), generating vast knowledge 
databases (expert systems) and the ability to learn and to adapt to new environments (ma-
chine learning). 

1.1 Aim of this Thesis 

Technology transfer is a highly potent way for both academia as well as the private sector 
to derive profits from scientific findings, and establish business and competitive ad-
vantages. The goal of this thesis is to analyze and point out possible opportunities to 
transfer the technology of deep learning from medicine into aviation. It is known that 
deep learning is not derived from medicine originally but used in medical fields. In addi-
tion to the aim of analyzing existent use cases that use deep learning in both medicine and 
aviation, it is also an objective to find one specific use case to analyze deeper and point 
out transfer links. Of importance is also, that this use case is viable from an engineering 
and financial perspective. To be able to do that, an extensive on-site approach is inevita-
ble, in both the medical and aviation industry, working jointly at facilities of both indus-
tries which are introduced in subchapter 1.3. It is hoped that both entities support this 
thesis in all ways possible.  

Since medicine and aviation are not close relatives in regard of used technologies, deep 
learning might be a common thread. The analogy of the patient and aircraft, where limbs 
and components, respectively, are in need of professional analysis to maintain the system, 
plays an important role. Both patients may have diseases or failures that need to be cured 
before the next step is to understand the disease itself. In addition to aircraft components 
(predictive maintenance) and the aircraft itself (skin deficiency or damages), this might 
also be applicable to use cases inside the cabin or the cockpit, where deep learning could 
be used to analyze passenger’s or pilot’s behavior, just as it can be used for predictive 
diagnosis or mental health analysis of patients in the medical field. 

The thesis itself is not to be understood as a standalone analysis. It is a personal goal to 
further deepen my expertise in the fields of deep learning, interdisciplinary work and 
problem solution. It is understood, that this paper might end in a state that needs a mana-
gerial decision to take actions for the next steps. It is desired on my behalf to be part of 
these next steps to develop and implement deep learning in an aviation environment. 
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1.2 Structure of this Thesis 

A rough outline is visualized in Fig. 1.2. It is aimed that the outcome of this thesis builds 
a foundation for further research in the direction of interdisciplinary learning and the ap-
plication of the learnt, with regard to artificial intelligence and deep learning. 

 

Fig. 1.2: Rough outline of the covered fields in this thesis 

Besides the introduction to artificial intelligence, the historical development and the def-
inition and types of intelligence, the basic chapter further deals with the nature of learning 
algorithms and aims to give a basic understanding of machine learning and deep learning, 
as well as the distinction between both fields (Fig. 1.3). The main part is then split into 
an analyzing part where it will be looked into the medical field as well as aviation, deriv-
ing use cases with deep learning applications, and a solution-oriented part, dealing with 
the possibilities of technology transfer from one industry to another. To be able to make 
statements to the possibilities of transfer, the outline process is analyzed and connected 
with the specific main use cases of medicine and aviation. Also, the findings might lead 
to hidden opportunities and results that were not foreseeable at the time writing. At last, 
the findings will be collated and a recommendation for action will be given, in addition 
to the conclusion of the analyzed matters. 
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Fig. 1.3: Structure of this thesis 

1.3 Background 

The present thesis was prepared and written in an approach to both analyze the medical 
sector as well as aviation. For the purpose of getting a better understanding, a brief intro-
duction to both the University Medical Center Hamburg-Eppendorf (UKE) and Lufthansa 
as well as Lufthansa Technik (LHT), will be given. Both Lufthansa Technik and the UKE 
were key supporters of this thesis, exceptionally Frank Niss and Prof. Dr. Stefan Bonn as 
well as Prof. Dr.-Ing. habil. Frank-Helmut Schäfer from the University of Applied Sci-
ences Hamburg who mentored this thesis from an industrial and academic point of view. 
I also am thankful to the colleagues from Lufthansa Technik, especially in Hamburg and 
Frankfurt, as well as the scientists and doctoral candidates from the UKE, that helped me 
in the process of writing this thesis and combined findings from the medical and the avi-
ation industry. 

My background is, graduating from a University of Applied Sciences, a more hands-on 
approach. This includes methodological analysis of problems, deriving of problem solu-
tions, viability and feasibility analysis as well as engineering and technology manage-
ment. Of my personal interests are early stage technologies. This was met by the topic of 
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this thesis, analyzing a cutting-edge artificial intelligence technology for the use in a real-
world environment. In terms of studies, the focus was intentionally set apart of the clas-
sical mechanical engineering fields to broaden the horizon and learn from more inputs 
with the aim to be ready for the challenges of Industry 4.0 and digitalization. 

1.3.1 University Medical Center Hamburg-Eppendorf 

The University Medical Center Hamburg-Eppendorf, one of the largest hospitals in the 
Hamburg area and one of the most modern in Europe, was founded 1889 and became a 
university medical center in 1934. In 14 centers, it comprises more than 80 interdiscipli-
nary clinics and institutes, and employs more than 9,000 people, including 2,300 doctors. 
Approximately 86,000 inpatients and 269,000 outpatients, as well as 50,000 emergency 
cases are being treated every year. Apart from medical treatment, science and research at 
the University Medical Center Hamburg-Eppendorf enjoys an international reputation. 
Interdisciplinary research is also done in the field of augmentation through artificial in-
telligence to further improve service and medical treatment.  

1.3.1.1 Center for Molecular Neurobiology Hamburg 

Established as the first center in Germany for basic research in molecular neurobiology 
in 1987, the Center for Molecular Neurobiology Hamburg is divided into five institutes, 
eight research groups, two guest groups and seven core facilities. The main focus lies in 
the research of neural diseases and developing new treatment methods. Moreover, the 
Center issues pioneering research publications in high-ranked peer-reviewed journals. 

1.3.1.2 Institute of Medical Systems Biology 

The Institute of Medical Systems Biology is the latest establishment of the Center for 
Molecular Neurobiology Hamburg. The institutes goal is focused on understanding hu-
man pathology, especially in the central nervous system. In an age where information 
exists abundantly, it is crucial to derive knowledge from this data, and thus use it to en-
hance medical treatment. This approach is based mainly on artificial intelligence tech-
niques such as deep learning, which will be analyzed in this thesis. The institute uses deep 
learning amongst other things for object detection and so called long short-term memory 
cells in genomics, and generative models to simulate data. Moreover, it is thought that 
the technologies used in the institute is universally applicable in other environments and 
industries. The institute’s director Prof. Dr. Stefan Bonn acts as a supervisor to this thesis. 

1.3.2 Lufthansa Group 

The Lufthansa Group is a globally operating air carrier with its headquarters in Cologne. 
Currently about 500 subsidiary and associate companies are part of the Lufthansa Group. 
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The total number of employees of its five business divisions Passage Airline, Logistics, 
Technic, Catering and IT-Service count approximately 123,000. The passenger airline 
part Passage contributes to about 75% of the group revenue. However, the highly com-
petitive air traffic market requires additional services, that mostly are covered by the sub-
sidiaries within the Lufthansa Group. Regarding artificial intelligence, the Lufthansa 
Group deals with present problems throughout the passenger’s journey and experience, 
and already uses AI to improve their services and boost up revenues. Further implemen-
tations of AI use cases are screened thoroughly inside the different branches of the group.   

1.3.2.1 Lufthansa Technik AG 

One of the subsidiary companies of the Lufthansa Group is the Lufthansa Technik AG. 
Founded 1994 as an independent company from the technical branch of the group, the 
headquarters with its approximately 20,000 employees, is located at the Hamburg Airport 
Helmut Schmidt. The Lufthansa Technik is divided into eight product divisions (PD): 

- Aircraft Maintenance 
- Aircraft Overhaul 
- Components 
- Engines 
- Landing Gears 
- VIP & Executive Jet Solutions 
- Original Equipment Innovation 
- Digital Fleet Solutions 

The main focus lies in the maintenance, repair and overhaul business of aircrafts, though 
the demand for special needs solutions for VIP or digitalization impels the Lufthansa 
Technik to broaden its offerings. As an approved EASA Part 21J and G aerospace devel-
opment company and manufacturing plant, as well as an EASA/FAR Part 145-approved 
maintenance organization, the Lufthansa Technik covers a major area of services for air-
crafts and aircraft components. The newly established product division Digital Fleets So-
lutions deals with the coming digitalization in aviation and develops solutions for future 
applications in aviation. Part of it is the evaluation of the use artificial intelligence inside 
and outside the aircraft. 

Besides Hamburg, there are few other locations in Frankfurt, Munich and Berlin. In ad-
dition, about 31 international located technical maintenance plants are part of the 
Lufthansa Technik. 

1.3.2.2 Original Equipment Innovation 

Since 2014 the product division Original Equipment Innovation (OEI) deals with inno-
vation inside the aircraft cabin. The PD is further split into the four business areas 
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Commercial Aviation, Business Aviation, Lighting and Seating & Structures. Primary ob-
jective is the development of innovative products for the cabin. Those range from lumi-
nescent guiding strips and signs, induction cooking platforms and modular business seats 
to antenna radomes and in-flight entertainment systems. Moreover, in two staff depart-
ments (Foresight & Insights and Product Planning & Development) technology research 
and new product development take place to ensure sustainable technology and business 
development as well as new market opportunities. Foresight & Insights, in particular 
Frank Niss, took charge of the industry mentoring throughout the completion of this the-
sis. 

1.3.2.3 Digital Fleet Solutions 

The 2016 established PD Digital Fleet Solutions pursues the goal of digitalizing the air-
craft and the processes connected throughout the lifecycle of an aircraft. Officially 
founded in fall 2017, the product division still in development. The possible use cases are 
mostly in the initial phase. In particular, and augmented through AI, there are use cases 
for reliability management, aircraft and aircraft health monitoring as well as predictive 
maintenance that use a machine learning approach. Moreover, the division is growing not 
just numerically but also in fields of expertise. There are however no signs of any use 
case using deep learning technology at the date of beginning this thesis. The division 
remained helpful throughout the whole process of this thesis, in particular Dr. Nima Bar-
raci. 
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2 Artificial Intelligence 

The homo sapiens (Lat. wise man) differs in one decisive respect from other mammals: 
He shows several features of intelligence; thus, his mental performance shapes his being 
significantly. The term intelligence is mostly used in a psychological context and stands 
for the cognitive capability of the human being. In philosophy, Descartes’ famous state-
ment cogito, ergo sum (Lat. I think, therefor I am) underlines the raison d’être of the wise 
human species (Descartes, 1870). In the area of artificial intelligence, unlike in psychol-
ogy and philosophy, researchers try not only to understand intelligence, but to build and 
construct intelligent entities (Russell & Norvig, 1995, p. 3). According to the Oxford dic-
tionary, artificial intelligence is defined as the capacity of computers or other machines 
to exhibit or simulate intelligent behavior (and) the field of study concerned with this. In 
detail, artificial intelligence enables visual perception, speech and voice recognition, de-
cision making, translating between languages, problem solving, planning and learning, as 
well as manipulation and much more to machines (Techopedia, kein Datum). The current 
aim is to automate this process of learning to achieve tasks through learning algorithms, 
and to increase the technology value. 

In the media, voices are being raised by critical scientists and AI-entrepreneurs that clas-
sify artificial intelligence to be a threat to humanity. Precisely because of the exaggerated 
portrayal of scenarios that show the extinction of the human race, if the fear comes true, 
the horizon of expands. This is needed to be aware of possible unwanted outcomes and 
to further research preventive actions. This point of thought is backed by the father of 
science fiction Jules Verne’s statement, that the scientific progress lives on exaggerated 
expectations (Reusch, 1993). 

This chapter discusses the historical development of intelligent entities, the basic differ-
ences between humans and machines, as well as the particular fields and instances of 
artificial intelligence. 

2.1 Historical Development 

In ancient times, narratives about non-human apparatuses and robots were told, that 
showed a certain intelligent behavior. The stories however were far away of breaking out 
of the fantasy. The first technically specific model was Da Vinci’s own developed and 
built humanoid robot in 1495 (Fig. 2.1).  



Artificial Intelligence  9 

 

 

Fig. 2.1: Model of Da Vinci’s humanoid robot with mechanisms inside (Da Vinci, 2005) 

The first connections between neurology, information technology and cybernetics were 
developed in the 1940s and 50s (Bolonkin, 2011, p. 143). At that time, the research find-
ings in neurology by McCulloch and Pitts showed, that the human brain is a complex 
electrical network of impuls transmitting neurons, where the neurons are characterized by 
the digital scale of on and off, with off being the default status and switching to on occur-
ring in response to stimulation by a sufficient number of neighboring neurons (Russell & 
Norvig, 1995, p. 16). Russel and Norvig also state, that the work of McCulloch and Pitts 
initiated further research in this field. In the beginning of the 50s, Shannon and Turing 
independently developed a chess computer, just like Minsky and Edmonds developed the 
first computer-based neural network with forty neurons (ibid., p. 16 f.). Despite partially 
pessimistic stance of many academics, the boundaries of artificial intelligence were fur-
ther expanded step by step. For example, in 1950 Turing drew up a list with things a 
machine can never do (A machine can never do X). In this list he included being friendly, 
having a sense of humor, distinguish between right and false, make errors, get someone 
to fall in love with it (the machine), and more (Blackmore, 2010, p. 281). As of today, 
many of these points still cannot be realized by a computer or a machine. However, point-
ing out specifically the issue of falling in love with a machine, with the current global 
integration of social networks as well as advanced progress in text and speech generation, 
this is not to be deemed an impossibility.  

Until the 1970s, most of the knowledge of artificial intelligence was concentrated at the 
MIT, as well as Carnegie Mullen University, Stanford University and IBM. The enthusi-
astic work of young students was one of the reasons the research was further driven for-
ward. Besides logical programs and tables, there were efforts to program all mathematical 
problems and let a machine solve it (Russell & Norvig, 1995, p. 17ff). One example is 
Evan’s ANALOGY program in 1963, which could solve a simple logical problem (Fig. 
2.2).  
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Fig. 2.2: Evan’s ANALOGY program for solving analog-geometrical problems (the so-
lution is framed green) (Smith, 2016) 

Another successful example is the first chat bot in 1964, where a simulated dialog be-
tween a psychologist and his patient, who was the user, took place. In reality, the alleged 
psychologist was ELIZA, a program written to imitate a human academic. Most of the 
users, deprived of the fact that they are communicating with a machine, did not question 
the whole procedure, which shocked Weizenbaum, the program’s developer, to an extent, 
that he criticized further research and development of artificial intelligence. In his opin-
ion, a machine should never make a decision regarding humans (Smith, 2016). 

After knowledge-based systems were developed in the end of the 1970s, the use of artifi-
cial intelligence in the 80s led to the development and combination of computers and the 
intelligent design of circuit boards to a concretely emerging market. While in the begin-
ning of the decade the AI-specific revenue accounted for a few millions, in the end of it, 
the market grew to a $2 billion industry (Russell & Norvig, 1995, p. 22ff). 

Besides development in the research of robotics, computer vision, machine learning and 
representing complex knowledge-based systems, a holistic methodology and research 
agenda was strived for. To this day, the research activities’ efforts in the field of artificial 
intelligence led to many successful implementations, augmenting human capabilities. Of 
those implementations would be traffic surveillance systems with automatic emergency 
calls in case of an accident, autonomous driving vehicles or knowledge-based medical 
systems, that can access large database and provide agreed upon evidences and scientific 
facts (ibid., p. 26 f.). 

2.2 Types of Intelligence 

Even though the concept of intelligence philosophically and psychologically has a differ-
ent meaning, the entity can be abstracted and the (artificial) intelligence divided into dif-
ferent fields. Above all, this is reasonable in technical environments to precisely define 
the needed means for a methodological approach of problem solving. Moreover, the used 
mathematical models and methods differ for the specific use-cases. 
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On that account, neither the philosophical nor the psychological points of views will be 
discussed. The theoretical basics and mathematical methods would also go beyond the 
scope of this chapter, which is why they will not be discussed at this point. 

2.2.1 Visual Intelligence 

The term visual intelligence is understood to mean the ability to recognize and analyze 
patterns. In the human brain, this process runs subconsciously, with no possibility to ac-
tivate or deactivate it by choice. On the contrary, visual intelligence of a machine can be 
determined by the detection of visually arranged impulses of information based on camera 
systems, infrared sensor or even digitally transmitted patterns in pictures. This kind of 
technology is used in iris and fingerprint scanner, face recognition or lane assist and ma-
chine vision systems for vehicles (Fig. 2.3). 

 

Fig. 2.3: Segmentation of live street view pictures (Kendall, et al., 2015) 

If the image source is not used otherwise by humans, e.g. in manual surveillance mode, 
there is no reason in a) the display of the image and b) in the analysis of the original 
picture. In many situations, infrared cameras are used to better detect heat or patterns in 
gray scales then full color cameras (National Instruments, 2008). Nonetheless, there is a 
trend towards the complete analysis of real-time images, focusing machine learning ap-
plications. 

2.2.2 Linguistic Intelligence 

Linguistic intelligence represents the ability to convert speech to text and vice versa 
(Schroeder, et al., 2009). When addressing recognition by machines, there is a difference 
in speech recognition (linguistically) and text recognition (optical character recognition). 
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In the former case the analog speech signal first gets digitalized and compressed, before 
the signal is defined by three relevant parameters: time, frequency and intensity. Depend-
ing on the wording and phoneme, it will be determined which sound matches which word. 
Different mathematical methods will be applied, such as the fast fourier transformation 
(FFT), to analyze the signal (Fig. 2.4). 

 

Fig. 2.4: Speech waveform and FFT-analysis of the sentence Shall we drive to Berlin on 
sunday? (Ger. Sollen wir Sonntag nach Berlin fahren?) (RWTH Aachen, kein Datum) 

How the human brain masters speech recognition, cannot be describe with a mathematical 
model. Would speech recognition be based on words, humans could not recognize un-
known words. Would it be based on phonemes, background noise or a different pronun-
ciation would make the understanding of the wording impossible. The function of the 
speech recognition of the brain involves higher processing stages. This includes word 
recognition as well as syntactic and semantic analysis (Warth, 1999).  

One step further lies speech understanding. This problem is solvable by machines, though 
it differs from speech recognition, for the meaning plays a necessary role. The machine 
is obliged to show a reaction based on speech. At this point, a cobot system, e.g. a coop-
erative man-robot system which is commonly used in production, can be referred to. Reg-
istering a verbal command, the cobot changes its initial state and fulfills the dictated task 
(Warth, 1999, cf. manipulative intelligence) 

2.2.3 Manipulative Intelligence 

Manipulating the environment, man and machine alike, for a specified reason comes un-
der the term manipulative intelligence (Fromm, 2015). A robot does this manipulation as 
a one-time or constant action. Wielding and painting robots, assembly line robots or 
cobots as well as intelligent drones with special functions serve as examples (Schroeder, 
et al., 2009). 
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2.2.4 Rational Intelligence 

Intelligence or knowledge which can be proven by facts, is called rational intelligence. 
The following of rules and drawing conclusions is part of rational intelligence. With re-
gards to this kind of intelligence, machines most often work with databases and expert 
systems, so that specific information can be filtered from enormous databases for a spe-
cific task. In medical issues, an expert system can be searched for symptoms and give out 
relevant or linked information or even suggest treatment options based on factual experi-
ence (Schroeder, et al., 2009).  

In recent times, this topic gets more relevant by the concept of Big Data and due to higher 
computing and storage capacities, faster data transmitting speeds and learning system al-
gorithms. It is not seldom, that data protectionists criticize the issue of extensive data 
collections – in most cases consented for service value enrichment (Freitag, 2016). Big 
volumes of data, whether precious customer data to analyze buying behavior, machine 
data to optimize an assembly line or general data clouds that can now exist due to sinking 
storage prices, ought to be used by companies to maximize profits. The resulting analyt-
ical outcomes are based on rational intelligence. A human being would also be able to 
draw conclusions, in some cases maybe better owing to his intuition and experience, 
though, in consideration of the huge amount of data, the computing power of a machine 
outperforms any human being. Nonetheless, the evaluation of the visualized data is in 
most cases left for the human operator or data scientist. 

2.3 Intelligent Entities – Man vs. Machine 

The goal of developing artificial intelligence is the implementation of intelligent conduct 
in artificial entities – be it in the virtual or real world. This was, and still is, one of the 
fundamental objectives to exceed the human being in capacity and brainpower. Taken as 
a whole, this might be a long journey, but, as described, if the task is a calculable or 
logical sequence of steps, approximation and mathematical optimization, or decision trees 
and intelligent databases, i.e. tasks that depend on high calculating power, machines beat 
humans. When IBMs Deep Blue beat the then chess world champion Garry Kasparov in 
1997, there was great astonishment. Not only was this the first win of a machine over a 
human, it was also a psychological milestone for the discipline of artificial intelligence. 
Chess, for centuries a benchmark for human intelligence and acumen, was now success-
fully challenged by a machine (Fine, 1997). 

With regards to similarities to humans, a machine has an analogical but more abstract 
approach to processing information. An agent, an entity whether human or artificial that 
can sense its environment and respond to it, has to receive a stimulus that will be followed 
by a process and lead to an effect or the intention of it. For this, sensors and actuators are 
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needed (Fig. 2.5). In a human, the sensors are his sensory organs, e.g. eyes, ears, etc., 
while the actuators are his muscle-controlled limbs, e.g. arms and legs. In a machine, 
cameras and ultrasonic sensors act as its sensors and engines as its actuators.  

 

Fig. 2.5: Graphical representation of an agent  (Russell & Norvig, 1995, p. 35) 

In a software agent, data and digital values form the sensors and the display and routing 
of the evaluation the actuators. The above described concept however remains same re-
garding hardware as well as software (Russell & Norvig, 1995, p. 34). 

The differences between human and artificial intelligence are numerous. Although in 
some tasks the machine outperforms humans, mostly because calculations in applications 
like autopilot or visualization of data clouds are more efficiently done by computers, hu-
mans are irreplaceable in areas where a value-based approach is necessary. The human 
touch will gain in importance in a world where machines fulfill tasks that were formerly 
done by humans (Lozovschi, 2017). Artificial General Intelligence, which refers to ma-
chine, that can perform a universal intellectual task that can originally only be done by a 
human, is a topic that lies in the future. In this light, there also exist no Turing machines, 
that can have a majority in their function (see subchapter 2.1). The closest to the Turing 
machine is Eugene Goostman, a chat bot program that could nevertheless convince 33 
percent of skeptical testers to be a 13 years old boy from Ukraine in 2014 (Janschitz, 
2014). 

2.4 Benefits 

The benefits and advantages of implementing artificial intelligence in existing and future 
systems are extremely promising.  
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Improvements in production, error accuracy, product development, computation and de-
sign, as well as navigating systems in unknown environments, and intelligent robots are 
just a small fraction of the possibilities that deal with addressing and implementing arti-
ficial intelligence.  

With advances in artificial intelligence, new ways are found to improve products and 
increase efficiency: The antivirus software manufacturer Kaspersky relies on AI, for 
newly discovered malicious programs are 90-98% similar in code. By learning algo-
rithms, these can be successfully detected (see spam filtering in chapter 3). In other areas, 
such as financial transactions in PayPal, an algorithm was successfully developed that 
could differentiate between transactions involved in money laundering and actual trans-
actions based on legitimate business (Marr, 2016). 

Many of these examples are based on immense amounts of data, which makes artificial 
intelligence a key technology of the coming decades. These large amounts of data are 
impossible for a person to analyze, let alone recognize patterns. Artificial intelligence is 
the lubrication of a technology gear that moves through many mechanisms. By further 
developing individual key technologies such as data transmission and infrastructure, sys-
tem and processor architecture and the resulting digital business models, artificial intelli-
gence can represent a unique interface between software and hardware. 

2.5 Obstacles and Ethics 

Nevertheless, these individual sub-areas of science also pose certain obstacles. Artificial 
intelligence cannot be fully exploited without the further development of new systems 
and infrastructure, such as the planned 5G network. For some applications, such as ma-
chine communication, perfect high-speed communication is mandatory. There is also talk 
of an end to Moore's law, the rule, which states that every 12 to 18 months the capacity 
of transistors doubles, after research projects at several Australian universities have suc-
cessfully reached the physical limit of an atomic size for the development of a phospho-
rus-based transistor (Tally, 2012) Since the physical limit has been reached here, there is 
no way to ignore the fact that in other areas, such as quantum mechanics, there might be 
possible alternatives in order to meet the increasing demands for computing capacity. An 
undesirable consequence can be the increasing complexity due to competition, which 
means that new digital business models have to be introduced. This is a positive aspect, 
but it raises many people's concerns as to whether there is any added value in relation to 
the rising costs. One example is the connectivity of commercial aircrafts, which is still 
not economically achievable, since no one is willing to pay for this (still) expensive ser-
vice (Bellamy, 2017). As a result, issues such as real-time data transmission, digital clones 
and autonomous aircraft are still far from being realized. 
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In addition to the technological and eco-political hurdles, social and ethical aspects also 
play a role. As early as 1942, the Three Laws of Robotics were formulated by Isaac Asi-
mov, which state how the interaction between man and machine must be regulated in 
order to maintain harmony (Asimov, 1982, p. 67). However, the laws or rules that have 
to be followed only describe the behavior of the robot in order to prevent possible damage 
to humans. Originally, Asimov formulated the following three laws, which were slightly 
modified over time: 

I. A robot may not injure a human being or, through inaction, allow a human being 
to come to harm. 

II. A robot must obey the orders given it by human beings except where such orders 
would conflict with the First Law. 

III. A robot must protect its own existence as long as such protection does not conflict 
with the First or Second Laws. 

These laws state that the integrity of human health and life is the highest priority. It is 
also worth mentioning that the existence of a robot is subordinate to the human command. 
Accordingly, an order of automatic suicide would be legitimized by the second law. Law 
number three does not apply here, since in this case, there would be an evident conflict 
with law number two. 

From an ethical point of view, there are several aspects that are thought to be relevant in 
near future, when artificial intelligence is applied to everyday use: 

- Unemployment 

Speaking of automation, several physical labor types are in danger. Machines nowa-
days are being already used in fields like sorting, wielding, assembly, packaging, and 
many more. It is expected that 78% of predictable physical work, like assembly line 
work, and 25% of unpredictable physical work, like forestry or construction, can be 
replaced by adapting currently demonstrated technology (Chui, et al., 2016). Despite 
laborers losing their jobs, in several fields work fields an automation would result in 
fewer injuries, accidents, and fatalities, like in long-route freight forwarding or highly 
dangerous environments like wildfire incidents (Bossmann, 2016). 

- Inequality 

Distribution of wealth is another point, that is on the agenda of the ethics of artificial 
intelligence. The economic system in today’s world is based on compensation for 
contribution to the economy. In other words, laborers get paid for a service they offer 
or products they sell. With artificial intelligence on the rise, the distribution of wealth 
also experiences a shift. In 2014, the three biggest companies in Detroit and Silicon 
Valley had about the same revenue, only that in Silicon Valley the companies’ 
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employment rate were ten times lower than those in Detroit (ibid.) This results in a 
wider wealth gap in society. 

- Humanity 

Frequent interactions with machines are rising in numbers. From chat bots to service 
and product sales, many people start to interact with those machines like human be-
ings. With those interactions, the machine gets to know more about the user and de-
signs the user experience accordingly, speaking of clickbait headlines, which are often 
optimized with A/B split testing. Although this kind of software can be used to form 
society behavior more beneficial, the fear of using it greedily as a means to make 
money is present (ibid.). 

- Bias 

Machines more and more are designed to augment the work of humans, especially in 
fields where prediction of certain events are based on many parameters that cannot be 
done by humans. Since a machine is preset by humans with all the information it gets 
fed, there might be some sort of bias in some cases. Recent findings have shown that 
bias in the input data of a machine will affect the output. Especially if it acts in envi-
ronments where there are human beings in play, for example when predicting future 
criminals, this is highly problematic (Bossmann, 2016). In these times of high tech-
nology acceptance, it is more important than ever to be aware of the consequences of 
a biased machine. 

- Warfare and the security thereof 

As more and more nations are building up artificial intelligence research programs, 
the military also takes part in developing new and intelligent systems for warfare. 
Unmanned drones are operated from a far distance, and equipped with machine vi-
sion, there would not even be the need for a human supervisor. As with every general 
technology, artificial intelligence might be used to kill other humans, which, from an 
ethical point, is viewed to be questionable. Moreover, where there are highly danger-
ous weapons, nations have to be aware of the higher security needs. Also, there is 
threat in the digital dimension, where cyber warfare has shown to be a serious danger 
(ibid.). 

- Singularity 

There are a lot of scenarios, from literature and motion-picture, about the downfall of 
humanity caused by intelligent machines. Formerly seen as a distant reality and even 
science fiction, calls are beginning to be made to regulate artificial intelligence and 
the use thereof. Humans are on top of the food chain due to their mental capabilities 
and intelligence. Hence it is concerning, that intelligent machines overcome humans 
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in this regard and, what scientists define as singularity, replace the status of humans 
as most intelligent beings on this planet. Points are still open whether it is possible to 
regulate AI, or pull the plug, in case there is a threat expected (ibid.). 

- Unintended consequences 

Picking up the previous point, machines also can malfunction or cause threat in a non-
intended way (ibid.). Giving capabilities to a machine that it cannot (, or was not 
programmed to,) take responsibilities for, may lead to unintended consequences. For 
instance, if the main task was to battle global warming and the machine comes up 
with a solution that is about shrinking the human population forcefully, the goal might 
be achieved, but not the way humans would have intended it. 

- Rights of artificial intelligent entities 

As there are rights of humans, and animals, there also might be questions about how 
to treat intelligent entities and robots. Questions like whether robots should be treated 
humane, or whether they should be rewarded or do something against their dislike, 
need to be answered. With machines getting more and more intelligent, also in their 
realistic interaction with humans, the feeling might emerge that robots can feel pain, 
too, thus affecting the way humans see and treat them. Time will show, how this issue 
will evolve; however, it is of importance to deal with the social status of robots and 
intelligent entities (Bossmann, 2016). 

Especially in applications that concern society in general, these ethical aspects are being 
heavily discussed: Technological advances in autonomous driving, for example, have 
raised questions concerning human lives. An autonomous vehicle can also be called a 
robot in a broad sense. The question, how an autonomous car should behave in a situation 
where a threat to human life is inevitable, is subject of a social experiment at the MIT, 
which provides given scenarios for public consultation and discussion (Fig. 2.6).  

 

Fig. 2.6: Scenario of a moral dilemma of autonomous vehicles (MIT, kein Datum) 
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In above illustrated case, an autonomous vehicle drives on its lane when the car registers 
that there are pedestrians on its track and it cannot brake in time due to a technical defect. 
Either the vehicle changes its lane and crashes into a barrier, which would result in the 
death of all the passengers, or it remains on its track and thus inevitably kills the pedes-
trians. It is also possible that the losses may be weighed up against each other. How the 
importance should be weighted, whether a person's life (driver) is valued less than two 
lives (passengers), whether animals are valued less, or whether the life of a young person 
outweighs that of an older person in value or priority, are open questions. Finally, the 
question of liability arises as to who is responsible after such an accident and how the 
source of error can be located, or if it can be located at all. A code error is also imaginable, 
which will not be uncommon due to the large proportion of software in the vehicle and 
the fact that software programming gets outsourced to a large percentage in many cases 
(Reuters, 2007).  

In even more blatant circumstances, some speak of concrete cases of a threat to mankind 
by machines. Recently, headlines about a Facebook chat bot appeared, which, according 
to various newspaper reports, has developed its own language for communicating with 
other bots, although this might be slightly dramatized to make a better story. Another fact 
is that this chat bot had learned to misrepresent information, e.g. lie, even though it was 
not explicitly programmed for this purpose (Maney, 2017). Achieving the goal of artifi-
cial intelligence of a program that can evolve, e.g. that a machine can program itself, can 
create danger for humanity. One such scenario is the encapsulation by developing an in-
accessible new internet. At this level, regulation and control of the machines is unthinka-
ble. Scientists and tech-entrepreneurs such as Stephen Hawking and Elon Musk warn 
against an apocalypse that could lead to an uncontrolled development of intelligent ma-
chines. Also, there is competition on an international level between nations to set up the 
AI industry. According to Musk, this is supposed to hold the potential of a third world 
war (Hern, 2017). Early regulation and a consciously created environment for further re-
search are important for a sustainable and controlled introduction of highly intelligent 
entities.  

2.6 Applications of Artificial Intelligence 

The applications of artificial intelligence are vast in today’s society. Today, machines are 
designed for specific tasks, which make them per definition weak AI (in contrast to strong 
AI, or General Artificial Intelligence, e.g. a machine that can apply intelligence to a vari-
ety of problems rather than just one). However, in specific fields like speech recognition 
or games, AI is beginning to outperform humans. This chapter deals with the different 
fields artificial intelligence is applied to. 
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2.6.1 Computer Vision 

One of the most researched topics in artificial intelligence is computer vision. Being an 
ability naturally existing in humans and animals, machines having vision is a challenge. 
Generally speaking, the goal of computer vision is to extract information and the trans-
formation thereof through a visual input, most likely a single image or a sequence of 
images. Typically, the input data come from image sensors which the computing machine 
analyzes. Apart of analyzing and processing images, computer vision is also used in pat-
tern recognition and guiding and controlling robots (BMVA, kein Datum). Applications 
of computer vision include the following examples: 

- Automatic inspection (manufacturing) 
- Controlling processes (industrial robot) 
- Identification (quality inspections) 
- Event detection (surveillance) 
- Interaction with humans 
- Object modeling (medical image analysis) 
- Navigation (autonomous vehicle) 

2.6.2 Natural Language Processing 

Anthony Pesce defines natural language processing as a field that covers computer un-
derstanding and manipulation of human language. The main goal is to analyze, under-
stand, and derive meaning from human language for further using. NLP is different to 
common word processing operations that view text as a string of characters in that it an-
alyzes the hierarchical structure of a given text input: Several words make a phrase just 
like several phrases make a sentence. Above that, another goal is to create machines that 
can understand the meaning of human speech, which can be a tough task with the ambi-
guity of language (Kiser, 2016). Following points, among others, are examples of natural 
language processing: 

- Chat bot 
- Automated keyword generation 
- Sentiment analysis 
- Text summarization 
- Extraction of topics from text 
- Text mining 
- Machine translation 
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2.6.3 Speech Recognition 

In most cases, speech recognition refers to voice to text conversion. What sounds simple, 
are in reality complex-built architectures with huge vocabularies and grammar databases. 
Software built for speech recognition analyzes sound by filtering it into a readable format 
and making educated guesses what was said, or, what was intended to be said (Van der 
Velde, 2018). What started with machines that could understand numbers from zero to 
nine with a 90% accuracy in the 1950s, today’s speech recognition tools like Google’s 
Assistant or Apple’s Siri reach higher accuracy than humans with an error rate under 5% 
(Boyd, 2018). Applications of speech recognition include following examples: 

- In-car systems 
- Language learning 
- Speech-to-text for people with disabilities 
- Automatic subtitling 
- Court reporting 
- Home automation 
- Virtual assistants 
- Robotics 

2.6.4 Knowledge Representation and Reasoning 

Knowledge representation and reasoning is about symbolic encoding of propositions be-
lieved (representation) and the manipulation thereof to produce representations of new 
propositions (reasoning). For example, a symbol like ♂ represents the male gender just 
like ♀ represents the female. The statement John is Mary’s father indicates, that John is 
an adult male (Chaudhri, 2011). IBM’s Watson for instance uses statistical and symbolic 
representation and reasoning to solve AI tasks. This way, Watson was able to beat humans 
in the Jeopardy! quiz show. Knowledge representation and reasoning is to be found in 
the following examples: 

- Ontology databases 
- Language understanding 
- Expert system 
- Scheduling and planning 
- Resource allocation 
- Model checking 
- Games and puzzles 
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2.6.5 Other 

Apart from the above explained applications, there are other specific fields AI being ap-
plied to solve problems and fulfill tasks. Of those are applications in robotics, games, as 
well as medicine and aviation, which will be addressed in the following chapters. Most 
of these fields are using the above explained goals, like machine vision, to give robots the 
ability to perceive their environment and interact accordingly. Although AI comes from 
computer science, it is not seldom that the applications take place in interdisciplinary 
work environments, for artificial intelligence is a general technology used in enhanced 
systems to solve tasks which usually require human intellect, and not just reserved for 
computer science. Most of these real-world implementations also use a variety of the 
above-mentioned applications. A broad field is automation of processes. Those processes 
can be from every industry, like improving and accelerating aircraft maintenance jobs in 
aviation, observation of laboratory work and quality assuring in medicine, or others, using 
several AI techniques. An autonomous vehicle for instance, can use all of the four men-
tioned applications like machine vision, natural language processing etc. to interact with 
its environment.  
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3 Machine Learning 

This chapter deals with the basic principles and methods of machine learning, and specif-
ically learning algorithms. Learning algorithms are characteristic for machine learning in 
that sense, that the algorithm is able to learn from data. Learning considered by itself is 
defined by Mitchell as learning from experience E with respect to some class of tasks T 
and performance measure P, if its performance at tasks in T, as measured by P, improves 
with experience E (Goodfellow, et al., 2016). In simpler words, it means learning is by 
doing action and measuring if the outcome improves with the learnt. Machine learning 
helps solving tasks, that are too difficult to solve with prewritten and fixed programs 
(Goodfellow, et al., 2016, p. 99).  

An overview of possible types of tasks (T) is given in Table 3.1 according to Goodfellow, 
et al. (2016, p. 100 ff.). 

Table 3.1: Overview of some types of tasks solvable with machine learning algorithms 

Type of task (T) Explanation Example 

Classification Matching an input to 
certain given categories 

Face recognition and automated tag-
ging of people (Facebook); 

Reverse image search (Google); 

Robot waiter that recognizes food and 
delivers them on guest’s command; 

Detecting and classifying ice on an air-
craft’s skin 

Classification with 
missing inputs 

Probability distribution 
over all the relevant 
variables to solve clas-
sification tasks when an 
input is missing 

Specific medical tests that are either ex-
pensive or not possible to carry out; 

Faulty flight data with missing input 
values 

Regression Prediction of a numeri-
cal value based on an 
input 

Pricing of a house based on data; 

Prediction of expected flight cancella-
tion insurance claim; 

Algorithmic stock trading 

Transcription Observation of unstruc-
tured data representa-
tion and transcription 

Extract address numbers into text form 
(Google Streetview); 
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into discrete, textual 
form 

Transcribe audio wave form into text 
(Microsoft, IBM, Google, Apple); 

Machine transla-
tion 

Conversion of a se-
quence of characters 
into the same data for-
mat 

Language translators in general 
(Google, DeepL); 

Decoding of a PIREP (pilot report) into 
readable text 

Structured output Any task where the out-
put is a vector (data 
structure containing 
multiple values) with 
important relationship 
between the different 
elements 

Mapping of a natural language sentence 
into a tree to describe its grammatical 
structure (parsing); 

Pixel-wise segmentation of aerial pho-
tos to determine roads in a map; 

Guiding a pilotless aircraft through the 
airport runway through cameras 

Anomaly detection Sifting through a data 
set flagging unusual or 
atypical objects or 
events 

Credit card fraud and misuse detection 
through customer’s purchasing habit; 

General time series data with a con-
nected value 

Synthesis and sam-
pling 

Generation of new ex-
amples that are similar 
to the training data 

Generation of texture picture files for 
video games; 

Machine reading of written text for the 
blind; 

Generation of aircraft cabin interior 
training data in cases of data shortage 
for health monitoring of cabin furniture 

Imputation of 
missing values 

Predicting the values of 
missing entries of a 
given new example 

Probability model of flight overbook-
ing given extensive private information 
of passengers (demography, earnings, 
social media activity) 

Denoising Prediction of clean ex-
ample from its cor-
rupted version 

Digitalization of poor quality scan of 
written reports or books; 

 

Density estimation 
/ probability mass 

Explicitly capture prob-
ability distribution of 
data structures (the 

Use cases of imputation of missing val-
ues (see above) due to known data dis-
tribution through density estimation 
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function estima-
tion 

methods before were 
designed to implicitly 
capture those data dis-
tributions) 

 

Just like the tasks differ from case to case, the measurable performance (P) is specific to 
that task. In cases of classification, classification with missing input, and transcription, 
the accuracy of the model is often measured, e.g. how many correct outputs were rec-
orded. Alternatively, the error rate, e.g. the percentage of wrong outputs, can be measured. 
In other tasks like density estimation, a continuous-valued score is given for every exam-
ple, e.g. the farther a data point is from the density center, the lower the score. However, 
every task itself requires a performance measure that corresponds well to the desired be-
havior of the system, which is not always an easy job (ibid., p. 101 f.). The fine-tuning of 
the performance measure is up to the system designer. 

Experience (E) in this context would mean that the learning machine has experienced a 
training data set and is now able to perform the algorithm accurately on new, unseen 
examples.  

3.1 Learning Machines 

Machine learning is about exploring and finding computer algorithms to perform defined 
tasks, as described above. The artificial generation of knowledge from experience is also 
referred to as machine learning. If a system receives enough examples, it recognizes pat-
terns and can generalize them. A central point here, however, is that the machine itself 
draws conclusions from the findings which were not previously programmed this way. 
The main focus lies therefore on the automated learning process. It should be learning to 
complete a task without the user or programmer assisting. An example of filtering spam 
mails is given below.  Instead of writing code to filter spam from the mailbox, algorithms 
are being developed to allow the machine to write its own program to filter spam mes-
sages (Schapire, 2008, p. 1).  

One way of setting up a rule would be to analyze spam mails beforehand. An analysis 
shows that 80% of spam mails contain the word cheap (Fig. 3.1). 
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Fig. 3.1: Representation of rule-based spam filtering (Serrano, 2016a) 

From this fact that 80% of the e-mails containing the word cheap, a rule can be derived. 
However, this also includes a smaller part of the non-spam mails, which can be prevented 
by further rules. Additional characteristics of spam mails can be that they often contain 
spelling mistakes or no subject line (Fig. 3.2). Based on these findings, a set of rules is 
being established according to which the program knows how to categorize emails 
(Serrano, 2016a). 

  

Fig. 3.2: Probabilities for suspicious keywords in spam emails (Serrano, 2016a) 

The next step for the program would be to analyze the emails marked as spam and recog-
nize patterns. In this way, the database of possible spam keywords can be expanded and 
compared with the clean emails. Manual entries, such as manual marking of spam mails, 
are also a possibility for the machine to learn further. If the spam attacks should change 
due to changed internet surfing behavior or more aggressive spam tactics, it is literally 
pre-programmed that the machine learns and adapts from them.  

This concept of an ever-learning machine is a central element of artificial intelligence.  
Musk, Tesla's CEO, announced that test tracks totaling 10 billion kilometers will have to 
be driven before the worldwide legal approval of autonomous vehicles is granted. At the 
end of 2016, Tesla's autonomous column would complete 5 million kilometers of valuable 
learning material for AI every day. Toyota confirmed this number with its own estimate 
of 14.2 billion kilometers, which is slightly above Tesla's target (Ohnsman, 2016). 

And this is exactly how there are many other areas of application for machine learning: 
recognition and digitization of handwriting, face recognition, generation of topic headings 
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for scanned newspaper articles, speech recognition, medical diagnoses, customer segmen-
tation, fraud prevention, as well as weather forecasts (Schapire, 2008, p. 1f). 

There are different models for machine learning, which are mainly differentiated into 
parametric (logistic regression, naive Bayes classifier, artificial neural networks, etc.) and 
non-parametric algorithms (K-Nearest-Neighbor, decision trees, etc.). These differ in the 
fact that parametric algorithms require fixed parameters to process a data set. This ap-
proach is particularly suitable for tasks in which the user must have a certain amount of 
prior knowledge, e.g. a defined data set. Non-parametric algorithms, being much slower, 
are suitable for tasks where there is no prior knowledge or no defined data. The next 
subchapter introduces the method of artificial neural networks, which plays an important 
role in the field of deep learning. 

3.2 Methods of Machine Learning 

Machine learning methods are various in numbers. According to the kind of experience 
the learning algorithms are allowed to have, one way to categorize machine learning al-
gorithms is into supervised and unsupervised algorithms. Besides, there are other meth-
ods, that can be used supervised as well as unsupervised, like artificial neural networks. 

With supervised learning algorithms, each example of a dataset usually is associated with 
a label (Fig. 3.3). 

  

Fig. 3.3: Samples of labelled cat’s and dog’s pictures from the Kaggle dataset (Moujahid, 
2016) 

The term supervised also comes from the view of an instructor or teacher, who determines 
what the picture, or in general the data point, should be viewed as.  

An unsupervised learning algorithm on the other hand has to make sense of the data with-
out an instructor or teacher. Usually an unsupervised algorithm is used for learning the 
probability distribution of a dataset or clustering, e.g. dividing a dataset into clusters of 
similar examples.  
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Another form of learning algorithm is reinforcement learning, where the machine does 
not experience a fixed dataset. A reinforcement learning algorithm interacts with the en-
vironment, so that there is a feedback loop between the learning system and its experience 
(Goodfellow, et al., 2016, p. 103 ff.). Lately, reinforcement learning has made major 
headlines with DeepMind’s AlphaGo and its ability to learn from scratch (Fig. A.1). By 
playing against itself, and given rules of the game, the machine could learn much faster 
than previous deep reinforcement learning algorithms (Hassabis & Silver, 2017). In the 
following subchapters, some usual supervised as well as unsupervised learning algo-
rithms are presented in detail. The concept of artificial neural networks are presented in 
detail in subchapter 3.2.3. 

3.2.1 Supervised Learning Algorithms 

As explained before, one of the characteristics of a supervised learning algorithm is the 
match-making of inputs x and outputs y. In some cases, the data cannot be gathered au-
tomatically and needs a human supervisor; either way the term supervised still applies. 
This subchapter deals with a variety of supervised learning algorithms that are used in 
machine learning applications. 

3.2.1.1 Logistic Regression 

The machine learning method of logistic regression is based on estimating a probability 
distribution and used in classification use-cases. While linear regression handles two pos-
sible classes (0 and 1; and therefore, only one classes’ probability has to be known to 
determine the probability of the other, for both must sum up to 1), logistic regression has 
to deal with several value classes. In subchapter 2.4.1 the probability model was classified 
with a straight line, which is characteristic for linear regression, based on the probability 
of error of each data point (see Fig. 2.12 and 2.13). In general terms, a linear regression 
model is used to predict the value of a certain point, logistic regression is used to predict 
binary values such as the probability of getting diabetes based on factors like age, weight, 
gender, etc. (Griffith, 2017). The above figure represents such a logistic regression model, 
where the probability of passing an exam versus the hours spent studying is shown (Fig. 
3.4). 
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Fig. 3.4: Basic logistic regression to model the probability of passing an exam versus 
hours of studying (Griffith, 2017) 

However, it is said by Goodfellow, et al., that a linear regression model can be portrayed 
by solving the equations, whereas a logistic regression needs a numerical optimization 
method called gradient descent (2016, p. 140). To better understand machine learning 
theory and basics, the definition of gradient descent is given as followed:  The issue of 
gradient descent is the mathematical optimization problem of 

 min
(∈ℝ+

,(-),  

where based from a starting point, the steepest descent is chosen, until the lowest possible 
point is reached. In most cases, the direction of descent points towards the minimizing of 
errors. The figure below shows a visualization of the gradient descent optimization prob-
lem (Fig. 3.5). 

 

Fig. 3.5: Illustration of the gradient descent concept with .(/) as the cost function and 
the initial weight seeking the lowest point (Raschka, 2018) 
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3.2.1.2 Support Vector Machines 

Another strong classifying technique is the Support Vector Machine (SVM), which dif-
fers from the logistic regression model in one respect, that it does not provide probabilities 
but only class outputs. Simply put, an SVM searches for the best possible separation of 
data points. In the view of a two-dimensional split, best possible means the widest gap 
between two classes of data (Fig. 3.6). 

 

Fig. 3.6: Visual representation of two data classes, separated with the widest possible gap; 
the yellow highlighted data points portray the support vectors (Sharma, 2015) 

Where SVM’s especially come into play in an elegant way, are data point distributions 
that are not separable with just one line. Goodfellow, et al., describe the kernel trick as a 
key innovation that SVM’s brought into play efficiently as a means to split complex data 
constellations (2016, p. 141 ff.). To be more precise, Fig. 3.7 is given as an example 
below. 

  

Fig. 3.7: Computing a non-linearly separable function into a higher dimension linearly 
separable function using the kernel trick (Jain, 2017) 

In this case, two classes of data are distributed in a way that a line cannot separate. To 
solve this problem, a kernel function 
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which can be seen as a three-dimensional landscape function of x as the vector in the 
shown plane and y as the distance to the center of the landscape. > marks the ring size of 
the kernel. With this method, it is possible to split data with a linear function which makes 
handling complex data easier, even though this is done by a linear plane. There are several 
kernel functions; the one shown above is known as the radial basis function (RBF) kernel. 

3.2.1.3 ?-Nearest Neighbor 

The ?-nearest neighbor algorithm is one of the simpler yet effective algorithms. One of 
the key characteristics is, that there is no training stage. A new output can be generated 
for a given test input by running the algorithm on the input data point to class it to the 
correct data group (Goodfellow, et al., 2016, p. 143 f.). k in this regard means the number 
of observing neighbors to the test data input. In Fig. 3.8, an example of a new test input 
(star) is shown with two possible outputs, depending on the number of neighbors (3 and 
6, respectively).  

 

Fig. 3.8: Classifying a new data point (star) with the kNN algorithm (Ivan, 2017) 

In the case of the figure shown above, a new data point (start) is registered and needs to 
be classified. The k-NN algorithm makes predictions using the dataset directly. For this, 
the entire dataset is searched for the k most similar instances (neighbors) and the distance 
to all of the neighbors is being calculated to determine to which class the new data point 
is more similar. k ranges from 3 to 10 for most datasets (Ivan, 2017).  

3.2.1.4 Decision Trees 

Decision tree algorithms are used both for classification (categorical output, e.g. yes / no) 
and regression (continuous output, e.g. a number like 34) of a test dataset. What is given, 
are observed rules that (should) apply to all of the gathered data. New data points are then 
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being classified, moving forward through the nodes step by step. To make it easier to 
understand, Fig. 3.9 is given below.  

Decision trees are used when there are binary values to attributes of a dataset, like if the 
wind is strong or weak; a continuous value is also possible. In case of the below figure, 
if the person should play golf or not, the question is being asked, what the weather outlook 
looks like. If it is cloudy, the answer is directly Yes. If there is rain forecasted, the question 
applies how strong or weak the wind is, to get a definite answer. The same goes for the 
humidity levels, if the weather is sunny, with a high humidity level resulting in a No, and 
a normal level in a Yes to playing golf. 

 

Fig. 3.9: Decision tree with a discreet output value to play golf or not (HV, 2017) 

Classifying the data and applying a decision tree-based set of rules only works when the 
learning dataset is observed beforehand. For example, if there is a dataset of various data 
points given with respect to two variables X1 and X2, the first task is to define data re-
gions (Fig. 3.10). 

 

Fig. 3.10: Defining five data regions of the observed dataset (Singh, 2017) 

After defining the data regions, there are several choices on where to begin with the de-
cision tree. One choice would be to first ask if the value of the new data point is smaller 
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than 20 in regard to the first variable X1, and if so, whether the second variable X2 is 
lower or higher than 50, to classify the new data point as R1 or R2, respectively. The 
figure below shows a complete decision tree to this solve this example (Fig. 3.11). 

 

Fig. 3.11: Decision tree in accordance to the distributed data points in Fig. 3.8 (Singh, 
2017) 

Despite being simple and effective in nature, the prediction time and the time invested in 
building the algorithm are relatively high (Ivan, 2017).  

3.2.2 Unsupervised Learning Algorithms 

The main difference between supervised and unsupervised learning algorithms is that 
with an unsupervised task, there is only input data, but no corresponding output variables 
(Brownlee, 2016). Unsupervised learning machines extract information from a data dis-
tribution that do not require human labor to define examples. Mostly, these techniques 
are used when the task is to cluster examples into groups of examples, density estimation 
or learning to draw samples from a distribution. One typical task would be for an unsu-
pervised learning machine to find the best representation of the data. This might not work 
for every kind of task since best can be highly subjective, however generally speaking, it 
defines a representation that preservers as much information as possible while maintain-
ing penalties and constraints (Goodfellow, et al., 2016, p. 146 f.). 

3.2.2.1 Principal Components Analysis 

The principal components analysis algorithm is an algorithm to learn represent data con-
stellations. Large sets of data can be reduced with this method in size and number of 
dimensions, hence also used in data compression. It is also a means to identify patterns 
in data, simplifying and highlighting the similarities and differences of the data in itself 
(Smith, 2002, p. 12). One example of a direction aligning task of a dataset is shown in the 
figure below (Fig. 3.12). 
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Fig. 3.12: Linear projection and alignment of a data cloud along the main axes 
(Goodfellow, et al., 2016, p. 148) 

In terms of image recognition, this algorithm works just well with, for example, pictures 
of faces, that are aligned in a row after the PCA identifies statistical patterns in the image 
data regarding differences and similarities. The new image will get aligned at its right 
place in between the processed dataset (Smith, 2002, p. 21 f.). 

3.2.2.2 ?-means Clustering 

?-means clustering is defined as an unsupervised algorithm that divides the dataset into 
? different clusters that are near each other (Goodfellow, et al., 2016, p. 150). Before 
looking at the data and labelling it, this method allows to find clusters in a dataset that 
have formed organically. Thus, finding the groups of data makes assumptions possible 
whether and how new data points are labelled due to the pre-clustering of known data 
(Trevino, 2016). In the figure below, the driving behavior of 4,000 drivers are shown with 
the distance feature on the x-axis and the speeding feature on the y-axis (Fig. 3.13). 

 

Fig. 3.13: Clustering of drivers’ data based on two features: distance and speeding 
(Trevino, 2016) 

This algorithm can be used in different business application, for example: 
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- Detecting activity types in motion sensors 
- Identifying groups in health monitoring 
- Categorize inventory by manufacturing metrics 
- Behavioral segmentation based on activity on platform or application 

and more (Trevino, 2016). 

3.2.3 Artificial Neural Networks 

The concept of artificial neural networks goes back to McCulloch and Pitts in the early 
1940s (see Chapter 2.1). The topic of neural networks has recently gained enormous im-
portance. Not only has the effectiveness of this method increased as a result of increasing 
computing power, but topics such as big data and new sensor technologies have also in-
creased the efficiency of the output of results. Another factor are increasingly complex 
problems and patterns addressed by findings in the field of artificial intelligence, thus 
increasing the efficiency of this method. As described in section 2.4, fixed parameters are 
required for this method in order to obtain a desired output.  

The concept is based on the model of the neuron in the human brain (Fig. 3.14). 

  

Fig. 3.14: Model representation of a neuron (Guthix, 2014) 

In the case of the neuron, the cell receives electrical input signals through its dendrites 
via synapses. If this signal is sufficiently large enough, an electrical impulse is given out 
by the axon to the synapses that are further connected. If the pulses are not strong enough, 
no impulse is transmitted. Researchers of artificial intelligence also use this model to cre-
ate a simplified mathematical model, which functions similar to the nerve cell (Fig. 3.15).  
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Fig. 3.15: Model of an artificial neuron (Anomaly, 2016) 

In the case above, three inputs X1, X2 and X3 (dendrites) with specific weights (W1, W2, 
W3) go into the neuron (nerve cell). A signal moving forward through a neuron is deter-
mined by the incoming weighted sum of inputs and the activation function (see subchap-
ter 2.4). Applying the activation function on the input sum (and the set bias of the neuron) 
either make the neuron fire the information out (and how intense), or not, depending on 
the function’s outcome (Moujahid, 2016). Three common activation functions are given 
below (Fig. 3.16). Different tasks require different activation functions. 

 

Fig. 3.16: Three different activation functions; Rectified Linear Unit (ReLU) is the most 
common one (Moujahid, 2016) 

The learning process takes place when the desired output is compared with the actual 
output. If there is an error, the weights will be adjusted accordingly and again tested. This 
procedure is called backpropagation (Mankar, 2011). Following figure shows the control 
loop of this process (Fig. 3.17). 
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Fig. 3.17: Control loop of the backpropagation process (Mankar, 2011) 

In the case of a simple but complete model of a neural network as shown below (Fig. 
3.18), there are three inputs, a hidden layer with four neurons and one output. 

  

Fig. 3.18: Model of an artificial neural network of three layers (Nielsen, 2017) 

The next figure below shows a part of a neural network that is designed to recognize 
handwritten numbers (Fig. 3.19). The 3 input nodes are different inputs, here three ran-
domly selected digits 0, 5 and 9. This procedure is called classification. The hidden layer 
is about recognizing the 0: In order to successfully recognize and confirm that the scanned 
number is a 0, the digit is quartered, and each corner is compared individually. The 
weightings of the paths are initially distributed equally. During the first run, a result is 
randomly displayed which is not definite since the paths are equally weighted. Based on 
this first assumption, the path weights are adjusted and continuously improved according 
to the trial and error principle (Nielsen, 2017). 
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Fig. 3.19: Artificial neural network for character recognition (according to Nielsen, 2017) 

The threshold values of each neuron can also be changed, but in this case, this would not 
be necessary. The change in the weights is based on an error delta, also called cost or loss, 
which is calculated after each run. At the lowest possible cost value, which is calculated 
from the sum of all products of weight and threshold, the result is acceptable. Since the 
result (output) is already known, the weights of the paths from the 0 input to the hidden 
layer are now multiplied, as well as the weights from the 5 to the first neuron and those 
of the 9 to the fourth neuron are increased slightly, since the shapes in these two cases are 
relatively similar. Generally speaking, knowledge is always stored in the weights (Beck, 
kein Datum). 

Classification of data is a central component of machine learning applications. Another 
generally applicable example would be the logistic regression, a method for modelling 
and analyzing discrete variables. Classification may also be carried out, which represents 
a further step. A coordinate system with several data points of different types can be used 
for this (Fig. 3.20). 

  

Fig. 3.20: Target task: Separating data points with a straight line; left two errors (circled), 
right none (Serrano, 2016b) 

In this case, a random straight line is placed through the data points and two errors are 
registered. Typically, the errors are quantified. A sum of the error sizes, i.e. how far they 
are from the separation line and whether they are on the correct side, is formed with the 
aim of varying the straight-line function so that the error is as small as possible. In this 
case, the requirement of the smallest defect size is fulfilled. 
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However, if this example is complicated by far more complex and quantitatively in-
creased data points, this task that cannot be solved with a straight line. Here, an artificial 
neural network can be one solution (Fig. 3.21). 

  

Fig. 3.21: Integration of several regression analyses into an artificial neural network 
(Serrano, 2016b) 

When looking at the individual neurons, it becomes clear that in the hidden layer, there 
are the individual functional lines that intersect the dataset. Since this is not possible with 
a single straight line, a weighted distribution results in a quadratic function that represents 
an image of the two straight lines.  

The linear equations in this case are  

3@ =
5
2 - − 4 

and 

3E =
7
3 - −

1
3 

 

If these are converted, they result in  

5- − 23 = −8 

and 

7- − 33 = 1 

so that the individual variables and constants are implemented into the neural network. 

With the search for the lowest error ratio, the weights can also be varied and improved. 
Specifically, in the case described above, the first incoming neural activation is weighted 
seven-fold, while the second one is weighted five-fold. This is how a higher-order poly-
nomial placed in the data field that separates the two data types from each other. The −	6 
in the last neuron is a randomly selected number and has no further effect.  
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This way, much more complex data clouds can be separated by increasing either the num-
ber of neurons in the hidden layer or the number of hidden layers themselves. It can be 
assumed that the more complex the task and the richer the range of information, the 
deeper the neural network goes with several hidden layers. This is then called a deep 
neural network. 

To address the learning in a neural network, gradient descent and backpropagation comes 
into play. In a simple supervised example, when training the neural network, the output 
is a wanted goal to achieve. Since at first the weights of the neurons are distributed ran-
domly, by changing those weights, a smaller error is aimed for. The procedure is done 
from output layer backwards until the input layer since the slope of each layer depends 
on the layer before. This process is called backpropagation (Geng & Shannon, 2017). To 
summarize the learning concept, it can be said that it goes forward in the network through 
the layers to compute the loss, then backwards through the entire layers to compute the 
gradient and adjust the weights and biases (Li, et al., 2017).  

 

Fig. 3.22: Concept of backpropagation from output to input layer (Geng & Shannon, 
2017) 

Above figure explains the concept of backpropagation further (Fig. 3.22). 

Although backpropagation is a doable task for simple neural networks, when it comes to 
deep neural networks (see Chapter 4), the time for training takes much longer. The cause 
for this is a phenomenon called the vanishing gradient. This is mainly the result of the 
activation function. Sigmoid and tanh activation functions squash the input into a very 
small output range, and additionally, in a non-linear way. The result is, that a large change 
in the input results in a smaller change in the output, which makes it worse when more 
layers are stacked up (Garg, 2015). A solution would be to take another activation func-
tion, e.g. ReLU, or use other models like Restricted Boltzmann Machines or Deep Belief 
Nets (Hinton, et al., 2006; Bengio & LeCun, 2007). A further theoretical explanation of 
these models would be out of the scope of this thesis. 
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3.3 Limitations of Traditional Machine Learning 

The machine learning algorithms described in the previous subchapters all work very well 
on various real-world problems concerning handling and analyzing data. However, eve-
rything that goes beyond simple and processed data, like image or speech recognition or 
high-dimensional data, the traditional approaches tend to be insufficient. With more com-
plex data, the computational cost also rises, which makes it impossible to work on new 
problems with traditional techniques. Deep learning was developed to solve these and 
other issues (Goodfellow, et al., 2016, p. 155).  

With traditional machine learning, to be able to classify whether a cat is shown in the 
picture or some other animal, features need to be predefined. Possible features might be 
to prove if the animal has whiskers, if it has ears and if so, then if they are pointed. With 
deep learning, this procedure is on another level: the algorithm finds out the features, 
which are most important to classify the pictures, where in machine learning, all features 
had to be preset manually. 

With deep learning, in general, edges that are most relevant are identified first. Based on 
the edges, combination of shapes and edges are looked for. Several more stages prove, if 
these edges and shapes match to a bigger picture, and if so, the algorithm decides on basis 
of activation and probability what the output should be. 

Deep learning is a subset of machine learning, and often the terms are being used synon-
ymously, however, there are crucial differences. The main difference lies in the feature 
engineering. As shown in below figure, extracting the features is an additional step to the 
deep learning algorithm (Fig. 3.23). It is not just difficult but also time-consuming, and it 
relies on the domain expertise of the supervisor. With deep learning algorithms, a more 
end-to-end approach is promised (Moujahid, 2016). 

 

Fig. 3.23: Comparing the work flow of traditional machine learning to deep learning 
(Moujahid, 2016) 

More differences are given in the table below, as cited by Shaikh (2017). 



Machine Learning  42 

 
Table 3.2: Comparison of machine learning and deep learning regarding image recogni-
tion tasks (Shaikh, 2017) 

 Machine Learning Deep Learning 

Data dependencies Runs well with small 
amount of data; 

Scalability limits regarding 
to efficiency 

Need large amount of data; 

Performance increases 
with increasing amount of 
data 

Hardware dependencies Low-end hardware require-
ments 

High-end hardware re-
quirements (GPU) 

Feature engineering Features (pixel values, 
shape, position etc.) need 
to be identified and hand-
coded by expert 

Deep learning algorithm 
hierarchically learns high-
value features directly from 
data 

Problem solving approach Breaking down of the prob-
lem into different parts (ob-
ject detection, then object 
recognition) 

End-to-end processing 

Execution time Short training and execu-
tion time (depending on al-
gorithm seconds to hours) 

Long training time (up to 
weeks) and very short exe-
cution time 

Interpretability Easy to interpret algorithm 
reasoning / outcome 

Difficult to impossible to 
interpret the outcome 
(though mathematically 
possible to determine why 
some nodes were activated, 
and some not); 

Biggest obstacle for indus-
try use is the lack of inter-
pretability 
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4 Deep Learning 

Deep learning is based on neural networks with a minimum of two hidden layers, thus it 
is called deep. Andrew Ng described deep learning in 2013 as an attempt to use learning 
algorithms based on brain simulation and make progress in machine learning (Ng, 2013). 
This vague formulation became more explicit in 2015, when Ng compared deep learning 
to a rocket that needed both an oversized engine and a huge amount of fuel to fly. This 
was made possible by breakthroughs in other areas and technological developments, such 
as the possibility of cloud computing or high-performance computers - as an analogy to 
rocket propulsion - and the huge amounts of data as fuel, generated by the internet and 
micro sensors that are becoming smaller and smaller. The decisive advantage over other 
learning algorithms is that in deep learning the performance curve also increases with 
increasing data volume, whereas older learning algorithms achieved an unsurpassable 
performance plateau. Deep learning achieves an unmatched efficiency in fields like 
speech recognition, image recognition and detection, forecasting, and natural language 
processing over traditional machine learning approaches (Ng, 2015). Based on a talk by 
Ng (2016), the following representation was built to further ease the understanding of the 
advantages of deep neural networks (Fig. 4.1). 

 

Fig. 4.1: Qualitative representation of model performance over data size (Weng, 2017) 

Another reason why deep learning achieved this massive attention is the flaws of classical 
machine learning algorithms that were limited in their ability to process data in their nat-
ural and raw form. Building a pattern recognition system would require lots of engineer-
ing hours and a lot of expertise to design a feature extractor to transform the raw data, 
e.g. pixel values of an image, into a suitable representation or feature vector from which 
the learning model could detect or classify patterns in the input (LeCun, et al., 2015). 

The next subchapters will give a deeper insight into the architecture of deep artificial 
neural networks and the use thereof.  
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4.1 Advanced Concepts of Neural Networks 

As already described the basis of artificial neural networks in subchapter 3.2.3, and how 
it aims to process information similar to the human brain, this chapter gives a short insight 
about neural network models used in deep learning algorithms. In subchapter 3.2.3 sev-
eral examples of feedforward neural networks (perceptron; see next subchapter) were 
shown (see Fig. 3.13, 3.16 ff.). Besides this, what makes deep learning so powerful, are 
the advanced concepts of neural networks, that drove the accuracy up and made it more 
applicable in domains like computer vision, pattern recognition and forecasting. The con-
cepts of multilayer perceptrons (MLP), convolutional neural networks (CNN), recurrent 
neural networks (RNN), general adversarial networks (GAN) and reinforcement learning 
will be presented in this chapter. These types of neural networks are commonly used in 
deep learning applications. Since there are limited patents to deep learning models, vari-
ous modified versions are found for different tasks. Additionally, in scientific journals 
every new or modified version is compared to known models in terms of accuracy and 
efficiency to point out superiority of their specific method and model development 
(Redmon, et al., 2015; He, et al., 2018). This competition drives the development of new 
concepts. 

4.1.1 Multilayer Perceptron 

Since single neurons are restricted to linear calculations and not able to solve complex 
tasks, there is the need for multilayered neural networks (Riedmiller, 2010). As already 
shown in Fig. 3.18, 3.19 and 3.22, the multilayer perceptron is a feed forward neural 
network with a minimum of one hidden layer. The concept is to have neurons work as 
logical operators, as already stated in detail in chapter 3.2.3. Having more than one hidden 
layer makes it a deep neural network, as shown in the figures below (Fig. 4.2, Fig 4.3).  

 

Fig. 4.2. Model of a perceptron with two hidden layers (Karim, 2016) 
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Multilayer perceptrons can be used in many applications from handwritten character 
recognition and pattern classification to prediction and approximation. However, deep 
neural networks have radically improved the efficiency of classifying images and data in 
comparison with other methods of machine learning. A specific use case was given in the 
introduction to Chapter 4 and subchapter 3.2.3. Following figure shows a pixel by pixel-
based approach (28 by 28-pixel images) of a multilayer perceptron for detecting hand-
written digits, which contains 784 = 28 x 28 neurons in the input layer (Fig. 4.3). The 
figure is only showing a reduced input layer since 784 input neurons would be hard to 
represent in this medium. Also, there is no need to show the whole number of neurons to 
get additional information out of said figure. 

 

Fig. 4.3: Multilayer perceptron for recognizing handwritten digits (Nielsen, 2017) 

4.1.2 Convolutional Neural Network 

Convolutional neural networks are similar to the ordinary (deep) neural network (multi-
layer perceptron) from the previous subchapter. The main difference, beside the architec-
ture, is the explicit assumption that the inputs are images. With the concept of local re-
ceptive fields (see below) and parameter sharing, the number of parameters in the network 
are reduced (Karpathy, 2018). Just on a side note: If a regular neural network would be 
used for an image of 200 by 200 pixels with three color channels, it would result into 
neurons that have 200 x 200 x 3 = 120,000 weights.  

To better understand the concept of the convolutional architecture, below figures are 
shown (Figs. 4.4 ff.).  
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Fig. 4.4: Rearrangement of the neurons into two dimensions (Magruder, 2018a) 

The one-dimensional neurons are rearranged into an array of two-dimensional neurons. 
Thinking of an image, two dimensions make sense, when the concept of local receptive 
fields is explained further: Local receptive fields represent a way of extracting local fea-
tures (and later combining them) based on the work of Hubel and Wiesel on neurophysi-
ology of how humans perceive information through several layers of filters (Hubel & 
Wiesel, 1962). To understand the concept better, below shown figure is presented (Fig. 
4.5). 

  

Fig. 4.5: Concept of local receptive fields to detect features in every part of the image 
(Nielsen, 2017) 

The defined region of the input layer, in the above figure it is 5 by 5 neurons, gets con-
nected to one neuron in the hidden layer. For a 28 by 28 neuron map, there are 24 by 24 
unique local receptive fields. Unlike regular neural networks (multilayer perceptron), the 
weight and bias of the hidden layer neurons are all the same for that particular hidden 
layer. The term for this is called shared weights and shared bias respectively. That means 
that throughout the first layer to the hidden layer, also called feature map, the same feature 
is being detected over and over again. ReLU is most commonly used as the activation 
function to get rid of negative entries in the neurons of the hidden layer. To detect other 
characteristics, there can exist several feature maps (Nielsen, 2017). Moreover, the sys-
tem will gradually improve its performance by adjusting the preset random weights and 
biases with the help of gradient descent (Ruder, 2017; Serrano, 2017a).  
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After the just described convolutional layers, there comes a pooling layer as represented 
below (Fig. 4.6). 

 

Fig. 4.6: Pooling layer, condensing the feature map (Nielsen, 2017) 

Pooling describes the process of preparing a condensed feature map by taking the maxi-
mum output of a 2 by 2 region of neurons, as an example linked to above figure, and 
connecting it to the specified neuron of the pooling layer. Taking the maximum output is 
also known as max-pooling (ibid.). 

The detection of features continues until a prediction based on the low to high level fea-
tures can be made, which is the case when connecting the last hidden layer to one or more 
output layers. Before the fully connected output layer, there can be several convolutional 
layers with feature maps and pooling layers, as shown in the figures below (Fig.4.7 and 
4.8 respectively). 

 

Fig. 4.7: CNN with two convolutional layers to predict boat images (Long, 2017) 

As described above, there are several levels of feature recognition, for which an example 
is being represented by below figure. 
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Fig. 4.8: Four examples of different feature maps from low to high level features 
(Dernoncourt, 2015) 

The above-mentioned procedure is as of now the state-of-the-art in object recognition 
problems. Applications like self-driving cars and machine vision all were heavily influ-
enced by the development of convolutional neural networks. On top of the classic CNN 
architecture, several other models were built, including R-CNN, Fast R-CNN, Mask R-
CNN, and YOLO. While in 2012 Krizhevsky, et al., shook the computer vision world 
with the only deep learning-based image recognition model with an accuracy of 85 per-
cent (the second-place algorithm was only performing with a 74 percent accuracy), CNN-
based image recognition outperformed humans with 95 percent in 2015 (Krizhevsky, et 
al., 2012; Mallick, 2016). CNN’s are widely used in the industry by Google, Facebook, 
and Apple (LeCun, 2016; Koehrsen, 2017; Parziale, 2016).  

4.1.3 Recurrent Neural Network 

Characteristic for the neural network models described before (multilayer perceptron, 
convolutional neural network) were that they are feedforward networks, i.e. the input de-
termines the activation of all the neurons throughout the remaining layers. The model is 
static and outputs with the same quality. In a recurrent neural network however, there is 
a notion of dynamic change over time; this is especially helpful in analyzing data or pro-
cesses that change over time. The behavior of hidden neurons can be determined not only 
by the activation in previous layers, but also by the activation of itself at an earlier time 
step, as described below. This is especially useful in natural language or speech transla-
tion (Nielsen, 2017). 
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Fig. 4.9: Representation of the information flow in a recurrent neural network (Dongens, 
2018) 

As seen in above figure, the neuron takes into account what comes as regular input as 
well as what it already has processed from the time step before. This might be useful for 
processes that change over time. A very simple example would be a recommendation 
system for a canteen based on different inputs such as weather and season, costs for gro-
ceries, available skills (of employees, e.g. for exotic food), forecasted utilization, and 
previous meals cooked (Serrano, 2017b). Other examples are given below. 

 

Fig. 4.10: Unfolded RNN; each time step has the current state, input, and output (Britz, 
2015) 

As shown in above figure (x representing the input, o representing the output, and s the 
state, as well as the parameters U, V, and W), an unfolded RNN represents each state (in 
other words memory) at a given time step, with the time step before as an additional input 
to build a time-series of interrelated states and outputs. In the example of the canteen, this 
would mean x inputs of environmental constraints (e.g. weather and season, costs for 
groceries, available skills, forecasted utilization) to process the ideal main dish (output) 
for the given date (time), with the additional constraint (W) that the main dish shall not 
be the same as yesterdays (or last 14 days). 
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Fig. 4.11: Vanilla RNN; X (red) represents input, Y (blue) represents output, hidden neu-
ron (green) represents the core of the RNN (see Li, et al., 2017) 

To focus more on the process sequence, a different representation for RNN’s will be cho-
sen for the rest of this subchapter (Fig. 4.11 ff.). The term vanilla in this context refers to 
the basic model of a neural network, or single hidden layer backpropagation network 
(Hastie, et al., 2008, p. 392). In the following figure, different process sequences are 
shown. The main differentiation lies in the qualitative number of inputs and outputs (Fig. 
4.12). 

  

Fig. 4.12: Four different cases of conceptual RNN models (Li, et al., 2017) 

In the case of one to many, an image may be used as an input, processing it through the 
RNN to give out a sequence of words, for example to caption an image (see subchapter 
5.1.4 for a specific use case). One can think of a CNN, which was presented in the previ-
ous subchapter, as an encoder that extracts information out of the image, connected to an 
RNN that decodes the information into language (Radhakrishnan, 2017a). A simple ex-
ample is shown below (Fig. 4.13). 

Y 

X 
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Fig. 4.13: Image captioning of a straw hat (Radhakrishnan, 2017a; Radhakrishnan, 
2017b) 

Referring to the figure above, the first word output straw is being put as the input in the 
next time step, so that, according to the probability of the next word, hat is being put out 
after another run of the RNN. The output of the last step, in this case hat, being the input 
of the next, gives out nothing that could probably be the next word of the sentence. An-
other example would be Google’s recommendation for a search query when typing half 
a sentence or question in to the search bar (Fig. 4.14). 

 

Fig. 4.14: Automated completion of unfinished sentences in Google’s search engine 
(Karpathy, 2015) 

Many to one on the other hand would make sense in sentiment analysis and classification 
for example, where the input are many words and the output the matching sentiment. 
Many to many however, comes into use in machine translation, e.g. translation of a se-
quence of words from one language to another, or classification of a video on a frame by 
frame level (Li, et al., 2017). 

The main difference between recurrent neural networks and feedforward neural networks 
is the learning method. Since backpropagation (see subchapter 3.2.3) is a gradient based 
method, the problem of the vanishing gradient applies to recurrent neural networks, too. 
Additionally, each time step is the equivalent of a full layer in a feedforward network, 
e.g. training a 100 time-step RNN would take as long as training 100 layers of a feedfor-
ward network. This leads to exponentially small gradients and a decay of information 
through time (Rajagopal, 2015). Below figure represents the situation of the vanishing 
gradient and the decay of information in recurrent neural networks (Fig. 4.15). 
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Fig. 4.15: Decay of information over time in a recurrent neural network (Rajagopal, 2015) 

To get a better sense of the problem: For a sentence like I grew up in France… I speak 
fluent… the word French is most probably the best choice, since the RNN has learnt the 
context of the sentence by the point it was all about France. Imagining a longer gap, it 
gets harder for the RNN to forecast the next word, e.g. in longer sentences, where key 
elements are split apart through other sentences. Fortunately, there are several ways to 
address this problem, of those are gradient clipping, better optimizers, steeper gates, and 
gating. The latter is one of the more popular ones, more specifically Long Short-Term 
Memory (LSTM), which helps the networks to decide when to forget the current input 
and when to remember it for future time steps (Rajagopal, 2015).  

Long short-term memory is the result of Hochreiter & Schmidhuber’s research in 1997, 
which defines a memory cell using logistic and linear units with multiplicative interac-
tions (Hinton, et al., 2016). Below figure represents the concept visually (Fig. 4.16).  

 

Fig. 4.16: Representation of an LSTM cell with four interacting layers (yellow) and 
pointwise operations (red) (Olah, 2015) 

In the first step, in the forget gate layer, it is being decided which information to keep and 
which to throw away (1). The information goes through the layer and a sigmoid activation 
function, on basis of the previous and current input either marks it with 1 (information 
goes through) or 0 (information does not go through, i.e. forgetting the information). The 
next layer is about which information to let through and store in the cell state Ct. The 
input gate layer decides which values get updated (2) whereas the tanh layer creates a 
vector of new candidate values that could be added to the state (3). In the context of a 
language model, this might be the gender of a new subject, which replaces the old one. 

1  2  3  4 
 

Ct 
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Before the output gate layer (4), the cell state needs to be updated. This is done by getting 
the old cell state, forgetting the inputs that were decided to forget in the first layer and 
giving out new candidate values from the second and third layer. To decide what cell state 
to give out to the next cell as its input, a sigmoid layer comes into play. The tanh function 
then maps the values between -1 and 1 and multiplies it by the output of the sigmoid layer. 
In the example of the language model, the LSTM cell might put out the information 
whether the subject is singular or plural to that the verb (which might probably come next) 
gets conjugated correctly (Olah, 2015).  

4.1.4 Generative Adversarial Network 

The algorithms presented before were all of discriminative nature, e.g. classifying input 
data. Discriminative algorithms map features to labels, giving out probabilities of certain 
inputs being of which class. In contrast, instead of predicting a label on basis of the given 
features, generative algorithms predict features on basis of given labels. In the spam fil-
tering task, the question a generative algorithm would rather be Assuming this email is 
spam, how likely are these features? (Gibson, et al., kein Datum) One of the newer con-
cepts in deep learning using this approach is the generative adversarial network, short 
GAN. This relatively new framework was proposed by Goodfellow, et al., for estimating 
generative models. Two models are trained simultaneously: A generative model that cap-
tures the data distribution, and a discriminative model that estimates the probability of an 
input being from the training dataset rather than from the generative model. Goodfellow, 
et al., themselves give an analogous example of the generative model being a team of 
counterfeiters, producing fake currency and using it without detention, whereas the dis-
criminative model is analogous to the police, trying to detect the fake currency. The com-
petition drives both teams to improve their methods until a unique solution of a 50 percent 
chance of detecting the fake is the result (Goodfellow, et al., 2014). This adversarial pro-
cess is just like the situation in a minimax game in game theory (Ramachandra, 2017). 

Below figure represents the above explained concept in a visual and sequential manner 
(Fig. 4.17). 

 

Fig. 4.17: Concept of GANs shown in a sequential representation (Fortuner, 2018) 
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A prior noise is going into the generator, putting out a sample of the processed input 
which goes into the discriminator. Likewise, the sample of a real image also goes into the 
discriminator. The discriminator then decides with a sigmoid function if the inputs are 
real or fake. In the beginning, the loss of the generated image is high, resulting in a higher 
gradient. As the net is trained, the images are getting more and more similar to the real-
world images, thus the loss shrinks. A well-trained state is achieved, when the discrimi-
nator cannot classify the fakes as fake (Shibuya, 2017). 

GANs are applied most straightforward when both models, generative and discriminative, 
are multilayer perceptrons, as proposed by Goodfellow, et al. (2014). However, GANs 
(so called Creative Adversarial Networks as proposed by the paper) were also applied to 
CNNs to generatively produce art (Elgammal, et al., 2017). 

Immense potential is being offered with generative adversarial networks. Of the many 
use cases derived from this technique, there are models like the conditional generative 
adversarial network (cGAN) that were built in recent years and that can give out photo-
realistic results (Isola, et al., 2017). Of those examples, few are shown below. (Fig. 4.18). 

 

Fig. 4.18: Examples of image-to-image translation tasks with cGANs (Isola, et al., 2017) 

Image-to-Image translation is a promising application. Just like a letter can be in a specific 
language, images can be in a specific setting, too. From gray scale images, filtered chan-
nels to drafts and sketches, there are possibilities to translate those kinds of images with 
the help of GANs. In the paper in which the above represented results were published, 
street maps could be derived from aerial images (Isola, et al., 2017). In the context of this 
thesis, this can be interesting in generating airport maps. Since streets and similar terrains 
like airplane bases get changed over time, airports or aviation companies can therefore 
generate their own maps and reduce costs for satellite imagery. In a broader view on 
possibilities in the industry 4.0 and with business models based on individualization of 
products, interesting applications can be molded with the power of GANs. With the help 
of easier production methods like 3D-printing, simple graphical user interfaces (GUI) are 



Deep Learning  55 

 
thinkable where the user gives a simple input like a sketch and the AI translates this to an 
actual product.  

Because of the possibility to recreate new data from a given dataset, GANs are thought 
to be one of the most interesting and promising ideas of the last twenty years of deep 
learning research (Castelvecchi, 2017). 

4.1.5 Reinforcement Learning 

Recalling the definition of an agent from subchapter 2.3, reinforcement learning is based 
on fulfilling tasks by trial-and-error, striving for rewards and evading punishment (Silver, 
2016). Reinforcement learning agents therefore learn to maximize their expected future 
rewards from interaction with an environment, as Sutton & Barto defined. 

A Markov decision process is a framework designed for stochastic environments to help 
make decisions. The goal is to find a policy map that gives all optimal actions in each 
state of the environment (Jordan, 2017). An example of a Markov decision process is 
shown in below figure (Fig. 4.19). 

 

Fig. 4.19: A Markov decision process with three states (S), two actions (a) and two rewards 
(orange arrows) (Alvarez, 2017) 

A policy that specifies the available actions at each state of the Markov decision process 
is binding upon the agent. The goal of the agent is to improve its policy to in order to 
maximize its gain or expected future rewards. Many algorithms of reinforcement learning 
learn from sequential experience, e.g. capturing the gain of a certain action in a certain 
state following a certain policy (Heinrich & Silver, 2016). 

An agent is starting in the initial state S0 and has two actions to make, with the transition 
probabilities of each action shown. The probabilities of all outgoing arcs of the actions 
sum up to 1. From state to state, by whatever action made, either a reward or a punishment 
is granted (Lozano-Pérez & Kaelbling, 2002).    
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In 2013, the London-based startup DeepMind published a paper where they presented a 
reinforcement learning algorithm that learned to play several Atari 2600 games by ob-
serving the screen pixels and receiving reward when the game score increased. In three 
of the games, the algorithm even surpassed human experts. It has to be noted, that the 
model learned from nothing but the video input, the reward and terminal signals, and the 
set of possible actions (Mnih, et al., 2013; Matiisen, 2015). To get a better sense of the 
kinds of games played, below figure is given (Fig. 4.20). 

 

Fig. 4.20: Five Atari games’ screenshots in gameplay mode: Pong, Breakout, Space In-
vaders, Seaquest, Beam Rider from left to right (Mnih, et al., 2013) 

For this, the team has combined deep learning and reinforcement learning to something 
called deep reinforcement learning, to gain the positives of the large data handling of deep 
neural networks. The raw image data goes into a CNN with three hidden layers that result 
in a fully connected output layer with a single output for each valid action which were 
between four and 18, depending on the game. The outputs correspond to the predicted Q-
values of the individual action for the input state. In Q-Learning, a method of reinforce-
ment learning, Q-values are values in the Q-matrix, representing the agent’s memory of 
what was learned by experience with the rows of the matrix representing the current state 
of the agent, and the colums the possible actions leading to another state (McCullock, 
kein Datum). Mnih, et al., refer to this approach as Deep Q-Networks (2013). 

DeepMind’s breakthrough in developing a general gaming AI that needs no further ad-
justment or specialization for other games in their research other than game-specific pre-
processing and cropping of the visual input (ibid.).  The industry’s attention led to further 
research in this field. A paper published by the University of British Columbia deals with 
learning physics-based locomotion skills, e.g. walking of a three-dimensional multi-joint 
body on a map, via reinforcement learning. The aim, and reason why reinforcement learn-
ing was used to train the model, was to learn a variety of environment-aware locomotion 
skills with limited prior knowledge (Peng, et al., 2017). Similarly, autonomous vehicles 
also benefit from deep reinforcement learning frameworks (El Sallab, et al., 2017). 

4.2 Future of Deep Learning Research 

What research in the field of deep learning as a whole brings, is unpredictable. Deep 
learning has gained much traction over the last few years, although the concepts were not 
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completely novel (see Chapter 2). In the case of a standard (or vanilla) neural networks, 
the model of perceptrons were known long ago, strongly oriented to neurons in the brain. 
Also, the visual cortex laid the ground for convolutional neural networks, whereas some 
connections of GANs are found in game theory developed fifty years ago (Wang & Raj, 
2017). 

Although deep learning has shown tremendous progress in applications of artificial intel-
ligence such as speech recognition, image detection and prediction of future events, there 
are shortcomings when it comes to learning like a human does. In the 2015 paper of Lake, 
et al., the modern machine and deep learning models were challenged to learn new con-
cepts from just a few examples, calling this few-shot learning. For a human, it would be 
easy to identify a new two-wheel vehicle from one picture, whereas a machine would 
need much more examples. Meta-learning, or learning to learn, has recently become a 
hot topic, mainly to raise neural networks and artificial intelligence to a new standard 
(Finn, 2017). Meta-learning defines the ability to learn new tasks after being exposed to 
a large number of tasks, e.g. classifying a new image within five classes on basis of train-
ing on one example of each class (Ravi & Larochelle, 2017). The idea of meta-learning 
and learning from a few examples was recently researched further by a research group of 
Huawei (Zhou, et al., 2018). Zhou, et al., proposed a deep framework for meta-learning: 
a combination of concept generator, coupled with a concept discriminator and a meta 
learner. Other concepts of meta-learning include fast reinforcement learning, and hy-
perparameter optimization (Finn, 2017). Hyperparameter values are set before the train-
ing of the model, including number of filters, dropout rate, learning rate, cropped image 
size, and layer type and size (Miikkulainen, et al., 2017). 

With the rise in computing power possibilities and the shrinking costs thereof, older con-
cepts should be revised again from a different viewpoint. The constant review of older 
concepts might uncover unknown effects. The following paragraphs therefore deal with 
older models, with yet unreached goals. 

Amongst the ideas of a more realistic, or nature-true, modelling of neural networks, the 
concepts of spiking neural networks (SNN) and hierarchical temporary memory (HTM) 
appear to be promising. Spiking refers to the short and sudden increase in voltage to send 
information throughout the biological neural network. Recent research has shown, that 
neurons not just encode information in their average firing frequency but also in the tim-
ing of the spikes. This pulse coding is thought to be computationally powerful and prom-
ising in tasks where temporary information need to be processed (Vreeken, 2003). Hier-
archical temporary memory is defined as a machine learning technology that aims to cap-
ture the structural and algorithmic properties of the neocortex. Being the base of intelli-
gent thought in mammalian brain, the neocortex combines vision, hearing, touch, move-
ment, language and planning in one place. However, there are no specified task centers 
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for each of these senses. Biological evidence suggests that the neocortex implements a 
common set of algorithms, designed to perform many intelligent functions. Following the 
model of the neocortex, an HTM network is stacked in several layers, communicating 
within and between levels as well was outside the hierarchy. This is hoped to be of im-
portance for multisource sensor data and the like (Numenta, 2011). 

Another approach is the concept of imagination machines. Current achievements of deep 
learning are based on learning patterns and probability distribution from data, whereas 
imagination machines, imagination defined as the capacity to mentally transcend time, 
place, and/or circumstance, is more than that. Imagination science, according to Mahade-
van, addresses the problem of generating samples that are novel, not from the training. 
This might be art, linguistics, e.g. new or unknown metaphors, or (intuitive) new ways of 
problem solving. Although this field is relatively new, the need for an agile AI is defi-
nitely existent (Mahadevan, 2018). The previous concepts presented in this subchapter 
might be of help to achieve some traction in this still very theoretical field of imagination 
machines. 

There are also thoughts of quantum-based neural networks, or quantum neural networks 
(QNN). The quantum neurons, also called qurons, would then act as a two-state (resting 
and active) logic operator. Yet, the work done on this subject is very theoretical and does 
not go beyond idea suggestions and theoretical considerations rather than a fully func-
tional model (Schuld, et al., 2014). 

No doubt, the next big leap to reach is Artificial General Intelligence (AGI), e.g. an AI 
that can perform a universal intellectual task that can originally only be done by a human. 
The concepts in this thesis would most likely be defined as narrow AI, e.g. systems that 
carry out specific intelligent behaviors in specific contexts, according to Ray Kurzweil. 
If one changes the context or the behavior specification slightly, some level of human 
reprogramming or reconfiguration is generally necessary to retain the level of intelligence 
of the machine (Kurzweil, 2005). Natural generally intelligent entities like humans, hav-
ing a broad capability to self-adapt to changes in their goals or environment, perform 
transfer learning to generalize knowledge from one context to others. Artificial general 
intelligence therefore has emerged as an antonym to the term narrow AI (Taylor, et al., 
2008). Fundamental requirements, according to a 2017 paper by Facebook AI Research, 
are that a machine should be able to communicate through natural language, having a 
learning to learn ability, e.g. transfer learning, being able to learn without an explicit 
reward score, e.g. solely through linguistic feedback, and a general interface with no need 
for manually re-programming when applied to another domain (Baroni, et al., 2017). 

Another concept that is fueling artificial general intelligence is transfer learning. A paper 
from DeepMind outlined that it would be efficient for AGI if several users trained the 
same giant neural network, permitting parameter reuse, and proposed a framework called 
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PathNet. Such a framework can help networks reuse existing knowledge instead of learn-
ing from scratch for each task. DeepMind has shown this concept to work with several 
Atari games While some games could not profit from transfer learning, e.g. the hyperpa-
rameter search for the network took longer with PathNet than manually, some games’ 
transfer score (the area under the learning time, see Fig. A.1) could be multiplied 
(Fernando, et al., 2017). 

Although some concepts discussed remain vague and very theoretical without any sound 
implementation or repercussion in academia or industry like HTM and imagination ma-
chines, further research might prove one or another to be a helpful tool in achieving better 
results, accuracy and broadening possible tasks in AI. Especially better technical hard-
ware and architecture, with special focus on quantum computing and AGI, can make un-
feasible concepts of today work well tomorrow. 

4.3 Obstacles 

Naturally, deep learning has limits thus far, like every major complex technology. A paper 
from the New York University points out theses about the limits of deep learning  
(Marcus, 2018). Some are outlined as follows: 

Deep learning thus far 

- is data hungry 
- is shallow and has limited capacity for transfer 
- has no natural way to deal with hierarchical structures 
- is not sufficiently transparent 
- cannot inherently distinguish causation from correlation 
- presumes a largely stable world, in way that may be problematic 
- works well as an approximation, but its answers often cannot be fully trusted 
- is difficult to engineer with 

And of course, these limits are part of ongoing research and constantly gets pushed further 
with new inventions and novel findings that lead to even more research, as it is the case 
with transfer learning, novel architectures with less input data needed, and research to 
biased input data (Tommasi, et al., 2015; Sawada, et al., 2017; and see subchapters 4.1.4, 
4.1.5, and 4.2). 

In many industries, a simple black box model is not sufficient. To get behind the decision-
making of a machine, the underlying algorithms and mathematical models are ought to 
be known, but even then, for solving complex problems with the help of deep neural 
networks it is mere impossible to deliver a causal explanation (Stövesand, 2017). That 
this cannot be the case, and a machine’s reason has to be transparent to humans, is widely 
expected in politics, too. In mid-2018, the European Union may require, that companies 
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should be able to give an explanation for decisions that automated systems reach. Con-
sidering that even the developers and developing engineers cannot understand the reason-
ing of a machine’s decision that they have built themselves, this might be a huge obstacle. 

As described in subchapter 2.5, in certain circumstances, a machine might or should not 
be able to make decisions when it may cause in fatalities. Recently, autonomous vehicles 
have made negative headlines in some fatal cases. The most recent one, an Uber autono-
mous vehicle crashing with a bicycle rider on the night of March 19th of this year, resulting 
in the cyclist’s death, although a human supervisor was behind the wheel, has caused 
controversies. While the in-car camera footage shows the human supervisor not looking 
on the road or being distracted moments before the crash, the car itself did not manage to 
break promptly. Recent investigations have shown that the crash was a result of a false 
positive, e.g. deciding it might be a cardboard or something else, that would not be nec-
essary to break the car for, while in reality it was a case to break (Coberly, 2018). This 
kind of negative publicity makes it harder for artificial intelligence and deep learning to 
be included in everyday life of humans, especially if it means the possibility of fatalities. 

4.4 Market Intelligence 

In many industries the artificial intelligence and deep learning is being reviewed thor-
oughly for new business applications and the use of it to upgrade current products and 
services. Tractica, a provider of market intelligence and research, published a market pro-
jection for the years 2016 to 2025 with a cumulative market revenue of approximately 
$63.1 billion for different fields of artificial intelligence (Fig. 4.22). Since deep learning 
has already shown to outdo former classical machine learning algorithms in the fields of 
speech recognition, object recognition and detection, pattern recognition, and prediction 
of the future based on the past, it is believed that the bulk percentage of revenue would 
be on the account of deep learning applications. In fact, a survey published by the Bank 
of America Merrill Lynch in 2015 showed that half of AI revenue is induced by deep 
learning ($1.05 billion). Another survey on the same subject showed that by 2025 the 
share of deep learning of the total AI revenue will grow to about 73 percent ($93 billion). 
The cumulative total of artificial intelligence revenue adds up to $127 billion according 
to that study (Ma, et al., 2016, p. 14), although all in all the numbers and percentages 
should be treated with caution. 
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Fig. 4.21: Cumulative revenue of top 10 segments of AI markets worldwide between 2016 
and 2025 (Statista, 2017) 
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5 Deep Learning Use Cases 

The problems addressed today by deep learning in Chapter 4.1 were described from a 
more general perspective. This chapter deals with specific use cases of deep learning in 
the medical industry as well as in the aviation industry. As the first theoretical chapters 
made it clear, deep learning is a general computer science technology, which is being 
used in many industries. The specific circumstances in every case makes it difficult to 
generally apply applications to another problem in another field. In the example of com-
puter vision and object recognition, preceding steps need to be considered properly. Da-
tasets for the training of the neural networks have to be prepared carefully and thought 
out, sorted, cropped, and preprocessed to ensure optimal results. Although products and 
services can be enhanced with deep learning and the use of artificial intelligence, the 
problems that occur in real-world applications are to be taken into account, whether they 
are of an ethical, political, environmental or economical nature.  

Another issue that has to be pointed out is the fact, that use cases in artificial intelligence 
and deep learning are interdisciplinary in nature. There are strong bonds to big structure-
related topics, such as big data, ontologies and knowledge bases that build up to interdis-
ciplinary fields like knowledge mining, pattern recognition and automated diagnosis (Ma, 
et al., 2016, p. 14). 

At the time of writing, many use cases are being discussed in both the medical and avia-
tion industry. The following subchapters shall give a better understanding of the two in-
dustries dealing with deep learning to enhance their current business and future business 
opportunities. It has to be understood, that the small number of five reviewed use cases 
per industry do not represent the needs of the industries as a whole, regarding deep learn-
ing and artificial intelligence. In contrast to traditional machine learning, deep learning is 
designed to learn more from extensive and complex data, and to adapt to unforeseen cir-
cumstances. This makes it to be on the cutting edge of artificial intelligence technology 
as of today. 

5.1 Medicine 

The medical industry is classified by the International Standard Industrial Classification 
into three subcategories: 

- Hospital activities 
- Medical and dental practice activities 
- Other human health activities (not performed by hospitals or medical doctors) 

This also includes pharmaceutical, bioengineering and medical engineering activities. 
The main goal is to maintain and improve human health conditions and to treat and battle 
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diseases of all kind. Deep learning is therefore a tool to enhance the medical service in 
hospitals and clinics, as well as to elevate the understanding of diseases and improving 
related therapies. In some cases, the problems are addressed by hand, e.g. detecting lung 
cancer from computer tomography scans, and in others, the sheer amount of data is not 
or with a lot of difficulties evaluable, e.g. recognizing rare diseases from large databases 
of medical data. The following use cases are being researched and, in some cases, already 
partly implemented in the medical industry. 

5.1.1 Use Case I: Predictive Diagnosis 

For a human to learn diseases and to predict when they show up in a patient, is a tough 
task. However, medical data has been recorded since the digitalization of health records 
and applying learning algorithms seem to be the only option to make predictions based 
on data. This was also the reason why Sutter Health and IBM tried to apply artificial 
intelligence and machine learning on the data to gain more insights about the influence 
of certain circumstances in a patient’s health record on heart failures. For that, about 
30,000 health records were combed through and analyzed with big data methods, machine 
learning and natural language processing. Natural language processing was used to ana-
lyze and extract information out of the physician’s notes and match it with the rest of the 
patient’s record. The sorted data was then analyzed with different methods of machine 
learning, namely logistic regression, support vector machines, and n-nearest neighbor 
(Barrett, 2017). Although the results were promising, the feature extraction had to be done 
by hand. Choi, et al therefore applied deep learning to this problem and could increase 
the prediction rate up to 81 percent. While logistic regression and the support vector ma-
chine were predicting slightly lower when giving an input of 265,000 patient’s health 
records, the multi-layer perceptron model was improving in performance up to 82 percent 
(Choi, et al., 2017). While the old guideline for predicting heart failure in patients in-
cluded 28 cardiovascular risk factors, only six were consistently found to be predictors of 
a future diagnosis of a heart failure. According to Stewart, one of the authors of the paper, 
it is possible to predict heart failures one to two years earlier with the new model (Barrett, 
2017). 

In another case, Google has made headlines about predicting cardiovascular risk factors 
from retina photographs via deep learning. About 285,000 images were used to train and 
develop the deep learning model and about 13,000 images to validate it. Retina fundus 
heat maps were analyzed with a convolutional neural network, after the features and fea-
ture areas were defined by three ophthalmologists on a number of 100 retina heat maps 
(Poplin, et al., 2018, p. 158 ff.). The new method has shown to predict a heart failure with 
an efficiency of 70 percent, in comparison with 72 percent of the old SCORE method 
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which requires a blood sample, though (Vincent, 2018). Below figure shows the heat 
maps of each prediction (Fig. 5.2). 

 

Fig. 5.2: Sample retina image in color (first row, first from left), remaining images gray 
scale with each prediction overlaid in green (Poplin, et al., 2018, p. 162) 

5.1.2 Use Case II: Medical Imaging 

Skin cancer is one of the most cancer cases in the western world, largely due to ultraviolet 
light emission, with about 5.4 million new non-melanom and nearly 200,000 melanom 
skin cancer cases every year in the United States alone (Skin Cancer Foundation, 2018). 
Detecting it happens visually by medical experts with the naked eye and with the aid of a 
dermatoscope, which is a handheld microscope. If the first visual examination makes the 
dermatologist to believe it is cancerous, the next step is a biopsy. Detecting a cancerous 
melanoma in one of the earliest stages, the five-year survival rate is 97 percent, in contrast 
to 14 percent if it is detected in its latest stages. 

A research group of the Stanford Artificial Intelligence Laboratory came up with the idea 
to detect presumed melanoma spots on a patient’s skin with machine vision. Training the 
deep convolutional neural network with nearly 130,000 samples of about 2,000 skin dis-
eases, it demonstrated promising accuracy from the very first test (Esteva, et al., 2017; 
Kubota, 2017). The sample data was extracted from the internet through search engines 
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and the test data came from the University of Edinburgh and the International Skin Im-
aging Collaboration Project. Putting the algorithm into test, it matched the performance 
of 23 board-certified dermatologists. Thinking a step further, implementing it in 
smartphones, the lives of millions or even billions of people could be saved by letting a 
deep learning algorithm classify the taken images (Kubota, 2017).  

 

Fig. 5.3: Series of five CT scans with an automatic detection of a lung tumor (DIAG, 
2013) 

In several other papers, detecting lung cancer on a CT scan were described as still chal-
lenging. Although the use of 3-dimensional convolutional neural networks shows some 
advantages, the main focus lies on improving the training datasets. The goal is to shift 
from the current procedure, where a series of CT scans lead to a somewhat certain state-
ment of the radiologist, to a one-time CT scan with a deep learning system classifying 
possible tumors (Kuan, et al., 2017; Chon, et al., 2017). Above shown figure shows CT 
scans within a period of three years and an automatic object detection with the help of 
learning algorithms (Fig. 5.3). 

5.1.3 Use Case III: Personalized Drugs and Therapy 

The usual appointment at the doctor’s practice is more about the condition the patient has 
than who the patient is specifically. Therefore, medical treatments most often aim to cure 
the general person and if a treatment does not work, another, still promising method will 
be used in the process to heal the patient. Despite high chances of a positive treatment, 
there still is a possibility that prescribed drugs do the exact opposite: act toxic. Depending 
on many factors, fatal drug toxicity can be linked to the patient’s age, genetic makeup, 
preexisting conditions, the dose of the prescribed drug, and other drugs that the patient 
may be taking (Sarmah, 2014). A study showed that more than 3 percent of deaths in 
Sweden are due to bad reactions to pharmaceuticals. In the US these fatal adverse drug 
reactions as they are called, account for 5 percent of death numbers (Cressey, 2008). 

What is happening since quite some years, with sinking prices of genome analysis and 
evolving data landscapes, is the forth bringing of several new approaches of personalized 
medicine to combat the unwanted effects of drug reactions. However, not only the pre-
vention of unwanted effects is part of the research, also wanted response of specific cells 
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to a new drug or new treatment is being in the focus. As the National Human Genome 
Research Institute defines it, personalized medicine includes an individual’s genetic pro-
file to guide decisions made in regard to the prevention, diagnosis, and treatment of dis-
ease (McMullan, 2014). Although the obstacles to introduce a new drug are high, ways 
have to be found for testing. Occasionally, when the physician in charge has a hint of a 
certain effectiveness of a drug or the weak point of a disease, e.g. cancer cells, in most of 
the cases, the physician is able to initiate special treatment and genetic testing. As of 2014, 
researchers have discovered several thousand disease genes and have access to more than 
2,000 genetic tests for human conditions. Also, as of said date, more than 350 biotech-
nology-based products were in clinical trials. One of the most advanced areas in terms of 
personalized medicine is lung cancer treatment with several FDA-approved drugs and 
biomarkers in clinical trial (McMullan, 2014).  

So, based on the genomic fingerprint, new types of drugs and therapies are on the rise that 
directly and precisely address the specific aim. Deep learning in this matter is a solution 
to the problem, for genomes produce large amounts of data which is an impossible task 
for a human to evaluate and find patterns. Generative models (see subchapter 4.3) make 
it easy to simulate new drugs and test the effects on human pathology before going into 
clinical trial. This field remains highly interesting and promising as well as competitive 
in terms of research and publications, since generative models are lately making encour-
aging progress and showing value in real-world applications (Machart, 2018).  

5.1.4 Use Case IV: Image-to-Speech Aid for the Blind 

Around 253 million people worldwide live with vision impairment. Of those are 36 mil-
lion blind and 217 million with moderate to severe impairment, as a study of the World 
Health Organization shows (WHO, 2017). Tasks, such as crossing the road, buying gro-
ceries or recognizing faces, become an everyday struggle. 

A Milan-based startup, Eyra, is trying to change that. Their product called Horus, a head-
phone paired with two cameras, uses computer vision and deep learning to process the 
environmental video input and gives an audio output (Fig. 5.4).  
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Fig. 5.4: Horus, a dual-camera upgraded headphone with NVIDIA Tegra K1 GPU (Disup, 
2016) 

In detail, Horus can detect everyday objects and people and assists the user via extensive 
audio cues. A three-dimensional sound environment with different intensity, pitch and 
frequency feedback helps navigating the user and representing obstacles. Additionally, a 
short audio description of what the cameras are seeing will be given out.  

With the help of cheaper and more compact GPUs and camera systems, the combination 
of natural language processing, image detection and recognition, this might be of help for 
those who are dependent on aid. Especially those who did not had the chance of learning 
braille or the keyboard layout, or not getting familiar with the use of classical user inter-
faces, this is a good chance to keep up with new technology waves and the social media 
evolution (Excell, 2016). Understandably, this kind of product is utmost complex since it 
deals not only with a simple task for an AI to solve, but an interlocking stack of complex 
tasks that need consideration of further concepts. This would be beyond the scope of this 
chapter since the main example (Chapter 7) is another use case. 

Either way, machine vision can also be used in other cases for augmenting the human 
vision of the user, e.g. real-time three-dimensional projection of a tumor in a patient’s 
body with an augmented reality headset for medical training purposes. 

5.1.5 Use Case V: Behavioral Modification 

With the occurrence of micro sensors and easy-to-use applications for personal data han-
dling, new ways of using that kind of data arises. Users are much more willing to gather 
data, if there is a clear personal advantage coming with it. The numbers speak for them-
selves: An estimated total number of 33 million sold Apple Watches by end of the third 
quarter of 2017 and a roughly annual growth of 50 percent (Heisler, 2017). 

On the other side, according to the Center for Disease Control and Prevention around 7 
million people die from smoking-related diseases every year in the world. Around 
890,000 deaths are the result of exposure to second-hand smoke (WHO, 2018). Lung 
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cancer is said to be one of the most common types of cancer. To battle the high numbers 
of cancer and smoking-related deaths, a young startup called Somatix is on a mission to 
help change smoking habits. They developed an application that works with various fit-
ness trackers and smartwatches and uses the built-in sensors to detect hand-to-mouth ges-
tures, which indicates smoking. This cognitive behavior therapy, as they themselves call 
it, analyzes the sensor data with machine learning to passively monitor the state of being 
and deliver insights to the user (Toren, 2016). This can most effectively be achieved with 
LSTM networks (see subchapters 4.3 and 5.2.1). 

Although it is expected to further dim the use of tobacco for those, who are willing to 
change their behavior, it must be said, that 80% of the world-wide smokers live in low- 
and middle-income countries. Most probably those are not the usual customer base for 
fitness trackers or smartwatches, which make it hard to battle smoking related diseases 
overall (WHO, 2018). 

It is possible to adapt this concept to other behavioral problems, for example bad posture 
correction. With the help of sensors and cameras, an AI detects bad postures and either 
sends a message to the person’s phone or, in a more connected future, sends haptic signals 
to the person’s accordingly equipped clothing. 

5.2 Aviation 

The aviation industry deals with aircraft and aircraft related products, components and 
services on a passenger’s flight journey and throughout the aircraft’s lifecycle. This in-
cludes the manufacturing, development and design, repair, maintenance, overhaul, oper-
ation and use of aircraft and aircraft components, as well as the operation and coordina-
tion of flight management facilities and airports. Usually, it is being distinguished be-
tween civil and military aviation.  

This chapter deals with use cases from civil aviation and in particular with the repair, 
maintenance and overhaul fields of aircrafts. However, for a better understanding of the 
actual technology behind the use cases, examples from other industries might be given at 
some points. 

The described use cases were all being handpicked and filtered through a number of in-
terviews with several aviation experts, both engineers and managers.  

5.2.1 Use Case I: Predictive Maintenance 

Aircraft regularly visit maintenance hangars to get inspected. The checks are being per-
formed with a differing period in between. Also, the time and tasks for the checkup differ 
according to the maintenance instructions. An aircraft is checked regularly every 400 to 
600 flight hours, or 200 to 300 cycles, which makes an A check binding approximately 
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every month. Every six to eight month a B check is binding, although many maintenance 
facilities tend to split the labor into A and C checks. C and D checks are performed at 
greater intervals, every 20 to 24 months, respectively every six to ten years. D checks are 
also known as heavy maintenance visits, which can take up to two months and at which 
the aircraft gets completely dismantled and inspected thoroughly, including a complete 
paint job. This happens about three times in a lifetime of a regular commercial aircraft 
and cost several million dollars, depending on the aircraft’s model (Ackert, 2010). How-
ever, there exist other maintenance programs which split certain maintenance tasks (C-
Light / C-Heavy) into shorter or longer periods, respectively (Ackert, 2010).  

A 2015 study showed that 8,500 aircraft have been retired until that date at an average 
age of 27.2 years. Although it is possible to stretch this time to a longer period, like it is 
usual in the military with enhanced maintenance programs, up to double the normal pe-
riod  (Haggerty, 2004), the retirement decision is based upon maintenance and operating 
cost versus the financial contribution (Forsberg, 2015). Below figure shows the mainte-
nance checks throughout an aircraft’s life (Fig. 5.5).   

 

Fig. 5.5: Maintenance program with all checks throughout the lifetime of an aircraft; own 
figure, image of the Airbus A320-200 from (LH, 2018) 

To better plan maintenance inspections and part replacements, and thus minimize operat-
ing costs, the concept of predictive maintenance is being discussed heavily in the last 
years. There exist about four major maintenance types: reactive, preventive, predictive 
and proactive maintenance. The main difference between all these maintenance types is 
that reactive follows a run-to-failure strategy, which is only possible for non-safety re-
lated components of an aircraft, whereas preventive aims to maintain machines and com-
ponents at specified time intervals, even if that would mean to replace good components 



Deep Learning Use Cases  70 

 
(see Fig. 5.5). However, in the long run, it pays off since the risk of machine failure oc-
currence is being reduced significantly (UE Systems, 2014). To design economically vi-
able maintenance programs, it requires experience in the field and a good risk manage-
ment to calculate the optimal and economically reasonable checkup intervals.  

Predictive maintenance on the other hand means routinely inspecting machines and com-
ponents while operating, with the help of external sensing technologies such as heat and 
pressure sensors to track lubrication wear and tear, for example. With this, detecting faults 
and parts breakdown in machines becomes possible, which would otherwise be very dif-
ficult (UE Systems, 2014). Spontaneous machine and component failure would occur 
more seldom and could help planning maintenance programs more efficiently. Besides 
process efficiency and heat loss, five nondestructive techniques are being used in general 
for non-mechanical equipment and components: vibration monitoring, process parameter 
monitoring, thermography, tribology and visual inspection (Mobley, 2002, p. 5 f.).  

Proactive maintenance however tries to find out the root causes of failure. Although this 
means to keep track of the quality of products used, e.g. lubricants, or training the mainte-
nance technicians, it can also go back to the machine’s design (Casey, 2013). For an air-
craft operator, this could mean flying on south-east Asian routes might result in stronger 
corrosion of unprotected metal parts of components due to salt, humidity and heat as root 
causes (EAI, kein Datum).  

When talking about monitoring machine and component condition for predictive mainte-
nance, deep learning is a key technology to make predictions based on time-series events 
and anomaly detection. While predictive maintenance models using traditional machine 
learning algorithms are based on feature engineering (see subchapter 3.3), which itself is 
constrained by the domain expertise and the high-grade of manual labor, and are hard to 
reuse since the extracted features are problem-specific, deep learning has shown great 
results automating the data and feature extraction. Among the used networks are Long 
Short-Term Memory (LSTM) which are a special kind of RNN and suited for learning 
from sequences over time. The data is collected over time to monitor the state of the 
component or machine with the goal of finding patterns to predict failures. With this tech-
nique, failures of engines for example can be detected before they occur, so that the 
maintenance can be planned in advance (Uz, 2017). 

Baker Hughes has positively implemented predictive maintenance measures using deep 
learning on their gas and oil extraction equipment to monitor the pumps’ health (Fig. 5.6).  
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Fig. 5.6: Baker Hughes’ MATLAB-based predictive maintenance alarm system (DE, 
2017) 

To train the neural network, field data of almost one terabyte was gathered, including 
temperature, pressure and vibration into MathWorks’ MATLAB. Although preprocessing 
the data was a difficult task, since there were large movements of the truck and fluids, it 
could be automated using scripts to detect smaller changes of signals. Baker Hughes’ 
savings add up $10 million through the use of deep learning in predictive maintenance 
(DE, 2017).  

General Electric has experienced similar effects: Numbers of the GE Oil & Gas division 
show that the unplanned downtime rate was reduced from eight to 5.5 percent as well as 
the financial impact from $65 to $24 million dollars, when compared to preventive 
maintenance programs (Peeling, 2017). 

For aviation, prediction based on deep learning could not just mean replacing parts before 
they break, it also can be an important way to predict non-normal behavior of the aircraft, 
including irregular piloting behavior. The flight recorder can be seen as a sensor, that 
gathers lots of data over time. Alternatively, other sensors that track position, altitude, 
rotation, sound and light, can also be applied to the cockpit to gather more exclusive data. 
Deep learning can help analyze this data and find patterns, compare them with findings 
from years before, and make predictions of possible states in the future. This would gen-
erate new knowledge in the field of complex machine behavior and human-machine in-
teraction. 

5.2.2 Use Case II: Visual Quality Recognition 

In safety relevant environments like aviation, a high and steady state of quality is an im-
portant goal to achieve. This is not only relevant for maintenance and repair, but also in 
production. Sustainable product and process quality is a decisive criterion for a 
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company’s success and reputation. More than half of all product quality checks in pro-
duction are based on the processing of visual information, e.g. an employee has to visually 
inspect at the product from every angle. This way, the finishing, seamless assembling and 
other quality criteria are met with the cognitive ability of the employee and his senses. 
And although the employees are highly trained, some optical damages are so small an eye 
cannot detect it. On top, this procedure is an exhausting, long-time continuous work and 
often depends on the mental state of the employee and his focus (Schröer, 2017). This 
also leads to reduction in production efficiency since faulty products result in sale deficit 
and a waste of raw materials (Wang, et al., 2017). 

As it is the case with computer vision, deep neural network models like CNN’s have 
shown to outperform humans in certain visual recognition tasks (He, et al., 2015). Visual 
detection of damages is therefore a promising use case in aviation, automotive, and in 
general manufacturing of safety relevant parts and products.  

Wang, et al., have designed a, what they call, fast and robust CNN-based defect detection 
model in product quality control (2017). The convolutional neural network model was 
trained on a dataset from the German Association for Pattern Recognition and German 
Chapter of the European Neural Network Society which contains six image classes with 
the size of 512 x 512 pixel. Each class consists of 150 defectives with one defect region 
and 1000 defect free images. Below figure shows each of the six image classes (Fig. 5.7). 

 

Fig. 5.7: Samples of each image class, which differ in background texture; the defective 
regions are marked by a surrounding red ellipse (Wang, et al., 2017) 

Applying and training a 11-layer CNN network (see subchapter 4.1.2) was achieved with 
70 percent of the dataset as the training set and 30 percent as the validation set. The con-
volutional neural network was built in a two-fold manner: the global frame classification 
part and the sub-frame detection part. The global frame classification part was designed 
to classify the image sample into the correct class, thus detecting the background texture 
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features. The sub-frame detection part was designed to detect whether the certain defec-
tive region or damage was part of the sample based on the trained input data. 

The concept of Wang, et al., achieved an overall 99.8 percent detection rate of faulty 
images, outperforming former best performance algorithms. With a detection rate of 27 
images per second, real-time detection would also be possible.  

In maintenance and repair of aircraft, this is a powerful method to detect defects which is 
an exhausting task for a human, and where the safety of the component or machine is 
crucial, e.g. engines. A single engine visiting the maintenance shop and getting disman-
tled completely costs around 3.5 million Euros. But this approach is not only for detecting 
damages or quality shortcomings in machines and machine components, but also for other 
industries, that are dealing with classifying and sorting out products, e.g. tomatoes (Fig 
5.8). In agriculture,  

 

Fig. 5.8: Quality inspection: Tomato sorting machine based on computer vision and sim-
ple robotics; yellow and orange arrows show moving direction (Youtube, 2017) 

In agriculture, there are several tasks that can be done by a deep learning computer vision 
machine. From detecting anomalies in crops, empty spots in the field, size and shape of 
the crop products, to parasites and other crop diseases, deep learning can be a powerful 
tool to detect and classify those specific items, and most importantly make decisions on 
basis of the digital image seen. Therefore, computer vision is an emerging subject in pre-
cision farming and food inspection (Zachevsky, 2012). 

With regard to aviation and repair of components, decision making is also an important 
subject since there are other economical questions when repairing equipment. In most 
cases when maintaining an aircraft, some items need to be replaced, some can be repaired. 
Whether it should be repaired, or replaced, where it should be repaired (internally or 
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external partners) or simply thrown away, are questions a maintenance expert has to deal 
with. In certain cases, though, the faulty item has to be analyzed further to make sure the 
optimal decision was made, regarding safety and finance. This is a step further in the 
making of intelligent machines, that can augment humans in this complex task. There 
would be much more data needed to develop an understanding of the lifecycle of an air-
craft, the interplay of different components, and future economical as well as safe mainte-
nance programs of aircraft.  

5.2.3 Use Case III: Automated Claim and Contract Management 

When it comes to contracts and negotiations, companies from every industry including 
aviation have to get professional legal help. Bigger companies have legal departments, 
where corporate lawyers assert the company’s interests in negotiations. With value chains 
becoming more and more complicated and outsourced, this matter becomes more im-
portant. However, humans make mistakes and that is where an intelligent machine can be 
of supportive help. Especially in contracts, there might be phrases that are problematic 
because they can mean one thing but suggest another. This results in uncertainty and 
longer negotiations or even worse in not realizing certain aspects or changes made to 
proposals and thus leading to a bad financial situation regarding the contractual object. 
Although this matter is not just related to aviation, it can affect every interaction with 
manufacturers, industry partners and customers. With aircraft parts pricing in the mil-
lions, small changes or incorrect claims can have great impact on a firm. 

A simple digitalization of the legal contract is not sufficient to transform the content into 
a structured commercial knowledge base. Data in documents and written text are usually 
extracted via text mining, a special form of data mining which itself is an analysis and 
extraction of structured data. For an intelligent machine to be able to extract patterns and 
findings, the data has to be prepared based on knowledge representation and knowledge 
reasoning. A contract document has metadata, e.g. supplier name and identification, legal 
entity identification, contract date, etc., but not the knowledge that is hidden inside it. To 
derive this key intelligence, clause libraries have to be built that include metadata which 
describe business-relevant characteristics of the clauses (Mitchell, 2017). The next step 
would be to prepare the data for the machine to learn from it. That means to connect 
meaning to the clauses in the library. To train a machine, lots of data would be needed, 
i.e. a lot of contracts need to be digitalized and brought into the specific form needed.  

Since every company, customer and legal entity has their own style of writing, an artificial 
intelligent machine has to get through all the meaning in the text. This is done with Nat-
ural Language Processing (NLP), and the explicit application would be machine transla-
tion and question answering since juridical clauses have to be translated into easy to un-
derstand explanation. With this procedure, the legal department can be supported 
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massively and critical clauses and changes to the document and its meaning can be out-
lined. NLP is also used in extracting the meaning of tweets using slang language and is 
doing so fairly well (Dyer, 2017).  

With enough training data, including non-legal text mining, the machine can also gain the 
ability to build language itself. This is mostly done with RNN-based language models, 
where the probability of certain words and word structures are being compared with the 
learnt data (Jurafsky, 2016). Compared to common speech, this is but an easy task. Legal 
clauses are known to be both precise but also have different meaning, depending on the 
interpretation of the court and lawyers. Despite the difficulty of implementing a self-
scribing legal contract machine, in matters of claim management, this could be of a great 
support to lay out certain aspects, e.g. false commitments made or identifying warranty 
claims. 

5.2.4 Use Case IV: Fair Market Price Prediction of Spare Parts 

Another use case to implement deep learning is price prediction. In the maintenance, re-
pair and overhaul of aircraft, spare parts are not only an expensive matter in some cases 
but also a scarce resource which need to be coordinated and ordered wisely. With lean 
production and the shutdown of large warehouses, spare parts also have to be managed 
accordingly. And in some cases, functioning parts are also being sold to other companies 
or aircraft operators. For this, a fair market price is being predicted on basis of yearlong 
experience in industry and market. It has to be said, that the prediction is not the most 
optimal price, since there are only a small number of parts dealers, depending on the 
specific aircraft’s part, that can distort the fair price of it. Having deep expertise in the 
maintenance and repair industry is most often not enough leverage to have. On top and 
understandably, part prices vary at different times and places.  

With deep learning, the prediction of prices and price trend is possible, provided there is 
an adequate data base. In stock trading, investment bankers analyze data like news, com-
panies’ history, industry trends, and more to make price predictions. A learning machine 
could easily output predictions based on past experience. These trading algorithms how-
ever, are the golden asset of investment companies, there is little known about how well 
they function. Similar to the use case described in subchapter 5.2.1, stock market predic-
tions are also build upon LSTM networks to include the learnt of the past into predictions 
of the future. This includes all news and information, technical and fundamental indica-
tors, technical chart analysis, etc. (Reid, 2014). 

Furthermore, there is also an unsupervised approach using reinforcement learning to let 
the model train on its own. A positive outcome, i.e. making profit, would trigger a reward 
for the model to confirm certain strategies, while a negative outcome, i.e. losing money, 
would cause a punishment for the current state of the model (ibid.).  
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Fig. 5.9: Reinforcement learning: Making and losing money as reward and punishment, 
respectively, to adjust the weights of the neural network (Reid, 2014) 

Just like DeepMind’s Alpha Go model, a reinforcement learning-based market price pre-
diction algorithm could start from zero. Since the algorithm of Alpha Go and Alpha Go 
Zero is too complex for a human to understand, chances are high that the outcome of such 
a self-learning trading algorithm would also be not understandable by humans with regard 
of how the prediction came into existence (see subchapter 4.3).  

5.2.5 Use Case V: Natural Language Processing in Maintenance Records 

Maintenance records are reports of aircraft going through the maintenance shop. This 
documentation process is more or less dictated by regulation authorities (FAA, EASA, 
CAA, etc.), binding upon maintenance and repair shops. In the Federal Aviation Regula-
tions section 43.9, namely Content, Form, and Disposition of Maintenance Records, every 
person who maintains, performs preventive maintenance, rebuilds, or alters an aircraft, 
airframe, aircraft engine, propeller, appliance, or component part shall make an entry in 
the maintenance record of that equipment. This maintenance record includes a description 
of the work performed, the date of completion, names of other persons involved in the 
maintenance work, signature, and other information like certificate number and type of 
certificate (ASB, 2007). Usually, maintenance records are handwritten, and in most cases 
digitalized afterwards for an easier storage. But here exactly lies the problem: The hand-
written reports do not share a common language or syntax. Each maintenance technician 
has their own style of writing, including the visual appearance of the written characters. 
This makes it hard to decipher for other maintenance employees for further documenta-
tion. Similar to the use case described before regarding automated contract management, 
to read and actually understand maintenance records, NLP is a solution to tackle this 
problem. 
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To address this problem, several steps are to be considered. First of all, the handwritten 
characters need to be recognized (see subchapter 3.2.3) which can be done with the help 
of deep neural networks (Fig. 5.10). 

 

Fig. 5.10: Multilayer perceptron model with two hidden layers for handwritten character 
recognition (Kouamo & Tangha, 2012) 

Although the proposed model by Kouamo and Tangha performed well with about 97 per-
cent recognition rate, the training time was the longest of all researched methods (1h 
32m). Other methods such as KNN can perform without the need of training time, but 
with a significantly lower recognition rate of 91 percent. 

The next step would be probabilistic language models, as already discussed in subchapter 
5.2.3. On basis of statistical models, every word has a specific probability, in comparison 
with other possible options. Given a good data resource, applying these models would not 
be that challenging, since there already exist proven methods to building probabilistic 
language models (Jurafsky, 2016). Put in simpler words, the recognized letters, words 
and finally sentences are being analyzed and matched with the most correct options, seen 
from a probabilistic perspective. On top, and in similarity with the legal clauses problem 
of subchapter 5.2.3, different words and word groups used by different technicians can 
be matched and generalized in a universal maintenance language. This would accelerate 
the maintenance process and prevent human error and bring maintenance shops a step 
further in the direction of true digitalization. 

Extracting knowledge of handwritten maintenance reports is very similar to problems in 
other domains, like medicine. In medicine, healthcare records are also written by hand in 
most of the cases. A digitalization and automation of these reports can help nurses and 
practitioners and save precious time for more important tasks. Especially in this use case, 
a generalization of the technology used is intelligible. 
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6 Transfer of Technology 

Development of new technology happens either at research faculties of universities or at 
R&D departments of bigger companies. The transfer of technology typically addresses 
the movement of academic discoveries and inventions into the commercial sector (Van 
Norman & Eisenkot, 2017). On the one hand transfer of technology for a large proportion 
builds upon intellectual property, that can be transferred from research faculties to com-
mercial companies for royalties, on the other hand though, used in a cooperation and joint 
development and commercialization where both parties agree to certain roles in a devel-
opment project. However, the subject of the thesis was aimed deliberately to act in an 
interdisciplinary setting between two different domains: the medical and the aviation in-
dustry. One guiding principle was the analogy between patients and aircraft, both suffer-
ing from diseases or failure in components respectively. Analyzing both industries in-
depth showed that the matter is more complicated and cannot be represented by such a 
simple analogy. However, along the operational chain, from registering the current state, 
comparing with the target state, documenting, recommending approaches to reach a fa-
vorable outcome and to learn and adapt for possible future predictive measures, deep 
learning can be an enhancing technology in both the medical and aviation industry. 

There also exist other types of technology transfer, between companies, between coun-
tries, and between companies and countries (Borge & Bröring, 2017, p. 312). This chapter 
however deals with transfer from academia to the commercial sector, i.e. private compa-
nies.  

6.1 Overview of the Technology Transfer Process and 
Transfer Instruments 

The process already begins with the disclosure of the invention or finding of a technolog-
ical innovation. Although not all universities and research centers have a technology 
transfer office (TTO), around 84 to 87 percent cannot cover the costs of such an office, 
most often the supervisor of the research center undertake the task of technology transfer 
and commercialization together with the inventor (Van Norman & Eisenkot, 2017). How-
ever, due to the fact that the technology transfer office is being a home to the range of 
responsibilities in a technology transfer, further mentioning of technology transfer is 
linked to the TTO. Below is a representation of the technology transfer process given Fig. 
6.1), however, this representation only covers the commercialization part of the transfer 
process, as described by Van Norman & Eisenkot. To avoid unnecessary duplications, 
further explanation is given in subchapter 7.4.2. 
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Fig. 6.1: Simplified overview of the technology transfer process (Van Norman & 
Eisenkot, 2017); Red box is additional and applies to findings in Chapter 7 

Van Norman & Eisenkot focused their investigation on the process after the TTO decides 
to commercialize a certain technology, which at that time might still be in development. 
However, the finding of technology and the use thereof is also considered a step in the 
technology transfer process, as described in the following paragraph (see transfer instru-
ments in Fig. 6.2). Having this in mind, the work of this thesis can also be called a part of 
the technology process. More specifically, this thesis work has great similarity with the 
Research Days mentioned in the below figure. Research Days can be described as a 
match-making process between a company and a research center, where the company (in 
this case Lufthansa Technik) makes a wish list from possible collaboration fields, and the 
research center (in this case the Institute of Medical Systems Biology) proposes relevant 
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projects and use cases, and presents the chosen topic to the company after a preparation 
time of three to six months. 

It is crucial for the transfer and also for the direction of development specialization to 
know what readiness level the investigated technology has (technology readiness is de-
fined as the stage of development a technology goes through from basic research to fully 
viable commercialization; see subchapter 6.4.1 for a detailed explanation). The figure 
below shows the Helmholtz’ application readiness level metric that shows large similari-
ties with the technology readiness level of NASA (Fig. 6.2). 

 

Fig. 6.2: Application readiness level of the Helmholtz Association of German Research 
Centers (Helmholtz Association, kein Datum) 

In above figure, the possible instruments are shown which the Helmholtz Association use 
for transferring technology. The first row, CTO-Circle, Research Days, Start-up Days, 
and Innovation Days represent events or expert platforms where leading technology man-
agers, technology experts and companies get invited to gain insights and initiate possible 
collaboration projects, as already explained for the concept of Research Days. The second 
row and the third row represent possibilities of research funding, being independent at the 
research center or as a more open format of cooperation, respectively. For advanced read-
iness levels (fourth and fifth row), assessments regarding a technology and market readi-
ness or spin-offs take place, respectively (Helmholtz Association, kein Datum). 

Further use of the last two figures are in subchapter 7.4.2, when applied to a specific 
transfer use case. 
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6.2 Requirements for Transferring Technologies 

In many cases using and implementing a new technology is costly. The main reason for 
this is the lack of experience, that comes with new technology. Since new technologies 
and innovations are always a risky undertaking, many companies cannot include those 
kinds of innovations inside the predominant company structure (Mitra, 2013). Disrupting 
innovation therefore happens outside the main business divisions of a company. Dealing 
constantly with new shifts in the technology world, most companies have strategic scout-
ing functions to evaluate new insights to new and existing products and services for the 
company. The difficulty lies in the implementation and realization of that particular new 
technology. Doing market research and competitor analysis is not enough to be ahead in 
times of constant innovation pressure. However, these kinds of innovation projects tend 
to be very risky due to high uncertainty.  

There are different parties involved in transferring technology from one domain to an-
other. When speaking of new technology development, there is always an inventor, the 
research and development departments of both parties, the sales departments to meet cus-
tomer and market demands, the legal departments that discuss the conditions and use of 
the intellectual property, as well as the engineering that develops the product to serial 
production, and a general management that backs up the project (Barmaksiz, 2018). An-
other requirement is to have a stable and functioning exchange of information. The out-
come as well as the workshare should be defined and clear to every party involved.  

6.3 Transfer in Interdisciplinary Settings 

One way to solve the uncertainty problems of innovative products and projects is to have 
an interdisciplinary work project on that subject. It is of great help to see into other do-
mains and industries and see how problems are addressed differently. When there are 
already developed technologies and experiments, savings in technology development is a 
welcomed side-effect, for the fundamental research was already implemented in a real-
world environment or at least further developed in applied research. With the help of the 
experienced domain partner, the learning curve is much shorter and therefore, potential 
pitfalls can easier be avoided. 

Several independent research works have shown that interdisciplinary settings in research 
and development hold great potential for innovation and creativity. Moreover, it has 
shown to be effective in addressing recent global problems, such as global warming  
(Borge & Bröring, 2017, p. 311). Apart of that, existing solutions and proof of concepts 
in academia seem to be generally applicable in many industries when dismantled to a high 
degree of abstraction and viewed from a meta level. In some cases, technologies can be 
transferred almost one to one. In research centers, most often the scientist that made the 
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finding is responsible to find applications in other domains. At the time of writing this 
thesis, there were confidential information existent about transfer of a physical technol-
ogy from a commercial sector back to another field of applied physics. Technology is 
being interchanged between domains and applied in different environments and problems 
(Barmaksiz, 2018).  

Despite the advantages, there are also some obstacles, such as different background 
knowledge and different language used in those specific domains. Ideally, all parties 
should be involved from the research stage on in the project to establish a solid knowledge 
base. That this cannot be the case in most cases when industry and academia work to-
gether, is unfortunately the standard. Moreover, there might be differences in interest and 
expectations, which should be considered by the management, as well as different stand-
ards and regulations that apply to those specific fields (ibid., p. 313). It could be of help 
to have a standardized form of addressing problems in interdisciplinary settings. 

6.4 Methods used in Technology Transfer 

When implementing technologies from institution A to institution B, regardless of being 
from academia or private sector, there are different methods used by the inventing scien-
tists and engineers. This chapter presents a short summary along the operational chain of 
the evaluating researcher. Therefore, the used methods also outline the chronologic use 
in the whole process of technology transfer (see Fig. 6.3). The structure and methods 
follow the model of best practices in research and industry regarding technology transfer. 
The rough procedure is based on interviews with the innovation and technology transfer 
office of Germany’s largest accelerator center, the Deutsches Elektronen-Synchrotron 
(DESY), although some methods are based on prior experience in innovation manage-
ment and development. 

 

Fig. 6.3: Rough chronological order of the methodological overall approach to technology 
transfer 

General Technology Evaluation (Technology Readiness Level)

Customer and Market Research (Genchi Genbutsu, Delphi Method)

In-depth Patent Analysis

Finding of Use-Cases (Creativity Methods)
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6.4.1 Technology Readiness Level 

In the 1960s NASA tried to develop a method to qualitatively measure and evaluate tech-
nologies and their maturity (Hicks, et al., 2009, p. 158). This so-called Technology Read-
iness Level (TRL) has been the standard for the evaluation of space technologies and their 
degree of maturity since 1988 in accordance with ISO 16290. It is also used by the Euro-
pean Space Agency (ESA), the Federal Aviation Administration (FAA) and other gov-
ernment institutions. The degree of maturity of the investigated technology is determined 
on a scale (Fig. 6.4). The scale ranges from TRL 1 (observation and description of the 
basic principles, start of basic research) to TRL 9 (qualified system with proof of success-
ful real-world use) (Hicks, et al., 2009, p. 159 f.). 

 

Fig. 6.4: Representation of the Technology Readiness Level on a heatmap thermometer 
(Dvorak, 2016) 

With the help of this scaling, a technology that is still not ready for real-world use can be 
evaluated and used for comparison with other technologies. The use of a qualitative meas-
urement of technology maturity levels can also support the company's internal examina-
tion of technology and the approval of resources. Combined with an extensive patent 
analysis, there can be potential for valuable industry insights. 

However, Hicks et al. see shortcomings in some respects. Systems that require several 
technologies with different degrees of development cannot be mapped on the scale, as the 
interplay of differently weighted technologies is not evident. Furthermore, there is no use 
case evaluation involved in the ranking, which makes it difficult for private companies to 
invest in basic research (Hicks, et al., 2009, p. 160 f.). 

In addition to the TRL, there are other macro -level parameters for early stage technology 
development regarding (Alexander, 2017), including: 

- Research and Development Degree of Difficulty 
- Capability Demonstrations 
- Advanced Degree of Difficulty 
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- System Readiness Level 
- Integration Readiness Levels 
- Implementation Readiness Level 
- Manufacturing Readiness Level 
- Macro-level technology performance or complexity factors 

For the purpose of having a technology development evaluation metric, the TRL is com-
pletely sufficient in the scope of this thesis. 

6.4.2 Genchi Genbutsu 

Genchi genbutsu is probably the main practice that fundamentally differentiates Toyota's 
concept from other technical management approaches. Genchi genbutsu (literal transla-
tion: actual place, actual thing) comes from the Japanese language and is often translated 
to go and see. This philosophy stands for visiting the place of happening in order to un-
derstand a problem or situation, both theoretically and practically (Liker & Meier, 2007) 
as well as from a customer, worker and employee point of view. All those who are sig-
nificantly involved in development and solution of a certain problem are encouraged to 
have a conscious look on the matter before important decisions are made. Although fol-
lowing example rather deals with the last steps of experimental development, it shows the 
importance of senior employees identifying themselves with a specific environment or 
problem: 

Toyota's 2004 Sienna Minivan model was to be developed primarily for the North Amer-
ican market. Since the chief engineer, Yuji Yokoya, who was responsible for the product 
did not have the necessary market expertise, he suggested a round trip throughout North 
America by car. The extent of the road trip with a total of 53,000 miles driven through all 
50 states of the USA, 13 provinces of Canada and all parts of Mexico was enormous. 
Yokoya rented the current model of the Toyota Sienna in small and large cities and drove 
a certain distance together with potential customers. He observed them and recorded first-
hand information about what potential customers from North America would expect from 
a minivan (Ries, 2015). Yokoya collected and measured high-quality data directly from 
the customer, from which he was able to draw conclusions of a huge quantity. One of the 
most important findings was that although the customer is the buyer, the users can cer-
tainly influence this purchase. With a minivan, these were usually the customer's children 
or grandchildren. For this reason, Yokoya understood that the new model had to be made 
more appealing to children. More focus should be placed on comfort, as longer distances 
are usually covered in North America than in Japan (Ries, 2015, p. 82 ff.). Without this 
method, the product would be developed in a wrong direction. It helps to prove hypothe-
ses and test it in a real-world environment. 
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In technology transfer, this approach helps to understand the domain specific situation. It 
is of immense help that a researcher goes to the actual place and sees for himself. An 
extensive analysis of the real-world situation and environment is inevitable when trying 
to implement a technology in a rather unknown industry. Since the main orientation of 
private companies are their customers, the needs of the customers are important to under-
stand, as well, when wanting wo transfer technology to the private sector.  

6.4.3 Delphi Method 

Named after the ancient Greek oracle, the Delphi method is a technique to obtain a col-
lective view from individuals about issues where there is no or little definite evidence and 
where opinion is important. Initially, this method comes was used by the military to pre-
dict probable effects of massive atomic bombs. The objective of the original study at Rand 
Corporation was to obtain the most reliable consensus of opinion of a group of experts ... 
by a series of intensive questionnaires interspersed with controlled opinion feedback 
(Linstone & Turoff, 2002). Now, this technique is used in many environments, including 
economic and financial settings, technology and trend analysis, and healthcare.  
(Thangaratinam & Redman, 2005). As a whole, the Delphi process is characterized as a 
method for structuring a group communication process with the aim to allow a group of 
individuals to deal with a complex problem. Four things are provided to accomplish this 
structured communication: feedback of individual contributions of information and 
knowledge, assessment of the group view, opportunity for individuals to revise certain 
views, and a degree of anonymity for the individual responses (Okoli & Pawlowski, 
2004). 

In both, the classical method of surveys and the Delphi method, a questionnaire is de-
signed and presented to a group of individuals that answer the questions based on the 
personal knowledge about the matter. The questions that a Delphi study investigates are 
of high uncertainty and speculation, thus not appropriate for a general population. In a 
Delphi study the group of experts, about 10 to 18 is handpicked by the researcher based 
on the qualification of the experts. After the survey is done, the researcher then analyzes 
the responses. A group feedback helps to prioritize the next round’s questions. In addition 
to new questions derived from the group feedback, original questions can remain for ex-
perts to revise their response. This process is an iteration loop until the experts reach a 
satisfactory degree of consensus (Okoli & Pawlowski, 2004).  

The process is split in roughly two steps, selecting experts (1), and the administration of 
the surveys (2), each step consisting of subsets. The actions of each step are described in 
the following table (Table 6.1). 
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 Table 6.1: Overview of the Delphi method’s steps (Okoli & Pawlowski, 2004) 

Step Description of Tasks 

1.1 Identification 
of relevant sets 

Identify relevant disciplines or skills in academics, practicioners, 
NGO and government officials, 

Identify relevant organizations, and academic literature 

1.2 Identification 
of experts 

Identify experts of above named disciplines, skills, organizations, 
academic literatur 

1.3 Nomination of 
additional experts 

Contact experts listed in 1.2 and ask for further nomination of 
other experts 

1.4 Rank experts Categorize experts in different sub-lists or panels, one for each 
discipline, 

Rank experts of each list based on qualification 

1.5 Invite experts Invite experts in order of their ranking, within their discipline sub-
set, 

Stop when target size of 10 to 18 experts is reached for each panel 

2.1 Brainstorming Ask experts as individuals to assess Questionnaire 1 (for example 
listing relevant factors for an optimal infrastructure for a digital 
factory), 

Consolidate the lists of all experts, remove duplicates, and unify 
terminology, 

Send Questionnaire 2 (consolidated list) for validation and refine 
final version 

2.2 Narrowing 
down 

Send Questionnaire 3 (finalized version) to each expert panels and 
ask to select at least ten factors, 

For each panel, keep factors which were chosen by over 50 percent 
of experts, use those for the next questionnair 

2.3 Ranking Questionnaire 4: Ask experts of each panel to rank factors, 

Calculate mean rank for each item (based on all panels), 

Get feedback of every panel, share feedback, and ask to re-rank 
the list,  

Reiterate until experts reach consensus 
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In research, the Delphi method is especially useful to identify research topics, specify 
research questions, identify a theoretical perspective for the research, selection of varia-
bles of interests and generation of propositions, preliminary identification of causal rela-
tionships and definition of constructs and the creation of a common language for dis-
course (Okoli & Pawlowski, 2004). 

6.4.4 Patent Analysis 

A patent analysis answers many questions when investigating a technology transfer. 
Thus, it is a key method to understand the transfer situation. Due to patents being availa-
ble online and browsable in real-time, it is possible to filter and specifically search for 
keywords. This answers which patents were filed by whom, which countries are special-
ized in which technology, which collaborations take place in which industry, and which 
domain filed how many patents regarding a specific technology. A patent search and vis-
ualization tool is helpful in finding the right information through all the patents, since 
with about 50 million internationally filed patents from 1985 to 2016 patent research can 
be time-consuming (WIPO, 2018).  

Since patents contain extractable knowledge, visual tools are crucial. To visualize the 
information, machine learning and data science methods come into play. Below figure 
shows a framework of a visualization method for patent analysis proposed by Kim, et al. 
(Fig. 6.5). 

 

Fig. 6.5: Steps of a framework to visualize patent information (Kim, et al., 2008) 

A detailed explanation of every step would be out of scope of this chapter; therefore, an 
example of patent visualization is given below (Fig. 6.6). 
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Fig. 6.6: Multi-dimensional cluster map to visualize patent keywords and institutions that 
submit them; Mountains represent high number of patents filed (Gridlogics, kein Datum) 

From the tools that were investigated in the research of this chapter, all were focused on 
an intuitive user interface with user interaction and vast filter possibilities to further ease 
the knowledge extraction. Of those tools were PatBase (commercial tool), DEPATISnet 
(Germany), Espacenet (Europe), PATENTSCOPE of WIPO (International). 

At the time of writing, accessing PATENTSCOPE for the visual inspection use case in 
Chapter 7, the database brought forward the following number of patents (Table 6.2). 

Table 6.2: Findings in the patent database of WIPO regarding drone-assisted visual in-
spection keywords 

Keyword # of patents filed 

Visual Inspection 201,415 

Machine Learning 73,086 

Deep Learning 5,673 

Computer Vision 45,373 

Unmanned Aerial Vehicle / UAV 28,948 

UAV ∧	intelligent 2,150 

Inspection ∧	UAV 1,835 

(Inspection ∨	Computer	Vision	∨	Deep Learning) ∧	UAV 2,429 
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Out of around 69 million worldwide patents available online, 1,957 patents deal with an 
unmanned aerial vehicle paired with intelligent functions like computer vision or deep 
learning, or for the purpose of inspection. The patent texts are accessible, along with the 
information on who and which company filed the patent. Due to non-accessibility of other 
visual tools for patent analysis, a further research is not possible at this point in time. 

6.4.5 Creativity Methods 

Out of the gathered information, specific use cases can be found or built with the help of 
creativity methods. There are a lot of creative methods for problem analysis, and idea and 
solution finding, the most prominent one being brainstorming. Since the further explana-
tion of creativity techniques would be out of scope of this thesis and this chapter, the 
general method is being explained, with the addition of a list of helpful techniques.  

The key in finding solutions for a problem (or possible answers to a question) is a struc-
tured path when using creativity techniques. Sinfield, et al., proposed a seven-step pro-
cess, based on idea generation approaches from different backgrounds and domains (Fig. 
6.7). 

 

Fig. 6.7: Outline of a structured problem solution proposal; Own representation based on 
(Sinfield, et al., 2014) 

While the first three steps are designed to help the participants understand the problem 
profoundly, steps 1 to 6 are about idea generation, before they are formed into incisive 
action plans. Especially the fifth step, the essence of idea generation (divergence and 

1. Definition of problem and solution space

2. Breaking down of the problem

3. Personalization of the problem

4. Applying an outside-in perspective

5. Diverging before converging

6. Summarizing ideas within the respective situation / environment

7. Forming of a plan to action
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convergence), helps broaden the view to gather as much ideas as possible and then nar-
rowing it down to realistic and most-promising solutions (Sinfield, et al., 2014). Solving 
steps 1 to 4 with the methods of this subchapter, such as the Delphi method or genchi 
genbutsu, is imaginable. Acknowledging the diverging before converging premise, the 
use of creativity methods gets easier and with a more accurate aim at generating new 
ideas. Below table represents different creativity techniques for the two different creativ-
ity phases (Table 6.3). 

Table 6.3: Creativity methods divided in divergent and convergent ones (Vullings, 2013) 

Divergence Convergence 

Attribute Listing COCD-Box 

Biomimicry Enhancement Checklist 

Brainwriting (Method 3-6-5) Force-Field Analysis 

Challenge Assumptions Hundred Euro Test 

Osborn Checklist Idea Advocate 

Classical Brainstorming Negative Selection 

Excursion Technique NUF Test 

Harvey Cards PINC Filter 

Imaginary Brainstorming Six Thinking Hats 

Lotus Blossom Technique Weighted Selection 

More Inspiration  

Personal Analogy  

Random Input  

Redefinition  

Reverse Brainstorming  

Systematic Inventive Thinking  

TRIZ  

Wishing  

 

Due being out of scope, a further explanation of the creativity methods is not given. 
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6.5 Similarities in Chapter 5’s Use Cases 

With regard to Chapter 5 and the use cases described, to further analyze how to gain 
benefits from the applications and use cases in medicine to aviation, a more cost-effective 
approach which is used in technology transfers, is being proposed for this thesis’ setting. 
Instead of doing basic research or develop industry-specific technology from the outset, 
parallels between use cases in other industries are ought to be found. When talking about 
innovative technology and product development, the high risk is a key factor that raises 
the costs, and therefore discourages the management to further invest in technology re-
search.  

When it comes to applications of artificial intelligence and deep learning, there are two 
possible ways of a simplified transfer. The applied AI technology, like computer vision, 
gets implemented in aviation directly, or through a medical funnel using the learning 
curve of the already solved problems and overcame difficulties in medicine (Fig. 6.8).  

 

Fig. 6.8: Technology transfer possibilities from AI into aviation 

Since this thesis deals with the planning and implementing of deep learning use cases into 
an aviation environment from the learnt experience of the medical industry, the second 
path of above figure applies here. And since the use cases in Chapter 5 were chosen with-
out any glance of possible similarities beforehand, the knowledge used to solve problems 
of those specific use cases should show the general possibility of using another domains 
problem solving approach (Figs. 6.9 and 6.10). 

 

Fig. 6.9: Product concepts and use cases for aviation derived from Chapter 5’s medical 
use cases 

Medicine

Artificial Intelligence Aviation

Predictive Diagnosis

Medical Imaging

Personalized Drugs & Therapy

Image-to-Speech Aid for the Blind

Behavioral Modification

Predictive Maintenance

Visual Inspection

Personalized Maintenance Programs

AI-infused AR Headsets for Technicians

Pilot‘s State-of-Mind Monitoring
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The use case of predictive diagnosis, as described in 5.1.1 uses multilayer perceptrons 
(Choi, et al., 2017) to classify and predict heart failures on data basis consisting various 
parameters. The case with predictive maintenance is similar: If there is a sufficient data 
basis, classification of potential harms and errors can be made with multilayer percep-
trons. In the case of time-series events, recurrent neural networks are the better choice 
(see subchapter 4.1.3).  

The similarities between medical imaging and visual inspection are going to be explained 
in detail in Chapter 7.  

Personalized maintenance programs can be extrapolated from personalized drugs and 
therapy. Yet, the data basis is different since for personalized drugs the possible genomic 
links to diseases were already in most cases analyzed in medical research, and in person-
alized maintenance programs have to be preprocessed. Either way, in both cases genera-
tive models can be used to simulate specific situations, e.g. simulate new drugs or simu-
late aircraft operation and routes.  

The image-to-speech aid for the blind use case is very product-driven, as is the aviation 
counterpart, where the exact same technology architecture can be used to help mainte-
nance and repair technicians with additional information; be it as audio or video output. 
Although the product was not explained in detail, the used frameworks in both cases 
would be a video signal as input, processing it through CNN’s (see subchapter 4.1.2) to 
detect objects, enhanced with an RNN with a specific language model to give a descrip-
tive audio output, as well as other functions such as speech recognition, if the blind person 
or the technician respectively, would want to interact with the system. 

The last medical use case is about sensor input data and classifying, or predicting respec-
tively, certain move patterns to detect smoking habits with the help of LSTM networks 
(see subchapter 4.1.3). In aviation, sensors could also monitor the pilot’s state of mind 
and predict the next moves or detect irregularities in handling the aircraft as well as irreg-
ularities of the aircraft and aircraft components itself. 

 

Fig. 6.10: Use cases for medicine derived from Chapter 5’s aviation use cases 

Fair Market Price Prediction of Spare 
Parts

Natural Language Processing in 
Maintenance Records

Prediction of Therapy Duration and Bed
Occupancy in Hospitals

Natural Language Processing in 
Healthcare Records

Planning of Pharmaceutical Supply Chain 
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When speaking of handwritten maintenance records, multilayer perceptrons would ana-
lyze the written reports for character recognition and an RNN and a natural language 
model would map it to a generalized language. The exact same could be done with 
healthcare records that are also handwritten and digitized manually. 

Last but not least, the fair market price prediction is based on reinforcement learning, 
which itself is a powerful method to analyze and find own patterns in a specific task (see 
subchapter 4.1.5). Used in teaching AI how to play video games, every kind of simulation 
or business game could profit from how an AI solves problems. It has to be understood, 
that humans can be beat in such a game, which makes it even more promising in factory 
layout and production simulation in aviation. In healthcare, a hospital can simulate better 
alternatives to the existing bed and staff planning. It is also imaginable that the supply 
chain, be it in medicine or aviation, can be further optimized with such a simulation game.  

Of course, the methodological approach explained in subchapter 6.3 should be followed, 
to extract as much as possible knowledge from the analyzed use cases and find other 
domains and possibilities of adaption. This chapter however, only discusses the similari-
ties between Chapter 5’s use cases and only takes into account the situation in the medical 
as well as the aviation industry. A more applied approach is given in Chapter 7, where a 
technology that comes from computer science and artificial intelligence is being used in 
medicine and could also be adapted to aviation. In addition, the description of the use 
case is problem-driven to fully grasp the situation. Doing this for every use case in Chap-
ter 5 would be impossible considering the boundaries of this thesis. 

 

 



AutoInspect  94 

 

7 AutoInspect  

Damages on aircrafts are of various kind, including bird strike, stone strike, lightning 
strike as well as damages from other airport vehicles, which is called aircraft ground dam-
age. In some cases, these damages go unreported. Although the major number are minor 
issues like dents or scuffs, undetected structural damages can carry very serious damaging 
potential. With the increasing use of composites, invisible damage can be one of the more 
serious outcomes of it (Pierobon, 2015). Of the more severe damages are also bird strike, 
of which the most struck parts of the aircraft are wind shields, engines, radomes and wings 
(Hedayati & Sadighi, 2015, p. 9 ff.).   

As it is the case with computer vision, deep learning frameworks like CNN’s have shown 
to outperform humans in general visual recognition tasks (He, et al., 2015). Matched with 
powerful detection algorithms like YOLO, this becomes a strong tool for industrial use. 
Visual detection of damages is therefore a promising use case in aviation, and in general 
large and expensive objects, especially if it is linked to serious safety issues. This chapter 
deals mainly with damages by lightning strike. A detailed transfer possibility is also given 
in this chapter, mainly with findings in genomic detection in medicine. AutoInspect there-
fore refers to a possible implementation of damage detection in the maintenance of air-
craft. 

7.1 Damage Protocol 

Safety authorities in aviation dictate a defined procedure when an aircraft gets hit by a 
lightning strike. An aircraft operator is legally bound to check the aircraft’s skin for dam-
ages right after landing and is not allowed to carry on with further commercial flights. 
The maintenance division of an aircraft MRO shop is usually split into types of aircraft 
or routes: short haul, long haul and cargo. Whenever there is the need to further investi-
gate damages, the maintenance technicians contact the engineering department and pass 
on the description and photographs of the damage for consultation. Depending on the 
damage, there are engineering experts in structure, engines, and other parts of the aircraft, 
that define the next steps. Besides lightning strikes, there are several other types of dam-
ages, including dents, scratches, holes, abrasion of the engine cowling, and scrubbing due 
to vibration and drag. When talking of lightning strikes, there are three types of strikes: 
relating the skin, the fasteners, or both. Below figures show examples of the types light-
ning strikes on different aircrafts (Figs. 7.1, 7.2 and 7.3). An aircraft can get hit a few 
times up to 50 in one thunderstorm. The lightning strikes can leave burn marks behind 
that come most often with a characteristic yellowish stain around the damaged area. Dam-
ages can occur in a range of 1 mm up to more severe structural damages (Rindt, 2018).  
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Fig. 7.1: Lightning strike to the skin with a burn mark (LHT, 2018) 

 

Fig. 7.2: Two fasteners hit by lightning strike; other two undamaged (LHT, 2018) 

When such damages are found, after classification whether the damage is minor or major, 
further steps are to be considered to attest the health and airworthiness of the aircraft, 
including measuring residual thickness of the damaged part of the skin and repairing the 
metal sheet. The repair work, including grinding and polishing the affected area, is in 
accordance to the Structure Repair Manual (SRM). Due to the melting and remove of 
material after a lightning strike, the static load capacity can decrease. A residual thickness 
measurement ensures structural intactness when below limit, and a compulsory attach-
ment of additional metal sheet onto the aircraft’s skin. Sometimes, lightning strikes occur 
near important instruments, such as static ports that measure the static air pressure. An 
investigation makes sure the damage is within the limits and not too close, otherwise the 
pressure instrument has to be replaced precautionary (Rindt, 2018). 
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Fig. 7.3: Damage inside the static port area; need for further investigation (LHT, 2018) 

The repair of the damage is then documented, most often in handwritten protocols, and 
stored (Rindt, 2018). In the Appendix, there is one image given each for a hard to classify 
type of damage or probably false positive result respectively, because of old paint or dirt 
on the aircraft skin (Figs. A2 and A3). 

7.2 Problems in Manual Inspection 

Along the process chain, from registering of the lightning strike by the flight crew to the 
repair of the damage, there are a lot of problems. Since the flight crew has no digital 
reporting opportunity, damages are registered in a handwritten protocol. Although the 
handwriting is clear and easy to understand, there is no standardization. However, for the 
purpose of notification this is sufficient. The main problem lies in the detection of dam-
ages. Despite the fact that maintenance technicians are experts in finding damages caused 
by lightning strikes, the circumstances are not standardized. The technicians sometimes 
have no access to a hangar, thus have to inspect the aircrafts on the apron of the airport. 
This comes with the changing of weather conditions or inspections at night equipped with 
a flashlight that can make detection difficult. Nonetheless, during the interviews con-
ducted, there were no signs of missing a damage due to irregularities in the maintenance 
environment. The search process varies in time, taking up to several hours in many cases. 
Understandable, because the technician has to inspect every inch of the aircraft’s skin 
from about 1.5 meters distance which constitutes another problem: human fatigue 
(Grönheim, 2018). Fatigue in high-concentration work is a problem that can bring down 
efficiency and quality of work. The technician has to have a balanced work schedule to 
be able to maintain the high concentration needed for detecting damages. This is similar 
to the fatigue problem in visual quality recognition discussed in subchapter 5.2.2. 

When damages are found, the technician marks the area with a permanent marker. To 
further make things easier for the repair, the place of damage needs to be classified too, 
in terms of aircraft structure. This includes the number of section of the aircraft’s structure 
and fuselage and is done so other technicians do not have to search intensively for the 
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damage. Although seldom, it can also happen that no damages are found. In this case the 
damage report looks accordingly. Classification of the damage finds place when they are 
found, sometimes with the consultation of an expert maintenance engineer. Additionally, 
a photograph of the damage is taken. This process represents a problem for the use case 
since markings on the aircraft’s skin make it difficult for a machine to get trained to detect 
damages. Since the classification task, whether by a human or a machine, is done on a 
clean aircraft, it is not correct to train a machine with photographs that contain markings. 
This results in a lot of preprocessing of the training data, including cropping, editing, 
setting hue and saturation, removing color channels of the marking color, and on the other 
hand enhancing certain color channels, e.g. the yellowish burning marks. The oldest pho-
tographs of damages that were existent at the time of writing this thesis and searched 
through the LHT damage database were around 10 years old. Some older photographs 
were not usable due to bad resolution and image quality (Rindt, 2018).  

7.3 Algorithmic Detection of Damages 

Detection of damages are similar to other object detection tasks. Represented as a simple 
black box, an object detection algorithm would look like the figure below (Fig. 7.4). The 
relevant frameworks are presented in 7.4. 

 

Fig. 7.4: Simple black box to show input and output of an object detection algorithm 

Detached from the actual approximation in a neural network (with features from low to 
high level), from a heuristic point of view, a detection problem would be decomposed in 
sub-problems. When recognizing a face, trivial questions to fulfill the main task might be 
if there is an eye in the top left, an eye in the top right, a nose in the middle, etc. In the 
case of a lightning strike damage, the questions a technician subconsciously would an-
swer to come to a conclusion are represented in Fig. 7.5. 

Object Detection Algorithm
Images of Aircraft‘s Skin Location of Damages
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Fig. 7.5: Intuitive approach of how neural networks would work in lightning strike dam-
age recognition; Representation based on (Nielsen, 2017) 

Yet, detection and recognition are not the same. To get a better understanding about the 
task, a definition of detection is needed at this point. Object detection, unlike mere clas-
sification or recognition, includes the information of where a certain object or class is in 
an image (Huttenlocher, 2009). This is especially important for detecting damages, 
whether done by a machine or a human, since more than one technician works on an 
aircraft and the work is split into several subtasks. It is therefore crucial that the Infor-
mation about the location of the damage is registered. From an abstract point of view, an 
image is built of three basic information: object, position and orientation (Bishop, 2009, 
p. 366). The object detection algorithm would take the information of the aircraft’s skin 
in form of an image as an input and would output whether there are damages or not, and 
most importantly where exactly they are located.  

Below figure shows the difference between mere classification and detection. Another 
step further, explained in detail in subchapter 7.3.4, is instance segmentation (Fig. 7.6). 

Is there (at least) a part of a 
circle?

Is the inside of the circle plain
in color?

Is there an irregular form with a 
strong color change attached to

the circle?

Is there a black / yellowish
burnmark in a circular shape?

Is there an irregular form with a 
strong color change?

Is this a lightning
strike damage?

input layer
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Fig. 7.6: Difference between image classification, object detection and instance segmen-
tation (Ouaknine, 2018) 

What this chapter does not include are the different datasets since the task of damage 
detection is very specific. Several datasets were released in the last years, including the 
2012 PASCAL VOC dataset, the 2014 ImageNet dataset, and the 2015 COCO dataset 
(Russakovsky, et al., 2015; Lin, et al., 2015). A description of how the dataset should 
look like in the case of damage detection is given in 7.3.2.  

However, what the analyzed object detection algorithms have in common are same per-
formance metrics. Of those are Intersection over Union (IoU) and mean Average Preci-
sion (mAP). In the case of binary object classification, the task is to just output whether 
the object is in the image or not. For object detection, this is not sufficient. In intersection 
over union (see Fig. 7.7), the ground-truth (e.g. manually set) bounding box of the object 
and the predicted bounding box are overlapped. The higher the IoU value, the better the 
predicted location of the object’s bounding box. Detections with an IoU value lower than 
a set threshold will not be further considered (Ouaknine, 2018). In most cases, an IoU 
value > 0.5 is considered as a good prediction (Rosebrock, 2016). 

 

Fig. 7.7: Visualization of the intersection over union-method (Rieke, 2017) 

The mean average precision is based on precision, which can be explained as how many 
detected objects are relevant (or false positive rate), and recall, which is about how many 
relevant objects are detected (or false negative rate). The average precision is calculated 
by taking the average value of the precision across all recall values. Having multiple 
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classes, the mean average precision rate comes into play, which takes the mean of average 
precisions over all classes and IoU tresholds (Arlen, 2018). 

7.3.1 Preprocessing 

Of the more time-consuming tasks is the preprocessing of the damage images. Since a 
digital image consists of RGB values for each pixel, what a machine sees is different than 
what a human perceives with the naked eye. The image has to be brought in the right 
setting with the right parameters, such as cropping the damage region, downsizing, gray 
scaling, and adjusting hue and saturation.  

The preprocessing takes place before the images go into the neural network. This im-
portant step ensures that the network only gets the relevant information. The prepro-
cessing in this case is done with the original image brought down in size to 25 by 25 
pixels (Fig. 7.8). 

 

Fig. 7.8: Image of a damaged fastener, cropped and downsized to 25 by 25 pixels; from 
(LHT, 2018) 

A code written in Matlab (see Appendix) gets the size of the image and assigns an 8-bit 
integer for the pixel intensity (gray scale) for the 25 by 25 value map. A loop then adjusts 
the intensity for each of the RGB channels according to preset parameters. Before the 
processed images are output, the output range of intensity values are adjusted to get a 
richer contrast. The contrast adjustment is done twice, to get a comparison how much of 
it is enough to get the relevant features extracted. The result of the preprocessing is pre-
sented in the figure below (Fig. 7.9). 
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Fig. 7.9: Result of preprocessing the damage image with two levels of intensity value 
range adjustment (center and right); The unprocessed image is for comparison (left) 

The output 25 by 25 intensity value matrix intval is what a machine sees as its perceiving 
its environment, in this case a lightning strike-damaged fastener. Attaching it to a gray 
scale or intensity color map (see source code in Appendix), the matrix makes sense visu-
ally (for humans) and represents the processed input for the neural network (Fig. 7.10). 

 

Fig. 7.10: Assignment of a gray scale color map to the intensity value matrix 

In this specific case, there is no need for the RGB color channels, as the features are better 
visible and distinguishable from the rest of the skin in a gray scale. In cases where many 
classes have to be classified and detected, e.g. real-time detection based on color features 
such as tomato sorting or autonomous vehicles, RGB channels would make more sense 
as there is a greater need for the containing information. 
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7.3.2 Boundaries and Further Preparation 

Visiting the maintenance branch of Lufthansa Technik in Frankfurt, an access to the dam-
age database was possible. The database included several thousands of damage images 
and protocols, and more than one thousand lightning strike damages. Due to restricted 
accessibility, the correct number is not known. About 550 images were handpicked and 
extracted. Although the number is small, almost all images have to be extensively pre-
pared and preprocessed to meet the requirements of a training dataset. The small quantity 
of damage images makes it hard to meet quality requirements in aviation since the learn-
ing curve rises and simultaneously the error rate drops with more samples. At this point 
already, it has to be said that the small number of images is a serious constriction. Fur-
thermore, the image quality as well as the homogeneity, environment settings such as 
lighting, indoors or outdoors, and weather conditions vary immensely. That said, for a 
deep learning network, the variance is not an obstacle naturally, if there are enough sam-
ples. This means for every kind of damage, having a dataset of 1000 images would be 
sufficient, and additionally at least the same number of undamaged images, referring to 
subchapter 5.2.2. To achieve a steady quality level for the training datasets, especially 
when feeding more samples into the neural network for continuous learning (Parisi, et al., 
2018), a standardized process regarding taking photographs of damages is ought to be 
considered. 

Although this thesis only focusses on the transfer possibilities and the underlying theory 
of deep learning, more in-depth aspects such as hyperparameter optimization, e.g. number 
of hidden layers and units, dropout value, learning rate, and batch size, that also play a 
role in solving an algorithmic damage detection task, is not covered (Radhakrishnan, 
2017b).  

Below figure shows a possible outcome of an object detection algorithm like described in 
subchapter 7.3.3 and 7.3.4 (Fig. 7.11). 

 

Fig. 7.11: Representation of the detection of intact features (blue) and damages (red) with 
the help of a damage mask (center) 
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Having Fig. 7.10 in mind, it is possible to detect the round circle feature (matching it with 
p > 95 percent) and thus classifying damage-free and damaged fasteners. 

Since the state of the art approaches in object detection are based on CNN’s (see next 
subchapters), the neural network framework in this case would look like the ones pre-
sented in subchapter 4.1.2.  

7.3.3 YOLO 

Having the fast and accurate human visual system as an example (You Only Look Once), 
a research team of the University of Washington and Facebook AI Research have pub-
lished a paper on a simple real-time object detection algorithm. YOLO promises a simple 
architecture, e.g. unlike the R-CNN approach (explained in subchapter 7.3.4), where the 
object detection task is reframed as a single regression problem. Referring to the below 
figure, a single convolutional network a single convolutional neural network simultane-
ously predicts multiple bounding boxes and class probabilities for those boxes (Fig. 7.12). 
The focus in this and the following subchapter is the object detection, so the system ar-
chitecture is left out knowingly. 

First, the input image gets divided into an [ × [ grid where the grid cell that includes the 
center of the object is responsible for detecting that object. Each grid cell then predicts B 
bounding boxes and confidence scores for the bounding boxes, which is about how con-
fident the model is that the box contains an object and how accurate the box is that it 
predicts. The confidence prediction represents the IoU between the predicted boxes and 
the ground truth box. Additionally, each grid cell also predicts C conditional class prob-
abilities, e.g. how probable it is that a class is inside the viewed grid cell. The predictions 
are encoded in an [ × [ × (] ∗ 5 + `) tensor (Redmon, et al., 2015). 

 

Fig. 7.12: System model of YOLO object detection algorithm (Redmon, et al., 2015) 
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However, since each grid cell only predicts two boxes and can only have one class, this 
limits the number of nearby objects that the model can predict. Small objects, that appear 
in groups is an obstacle. Also, it struggles to detect objects in new or unusual aspect ratios 
or configurations, and additionally, the set loss function treats errors the same in small 
and large bounding boxes. The main source of error is incorrect localization, since a small 
error in a small box has a much greater effect on IoU than a small error in a large box. 

The YOLO algorithm reaches 45 fps on a Titan X GPU with a latency of 25 ms, while a 
faster version of YOLO, with a bit less accuracy, runs at 155 fps. The error analysis 
shows, that about 65.5 percent is correct and about 19 percent is due to localization error. 
Compared to Fast R-CNN, which will be explained further in the next subchapter, the 
error is greater (Fast R-CNN 8.6 percent), yet the background error rate with 4.75 percent 
is much smaller then compared with the Fast R-CNN algorithm (13.6 percent). 

Since the development of YOLO, further adjustments were done, the latest being 
YOLOv3. What is not explained in this subchapter is the anchor box concept from 
YOLOv2 (also called YOLO9000) on, that on basis of ground truth labels, a predeter-
mined set of boxes are applied, instead of directly predicting a bounding box, as well as 
multiple detections for each grid cell. On the PASCAL VOC 2007 and 2012 dataset, 
YOLOv2 performed better than Fast R-CNN’s (78.6 mAP / 40 fps and 77.8 mAP / 59 fps 
vs. 70.0 mAP / 0.5 fps) (Redmon & Farhadi, 2016). 

7.3.4 Mask R-CNN 

To get to the specific concept of Mask R-CNN, a basic explanation of R-CNN’s has to be 
given first since Mask R-CNN is based on R-CNN, as the name already suggests. Origi-
nally, CNN’s begin with the region search and then perform classification (see subchapter 
4.1.2). In R-CNN’s, the selective search method that was developed and proposed by 
Uijlings, et al., is being used. Selective search initializes small regions in an image and 
merges them with hierarchical grouping. The detected regions are merged according to a 
variety of color spaces, such as light intensity and shadowing, and similarity metrics, such 
as texture histograms (Uijlings, et al., 2012). For a better clarification, see below figure 
(Fig. 7.13). Before merging similar regions, there were a lot of bounding boxes for each 
single region. 
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Fig. 7.13: Example of the selective search method (Uijlings, et al., 2012) 

While for R-CNN’s each selective searched and detected segment then act as a resized 
input for the CNN (hence the name Region-based CNN), the Fast R-CNN algorithm in-
puts the whole image into the CNN and detects Regions of Interest (RoI) afterwards with 
the selective search method on the produced feature maps. Each RoI pooling layer feeds 
fully connected layers, creating a feature vector, which is then used to predict the ob-
served object and adapt bounding box localization (Ouaknine, 2018). The Faster R-CNN 
framework was proposed using a Regional Proposal Network instead of selective search 
image segmentation, where the above explained Fast R-CNN algorithm then classifies on 
those regions (Magruder, 2018a).  

The Mask R-CNN algorithm adds a parallel branch to the bounding box detection for 
predicting the object’s mask. The RoI pooling layer gets replaced by a new proposed 
method called RoI Align to calculate exact values of the object’s location. This is done 
by using bilinear interpolation from the four nearby grid points on the feature map (Fig. 
7.14). 

 

Fig. 7.14: Visual representation of the bilinear interpolation operation (He, et al., 2018; 
Magruder, 2018) 
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Calculating the exact positions of the detected object with (2) to (4) allows a mask to be 
projected on top of the object. This could particularly be of greater interest in privacy-
sensitive issues. The Mask R-CNN algorithm has reached an mAP score of 62.3 percent 
for an IoU of 0.5 over the 2016 COCO testdev dataset at 5 fps (Ouaknine, 2018; He, et 
al., 2018). Examples are given in the figure below (Fig. 7.15). 

 

Fig. 7.15: Examples of Mask R-CNN applied to several frames of the COCO test set 
running at 5 fps (He, et al., 2018) 

7.4 Transfer from Medicine 

The natural counterpart of artificial neural networks itself comes from natural science and 
was implemented in computer science as a whole new subject. The transfer was based on 
basic research in neuroscience and biology (see subchapters 2.1 and 3.2.1). Now, almost 
three quarters of a century later, biology gets powerful support from deep learning and 
deep neural network to solve tasks in bioinformatics that are simply too complex, time-
consuming, or impossible for a human. One such use case that adapts the Mask R-CNN 
object detection algorithm to detect exons, is being developed in the Institute of Medical 
Systems Biology (see subchapter 7.4.1). 
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7.4.1 Detexon 

The protein-coding regions of genes are called exons. Separation of exons can take place 
by intervening sections of DNA that do not code for proteins, known as introns. Through 
a process called splicing, the introns are cut out and only the exons remain. Due to the 
non-biological setting of this thesis, below figure is given to make this subchapter more 
comprehensible to non-biologists (Fig. 7.16). 

 

Fig. 7.16: Representation of a chromosome consisting many genes, which again consist 
introns and exons (Geer, 2001) 

Exons consist of the base pairs (Adenine and Thymine, and Cytosine and Guanine) which 
carry the genetic code of protein synthesis. Mutations result in altering the protein syn-
thesis product which are known to be the cause of many diseases, such as sickle cell 
anemia, being the result of a single-nucleotide polymorphism mutation. Therefore, given 
this direct link of a genomic mutation within an exon to disease manifestation, it is of 
fundamental interest to identify exons within a genome. In this regard, clinical genetic 
diagnosis heavily relies on exon annotations to develop drugs and therapies  (Magruder, 
2018b).  

On basis of the functional link between exonal mutations and pathology and the lack of 
exon site prediction and annotation, a deep neural network architecture is proposed by 
Magruder to predict and discover exons, as well as evaluate the disease relevance. A deep 
learning approach is backed by the unprecedented amount of unanalyzed data. Therefore, 
the exon detection network is referred to as Detexon (ibid.). 
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Fig. 7.17: Schematic representation of the used hybrid neural network for exon classifi-
cation (Magruder, 2018b) 

The above figure represents the hybrid neural network, consisting of a CNN that gets the 
nucleoside chain as input. The input can either be a four-channel time-series or a one-
channel four-pixel tall image, each pixel line exclusively representing a nucleoside (Fig. 
7.18). The fully connected layer then connects to an LSTM network, where the LSTM 
cell reads the sequence, similar to how polymerase does. In the end, a classification can 
be made whether the input sequence includes exons or not. 

 

 

Fig. 7.18: Four-pixel tall image representation of a nucleoside chain; Red arrows mark 
beginning and end of the detected exon; Bottom figure: cut exon representation, based on 
(Magruder, 2018c) 

The above described classifier, performing with 94 percent accuracy, is currently in de-
velopment to get included in the YOLO architecture for detection. Additionally, to better 
predict the exact location of the exon (current solutions perform with a ±10 pixel accu-
racy), bilinear interpolation used in Mask R-CNN is planned to be included. It is expected 
that the detection algorithm can detect novel exons in the human genome (Magruder, 
2018c). 

7.4.2 Transfer to Damage Detection 

The technology transfer methodology to find transferable technology described in Chap-
ter 6, in particular subchapter 6.4, is different in this case since the two industries were 
known beforehand. The main task of this thesis was focused on the finding of transfer 
possibilities and links between these two industries. However, the application of the meth-
ods throughout the work of the thesis clarified the problems and similarities in both fields. 
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Since the main task of the described use cases in this chapter is to detect objects, be it the 
precise four-pixel representation of an exon, or a lightning strike damage, it is imaginable, 
that the current development of Detexon can be adapted to detect damages on aircraft. 
Although the architecture needs to be that of a standard CNN for two-dimensional images 
as input, and the need for an LSTM would not be existent, the experience in applying an 
out of the box solution (YOLO) to a specific problem is valuable. Thus, considering an 
early technology development stage, Detexon would be rated as on the verge of TRL 4 at 
this moment, with the integration within the YOLO architecture being in development 
(see Table A.1). Regarding the classification of the technology readiness, other defini-
tions apply to software according to NASA. The description of TRL 2 to 5 for software 
is given in the appendix. This evaluation is only possible because of the close work with 
the Institute of Medical Systems Biology in the course of this thesis. 

A market and customer research on basis of genchi genbutsu was done twice with differ-
ent focus at the Frankfurt maintenance base of Lufthansa Technik to better grasp the prob-
lem of detecting damages. As described in the beginning of this chapter, the investigation 
was done on-site and with the staff concerned. Maintenance technicians would profit from 
an augmenting technology, where the high-concentration and exhaustive work in difficult 
circumstances is done by an intelligent machine. The Delphi method did not come into 
play in a formal way, since the scope of this thesis does not include the implementation 
itself. However, experts’ opinions always played a role in the investigation as well as 
evaluation of both use cases, Detexon and AutoInspect. For a more formal approach in 
accordance with the Delphi method, qualifying experts of both groups would be inter-
viewed extensively.  

A patent analysis shows that there are six-figure numbers of patents in gene and genome 
detection, while only 161 in exon detection (see Table 7.1 below). Of those 161, there are 
none that use deep learning, but 18 that use a machine learning approach. Generally 
speaking, deep learning and computer vision are applied to both gene and genome related 
fields, as well as in medicine and biomedicine. On the other hand, deep learning and 
computer vision is more used in damage and inspection related topics. Narrowing this 
down to the aviation and maintenance industry, there are around a thousand patents filed 
that further deal with detection, of which only 98 are in combination with an unmanned 
aerial vehicle. From this, it can be derived, that artificial intelligence and deep learning 
found entry into both the medical and aviation industry, but yet struggles to get imple-
mented in highly specific use cases such as exon detection or drone-assisted visual in-
spection. It has to be understood, that the implementation of AI and deep learning in par-
ticular use cases is important to achieve a higher goal. In aviation, this would be a digital 
maintenance shop in an industry 4.0 environment, whereas in medicine, the context would 
be highly-personalized drug development. Both industries therefore can make use of 
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powerful technologies such as deep learning to expand business fields. However, it has 
to be said that patent analysis is most often done when there is no evident information 
existent about the industries that use this technology. The thesis started with an assump-
tion that there are similarities between medicine and aviation when it comes to artificial 
intelligence and deep learning. 

Table 7.1: Findings in the patent database of WIPO regarding gene and damage detection 
keywords  

Keyword # of patents filed 

(Gene ∨ Genome) ∧	Detection 201,415 

Exon Detection 161 

(Gene ∨ Genome) ∧	(Deep Learning ∨ Computer Vision) 1,430 

(Gene ∨ Genome ∨	Medicine	∨	Biomedicine) ∧	(Deep 
Learning ∨ Computer Vision) 

3,518 

Exon Detection ∧	Deep	Learning 0 

Exon Detection ∧	Machine	Learning 18 

(Damage ∨ Inspection) ∧	 (Deep Learning ∨ Computer 
Vision) 

6,857 

(Damage ∨ Inspection) ∧	 (Deep Learning ∨ Computer 
Vision)	∧	(Aviation ∨ Maintenance) 

1,242 

(Damage ∨ Inspection) ∧	Detection	∧	(Deep Learning ∨ 
Computer Vision)	∧	(Aviation ∨ Maintenance) 

1,046 

(Damage ∨ Inspection) ∧	Detection	∧	(Deep Learning ∨ 
Computer Vision)	∧	(Aviation ∨ Maintenance) ∧ UAV 

98 

 

Creativity techniques were applied throughout the whole process of this thesis, especially 
when extracting use cases in maintenance and the possibilities of application and tech-
nology transfer thereof. Divergence happened in various brainstorming sessions at 
Lufthansa Technik with a preceding introduction to deep learning and deep learning ap-
plications and an open discussion about problems in maintenance and aviation in general. 
Convergence happened right afterwards, with a better understanding of the possibilities 
of deep learning in the maintenance and aviation environment developed. Moreover, 
every finding and interesting thoughts were discussed with the medical experts at the 
Institute of Medical Systems Biology, gaining insights of the problems in a complex real-
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world environment such as a maintenance shop to adjust the possible realization of the 
use case. The use case of AutoInspect was chosen because of the similarity in medical 
detection of exons with only a few adjustments needed.  

As already described above, the Detexon algorithm reaches TRL 4, when the implemen-
tation inside the YOLO architecture manages to work. This being said, development of 
AutoInspect could start with the TRL 4 experience of Detexon (see Table A.1). A six 
months evaluation phase like this thesis could be used as an equivalent to the Research 
Days described in the chapter before (see subchapter 6.1) to find similarities and transfer 
links of both industries, as well as to assess the technology’s advantages and limits ap-
plied in the specific use cases. When coming from an aviation background, problems that 
occur in that industry are known better, which applies for a target-oriented problem solu-
tion. At the end of the six months evaluation phase, a state similar to TRL 2 is expected 
to be reached.  

This proposed method is backed by experience in engineering and technical management 
as shown below (Fig. 7.19). 

 

Fig. 7.19: TRL development difficulty representation of a complex project with more than 
550 components at BP (formerly British Petroleum); The high number of components 
result in a more representing average (Olechowski, et al., 2015) 

The earlier the development stage of a technology, the more difficult it tends to be, espe-
cially for high-number component technologies or projects. The most difficult part is to 
adopt concepts from the theoretical observation into a real-world use case that defines the 
value (Olechowski, et al., 2015). The proof of concept for TRL 4, namely a subsystem 
validation in a laboratory environment, is assured by experts in the deep learning field to 
be adaptable for damage detection with changes to the framework (Bonn & Magruder, 
2018). Although the development would be quicker when starting with the basic neural 
network architecture, the gained knowledge has a certain learning curve, e.g. the devel-
opment difficulty for AutoInspect drops significantly.  The profit in terms of development 
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effort are just assumptive at this point, but definitely existent. Also, the preprocessing and 
possible data augmentation work prior to the network adjustment still exists, as described 
in subchapter 7.3.1. Moreover, AutoInspect would most probably work best with an au-
tonomous drone, which lead to further complexity of the whole system. The system de-
velopment and readiness regarding the autonomous drone development has to be consid-
ered beforehand. 

7.4.3 Possible Savings and Advantages of a Cooperation 

Referring to Fig. 6.1, the question in the red box (Is discovery sufficiently developed to 
attract commercial funding?) could be answered with a Yes since the module was exten-
sively developed and successfully tested in a laboratory environment. This would attract 
possible financial sponsors more easily. A similar use case (here: Detexon) can be shown 
to financial sponsors or venture capitalists before investing in the technology develop-
ment in the other industry or environment, respectively. Building on the knowledge of 
Detexon can most certainly define the innovation as commercially viable, thus saving 
difficult and time-consuming management decisions which are mostly based on expert’s 
opinions outside the company when developing novel technology, and therefore attribute 
to cost saving. 

 

Fig. 7.20: Average percentage of development costs versus TRL (Linick, 2017) 

Although the Technology Readiness Level cannot be used directly to estimate costs, there 
is a relationship between TRL and the percentage of development cost (Linick, 2017). 
The above figure shows, that the cost development rises exponentially. An adaption from 
one TRL 4 development to another development and the use of the learning curve (ibid.) 
would save a portion of the total development cost and effort, looking back to Fig. 7.19 
where the largest part of high development difficulty lies in TRL 3 and 4. At this point 
(see paragraph below), a precise estimation is not possible. However, as already stated, a 
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technology evaluation has to be made beforehand which would add up to the sum, de-
pending on how much rework is done. In addition to that, the labor hours would still 
apply, although with a slightly faster pace, depending on the experience of the scientist 
or engineer.  

In the course of this thesis, methods of knowledge transfer cost were investigated. More 
precisely, attempts to estimate development costs with different methods, including Anal-
ogy Cost Estimating, Parametric Cost Estimation and Expert Opinion (GAO, 2009, p. 108 
ff.; Linick, 2017) were made. In hardware programs, calculations on basis of analogy are 
a good estimate, because usually, the technical and program definition of the investigated 
technology program is good enough to make the necessary adjustments. In software how-
ever, other parameters, like software size and complexity, are relevant, and assumptions 
need to be proven stricter, e.g. the reuse of code is a common pitfall for engineers. Overall 
the methods for software are still immature, therefore, a more detailed cost analysis is 
needed (GAO, 2009, p. 125 ff.). However, this would be out of the scope of this thesis. 

One of the more easier methods regarding analog cost estimation would be possible by 
having one representative system parameter in the development program. The ratio of 
both parameters would be used to form a factor, with which the development costs of a 
certain TRL could be estimated from the program costs of the known program (Linick, 
2017; see Fig. 7.20). But especially for artificial neural networks, a scientific guideline to 
set hyperparameters for the estimation of network complexity, network size, or the devel-
opment effort are simply nonexistent, yet a famous research problem (Magruder, 2018d; 
Bergstra, et al., 2013). A neural network contains a large number of parameters as already 
described in previous chapters. Thus, from the previous work in the field of Detexon, 
theoretically only a learning curve can be applied for further adaptions in the case of Au-
toInspect. An accelerated development time for a second task or project of ten percent is 
usually the case (Mályusz & Varga, 2017). Though, expert opinions on this matter have 
shown that the majority of the time is spent preprocessing and bringing the data into a 
usable shape. The adaption part of the basic neural network architecture like YOLO or 
Mask R-CNN is not challenging in relation to the preliminary work (Magruder, 2018d). 

Cost drivers would be the hardware (GPUs, Computer, Cloud Computing), the electricity 
for it, the IT infrastructure, coding software, and staff. A deep learning expert would need 
less than a month for the implementation of such a network, after evaluating the specific 
industrial needs, with possibly a finetuning afterwards. But that is the crux: Deep learning 
experts are a scarce resource. According to recent reports, many deep learning scientists 
with a PhD in deep learning get salaries from medium six to low seven figures a year due 
to industry competition (Metz, 2017; 2018; Yakovenko, 2018). Notably most of the com-
panies that are in the AI race are located in the United States and China, with Europe on 
the verge of setting-up (EC, 2018). Opportunities to bring deep learning knowledge inside 
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the company is either by collaborating with science labs and institutes that educate fresh 
PhD’s, or to pay large sums to a deep learning expert, that are highly wanted at the mo-
ment. Therefore, deep learning prospectively remains a wanted domain for the next few 
years, where a PhD education might be a good option for low to intermediate priority 
development projects. A development project like AutoInspect would take a PhD student 
about two years to fully implement (Magruder, 2018d). The sole cost, when cooperating 
with a science lab or institute, would be around €100.000 for the course of two years. 

7.5 Further Concept Features 

To solve the problem of autonomous visual inspection, there is the need to use further 
technologies, namely autonomous unmanned aerial vehicles, that can assist in achieving 
the objective. There are other ways of collecting damage data, though only robotics make 
sense when considering process acceleration and automation. A quadcopter, or any other 
type of flying drone, would offer the needed flexibility to implement an autonomous sys-
tem inside a maintenance hangar as well as outside on the apron of the airport. However, 
the development time and system complexity also rise with the number of interacting 
subsystems. Autonomous unmanned aerial vehicles just like autonomous land vehicles 
usually include sensors to detect its environment, including radar sensors, camera systems 
and LIDAR (light detection and ranging), of which some might also be implemented re-
dundantly (Santo, 2016).  

Another point worth mentioning is the online detection function, e.g. a steady and high 
enough frame rate to guarantee real-time tracking. Although having a high frame rate is 
not as critical in damage detection on aircrafts as it is in autonomous vehicles, a smooth 
frame rate would allow maintenance technicians or engineers to track the detection pro-
cess in real-time or revisit places of uncertainty. This might also be helpful in cases when 
there is the need for an experienced maintenance or structure engineer to assist the detec-
tion process and initiate further steps. As described in subchapter 7.1, the current com-
munication channel comprises e-mail and telephone. However, having an online function 
with a high frame rate, e.g. 30 to 60 fps, with a high enough accuracy at the same time, 
requires high computational power (Ragate & Asai, 2017). GPUs have shown to perform 
much better than multi-core CPUs (see subchapter 7.3.3), although there are develop-
ments for non-GPU computation. In particular, a novel architecture development called 
Fast YOLO performs with 3.3 times higher frame rates on embedded systems compared 
to the original YOLO v2 (Shafiee, et al., 2017). In case the accuracy allows it, drones 
could inspect aircrafts off-site without the need for extra computational power. However, 
this field is still relatively new and in need of further research. 

To better visualize the findings and allow an easier way of communication, a three-di-
mensional mapping of the damages can be realized with the collected data. Since with 
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detection there comes a location information, usually the position of the upper left corner 
of the box, it can be matched with the local positioning of the drone. In addition of GPS-
enabled drones, indoor localization is also possible with the right settings, e.g. radio-based 
localization systems (Stegagno, 2018).  
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8 Conclusion 

In the course of a few years, deep learning has shown to be a highly potential technology, 
solving complex tasks that were simply not solvable with this level of accuracy. To prove 
this, parts of the introduction to artificial intelligence (Chapter 2) have been analyzed with 
natural language processing (Siri) in German. Apple’s Siri processed and transcribed 
8947 words with an error rate of 4.325 percent. The transcribed text then was again trans-
lated with a deep learning machine translation tool (www.deepl.com) from German to 
English. The machine translated part counted 3229 words with an error rate of 1.17 per-
cent, which is significantly below a human’s error rate of about 5 percent. Deep learning 
thus has shown to perform better than human-level in some specific tasks. In image recog-
nition and detection, deep learning algorithms have shown to perform with similar error 
rates (see subchapter 4.1.2). To better visualize the findings, a SWOT analysis regarding 
the technology of deep learning is represented in below figure (Fig. 8.1). 

 

Fig. 8.1: SWOT analysis of deep learning technology in aviation 

Regarding tasks that require deep learning to be solved, the bottleneck lies outside the 
deep learning framework and algorithm; most often the data is the constraint. Before that, 
the biggest constraint was computational power. In the case of object recognition using 
CNN’s, data acquisition, preprocessing, cropping and getting the data in the right and 
usable format to train the network take most of the time. In the case of damage detection 
on aircrafts this would mean a standardized process for image taking over a set period to 
gather a solid amount of data for training the network. Training the network with the 
gathered data from Lufthansa Technik’s maintenance site in Frankfurt is possible but 
linked to a huge effort in data preprocessing. 
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To make the implementation easier and optimize the cost structure, analogies in medical 
use cases were sought, where object detection was used to locate exons in genomes. Alt-
hough the transfer methodology of novel technology development < TRL 4 was re-
searched, the common deep learning frameworks are generalized to a certain degree and 
adaptable for every kind of task, irrelevant of the investigated industry. However, there 
were found links between aviation and medicine. Similarities include human factors, e.g. 
sentiment analysis and behavior analysis to detect tiredness of pilot and technicians in a 
highly exhaustive work environment, human support, e.g. analyzing data much faster in 
irregular working conditions like damage detection on the apron, and other use cases 
mentioned in Chapter 5 to 7. 

However, the technology transfer process described in this thesis can help to build bridges 
between different industries that want to make use of artificial intelligence and deep learn-
ing. In fact, the thesis itself can be seen as a transfer instrument between industries similar 
to what is practiced in state-of-the-art technology transfer processes (see subchapter 6.4). 
It is therefore notable, that different industries like medicine and aviation can have com-
monalities in the use of the same technology with similar use cases. Matching the industry 
and problem specific expertise of one party with the solution application skills of another, 
cross-industry projects can have a beneficial outcome in early technology development, 
like seen in Chapter 7. 

Of the technology transfer from exon detection to damage detection however, only the 
learning curve of the medical framework could be of use. After all, basic frameworks of 
object detection are in constant development and ready to use with an environmental in-
vestigation (analog to TRL 2). The case of Detexon was a special one and might not be 
the best to choose for a direct transfer to an aviation problem, since it uses an additional 
LSTM network. It is possible to downgrade the whole network to the parts needed for 
damage detection but realistically, it would be time-saving to start on the basic framework 
of YOLO or Mask R-CNN. What would be possible is to take classifier frameworks that 
are also developed in the Institute of Medical Systems Biology that classify on basis of 
iris scans how the probabilities for certain diseases are (similar to subchapter 5.1.1), and 
combine it with a detection framework. It is expected that there is an estimation of seven 
percent savings for the use of the similar development of the deep learning system (from 
TRL 2 to TRL 4). However, the development of the deep learning system in the early 
stage is in terms of effort not as much as the later stages, where it has to pass the field 
test. Applying the frameworks, which are documented open-source, thus applicable for a 
scientist with deep learning expertise, is not difficult. Yet, with the hype still going on 
about deep learning, it is difficult to find experts in deep learning without investing a 
relatively high sum to stay in the competition of applying cutting-edge AI technology to 
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business. This being said, it is not of importance of which background the deep learning 
expert comes from.  

Although methodologies of (analog) cost estimation for early stage technology develop-
ment were reviewed, they could not be applied due to the unknown relevant parameters 
in a deep neural network. Moreover, the parameters are constantly changed since there is 
no known methodological and scientific approach to set the hyperparameters of a deep 
neural network. Every neuron has several underlying parameters, which add up to the 
sum of millions of parameters, in addition to the hyperparameters of the whole network. 
This is also one of the reasons deep learning is not implemented in many safety-related 
domains since the way neurons work in a complex network cannot be specified besides a 
high-level understanding of the feature extraction in the case of object recognition or de-
tection for example. The following quote therefore reflects the complexity of artificial 
neural networks: 

Will we understand how such intelligent (deep neural) networks work? Per-
haps the networks will be opaque to us, with weights and biases we don't 
understand, because they've been learned automatically. In the early days 
of AI research people hoped that the effort to build an AI would also help 
us understand the principles behind intelligence and, maybe, the function-
ing of the human brain. But perhaps the outcome will be that we end up 
understanding neither the brain nor how artificial intelligence works!  

– Nielsen, 2017 

8.1 Recommendation for Action 

Since the topic of deep learning is still relatively new, research is inevitable for a company 
that wants to apply state of the art technology. This subchapter covers reasons based on 
the written thesis why investments in deep learning should be considered right now. 

Deep learning is a highly transferrable technology, therefore a recommendation on basis 
of the findings of this thesis would be to begin with a pilot project as soon as possible. If 
in the course of the project the use case turns out to not be financially viable, the use case 
can be altered with little adjustments to the model if the problem is similar. A broad 
framework for the pilot project should be provided. Therefore, smaller investments for 
work periods of six to nine months are not sufficient to get satisfactory results. In most 
cases, the issue of whether the concept performs as promised dictates the taken actions. 
On basis of the results of this thesis, deep learning proof of concepts can be generated 
within a short period by junior researchers or graduates. Undergraduates in computer sci-
ence, engineering or computer engineering might be solution in cooperation with a re-
search institute, especially since the investment risk is low. The requirements would be 
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to be familiar with the theoretical foundations of deep learning, corroborate coding skills, 
and most importantly show proficiency in problem solving. Knowing the relevant envi-
ronment would be an extra advantage. This could be combined with technology transfer 
instruments that are being used to transfer knowledge from academia to the private sector 
to further attract interest inside the company for the new technology.  

Increasing rivalry in the industry makes research in deep learning inevitable to keep a 
competitive advantage. The focus should lie on developing new opportunities as well as 
support current business. According to the three growth horizons, a company should stra-
tegically place its business fields in every horizon to ensure competitiveness. Research 
and early technology development without doubt is placed in the last horizon (see Fig. 
8.2), creating options for future business (Baghai, et al., 1999).  

 

Fig. 8.2: McKinsey’s three growth horizons (Baghai, et al., 1999) 

However, it is expected that business fields in other horizons can highly profit from arti-
ficial intelligence and deep learning. According to market studies, not only tech giants 
like Apple (NLP, voice recognition, face recognition) or Google (several, including deep 
reinforcement learning), or startups like Uber (self-driving vehicles, trip forecasting) and 
Netflix (recommending system) profit from intelligent products and services, but also 
more conservative companies like GE apply deep learning to their products (medical im-
aging, in cooperation with NVIDIA) (Sergeev & Del Balso, 2017; Seville Report, 2017; 
Oppermann, 2018). What these mentioned companies have in common are their high in-
vestments in R&D. Spending $1.01 billion in the last quarter of 2012, Apple’s R&D ex-
penses were constantly growing to $3.407 billion quarterly by end of 2017 (YCharts, 
2018). Similarly, this is the case with all the above-mentioned companies. 

On basis of interviews with the central innovation department, and work experience in 
the product division of Original Equipment Innovation, a clear-cut distinction between 
machine learning and deep learning has to be made. Since these two words, along with 
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other hyped technologies like blockchain and IoT, are often used buzz words in manage-
rial circles, a precise definition and understanding regarding new technology has to be 
met. Technology reviews should be made available regularly for employees and managers 
in an easy to digest format. This would include cooperations with technological institutes 
as described in subchapter 6.1. Participating and holding innovation days one time a year 
is not sufficient; other transfer instruments should be intensively reviewed. 

Especially given the fact that the industry 4.0 environment is around the corner and many 
companies prepare for it, Lufthansa Technik has to take every opportunity possible to 
direct its business fields towards the digital age. 

8.2 Outlook 

Deep learning is still a highly researched topic. In terms of up-to-dateness, deep learning 
is on its highest point of public awareness right now (Fig. 8.3). As seen in Fig. 1.1, deep 
learning was near the highest point of the 2017 hype cycle. Of course, time will say if the 
predicted dimensions are true, both the optimistic growth as well as the inflated expecta-
tions, but in light of this thesis, deep learning can enable many cross-industrial use cases 
as of now.  

 

Fig. 8.3: Qualitative Google Trends search results regarding Deep Learning (Google, 
2018) 

A further point that could not be investigated due to insufficient research on this topic, is 
how a deep neural network model can be weighed in terms of complexity. As of now, 
there was no representing parameter found that could be used as a comparison for neural 
networks. This step is just the beginning of trying to understand deep neural networks 
since one of the reasons it is not being actively considered in aviation, besides not having 
the needed expertise, is the inability to understand how the model internally works 
(Stövesand, 2017). This was also the reason why no analog cost estimation could be done 
for the adaption of the used techniques in Detexon for AutoInspect. The estimation of ten 
percent profit due to the learning curve is not verifiable at this stage and should be proven 
in a further research. Building on top of TRL 4 when a use case with similar network 



Conclusion  121 

 
topology is found, can save up to seven percent in development cost of the deep learning 
system. 

Another point worth mentioning, and interesting as a further research topic, is the system 
complexity and development of an autonomous unmanned aerial vehicle in a maintenance 
environment as well as the human-machine interaction. The interplay of subsystems is 
expected to be the most difficult part since eventualities are not foreseeable. The technol-
ogy development of the whole system would also be more accurate to do cost estimations 
than simply the deep learning subsystem. The integration inside the company’s existing 
procedural landscape is expected to not be as easy as implementing it in a new environ-
ment. After all, both inspection forms will run simultaneously until the new system has 
proven its long-term performance ability since maintenance of aircrafts is one of 
Lufthansa Technik’s main business fields. However, its contribution to the company’s 
savings is not negligible. The exact numbers would need to be calculated or estimated in 
further research work.  

This thesis however tried to outline the basic definitions and possibilities of machine 
learning and deep learning as well as the differences between these two subsets of artifi-
cial intelligence. It was aimed to present an introduction to these matters to boost the 
analysis of further use cases regarding deep learning. It is hoped that this thesis be of use 
in further graduate and research projects and to be of benefit to Lufthansa Technik to 
advance digital business in the aviation industry and contribute to the implementation of 
artificial intelligence, and work towards the next step – artificial general intelligence.  
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Appendix 

In this last part, all other figures, tables and source codes that were redundant or additional 
and would not contribute to a better understanding of the matter, are presented here. 

Figures 

 

Fig. A.1: Learning curve of AlphaGo Zero in self-play (Hassabis & Silver, 2017) 

Tables 

Table A.1: Explanation of TRL 2 – 5 in software according to DoD / NASA (Majumdar, 
2007) 

TRL Definition Description Support Information 

2 Technology 
concept and/or 
application for-
mulated 

Once basic principles are observed, 
practical applications can be in-
vented. Applications are specula-
tive, and there may be no proof or 
detailed analysis to support the as-
sumptions. Examples are limited to 
analytic studies using synthetic data 

Applied research ac-
tivities, analytic stud-
ies, small code units, 
and papers comparing 
competing technolo-
gies 

3 Analytical and 
experimental 
critical func-
tion and/or 

Active R&D is initiated. The level at 
which scientific feasibility is 
demonstrated through analytical and 

Algorithms run on a 
surrogate processor in 
a laboratory environ-
ment, instrumented 



Appendix  123 

 
characteristic 
proof of con-
cept 

laboratory studies. This level ex-
tends to the development of 

limited functionality environments 
to validate critical properties and an-
alytical predictions using nonin-
tegrated software components and 
partially representative data 

components operating 
in laboratory environ-
ment, laboratory re-
sults showing valida-
tion of critical proper-
ties 

4 Module and/or 
subsystem vali-
dation in a la-
boratory envi-
ronment (i.e., 
software proto-
type develop-
ment environ-
ment) 

Basic software components are inte-
grated to establish that they will 
work together. They are relatively 
primitive with regard to efficiency 
and robustness compared with the 
eventual system. Architecture de-
velopment initiated to include in-
teroperability, reliability, maintaina-
bility, extensibility, scalability, and 
security issues. Emulation with cur-
rent/legacy elements as appropriate. 
Prototypes developed to demon-
strate different aspects of eventual 
system 

Advanced technology 
development, stand-
alone prototype solv-
ing a synthetic full-
scale problem, or 
standalone prototype 
processing fully repre-
sentative data sets 

5 Module and/or 
subsystem vali-
dation in a rele-
vant environ-
ment 

Level at which software technology 
is ready to start integration with ex-
isting systems. The prototype imple-
mentations conform to target envi-
ronment/interfaces. Experiments 
with realistic problems. Simulated 
interfaces to existing systems. Sys-
tem software architecture estab-
lished. Algorithms run on a proces-
sor(s) with characteristics expected 
in the operational environment 

System architecture 
diagram around tech-
nology element with 
critical performance 
requirements defined, 
Processor selection 
analysis, Simulation / 
Stimulation 
(Sim/Stim) Labora-
tory buildup plan. 
Software placed under 
configuration man-
agement, 
COTS/GOTS in the 
system software archi-
tecture are identified 
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Source Codes 

Digital Image Processing (Matlab) 

Prep=imread('imagergb.jpg'); % inputs damage image 
 
intval=uint8(zeros(size(Prep,1),size(Prep,2)));  
% gets horizontal and vertical size of the image 
 
for i=1:size(Prep,1)     
      for j=1:size(Prep,2)        
intval(i,j)=0.1989*Prep(i,j,1)+0.4870*Prep(i,j,2)+0.0140*Prep(i,j,3); 
      end 
end  
% pixel-wise for-loop to adjust intensity of each channel                
 
out1 = imadjust(intval,[0.46 0.52],[])       
out2 = imadjust(intval,[0.4 0.45],[]) 
% adjustment of intensity values to a new range 
 
figure;                                   
subplot(1,3,1) 
imshow(Prep) 
title('No changes'); 
subplot(1,3,2) 
imshow(out1) 
title('Medium feature extraction'); 
subplot(1,3,3) 
imshow(out2) 
title('Maximum feature extraction'); % output of all three figures 

Assigning Colors to Pixel Values (Excel Macro) 

Public Sub AssignColor() 
  Dim cel As Range 
  Dim myRange As Range 
 
  Set myRange = Range("A1:AY25") 
  For Each cel In myRange 
    cel.Interior.Color = RGB(cel.Value, cel.Value, cel.Value) 
    If cel.Value > 127 Then 
      cel.Font.Color = RGB(0, 0, 0) 
    Else 
      cel.Font.Color = RGB(255, 255, 255) 
    End If 
  Next cel 
End Sub 
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Research Proposal 

Following, Chapter 8 (Structure) and 9 (Schedule) of the research proposal made on basis 
of this thesis for further investigation of this problem is presented. Since the research 
proposal is not part of the thesis, and were originally written in German, an online deep 
learning machine translation tool (www.deepl.com) is used to translate the text into Eng-
lish, without further proofreading or correction. Doing so, the advances of deep learning 
in real-world applications are again shown. 

Structure 

The structure of the doctorate and the timetable (Chapter 9) are not identical in chrono-
logical order. While the structure rather represents the monographic division of the the-
matic chapters, further (preliminary) works can be found which are not listed here. In 
order to be able to formulate a universality of the research results, attention is paid from 
the outset to the learning of generalized concepts. In order to increase the transfer of 
learning and to increase the yield of knowledge, research is also conducted on advanced 
methods and concepts that are not listed in this structure.  

1. Introduction: description of the subject(s), classification of the work, explanation 
of the problem, background and motivation 

2. State of the art: Previous work in the fields of autonomous vehicles, in particular 
autonomous aircraft, deep learning, in particular object detection and associated 
algorithms, human-machine interfaces and interaction, proof of concept of dam-
age detection / visual inspection (master thesis) 

3. Objective of the promotion: Development of new technologies, automation in 
maintenance, process acceleration, on-site maintenance, digitization of mainte-
nance results, new maintenance concepts, integration into an industry 4.0 process 
landscape (bigger picture) 

4. Theoretical study: modelling of the Autonomous Aircraft, modelling of damage 
detection, data preparation, training of models, simulation 

5. Experimental investigation: (statistical) design of experiments, testing on the real 
example and execution of the experiment, documentation and evaluation, com-
parison/comparison with theory and simulation, interpretation of the results 

6. Summary and findings: Exploitation of the results, further tasks and open points, 
outlook, further research questions 

The engineering nature of the doctoral project suggests a monograph rather than cumula-
tive publications in the course of the project. 

Translated with www.DeepL.com/Translator 
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Schedule 

The following schedule presents a rough list of the activities within the scope of the doc-
toral project. Most of the works listed are sorted chronologically, but may vary depending 
on the results and environmental conditions. A visual schedule is given in below figure 
(Fig. A.2). 

 

 

 

 

 

 

 

 

Fig. A.2: Visual schedule of the research proposal; in German 

- Problem analysis, estimation of demand and workload - 80h 
- Problem and solution interviews - 60h 
- Preparation of the programming environment in Python - 80h 
- General and Applied Autonomous Drones Environments - 400h  
- General Machine Learning & Deep Learning Environments - 300h 
- Advanced object recognition algorithms and techniques - 200h 
- Project planning and management according to Lean - 80h 
- Investigations and analysis of the application site, subsequent concept planning 

and general conditions - 120h 
- Data collection, maintenance and processing, preprocessing, - 320h 
- Deep Learning Modelling and Training - 160h 
- Programming of the autonomous drone - 320h 
- Test phase I and adjustment, incl. lead time and planning of maintenance times - 

160h 
- Probable error search and correction, adaptation of the model and the algorithm, 

fine tuning - 200h 
- Further development of algorithms for object detection, hybrid models, increase 

of speed and accuracy, test experiments with data sets - 300h 
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- Test phase II and adjustment, incl. lead time and planning of maintenance times - 

160h 
- Documentation, interpretation of results, writing process, publications - 900h 
- Optional: Further training in related subject areas, depending on specialisation and 

focus decentralised applications, decentralised artificial intelligence, machine-to-
machine payment, further industry 4.0 and production or machine shop concepts 
to initiate further research topics.   

Translated with www.DeepL.com/Translator
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