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Abstract

Power electronics are widely-used in nearly every industrial and domestic sector and an
important component for the integration of renewable energy systems into the electrical
grid. Their increasing share comes along with power quality issues, that need to be ad-
dressed to ensure a safe and efficient electric power supply. Active power filters provide
reactive power and harmonic compensation in order to reduce losses and to improve
the overall power quality of the grid. While proven techniques for the design and con-
trol of active power filters exist, the availability of higher computational power enables
the examination of more advanced control methods. This thesis enhances the novel
linear state signal shaping model predictive control scheme to facilitate this method
for harmonic compensation. For this purpose, new approaches for amplitude control
are presented and a performance comparison with a classical active power filter is con-
ducted with simulations. Results show, that the new controller not only matches up to
the performance of the classical concept, but is also able to adjust to load changes.



Zusammenfassung

Leistungselektronik ist in nahezu jedem industriellen und privaten Sektor zu finden
und zudem ein wichtiger Bestandteil, um regenerative Energiequellen in das elektrische
Versorgungsnetz einzubinden. Mit der zunehmenden Zahl leistungselektronischer Kom-
ponenten steigen die Anforderungen an die Netzqualität, um eine sichere und effiziente
elektrische Energieversorgung sicherstellen zu können. Aktive Netzleistungsfilter stellen
Blindleistungs- und Oberwellenkompensation bereit, um die Netzqualität anzuheben
und Energieverluste zu minimieren. Es existieren zwar ausgereifte Methoden, um aktive
Netzleistungsfilter zu entwerfen und um sie zu regeln, die Verfügbarkeit von leistungs-
fähigen Computern ermöglicht es jedoch, komplexere Regelungstechniken zu erproben.
Diese Arbeit erweitert einen neuartigen modellprädiktiven Regler, um ihn für Ober-
wellenkompensation einsetzen zu können. Zu diesem Zweck wird ein neuer Ansatz zur
Amplitudenstabilisierung vorgestellt und ein Vergleich der Methode mit einem klassis-
chen Konzept zur Oberwellenkompensation wird mit Hilfe von Simulationen durchge-
führt. Die Ergebnisse zeigen, dass der neuartige Regler nicht nur dieselbe Leistungs-
fähigkeit besitzt wie der klassische Ansatz, sondern zudem noch flexibel gegenüber
Laständerungen ist.



Table of Contents

Acknowledgements viii

1 Introduction 1
1-1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1-4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Classic Control Approaches for Active Power Filters 5
2-1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2-1-1 Measures for Harmonic Distortion . . . . . . . . . . . . . . . . . . 6
2-1-2 Active Harmonic Compensation Techniques . . . . . . . . . . . . . 7

2-2 Reference Signal Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 9
2-2-1 Instantaneous Reactive Power Theory . . . . . . . . . . . . . . . . 10
2-2-2 Synchronous Reference Frame Theory . . . . . . . . . . . . . . . . 12

2-3 Control Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2-3-1 Hysteresis Control . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2-3-2 Linear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Model Predictive Control 15
3-1 Model-Based Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3-1-1 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3-1-2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Table of Contents iv

3-2 Model Predictive Control as a Quadratic Programming Problem . . . . . . 18
3-2-1 Sparse Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 20
3-2-2 Condensed Formulation . . . . . . . . . . . . . . . . . . . . . . . 21

3-3 Linear State Signal Shaping . . . . . . . . . . . . . . . . . . . . . . . . . 22
3-3-1 Shape Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3-3-2 Harmonic Shape Class . . . . . . . . . . . . . . . . . . . . . . . . 25

3-4 State Shaping by Model Predictive Control . . . . . . . . . . . . . . . . . 27
3-4-1 Formulation of the Unconstrained Optimization Problem . . . . . . 28
3-4-2 Periodic Receding Horizon Strategy . . . . . . . . . . . . . . . . . 30
3-4-3 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . 30

4 Linear State Signal Shaping MPC Amplitude Control 32
4-1 Numerical properties of the Unconstrained Linear Signal Shaping MPC . . 32

4-1-1 Harmonic Shape Class Approximation Error . . . . . . . . . . . . . 33
4-1-2 Hessian Condition Number . . . . . . . . . . . . . . . . . . . . . 34

4-2 Single Phase System Model . . . . . . . . . . . . . . . . . . . . . . . . . 35
4-2-1 Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4-2-2 Measured Disturbance . . . . . . . . . . . . . . . . . . . . . . . . 37
4-2-3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-3 Linear State Signal Shaping MPC as a Quadratic Programming Problem . 39
4-3-1 Linear Constraints with Condensed Problem Formulation . . . . . . 40
4-3-2 Linear Constraints with Sparse Problem Formulation . . . . . . . . 45
4-3-3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Active Power Filter Simulation 56
5-1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5-2 Harmonic Current Compensation by Linear State Signal Shaping MPC . . 58
5-3 Comparison with a Classic Harmonic Compensation Strategy . . . . . . . . 62

6 Conclusion 66
6-1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6-2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Simulink Block Diagrams 68
A-1 Constrained LSSS MPC Active Power Filter . . . . . . . . . . . . . . . . . 69
A-2 Instantaneous Reference Frame Active Power Filter . . . . . . . . . . . . . 70

Bibliography 71

Glossary 76
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



List of Figures

2-1 Current drawn from a rectifier with the signal shown in time domain and
frequency domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2-2 Block diagram of the generalised structure of an acitve power filter. . . . . 8
2-3 Acitve power filter in series configuration. . . . . . . . . . . . . . . . . . . 8
2-4 Acitve power filter in shunt configuration. . . . . . . . . . . . . . . . . . . 9
2-5 Three-phase three-node grid model. . . . . . . . . . . . . . . . . . . . . . 10
2-6 Estimating the reference signal with the SRF method. . . . . . . . . . . . 13
2-7 Hysteresis control scheme showing the tolerance band and the resulting

switching signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2-8 Linear control scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3-1 Signal evolution of the states of model (3-34). . . . . . . . . . . . . . . . 24
3-2 Comparison of signals xt1 and xt2 with x1. . . . . . . . . . . . . . . . . . 26
3-3 Block diagram showing the unconstrained LSSS MPC controller as a state-

feedback controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4-1 Comparison of errors between forward and central numerical differentiation
to approximate the second derivative of a sine wave. . . . . . . . . . . . . 33

4-2 Central approximation error with different sampling times Ts. . . . . . . . 34
4-3 Comparison of condition numbers for forward and central numerical approx-

imation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4-4 Equivalent circuit of the grid using ideal current sources. . . . . . . . . . . 36
4-5 Disturbance signal il0 in time domain and frequency domain. . . . . . . . . 38



List of Figures vi

4-6 Block diagramm of the constrained linear state signal shaping (LSSS) model
predictive control (MPC) controller. . . . . . . . . . . . . . . . . . . . . . 40

4-7 Simulation of the system controlled with LSSS MPC using the OSQP solver. 41
4-8 total harmonic distortion (THD) of the feeder line current when using the

period receding horizon control (RHC) stratety and applying constraints on if
of ± inf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4-9 Comparison of the compensated feeder line currents with different state con-
straints applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4-10 Driving the feeder line current to higher amplitude magnitudes by adjusting
the tuning between input cost and state cost. . . . . . . . . . . . . . . . . 43

4-11 Using central numerical approximation with five coefficients leading to an
increased THD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-12 Evolution of the THD for the compensation solution using condensed and
sparse problem formulations. . . . . . . . . . . . . . . . . . . . . . . . . . 48

4-13 Block diagramm of the constrained LSSS MPC controller using sparse prob-
lem formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4-14 Compensation of harmonic load currents with constrained LSSS MPC using
the RHC strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4-15 Reduction of THD by using constrained LSSS MPC with both periodic RHC
and traditional RHC strategies. . . . . . . . . . . . . . . . . . . . . . . . 50

4-16 Oscillating THD, which is obtained when applying the periodic RHC strategy
for compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4-17 Nonlinear load compensation with changing disturbance. . . . . . . . . . . 53
4-18 Compensating nonlinear load currents with noisy disturbance measurement. 54
4-19 Histogram showing the variance increase of the noise. . . . . . . . . . . . 55

5-1 Three-phase three-node grid model. . . . . . . . . . . . . . . . . . . . . . 57
5-2 Three phase three node grid simulation showing uncompensated distorted

currents drawn from varying nonlinear loads. . . . . . . . . . . . . . . . . 59
5-3 THD of feeder line current and supply voltage. . . . . . . . . . . . . . . . 59
5-4 Compensated feeder line current of the first phase using the LSSS MPC active

power filter (APF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5-5 Compensated feeder line current of the first phase using the constrained

LSSS MPC APF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5-6 Compensated feeder line currents of the first phase using the instantaneous

reactive power (IRP) APF. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5-7 Comparison of compensated feeder line current and compensation current

of the IRP APF and LSSS MPC compensated nonlinear load. . . . . . . . 64



List of Tables

4-1 Parameters for the equivalent circuit shown in figure 4-4. . . . . . . . . . . 37
4-2 Comparison of harmonic compensation with both sparse formulated and con-

densed formulated LSSS MPC optimization problems for different state limits
of the feeder line current if and different sampling intervals Ts. . . . . . . 47

4-3 Simulations results for compensating nonlinear current disturbances using
constrained LSSS MPC with RHC strategy using different parameter settings. 52

5-1 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5-2 Comparison of feeder line current THD, PCC voltage THD and PCC RMS

voltages for uncompensated and compensated LSSS MPC APF operation at
different load scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5-3 Compensation results of IRP APF and constrained LSSS MPC APF harmonic
compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Acknowledgements

I would like to thank my supervisors Prof. Dr.-Ing. Florian Wenck and Prof. Dr.-Ing.
Gerwald Lichtenberg for their support and guidance during the work of this thesis and
writing this thesis. In addition I like to thank Prof. Dr. Frerk Haase for giving me the
opportunity to work at the Fraunhofer ISIT Application Center Power Electronics for
Renewable Energy Systems, providing the necessary resources and financial aid during
this time.
I would like to express my appreciation to my daily supervisor Carlos Cateriano Yáñez
for his constant feedback and discussions both at work and even after working hours.
Dr.-Ing. Georg Pangalos also provided me with comments and valuable resources during
the writing of this thesis, for which I am deeply grateful.

Hamburg, Kathrin Weihe
September 19, 2018



Chapter 1

Introduction

The work done in the scope of this thesis is part of the project Norddeutsche Ener-
gieWende (NEW) 4.0, which evaluates possibilities of how to ensure a safe, cost-efficient
and environmentally compatible energy supply based solely on renewable energy sources
by the end of 2035, [1]. This thesis particularly addresses how to improve power quality
on distribution grid level by means of a novel control scheme.
To introduce the work of this thesis, a short description of the concept of quality in
power networks is given, followed by an overview of state of the art techniques and
research goals, concluded by an outline.

1-1 Motivation

In order to maintain generation, transmission and distribution, the term power qual-
ity (PQ) generally is used to assess the condition of electric power in the grid. Pol-
lution of electric power can be categorised either into natural or unpredictable causes
like weather conditions, lightning and equipment failure, or into causes related to loads
such as fluorescent lamps, adjustable speed drives, consumer electronic devices and
solid-state switching converters. Natural causes often lead to transient problems such
as voltage swells, sags and short duration variations as well as power frequency varia-
tions, while load-caused problems tend to show steady state influences on the PQ such
as long duration voltage variations, flicker, waveform distortions, poor power factor and
unbalanced voltages, [2].
Waveform distortions and harmonics in particular are of special interest in low voltage
distribution grids since customer loads are main sources of harmonic pollution. Har-
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monics are sinusoidal currents or voltages with a frequency of integer multiples of the
signal’s fundamental frequency. Due to their nonlinear load characteristics, power elec-
tronic devices such as consumer electronics using switch-mode power supplies, as well
as inverters which are used along with photovoltaic (PV) systems to connect them to
the distribution grid draw harmonic currents which cause voltage distortions as they
interact with the grid. Some undesirable effects of harmonic pollution are additional
energy losses of power capacitors and transformers, vibrations in electrical machines
and malfunction of control devices, [3].
In Germany, the DIN EN 50160 standard lists characteristics for the quality of the
electric grid to ensure the security of energy supply, [4]. While electric utility companies
are bound to follow this norm, operators of harmonic sources are also compelled to keep
disturbances within permissible limits. The standard EN 61000-3-2 defines harmonic
thresholds for nonlinear loads connected to the public network, [5].
Mitigation techniques are needed to keep harmonic pollution within bounds. Solu-
tions classically consist of designing passive components such as line transformers and
capacitor banks to filter out specific harmonics. Advances in power electronics and
computational power lead to more sophisticated approaches in the form of active power
filters (APF), which can handle more than one harmonic at a time and ideally are
capable of mitigating other PQ issues such as poor power factor [6].
Since wind turbine and PV systems extensively rely on power electronic devices for
generation, transmission and storage of power to make these weather-based systems
controllable and integrable, the demand for harmonic compensation techniques will
increase, [7]. This thesis contributes to the NEW 4.0 project by exploring new methods
to achieve harmonic compensation.

1-2 State of the Art

For harmonic compensation and power factor correction proven technologies exist, they
are commonly divided into passive power filter and APF approaches, with APF more
broadly researched, since they allow for a wider application range. Trends in the field
of APF tend towards improving the efficiency, [8], and developing adaptive control tech-
niques to be able to adjust to load changes more flexibly, [9]. Hybrid APF, consisting
of both active and passive filter components, are a common research topic due to their
potential to greatly decrease the cost of the filter, [10, 11].
Publications on the use of model predictive control (MPC) in combination with APF
are scarce and mostly not more than two years old at the time this thesis is being writ-
ten, [12, 13, 14, 15]. This is mainly owed to the computational requirements of MPC.
Power electronic devices need fast controllers, but MPC-based methods require a higher
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computational effort than conventional controllers, [16]. In recent years, the availability
of more powerful embedded computers increased and computationally efficient algo-
rithms to solve the MPC optimization problem emerged, [17, 18, 19], enabling the use
of MPC in power electronics, [20].
The research field of MPC is huge in general, many different variants exist, which
evolved from the original linear MPC concept of the 1970s. A recently developed
novel linear state signal shaping (LSSS) MPC concept incorporates signal shapes into
the cost function instead of evaluating a reference tracking error, which shows promising
properties to be used as controller in power electronics [21, 22]. Since this method is so
recent, it still faces some problems, which this thesis aims to help overcome.

1-3 Research Goals

Current work on the LSSS MPC scheme shows, that this method has the capability of
ensuring a sinusoidal waveform of the controlled plant states. However, this approach is
not able to control the amplitude of the state signal, which is an important requirement
especially regarding applications for power quality improvement. In addition, first
simulations using the LSSS MPC approach indicates that this control method could be
facilitated for harmonic compensation in the grid, but the performance compared to
existing APF techniques is not yet evaluated. Based on this preconditions, the main
research goals of this thesis are as followed:

• Develop a numerically efficient method to ensure that the amplitude magnitude
of controlled plant states does not increase above a certain limit.

• Determine a way to set the amplitude magnitude to a defined value.

• Compare the performance of harmonic compensation by the LSSS MPC approach
with an established APF technique.

1-4 Structure of the Thesis

The content of this thesis is organised into the following chapters:
Chapter 2 gives an overview on existing methods for harmonic mitigation with a focus
on APF and their control techniques. Numerous methods regarding reference signal
estimation for APF exist, therefore only two of the most commonly applied approaches
are introduced to keep the chapter confined.
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Chapter 3 lays out the basics of MPC as well as how to modify MPC to constrain
the optimization problem in different formulations. In addition, the concept of LSSS is
described along with methods to include this concept into the MPC scheme.
Chapter 4 first provides an extended analysis of the numerical properties of the uncon-
strained LSSS MPC, followed by the description of developed methods to control the
plant state amplitude along with simulation results.
Chapter 5 comprises simulations of the LSSS MPC acting as an active power filter
in a three phase grid as well as a comparison of a classical APF with the LSSS MPC
approach.
Chapter 6 concludes this thesis with a summary of the results and an outlook on
future work.



Chapter 2

Classic Control Approaches for Active
Power Filters

A load connected to a perfectly sinusoidal alternating current (AC) supply voltage,
where the supply waveform only consists of a fundamental frequency, can be char-
acterised as nonlinear load, if the load current drawn from the supply voltage shows
characteristic or noncharacteristic harmonics or fluctuating currents, [2]. Most grid
connected loads at least to some extent show nonlinear characteristics, although power
electronic converters play a prominent role in the class of these loads, since their amount
of produced harmonic currents is quite high. Power electronic converters are used for
voltage conversion, when electrical direct current (DC) voltage is needed for operation,
which is the case for nearly every modern consumer device that uses semiconductor
technology like personal computers and smartphones. Even for electrical machines that
innately use AC supply voltage, power electronics are applied more and more to adjust
the supply frequency for advanced control techniques. When electric energy is not gen-
erated by a power plant’s rotating synchronous machine, but e.g. by a photovoltaic (PV)
system or a wind turbine, these generators need to be synchronised to the grid by power
electronic devices. Hence the change of the electric grid towards distributed generation,
fast advancements in research and good availability of power electronics lead to an ever
increasing share of these loads in the modern grid and the trend does seem to last, [23].
Since harmonics negatively influence the power quality (PQ) of the grid as outlined in
section 1-1, the topic of harmonic mitigation is an active research topic, [24].
In order to properly asses the quality of newly developed methods for harmonic com-
pensation compared to classical compensation methods, this chapter gives an intro-
duction to existing methods with a focus on active power filters (APF) and their con-
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trol techniques. After a short overview on common harmonic mitigation techniques in
section 2-1, two predominantly used reference signal estimation techniques are intro-
duced in section 2-2 followed by a description of common control techniques for APF
in section 2-3.

2-1 Overview

Since its inception, the AC voltage supply system relies on passive components, namely
capacitors and inductances, as filters to cope with various effects like improving steady
state and dynamic voltage and phase stabilities. Harmonic distortion can also be sup-
pressed with passive filtering by laying out a combination of specifically designed induc-
tances, resistances and capacitors to block AC currents above a certain cut-off frequency.
While this approach is simple and inexpensive, the designed filters are heavily depen-
dent on the power system and the load they are connected to, [25]. Furthermore, they
are of large size, can cause resonance, and tolerances in components make it difficult to
tune the filters to exactly meet the design requirements. Due to those disadvantages
and as regulations become more and more strict, passive filters tend to get replaced
by APFs, which are discussed in this section.

2-1-1 Measures for Harmonic Distortion

Main sources for definition and measures of harmonics are the IEEE Standard 1459 and
the IEC Standard 61000-1-1, [26, 27]. As outlined in these standards, periodic nonsi-
nusoidal waveforms can be described by Fourier analysis. Considering the frequencies
of harmonics are integer multiples of the fundamental frequency, nonsinusoidal currents
are described as

i(t) = IDC +
N∑

h=1
I(h) cos(hω0t+ φh)

= IDC + i(1)(t) + i(2)(t) + i(3)(t) + . . . , (2-1)
where IDC denotes a DC current offset, ω0 denotes the fundamental frequency and I(h)

and φh denote the root mean square (RMS) current and phase shift respectively for
the hth harmonic. When negative and positive half-waves of a waveform are symmet-
rical, the Fourier series only contains odd harmonics. This is typically the case with
currents drawn from nonlinear loads in power systems, such as rectifiers and other
voltage source converters.
Figure 2-1 shows the typical current drawn from a rectifier. The plot on the left shows
the waveform, the plot on the right shows the frequency domain spectrum. As can be
seen, only odd harmonics contribute to the signal.
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Figure 2-1: Current drawn from a rectifier with the signal shown in time domain and
frequency domain.

The amount of harmonics contained in a waveform can be indicated by the total har-
monic distortion (THD), which is defined as the relationship between the RMS value
of the current harmonics and the RMS value of the fundamental current expressed in
percentage as

THD =

√
∞∑
h=2

(I(h))2

I(1) · 100 % . (2-2)

Often the THD is truncated at a frequency of around 1.6 kHz due to the limited band-
width of current measurement devices. Being easily calculated, the THD is a common
metric to express, how distorted a current waveform is. The THD for the current drawn
by the rectifier in figure 2-1 is 58.5 % .

2-1-2 Active Harmonic Compensation Techniques

Active power filters compensate harmonic currents by extracting the harmonic content
and inducing the exact negative of this waveform into a coupling point. This way,
the harmonic currents are cancelled out and only the fundamental current remains.
Figure 2-2 shows the general structure of an APF. The filter is coupled to supply
system and load either with inductances or a transformer depending on its topology.
Information regarding the amount of harmonic distorted currents are acquired with
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Supply Coupling Nonlinear
Load

Power Circuit Measurement

Reference Signal
EstimatorController

Switching
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Figure 2-2: Block diagram of the generalised structure of an acitve power filter.

measurements in order to generate a reference signal that is able to cancel out harmon-
ics. The inverted harmonic currents are induced into the coupling point by a power
circuit, most commonly a switching-mode voltage source converter (VSC). A controller
ensures, that the VSC induces the correct waveform into the grid by calculating the
control input, which minimizes the error between reference and output of the VSC.
The switching signals itself are generated by a switching signal generator based on the
calculated control input.

Two different configurations exist for APF, namely series APF and shunt APF. Se-
ries APF as shown in figure 2-3 are coupled to the grid through a transformer, injecting
a compensating voltage vc across the transformer into the coupling point, so that the
feeder line current if maintains a sinusoidal waveform when the distorted current il is
drawn from the grid. The transformer can be seen as dynamic impedance, where for har-
monic currents the impedance is high, but for the fundamental current the impedance

Nonlinear
Load

if il

vc

Series
APF

Figure 2-3: Acitve power filter in series configuration.
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Nonlinear
Loadic

if il

Shunt
APF

Figure 2-4: Acitve power filter in shunt configuration.

is zero, therefore only the fundamental current is allowed to pass.

Shunt APF on the other hand are coupled with an inductance, they are connected
parallel to the nonlinear load. The compensation current ic generated by the shunt APF
is injected into the coupling point and the harmonic currents are cancelled out, leaving
only the fundamental current. The structure of the shunt APF is shown in figure 2-
4. This configuration is more widely used than the series APF, considering only the
negative equivalent of the harmonic currents are carried on the lines leading to the
coupling point, while much higher currents on the secondary side of the series APF
coupling transformer are needed to produce the equivalent harmonic voltages, leading
to power losses, [24].

In addition to this two configurations, numerous variations of hybrid APF exist, con-
sisting of combinations of both series and shunt APF or additional passive filter com-
ponents, [2, 6].

Although APF are able to provide good harmonic compensation without being depen-
dent on the power system they are connected to like passive filters are, they still need
to be designed according to the loads they are supposed to compensate, [28]. The main
reason for this is, that reference current estimation techniques often still rely on high
pass or low pass filters, as will be shown in the following section.

2-2 Reference Signal Estimation

In order to achieve good harmonic compensation results, estimating the reference signal
is essential when operating an APF. While various techniques exist for this part, the
two most common methods are introduced in this section. For the benefit of conciseness,
only methods for the operation of the more widely used shunt APF are described.
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ifC

icc

ifB

icb

ifA

ica

APF

ilc

ilb

ila

vfA

vfB

vfC

Figure 2-5: Three-phase three-node grid model.

2-2-1 Instantaneous Reactive Power Theory

Considering a three phase three node grid as shown in figure 2-5, the reference signal for
the operation of a shunt APF can be obtained by applying the instantaneous reactive
power (IRP) theory, [29]. Assuming a balanced three-phase supply voltage, with the
instantaneous voltages vfA, vfB and vfC at the point of common coupling (PCC), as
well as the instantaneous load currents ilA, ilB and ilC , the Clarke transformation

(
vα
vβ

)
=
√

2
3

(
1 −1

2 −1
2

0
√

3
2 −

√
3

2

)

vfA
vfB
vfC


 , (2-3)

(
ilα
ilβ

)
=
√

2
3

(
1 −1

2 −1
2

0
√

3
2 −

√
3

2

)

ilA
ilB
ilC


 , (2-4)

transfers the instantaneous voltages and currents to the αβ-frame. With this trans-
formation, the space vector of three phase voltages or currents is projected onto a
two dimensional plane. When choosing the complex plane for this, the real axis is
called α axis, corresponding to active or real currents and voltages, and the imaginary
axis is called β axis, corresponding to reactive or imaginary currents and voltages. The
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instantaneous real power pl and instantaneous imaginary power ql then are calculated
by

(
pl
ql

)
=
(
vα vβ
−vβ vα

)(
ilα
ilβ

)
. (2-5)

The instantaneous real power pl represents the instantaneous total energy flow per time
unit between load and supply, while the imaginary power ql quantifies the energy that
is exchanged between the three phases, which does not contribute to the exchanged
energy between load and supply.
With the help of a high pass filter, the undesired harmonic contents of pl can be ex-
tracted to obtain p̃l, which contains only the instantaneous harmonics. From this
the αβ-currents

(
ilα
ilβ

)
= 1
v2
α + v2

β

(
vα −vβ
vβ vα

)(
−p̃l
−q̃l

)
, (2-6)

are calculated with negative signs for p̃l and p̃l, since the inverse of the harmonic
content has to be induced into the grid for compensation. Lastly the inverse Clarke
transformation is applied to obtain the reference currents for each phase.
This method can be extended to additionally provide reactive power compensation and
voltage stabilization by calculating the power losses in the grid-coupled VSC, which
induces the reference currents into the PCC. In general, VSC consist of a DC link
capacitor that is used as energy storage. With a fixed supply voltage, this storage is
constantly discharged and charged to an equal amount in order to be able to output
an arbitrary current waveform. When the PCC supply voltage drops, the DC link
capacitor needs to be charged more often than it is discharged in order to maintain its
capacitor voltage and hence its energy supply. Considering ploss as active power, that
is needed to keep the DC link capacitor voltage at a reference voltage, with

p̃?l = p̃l + ploss , (2-7)

where p̃?l denotes the instantaneous real power including losses due to a decreased
voltage at the coupling point, a reference current can be calculated using equation (2-6)
and the inverse Clarke transformation to obtain simultaneous harmonic compensation
and PCC voltage compensation. The calculation of ploss is a nonlinear problem, but
around the set point it can be estimated as

ploss ≈ Kp eDC(t) +Ki

∫ Td

0
eDC(t) dt , (2-8)

where eDC denotes the error between the DC link reference capacitor voltage and the
actual capacitor voltage, and Kp and Ki denote parameters, which are chosen in such
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a way, that in a given time Td the power ploss is estimated to a sufficiently accurate
value. The parameters can be chosen either by analysing the relationship between DC
link capacitor voltage error and ploss of the VSC or by closed-loop tuning methods like
the Ziegler-Nichols method, [30]. A drawback of this additional voltage stabilization
technique is the requirement to design the APF according to a given load, since the
reference DC link voltage has to be adjusted to the assumed voltage drop at the coupling
point.

2-2-2 Synchronous Reference Frame Theory

The synchronous reference frame (SRF) control method also uses the Clarke trans-
formation to project the rotating three phase space vector onto the complex plane.
Additional to this, the Park transformation

(
id
iq

)
=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
ilα
ilβ

)
, (2-9)

is applied, where the active current id and reactive current iq are rotating along with the
instantaneous currents ilα and ilβ with the same angular speed. They are synchronized
to each other with the angle θ. If no harmonics are present, id and iq are static DC
currents. If the load current is distorted, these currents are composed as

id = IdDC + idAC , (2-10)
iq = IqDC + iqAC , (2-11)

where the active component IdDC and the reactive component IqDC denote the DC share
of the currents, which coincide with the fundamental of the load current, while the har-
monic load current components contribute to the oscillating currents idAC and iqAC .
Only the active components are of interest, therefore a low pass filter (LPF) is used
to remove the oscillating currents from id, such that only IdDC remains. The inverse
Park and Clarke transformations are applied to obtain the filtered load current wave-
form ifund, which is free of harmonics.
Figure 2-6 shows the structure of this reference signal estimation method. A phase
locked loop (PLL) is used to synchronize the currents with the angle θ for the Park
transformation and inverse Park transformation. The reference current is obtained by
subtracting the measured load current with the fundamental current ifund.

2-3 Control Techniques

Shunt APF inject the compensation current into the coupling point using switched-
mode voltage source converters, therefore the reference current has to be converted into
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αβ dq
LPF

dq−1 αβ−1

PLL

-il
ilα

ilβ

id IdDC
ifund

il

iref

Figure 2-6: Estimating the reference signal with the SRF method. The block αβ refers
to the Clarke transformation, the block dq refers to the Park transformation.

appropriate binary switching signals to control the VSC. This section describes two of
the most commonly applied control techniques for APF.

2-3-1 Hysteresis Control

With hysteresis control, upper and lower tolerance limits are defined, to include the
reference signal in a tolerance band with a width of H. When the current output of
the VSC reaches the upper tolerance limit, the switching signal is set to zero, for the
output current to decrease. As long as the output current stays within the tolerance
band, no switching action is taken, but when the lower limit is reached, the switching
signal is set to one accordingly. In figure 2-7 this control scheme is shown. To obtain
currents with small switching ripples, smaller values of H can be chosen. While this
controller is simple in design and provides small reference errors with appropriate toler-
ance bands, the main drawback of this scheme is a variable switching frequency, which
could lead to unwanted resonances.

Switching
Signal

upper limit

lower limit

H

reference

Figure 2-7: Hysteresis control scheme showing the tolerance band and the resulting
switching signals.
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2-3-2 Linear Control

In the linear control scheme, the reference current is compared to the output current
of the VSC. Based on the tracking error, a PI controller calculates the control signal,
where the PI controller parameters commonly are derived using Bode plot analysis and
frequency domain design. The control signal is compared to a sawtooth waveform in
a pulse width modulation (PWM) generator to supply the switching signal for the VSC.
Figure 2-8 depicts the linear control scheme. The switching frequency of this control
technique is constant, since it is established by the repetitive sawtooth signal, which is
an advantage compared to hysteresis control.

iref
-

PI PWM
Generator

VSC ic

Control
Signal

Switching
Signal

Figure 2-8: Linear control scheme.



Chapter 3

Model Predictive Control

Model predictive control (MPC) is a multivariable control technique which is inher-
ently able to handle systems with physical or actuator limitations. An internal model
is used to predict the future system behviour and calculate the optimal input to the
plant to achieve the control goal. Since its first implementations in the 1970s, MPC
has become a widely used control technique for various applications. Due to the higher
computational effort compared to classic control strategies, first approaches used heuris-
tic methods to control plants in slow industrial processes, [31]. The rapid increase in
computational power and good availability of low-cost embedded systems nowadays
enables the implementation of MPC even on fast paced processes such as controlling
power converters with computation times of as little as a few microseconds, [20].
This chapter gives a brief introduction to the concept of model-based prediction and the
formulation of the optimization problem which is used to compute the optimal control
action. In addition, the concept of linear state signal shaping (LSSS) is introduced, as
well as how this concept can be utilized to formulate a novel MPC control scheme. This
chapter is concluded with assumptions for both MPC and LSSS MPC. Also limitations
existing when work on this thesis began are discussed.

3-1 Model-Based Prediction

Since model-based prediction plays an important role for MPC, this sections outlines
the basics of both discrete-time state space models and prediction in preparation for the
more advanced concepts used in later sections. Regarding the notation, 0a×a denotes
a zero matrix with the dimension a × a, 0 denotes a zero submatrix with appropriate
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dimensions to complete a matrix, Ia denotes a unity matrix with the dimension a × a
and I analogously denotes a unity submatrix with appropriate dimensions to complete
a matrix. For further usage n ∈ N denotes the number of states, m ∈ N denotes the
number of inputs, p ∈ N denotes the number of outputs and d ∈ N denotes the number
of disturbances. The symbol ⊗ denotes the Kronecker product and M† indicates the
pseudoinverse of the matrix M.

3-1-1 State Space Model

Any dynamic time-invariant system behaviour can be represented by a mathematical
model

ẋ(t) = f (x(t),u(t)) (3-1)
y(t) = g (x(t),u(t)) (3-2)
x(0) = x0, (3-3)

with the time t, and where x ∈ Rn refers to the state vector, u ∈ Rm refers to the input
vector, y ∈ Rp refers to the output vector, f : Rn × Rm → Rn is called state equation
and g : Rn × Rm → Rp is called output equation and x0 is the inital state. If f is linear
in x and u, the state equation (3-1) can be represented by

ẋ(t) = Ãx(t) + B̃u(t) , (3-4)

with the system matrix Ã ∈ Rn×n and the input matrix B̃ ∈ Rn×m. With a fixed
sampling time Ts and samples taken at t = kTs for k = 0, 1, 2, . . ., the model (3-4) can
be rewritten as discrete-time state space model

x(k + 1) = Ax(k) + Bu(k) , (3-5)

with appropriate matrices A ∈ Rn×n and B ∈ Rn×m. Note that in this thesis full state
measurement is assumed and only states are targeted for control, so a dedicated output
equation (3-2) is not used.
Assuming that state disturbances additionally enter the system and disturbance mea-
surements are available, model (3-5) can be modified as

x(k + 1) = Ax(k) + Bu(k) + Edm(k) , (3-6)

where dm ∈ Rd refers to the disturbance vector and E ∈ Rn×d to the disturbance matrix.
By combining the input vector and the disturbance vector, model (3-6) can be rewritten
as

x(k + 1) = Ax(k) + Btut(k) , (3-7)
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where Bt =
(
B E

)
∈ Rn×(m+d) and ut =

(
u(k) dm(k)

)ᵀ ∈ Rm+d. This way the dis-
crete-time state space model can be treated in the same manner as a model without state
disturbances. To be able to differentiate between controllable inputs and disturbances,
notation (3-6) mainly is used in this thesis.

3-1-2 Prediction

Provided that the future control trajectory is known or can be estimated, the undis-
turbed system behaviour over a finite future horizon Hp starting at the sampling in-
stant k with known or measured initial state x(k) can be predicted by

X (k) = Ψx(k) + ΦU(k) , (3-8)

and with

Ψ =




A
A2

A3

...
AHp



, Φ =




B 0 0 · · · 0
AB B 0 · · · 0
A2B AB B · · · 0
... ... ... . . .

AHp−1B AHp−2B AHp−3B · · · B



, (3-9)

where X (k) =
(
x(k + 1) x(k + 2) · · · x(k +Hp)

)ᵀ ∈ RnHp denotes the vector of fu-
ture states, U(k) =

(
u(k) u(k + 1) · · · u(k +Hp − 1)

)ᵀ ∈ RmHp denotes the vector
of future inputs, and with the prediction matrices Ψ ∈ RnHp×n and Φ ∈ RnHp×mHp .

A commonly used method to facilitate prediction in MPC is to describe the vector of
future states in terms of future input changes ∆U , with

∆U =




∆u(k)
∆u(k + 1)

...
∆u(k +Hp − 1)




=




u(k) − u(k − 1)
u(k + 1) − u(k)

...
u(k +Hp − 1) − u(k +Hp − 2)



. (3-10)

For many applications it is also useful to define a control horizon Hu additionally to
the prediction horizon Hp, assuming that Hu ≤ Hp and that ∆u(k+ i) = 0 for i ≥ Hu,
so that u(k + i) = u(k + Hu − 1) for all i ≥ Hu. With (3-10), the prediction stated
in (3-8) can be reformulated as

X (k) = Ψx(k) + Υu(k − 1) + Θ∆U , (3-11)
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with

Υ =




B
AB + B

A2B + AB + B
...

∑Hp−1
j=0 AjB



, (3-12)

Θ =




B 0 0 · · · 0
AB + B B 0 · · · 0

A2B + AB + B AB + B B · · · 0
... ... ... . . . ...

∑Hp−1
j=0 AjB ∑Hp−2

j=0 AjB · · · · · · ∑Hp−Hu

j=0 AjB



, (3-13)

where u(k−1) denotes the last input before sampling instant k and with the prediction
matrices Υ ∈ RnHp×m and Θ ∈ RnHp×mHp .
To include measured disturbances into the prediction, (3-10) can be extended as

X (k) = Ψx(k) + Υu(k − 1) + Θ∆U + ΓDm , (3-14)

with

Γ =




E 0 0 · · · 0
AE E 0 · · · 0
A2E AE E · · · 0
... ... ... . . .

AHp−1E AHp−2E AHp−3E · · · E



, (3-15)

where Dm =
(
dm(k) dm(k + 1) . . .dm(k +Hp − 1)

)ᵀ ∈ RdHp denotes the vector of
future measured disturbances and with the prediction matrix Γ ∈ RnHp×dHp .

3-2 Model Predictive Control as a Quadratic Program-
ming Problem

Assuming a problem where the control goal aims to drive the states towards certain
reference values, this problem can be stated in such a way, that the desired state
vector is the zero vector. This can be done by transforming the state vector into an
equivalent vector where the equilibrium lies at the reference. For discrete-time systems
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with finite horizons, the optimal control action leading the states to the equilibrium can
be obtained by the finite-horizon linear quadratic regulator (LQR), which minimizes a
convex quadratic cost function

J(x,u) =
Hp−1∑

k=0

(
x(k)ᵀQ̃(k)x(k) + u(k)ᵀR̃(k)u(k)

)
, (3-16)

where Q̃(k) ∈ Rn×n � 0 denotes the state cost weighting matrix for all states at time
step k, R̃(k) ∈ Rm×m � 0 denotes the input cost weighting matrix at step k, and
with J : Rn × Rm → R. In MPC, Q̃(k) and R̃(k) are chosen to apply a weighting
between the state cost and the input cost. With higher weighting on state costs, a fast
state evolution towards the equilibrium will be forced by giving the input a high degree
of freedom to achieve this goal. A higher weighting on input costs on the other hand
will restrict the inputs, often times leading to a slower but smoother state evolution
towards the equilibrium. Finding a weighting that expresses the desired trade-off for
the application can be done heuristically or by using optimization methods, [32]. Since
the state cost and input cost matrices are positive semidefinite and positive definite
respectively, the state will be driven to the equilibrium when the cost function yields a
cost of zero.

In MPC, the minimization of the LQR cost function is transformed into a quadratic
program (QP)

min
x,u

Hp−1∑

k=0

(
x(k)ᵀQ̃(k)x(k) + u(k)ᵀR̃(k)u(k)

)
(3-17a)

subject to x(k + 1) = Ax(k) + Bu(k) (3-17b)
x ≤ x(k) ≤ x (3-17c)
u ≤ u(k) ≤ u (3-17d)
x(0) = x0, (3-17e)

with the vectors x ∈ Rn and u ∈ Rm denoting lower state and input bounds, x ∈ Rn

and u ∈ Rm denoting upper state and input bounds and x0 ∈ Rn denoting the initial
state at sampling instant k = 0, and with x and u as decision variables to the opti-
mization problem. It is important to note that x(k) and u(k) need to be constrained
to closed convex sets containing the origin for each k = 0, 1, . . ., otherwise the QP will
not lead to a solution, [33].

It is possible to omit the inequality constraints on states and inputs, thus transforming
the problem into a QP with equality constraints only. This type of problem often is
referred to as unconstrained MPC since an analytical solution for this optimization
problem exists and can be solved by the method of least squares, [34].
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The current plant state needs to be measured or estimated and passed to the problem as
parameter in order to solve the optimization problem. The solution consists of a future
state vector as well as a future input vector containing the optimal control actions up
the defined prediction horizon Hp. Instead of applying the whole input vector to the
plant in a feed forward manner, a common practice for MPC is to only use the first
input as control action. The receding horizon control (RHC) approach can be applied,
where the new plant state is measured or estimated, the horizon is shifted one step
towards the future, the solving process for the QP stated in (3-17) is repeated with
the new initial state and again only the first input is applied to the plant. This way,
closed loop stability and dynamic performance can be maintained while the constraints
on states and inputs will still be satisfied.

In order to numerically solve the constrained problem (3-17), it needs to be formulated
in a way that a solver is able to apply a suitable algorithm like the alternating direction
method of multipliers (ADMM), [35], which is used in this thesis. The following sections
will briefly introduce the sparse and the dense formulation, which both can be used in
model predictive control, [36].

3-2-1 Sparse Formulation

Numerical solving of QP problems can be achieved by defining a new decision vari-
able z =

(
x u

)ᵀ ∈ RHp(n+m)+1 and reformulating the problem as

min
z

1
2zᵀPz (3-18a)

subject to Fz = c (3-18b)
z ≤ z ≤ z, (3-18c)

with appropriate matrices

Q =




Q̃(1) · · · 0
... . . . ...
0 · · · Q̃(Hp)


 , (3-19)

R =




R̃(1) · · · 0
... . . . ...
0 · · · R̃(Hu)


 , (3-20)

P =




0n×n 0 0
0 Q 0
0 0 R


 , (3-21)
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F =
(
Â B̂

)
with Â =




−In 0 0 0
A −I 0 0
0 A −I 0
0 0 0 . . .



, B̂ =

(
01×Hp

IHp

)
⊗B , (3-22)

and vector

c =




−Ax0
0
0
...



, (3-23)

where z ∈ RHp(n+m)+1 denotes the lower bound and z ∈ RHp(n+m)+1 denotes the upper
bound of the decision variable vector and with the matrix P denoting the Hessian of
the optimization problem.
The decision variables in sparse notations contain both future states and optimal inputs,
thus the degree of freedom for the optimization problem is nz = Hp(n + m), compu-
tational effort and memory usage grows linear with respect to the prediction horizon.
Due to this property and the numerically exploitable sparse pattern of the Hessian,
sparse MPC formulations are assumed to perform better with long prediction horizons
and a relatively small number of states, [37].

3-2-2 Condensed Formulation

Using prediction as outlined in section (3-1-2), the future states can be eliminated
from the decision variables by formulating them as function of future inputs and the
initial state, [34]. When also control input changes instead of control inputs are used,
problem (3-17) can be formulated as

min
∆U

1
2∆U(k)P∆U(k) + qᵀ∆U(k) (3-24a)

subject to l ≤ Θ∆U(k) ≤ o , (3-24b)

where l ∈ RnHp denotes the lower bound of the inequality and o ∈ RnHp denotes the
upper bound of the inequality, and with

P = ΘᵀQΘ + R, (3-25)
q = −2ΘᵀQ(Ψx(k) + Υu(k − 1)), (3-26)

where the Hessian P as well as q can be derived by transforming (3-16) into

J(∆U) = X (k)ᵀQX (k) + ∆U(k)ᵀR∆U(k) (3-27)
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and in this new cost function (3-27) replacing the state prediction vector X (k) according
to (3-11). It is worth noting that in this formulation no equality constraint is stated,
which is the implicit result of eliminating future states from the optimization problem.
From this formulation it is also more obvious to see why solving the optimization
problem without inequality constraints is referred to as unconstrained MPC.
In formulation (3-49) the Hessian does not contain any zero entries which leads to a
dense QP. Compared to the sparse problem formulation, the number of decision vari-
ables is reduced to n∆U = Hpn, resulting in a lower dimensional optimization problem.
However, when inequality constraints are applied, the requirements regarding compu-
tational power and memory grow cubic with the prediction horizon in contrast to the
linear growth of the sparse notation, [38]. Therefore the condensed problem formulation
is more suitable for applications with smaller prediction horizons.
The structure of the Hessian can also be exploited by utilizing the Cholesky decom-
position to gain a numerical advantage. This is especially important when using a
solver that needs to calculate the inverse of the Hessian or when an unconstrained
MPC problem is stated. Since the decomposition often times leads to lower condition
numbers of the Hessian, the calculation of the optimal input is more robust against pa-
rameter changes when using the decomposed Hessian, [34]. By applying the Cholesky
decomposition, the problem (3-49) can be transformed into a so called square-root form
with

P =
(

SQΘ
SR

)ᵀ (SQΘ
SR

)
, (3-28)

q = −2
(

SQ(Ψx(k) + Υu(k − 1))
0

)ᵀ (SQΘ
SR

)
, (3-29)

where SQ denotes an upper triangular matrix satisfying the decomposition Sᵀ
QSQ = Q

and SR denotes an upper triangular matrix satisfying the equation Sᵀ
RSR = R.

3-3 Linear State Signal Shaping

The MPC introduced in section (3-2) is posed as a regulator problem driving the states
towards an equilibrium when they currently are not at an equilibrium, thus counter-
acting effects of any disturbances. Another commonly used control technique is the
tracking method, where the control goal is that the output follows a reference signal as
closely as possible. This section introduces an additional approach, where the states
are not manipulated to follow a fixed reference trajectory, but instead should maintain
a determined signal shape. In this linear state signal shaping (LSSS) called approach,
the output is not enforced to reach a fixed reference point in a given amount of time,
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as long as the shape of the output meets the reference shape. Plants that don’t need
to comply with strict timing requirements or applications where generating an exact
reference is a difficult task by itself, could benefit from this method.
Since LSSS is a just recently introduced concept, [21], the necessary definitions for
shape class and harmonic shape class will be discussed in greater detail to provide a
better understanding.

3-3-1 Shape Class

Consider a discrete-time signal shape which can be expressed by a linear difference
equation, for example an exponentially decreasing function

x(k + 1) = λx(k), (3-30)

where λ ∈ R denotes the exponential decay constant and is restricted to |λ| < 1. This
function can be expressed as

(
λ −1

)( x(k)
x(k + 1)

)
= 0, (3-31)

where the vector
(
λ −1

)
will be referred to as shape vector.

Equation (3-31) can be used to determine, if any given two consecutive samples of
a signal have the properties of a discrete-time signal with the given shape. If the
samples indeed exactly meet the shape of this exponential decay, the multiplication of
the shape vector with the vector of samples will give zero as result. If on the other
hand the two consecutive samples do not meet the shape, e.g. if the samples remain
constant, the multiplication will give a value different from zero. Moreover, the more
the two consecutive samples conform to the properties of the exponential decay to be
investigated, the closer the result will be to zero.
To be able to express this way of comparing signal shapes in a more general way, the
shape class is introduced as the set

XV = {x(1),x(2), . . . |V




x(k + 1)
...

x(k + T )


 = 0 ∀ k = 0, 1, . . .}, (3-32)

where V ∈ Rs×nT denotes the shape matrix, n denotes the number of states as pre-
viously introduces, T denotes the number of consecutive samples and s denotes the
number of states that actually take part in the shape analysis with s ≤ n. Note that
the number of states can differ from the number of states that are compared against a
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signal shape. Since this set denotes the elements that are mapped to the zero vector
by a linear map, the set (3-32) is also referred to as the kernel of the shape. Goal of
the shape analysis is to find the kernel or to determine, if a set is in the neighbourhood
of the kernel. If a given set is not part of the kernel, the shape analysis, i.e. the multi-
plication of the shape matrix with the signal vector, will yield a vector different from
the zero vector. This vector different from the zero vector will be referred to as shape
residual. To better evaluate how closely a given signal matches a shape, not the shape
residual itself is considered, but the distance of the shape residual to the zero vector,
i.e. the Euclidean norm

‖VX(k) ‖2 , (3-33)

is used, where X(k) =
(
x(k + 1) · · · x(k + T )

)ᵀ
.

To further clarify this concept, consider a signal shape of a step answer of a stable first
order system and how it can be determined, if a signal meets the properties of this
signal shape. With a discrete-time linear system as

x1(k + 1) = 0.8x1(k) + 0.2x2(k) (3-34a)
x2(k + 1) = x2(k), (3-34b)

with the initial states x1(0) = 0, x2(0) = 1, simulating the model for 30 steps result in
the discrete-time signals shown in figure 3-1. As can be seen, the evolution of state x1
resembles the step answer of a first order system, i.e. state x1 approaches the constant
remaining state x2 in a way, that the next state always will be closer to state x2 than
the current state or will be equal to state x2. The corresponding shape matrix for

5 10 15 20 25 30
0

0.5

1

k

x(
k
)

x1 x2

Figure 3-1: Signal evolution of the states of model (3-34).
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system (3-34) can be obtained as

V =
(

0.8 0.2 −1 0
0 1 0 −1

)
, (3-35)

but since only the shape of signal x1 is of interest, the first row of the shape ma-
trix V is used so that with s = 1, n = 2 and T = 2 the matrix V is reduced
to Vstep =

(
0.8 0.2 −1 0

)
. To compare the shape of an arbitrary signal xt against

the shape of state x1, this state is replaced by the signal so that model (3-31) is modified
as

x̂1(k + 1) = xt(k) (3-36a)
x̂2(k + 1) = x̂2(k), (3-36b)

with the initial states x̂1(0) = xt(0), x̂2(0) = x2(0) = 1. The distance of two consecutive
state vectors to the zero vector is calculated according to (3-33) by

(Vstepx̂)ᵀVstepx̂, (3-37)

where x̂ =
(
xt(k) x̂2(k) xt(k + 1) x̂2(k + 1)

)ᵀ
.

Figure 3-2 shows the comparison of two different signals xt1 and xt2 with the given
sinal shape. Signal xt1 is a linear increasing signal with xt1(0) = −3, while xt2 follows
an exponential decay function in the form of xt2(k) = 1 − 1.25−k which is explicitly
modelled to resemble state x1 of model (3-34) closely. The distance of the shape residual
of both signals to the origin is calculated for each k = 0, . . . , 9 according to (3-37) and
plotted on a logarithmic scale on the lower part of figure 3-2. As can be seen on the left
side of the figure, the distance of two consecutive signals of xt1 and thus the dissimilarity
to the shape of x1 increases with increasing k. On the other hand, as signal xt2 already
is quite similar to x1, the distance is much lower compared to the distance of xt1 and
is even decreasing since the approximation of x1 to an exponential decay function is
better the closer x1 is to x2.

3-3-2 Harmonic Shape Class

The sinusoidal shape is of particular interest for this thesis. The property of a sine wave
can be described by a homogeneous second order ordinary differential equation (ODE)

d2x(t)
dt2 + ω2x(t) = 0, (3-38)

where ω denotes the angular frequency of the signal. Solving the initial value problem
of this ODE with x(0) = 0 and d2x(0)

dt2 = 0 leads to x(t) = c1 sin(ωt) with an arbitrary
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Figure 3-2: Comparison of signals xt1 and xt2 with x1. The upper plots show the signal
evolution with increasing steps, the lower plots show the distances of the shape residual
of two consecutive states of model (3-36) to the shape kernel.

amplitude c1. In order to fit this property into the form of the shape class (3-32), an
approximation of the second derivative using forward numerical differentiation is used,
such that

ẍ(t) ≈ 1
h2 (2f(x)− 5f(x+ h) + 4f(x+ 2h)− f(x+ 3h)) , (3-39)

with the step size h. The choice of using four coefficients gives an order of accuracy
of O(h2), [39]. The discrete-time version of (3-39) is

ẍ(k) ≈ 1
T 2
s

(2x(k)− 5x(k + 1) + 4x(k + 2)− fx(k + 3)) , (3-40)

connecting the approximation step size with the sampling interval Ts. With this ap-
proximation, the discrete-time version of the ODE (3-38) can be formulated as

1
T 2
s

(
(2 + ω2T 2

s )x(k)− 5x(k + 1) + 4x(k + 2)− x(k + 3)
)

= 0, (3-41)
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and the shape matrix V can be obtained as

V =
(
2 + (ω2T 2

s ) −5 4 −1
)
. (3-42)

With this shape matrix with T = 4 and the resulting shape residual it is possible to
determine, if a discrete-time signal resembles the shape of a sinusoidal signal or how
much a given signal resembles the shape of sine wave, [21].

3-4 State Shaping by Model Predictive Control

As outlined in the previous section, shape classes provide the possibility to test if a
state coincides with a given signal shape. Furthermore shape classes can be used to
find a future state sequence with given shape properties by means of an optimization
problem similar to that introduced in section 3-2.
It is possible to find an input to any discrete-time linear time invariant system, such
that the shape residual of future states when compared against a given shape class will
decrease with every step or remain the zero vector. This can be achieved by formulating
the optimization problem

min
X(k)

(VX(k))2 . (3-43)

Using the prediction (3-11) with a prediction and input horizon Hp = Hu = T , the
optimization problem transforms into

min
∆U

(VX (k))2 = min
∆U

(V (Ψx(k) + Υu(k − 1) + Θ∆U))2 . (3-44)

Remember that for harmonic shape classes T = 4 which would restrict the prediction
horizon to Hp = T = 4 with this formulation. It is possible to extend the optimization
to longer prediction horizons, but to match the dimension and structure of X (k), the
shape matrix has to be transformed into a band matrix. For this let the shape matrix
be sliced into parts

Vj = V




0n(j−1)×n

In×n
0n(T−j)×n


 for j = 1, 2, . . . , T , (3-45)

where each Vj ∈ Rs×n, so that

PV =




V1 V2 · · · VT 0 · · · 0
0 V1 V2 · · · VT

. . . ...
... . . . . . . . . . . . . . . . 0
0 · · · 0 V1 V2 · · · VT



, (3-46)
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with PV ∈ Rp1×p2 , where p1 = s(Hp − T + 1) and p2 = nHp. As will be shown, this
not only enables the formulation of an MPC scheme for linear state signal shaping, but
the resulting formulation also matches the regular formulations so well, that standard
solving methods can be applied for LSSS MPC.

3-4-1 Formulation of the Unconstrained Optimization Problem

With the definition of PV as in (3-46), the minimization problem (3-44) for an arbitrary
prediction horizon can be formulated as

min
∆U

(VX (k))2 = min
∆U

(X (k)ᵀPᵀ
V PVX (k)) , (3-47)

and with QS = Pᵀ
V PV and a weighting matrix R as defined in (3-20), the cost function

for the LSSS MPC is introduced as

J(∆U) = X (k)ᵀQSX (k) + ∆UᵀR∆U . (3-48)

This cost function closely resembles the cost function of the MPC condense formula-
tion (3-27) with the only difference, that the state weighting matrix QS is not a block
diagonal matrix but has the structure of a band matrix since it is derived from the
shape matrix. With this difference, the regulator control scheme is transformed into a
shape control scheme: instead of driving the states towards an equilibrium, i.e. towards
the state zero vector which is the origin, the states are driven towards a minimal shape
residual, i.e. the closest possible resemblance to the given shape class. Note that the
origin is part of the shape kernel. If it is desired to find an optimal input vector, that
leads to a state evolution with a minimal shape residual but without leading the states
towards the origin, a proper weighting of the state cost weighting matrix QS and the
input cost weighting matrix R has to be chosen.
The unconstrained LSSS MPC optimization problem can be formulated as a condensed
unconstrained MPC problem as shown in equation (3-49) using the state cost weighting
matrix QS instead of the regular state cost weighting matrix Q. For the purpose of
compensating disturbances, the prediction is extended to also include measured distur-
bances as shown in equation (3-6). This leads to the unconstrained LSSS MPC problem
developed in [21] as

min
∆U

1
2∆U(k)P∆U(k) + qᵀ∆U(k), (3-49a)

with

P = ΘᵀQSΘ + R, (3-50)
q = −2ΘᵀQS(Ψx(k) + Υu(k − 1) + Γdm). (3-51)
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For further usage, the state error prediction E(k) will be defined as

E(k) = Ψx(k) + Υu(k − 1) + Γdm. (3-52)

As it is the case with any unconstrained QP, the analytical solution of this optimzation
problem can be obtained by finding the minimum with

∂J

∂∆U(k) = 2∆U(k)P + qᵀ != 0, (3-53)

which leads to the solution

∆U(k) = 1
2 P−1(−q) , (3-54)

since the Hessian is positive semidefinite and thus ∂2J
∂∆U(k)2 > 0, which leads to a mini-

mum. Using the square-root formulation as shown in equations (3-28) and (3-29), the
optimal input vector can be obtained with

∆U(k) =
[(

SQΘ
SR

)ᵀ (SQΘ
SR

)]−1 (SQΘ
SR

)ᵀ (SQ (Ψx(k) + Υu(k − 1) + Γdm)
0

)
, (3-55)

which using the Moore-Penrose pseudoinverse can be written as

∆U(k) =
(

SQΘ
SR

)† (SQ E(k)
0

)
, (3-56)

also using the state error prediction as defined in (3-52).
For application, equation (3-56) can be solved by using Matlabs backslash operator.
Since only the state error prediction E(k) changes in every calculation step, the uncon-
strained LSSS MPC can be seen as a state-feedback controller with the control law

∆U(k) = KMPC E(k), (3-57)

where

KMPC =
(

SQΘ
SR

)† (SQ
0

)
. (3-58)

With z defined as any complex number used for the Z-transformation Z {x(k)}, [40],
figure 3-3 shows the block diagram of the controller which takes into account the current
state x(k), the last control input u(k− 1) obtained with the unit cycle delay z−1 I and
the disturbance measurement dm to obtain the state error prediction. The control
input change ∆U(k) is calculated with (3-57) and is passed through a discrete-time
integrator z

z−1 I to obtain the control input itself.
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-
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KMP C
z

z−1I Plant x(k)

Ψ

z−1IΥ

dm

Γ

E(k) ∆U(k) u(k)

u(k − 1)

Figure 3-3: Block diagram showing the unconstrained LSSS MPC controller as a state-
feedback controller.

3-4-2 Periodic Receding Horizon Strategy

While the RHC approach is commonly applied in MPC as outlined in section 3-2, the
LSSS MPC modifies this strategy to a periodic RHC. With this strategy, instead of
applying only the first input, the whole calculated optimal input vector is used as input
to the plant. As could be shown in [21], this strategy leads to sinusoidal state signals
and also has the benefit of only calculating the optimal input vector once every period
instead of once every sample step. Using the periodic RHC ties the input horizon Hu

to the sampling interval Ts as Hu = 1
fTs

with the frequency f = ω
2π , which matches the

minimum number of steps per period for a given sampling interval. This furthermore
means, that the prediction horizon Hp is also tied to the sampling interval, since the
input horizon cannot be be larger than the prediction horizon. With this restriction,
choosing small sampling intervals to obtain a better discretization can lead to quite
large prediction horizons, which could affect the computing time of constrained MPC
optimization problems.

3-4-3 Assumptions and Limitations

For problem (3-47) the following assumptions are made:

Assumption 1. Strong convexity is assumed to obtain a minimum at all times. This
assumption relies on the property of the Hessian, which is assumed to be positive semi-
definite.
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Assumption 2. When applying the periodic RHC strategy, it is assumed that the
measured disturbances for the next period is the same as the measured disturbance for
the current period.

Assumption 3. Full state measurement without delay is available for the targeted
states by the controller.

As could be shown in [21], while an optimal control input sequence can be found to
bring a targeted state into a sinusoidal shape, the amplitude magnitude of the signal
can increase or decrease depending on the tuning of the weighting matrices R and QS.
Since at the time of writing this thesis the only tuning strategy for the developed
control method relies on heuristic parameter variation, the LSSS MPC does not lead to
a reliable steady state behaviour with different measured disturbances. Moreover, with
the concept it is not possible to bring the signal to a predefined amplitude.



Chapter 4

Linear State Signal Shaping MPC
Amplitude Control

This chapter introduces methods developed in the scope of the thesis to solve the
problems outlined in section 3-4-3. Section 4-1 portrays numerical properties of the
unconstrained linear state signal shaping (LSSS) model predictive control (MPC). For
verification of the solution approach presented, a model based on the grid representation
shown in figure 2-5 is developed. Section 4-3 forms the core part of this chapter, pro-
viding methods on how different kinds of constraints can be applied to the LSSS MPC
method, accompanied by simulation results using the previously introduced state space
model.

4-1 Numerical properties of the Unconstrained Linear
Signal Shaping MPC

The harmonic shape class as introduced in section 3-3-2 employs a forward numerical
differentiation in order to approximate the second derivative of an arbitrary signal.
In order to assess the numerical properties of this approximation, the analysis of the
unconstrained LSSS MPC as conducted in the work which first introduced this control
method, is extended by an approximation error estimation.
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4-1-1 Harmonic Shape Class Approximation Error

Given a row vector of approximation coefficients α ∈ R1×a as derived in [39], where a
corresponds to the number of coefficients, the approximation error for numerical differ-
entiation is evaluated by computing the Euclidean norm

∥∥∥ẍ(k)− ˆ̈x(k)
∥∥∥ =

√∑

k

∣∣∣ẍ(k)− ˆ̈x(k)
∣∣∣
2
, (4-1)

where ẍ(k) = −ω2 sin(ωk) denotes the second time derivative of a discrete-time normal-
ized sine wave x(k) = sin(ωk) and ˆ̈x(k) = α

T 2
s

(
x(k) x(k + 1) · · · x(k + a)

)ᵀ
accord-

ing to (3-41) denotes the approximation of the second derivative by means of forward
numerical differentiation. For central numerical differentiation the approximation error
is calculated accordingly, but here the approximation of the second derivative is shifted,
so that ˆ̈x(k) = α

(
x(k − (a−1)

2 ) x(k − (a−1)
2 + 1) · · · xd0(k − (a−1)

2 + a)
)ᵀ
. Note that

only odd numbers of coefficients exist for central approximations.
Figure 4-1 depicts the result of the approximation error analysis, comparing both cen-
tral and forward numerical differentiation with an increasing number of coefficients. A
sampling interval of Ts = 0.2 ms for the discrete-time sine wave signal is chosen, the
approximation is conducted for one period. As can be seen, the approximation error
decreases with an increasing number of coefficients. Also the central approximation
yields a lower approximation error with the same number of coefficients as compared
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∥ ∥ ∥ẍ
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ˆ̈ x(

k
)∥ ∥ ∥
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Figure 4-1: Comparison of errors between forward and central numerical differentiation
to approximate the second derivative of a sine wave.
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Figure 4-2: Central approximation error with different sampling times Ts.

to the forward numerical differentiation. The error also decreases with smaller sam-
pling intervals as shown in figure 4-2, which is expected, since interpolation points are
spaced more closely, resulting in a more accurate approximation, [41]. Interestingly, the
approximation error with nine coefficients is lower for a sampling time of Ts = 0.2 ms
than the error with Ts = 0.1 ms, which could be due to a computing precision error,
since α

T 2
s
yields higher values with decreasing sampling intervals.

4-1-2 Hessian Condition Number

An important metric for numeric solvers that use any kind of gradient descent method,
is the condition number of the Hessian due to the relation between complexity bounds
for solving a problem and the condition number of the problem, [42]. Given a matrix M,
the condition number is defined as

κ(M) = |λmax(M)|
|λmin(M)| , (4-2)

where λmax(M) denotes the maximum eigenvalue of M and λmin(M) denotes its min-
imum eigenvalue. For singular matrices, gradient descent algorithms do not converge
and the condition number is infinite. The higher the condition number, the closer the
matrix is to singularity and hence the more ill-conditioned it is.
Condition numbers for the Hessian (3-50) of the unconstrained LSSS MPC problem
are calculated according to equation (4-2), where the state cost weighting matrix QS is
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Figure 4-3: Comparison of condition numbers for forward and central numerical approx-
imation.

calculated with different numbers of coefficients both for central and forward numerical
differentiation to approximate the harmonic shape class. As input cost weighting ma-
trix R the identity matrix is chosen. Figure 4-3 shows the results of this comparison.
With an increasing number of coefficients, the Hessian gets more ill-conditioned, while
the ill-conditioning advances faster when using forward approximation.

As a conclusion to the numerical properties of the unconstrained LSSS MPC, using
central numerical differentiation shows advantages compared to using forward numerical
differentiation, which is used in previous publications, [21, 43, 22]. Also smaller numbers
of coefficients are preferred when a numerical solver is needed to solve the optimization
problem, as this is the case when constraints are applied.

4-2 Single Phase System Model

As outlined in section 2-1, shunt active power filters (SAPF) are used to compensate
current harmonics, which are typically drawn from the grid by nonlinear loads. Voltage
source converters (VSC) are used to inject the compensation current into the grid. The
output of the VSC depends on the control signals driving the power electronic switches.
The combination of the grid with the SAPF can be seen as hybrid dynamic system,
since both time continuous grid dynamics as well as event discrete switching dynamics
are present. Although methods exist to model this hybrid dynamic system, [44], in
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order to reduce modelling complexity an equivalent circuit as shown in figure 4-4 is
used to describe the system dynamics. With this system model, the control goal is
to compensate the current il with the current ic0 in such a way, that the feeder line
current if is sinusoidal.

4-2-1 Equivalent Circuit

Figure 4-4 shows the equivalent circuit for one phase of the grid connected SAPF and
a nonlinear load. The controlled voltage source vs provides alternating voltage, R1
and L1 represent the transmission resistance and inductance respectively to model the
transmission feeder line with the current if . Instead of an event based switching VSC, a
non-ideal current source consisting of a controllable ideal current source ic0 and internal
resistance R3 is used. To induce the compensating current into the grid, a coupling
resistance R2 and a coupling inductance L2 are used, also acting as a smoothing filter.
The filtered current ic is injected at the point of common coupling (PCC). The harmonic
current il drawn by the nonlinear load is modelled as an ideal current source il0 with
the internal resistance R4.
In this model, vs and il act as measured disturbances to the system and the controller is
supposed to find the optimal compensation current ic0 to bring the feeder line current if
to a sinusoidal shape.

−
+ vs

R1 L1

if

PCC

ic0

L2

R2

ic il

il0R4

R3

Figure 4-4: Equivalent circuit of the grid using ideal current sources.
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Table 4-1: Parameters for the equivalent circuit shown in figure 4-4.

Transmission Compensation
Coupling

Internal
Resistances

R1 L1 R2 L2 R3 R4

1 Ω 10 µH 0.05 Ω 3.5 mH 10 kΩ 10 kΩ

Using Kirchhoff’s current and voltage laws, a set of differential equations can be devel-
oped to model the dynamics of the equivalent circuit shown in figure 4-4 with

−vs +R1if + L1
dif
dt −R2ic − L2

dic
dt +R3 (ic0 − ic) = 0 , (4-3)

−R3 (ic0 − ic) +R2ic + L2
dic
dt +R4 (il − il0) = 0 , (4-4)

if + ic = il . (4-5)

Reordering these equations and replacing il in (4-4) with (4-5) leads to a linear time-
invariant system of differential equations




dif
dt
dic
dt


 =



−R1+R4

L1
−R4
L1

−R4
L2

−R2+R3+R4
L2


x(t) +




0
R3
L2


u(t) +




1
L1

R4
L1

0 R4
L2


dm(t) , (4-6)

with the state vector x(t) =
(
if ic

)ᵀ
, the input u(t) = ic0 and the vector of measured

disturbances dm(t) =
(
vs il0

)ᵀ
. Since the LSSS MPC uses a discrete-time state space

representation, this continuous-time model is discretized using zero-order hold with a
fixed sampling time Ts to obtain a model as introduced in (3-6), [40]. Table 4-1 shows
the model parameters used for simulations of this systems.

4-2-2 Measured Disturbance

When comparing different simulation runs, the periodic disturbance signal

il0 = 10 sin(ωf t) + 5 sin(5ωf t) + 3 sin(7ωf t) , (4-7)

with a fundamental angular frequency of ωf = 100π rad s−1 as shown in figure 4-5
is used as the current drawn by a nonlinear load. The left plot shows the signal in
time domain, while the plot on the right shows the frequency domain spectrum. The
disturbance signal consists of a fundamental frequency of 50 Hz along with the 5th
and 7th harmonic. This artificial disturbance signal is chosen to resemble the harmonic
spectrum of a rectifier, which is a typical nonlinear load often found in power electronic
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Figure 4-5: Disturbance signal il0 in time domain and frequency domain.

applications. The total harmonic distortion (THD) of this disturbance signal as defined
in equation (2-2) is 58.3 %. The second measured disturbance signal vs is a sine wave
with an amplitude of 230

√
2 V and a frequency of 50 Hz, which corresponds to the mains

power single phase utility voltage in Germany.

4-2-3 Simulation Setup

The main focus of this thesis is to extend the LSSS MPC with constraints, hence a
numerical solver is needed to calculate the optimal input. For this purpose the OSQP
solver is used, [45]. The convergence tolerance is set to ε = 10−8, which defines the
stop criterion for the solver. All simulations are computed using Matlab R2017b
exclusively. Average computing times are determined by running the solver for an opti-
mization problem for N = 100 times and calculating the mean of the run time for each
solution. Numerical tests are executed on an Intel R©Pentium R©CPU G3260 @ 3.3 GHz,
running Microsoft R©Windows 7TM.
Regardless of the method used, every simulation is set up in the following manner if
not explicitly denoted otherwise:

1. Discretize the system model (4-6) using zero-order hold with a fixed sampling
time as denoted.

2. Build up prediction matrices Ψ, Υ, Θ and Γ using the parameters of the discretized
state space model and build up QS and R as outlined in section 3-4.
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3. Simulate the discrete-time model with the signal of the measured disturbances
and with a control input of zero for one period to obtain the initial state for the
first optimal input calculation.

4. Initialize the solver with the Hessian P and the linear objective q as well as
constraints.

5. Calculate the optimal input vector and use the whole input vector if using periodic
receding horizon control (RHC) or only the first input if using conventional RHC
respectively.

6. Simulate the discrete-time model with the new input and the given initial state
and store the last state vector as initial state for the next solving step.

7. Update the problem data for the solver with the new initial state and if using the
condensed problem formulation also with the last calculated input.

8. Repeat from step five until the simulation is aborted or the maximum simulation
time is reached.

For all simulations only diagonal uniformly weighted input weighting matrices are used,
hence for simplification the notation

R = ρ IHu , (4-8)

is used, with ρ denoting the input weighting factor. The Matlab code for the simula-
tions shown in this chapter can be found on the CD accompanying this thesis.

4-3 Linear State Signal Shaping MPC as a Quadratic
Programming Problem

One of the problems of the current LSSS MPC approach is the inability to fix the
amplitude of the targeted sinusoidal state. Since the MPC control method inherently
is able to include constraints into the optimization problem, this section shows how to
extend the LSSS MPC with state constraints.
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4-3-1 Linear Constraints with Condensed Problem Formulation

Analogously to the condensed MPC problem formulation (3-49), state constraints can
be incorporated to the LSSS MPC problem (3-47) with

min
∆U

1
2∆U(k)P∆U(k) + qᵀ∆U(k) (4-9a)

subject to l ≤ Θ∆U(k) ≤ o , (4-9b)

with

P = ΘᵀQSΘ + R, (4-10)
q = −2ΘᵀQS E(k), (4-11)
l = xmin − E(k), (4-12)
o = xmax − E(k), (4-13)

where xmax ∈ Rn denotes the maximum state constraint vector containing upper limits
for each state and xmin ∈ Rn denotes the minimum state constraint vector containing
lower limits for each state. The targeted state is the first state if , therefore only con-
straints for this state will be applied and the constraints for the second state ic will be
set to ± inf. With this formulation it is also possible to compute the unconstrained solu-
tion by setting xmax =

(
inf inf

)ᵀ
and xmin =

(
− inf − inf

)ᵀ
, hence not constraining

the solution space at all.
When applying constraints, there does no longer exist a fixed state feedback gain KMPC ,
but instead a dynamic state feedback gain is applied. Figure 4-6 shows a modified ver-

-
--

min
∆U

J(∆U , E)
s.t. l ≤ Θ∆U(k) ≤ o

z
z−1I Plant x(k)

Ψ

z−1IΥ

dm

Γ

E(k) ∆U(k) u(k)

u(k − 1)

Figure 4-6: Block diagramm of the constrained LSSS MPC controller.
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sion of the block diagram in figure 3-3, where the state feedback gain block is exchanged
by a dynamic block that symbolizes solving the optimization problem.

Figures for all following simulations contain a parameter annotation box, showing
the sampling interval Ts, the prediction horizon Hp, the input horizon Hu, the in-
put weighting factor ρ and which approximation coefficients α are used, where in the
notation “α : cen3” the number of coefficients is stated and the prefix “cen” denotes
central notation while the prefix “for” denotes forward approximation. Applied state
constraints are listed as c{if} = ± |if,max| with if,max denoting the upper current con-
straint for the feeder line current.

Figure 4-7 shows the simulation results for the LSSS MPC SAPF approach using
the OSQP solver and constraints on if of ± inf to obtain the unconstrained solution. In
this simulation the periodic RHC strategy is applied. The upper plot shows the feeder
line current if , the lower plot shows the computed compensation current ic0. After the
first period, which is used to store the disturbance signal for one whole period, the con-
troller finds a compensation current to reduce the harmonics of the feeder line current.
The THD is reduced from 58.3 % to a value of 0.025 % in the period from t = 0.12 s
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Figure 4-7: Simulation of the system controlled with LSSS MPC using the OSQP solver.
No constraints are applied. The upper plot shows the feeder line current, the lower plot
shows the compensation current.
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Figure 4-8: THD of the feeder line current when using the period RHC stratety and
applying constraints on if of ± inf.

to t = 0.14 s. The average computing time for solving this optimization problem
is 3.13 ms. For small simulation times as shown in figure 4-7, the amplitude of the
state signal does not seem to increase, but for longer simulation times the effect of an
increasing amplitude magnitude as outlined in section 3-4-3 becomes visible. This effect
also is noticeable in figure 4-8, where the evolution of the THD, which is calculated at
the beginning of each period, is shown. After an initial dip from 58.3 % to below 0.1 %,
the THD slowly but constantly decreases further. This THD decrease happens at the
expense of an increasing compensation current, which leads to an increasing amplitude
magnitude of the feeder line current. This effect can be prevented by applying state
constraints.

Figure 4-9 shows the comparison of simulation runs where different constraints are
applied to the feeder line current. As can be seen, the states indeed are limited to the
defined constraints of c{if2} = ±8 and c{if3} = ±4 and the amplitude magnitude is
not increasing after the first period. The average computing time is slightly increased
when applying constraints compared to the unconstrained solution with an average
computing time of 4.9 ms.

Since state constraints are only capable of defining upper and lower state limits, driving
the state to higher amplitude magnitudes than that of the first compensated period
merely can be achieved by finding a suitable tuning between the input cost and the
state cost. Figure 4-10 shows a simulation where this strategy is applied. A tuning
is found, such that the feeder line current constantly rises, if no state constraints are
applied. When constraining if to ±13 A, the limits are met. Note that this approach
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Figure 4-9: Comparison of the compensated feeder line currents with different state
constraints applied.

heavily depends on an heuristic tuning of state and input cost weighting factors. Further
analysis of the influence of the weighting factors to the solutions is needed to be able to
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Figure 4-10: Driving the feeder line current to higher amplitude magnitudes by adjusting
the tuning between input cost and state cost and then constraining the state.
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reliably predict, if the state signal amplitude magnitude will keep increasing. If there
do not exist methods to systematically increase the amplitude magnitude to a desired
value, it may not be possible to drive the state to an arbitrarily high amplitude.
In order to set the amplitude magnitude to a reference value, the solution space of the
optimization problem needs to be restricted in such a way, that solutions leading to
sine waves with smaller amplitudes should be excluded. This is not possible with state
constraints in general, which only allow to exclude solutions leading to higher amplitude
magnitudes. To restrict the solution space in the desired way, the cost function could
be enhanced to include the distance of the current state root mean square (RMS) to the
desired state RMS. However, since the RMS itself is a quadratic function, calculating
the Euclidean norm to obtain the distance would lead to a fourth order cost function.
This in turn means, that the optimization problem is transformed from a quadratic
program (QP) into a biquadratic program, greatly increasing the complexity and solving
time, [33]. Still, if it can be proven, that this optimization problem remains convex,
solving this problem in polynomial time is possible in general. Exploiting the structure
of the biquadratic problem, which still closely resembles a QP, could even make this
approach viable, but this needs further investigation into the numerical properties of
this optimization problem.
The analysis of the numerical properties of the unconstrained LSSS MPC in section 4-1
showed, that using higher numbers of coefficients benefits the approximation accuracy.
However, when simulating the LSSS MPC SAPF with five approximation coefficients,
an increase in THD from 0.03 % to 2.87 % can be observed. This effect arises due to the
fact, that with more approximation coefficients more future state predictions are used
to build up the state cost weighting matrix QS. Hence when the second derivative of
the last predicted state x(k+Hp) is approximated via central numerical approximation
with five coefficients, x(k +Hp − 2),x(k +Hp − 1), . . . ,x(k +Hp + 2) are needed, but
only x(k +Hp − 2),x(k +Hp − 1), . . . ,x(k +Hp) are available, yielding an additional
approximation error on top of the numerical approximation error. The upper plot in
figure 4-11 shows this effect, which leads to a discontinuous feeder line current at the
start of each new period due to the amplified approximation error. This effect also
appears when using three approximation coefficients, but since only one future state
prediction is missing at the end of the prediction horizon for a complete approximation
of the second derivative, the error remains small.
The undesired effect due to the amplified approximation error can be cancelled by mod-
ifying the periodic RHC strategy in such a way, that a longer prediction horizon 2 ·Hp

is chosen, but only the optimal input vector for one period is used as input for the plant.
This way the approximation error still exists at the end of the prediction horizon, but
these calculated optimal input values are never used as actual input to the plant. As
can be seen in the lower part of figure 4-11, this strategy leads to satisfying results,
the THD is reduced to 0.03 %. However, the average computation time is around ten
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Figure 4-11: Using central numerical approximation with five coefficients leading to an
increased THD (upper plot). In the lower plot also five coefficients are used, but the
prediction horizon is elongated.

times slower than the computation time of solving this problem with three approxi-
mation coefficients without elongated prediction horizon and with no noticeable THD
difference.

4-3-2 Linear Constraints with Sparse Problem Formulation

The constrained LSSS MPC optimization problem can be solved using the sparse MPC
problem formulation (3-18) by extending the equality constraint with the measured
disturbance as

min
z

1
2zᵀPz (4-14a)

subject to Fz = c (4-14b)
z ≤ z ≤ z, (4-14c)
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with the Hessian

P =




0n×n 0 0
0 QS 0
0 0 R


 , (4-15)

appropriate matrices for the equality constraint

F =
(
Â B̂

)
with Â =




−In 0 0 0
A −I 0 0
0 A −I 0
0 0 0 . . .



, B̂ =

(
01×Hp

IHp

)
⊗B , (4-16)

and vector

c =
(
−Ax(k) −Edm(k −Hp) −Edm(k −Hp + 1) · · · −Edm(k − 1)

)ᵀ
, (4-17)

where
(
dm(k −Hp) dm(k −Hp + 1) · · · dm(k − 1)

)ᵀ
corresponds to the vector of

measured disturbances of the previous period. Simulations show, that similar but not
identical solutions are calculated, when finding the optimal input to compensate non-
linear feeder line currents. An important difference between formulations is the way
the input is weighted in the respective cost functions. While the input is weighted in
terms of input differences when using the condensed problem formulation, the sparse
formulation directly adds the weighted input as cost to the cost function. This means
that the cost weighting factor has a different effect on the solution for each problem
formulation.
Table 4-2 shows the simulation results for a comparison between both sparse formulated
and condensed formulated LSSS MPC feeder line current compensations with different
sampling intervals Ts, using the periodic RHC strategy. Both simulations use three
central approximation coefficients to compose the state weighting matrix QS, while
for each condensed formulation a weighting factor of ρ = 10−7 and for each sparse
formulation a weighting factor of ρ = 10−8 is used. Recalling that the prediction
horizon Hp is tied to Ts, it is expected, that using smaller sampling intervals, i.e.
better discretization, will yield better compensation results and thus lower THD of the
feeder line current if . This assumption holds true when using the condensed problem
formulation, but not for the sparse problem formulation, where the overall THD of the
feeder line current is worst when using the smallest sampling interval of Ts = 0.1 ms.
This effect could be the result of a suboptimal cost weighting factor tuning. Further
analysis of the influence of tuning factors on the performance of the sparse problem
solver is needed, which is not part of the scope of this thesis.
When comparing the average computing times for solving the optimization problems,
the sparse solver outperforms the condensed solver in any setup and is faster roughly
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Table 4-2: Comparison of harmonic compensation with both sparse formulated and
condensed formulated LSSS MPC optimization problems for different state limits of the
feeder line current if and different sampling intervals Ts. The lower part of the table
shows average solving times for both problems.

THD with Ts = 0.4 ms
Hp = 50, Hu = 50

THD with Ts = 0.2 ms
Hp = 100, Hu = 100

THD with Ts = 0.1 ms
Hp = 200, Hu = 200

State limit sparse dense sparse dense sparse dense
± inf A 0.123 % 0.124 % 0.021 % 0.030 % 0.149 % 0.006 %
±8 A 0.123 % 0.124 % 0.016 % 0.031 % 0.229 % 0.009 %
±6 A 0.122 % 0.101 % 0.005 % 0.031 % 0.390 % 0.011 %
±4 A 0.121 % 0.124 % 0.014 % 0.032 % 0.695 % 0.018 %
±2 A 0.117 % 0.125 % 0.075 % 0.036 % 1.596 % 0.028 %
±1 A 0.109 % 0.125 % 0.035 % 0.042 % 3.289 % 0.054 %

average
solving time 0.17 ms 1.18 ms 0.33 ms 5.24 ms 0.58 ms 29.5 ms

by a factor of ten. This result concurs with the assumption, that solving sparse formu-
lated MPC QP optimization problems with comparably large prediction horizons and
a small number of states perform better than their condensed formulated counterpart
as outlined in section 3-2-1.

When analysing the evolution of the THD for longer simulation times, some solutions
for the condensed problem formulation seem to take an unusual long time until a steady
compensation current is found, that does not increase or decrease the THD further. Fig-
ure 4-12 shows THD values calculated at the beginning of each period. The simulations
are set up with identical parameters, with the only difference, that the feeder line cur-
rent if1 is compensated by solutions obtained by the condensed problem, while if2 is
obtained by solving the sparse problem. Both solutions find compensations, that lead to
a THD of about 0.03 %, but the solution of the condensed problem changes with every
period, finding even solutions which lead to a feeder line current THD of below 0.01 %,
but then returns to “worse” solutions. This development can only be observed with so-
lutions obtained from condensed problem formulations. Sparse problem solutions tend
to reduce the THD right from the first period, only varying slightly for a small number
of periods.

Although further investigation of the numerical properties of this effect is needed, an
indication for the cause of this effect could lie in the changed structure of the con-
troller itself, when using the sparse problem formulation. Since not input differences
are computed but directly the input, the controller does not include a discrete-time
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Figure 4-12: Evolution of the THD for the compensation solution using condensed and
sparse problem formulations.

integrator like the controller using the condensed problem formulation. Figure 4-13
shows the block diagram of this reduced controller structure. From this block diagram
it is apparent, that without the discrete-time integrator the solution of the optimal
input is also not dependent on the last input any more. Each solution is disconnected
from the previous solution in the sense, that only measured disturbances and the ini-
tial state contribute to the solution, it does not matter by which trajectory the initial
state is achieved. This allows for a wider set of solutions, which could be an advantage
for LSSS MPC optimization problems that directly solve the optimal input.

Another benefit that comes with the implication, that the solution is not tied to the tra-

min
x,u

J(u, x, xk, dm)
s.t. Fz = c

z ≤ z ≤ z
Plant x(k)

dm

u(k)

Figure 4-13: Block diagramm of the constrained LSSS MPC controller using sparse
problem formulation.
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jectory of the initial state, is the possibility to apply the standard RHC strategy instead
of the periodic RHC strategy. As stated in the work that introduced the LSSS MPC
concept, [21], with the traditional RHC, the optimal input found by solving the op-
timization problem belongs to different sine waves with each solving step, leading to
non-sinusoidal state shapes using this strategy. This statement must hold true, let
alone because with each solving step an approximation error is induced into the solu-
tion. However, when directly computing the the optimal input and disregarding the
state trajectory, this relaxed problem statement will still produce sinusoidal state shapes
with only slightly worse compensation results as can be seen in the simulation results of
figure 4-14. The THD of the compensated feeder line current is 0.21 %, which is higher
than the THD of 0.016 % using a periodic RHC strategy as shown in table 4-2, but still
this is a satisfactory compensation result.

The simulation setup is slightly changed when applying the RHC strategy, such that
the vector of measured disturbances is initialized with zeros, since no measurements are
available. With each simulation step, the vector of measured disturbances is updated.
In figure 4-14 it can clearly be observed, that the controller tries to adjust the state to
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Figure 4-14: Compensation of harmonic load currents with constrained LSSS MPC using
the RHC strategy. The upper plot shows the feeder line current if , the lower plot shows
the compensation current ic0.
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the sinusoidal shape with each step right from the beginning. Only when one full period
of measured disturbances is available at t = 0.02 s, a good compensation result can be
achieved. When applying a periodic RHC strategy in contrast, the method resembles
an open-loop control strategy, where a control input is not updated by current state
or output measurements each sampling step. Instead only at the beginning of each
period a state update is applied. Figure 4-15 shows the compensation progress in terms
of feeder line current distortion, where the THD is calculated at every sampling step
using a moving window strategy with a window size τ = 1

fTs
. While the THD of if1

only decreases until a steady state compensation input is found, the THD of if2 seems
to describe a decaying oscillation as shown in figure 4-16. Although these oscillations
are small in value, they give a valuable indication to the numerical properties of the
periodic RHC strategy, which is only able to find a new optimal input at the beginning
of each period.

An important advantage of the periodic RHC compared to the traditional RHC strat-
egy is the fast computation time. For a frequency of 50 Hz, the optimal input vector
for one whole period must be calculated in less than 20 ms, which is an achievable time
considering the average computing time results laid out in table 4-2. Only condensed
formulated optimization problems with prediction horizons larger than Hp = 100 seem
to violate this timing restriction. If a traditional RHC strategy is applied, the comput-
ing time restriction is tightened, since a new input must be available at each time step.
With a discretization of 100 samples per 50 Hz period, each input has to be calculated
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Figure 4-15: Reduction of THD by using constrained LSSS MPC with both periodic RHC
and traditional RHC strategies. The THD is measured at every sampling step using a
moving window strategy.
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Figure 4-16: Oscillating THD, which is obtained when applying the periodic RHC strat-
egy for compensation.

within 0.2 ms. Although sparse formulations can be computed faster, this timing speci-
fication can only be met with small prediction horizons at the expense of approximation
accuracy. Yet when applying the traditional RHC strategy, the prediction horizon is no
longer tied to the sampling interval Ts as outlined in section 3-4-2. Simulations indeed
prove, that with the RHC strategy prediction horizons of down to half the number of
samples per 50 Hz period are capable of finding an optimal input solution to compensate
disturbances.

Table 4-3 summarizes the results for simulation runs to compensate nonlinear current
disturbances by using a sparse problem formulation with the RHC strategy. The state
constraints are set to ±8 A for every simulation and central numerical approximation
with three coefficients is used to build up the shape matrix. In the table, tsolv denotes
the average computing time to find the optimal input and tmax denotes the timing re-
striction, i.e. the maximum allowed time to compute the solution. Parameter settings
that violate the timing requirement are highlighted in red. A compensation of nonlin-
ear current disturbances to about 1 % THD is possible using only allowed parameter
settings.

Another advantage in using smaller prediction horizons is the ability to recover from
disturbance changes faster. Assuming the disturbance changes abruptly at time tchange,
only after the vector of measured disturbances is fully updated with the information
of the new disturbance, a correct compensation current can be computed. With Hp

reduced to half a period, also half a period of previous measured disturbances are needed
for solving the optimization problem, so that after half a period the new measured
disturbance can correctly be compensated.
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Table 4-3: Simulations results for compensating nonlinear current disturbances using
constrained LSSS MPC with RHC strategy using different parameter settings.

Simulation parameter

samples
per period

50 50 70 70 90 90 100 100

Hp 50 25 70 35 45 45 50 50
ρ 9 · 10−8 9 · 10−8 7 · 10−8 7 · 10−8 7 · 10−8 8 · 10−8 8 · 10−8 9 · 10−8

tsolv 0.25 ms 0.15 ms 0.39 ms 0.22 ms 0.37 ms 0.16 ms 0.29 ms 0.29 ms
tmax 0.4 ms 0.4 ms 0.29 ms 0.29 ms 0.22 ms 0.22 ms 0.2 ms 0.2 ms

Compensated feeder line current THD

THD 0.83 % 0.84 % 0.28 % 0.98 % 0.23 % 1.65 % 1.0 % 0.26 %

Figure 4-17 shows the results of a load compensation simulation, where due to a load
change at tchange = 90 ms the disturbance abruptly changes to

il0 = 15 sin(ωf t+ π

5 ) + 4 sin(5ωf t+ π

5 ) + 2 sin(7ωf t+ π

5 ) . (4-18)

The progress of the disturbance is shown in the bottom plot of figure 4-17. For this
simulation a sampling interval of Ts = 0.2 ms is used, other simulation parameters are
denoted in the annotation box between the upper and the mid plot. All simulations use
the RHC strategy. The upper plot shows the compensation with a prediction horizon
of Hp = 50, which matches half the number of samples per period. As can be seen,
after 10 ms, i.e. half a period, the disturbance is compensated. The mid plot on the
other hand uses a prediction horizon Hp = 100, matching the number of samples per
period, all other simulation parameters are kept the same. Only after one full period
the disturbance signal is compensated.

4-3-3 Limitations

As it is shown in the previous section, applying constraints to the LSSS MPC improves
the control strategy and is even possible to relax some restraints to the concept. How-
ever, certain limitations still exist. One important drawback is the need to obtain a
good measured disturbance signal. In the more realistic case, that the disturbance
measurements are afflicted with noise, the controller does not give satisfying compensa-
tion results. Figure 4-18 shows the simulation of nonlinear load current compensation



4-3 Linear State Signal Shaping MPC as a Quadratic Programming Problem 53

0.07 0.09 0.11 0.13 0.15
−20
−10

0
10
20

i f
(A

)
Hp = 50, Hu = 50

Ts = 0.2 ms
ρ = 9 · 10−8

α : cen3
c{if} = ±8

0.07 0.09 0.11 0.13 0.15
−20
−10

0
10
20

i f
(A

)

Hp = 100, Hu = 100

0.07 0.09 0.11 0.13 0.15
−20
−10

0
10
20

Time (s)

i l
0

(A
)

Figure 4-17: Nonlinear load compensation with changing disturbance il0
at tchange = 90 ms. The plots show simulations results using a RHC strategy. The predic-
tion horizon in the top plot is set to half the number of samples per period, the prediction
horizon in the mid plot is set to the number of samples per period.

when Gaussian distributed white noise with a variance of σ2 = 0.25 is added to the
disturbance measurements.

It is apparent, that the compensated feeder line current if is very noisy. Considering
the decibel scaled signal to noise ratio (SNR), which is defined as

SNR = 20 log10
Âsignal

Ânoise
, (4-19)

where Âsignal denotes the RMS amplitude of the signal and Ânoise denotes the RMS
amplitude of the noise, [40], the analysis shows, that the noise entering the controller
through the disturbance measurement is amplified. For the disturbance signal shown in
the example the SNR is 29.3 dB, while the SNR of the compensated feeder line current
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Figure 4-18: Compensating nonlinear load currents with noisy disturbance measurement.

is 14.7 dB, i.e. the ratio between signal and noise is shifted towards a higher noise share.
The variance of the compensated feeder line current also is higher than the variance of
the noise itself, which can be seen by analysing the distribution of the extracted the
noise of the feeder line current with

if, noise = if, clean − if , (4-20)

where if, clean denotes the compensated feeder line current, if no measurement noise is
applied. In figure 4-19 a histogram comparing the noise of the feeder line current and
the disturbance current normalized by their probability density

f(x|σ2) = 1√
2πσ2

e−
x2

2σ2 , (4-21)

with fitted probability density curves is shown. The variance increases from σ2 = 0.25
for the disturbance noise to σ2 = 0.64 for the feeder line current noise, hence the
values of the noisy feeder line current are more scattered than the values of the noisy
disturbance.
The LSSS MPC always uses the stored measured disturbances of the last period to
compute the optimal input, but since the disturbance is different by the time the input
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Figure 4-19: Histogram showing the variance increase of the noise.

is applied, the state of the plant will not advance as predicted. Using a stochastic esti-
mator like a Kalman filter as an observer to estimate the exact measured disturbances
could improve the performance of the LSSS MPC, so that noise does not get amplified.



Chapter 5

Active Power Filter Simulation

To showcase the possibilities of the constrained linear state signal shaping (LSSS) model
predictive control (MPC) as controller for an active power filter (APF), the simu-
lation of a more refined model using Matlab Simulink is developed. The con-
strained LSSS MPC is used to compute the compensation current in order to cancel out
distorted currents drawn from rectifiers, which are connected to each phase. Addition-
ally, a simulation of a classical APF using the instantaneous reactive power (IRP) theory
to estimate the reference signal is set up to compare the performance of the LSSS MPC
to the IRP APF.

5-1 Simulation Framework

Based on the three phase three node grid example shown in figure 2-5, a grid model as
depicted in figure 5-1 is implemented as Matlab Simulink model using the Simscape
Power Systems library. The model includes feeder line transmission resistances Rf to
express transmission losses, which exist in real electric power transmission networks, [6].
The nonlinear load is modelled by a bridge rectifier using a smoothing capacitor CDC ,
which supplies a linear load Rl with direct current (DC) voltage. The model parameters
are summarized in table 5-1.
A fixed-step solver using the first order Euler method is used to simulate the model.
The classical IRP APF uses a hysteresis band controller to control a voltage source
converter (VSC), which generates the compensation currents based on switching signals.
The upper and lower limits for the hysteresis band controller are set to ±0.01 A. Since
the fundamental sampling time confines the maximal switching frequency, it is set
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Figure 5-1: Three-phase three-node grid model.

to 0.01 ms, which accounts for a maximal switching frequency of 100 kHz. This is a
particular high frequency, but it is intentionally chosen to achieve a switching ripple
as small as possible. The grid model utilized for the MPC on the other hand uses an
ideal current source. Controlling a VSC directly by an MPC controller is possible as
mentioned in section 4-2, but requires additional modelling effort. With the limitation
of using ideal current sources, smaller switching frequencies would result in an unfair
advantage for the LSSS MPC, since current sources are able to output currents without
any switching ripple.

Not only the compensation for one static load is analysed, but also the transient be-
haviour and the possibility to adapt to load changes for both the LSSS MPC and
the IRP APF is assessed. For this, the linear load Rl connected to the DC side of the
rectifier changes from Rl = 100 Ω to 9 Ω after 0.5 s and to 2 Ω after 1 s after the sim-
ulation started. Figure 5-2 shows simulation of the grid model without compensation.
The upper plot shows the resulting feeder line current, the lower plot shows the point of
common coupling (PCC) voltage. As can be seen, with increasing currents on the feeder
line the PCC voltage decreases due to increasing voltage drops on the transmission line
impedance. This effect is undesired, since this means, that loads are not sufficiently
granted with the needed root mean square (RMS) supply voltage of 230 V. The total
harmonic distortion (THD) of the feeder line current and the supply voltage are shown
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Table 5-1: Simulation parameters.

Parameter Symbol Value
Sampling time IRP APF Ts1 1× 10−5 s
Sampling time LSSS MPC APF Ts2 2× 10−4 s
Phase-to-ground RMS voltage Vs 230 V
Grid frequency f 50 Hz
Feeder line resistance Rf 1 Ω
Feeder line inductance Lf 0.01 mH
Filter coupling resistance Rc 0.001 Ω
Filter coupling inductance Lc 3.50 mH
VSC DC Link voltage VDC 800 V
AC load coupling inductance Ll 2 mH
DC smoothing capacitor CDC 0.68 mF
LSSS MPC input weighting factor ρ 10−7

in figure 5-3 in the upper plot and lower plot respectively. While the THD decreases
for the feeder line current, because with increasing amplitude the waveform resembles
a sine wave more and more, the PCC voltage THD increases from 1.9 % initially to 9 %
at t = 1.5 s.

The Simulink grid model consists of three phases, but only one phase is connected to
the LSSS MPC since the grid equivalent model used in the MPC only represents single
phase system dynamics. A more complex equivalent model that also adds dynamics
between phases would be needed to implement a three phase LSSS MPC, which exceeds
the scope of this thesis. Therefore the whole three phase grid model is simulated, but
only the first phase is considered for analysis and comparison. All model files can be
found on the the CD accompanying this thesis.

5-2 Harmonic Current Compensation by Linear State
Signal Shaping MPC

The LSSS MPC uses the sparse formulation to solve the optimization problem using
central numerical approximation with three coefficients to compose the shape matrix.
A figure of the top level of the Simulink model can be found in appendix A-1. The
receding horizon control (RHC) strategy is applied because it adapts better to nonlinear
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Figure 5-2: Three phase three node grid simulation showing uncompensated distorted
currents drawn from varying nonlinear loads. The upper plot shows the resulting feeder
line current, the lower plot shows the decreasing PCC voltage.
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Figure 5-4: Compensated feeder line current of the first phase using the LSSS MPC APF.
Parameters for the MPC are Ts2 = 0.2 ms, Hp = 50, Hu = 50, ρ = 10−7, central
numerical approximation using 3 coefficients, no state constraints. Upper plot: First load
scenario with Rl = 100 Ω. Mid plot: Second load scenario with Rl = 9 Ω. Bottom plot:
Third load scenario with Rl = 2 Ω.

load disturbance changes when reducing the prediction horizon to half the number of
samples per period as outlined in section 4-3-2. Figure 5-4 shows the results of the
simulation, when no constraints on the feeder line current are applied. In the upper
plot the first load scenario with Rl = 100 Ω is active. After a few periods the feeder line
current is able to adjust to a sinusoidal shape because a suitable compensation current
is injected into the PCC. The LSSS MPC APF is also able to react to load changes,
as can be seen in the mid and bottom plot, where the feeder line current is distorted
quite heavily at the time of the load step, but the THD quickly decreases to low values,
which are summarized in table 5-2 at the end of the section.

The compensation performance regarding the THD is satisfactory, but still a drop
of PCC voltage exists as can be seen in table 5-2. The RMS voltage V̂f at the PCC
decreases from initially 226.9 V at the first load scenario to 201.0 V with the load step
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at t = 0.5 s to 161.8 V with the last load step at t = 1 s.
A great advantage of APF over passive filters is the capability of not only compensat-
ing distorted currents, but also being able to provide supply voltage stabilization as
described in section 2-2-1. Simulation results show, that the LSSS MPC also is able to
support the PCC voltage when state constraints on the feeder line currents are applied.
Figure 5-5 shows the compensation results on the constrained LSSS MPC with state
limits on the feeder line current of ±20 A. While the top plot is equal to the top plot of
figure 5-4, since the constraints are not active, the effect of the current constraints can
be seen in the mid and bottom plots. When the load steps at t = 0.5 s and t = 1 s occur,
the feeder line current takes a little longer to achieve a sinusoidal shape than without
state constraints, but the current limit is met. Since the overall feeder line current is
reduced, the voltage drop on the transmission impedances also is lower, which allows
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Figure 5-5: Compensated feeder line current of the first phase using the con-
strained LSSS MPC APF. Parameters for the MPC are Ts2 = 0.2 ms, Hp = 50, Hu = 50,
ρ = 10−7, central numerical approximation using 3 coefficients, limits on the feeder line
current c{if} = ±20 A. Upper plot: First load scenario with Rl = 100 Ω. Mid plot:
Second load scenario with Rl = 9 Ω. Bottom plot: Third load scenario with Rl = 2 Ω.
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Table 5-2: Comparison of feeder line current THD, PCC voltage THD and PCC RMS
voltages for uncompensated and compensated LSSS MPC APF operation at different load
scenarios.

Uncompensated Compensated,
c{if} = ± inf

Compensated
c{if} = ±20

t = 0.48 s
if THD 84.5 % 0.18 % 0.18 %
vf THD 1.95 % 0.004 % 0.004 %

V̂f 226.9 V 226.9 V 226.9 V

t = 0.98 s
if THD 44.9 % 0.18 % 0.18 %
vf THD 6.9 % 0.004 % 0.004 %

V̂f 201.4 V 201.0 V 217.5 V

t = 1.48 s
if THD 19.77 % 0.11 % 0.36 %
vf THD 9.00 % 0.017 % 0.024 %

V̂f 162.1 V 161.8 V 217.9 V

for higher PCC voltages.
Table 5-2 summarizes the compensation results for the unconstrained as well as the
constrained LSSS MPC. The THD of the feeder line current if and the PCC voltage vf
of the unconstrained case differ only marginally when state constraints are applied.
The RMS PCC voltage V̂f on the other hand is stabilized, when limiting the feeder line
current, because the currents are mainly exchanged between load and APF, therefore
reducing the currents on the transmission line. This also means, that the APF must
be installed close to heavy loads, if the power filter should be operated in PCC voltage
stabilizing mode.

5-3 Comparison with a Classic Harmonic Compensation
Strategy

The block diagram of the IRP APF Simulink model can be found in appendix A-2.
The classical APF is designed to provide harmonic compensation as well as PCC voltage
stabilization as outlined in section 2-2-1. For this the VSC has to be designed according
to an assumed PCC voltage drop, such that enough energy can be stored in the DC link
capacitor. For the benefit of simplicity, the IRP APF is designed to stabilize the second
load scenario with harmonic compensation and suitable PCC voltage compensation
best. Techniques to adjust the APF to different loads exist, [46], but designing such a
filter goes beyond the scope of this thesis.
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Figure 5-6: Compensated feeder line currents of the first phase using the IRP APF.
Upper plot: First load scenario with Rl = 100 Ω. Mid plot: Second load scenario
with Rl = 9 Ω. Bottom plot: Third load scenario with Rl = 2 Ω.

Simulation results of the compensation performance of the classical IRP APF using the
parameters outlined in section 5-1 are shown in figure 5-6. The feeder line currents
for the first load scenario are higher compared to the currents shown in figure 5-5,
the maximum current is at 28.5 A compared to 12.8 A with LSSS MPC compensation.
This increased current most likely is caused due to the IRP APF being designed for a
different load scenario.

The compensation results for the second load scenario with Rl = 9 Ω at t = 0.5 s un-
til t = 1 s are similar to the compensation results of the constrained LSSS MPC, as can
be seen in figure 5-7. Noticeable is a phase shift, when comparing both compensation
currents and feeder line currents. Recalling the grid model in figure 5-1, a load coupling
inductance is modelled to connect the load to the PCC, acting as inductive reactance
and therefore causing a phase shift. The IRP APF is capable of compensating this
phase shift in contrast to the LSSS MPC, which still is a main drawback of the latter
compensation method.
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Table 5-3: Compensation results of IRP APF and constrained LSSS MPC APF harmonic
compensation.

Uncompensated Compensated
by IRP APF

Compensated by
constrained LSSS MPC

t = 0.48 s
if THD 84.5 % 2.90 % 0.18 %
vf THD 1.95 % 0.75 % 0.004 %

V̂f 226.9 V 217.5 V 226.9 V

t = 0.98 s
if THD 44.9 % 2.29 % 0.18 %
vf THD 6.9 % 0.81 % 0.004 %

V̂f 201.4 V 216.0 V 217.5 V

t = 1.48 s
if THD 19.77 % 1.65 % 0.36 %
vf THD 9.00 % 0.87 % 0.024 %

V̂f 162.1 V 208.2 V 217.9%

In table 5-3 the compensation performance regarding THD reduction and voltage sta-
bilization of the IRP APF and the constrained LSSS MPC APF is compared. Note
that the feeder line current THD compensated by the IRP APF has to be higher due to
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Figure 5-7: Comparison of compensated feeder line current and compensation current
of the IRP APF and LSSS MPC compensated nonlinear load. The figure shows the
simulation results for the second load scenario with Rl = 9 Ω
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switching ripples of the VSC and therefore should not directly be compared to the results
of the LSSS MPC, which is using an ideal current source. Regarding the PCC voltage
stabilization, both methods achieve similar results with the constrained LSSS MPC
performing slightly better, keeping the RMS PCC voltage above 217 V. With the first
load scenario the LSSS MPC even outperforms the IRP APF. While the IRP APF is
designed to perform best in the second load scenario, falling behind with different load
setups, the LSSS MPC does not need to be adjusted to load changes, which could be
an advantage of this method compared to classical concepts.
Still the LSSS MPC needs to be enhanced with the possibility to compensate reactive
power to fully be able to replace a classical APF. Including the VSC into the LSSS MPC
model and directly computing the switching pattern provides the ability to control
the DC link capacitor voltage in a similar way, like it is done with the IRP APF. Reac-
tive power components in the grid will also affect charging and discharging the DC link
capacitor, which can be utilized to include reactive power compensation by calculating
the energy losses in the capacitor as described in section 2-2-1.



Chapter 6

Conclusion

Maintaining quality in power networks is an important task for providing an efficient
and safe energy supply. Ancillary services like harmonic mitigation and reactive power
compensation improve the overall power quality and they are in increasing demand
due to the challenges that accompany the integration of renewable energy sources into
the grid. This thesis presents solutions to enhance the novel linear state signal shap-
ing (LSSS) model predictive control (MPC) technique in such a way, that it could be
employed as an active power filter (APF). In section 6-1 the results of this thesis are
summarized, concluding with an outlook for future work in section 6-2.

6-1 Summary

The unconstrained LSSS MPC provides a new control scheme that differs from exist-
ing MPC implementations by incorporating a desired sinusoidal signal shape into the
optimization problem. This controller is able to find an optimal input, so that the states
of a plant adopt an undistorted sinusoidal shape, but it lacks the ability to maintain
a fixed state signal amplitude magnitude. This thesis shows that applying state con-
straints to the LSSS MPC not only allows for a stable amplitude, but also the ability
to set upper and lower state limits is given. For this, the optimization problem is set
up either in a condensed or a sparse optimization problem formulation, which allows
the problem to be solved by a numerical quadratic program (QP) solver. Compar-
isons show that the sparse formulation exhibits superior numerical properties over the
condensed problem formulation with faster computation times and the ability to use
the traditional receding horizon control (RHC) strategy instead of being restricted to
periodic RHC.
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The developed concepts for controlling the state signal amplitude are applied to com-
pensate currents drawn from nonlinear loads, which is the main task of an APF. Simu-
lation results of an electrical three phase grid connected to a nonlinear load show that
the constrained LSSS MPC is able to provide simultaneous harmonic compensation
and point of common coupling (PCC) voltage stabilization. In direct comparison to
a proven classical APF, the LSSS MPC achieves equally good harmonic compensation
results. In contrast to the classical concept, the constrained LSSS MPC also is able to
adjust to load changes.

6-2 Outlook

Constraining the states of a plant offers the possibility to set upper and lower state lim-
its, but it is not possible to find optimal inputs, that lead to arbitrarily high amplitudes
of the state signal. Only if the unconstrained solution offers optimal inputs to increase
the state signal amplitude magnitude, the states will possibly reach a sufficiently high
value, which then can be constrained to not increase further. This method relies on
heuristic tuning of the cost function’s weighting factors, which does not offer satisfy-
ing predictability of the state trajectory. Formulating the cost function in such a way,
that it includes information about the state signal root mean square (RMS) addresses
this issue, although this would lead to a biquadratic optimization problem with slower
projected solving time. Proving convexity of this optimization problem and exploring
possibilities to efficiently solve this problem could be steps into the direction of finding
a general method to limit the solution space of the LSSS MPC problem. With this,
only solutions with a defined amplitude magnitude could be found.
The analysis of Gaussian noise on the measured disturbances show that relying on
the assumption, that the disturbances of the last period is equal to the disturbance
of the current period, could amplify the noise. Developing a disturbance observer
could improve the performance of the LSSS MPC, if the intention is to implement this
controller in hardware.
The comparison of the constrained LSSS MPC APF to a classical instantaneous reac-
tive power (IRP) APF shows that the signal shaping controller achieves competitive
harmonic compensation results, but it lacks the ability to provide reactive power com-
pensation in it’s current state. Enhancing the model of the MPC to include the voltage
source converter (VSC), which is used to inject the compensation currents into the grid,
could allow to also control the direct current (DC) link capacitor voltage. With this it
should be possible to additionally provide reactive power compensation.



Appendix A

Simulink Block Diagrams

This appendix shows the top level block diagrams of implemented controllers in Simulink.
The complete models can be found on the CD accompanying this thesis.
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A-1 Constrained LSSS MPC Active Power Filter
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Glossary

List of Acronyms

AC alternating current

ADMM alternating direction method of multipliers

APF active power filter

DC direct current

IRP instantaneous reactive power

LSSS linear state signal shaping

LQR linear quadratic regulator

MPC model predictive control

ODE ordinary differential equation

PCC point of common coupling

PLL phase locked loop

PQ power quality

PV photovoltaic

PWM pulse width modulation

QP quadratic program
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RHC receding horizon control

RMS root mean square

SAPF shunt active power filter

SNR signal to noise ratio

SRF synchronous reference frame

THD total harmonic distortion

VSC voltage source converter
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