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Kurzzusammenfassung 

Die zunehmende Komplexität moderner Systeme erfordert den Einsatz neuer Entwick-
lungstechniken und Methoden. Die vorliegende Arbeit untersucht einen Modellie-
rungsprozess der Firma EADS Deutschland GmbH, mit dem Systeme bestehend aus 
Hardware und Software mittels der Modellierungssprachen UML 2.0 und SysML 1.0 
funktional analysiert und ausgelegt werden können. Basierend auf diesem Prozess 
werden neue Konzepte erarbeitet, die den Prozess optimieren und erweitern sollen. 
Hauptgegenstand dabei ist die Analyse der SysML Modellierungsmöglichkeiten, wel-
che im bestehenden Prozess noch nicht berücksichtigt wurden, als auch speziell das 
Erarbeiten von Konzepten, welche die Transition von den Systementwicklungs-
Aktivitäten zu den nachfolgenden Hardware- und Softwareentwicklungs-Aktivitäten 
verbessern sollen. 
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Abstract 

The growing complexity of modern systems requires the application of new develop-
ment techniques and methods. This thesis analyzes a modeling process of the company 
EADS Deuschland GmbH, which supports the functional analysis and design of sys-
tems consisting of hardware and software by means of the modeling languages UML 
2.0 and SysML 1.0. Based on this process, new concepts will be elaborated with the 
goal to optimize and enhance the process. The main subjects here are the analysis of 
SysML modeling capabilities, which were not yet considered in the modeling process 
as well as the elaboration of concepts that shall improve the transition from the sys-
tems to the hardware and software development activities. 
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1 Introduction 
The complexity of today's system is constantly growing. Beyond doubt, the main driv-
ers are innovation pressure and the ever growing technical advances, which build up 
each other in a cycle. A car for example could be seen as a predominantly mechanical 
system only thirty years ago. Today, a car is a highly complex electro-mechanical sys-
tem, consisting of a large number of subsystems and housing about 100 processors that 
all act together in technical combination. 

To handle this complexity, new approaches, methods and processes for the development 
of systems are required. One major point is the ability to describe component based sys-
tems with a common design language to facilitate the exchange of designs between the 
different development teams. This is especially important when teams from different 
engineering disciplines, such as mechanical, electric, software or even chemical engi-
neering are involved in the product development. Another key concept is the ability to 
simulate and verify system designs in the early development stages. Design faults on the 
overall system level in most cases have severe impacts on both project cost and sched-
ule when identified too late and may even lead to the complete failure of the project. 

The EADS department OPES4 within the business unit Defence Electronics develops 
complex integrated avionics systems, consisting of both hardware and software. For the 
reasons mentioned above, the department has developed a systems engineering process, 
which pursues a model based approach for the functional analysis and design of systems 
based on the Unified Modeling Language (UML) and the Systems Modeling Language 
(SysML). The UML/SysML is used together with the model-driven development 
(MDD) tool Telelogic Rhapsody, which allows the execution and thus verification of 
UML/SysML models based on the semantic UML/SysML metamodel. By following 
this approach, the department expects a significant improvement in the quality of cap-
tured requirements, system specifications and also the communication with the subse-
quent hardware and software development teams. This seams especially promising for 
the communication with software development teams, given that the UML has been the 
de-facto standard modeling language in the software engineering discipline for several 
years and has also been applied successfully to several projects within the software de-
partment in OPES4 in the past. 

However, the modeling approach is still in its infancy and certain aspects were not yet 
considered at the beginning of the bachelor thesis. One of it is the transition from sys-
tems engineering to the subsequent development of hardware and software. While the 
modeling approach was self-contained within the systems engineering activities, no 
detailed concepts existed to support a seamless development transition between the en-
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gineering phases and teams. This is one of the goals of this thesis. The thesis will ana-
lyze the current approach and develop possible concepts for the transition process. 

The current approach uses a mixed set of UML and SysML model elements. This is 
primarily because the used modeling tool Telelogic Rhapsody is intentionally a UML 
tool for software engineering and does only support fragments of the SysML language 
elements natively. However, especially when exchanging designs between different 
departments or even companies, it is necessary to develop the designs based on a con-
cise language definition. Therefore, the usage of SysML only as modeling language is 
to aspire. Telelogic claims that Rhapsody offers extensive customization capability, thus 
the second goal of this thesis is to analyze if the tool can be adapted to use the SysML 
language specification. Based on this analysis, another thing to consider is the exten-
sions that the SysML offers for the modeling of systems. The current modeling ap-
proach features only the SysML language elements that are also part of the UML. 
SysML concepts like the support for modeling item and data flows and the ability to 
model continuous systems were not yet considered. Thus, an additional goal of the the-
sis is to analyze the possible application of SysML enhancements to the current model-
ing approach. The benefits that the SysML enhancements promise for the modeling of 
systems will be analyzed and the current modeling approach will be adapted and ex-
tended if applicable. 

Chapter 2 will give an overview of the technical background in that the general devel-
opment process as well as the current modeling approach will be described. After that, a 
short introduction to the SysML is given in chapter 2.5. Chapter 3 will then analyze the 
current modeling approach and elaborate concepts that address the problems stated 
above. In chapter 4 it will then be described, how the elaborated concepts affect the cur-
rent modeling approach. Chapter 5 summarizes the thesis and provides an outlook over 
possible future consecutive topics. 
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2 Scope and Background 
The development of complex systems requires the usage of clearly defined development 
processes to structure the overall development activities and to maintain a certain qual-
ity. This is especially important when mission or safety critical systems, which avionics 
systems in most cases are, are to be developed. The development processes that have to 
be used are generally mandated by the customer. Development processes in general 
describe primarily what has to be done in terms of documents that have to be generated 
in certain development phases and reviews that have to be performed before the transi-
tion can be taken from one development phase into another. In addition, the processes 
also often give advice about methods and tools that can be used to aid the development 
activities. However, these methods and especially tools are often not suited to the exis-
tent contractor’s development environments or may just not consider state-of-the-art 
methodology, especially if the process description is several years old. Thus, when 
wanting to use new sophisticated methods and tools, such as UML/SysML and Rhap-
sody in the case of OPES4, an adapted development process has to be created that can 
be mapped to the general processes mandated by the customer. 

For the OPES4, the primary customers are the EADS division Airbus and the German 
federal office for procurement, the Bundesamt für Wehrtechnik und Beschaffung 
(BWB). Airbus mandates the company-specific RBE (Requirements Based Engineering) 
process for its contractors while the BWB demands the application of the German V-
Modell. However, for contracts with the BWB, the EADS Defence and Security Divi-
sion, to which the OPES4 belongs, has created a company-specific process model that is 
based on the V-Modell. This model is called VM-GBV (V-Modell Geschäftsbereich 
Verteidigung). Because these processes set the main context for the development activi-
ties in OPES4, it would generally make sense to describe both. A description of both 
processes however would go beyond the scope of this thesis, therefore only the VM-
GBV as an example development context will be further described in this document. 
This will be done in chapter 2.1.  

The VM-GBV is an overall development process that considers all different aspects and 
roles within a whole product development lifecycle. However, the modeling approach 
discussed in this thesis is primarily in the focus of the systems engineering portion of 
the overall process. Chapter 2.2 therefore points out the scope of systems engineering 
within the VM-GBV. 

The OPES4 has created a department specific process model for the systems engineer-
ing activities within it. This process defines the overall systems engineering activity 
workflow as well as the used methods and tools. This process also sets the scope of the 
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modeling approach with UML/SysML and Rhapsody. Therefore it is necessary to ex-
plain it in more detail, which will be done in chapter 2.3. The actual modeling approach 
will then be described in chapter 2.4. There the single modeling activities will be de-
scribed in detail. Finally, an overview of the SysML language will be given in chapter 
2.5.  

2.1 VM-GBV 

As already noted in the introduction to chapter 2, contractors of the BWB have to fol-
low the German V-Modell for the development of products. The V-Modell currently 
exists in three different versions [VM2007]:  

 V-Modell: This is the initial version of the development process. It was devel-
oped in 1986 for the German military and also was introduced to civil institu-
tions in 1993. 

 V-Modell 97: This is a revision of the original V-Modell, which among other 
things considers object-oriented approaches to software development. It was re-
leased in 1997. 

 V-Modell XT (XT = Extreme Tailoring): This is the most recent version from 
2005. It offers broad support to tailor the process to the individual needs of dif-
ferent projects and also provides process modules for the customer. The process 
is oriented more towards an agile and incremental approach. 

Because the V-Modells have a strong focus on software development, the EADS De-
fence and Security company division felt the need to define an integrated development 
process that unifies the development of software, hardware and logistic aspects of the 
system into one single process. The result was a company-specific process model, 
called VM-GBV (V-Modell Geschäftsbereich Verteidigung). This process is based on 
the original V-Modell 97 and thus maintains compliance for the development of mili-
tary products for the BWB. Since completion and introduction, the VM-GBV is the 
standard process for product development in the whole Defence and Security division 
for contracts with the BWB. 

This chapter will give an overview of the VM-GBV and describe the various aspects of 
it that are relevant for the scope of this thesis. However, because of the extensive nature 
of the process, only the very basic concepts of the process can be shown. The informa-
tion about the VM-GBV is based on the documents [VMG2004].  
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The process is structured into several phases, as shown in Figure 2-1. 

 

Figure 2-1 The V-Model GBV [VMG2004]

The VM-GBV can be divided into four sub models, System Development (SD), Quality 
Assurance (QA), Project Management (PM) and Configuration Management (CM). 
However, for the scope of systems engineering, only the system development sub-
model is of primarily interest and thus described in more detail.  

The system development sub-model again comprises four sub-models, the sub-model 
System Development (SD), Software Development (SD-SW), Hardware Development 
(SD-HW) and Integrated Logistic Support (SD-ILS). The sub-models are defined by 
several development phases. The VM-GBV specifies the generation of certain output 
documents in each development phase; however, these are not further described in this 
thesis because they are not relevant for the overall context. 

It has to be remarked that although in Figure 2-1 it seems that the phases follow a fixed 
timely sequence, the VM-GBV doesn't mandate it. The sequence can be rather consid-
ered as a rough logical order. 
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A brief description of the sub-models and its various phases various phases is given 
below. 

System Development (SD) 

The sub-model SD describes the activities which are necessary for the system develop-
ment at the levels of the overall system and the segments. 

 Analysis of system requirements (SD-1) 

The requirements of the system to be constructed and of its environment are cap-
tured. Possible threats and risks are analyzed and a security plan is built. A tech-
nical model for functions, data and objects is elaborated. The requirements of the 
logistic support system are described. 

 System design (SD-2) 

The system is structured into segments, SW units and HW units. The technical 
requirements of the overall system, its segments, its SW units, its HW units and 
on the logistic support system and its logistic elements are described. All exter-
nal and internal interfaces are described and the draft of a logistics plan is cre-
ated. 

 System integration (SD-8) 

The various SW units and HW units are integrated into segments. The segments 
and the logistic support system are integrated into the overall system. 

 Transition to utilization (SD-9) 

The system is put into operation at the desired location. 

Software Development (SD-SW) 

The sub-model SD-SW describes the activities which are necessary for the development 
of SW portions of the overall system. 

 Analysis of SW requirements (SD-3-SW) 

The requirements on a SW unit and environmental constraints, defined at SD-2 
or at the system architecture, are described. 

 Preliminary SW design (SD-4-SW) 

The SW units are structured into SW components, modules and databases. The 
interfaces and the interaction between components, modules and (if applicable) 
databases are specified. 
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 Detailed SW design (SD-5-SW) 

The components, modules and databases with regards to the software-technical 
realization of their functions, of the data management, of the error handling and 
of the programming rules are described. 

 SW implementation (SD-6-SW) 

The objectives for programming in statements of the (given) programming lan-
guage are realized. The obtained code is inspected informally and databases are 
realized, if applicable. 

 SW integration (SD-7-SW) 

The modules are integrated into components and the components into SW units. 

Hardware Development (SD-HW) 

The sub-model SD-HW describes the activities which are necessary for the develop-
ment of HW portions of the overall system. 

 Analysis of HW requirements (SD-3-HW ) 

The requirements of a HW unit and its environment, defined at SD-2 or at the 
system architecture are described. In addition the requirements of the compo-
nents with regards to qualifying, environmental conditions, authorized manufac-
turers and families of components are described. 

 Preliminary HW design (SD-4-HW) 

The HW units are structured into modules and components. The interfaces and 
the interaction between modules and components as well as the component-
related interfaces are specified. 

 Detailed HW design (SD-5-HW) 

The HW is technically developed and technical documents are elaborated. 

 HW realization (SD-6-HW) 

Resulting from SD-5-HW, material or samples of equipment are procured or 
manufactured. 

 HW integration (SD-7-HW ) 

Modules and components are integrated into HW substructures and HW sub-
structures into HW units. 
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Integrated Logistic Support (SD-ILS) 

The sub-model SD-ILS describes the activities to ensure the fulfillment of the logistic 
requirements during system planning and system development, as well as identification 
and preparation of the logistic resources for use by the product. The logistic resources 
for keeping a system running during its usage are combined in the logistic support sys-
tem. It includes e.g. spare parts, measuring and test equipment, consumption material, 
instruction aids, user documentation, technical and logistic data, instruction and meas-
ures for the infrastructure and on the organizational aspects. 

Note: The ILS activities, which are relevant for the overall system, are described in the 
main activities SD-1, SD-2, SD-8, and SD-9. 

 Analysis of logistic requirements (SD-3-ILS) 

The requirements of the logistic support system are stated more precisely. The 
ILS plan is continued. A first life cycle cost (LCC) analysis is performed. 

 Logistic analyses (SD-4-ILS) 

The logistic product structure is defined. A logistic data base is implemented.  
The ILS plan and the LCC analysis are continued and refined. 

 Detailed logistic design (SD-5-ILS) 

The logistic product structure definition is finalized and the LCC analysis is 
completed. 

 Realization of the logistic elements (SD-6-ILS) 

Instruction material and the user documents are created. Spare parts are manu-
factured or procured. 

 Integration of the logistic elements (SD-7-ILS) 

The logistic elements are integrated into the logistic support system. The avail-
ability of the logistic support system is proven by logistic inspections. 

2.2 Scope of Systems Engineering within the VM-GBV 

The scope of systems engineering within the VM-GBV is defined by the phases SD-1, 
SD-2, SD-8 and SD-9. On the left-side of the V-Modell, systems engineering captures 
user requirements in SD-1 and defines technical requirements for logistics, HW and SW 
as output of SD-2. On the right-side, systems engineering is responsible for the integra-
tion (SD-8) and the transition to utilization (SD-9) of the system.  
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However, for this thesis, only a portion of the overall systems engineering scope is of 
relevance. The model based approach is part of the analysis and design phases of sys-
tems engineering and thus only the phases SD-1 and SD-2 will be described. In addi-
tion, logistic aspects of systems are also out of the scope of the modeling approach and 
will therefore not be covered; only functional aspects that can be developed in hardware 
or software are in the scope of the modeling approach. 

2.3 Systems Engineering in the OPES4 Department 

As mentioned in chapter 2, development processes generally describe the general proc-
ess activities, the document that have to be generated and the reviews that have to be 
performed before transitions from one development into another can be taken. They also 
indeed give advice about method and tools but these are often not suited to the special 
contractors environments and also often don’t consider modern methodologies. This is 
also the case with the Airbus RBE and VM-GBV process models [VMG2004]. 

To address this issue, the OPES4 has developed a department-specific systems engi-
neering process. This process can be mapped to both the VM-GBV as well as the Air-
bus RBE but defines a detailed workflow as well as the tool-context that is tailored to 
the department needs. This chapter will give an overview of the general process activi-
ties and workflow, and will describe the tools that are used to aid the process. 

2.3.1 Tool-based Systems Engineering in OPES4 

The OPES4 makes use of modern tools to aid requirements engineering and to model 
aspects of systems. The modeling tools used in systems engineering can be roughly 
categorized into two departments, functional and non-functional modeling tools. To 
gain a better understanding of these categories, a brief description is given below. 

Functional versus Non-Functional 

Aspects of systems are driven by requirements on the system. Requirements can be 
classified into two categories, functional and non-functional.  

Functional requirements are requirements that define the internal working and behavior 
of a system such as requirements on system services or the reaction of the system to 
inputs. 

Non-functional requirements are requirements that define constraints on the system in 
various aspects as well as requirements on quality or performance.  
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A classification system that was devised by Robert Grady from Hewlett-Packard 
[Gra1992] goes by the acronym FURPS+ and divides requirements into the following: 

 Functionality 

 Usability 

  Reliability 

 Performance 

 Supportability 

The "+" in FURPS+ comprises requirements such as: 

 Design Requirements 

 Implementation Requirements 

 Interface Requirements 

 Physical Requirements 

For embedded systems in the avionics and space domain, also the classification of non-
functional requirements into RAMS requirements is prominent. The acronym RAMS 
stands for: 

 Reliability 

 Availability 

 Maintainability 

 Security 

For the successful creation of systems, it is essential that all functional and non-
functional requirements are considered equally. The current supporting toolset of the 
OPES4 systems engineering development activities are described below. 

Requirements Engineering 

For the management of requirements, the Tool Telelogic DOORS [Tel2007] is used. 
DOORS is a requirements management tool that allows storing requirements in textual 
and also graphical form. Requirements are held in repositories, called modules in 
DOORS. The requirements can be linked to other requirements, design artifacts – such 
as design models – and also test cases and test setups. This allows the complete trace-
ability of requirements, e.g. from the high-level to the low-level requirement, from the 
requirement to the design, from the requirement to the test case etc. In addition, re-
quirements can be attributized, for example to specify requirement priorities or to cate-
gorize requirements in functional and non-functional requirements. DOORS provides a 
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scripting mechanism that for example allows the automated generation of documents 
from the repositories, consistency checks and the generation of metrics.  

Functional Systems Engineering 

Currently, two tools are used to aid the functional systems engineering activities, Math-
Works Matlab and Simulink and Telelogic Rhapsody. 

MathWorks Matlab [Mat2007] allows complex numerical computations and the design 
and analysis of algorithms based on a proprietary programming language. Typical fields 
of application in the systems engineering domain are the analysis of algorithms for sig-
nal and image processing or statistical computations. Basically any kind of mathemati-
cal tasks can be accomplished with this tool.  

MathWorks Simulink [Mat2007] allows the modeling and simulation of dynamic sys-
tems and functions, such as control loops for actuators or dynamic image processing 
environments. The design language is graphical and many model libraries are available 
for different fields of engineering such as aerospace, mechanics, hydraulics or power 
systems. The designs can be simulated within the tool and computer code in the lan-
guages C and C++ can be generated from it.  

Telelogic Rhapsody [Tel2007] is a UML 2.1/SysML 1.0 modeling tool. It is primarily a 
software engineering tool with the focus on the development of real-time software for 
embedded systems. It features the automatic generation of code from the model and full 
roundtrip-functionality. A feature which lets Rhapsody stand-out from other UML mod-
eling tools is that it provides an own production-quality execution framework which 
supports many different operating systems and target platforms. The framework is oper-
ating system and target platform independent, thus the same operational code can be run 
on both host and target platforms. Code is automatically generated from UML state ma-
chines and can be directly run on the application framework. This feature also allows 
the simulation of the UML model: Simulation code can be generated that allows stimu-
lating the model and viewing the internal behavior in form of animated sequence dia-
grams and state charts. This feature is commonly called model execution. Rhapsody 
supports the programming languages C, C++, Java and ADA.  

As one of the leading UML tool vendors and also supporters of the SysML language 
development, Telelogic are also marketing Rhapsody as the tool-of-choice for systems 
engineering applications. As a fact, the built-in simulation framework is a key feature 
for the acceptance of Rhapsody for systems engineers: The state chart syntax is clearly 
defined by a so-called action language. Systems engineers – who often come from 
mixed engineering fields and are not software experts – can use the tool to model sys-
tems without having a reasonable proficiency in a computer-language. 
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Another feature of Rhapsody is the support of exporting models into a DOORS reposi-
tory. With this feature, textual requirements in DOORS can be linked to UML design 
artifacts. This feature significantly enhances the support of requirements traceability. 

Rhapsody provides various add-ons, for example for automatic test generation, the cus-
tomization of code generation and the automated generation of documents from the 
model. In addition, Rhapsody features a broad interface for the extension of the tool 
functionality with custom scripts or applications. Last but not least, various configura-
tion management tools are supported to allow the collaborative work on one model by 
different developers. This includes the visual state-awareness (checked out/not checked 
out etc.) of model elements as well as the ability to graphically diff/merge UML dia-
grams. 

Telelogic Rhapsody builds the core of the current UML-based functional systems engi-
neering approach in OPES4 and therefore is the basis of the further analyses in this the-
sis. 

Non-Functional Systems Engineering 

To the current point, the OPES4 is still in the process of evaluating tools that support 
the modeling and analysis of non-functional aspects of systems. However, the depart-
ment has not decided on specific tools yet. For example, the department is in contact 
with a vendor who offers a tool that allows the modeling of performance aspects of sys-
tems. The tool offers the possibility to import system architectures from different 
sources such as UML models, Matlab/Simulink models or computer code and perform a 
performance analysis on virtual hardware platforms that can be chosen from a model 
database that comprises a lot of common parts such as CPUs, RAM and bus systems.  

2.3.2 The OPES4 Systems Engineering Process 

The information about the OPES4 systems engineering process that is described in this 
chapter is based on [OP12007]. 

Figure 2-2 shows the OPES4 systems engineering development process as process sub-
model. The left side of the V shows the various process activities and the mapping of 
them on the phases SD-1 and SD-2 of the VM-GBV. The phases are described below. 
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Figure 2-2 OPES4 Systems Engineering Sub-Model [OP12007]
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Requirements Analysis (SD-1) 

In the Requirements Analysis phase, the user requirements are captured and technical 
system requirements are created. The user requirements are elaborated by means of a 
Concept Of Operations (CONOPS). The concept of operations contains all aspects of 
the system that are relevant to the customer and describes in particular  

 what the system shall do in its operational environment 

 who or what will use the system 

 how the system will be used from users point of view 

 how well the system performs 

 how the system will be maintained. 

The concept of operations may be refined with the help of different tools, such as 
UML/SysML models, Matlab/Simulink models, or the development of demonstrators. 
Demonstrators are prototypes of the system to develop that usually feature most of the 
system functionality but don’t realize all non-functional aspects of the system. They are 
used to analyze the technical realizability of the system and to elaborate the technical 
requirements. 

When the CONOPS is agreed on with the customer, the user requirements are extracted, 
validated and approved by the customer. Because the terms verification and validation 
are used several times within this thesis, the difference between them has to be clarified 
in short. It can be distinguished between two different types of validation and verifica-
tion: 

 Requirements Validation answers the question: 

Are the product requirements correct and complete at each level of abstraction? 

 Design Verification answers the question: 

Meets the product design in each development phase the requirements on which 
it is based? 

 Product Verification answers the question: 

Meets the product at each integration stage the according requirements? 

 Product Validation answers the question: 

Meets the final product the user needs? 

Within the process activities in the scope of this thesis, validation always refers to re-
quirements validation and verification to design verification.  
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The requirements are managed and structured in a User Requirements Repository with 
help of the tool Telelogic DOORS. Finally, the user requirements are handed over to the 
System Design (SD-2) phase of the process. 

System Design (SD-2) 

The System Design phase takes the user requirements as input and generates technical 
requirements for the subsequent Hardware and Software development activities.  

The first step of the design phase is to agree on the user requirements that were captured 
in the requirements analysis phase. In this Agreement Process, the user requirements are 
checked in respect to the general (= legal, cost and time) and technical realizability by 
the design team. The agreement process is generally only needed, if the requirement 
analysis and systems design activities are performed by different teams. After that, the 
requirements that are relevant for the system design are captured from the input re-
quirements and stored in another DOORS repository, the Captured Technical Require-
ments module. Based on the captured requirements, the Creative Design Process be-
gins. The creative design process is an incremental, iterative engineering process, where 
functional and non-functional aspects of the system are analyzed and realized in form of 
different analysis and design models. An analysis model captures functional and non-
functional aspects of a system from the black-box perspective while a design model 
considers the possible decompositions of the system into different segments. These 
analysis and design models may consist of algorithmic Matlab/Simulink models, 
UML/SysML models, Prototypes, Mock Ups and basically any kind of tools that are 
appropriate to capture and realize all technical aspects of the system. The various design 
activities performed in the creative design process are bilateral, that is, outputs of every 
containing activity may be input of the other containing activities. Output of the process 
is a system architecture which satisfies all functional and non-functional requirements 
on the system. The system architecture as well as the resulting refined functional and 
non-functional system requirements are stored in the Design Data DOORS repository.  

When the design is successfully verified, technical requirements on the architectural 
segments are extracted from the design data and stored in the Next Level Technical Re-
quirements repository. Based on the requirements on the overall system and its different 
units, test cases and setups are defined and stored in a separate System Test Repository, 
which is also a DOORS module.  

This process is performed iteratively in a loop as often, as the system segments can be 
decomposed into concrete hardware and software units. When the hardware and soft-
ware units are identified, the requirements on the units are finally handed over to the 
subsequent hardware and software development teams. 
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2.4 Functional Modeling Process 

For the modeling approach with UML/SysML and Rhapsody, the OPES4 has developed 
a functional modeling process document [OP22007] that defines how the modeling lan-
guage can be applied to various analysis and design activities. This modeling process 
document is the basis of the process analysis in this thesis. The process description in 
this chapter is based on this document.  

An overview of the general phases of the modeling process is given in chapter 2.4.1. 
The detailed modeling activities are then described in chapter 2.4.2. 

2.4.1 General Process Phases 

The process is divided into two main activities, as shown in Figure 2-3.  

Analyze System Functions

Refine System Black Box Model

  

Figure 2-3 The two phases of functional systems engineering with UML/SysML 

Analyze System Functions 

In the first activity Analyze System Functions, the system functions are analyzed by 
means of a Rhapsody UML/SysML model that describes the system from the black-box 
perspective. The black box model captures and describes the system context, functions 
and behavior in form of UML/SysML model elements and diagrams. As the name sug-
gests, the black box model doesn't reveal anything about the internal structure of the 
system, the system is indeed seen as a black box that provides overall system functions 
and behavior. Input for the analysis of the system functions are primarily the user re-
quirements. However, there are additional inputs that have to be considered such as de-
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velopment and document standards, additional support services and the modeling proc-
ess itself (Figure 2-4).  

When the whole system functionality is captured in the black box model, the model is 
verified against the user requirements by means of a model execution. After successful 
verification, the model is then handed over to be refined in the Refine System Black Box 
Model process activity. 

Analyse System 
Functions

FunctionalSystemsEngineeringHandbook
«WordDocument»

CustomerRequirements
«DOORSmodule»

DevelopmentStandards

DocumentStandards
«ReporterPlusTemplate»

ProcessControl
«SupportService»

BBmodel
«RhapsodyModel»

 

Figure 2-4 The "Analyze System Functions" Process Activity 

Refine System Black Box Model 

In this activity, the black box system model is taken and decomposed into system seg-
ments and HW/SW units. The system architecture is created. The creation of the archi-
tecture is driven by both functional and non-functional aspects of the system. For exam-
ple, special RAMS requirements on the system usually have also a huge impact on the 
functional architecture of a system. The non-functional requirements and the functional 
requirements are taken from the TechnicalSystemReq DOORS module. The functional 
requirements in the TechnicalSystemReq consist of requirements that have not been 
modeled as an UML/SysML model before, such as requirements that were captured in 
Matlab/Simulink models. In addition, as with the preceding process activity, develop-
ment and document standards as well as supply services and the modeling process are 
also considered (Figure 2-5). 
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Refine Black Box Model

FunctionalSystemsEngineeringHandbook
«WordDocument»

DevelopmentStandards

DocumentStandards
«ReporterPlusTemplate»

ProcessControl
«SupportService»

TechnicalSystemReq
«DOORSmodule»

BBmodel
«RhapsodyModel»

SegmentLevelWBmodel
«RhapsodyModel»

SegmentBBmodelxx
«RhapsodyModel»
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«RhapsodyModel»
SegmentBBmodels

«RhapsodyModel»

 

Figure 2-5 The "Refine System Black Box Model" Activity 

The system architecture is created in a top-down fashion. The Black-Box model is de-
composed into segments in a white box model. The white box model describes the sys-
tem segments, the interaction among them and the allocation of functions and behavior 
to it. After the white box model is verified against the functional requirements that were 
defined in the preceding black box model and the TechnicalSystemReq requirements 
repository, a new model is created for each segment. The new segment model describes 
the segment as a black box with functions, behavior and interfaces to other internal seg-
ments or external systems. A segment may consist of both hardware and software and 
even may be further decomposed in additional segments that also consist of both hard-
ware and software. For each segment identified, a new segment-level black box model 
is created and the Refine System Black Box Model activity reentered. The decomposition 
is performed until concrete HW/SW units can be identified. Handoff models are then 
generated for each HW/SW unit, describing the unit as a black box. 

2.4.2 Modeling Activities 

The OPES4 functional modeling process defines how the UML/SysML can be applied 
to the two engineering activities described in chapter 2.4.1.  

2.4.2.1 Analyze System Functions 

Figure 2-6 shows an overview of the different modeling activities of the system func-
tional analysis. The analysis starts with the creation of a new Rhapsody project for the 
black box system model. This Rhapsody model is the container of all artifacts created 
within this process activity. 
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• Uc_BB-Scenarios 
(Sequence Diagrams)

• Uc_BB-Activity Diagram

 

Figure 2-6 Analyze System Functions: Modeling Activities 

Define Use Case Diagram 

The system analysis starts with the definition of the system boundary and the system 
main tasks by means of a use case diagram. In it, the services of the system are brought 
into the model in form of use cases. External persons and systems that interact with the 
system under design are modeled as actors.  
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SecuritySystem

ConfigureSystem

IngressSystem

EgressSystem

ActorPkg::UserActorPkg::User

ActorPkg::AdminActorPkg::Admin ActorPkg::CameraActorPkg::Camera

ActorPkg::DoorActorPkg::Door
 

Figure 2-7 Example of a Use Case Diagram 

Create System Model from Use Case Diagram 

Based on the use case diagram, the system model is created by means of a wizard in 
Rhapsody. The wizard automatically restructures the model, creates a SysML block 
representing the system under design and a separate model package per use case. In the 
use case model packages, the individual use cases will then be refined by means of se-
quence and activity diagrams in the next step. 

Refine One Use Case 

The process is use-case driven and so the system analysis is performed incrementally 
per use case. For the refinement of a single use case, the process defines two alternative 
ways, as shown in Figure 2-8. The first alternative is to first define use case scenarios 
by means of sequence diagrams and after that define the functional flow with an activity 
diagram. The second alternative is opposite way around; first define the functional flow 
and then the scenarios. 
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Select Use Case 
to be refined

Define UseCase Scenarios
(BB-Sequence Diagrams)

[Alternative1]

Define Functional Flow
(BB-Activity Diagram)

Define UseCase Scenarios
(BB-Sequence Diagrams)

Define Functional Flow
(BB-Activity Diagram)

[Alternative2]

 

Figure 2-8 Two alternative ways to refine a use case 

A use case scenario shows a specific operational flow through the system with the focus 
on interaction between the system and its actors on a sequence diagram. Usually several 
scenarios are required to describe a use case sufficiently. Scenarios can be categorized 
in sunny day scenarios and rainy day scenarios. A sunny day scenario shows the opera-
tional flow under normal systems condition while a rainy day scenario describes the 
system reaction in case of exceptions.  

The communication between the system and the actors is described by means of asyn-
chronous messages. These will later be realized as events in Rhapsody. System func-
tions are shown as self-messages in the lifeline of the system block. The self-messages 
will be realized as operations of the system block in Rhapsody. Within the process, the 
system functions are referred to as Operational Contracts (OpCons). A proprietary con-
cept of Rhapsody sequence diagrams are the so-called Condition Marks. Condition 
marks are hexagonal description fields on the system block life line that can be used to 
show system states and property values. These can be seen as both pre and post-
conditions within a scenario. 

Figure 2-9 shows an example scenario. The scenario depicts the common operational 
sequence to create a user account in the context of a security system. The communica-
tion is shown between the system administrator, represented as the Admin block in the 
diagram and the system under design. The condition mark ReadyForConfiguration 
shows the state that the system must be in as precondition for the sequence. The Admin 
then sends a sequence of request messages to the system block that is followed by a 
functional reaction (OpCon) in the system.  
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ReadyForConfiguration
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UserInformationEntered

FingerprintScanStored
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EnableUserAccount()
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Figure 2-9 Example of a Use Case Scenario 

A use case activity diagram describes the complete functional flow through the use 
case, including all possible functional branches, parallelism and exception handling. 
The process specifies that every action in an activity diagram should reference an opera-
tional contract in a sequence diagram. Figure 2-10 shows an example use case activity 
diagram for the use case ConfigureSystem in a security system. In this diagram, the pos-
sible flows through the use case are shown as branches: In the within the use case, a 
user account can be either created or modified. When the functional flow reaches the 
termination connector, the use case is ended. The activity diagram corresponds to the 
operational sequence shown in Figure 2-9. 
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CreateUserAccount

EnterUserInformation

StoreUsersFingerprintScan

ProgramNewSecurityCard

EnableUserAccount DisableUserAccount DeleteUserAccount

ModifyUserAccount

 

Figure 2-10 Example of a Use Case Activity Diagram 

Define Structure Diagram 

When the use-case is described by means of scenarios and an activity diagram, the sys-
tem structure has to be defined in a UML composite structure diagram. The first step is 
to implement the operational contracts and messages that were defined in the use case 
scenarios as operations and events in the Rhapsody model. This is performed by means 
a Rhapsody feature that automatically creates operations, events and event receptions 
from sequence diagrams. After that, ports are created on the system block and the actors 
as well as interfaces that define the message exchanges. This is done by a Rhapsody 
tool wizard automatically. When the ports are created, the system block and the actors 
are brought into a composite structure diagram and the ports are linked. Figure 2-11 
shows an example composite structure diagram for the security system. The communi-
cation between the Admin and the system block is realized with the ports pAdmin and 
pSuD. The interfaces that specify the communication are not shown on the diagram but 
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are present in the model and can be viewed on in the properties dialog of the ports. The 
body of the system block element in the diagram shows the OpCons of the system. 

SuD
1 «System»

Modif yUserAccount():v oid
EnterUserInf ormation():void
StoreUsersFingerprintScan():void
EnableUserAccount():void
ProgramNewSecurityCard():void
DisableUserAccount():v oid
reqModif yUserInf ormation():void
reqEnterUserInf ormation():void
reqStoreUsersFingerprintScan():void
reqEnableUserAccount():void
reqProgramNewSecurityCard():void
reqDisableUserAccount():v oid
reqDeleteUserAccount():void
DeleteUserAccount():void
reqCreateUserAccount():void
CreateUserAccount():void

pAdmin

itsAdmin:Admin
1 «Actor»

CreateUserAccount():void
DeleteUserAccount():void
DisableUserAccount():void
EnableUserAccount():void
EnterUserInf ormation():void
Modif yUserInformation():v ...
ProgramNewSecurityCard(...
StoreUsersFingerprintScan...

pSuD

 

Figure 2-11 Example of a Structure Diagram 

Define State Based Behavior of Actors and System Block 

When the system structure has been created for the chosen use-case, the state based be-
havior of the system block and the actors that are involved in the use case has to be de-
fined. This is done by means of a state chart for the system block and each actor. For the 
actors, only a simple state chart with one entry state has to be created. This is required 
for the simulation engine to function properly. 

The state chart of the system block specifies the internal states, the possible transitions 
between them, the reaction to inputs and the output to produce. The state chart realizes 
all scenarios that were captured during the use case refinement and with them the com-
plete functional flow into one overall system state based behavior. The state machine is 
the formal behavioral specification of the system and is the basis for the verification of 
the model. Figure 2-12 shows the system state machine that implements the use case 
ConfigureSystem for the security system. The condition marks of the sequence diagram 
in Figure 2-9 are used as system states. The reaction to external messages and the re-
sponse by means of OpCons are realizes with the transition between the states. 
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Figure 2-12 Example of a State Chart 

Verify UC Model through Execution 

When the state based behavior of the system block and the actors have been defined, the 
model has to be verified against the use case scenarios. An executable model is gener-
ated in Rhapsody and the model is simulated. In the simulation, the system block is 
stimulated with messages from the external actors and the executed functional flow of 
the system block is recorded in a sequence diagram. The recorded sequence diagram is 
then compared with the specified scenarios. If the functional flow of the recorded se-
quence diagram matches the scenarios, the verification was successful. 

Extend Structure Diagram / Extend State Based Behavior 

State charts and structure diagrams specify the overall system structure and behavior 
and unify the specifications of all system use cases. Thus, these two diagrams have to be 
updated incrementally for each use case that is refined and no new diagrams have to be 
generated. 
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2.4.2.2 Refine BB Model 

When the functional system aspects have been captured in the system black box model, 
the next step is to refine the model and create the system architecture by means of a 
system white box model. Figure 2-13 shows the activity flow for the system refinement. 

Define System Structure

Allocate OpCons to 
Segments

Define Segment Ports & 
Interfaces

Define Segment State-Based 
Behavior

Verify System Architectural 
Model through model 
execution

System Architecture Model (Structure 
Diagram)

• Uc_WB-Activity Diagrams
• Uc_OpCon Allocation Tables
• WB Uc Scenarios
• WB OpCon consistency checked

Populated System Architecture Model

Segment State Charts[else][else]

[Segments are HW/SW units][Segments are HW/SW units]

 

Figure 2-13 Refine Black Box Model: Modeling Activities 

The refinement of the black box model is performed iteratively until concrete HW/SW 
units can be identified. That means, if the resulting architecture of the first black box 
refinement cannot be directly handed over to HW/SW engineering, the architecture has 
to be further decomposed in another iteration of the Refine Black Box Model activity per 
system segment. If the segments are refined by other development teams, a black box 
model describing the segment has to be created after the last gate review of the activity. 
This model is then handed over to the segment development team. The same goes for 
concrete HW/SW units: For each unit, a separate model that describes the unit as black 
box has to be created and handed over to the development team.  
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Define System Structure 

The first step in refining the black box model is to define the system structure. The sys-
tem is decomposed into segments, which together build the system architecture. The 
decomposition is a collaborative process, driven by the domain-knowledge of the vari-
ous engineering disciplines involved in the project. An architecture is created that satis-
fies both functional and non-functional requirements. The different segments are 
brought as blocks into the model, as shown in the structure diagram in Figure 2-14. The 
system under design is decomposed into the three segments ConfigurationInterface, 
UserInterface and DevideControl. 
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DeviceControl
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UserInterface
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ConfigurationInterface
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pSuD

itsUser
1 «Actor»

IngressAccess
PerformFingerPrint
EgressAccess

pSuD

itsCamera
1 «Actor»

reqSnapshot

pSuD

itsDoor
1 «Actor»

reqOpen
reqClose

pSuD

 

Figure 2-14 Example of a Decomposition Structure 

Allocate OpCons to Segments 

When the system structure is built, the operational contracts are allocated to the identi-
fied segments. This has to be done in both activity and sequence diagrams per system 
use case. For activity diagrams, the black box activity diagram is partitioned into swim 
lanes, each of them representing the allocation of functions to segments. The actions of 
the black box diagram are then placed on the swim lane of the segment that shall realize 
the function (Figure 2-15). In the diagram, the allocation of operational contracts of the 
ControlDevice to its two segments DMGstimulator and ViewGenerator is shown. It can 
be seen that the major functionality is allocated to the DMGstimulator. The SetCurrent-
FlightData OpCon is needed in both segments so it is duplicated. 
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Figure 2-15 Example of OpCon Allocation in an Activity Diagram 

The allocation in sequence diagrams is performed by adding new lifelines that represent 
the segments into the black box diagrams and then placing the messages of the system 
block to the lifelines of the appropriate segments. For communication between the seg-
ments, new messages have to be created. Figure 2-16 shows the allocation of OpCons to 
segments. The example represents the allocation that is shown in the activity diagram in 
Figure 2-15. 
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Figure 2-16 Example of OpCon Allocation in a Sequence Diagram 
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Define Segment Ports & Interfaces 

When the OpCons have been allocated to the segments and new messages between the 
segments are created, the interfaces and ports are created by means of a Rhapsody wiz-
ard. The ports of the surrounding black box system block are then switched from "be-
havior" to "delegation", which means that messages that arrive at the system port from 
the environment are delegated to the internal structure and vice versa. Finally, the ports 
between the system and the segments as well as between the segments themselves are 
linked. Figure 2-17 shows an example of a complete system architecture with linked 
ports representing the ControlDevice segment that was described before. 
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Figure 2-17 Example of a System Architecture in a Structure Diagram 

Define Segment State-Based Behavior 

The next step is to define the state-based behavior for each segment identified. The be-
havior is modeled on individual state charts per segment. As with the black box state 
charts, the state charts of the segments are modeled based on the use-case scenarios and 
activity diagrams: The segment state charts must implement the behavior that was 
specified in the use-case sequence diagrams. As a consequence, the sum of all segment 
state machines has to be consistent with the black box system state-behavior. Figure 
2-18 shows an example of two segment-state charts that are consistent with the system 
state-machine specification. 
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Figure 2-18 Example of a Segment State-based Behavior 
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Verify System Architectural Model through model execution 

Finally, the system architecture has to be verified against the system black box specifi-
cation. This is done by executing the model. During the model execution, the white box 
segments are stimulated and white box sequence diagrams are recorded. These are then 
compared to the black-box sequence diagrams. If the specified black box sequences 
match the white box sequence specifications, the verification was successful. 

2.5 Systems Modeling Language (SysML) 

This chapter will give a brief introduction to the Systems Modeling Language. Aspects 
of the language that are relevant for this thesis will be described in detail in the individ-
ual sections of chapter 3.The information and diagrams are based on the official website 
[OMG2007]. 

The Systems Modeling Language (SysML) is a standardized modeling language based 
on UML for the modeling of systems. The development was initiated in 2001 by the 
OMG (Object Management Group) together with the INCOSE (International Council 
on Systems Engineering). The goal was to create a common language that allows the 
analysis, design and evaluation of systems. In July 2006, version 1.0 was presented as 
"Final Adopted Specification", it is expected to be finalized in the mid of 2007. 

As a traditional software modeling language, the UML has its strengths rather in the 
design of object-oriented software systems which stands in contrast to the primarily 
function-driven systems engineering approach. The language is very complex and many 
elements that the UML offers are not needed for systems design. On the other hand, the 
UML lacks in some departments that are important for complete description of systems. 
Last but not least, the nomenclature is tailored to that of the software engineering disci-
pline. Systems engineers however don't think in "classes and objects".  

To address this issue, the Object Management Group (OMG) has developed the Systems 
Modeling Language (SysML). The language is based on the UML but simplifies it in 
that only the elements that are suitable for the modeling of systems are included but on 
the other hand enhances it with new design elements to allow a more complete system 
description. In addition, the nomenclature is adapted to the one that is common in the 
systems engineering discipline.  
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Overview 

 

Figure 2-19 Relationship between UML and SysML 

 

 

Figure 2-20 SysML Diagram Types 

The SysML is a subset of UML 2.0 with extensions to satisfy the needs for the model-
ing of systems (Figure 2-19). Figure 2-20 shows the SysML diagram types. As exten-
sion to UML 2.0, SysML features two new diagram types, the Requirement Diagram 
and the Parametric Diagram.  
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As the name suggests, the requirement diagram enables the modeling of textual re-
quirements and to show hierarchies and relations among them. A requirement can be 
related to a model element that satisfies or verifies a requirement. 

Parametric Diagrams show constraints on system property values such as performance, 
reliability and mass properties and can be used to model parametric equations. 

The basic element of SysML is a block. A block can basically represent any system 
element, hardware, software, personal, items or data. System structure can be shown on 
two diagrams, the Block Definition Diagram or the Internal Block Diagram. The block 
definition diagram describes the system block relations and hierarchies. The internal 
diagram shows the internal structure of a system by means of parts, ports and connec-
tors. When compared to UML 2.0, a block can be seen as the SysML representation of a 
class, the block definition diagram corresponds to the UML class diagram and the inter-
nal block diagram to the UML composite structure diagram. 

The UML 2.0 activity diagrams are enhanced in SysML in that it is now possible to 
show continuous flows, streaming activities and rates of flow. Control can be modeled 
as data, which allows activities not only to enable but also to disable other activities. 

The other behavioral diagrams, the sequence diagram, the state machine diagram and 
the use case diagram, are taken from the UML without modifications. 
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3 Analysis and Concepts 

3.1 Problem Definition and Approach 

Problem Definition 

While the OPES4 functional modeling process is basically capable to describe system 
functionality, behavior and structure, it also leaves some things to desire.  

First of all, it uses a mixed set of SysML and UML model elements and is thus not fully 
compliant to the SysML language specification. In addition, it does not consider the 
enhancements for systems modeling that the SysML adds to the UML. Thus, a main 
goal of the thesis is to analyze the application of SysML and its enhancements to the 
current process. The used tool Telelogic Rhapsody is primarily a software engineering 
tool based on UML 2.0, the supports for SysML enhancements is fairly new and not 
evaluated by the department yet. Thus the SysML capabilities of Rhapsody have to be 
evaluated either. 

Another problem the current process doesn't address is the transition from the systems 
engineering process to the subsequent development of segments, hardware and software 
in detail. The process describes how the system can be decomposed into hardware and 
software units and it describes that model handoffs have to be created for the hardware 
and software development teams. However, it is not described in detail how the hand-
offs should be generated to maintain a seamless development workflow. 

The functional modeling process does only capture hardware and software units that 
provide "real functionality". The fact that software units do not run stand-alone but re-
quire basic software and computer hardware to execute on is not considered yet. How-
ever, this is an important aspect for the development of software: Units might span over 
different CPUs or have to communicate over various buses of a carrier board. As a con-
sequence, the deployment of software to physical hardware with use of SysML has also 
to be analyzed in this thesis. 

Approach 

As a process document, the OPES4 functional modeling process does only define the 
different process steps without a detailed guideline how to apply the process to a real 
project. Thus, a modeling handbook is required that can be used as work reference and 
for self-studies. This modeling handbook will be the output of this thesis. The handbook 
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will apply the process in detail on a continuous example problem. The results of the 
process analysis in this thesis will be includes in the handbook. 

The analysis of the current process and the evaluation of different concepts that address 
the stated problems will be performed on an example model. The example model will 
apply the modeling process to a fictitious example problem in a complete manner, 
reaching from the definition of system use cases over the creation of a systems architec-
ture, the generation of a segment hand over model, the identification of software and 
hardware units, the deployment of them on a physical architecture and finally the gen-
eration of a software handover model. Possible first steps from the software unit hand-
over model to software engineering activities will also be analyzed in a final step. 

3.2 Example Problem 

The analyses and concepts in the context of this thesis were performed based on a ficti-
tious example problem. The kind of system however was chosen according to the main 
development field of the OPES4 to maintain the relation to the "real world". 

The system in the example shall protect airplanes or helicopters from incoming infra-
red seeking missiles. An incoming missile shall be detected based on the UV radiation 
that the missile engine emits. The seeker head of the missile shall then be "jammed" by 
means of a high-intensity laser beam that is directed on the seeker head. The laser beam 
is modulated with a special jamming frequency that is chosen based on the analysis of 
the backscattered laser reflection from the seeker head. Such a system is often called 
DIRCM, which is short for Directed Infra Red Counter Measure. 

However, the DIRCM system is relatively complex and thus most concepts in this thesis 
are shown on more simple examples to support comprehensibility. In addition, the 
original allocation of HW/SW units to a physical architecture in the DIRCM example 
contains company confidential information because a real physical hardware was mod-
eled. Thus, the concepts are shown on an alternative, fictitious architecture. 

3.3 Modeling of System Structure 

General Analysis and Concepts 

The current process uses the Rhapsody representation of a SysML system block as basic 
system element. However, when analyzing the semantics of a Rhapsody block, it turns 
out that a block in Rhapsody is a proprietary concept that isn't compliant to the SysML. 
A Rhapsody block is technically and semantically an instance of a UML class. How-
ever, a block can be defined as implicit, which makes it possible to define class features 
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in a block, like operations and attributes. The definition of the class is thereby techni-
cally hidden. This is the concept that is used in the current modeling approach.  

The system structure in the current process is shown on a UML composite structure 
diagram exclusively. The diagram is used to show the internal structure of the system 
blocks, the ports, interfaces and connectors.  

The actual SysML concept for structure modeling however is different and provides 
extended modeling capabilities. A SysML block is the specification of a system element 
and can be used as part to show the role of the system element in a specific context. The 
semantic is similar to the UML Class and Role. 

System block specifications, relations between blocks and block hierarchies are shown 
on the SysML Block Definition Diagram. In the block definition diagram, the relations 
between blocks are realized as associations. The associations may be directed and have 
multiplicities. System block decomposition can be shown by using the composition as-
sociation. Figure 3-1 shows an example block definition diagram. The block Car is de-
composed into one Engine and four Wheels, which is shown with the composition asso-
ciation. The engine block has an association of multiplicity 2 with the wheel block to 
show that only two of the four wheels on the car are driven by the engine. 
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Figure 3-1 SysML Block Definition Diagram 

The internal structure of system elements is shown in the SysML Internal Block Dia-
gram. In this diagram, the internal structure is shown by means of parts, which are 
specified by blocks but show the usage of the blocks and the connections between them 
in a certain role. Here, part nesting, ports, interfaces and connectors between system 
parts are described. This concept is similar to the concept of the current process, which 
uses an UML composite structure diagram to show the internal system structure. The 
difference however is that the parts used in the internal block diagram are specified by a 
system block while the implicit blocks used in the composite structure diagram are both 
specification and usage in a specific role.  
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Figure 3-2 SysML Internal Block Diagram 

Figure 3-2 shows the internal structure of the car example in an internal block diagram. 
Here, the block Car is shown in a specific role as part itsCar. The decomposition is 
shown by nesting; the blocks Engine and Wheel appear as parts within the border of the 
itsCar part. In the block definition diagram, the structure of a car was specified in that it 
has four wheels and an engine that drives two of the wheels. In the internal block dia-
gram, the single wheels and the engine are shown in a specific context that shows that 
the two front wheels are driven by the engine.  

The SysML concept has two important advantages over the current concept: 

First of all, by separating specification and usage of blocks, the concept of abstraction is 
supported: Blocks with similar structure and behavior can be specified once and then be 
reused as parts within concrete contexts. In the example above, the block Wheel is 
specified once in the block definition diagram. This block could for example contain 
some properties, like the physical size or the pressure of the tire. The concrete parts then 
in the internal block definition diagram automatically inherit the specified properties but 
can have different values for them, like for example different tire pressure for front and 
rear wheels. The concept with the implicit blocks in the current process doesn’t allow 
this. Blocks with a semantic similar structure or behavior would have to be duplicated. 

As a second advantage, the separation of specifications and usage adds an additional 
high-level viewpoint on the system. With a block definition diagram, the basic system 
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elements, relations and hierarchies can be shown without revealing anything about the 
internal structure, ports and interfaces of the system. The current process lacks this fea-
ture. This becomes particularly evident as soon as the system structure gets more com-
plex. Figure 3-3 shows the white box system structure of the DIRCM example problem 
on segment level. From the diagram, the top-level relations to the actors as well as the 
decomposition of the system into several segments become visible in a concise manner. 
An internal block diagram or composite structure diagram on its own is not able to pro-
vide this view (Figure 3-4). This becomes even more evident when different internal 
portions of the system are shown in different internal block or composite structure dia-
grams. 

 

Figure 3-3 Block Definition Diagram showing the DIRCM White Box System Structure 
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Figure 3-4 Internal Block Diagram showing the DIRCM White Box internal System 
Structure 
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Implementation of the Concepts in Rhapsody 

With the introduction of Rhapsody 7.1 MR3, Telelogic provides a SysML profile to-
gether with Rhapsody that supports both block definition diagrams and internal block 
diagrams. When the SysML profile is activated within a Rhapsody project, the two dia-
gram forms can be directly created from the browser. The concepts of system block as 
specification and part as usage of a block specification is also supported. This is done 
by the addition of the new model elements System Block and Part. The two elements are 
the semantically correct implementations of the SysML part and block specifications. 

3.4 Modeling of Items and Data 

The current modeling process does not define how items or data in the scope of a sys-
tem can be modeled. However, items and data are an integral part of a functional system 
model and thus modeling concepts have to be created. 

Modeling primitive Types 

SysML introduces the concept of ValueTypes for the definition of primitive types. A 
ValueType defines values that have no identity and are not referenced by a system 
block. SysML defines the ValueType as a stereotype of the UML Data Type. This is 
done to “establish a more neutral term for system values that may never be given a con-
crete data representation. For example, the SysML “Real” ValueType expresses the 
mathematical concept of a real number, but does not impose any restrictions on the 
precision or scale of a fixed or floating point representation that expresses this concept. 
More specific value types can define the concrete data representations that a digital 
computer can process, such as conventional Float, Integer, or String types.” [Sys2006]

SysML ValueTypes can be bound to units and dimensions. This addresses an important 
issue: In systems engineering models, it is necessary that the unit of a value is clearly 
defined to avoid serious design mistakes. A popular mistake is the failure of the Mars 
Climate Orbiter mission. The probe got lost at planet mars because of a unit fault in the 
navigation system. While the NASA was working with SI-units, the system was working 
with the imperial unit system [Wei2006]. 

Units and dimensions in SysML are specified model elements. A SysML dimension is 
“a kind of quantity that may be stated by means of defined units. For example, the di-
mension of length may be measured by units of meters, kilometers, or feet” [Sys2006]. 
The SysML dimension is specified as a stereotype <<dimension>> of the ValueType 
element.  
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A dimension can be associated by a unit. A unit is “a quantity in terms of which the 
magnitudes of other quantities that have the same dimension can be stated. A unit often 
relies on precise and reproducible ways to measure the unit. For example, a unit of 
length such as meter may be specified as a multiple of a particular wavelength of light” 
[Sys2006]. The SysML unit is specified as a stereotype <<unit>> of the ValueType 
element. The association of a unit to its dimension can be done by setting the dimension 
property that a unit inherits from its <<unit>> stereotype. 

The SysML specification provides the SI-unit system as a model library. In this library, 
the standard SI dimensions and units are implemented as SysML elements and the asso-
ciations between the dimensions and units are realized appropriately. This library could 
be used as basis for concrete systems engineering models.  

The unit and dimension can be associated with a ValueType by means of the dimension 
and unit property that a ValueType automatically inherits from its <<valueType>> 
stereotype. This unifies ValueTypes, units and dimensions into a “package” and thus 
describes the ValueType in a complete manner. 

Figure 3-5 depicts the ValueType concept on an example. The SI dimension Mass and 
unit Kilogram are modeled with the unit and dimension SysML model elements. The 
unit Kilogram is associated with its dimension Mass via the dimension property. The 
concrete ValueType SystemWeight then is specified with its unit and dimension by the 
unit and dimension properties. 
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Figure 3-5 SysML ValueType Concept 

Modeling Complex Items and Data 

Often it is useful and necessary to model more complex data or item types that may 
themselves also contain primitive or complex types as properties. For example, the mis-
sile in the problem example shall be detected by means of the UV signature of the mis-
sile engine. The UV signature itself is specified by the intensity and wavelength, which 
are primitive numerical ValueTypes.  

In SysML, complex data or items types can be modeled as system block. This technique 
broadens the block concept from the current modeling approach: A block can not only 
represent a logical or physical system entity, but also items or data. Figure 3-6 shows 
the missile UV signature as UVSignature system block. The UV intensity and wave-
length are block properties, typed by the value types Intensity and Wavelength. 
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Figure 3-6 Modeling Complex Types as Block 

Implementation in Rhapsody 

As a UML software engineering tool, Rhapsody natively only supports UML Data 
Types. As a consequence, the concept of modeling dimensions and units and the possi-
bility to associate them to types is not natively implemented. Thus the customization 
capabilities of the tool have to be analyzed and it has to be checked if the SysML con-
cepts can be realized through them. 

In Rhapsody, it is possible to define custom stereotypes. For a custom stereotype, the 
possible model elements to which the stereotype may be applied can be specified. In 
addition, a stereotype can be configured to appear as a new element in the browser 
when applied to a model element. By using this technique, the model elements Value-
Type, dimension and unit can be defined. To achieve this, the stereotypes <<value-
Type>>, <<unit>> and <<dimension>> have to be created and they have to be specified 
to be applicable to UML Data Types. By configuring the stereotypes to define a new 
element then, the ValueType, unit and dimension elements can be directly created from 
the project browser and also appear syntactically correct on diagrams. 

The dimension property on units and the unit and dimension properties on ValueTypes 
can be implemented by so-called tags in Rhapsody. A tag is a property that can be ap-
plied to every model element within Rhapsody. By adding a tag to a stereotype, the ele-
ment that the stereotype is applied to automatically inherits the tag from its stereotype. 
Thus, when adding the tag dimension to the <<unit>> stereotype and the tags unit and 
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dimension to the <<valueType>> stereotype, every newly created unit and ValueType 
in the model automatically inherits the tags. A problem is that the tags can not be set to 
reference to other elements within the model. That is, it is not possible to reference a 
dimension tag to a concrete dimension model element within the model. The informa-
tion can only be entered textually. Thus, the consistency between the textual informa-
tion of the tags and the actual model elements that the tag value should reference to is 
not automatically maintained in the model. However this problem could be solved by 
implementing custom tool macros that check the tags for consistency. Figure 3-7 shows 
the implementation of the aforementioned concept. The unit, dimension and ValueType 
are all stereotyped UML Data Types. The properties are realized as tags, which are 
shown in the body of the elements in the diagram.  

 

Figure 3-7 ValueTypes, Units and Dimensions in Rhapsody 

The corresponding browser view of the example is depicted in Figure 3-8. The Value-
Type, unit and dimension SysML elements are realized as individual new model ele-
ments, using the stereotype feature to define a new model element from a stereotype.  
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Figure 3-8 ValueTypes, Units and Dimensions in the Rhapsody Browser 

Item or data system blocks can be modeled in Rhapsody in a straight-forward manner. 
With Rhapsody 7.0 MR3, new system blocks can be created simply in the project 
browser or in block definition diagrams and properties can be added and typed by Val-
ueTypes. However, two problems occur when the item and data blocks are used in the 
simulation engine:  

First of all, if an item or data type is used as part of an interface specification, for exam-
ple as an argument of an event, and the item or data block is specified in a different 
model package than the interface, a compilation error arises. The reason is that Rhap-
sody does not automatically create references from the interface package to the item or 
data block. To solve this, the references have to be created manually in the model.  

The second problem is a little more severe. In cases where item or data blocks are used 
in item or data flows (refer to chapter 3.5), another compilation errors arises. The simu-
lation engine at some points checks if data has changed. This is done with the C++ ne-
gated comparator “!=”. However, blocks are generated as C++ classes by the simulation 
engine and the “!=” operator is not implemented by default. This results in a compila-
tion error, because the “!=” operator is missing. To solve this problem, the “!=” operator 
has to be created manually for each block that is used in a data or item flow. This how-
ever might be performed automatically with a custom tool script.  
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3.5 Data and Item Flow 

General Analysis and Concepts 

In the current process, the system blocks communicate with each other by means of 
asynchronous events. The process defines three types of events: 

 request events: A request event requests a certain service from the receiving 
block. A request event may contain data that is needed for the receiving block to 
perform the service. 

 return events: A return event is the answer to a service request. A return event 
may contain data or just acknowledge the completion of a requested service 

 simple events: A simple event may inform about some event that occurred in the 
system. 

The events are distinguished by naming prefixes, which are "req" for a service request, 
"ret" for a return event and "ev" for a simple event. Events can contain data. The data 
that an event can contain are specified as attribute of the event model element.  

Currently, data flow can only be modeled by using a service oriented approach: The 
sending block must send a request to set the data in the receiving block. The receiving 
block then has to implement the request. Figure 3-9 depicts this concept on a sequence 
diagram.  

 

Figure 3-9 Service Oriented Approach to model Data Flow 
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The communication between the blocks is realized by means of SysML Standard Ports. 
Standard Ports are interaction points over which blocks can communicate. The commu-
nication over a port is specified by a set of required and provided interfaces. A required 
interface specifies the operations a block can call or the events a block can send to its 
environment over the port. A provided interface specifies the operations that can be 
called or the events that can be sent from the environment to the receiving block 
through the port. 

Because of the asynchronous communication approach that the current process follows, 
the interfaces of the ports only specify event receptions. 

Ports may be connected to other ports of internal parts of the block owning the port. For 
that reason, ports have a property to specify if it is behavioral or not: In case of a behav-
ioral port, the incoming events and operation calls are relayed to the block owning the 
port. If the port is not behavioral, incoming events and operation calls are relayed to the 
internal parts of the block. Standard ports follow the single-cast semantic: If an event or 
operation call arrives at a non-behavioral port that is connected to more than one inter-
nal part, the message is only relayed to one internal part. Which one of the part receives 
the events or operation calls is not defined. 

The concept of communication over ports and interfaces is depicted in Figure 3-10.  

 

Figure 3-10 Communication between Blocks with Ports and Interfaces 

The current approach seems adequate to capture the communication with discrete data 
or items. However, data or item flows in systems can also be continuous, like for exam-
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ple the flow of energy or material, where the interval between the items approximates 
zero. As already described in chapter 3.4, in the DIRCM example the missile is detected 
by means of the UV signature emission of the missile engine. That means that a con-
tinuous flow of radiation energy is flowing from the missile to the system under design. 
In the current service oriented approach a reqSetUVSignature event would have to be 
sent from the missile to the DIRCM system. The interval between the individual mes-
sages would have to approximate zero to maintain the continuous nature of the energy 
flow. Following the approach of the current process, the data flow would have to be 
modeled with UML ports. Figure 3-11 depicts this approach.  

However, this concept has disadvantages: 

 The association of continuous data or item flow with discrete events is logically 
misleading 

 Continuous flows can not be distinguished from non-continuous flows 

Another problem is the single-cast semantic of the standard ports. With standard ports, 
broadcast communication like bus systems can not be modeled.  

 

Figure 3-11 Continuous Item Flow with UML Ports 
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While the asynchronous approach with UML ports is an adequate method for specifying 
service oriented peer-to-peer interactions, which are common in software component 
architectures, it is insufficient when continuous flows of energy or material, like torque 
or fluid, want to be modeled. Also broadcast bus systems like a CAN bus can not be 
described correctly. The SysML standard port concept isn't designed to model such 
flows, which doesn't surprise: The SysML standard port is a direct adoption of the UML 
Port and broadcast communication and continuous flows are normally not needed for 
the design of software. 

The SysML however provides a second approach that addresses the need to model con-
tinuous or broadcast item and data flows. This can be done with the SysML Flow Ports. 
Flow ports specify interaction point over which data or items can flow in or out of a 
block. The communication over flow ports follows the broadcast semantic, that is, data 
or items that arrive at a port is relayed to all connectors. There are two types of flow 
ports: 

 atomic flow port: An atomic flow port specifies one single item or data type to 
flow through it. The direction of the data type is specified by the direction of the 
port, which can either be in, out or bidirectional. The item is specified by typing 
the port with the flow item. 

 non-atomic flow port: A non-atomic flow port specifies a set of items that can 
flow in or out of the flow port. The flow items are specified in a flow specifica-
tion. The direction of the individual items is specified per item in the flow speci-
fication.  

A non-atomic flow port can be conjugated. If a flow port is conjugated, the direction of 
the flow items specified in the flow specification is reversed. This is done to specify the 
correct flow direction of a sender and receiver flow port. 

Blocks owning a flow port have to implement the items that are specified either in the 
flow specification in case of non-atomic flow ports or directly on the flow port in case 
of non-atomic flow ports. The implemented items must match the specified items in 
terms of both name and types. The implementation is the physical link between the 
specification and the concrete values and items that flow. That means that an item or 
data that arrives at a flow port is relayed to the implementation and vice versa. 

Figure 3-12 applies the SysML flow port concept to the UV signature flow between the 
missile and the system under design in the DIRCM example. The UVSignature item is 
specified in the flow specification ifUVSignature. The black color of the flow port on 
the system under design marks the port as conjugated. This way, it can be seen from the 
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diagram that the UV signature flow direction is from the missile to the system under 
design. 

 

Figure 3-12 Continuous Item Flow with SysML Flow Ports 

The example makes use of non-atomic flow ports although an atomic flow port could 
also be used because only one flow item is specified. However, the usage of a flow 
specification has the advantage that the flow is specified in a clearly defined interface. 
With non-atomic flow ports, the flow items are only specified directly on the ports. 

Implementation in Rhapsody 

Rhapsody supports SysML flow ports in the SysML profile that is provided in the ver-
sion 7.0 MR3. Both atomic and non-atomic flow ports are supported. Flow specifica-
tions can be created by adding one or more properties with the stereotype <<flowAt-
tribute>> to a common interface. The flow attributes can be typed by both ValueTypes 
and data or item blocks. The direction of a flow attribute can be set in a direction tag 
that is inherited for each newly created flow attribute. All three directions, in, out and 
bidirectional can be set. Port conjugation is also supported. The Rhapsody implementa-
tion is depicted in Figure 3-12. 

Flow port simulation is supported by means of an automatically generated set operation 
for each flow attribute that is implemented in the block owning the flow port. When the 
set operation is called within in the simulation, the flow attribute is automatically up-
dated with the set value in the receiving block that is connected to the flow port. The 
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call of the set operation can be traced in animation sequence diagrams and appears as 
synchronous message. Figure 3-13 depicts the flow port communication concept on a 
sequence diagram. In the example, the missile updates its emitting UV signature. The 
value is then automatically updated in the SuD block by means of a synchronous opera-
tion call.  

 

Figure 3-13 Flow Port Communication in Sequence Diagrams 

Support for flow ports in state charts is also provided: Whenever an attribute of a block 
is changed by an incoming flow attribute value, an event is generated in the receiving 
block. The state machine can then react to the event. This concept can be shown on a 
simple example: Figure 3-14 shows a voltage flow from a power supply to a computer 
mainboard. The flow is realized by means of flow ports between the PowerSupply and 
the Mainboard blocks. The mainboard reacts to a change of voltage in its state chart, 
which is shown in Figure 3-15. Every time the voltage changes on the power supply and 
thus also on the mainboard, the chVoltage event is thrown. The mainboard reacts to the 
event in that it changes from the Off state to the On state when the voltage is 12 Volts 
and from the On state to the Off state when the voltage is below 12 Volts.  
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Figure 3-14 Voltage Flow over a Flow Port 

 

Figure 3-15 Flow Port Support in State Charts 
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However, the simulation lacks support for one of the most important features of flow 
ports, the broadcast messages. The values of ValueTypes and item or data blocks are 
not relayed when more then one part is connected to a port. Thus, bus systems for ex-
ample cannot be simulated in Rhapsody. This significantly minimizes the value of using 
flow ports from the simulation perspective. 

An additional problem is that only ValueTypes and item or data blocks can be specified 
as flow items. It is not possible specify events. 

Another thing to consider is that the decomposition of flow specifications is not possi-
ble. When more than one flow item is specified in a flow specification at a higher ab-
straction level of a system, the individual flow items can not be relayed to individual 
parts when decomposing the system. The consequence is that a separate flow specifica-
tion and with it a separate flow port have to be created for each flow item already at the 
top-level tier of the system. This is necessary to enable a maximum degree of freedom 
to assign the individual flow items to parts later in the design process. 

3.6 Segment Handover 

In case that the individual segments will be developed by different design teams, the 
current process describes that model handovers have to be created. The segments them-
selves usually consist of both hardware and software and are not decomposed in con-
crete hardware and software units yet. While the process describes that handover mod-
els have to be created, it doesn't describe in detail how they can be created. Thus con-
cepts have to be elaborated to create a model handoff that both support the collaboration 
between the different teams and the traceability to the high-level context. 

When beginning thinking about a sensible way to create a model handoff technically, 
first of all it has to be thought of what model artifacts are essential for the subsequent 
development teams. These are: 

 the system block representing the segment: This block contains both the opera-
tional contracts as well as the state based behavior and ports to the environment. 

 the segment use cases, scenarios and activity diagrams 

 the interfaces to the neighbor systems and actors 

 the context in that the segment fits by means of a block definition diagram and 
internal block diagram 
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Segment Block 

The segment block can in principle be handed over “as is”. The attributes, ports, inter-
faces and state based behavior of the block build a self-contained entity and thus can 
remain unchanged.  

Context 

For the development of segments, the functionality of the neighbor segments is not 
relevant in the first instance. The model handover should represent the segment as black 
box. Thus, the external systems should not appear as system blocks in the handover 
model but instead as actors. However, the actors should reassemble the original ports of 
the system blocks, which also should be linked in a concrete context to the segment 
block. 

Use Cases 

In the system-level model, the use cases are detailed with sequence and activity dia-
grams per system level use case. For the segment development, the system level use 
cases might however be too abstract to be handed over directly. For example, in the 
DIRCM system, the main system-level use case is DetectAndDefeatMissile (Figure 
3-16). The system components are mounted on a rotary turret (the system block Turre-
tAssembly in Figure 3-3), whose primary function is to move the turret to a commanded 
position. Handing over the abstract system-level use case DetectAndDefeatMissile to the 
turret development team would be improper. 
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Figure 3-16 Use Cases of the DIRCM System 

A way to address this issue is to decompose the system-level use cases into segment-
level use-cases. Segment use cases can be identified by the operational contracts of the 
segment blocks. The individual segment-level use cases can then be allocated to the 
appropriate segments. This narrows the use-case context for the individual segments. 
However, by linking the segment-use case to the system-level use case in the model, a 
"bottom-up" view is provided to see how the segment-level use case fits into the context 
of the system-level use case. 

The allocation should be performed in the system-level model on a separate use-case 
diagram as an additional view on the use-case model. A way is to show the use-case 
allocation on a separate use-case diagram per system-level use case. This helps for a 
concise use-case model structure. Figure 3-17 shows the decomposition of the Detec-
tAndDefeatMissile use case in the DIRCM example. The decomposition is performed 
by means of include dependencies from the system-level use case to the segment-level 
use cases. The segment-level use-cases are allocated by setting the segment-level use 
cases into new system-boundaries that represent the segments. To mark the abstraction-
layer of use cases, the stereotypes <<SystemLevel>> and <<SubsystemLevel>> are 
used. 
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Figure 3-17 Use Case Decomposition and Allocation 

When the use cases are decomposed and allocated to segments in the system model, the 
decomposed use cases can be handed over to the segment development team. New sce-
narios and activity diagrams then have to be created for the segment use cases. These 
scenarios and activity diagrams can be derived from the system-level use case.  

In the scenarios, the newly created actors should then be used to represent the neighbor 
systems. These are then automatically drawn with hatched lifelines.  

The activity diagrams can then be modeled as black box diagrams: Control and item 
flows in the system level use case diagrams then have to appear as event receptions, 
send signal actions and activity parameters.  

Interfaces 

The interfaces between the segments and the actors are a vital part of the specification. 
These shouldn't be modified by the segment teams and have to stay consistent on sys-
tem level. Therefore the interfaces should be handed over as referenced read-only pack-
age.  



3 Analysis and Concepts 63-82 

“Bottom-Up” View 

For the segment development teams, it is often necessary to see how their individual 
segments fit into the overall context of the next-higher system abstraction tier. Narrow-
ing the focus of segment development to a black-box only perspective may result in 
misinterpretations on the interfaces and the functional roles in the overall context. A 
way to address this issue is to import the complete higher-level system model into the 
individual segment models. The segment teams can then browse to the next-level sys-
tem-model context if required. By importing the higher-level model as read-only refer-
ence, care is taken that the higher-level system model can not be modified by the seg-
ment-level team.  

Model Verification 

When the segment model has been created, it should be verified against the higher-level 
system specification by means of model execution. This guarantees that the segment 
model has been created correctly. 

3.7 Modeling the Physical Architecture 

Modeling Basic Software and Carrier Hardware 

The modeling approach covers mainly functional aspects of systems. That means that 
only hardware and software is modeled that provides the essential system functionality. 
Examples are functional hardware like FPGAs or application and interface software 
units. However, especially software units cannot run stand-alone but require a carrier 
computer hardware that consists of CPUs, RAM, bus systems etc. In addition, also basic 
software like an operating system and a board support package is required. Another 
thing to consider is the communication between the functional units. While communica-
tion in functional models is only specified from the logical perspective, in the end the 
communication is realized by means of communication over physical hardware inter-
faces. The concept can be seen as layered system structure, as depicted in Figure 3-18. 
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Figure 3-18 Functional vs. Physical World 

Application software, basic software and carrier hardware are developed by different 
specialized teams. Past experiences of the OPES4 have shown that there were often dif-
ficulties in the communication between the development teams especially regarding 
startup sequences or the distribution of functionality. Another problem is the allocation 
of timing requirements. For example constraints regarding maximum startup times or 
communication delays are only specified for the overall functional system block in the 
system models. However, these have to be broken down in timing constraints for the 
functional software, the basic software and the carrier hardware.  

A possible approach to address these issues is to bring the basic software units as well 
as the carrier hardware into the SysML model. The break-down of timing constraints is 
shown in an example. Figure 3-19 shows the structure of an external segment and a 
software unit that are connected by means of logical ports. The basic software and car-
rier hardware of the software unit are not yet considered. Figure 3-20 depicts a commu-
nication scenario between these two blocks. The external segment sends a request to 
perform a computation. The software unit then reacts to the request in that it performs 
the computation and replies with a return message. The time between the input of the 
request and the return message is specified to be maximal 120 milliseconds by means of 
a timing constraint model element. 
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Figure 3-19 Internal Block Diagram showing Logical Communication Structure 

 

Figure 3-20 Logical Communication in a Sequence Diagram 
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Figure 3-21 shows the same example but considers both the basic software and carrier 
hardware. These are modeled as blocks and are linked together with the functional soft-
ware unit in a layered structure. The external segment now communicates directly with 
the carrier hardware. 

 

Figure 3-21 Internal Block Diagram showing Physical Communication Structure 

The communication is depicted in Figure 3-22. The external segment now sends the 
request to compute to the carrier hardware, which relays the request to the basic soft-
ware. The basic software again relays the request to the software unit which performs 
the computation and sends the reply back in the same communication hierarchy. By 
adding the carrier hardware and the basic software into the communication, it is possi-
ble to decompose the system-level timing constraints into individual timing constraints. 
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Figure 3-22 Physical Communication in a Sequence Diagram 

The above example only considers timing aspects, which are modeled by introducing 
relay messages. These timing aspects are an important information for the specification 
of the carrier hardware, the basic software and the functional software units and are thus 
in the scope of systems engineering. The specific functionality that is implemented in 
the carrier hardware and the basic software to enable the hierarchical communication is 
not in the scope of systems engineering but in the scope of the specialized development 
teams. However, the models can be refined in collaboration with the specialized devel-
opment teams. The refinement can be in principle made as far as behavior in form of 
state charts, concrete programming language functions and even access to hardware 
control registers can be modeled.  
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Deploying HW/SW Units on Physical Architecture 

Especially if more than one functional software and hardware unit will be deployed on a 
single physical architecture and thus share resources like CPUs, RAM and buses, it 
makes sense to integrate the deployment information into a SysML deployment model. 
Integrating the deployment into a model has two advantages: 

 The overall resource-sharing can be shown visually and thus can support the 
performance and resource analysis on system level.  

 The developers of the individual hardware and software units can see how their 
functional specifications map to the physical constraints and environment. 

The deployment can be performed in multiple views in the model, with each showing a 
different deployment aspect such as CPU, RAM or bus deployment. 

Figure 3-23 shows the decomposition of the processing computer segment of the 
DIRCM example system. The processing computer is decomposed into the software 
units ImageProcessing, SequenceControl and BasicSoftware and the hardware unit 
JammingControl. The stereotypes <<SWUnit>> and <<HWUnit>> have been intro-
duced to distinguish the types of units. 

 

Figure 3-23 Decomposition of the ProcessingComputer Block in the DIRCM Example 
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The units shall all be deployed on a carrier hardware architecture. This architecture is 
modeled by means of an internal block diagram. This creation of a block definition dia-
gram is omitted because for the architecture, only the concrete internal hardware struc-
ture is of interest. Figure 3-24 depicts the architecture for the processing computer car-
rier hardware. The computation units in the architecture are two CPUs and one FPGA. 
The two CPUs have access to individual RAM components and are connected via a 
standard PCI bus. The FPGA is connected to CPU2 via an I²C bus. In addition, CPU2 
has access to an Ethernet interface and the FPGA is connected to discrete I/O lines.  

 

Figure 3-24 Carrier Hardware Architecture 

Additional information about the individual hardware components can also be modeled, 
such as CPU frequency, RAM sizes, address spaces, bus speeds etc. The information 
can either be modeled as tags (refer to chapter 3.4) of the hardware parts or as a textual 
annotation. However, tags should be preferred because they can be directly accessed 
through the model browser and also be used by custom tool scripts that, for example, 
support document generation or perform analysis tasks. An example is shown in Figure 
3-25. For the CPU, the information about manufacturer, model and frequency is mod-
eled by means of tags. 
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Figure 3-25 CPU Block with Information Tags 

When the carrier hardware architecture has been brought into the SysML model, the 
different deployment views can be shown on individual internal block diagrams. The 
deployment is based on the basic hardware architecture.  

Figure 3-26 shows the deployment of the hardware and software units in the DIRCM 
example to the processors of the carrier hardware. The deployment is realized by means 
of the SysML allocation relationship. The allocation relationship allows allocating basi-
cally every model element to another, such as behavior to structure, software to hard-
ware, logical to physical entities etc. The original SysML stereotype of an allocation 
relationship is <<allocate>>. However, the allocation in Rhapsody is natively realized 
with the <<allocation>> stereotype. 

In the example, the ImageProcessing unit is allocated to the CPU1, the SequenceControl 
to CPU2. The BasicSoftware is allocated to both CPU1 and CPU2. The hardware unit 
JammingControl is allocated to the FPGA.  
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Figure 3-26 CPU Deployment 

The allocation relationship can also be extended with comments or tags that contain 
more information. For the CPU allocation, additional information could be for example 
the maximum CPU time or scheduling information.  

Another deployment view can be the memory deployment. In the memory deployment 
view, the allocation of software units to physical memory can be shown. The memory 
deployment for the software units in the DIRCM example is depicted in Figure 3-27. 
The ImageProcessing unit is allocated to RAM1, the SequenceControl to RAM2 and the 
BasicSoftware to both RAM1 and RAM2. As in the CPU deployment, the allocation 
relationship can be extended with additional information like address spaces or memory 
partitions by adding comments or tags to the relation.  
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Figure 3-27 Memory Deployment 

An additional possible deployment view is the interface deployment. In the interface 
deployment, the allocation of logical communication to physical interfaces can be 
shown. Figure 3-28 shows an excerpt of the logical communication between the Se-
quenceControl, ImageProcessing and JammingControl units of the DIRCM Processing 
segment.  

 

Figure 3-28 Logical Communication in the Processing Segment (excerpt) 
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By using the allocation relation, the logical communication interfaces can be mapped to 
the physical interfaces of the carrier hardware architecture. Figure 3-29 depicts this con-
cept. The logical communication between the ImageProcessing and the SequenceCon-
trol blocks is mapped to the PCI bus by means of an allocation of the ports. The com-
munication between the SequenceControl and the JammingControl blocks is allocated 
to the I²C bus. A semantically better way would be to directly allocate the link to the 
bus blocks. However, Rhapsody does not allow the allocation of links, thus the ports are 
allocated to the buses.  

 

Figure 3-29 Interface Deployment 

As with the two preceding deployment views, the interface allocations can be extended 
with additional information like for example bus addresses or the maximum allowed 
bus load. 
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3.8 Transition to Hardware/Software 

A main goal of the application of modeling techniques to the specification of systems is 
the improvement of communication between the different engineering disciplines. The 
ideal case would be that the subsequent hardware and software development teams can 
perform their unit-level analysis tasks either directly on or at least very close to the 
SysML unit specification models. To enable this, the handover models have to be well 
specified and configured.  

The concept for a unit-level handover model in general should cover all aspects that 
were already elaborated for the segment handover (chapter 3.6). The handover should 
contain the unit functional and behavioral specification, the architectural context, the 
interfaces and the refined unit-level use cases. To provide the “bottom up” view, the 
higher-level segment-level model should also be referenced, especially when the physi-
cal deployment that was elaborated in chapter 3.7 is considered. 

However, at present it is unlikely that the hardware development teams continue their 
development tasks on the SysML model. For hardware engineering other description 
languages such as VHDL and constitutive tools are common. The SysML model is 
likely to act as a pure unit specification only. 

The case is different for software development. In software engineering the language 
UML has become the de-facto modeling standard. Because of the close relation of 
SysML to UML, many design elements can be reused. In case that the subsequent soft-
ware development team also use Rhapsody for the development of software, the devel-
opment activities for software development can continue based on the SysML unit 
model in a seamless manner. Rhapsody bases the SysML language elements on native 
UML elements, so SysML and UML can be both used within one model.  

The concept of a possible transition from system specification to software analysis will 
be shown on an example. Figure 3-30 shows a functional sequence between the Se-
quenceControl block and the ImageProcessing block on system level. The Sequence-
Control block, here shown as external actor, sends a request to search the target signa-
ture of an incoming missile in an image. The ImageProcessing block reacts in that it 
performs the search function and then replies to the SequenceControl block with a re-
turn message.  
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Figure 3-30 Functional Sequence on System Level 

The system block can be then decomposed in the software model into a class architec-
ture. The decomposition of the ImageProcessing block into classes is shown in a UML 
class diagram in Figure 3-31. The system block is decomposed into the classes IOCon-
trol, ControlLogic, FilterAlgorithms and SearchAlgorithms.  
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Figure 3-31 Decomposition of a System Block into Classes 

The functional decomposition can then be elaborated on a sequence diagram that is 
based on the system level black box sequence specification. The decomposition of the 
system level sequence is depicted in Figure 3-32. The request from the SequenceControl 
block is now received by the IOControl class, which then informs the ControlLogic 
class about the reception by means of an asynchronous event. The ControlLogic class 
then fetches the image from the IOControl and sends it to the FilterAlgorithms. After 
the image has been filtered, it is sent to the SearchAlgorithms, which search the target 
position within the image and return the target position. The target position is then sent 
via the IOControl back to the SequenceControl block.  
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Figure 3-32 Decomposed Functional Sequence in the Software Model 

The decomposition can then in addition also be continued by means of decomposing the 
system-level state chart and activity diagrams. The software models can be verified 
against the system specification at any time by means of model execution. The example 
shows that by reusing the system specification within the software analysis and design, 
a seamless transition from systems to software engineering can be reached.  
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4 Results 
The concepts that were elaborated in the context of this thesis will on the one hand be 
reflected in the current modeling process document but will also result in a separate 
modeling handbook. The work on these documents has already begun during the thesis 
but, because of the limited time available, could not be finished. However, the concepts 
and foundation material for finishing the documents are for the most part set. 

Modeling Process 

First of all, the modeling process will be adapted to be compliant to and use the SysML 
language specification only. This is mainly done by using the provided Rhapsody 
SysML profile and adding an additional profile that specifies the missing stereotypes 
that are required to be SysML compliant. The structure modeling concept will be 
adapted to the one described in chapter 3.3. Also the concepts for modeling items and 
data (chapter 3.4) will be directly adopted. Because of the problems with the simulation 
engine when modeling flow ports – no support for events and broadcast communication 
- the flow port concept that was elaborated in chapter 3.5 will only be adopted partially. 
In the process, the use of flow ports will be only recommended to model continuous 
item or data flows. The modeling process will also be enhanced with the concepts for 
the segment handover model that were elaborated in chapter 3.6.The concepts for the 
modeling of physical architecture and basic software as well as the deployment (chapter 
3.7) will be taken as basis for a process enhancement. In addition, the concepts for the 
seamless transition from systems engineering to hardware and especially software engi-
neering will be reflected in the modeling process. 

Modeling Handbook 

Based on the DIRCM example model that was the basis for the concepts presented in 
this thesis, a modeling handbook will be created. The modeling handbook will guide the 
systems engineer through the modeling process and demonstrates the various process 
phases and the practical application of SysML on the DIRCM example model.  
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5 Summary and Conclusion 
The concepts that were elaborated in the context of this thesis provide options to en-
hance the current process and solve its main problems and shortcomings.  

One of the goals was to analyze the possible adaptation of the process to the SysML 
specification. The adaptation could be realized by means of implementation of the 
SysML profile and by adding the missing SysML stereotypes. By converting the current 
process to be fully compliant to the SysML specification, an improvement in terms of 
interchangeability of the designs is achieved. This is especially important when the de-
signs are not exchanged by means of Rhapsody model repositories but instead in terms 
of documents, for example as part of an interface specification that is provided to other 
departments or even companies. 

Another goal was to analyze the SysML enhancements to UML and the possible appli-
cation of them to the current modeling approach. A severe shortcoming of the current 
process – the lack of capabilities to model items and data – could be addressed with the 
implementation of the SysML concept to model primitive and complex items and data 
as ValueTypes and blocks. By using this concept, items and data can be modeled in a 
concise manner. As a further enhancement is the introduction of SysML flow ports to 
the current process. With flow ports, the capability to model continuous item and data 
flows is added – something that is not possible with the current modeling process. 

The last goal was to develop concepts to enable a seamless transition from the systems 
to the subsequent hardware and software engineering disciplines. This could be accom-
plished by describing an approach to generate model handoffs that provide a complete 
and self-contained description of segments, hardware and software units but in the same 
time also allow to trace back into the overall system context. In addition, the concepts to 
model physical architectures and basic software as well as the possibility to model dif-
ferent views of physical deployment improves the quality of system specifications and 
the communication and collaboration between the different engineering teams.  

However, besides the work done in the context of this thesis, there still are more open 
topics that need to be addressed in future.  

With the extensions of the process with the concepts described in this thesis, the sys-
tems engineering tool wizards that are provided together with Rhapsody cannot be used 
to its full extends anymore. Thus new customized tool wizards have to be implemented 
that support the process workflow and maintain consistency within the systems engi-
neering models.  
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Another topic is the integration of Simulink models into a Rhapsody SysML model. 
According to Telelogic, a seamless integration of Simulink models is possible. How-
ever, this has to be evaluated and, if applicable, guidelines for the integration have to be 
created.  

In the context of this thesis, only the SysML extensions to model data and items as well 
as flow ports are considered. The SysML however also provides capability to model 
parametric constraints and requirements. The applicability of these extensions to the 
current approach should be analyzed in future. 

Last but not least, concepts to generate textual requirements from SysML models should 
be elaborated in future. Textual requirements are often required in development process 
models and thus it has to be analyzed how the requirements can be extracted from a 
SysML model in a concise and effective manner. 
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