

 Ali Gulabi

Development of an Embedded SCADA System with
PLC and Java Application for Synchronous Operation

of Standard Servo Drives

Master thesis based on the examination and study regulations for the
Master of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Ing Gustav Vaupel
Second examiner: Prof. Dr. Ing Reinhard Müller

Day of delivery May 21st 2007

 2

Ali Gulabi

Title of the Master Thesis

Development of an Embedded SCADA System with PLC and Java Application for
Synchronous Operation of Standard Servo Drives

Keywords

SCADA, S7, PLC, Simovert Masterdrives MC, Java Applets, S7 Java beans,
Parameterization, Servo Drives, SIMATIC S7-300, CP 343-1 IT, PROFIBUS DP,
MPI, CP5613 A2.

Abstract

In this project an embedded Supervisory Control and Data Acquisition system is
developed for synchronous operation of standard servo drives by using PLC, CP 343-1
IT, Simovert Masterdrives MC, Servo drivers, a PC, and Communication Processor
CP5613 A2. The components are networked via PROFIBUS DP, and Ethernet. The
system can be accessed and controlled through Internet or Ethernet. The Human
Machine Interface (HMI) is designed by using Siemens S7 Java beans and Java swing
components, and then it is downloaded to CP 343-1 IT via FTP protocol; where the
CP343-1 IT acts as a server. There is also an S7 program designed to control the
Masterdrivers MCs, and to manage the data flow between HMI and drivers.

Ali Gulabi

Thema der Masterarbeit

Entwicklung eines eingebetteten SCADA Systems mit dem PLC und der Java-
Anwendung für Gleichlaufbetrieb der Standardservo-Antriebe

Stichworte

SCADA, S7, PLC, Simovert Masterdrives MC, Java Applets, S7 Java beans,
Parametrierung, Servoregler, SIMATIC S7-300, CP 343-1 IT, PROFIBUS DP, MPI,
CP5613 A2.

Kurzzusammenfassung

In diesem Projekt wurde für den Gleichlaufbetrieb eines Standardservo-Antriebes ein
Embeded Überwachungssteuer- und Datenerfassungssystem entwickelt. Das System
wurde mit folgenden Komponenten entwickelt:

• PLC
• CP 343-1 IT
• Simovert Materdrives MC
• PC- und Kommunikation Prozessor CP5613 A2

Man kann auf das System via Internet/Ethernet zugreifen, steuern und Daten erfassen.
Die Benutzeroberfläche wurde mit Siemens S7 Java beans und Java Swing entwickelt
und über ftp zu dem Kommunikation Prozessor CP 343-1 IT übergetragen. Der CP
343-1 IT ist ein Server. Die Kommunikation, Steuerung und Datenerfassung zwischen
GUI und dem Masterdrives MC geschieht über S7 Programm

 3

1 Acknowledgement

I would like to thank to the people who contributed so much during course of my master

thesis. It was a very level and professional environment, which not only let me develop

technical skills, but also help me to improve academic research methodology.

Prof. Dr.-Ing. Gustav Vaupel; I thank you for offering the project, and taking your time to

supervise it. You were very instructive and helpful.

Prof. Dr.-Ing. Reinhard Müller; I thank you for taking part in my thesis to be the second

supervisor.

Dipl.-Ing. Frank Korpel; our cooperation and willing to help were exceptional. You were

available almost every time I needed help. Thank you very much.

Ali Gulabi

University of Applied Sciences Hamburg

May 21st 2007

 4

1 ACKNOWLEDGEMENT 3

2 PREFACE 7

3 INTRODUCTION 9

3.1 CHAPTER OVERVIEW 9

4 SYSTEM 11

4.1 HARDWARE 11
4.1.1 SIMOVERT MASTERDRIVES MC SETUP 6SX-7000-0AF10 11
4.1.1.1 Masterdrives MC 6SE7012-5EP50-Z 11
4.1.1.2 Masterdrives MC 6SE7011-0TP50-Z (Right) 11
4.1.2 MOTORS: 12
4.1.2.1 SIEMENS 3-Permanent-Magnet-Motor 1FK6032-6AK71-1TG0 12
4.1.2.2 SIEMENS 2-Magnet-Motor 1FT6031-4AK7 12
4.1.3 SIEMENS SIMATIC S7-300 SETUP 12
4.1.4 COMMUNICATION BOARD, PC AND CABLES 13
4.2 SOFTWARE 13

5 ASSEMBLY 14

5.1 CP5613 A2 COMMUNICATIONS PROCESSOR 14
5.1.1 INSTRUCTIONS FOR ASSEMBLY 14
5.2 PROFIBUS 15
5.2.1 SPECIFICATIONS 16
5.2.2 BUS CONNECTION FOR THE FIRST AND LAST NODE ON PROFIBUS 17
5.2.3 INSTALLING COMPONENTS ON THE RAIL 19
5.2.4 POWER SUPPLIES 20

6 INDUSTRIAL COMMUNICATIONS 21

6.1 THE MULTIPOINT- INTERFACE (MPI) 23
6.2 THE PROFIBUS DP 25
6.3 ETHERNET 26

7 MOTION CONTROLLERS 29

7.1 PARAMETERIZATION 31
7.1.1 PARAMETERIZATION VIA PMU 35
7.1.2 PARAMETERIZATION VIA OP1S (6SE7090-0XX84-2FK0) 35
7.1.3 PARAMETERIZATION VIA DRIVE MONITOR (STAND ALONE) 38
7.1.3.1 Install Drive Monitor 38
7.1.3.2 Parameterize the slave (Masterdrives MC) 39
7.1.4 PARAMETERIZATION VIA DRIVE MONITOR (SIMATIC MANAGER) 41
7.2 PARAMETERIZATION STEPS 43
7.2.1 MAIN STEPS FOR PARAMETERIZATION 44

 5

7.2.1.1 Power section definition (P060 = 8) 44
7.2.1.2 Board Configuration (P060 = 4) 46
7.2.1.3 Drive Setting (P060 = 5) 47
7.2.1.4 Function adjustment 48

8 MODERN CONTROL 49

8.1 SYNCHRONOUS OPERATION 49
8.1.1 BASIC POSITIONING 49
8.1.2 TECHNOLOGY OPTION F01 51
8.1.3 GENERAL FUNCTIONS OF TECHNOLOGY OPTION 51
8.1.4 POSITIONING 53
8.1.5 SYNCHRONIZATION 53
8.2 APPLICATION 54
8.2.1 OPERATIONS MODES 56
8.2.1.1 Synchronous Operation 56
8.2.1.2 Reference run (MDI = 0) 56
8.2.1.3 Reference run (MDI = 1) 57

9 COMMUNICATION WITH THE MASTERDRIVES MC 58

9.1 FUNCTIONALITY OF THE CBP 59
9.2 USEFUL DATA 59
9.3 STARTING THE DP SLAVE THROUGH S7-PROJECT 64

10 S7- PROGRAMMING AND CONTROL 67

10.1 SYNCHRONOUS OPERATIONS 70
10.1.1 PARAMETERIZATION 70
10.1.2 FB10 CONVERSION 75
10.1.3 FC2 WRITE & READ OPERATIONS FOR CONTROL AND STATUS WORDS 77
10.1.4 FB60 USER FRIENDLY HMI 80
10.2 ASYNCHRONOUS OPERATION 81
10.3 RESET FUNCTIONALITY 82

11 HUMAN MACHINE INTERFACE (HMI) 83

11.1 ECLIPSE 84
11.1.1 THE ECLIPSE’S LICENCE 84
11.1.2 HOW START USING ECLIPSE 85
11.1.3 DOWNLOAD THE JAVA S7 BEANS LIBRARY FROM SIEMENS SITE 85
11.1.4 JAVA VISUAL PROJECT 85
11.2 S7-BEANS AND INTERCONNECTION HIERARCHY 88
11.2.1 S7-BEANS 89
11.2.2 HIERARCHICAL RELATIONSHIP BETWEEN COMPONENTS 89
11.3 JAVA APPLET FOR DISPLAYING THE HMI ON A WEB BROWSER 92
11.4 DEVELOPING HMI IN JAVA AND CONNECTING IT WITH S7 PROGRAM 94
11.4.1 SIEMENS S7 BEANS 94
11.4.1.1 Siemens S7 Device beans 94
11.4.1.2 Siemens S7 GUI beans 95
11.4.1.3 Siemens S7 Utility beans 96
11.4.2 HMI DESIGN PAGE 1 96
11.4.2.1 Modifications to the class 97

 6

11.4.2.2 Inserting S7 Device Beans 98
11.4.2.3 Design GUI 101
11.4.3 HMI DESIGN PAGE 2 (SYNCHRONOUS OPERATION) 105
11.4.3.1 Adding Tacho 105
11.4.3.2 Adding text box for displaying the speed 107
11.4.3.3 Adding text box for setting the speed 108
11.4.3.4 Adding Digital Input (DI) buttons 109
11.4.3.5 Adding navigation buttons 110
11.4.4 USER FRIENDLY HMI DESIGN SYNCHRONOUS OPERATION 111
11.4.5 HMI DESIGN FOR ASYNCHRONOUS OPERATION 113

12 CONCLUSION 115

12.1 SUGGESTIONS FOR THE FUTURE WORK 116

13 REFERENCES 117

APPENDIX 118

A CONFIGURATION 118

A.1 PC 118
A.2 S7-HARDWARE CONFIGURATION 119
A.2.1 HARDWARE CONFIGURATION 122
A.2.2 ADDING SIEMENS SIMOVERT MASTERDRIVES MOTION CONTROLLERS 128

B FUNCTION DIAGRAMS 131

C INSTRUCTIONS TO START HMI FROM THE INTERNET 135

D CD-ROM 140

E LIST OF FIGURES 141

F LIST OF TABLES 143

 7

2 Preface

In the past industrial companies used separate networks or network cells such field level and

cell level networks in production and other networks for the process level. Fallowing the

development in information technology all these smaller networks linked to each other.

Especially in manufacturing companies an automaton network concept developed under the

name of Totally Integrated Automation (TIA). TIA includes actuator sensor level, field level,

cell level and process control level, which makes use of actuator-sensor interface,

PROFIBUS, PROFIBUS and industrial Ethernet, and industrial Ethernet respectively.

Through TIA it is possible to view or control all the levels all the way to the actuators from

process control level. In recent years many companies started opening divisions in many

countries around the world, and wanted to connect and control any devising from another or

any place around the world (Distributed Management).

Distributed management can be realized through Supervisory Control and Data Acquisition

(SCADA) system. It is a common process control application that collects data from sensors

on the shop floor or in remote locations and sends them to a central computer for management

and control. A SCADA system includes input/output signal hardware, controllers, Human

Machine Interface (HMI), networks, communication, database and software.

The term SCADA usually refers to a system with a central unit that monitors and controls a

complete site or a system spread out over a long distance. The bulk of the site control is

actually performed automatically by a Remote Terminal Unit (RTU) or by a Programmable

Logic Controller (PLC). The access rights for the host and its control functions are almost

always restricted to basic site over-ride or supervisory level capability.

This concept can also be used in power plants as well as in oil and gas refining,

telecommunications, transportation, and water and waste control, and also being used in

chambers that are hazardous to human health or difficult to access

In the past the Internet was very slow and unreliable, nowadays reliability is increased and

speed limit been pushed towards real-time. For example expansion in Internet telephone

usage is due to increase in quality of service of the Internet. Therefore it is understandable to

see similar usage of the Internet in industrial and automation areas as well. Today there are

many companies that are already connect their branches around the world, and it is

understandable to connect production floors as well.

 8

The goal of this project is to design an embedded SCADA system including an HMI (Human

Machine Interface), embedded in a web page through applets, which visualizes and controls a

standard servo drive in a remote area.

The HMI will be developed by using an open source java editor (Eclipse) and Siemens java

APIs to program in java. The HMI is machine and location independent, can be accessed

through internet anywhere in the world.

There will be a Siemens IT-343-1 device and a Siemens SIMATIC S7-300 CPU in between

HMI and Simovert Masterdrives MCs. IT-343-1 device should be configured, and S7-300 unit

must be programmed such a way so the user can communicate and control the Motors from

the Internet. Simovert Masterdrives MCs must be programmed and parameterized in order to

be communicated by S7-300 unit.

 9

3 Introduction
This document is written and organized such a way that it can be used in chronicle order or

any given chapter can be used independently. It is assumed that the reader has some

background in control theory and automation, and in information engineering. It is not scope

of this documentation and also not possible to explain all the details of all the relevant topics.

Therefore only project specific information is covered carefully; otherwise documentation

would be massive and go out of control. For example Compendium for Simovert

Masterdrives MC V1.66 is about 1500 pages which include very important information about

Siemens Masterdrives. If the user is not satisfied with the information for any given chapter,

he or she can take advantage of the references.

3.1 Chapter overview

There are six chapters and an appendix in this document:
• Chapter 1: Acknowledgement

• Chapter 2: Abstract

• Chapter 3: introduction

• Chapter 4: Modules and the components that are used in this system are listed.

• Chapter 5: The assembly of the communication processor CP5613 2A, and

PROFIBUS is given.

• Chapter 6: The industrial communications briefly explained, and then means of

communications that are used in this project are explained.

• Chapter 7: Motion controllers and parameterization methods of them is given. This is

very essential for accessing Masterdrives MCs.

• Chapter 8: In this chapter operation modes, and the modern control principals behind

them is given. Digital Inputs (DI) and DI assignment also described.

• Chapter 9: Communications board PROFIBUS (CBP) is used to link Masterdrives

MCs (slaves) to the PROFIBUS bus system, therefore; the CPB and its telegram types

are examined and explained.

• Chapter 10: An S7 control program is developed to implement the functionalities of

the HMI

• Chapter 11: HMI development using Java programming language and siemens S7

beans in Eclipse environment.

• Appendix 1: Configuration of PC and SIMATIK S7-300 are explained in this section.

 10

Figure 3.1The system description

Here is the model of finished system. It can be accessed via MPI, PROFIBUS or Ethernet, or

via the Internet. MPI is mostly used for local access for diagnostic reasons or system updates.

FROFIBUS and Ethernet is mainly used companywide, but internet access can be used

anywhere in the world. The Internet access enables the distributed management Supervisory

Control and Data Acquisition (SCADA).

 11

4 System

4.1 Hardware

4.1.1SIMOVERT MASTERDRIVES MC Setup 6SX-7000-0AF10

Figure 4.1 SIMOVERT MASTERDRIVERS MC

4.1.1.1 Masterdrives MC 6SE7012-5EP50-Z
Vin 3AC 380-480V 1.7A

Vout 3AC 0-380..480V

Iout 1.5A

4.1.1.2 Masterdrives MC 6SE7011-0TP50-Z (Right)
Vin DC 510-650V

Vout 3AC 0-380..480V

Iout 2A

 12

4.1.2 Motors:

4.1.2.1 SIEMENS 3-Permanent-Magnet-Motor 1FK6032-6AK71-1TG0

Nr.E K883 7887 01 007

MO/N 1.1/0.8 Nm Io 1.7A UIN 252V

nN/max 6000/8300 min-1 EN 60034

OP1S 6SE7090-0XX84-2FK0

4.1.2.2 SIEMENS 2-Magnet-Motor 1FT6031-4AK7

There is no information sticker on the second motor. Since this training unit was configured

by siemens; the original parameter in Masterdrives MC must reflect the parameters of the

motor. Here is the motor information taken from Masterdrives MC by using Drive Monitor:

Motor rotor speed: 6000 min-1

Motor rotor frequency: 200 Hz

Max power factor: 0.800

Motor rotor torque: 0.75 Nm

4.1.3Siemens SIMATIC S7-300 Setup

Figure 4.2 SIMATIC S7-300

 13

• Siemens SIMATIC S7-300 CPU

CPU315-2DP 315-2AF03-0AB0

• SIMATIC NET

CP 343-1 IT 343-1GX20-0XE0

• DC 24V Power Supply

PS307 5A 307-1EA00-0AA0

• Digital Input

SM321 321-1BH02-0AA0

DI 16xDC24V

• Digital Output

SM322 321-1BH01-0AA0

DO 16xDC24V/0.5A

• Analogue Input/Output

SM334 334-0KE00-0AB0

AI4/AO2x12BIT

4.1.4Communication Board, PC and cables

• CP5613 Communication Board

• PROFIBUS cable and Connectors

• Personal Computer (PC)

• RJ45

• PG cable

4.2 Software

• Drive Monitor V5.3.2.2

• Drive ES V5.3 + SP3

• SIMATIC Manager

STEP 7 Version V5.3 + HF2

• Eclipse Version 3.2

• Java 2 Runtime Environment, SE V1.3.2

• J2SE Runtime Environment 5.0

• Siemens API for Java

Release V2.5.5

 14

5 Assembly

5.1 CP5613 A2 Communications Processor

In configuration part, we will see that CP5613 A2 communications processor is capable of

communicating thorough PROFIBUS DP, and MPI. In order to set PROFIBUS up one must

use MPI to download the system configuration to the CPU, but this part will be explained in

configuration part in detail.

Figure 5.1 CP5613 A2

1. The CP 5613 A2 is a PCI communications card for connecting PCs to PROFIBUS

with Windows 2000, Windows XP and Windows Server 2003.

2. CP 5613 A2 optimized for the fast DP master mode, which can handle up to 124 DP

slaves.

3. Plug-and-Play support

4. Floating RS-485 attachment

5.1.1 Instructions for assembly

1. install the product software, as follows:

 15

• After installation there will be an icon

2. Install the CP 5613 A2 module. These instructions are same standard instructions for

installing an electronic device or a PCI card to PC;

• Make sure to discharge static electric from your body, from computer and the

tools.

• Do not touch the CP 5613 A2 communications processor from pins or conductors.

• PC must be turned off during installation.

• Insert the CP 5613 A2 to an available PCI slot

5.2 PROFIBUS

PROFIBUS bus connector

RS 485-IS; 6ES7 972-0BA50-0XA0

Figure 5.2 PROFIBUS connector

PG-PC-Schnittstelle einstellen.lnk

 16

5.2.1 Specifications

Mechanical

 PROFIBUS 9 Pole SubD Pin Headers

 Programming/Diagnostics 9 Pole SubD Socket

 Insertion (withdrawal) cycles Min. 200

 Cable Type Solid Core PROFIBUS Type A, EN50170

 Cable Diameter 8mm

 Screw/Tightening Torque 4-40 UNC/0.4Nm

 Enclosure Material Die-Cast Zinc

 Temperature Range -20°C to +75°C

 Cable Connection IDC Technology

 Terminating Resistor Yes, Built-In Switchable

 Bus Signals Dual, IN and OUT

Insulation Stripping Lengths

 Outer Sheath 17mm

 Shield 11mm

Wires have to be stripped as shown

Bus cable installation
(1) Cable shield

(2) Bus cable (e.g. 6ES7 972-0BA50-0XA0)

- strip insulation, e.g. with stripping tool

6GK1905-6AA00

(3) Contact cover for insulation-piercing

connecting device

- insert the green and red cores into the

open contact cover right up to the end

- close the contact cover (press it down

as tight as possible)

(4) Insert the cable into the opening (cable

shield must lie bare on the metal guide)

(5) Close the housing cover and screw it

shut

 [1]

 17

5.2.2 Bus connection for the first and last node on PROFIBUS

Cable must always be connected on the left (see label A1, B1)
Switch position must be "ON" for the first and last node on the PROFIBUS, where

terminating resistance is connected, which means the bus line is terminated.

Figure 5.3 PROFIBUS connections

 18

 S7-300
Here are some of the main components of S7-300 module

Component Function Picture
Mounting rail S7-300 racks

Power supply
PS307, 5A

To convert line voltage
(123/130 VAC) 24 VDC

CPU
CPU315-2 DP

To evaluate the user program
and communicate with the
peripherals

Communication Processor
CP 343-1 IT

To connect to
Ethernet/Internet

Signal modules(SM)
Digital Input (DI)
SM321

It matches different process
signal levels to the S7-300
16xDC24V

Digital Input (DO)
SM322

16xDC24V,0.5A

Analogue Input/output
SM334

AI4/AO2x12BIT

PG cable Connects PG/PC to the CPU

RJ45 To connect to internet

 19

5.2.3 Installing components on the rail

1 Connecting the protective

conductor

2 Mounting order 1. Power supply module
2. CPU
3. Communication Processor
4. SMs, IMs

3 - Plug the bus connectors
into the CPU and SMs/CPs
- Except for the CPU, each
module is supplied with a
bus connector.
- Always start at the CPU
when you plug in the bus
connectors. Remove the bus
connector from the "last"
module of the assembly.
- Plug the bus connectors
into the other modules. The
"last" module does not
receive a bus connector.

4 Mount all modules to the
rail in the order given at
step 2, slide them up to the
module on the left, and then
swing them down.

 20

5.2.4 Power Supplies

• Masterdrives MC: 380/220 V, 50Hz, 63A

• S7-300 Unit: 220V, 50Hz, 16A

Figure 5.4 Power supply 380 V

Figure 5.5 Power supply 220 V

 21

6 INDUSTRIAL COMMUNICATIONS
It is not focus of this document to go in detail of all types of industrial communications,

instead, as it is seen from the Figure 6.1 to explain the types of communications that have

been used during development of this project.

Figure 6.1 A screen shot of S7 communication module

Communications networks play very important role in the modern automation solutions. They

allow to interconnect components and devices to control and exchange information between

different automation levels.

Industrial networks must comply with certain norms and meet high quality requirements over

and above those of normal networks to have successful automation system and production

plant.

What is the network used for?

• Link I/O to the controller?

• Link PLCs and operator interfaces together?

• Link computers in manufacturing together?

• Connect manufacturing with the rest of the company?

• Link manufacturing with other plants e.g. suppliers

 22

Figure 6.2 Industrial communication pyramid [2]

As it is seen in the communication pyramid industrial communications system must allow the

connection of the simplest sensors and actuators to controllers and the connection of

controllers to each other and to computers.

Certain factors in industrial environment such as electromagnetic interference, high levels of

chemical contamination, dampness or mechanical strain puts high demands on the network

structure and network components.

Industrial communications networks belong to the LAN group, even though by

internetworking LANs with Internet. It is used worldwide transmission of selected

information from the production area to another is nevertheless possible. Also it enables to

control and visualize plants in remote areas.

Figure 6.3 shows the methods to communicate with Masterdriver MCs using PC (Drive

Monitor) or OP1S. During this project MPI is only used during hardware configuration,

between SIMATIC S7-300 and PC. Serial Port (USS) is used to configure (Parameterize)

Masterdrives MCs either using OP1S or Drive Monitor in conjunction with Drive ES.

 23

Figure 6.3 Means of Communications with Masterdrivers MCs

6.1 The Multipoint- Interface (MPI)

This bus system was mainly developed as a programming interface. MPI enables us to set

communication with components that work for the ‘man/machine interface’ and for

homogenous communication between automation devices. In this project MPI used to

download the initial system configuration to the CPU.

The operation area from the MPI and PROFIBUS is divided into many areas, where MPI is

considerably cost effective. This interface is already available in all SIMATIC S7 products as

a standard bus system, therefore no “outside manufacturers” product is needed to be

integrated for communication

 24

• Up to 32 MPI nodes can be realized.

• Each CPU has a possibility of up to 8 dynamic communication connections for the

basic communication to SIMATIC S7.

• Each CPU can operate up to 4 statistic communication connections for the additional

communication to the PG/PC, SIMATIC HMI-Systems and SIMATIC S7.

• Data transmission speed 187,5 kbit/s or 12Mbit/s

• Flexible configuration possibilities in the bus or tree structure (with repeaters)

• Maximum wire length is 10km (with repeaters).

• Interface is RS485.

MPI can be used for simple linking in networks and enables the following forms of
communication:

• Global communications: The networked CPUs can cyclically exchange data under

one another.

• Programming and diagnostic functions: MPI executes these functions from other

programmed devices/PCs to all networked PLCs. There the MPI interface of the CPU

is directly connected with the internal communications bus (K-BUS) of the S7-300.

The function modules (FM) and communications modules (CP) are switched directly

over the MPI with the K-Bus connection from the PG.

• Simple connection: To connect operator panels/operator stations to the SIMATIC S7

PLCs.

Figure 6.4 Connector for MPI bus

 25

6.2 The PROFIBUS DP

The “PROFIBUS” (PROcess Field BUS) was developed in the beginning of 1991.

The goal of developing PROFIBUS was to develop a field bus system to link up a network of

automation devices of the lowest field level from sensors and actors up to the process control

in the cell level. It is optimized for SIMATIC communication, which has greater speed

compared with other automation protocols used for data communication. Its availability for

the bus systems of the management and cell level e.g.: industrial Ethernet and field level with

PROFIBUS are some of the useful features. PROFIBUS DP uses Layer 1, and Layer 2, and

the User Interface. Layers 3 to 7 are not developed, it is designed especially for

communication between the programmable controller and the distributed I/O devices at he

field level.

Figure 6.5 a sample view of PROFIBUS

 26

PROFIBUS-DP specifications under the Norm 50170:

• The bus allocation occurs by the PROFIBUS-DP after the processing of ‘’Token

passing with supported master-slave’.

• Typical cycle time is between 5 -10 ms.

• Maximum number of nodes; 127

• Frame length of user data can be 0-246.

Transmission rate in Kbaud 9,6 19,2 93,75 187,5 500 1500 3000 6000 12000

Length per segment in m 1200 1200 1200 1000 400 200 100 100 100

Max. length in m 12000 12000 12000 10000 4000 2000 400 400 400
By number of bus

segments: 10 10 10 10 10 10 4 4 4

Table 6.1 PROFIBUS transmission rates

• The bus configuration is modular expandable where as the peripherals and field

devices are connected and unconnected during the operation.

• The data transmission occurs either over a 2 wire cable with a RS-485 interface or

over a fibre-optic cable. We restrain ourselves here to the 2 wire cable data

transmission possibility.

• The unprotected and twisted 2 wire cable (Twisted Pair) has a minimum cross section

of 0.22 mm² and must be connected at the end with the shaft (termination) resistor.

• An area-wide network occurs by the PROFIBUS-DP through the

compartmentalization of the bus system in the bus segments that can be connected

over repeaters.

6.3 Ethernet

In SIMATIC NET communication system, Industrial Ethernet is the network for the

management and cell level. Physically, it is an electrical network, which uses a shielded

coaxial cable or twisted pair or fibre-optic cables with an optical network. The international

standard IEEE 802.3 defines Industrial Ethernet. It is accessed using the CSMA/CD (Carrier

Sense Multiple Access with Collision Detection) network access technique specified in IEEE

802.3

 27

Ethernet has some important properties giving the following advantages:

• Fast start-up by most simple wiring methods

• High availability since existing installations can be expanded without any problems

• Practically unlimited communication performance since scalable performance

through switching technology and high data rates are available if required

• Networking of the most varied fields of application such as offices and production

facilities

• Company-wide communication through the coupling facility via WAN (Wide Area

Network) as well as via ISDN or Internet

• No investment risk thanks to the continued and compatible further development

• Reserving of data at industrial wireless LAN (IWLAN). [1]

Figure 6.6 Industrial Ethernet

 28

Types of Communications for S7 300/400 with an Ethernet CP

Possible types of communication Interfaces / Services / Protocols

• PG/OP communication
• S7 communication

with the protocols
– ISO
– TCP/IP (RFC 1006)

• S5-compatible communication

with the SEND / RECEIVE interface and the
protocols
– ISO Transport
– ISO-on-TCP (TCP/IP with RFC 1006)
– TCP/IP
– UDP
– E-mail:

• PROFInet communication
with the protocols
– TCP/IP

• HTML process control with web
browser

with the protocols
– HTTP / IP protocol

• File management and file access with
FTP

with the protocols
– FTP / IP protocol

Table 6.2 Types of Communications for S7 300/400

 29

7 MOTION CONTROLLERS
SIMOVERT MASTERDRIVES MC (Motion Control)

6SE7011-SEP50-Z and 6SE7012-OTP50-Z

Figure 7.1 SIMOVERT MASTERDRIVES MC

 30

Specifications

Voltage range 3-ph. 380 - 460 VAC ± 15%: 50/60 Hz ± 6%

Power range 3/4 to 250 HP (0.5 - 200 kW)

Control Voltage 24 VDC

Overload 160% for 30 Sec. or 300% for 250 mSec. for
Compact Plus

Ambient Temperature 32°F - 113°F (0°C - 45°C)

Installation Altitude Up to 3300 feet (1000m)

Approvals UL, CE, CSA, EN, IEC/VDE

Table 7.1 SIMOVERT MASTERDRIVES MC Specifications

The SIMOVERT MASTERDRIVES MC (Motion Control) belongs to the SIMOVERT

MASTERDRIVES product group. This product group represents an overall modular, fully

digital component system for solving all drive tasks posed by three-phase drive engineering.

The availability of a high number of components and the provision of various control

functionalities enable it to be adapted to the most diversified applications. [2]

The MASTERDRIVES Motion Control (MC) frequency converters are specially designed for

industrial servo drive applications. In addition to the well-proven modular hardware concept,

SIMOVERT MASTERDRIVES MC offers modular software featuring, freely

interconnectable function blocks, and integrated technology functions to program specific

applications (see Figure 2.8)

Figure 7.2 Free blocks [3]

 31

MASTERDRIVES Motion Controllers compatible to;

• Communication, such as PROFIBUS

• technology

• operator control and visualization

Standard Features

One hardware platform to provide:

• Closed Loop Position Control

• Closed Loop Speed Control

• Torque control

• IGBT inverter bridge through entire power range.

• Automatic voltage adjustment within the power range.

• Packaging capability to be ordered for common DC bus configurations. Non-regenerative or

full regenerative converter sections available as standard option.

• Ability to operate various speed/position feedback devices (Absolute Encoders, Optical

encoders, Resolvers, and Pulse encoders).

• Able to operate various motors with one drive (Siemens synchronous servo, Siemens

asynchronous servo, & standard inverter rated induction motor)

• 0.001 Hz set point resolution

• One analog input

• One analog output

• 4 programmable binary inputs or outputs (two can be used as high speed inputs with ~1

micro second sensing time)

• 2 dedicated binary control inputs (24 VDC Control)

• 2 separately addressable serial interface ports: 1 for RS485 and 1 for RS232/485

• Over 100 Warning and Fault messages for comprehensive protection.

7.1 Parameterization

In order to use SIMOVERT MASTERDRIVES one must program them first. There are large

number of open-loop and closed-loop control functions, communication functions, as well as

diagnostics and operator control functions implemented in the converters’ and inverters’

software interim of function blocks. These function blocks can be parameterized and freely

interconnected depending on the applications. The interconnection is done through connectors

 32

and binectors to exchange signals between individual function blocks. Connectors can be

likened to storage locations which are used to archive "analog" signals. Connectors are

designated with certain pattern, which includes connector name, the connector number and an

identification letter (see Figure 7.4).

The identification letter depends on the numerical representation:

• K Connector with word length (16 bit)

• KK Connector with double-word length (32 bit, increased accuracy)

The binary (digital) output information is archived in binary connectors (binectors).

Binectors can therefore be likened to storage locations used for storing binary signals. The

designation of binectors is; the binector name, the binector number and an identification letter.

The binector identification letter is B, and it only has two states "0" (logically no) and "1"

(logically yes).

Figure 7.3 Function Blocks

 33

Figure 7.4 Connectors and binectors

To connect two function blocs is as simple as assigning a connector to a parameter. Ass it is

seen from Figure 7.5 function block A is connected to function block B by assigning

connector KK0152 to parameter P228.01.

Figure 7.5 Connecting two function blocks

Parameterization can be done in 4 different ways;

1. PMU

2. OP1S

3. Drive Monitor (Stand alone through MPI connection)

4. Drive Monitor (With S7-Project through PROFIBUS)

Even though it is more comfortable to use OP1S compare to PMU, there are limitations to the

usage. Here are the list of menus that can be used via OP1S or/and PMU (Figure 7.6)

 34

Figure 7.6 Parameter menus [4]

 35

7.1.1Parameterization via PMU

Figure 7.7 PMU

As it is seen from the Figure 7.7; PMU has a seven segment display, a toggle key, and up and

down buttons. By default the drive status would be displayed, so in order to enter or modify a

parameter one should follow below steps;

• Press the toggle key first to display the parameter number.

• Pres raise key to change the parameter number.

• If the parameter chosen then pres toggle key choose parameter index

• Pres raise key to select right index

• Pres toggle key to select parameter value.

• Press the toggle key to exit

7.1.2 Parameterization via OP1S (6SE7090-0XX84-2FK0)

The operator control panel (OP1S) is an optional input/output device which can be used for

parameterizing and starting up the units. OP1S is more user friendly than the PMU; instead of

raising or lowering parameters by PMU it is possible to jus type the number and modify it.

Besides that it has some very useful features that make OP1S better choice, for example it has

a non-volatile memory and can permanently store complete sets of parameters, which enables

us to back up parameter sets. Therefore parameterizing same devices on the network becomes

very fast and easy.

 36

Figure 7.8 OP1S

The OP1S communicates to drivers via a serial interface (RS485) using the USS protocol. It

acts as master and the drive as slave during the communication. The operation rate is between

9.6 kBd and 19.2 kBd. There 32 nodes on the network (addresses 0 to 31) for OP1S to

communicate. During the start up it detects all the slaves. Through menu one can jump

between slaves. The plain-text display can be operated in German, English, Spanish, French,

and Italian.

The basic menu is the same for all OP1S units. By pressing the “P” key the following

selections can be made:

• Menu selection

• OP: Upread

• OP: Download

• Delete data

• Change slave

• Config. slave

 37

 Due to the screen size not all the lines can be shown at the same time. It is possible to scroll

the display as required with the "Lower" and "Raise keys.

Figure 7.9 OP1S Screen shots

I you want to go back to previous menu just pres “Reset” key once. For more information on

OP1S module, please check the Compendium (e.g. mc166_kompend_e.pdf).

This is the default view of OP1S screen, which

displays operation information. In order to go to

menu select the “P” key must be pressed once.

Now, by pressing the up and down keys the

desired menu can be highlighted. Two choose the

menu that you want, and then the “P” key has to be

pressed again.

The cursor is under the slave number (00). Just
type the new address and then pres “P” key.

 38

7.1.3 Parameterization via Drive Monitor (Stand alone)

Here I would like to describe how to start and configure the drive monitor to communicate

with the DP slave, and then upload parameter sets from the DP slave for back up reasons. At

the beginning we start with a blank page, and import the parameter set from the back up. Also

some of the parameters through drive monitor and some through PMU must be configured.

With Drive Monitor parameters like drive address, display language, and etc can be changed.

Parameters like menu select are configured by PMU to have access to the drivers.

7.1.3.1 Install Drive Monitor

• Double click icon to start drive monitor.

• Pres the new empty page button to have a parameter set, which will be blank page,

because the unit is not connected yet.

• You will see the blow window to set buss address, and unit version (the firmware

version of the Masterdrive MC, which is 1.66). When you press okay button; you will

be asked to save the parameter set. Choose the location, and a name, and then save it.

Figure 7.10 Derive Properties

• Now you will be prompted whit the blow window. Choose communication Serial

Interface ½ from the list on left hand side.

 39

Figure 7.11 Drive Monitor Communication

• Double click on P700 parameter, and as it is seen in the below figure set the serial

port buss address. In this case it is set to 12.

Figure 7.12 Set serial port bus address

7.1.3.2 Parameterize the slave (Masterdrives MC)

In order to be able to connect drive monitor there are few parameters have to be configured by

using PMU.

 40

• Set parameter P053 to 7. Parameter P053 is displayed in binary format. Each bit has a

certain meaning, as displayed blow picture.

Figure 7.13 Parameter access

• Set parameter P060 to 7, which gives you the right for Upread/Free access.

• Parameter P700, which enables us to define the serial port buss address. Set this parameter

to the values you used to set serial port bus address previously in Drive monitor.

• now press Online (Write RAM) button on drive monitor menu bar to go online, which

means to connect to the DP slave

Figure 7.14 Drive Monitor online button

• If you are having problems with connecting to the DP slave with an error message wrong

COM port. Due to security reasons COM ports are not open to communication in

 41

Windows XP. Which means your operating systems’ settings has to be changed. Make

sure you are logged in as administrator.

7.1.4 Parameterization via Drive Monitor (SIMATIC Manager)

In this case the PROFIBUS is going to be used for connection, and then the Drive monitor is

going to be opened through S7-Project. As it is seen in Figure 7.15 on the top; there are two

ways to connect to the CPU; PROFIBUS or MPI, and one way to the DP slaves, PROFIBUS.

Please see the Appendix 1 for hardware configuration and building as S7 project. In order to

open Drive Monitor:

• start SIMATIC Manager

• Open the project that previously configured. If there is no project then follow steps in

HW configuration to configure hardware in a S7-Project, including adding the slaves

that needs to be connected.

• In S7-Project open parameter set folder by opening MASTERDRIVES CBP

MASTERDRIVES MC Plus Parameter. Of course the folder is empty, because

there are no parameter sets have been saved.

Figure 7.15 Project insert parameter set

 42

• Right click on the parameter folder Insert New Object Parameter set or External

parameters (see Figure 7.15). If it is the firs time that device been connected, there are

no parameter sets have been saved, and then chose “Parameter set” menu.

• After “Parameter set” is been chosen, now by double clicking on it one can open the

parameter set with Drive Monitor.

• Select the Communication folder in parameter view in Drive Monitor then click in

Field Bus Interface

• To set PROFIBUS address use parameter P918, and use bus address between 0 and

127. This bus address should be same as the one chosen during the hardware

configuration.

• Use PMU to change buss address on drive by setting parameter P918’s value to the

value in pervious step.

• Save your project and go on line. Now you will see the Drive monitor below figure, if

not the pres the button in drive monitor, or in the menu choose Drive

Navigator Drive Navigator.

Figure 7.16 Drive Monitor Drive Navigator

 43

• From this view by pressing “Save drive parameters” button the parameter in the drive

can be saved to PC.

7.2 Parameterization Steps

Until now parameterization methods were discussed. After choosing one of the above

methods one can start parameterize the DP slaves. The most convenient method is to use

Drive Monitor, because it enables to see parameters as a complete list or in different

categories and subcategories e.g.: Communication, Motor/encoder Data. For example

Communication parameters are listed under three different categories;

1. Serial Interface 1/2

2. Field Bus Interface

3. SIMOLINK

In every category only the relevant parameters are listed, it therefore makes our job easier.

The method 4 (“Parameterization via Drive Monitor with SIMATIC Manager”) is chosen to

explain to parameterize DP slaves. Before starting to parameterize the DP slaves one should

change few parameters with PMU to make thins simpler (underlined parameter are chosen in

this project’s configuration);

P050 Parameter to define the language

Function parameter for setting the language in which texts are to be displayed on the optional

OP1S user-friendly operator control panel, on Drive Monitor.

P050 = 0 = German

1 = English

2 = Spanish

3 = French

4 = Italian

This parameter is not reset during factory setting!

P060 Parameter to choose the user parameter menu please see Figure 2.12

 P060 = 0 = User parameter (selection of the visible parameters in P360)

1 = Parameter menu

2 = Fixed settings (for factory settings)

3 = Quick parameterization (changes to "Drive Setting" state)

4 = Board configuration (changes to "Board Configuration"

state)

 44

5 = Drive setting (changes to "Drive Setting" state)

6 = Download (changes to "Download" state)

7 = Upread/Free access

8 = Power section definition (changes to "Power section

definition" state)

P053 Function parameter for releasing interfaces for parameterization.
P053 = 0 Hex = None

1 Hex = Cbx communication board
2 Hex = PMU operator control panel
4 Hex = Serial interface (SCom/SCom1), also OP1S and PC
8 Hex = SCB serial input/output modules
10 Hex = Txxx technology board
20 Hex = Serial interface 2 (SCom2)
40 Hex = Second CB board

 0000000000111 (Binary) = 7 (Hex) is chosen.

P918 To define PROFIBUS bus address. 12 is chosen in this project.

P700 To define Serial port bus address. This is optional in this stage, but one can set

it in order to use OP1S as well. I have chosen 12 for this project.

As it is seen in the parameter P060 = 7, Upread/Free access is enabled. For other tasks one

must choose the relevant menu option.

PS: At first the Masterdrive MC master has been configured, and the above buss addresses are

only used for this drive. For the second DP slave different bus addresses must be used.

7.2.1 Main Steps for parameterization

The Figure 7.17 shows the steps of parameterization;

1. Power section definition (P060 = 8)

2. Board definition (P060 = 4)

3. Drive definition (P060 = 5)

4. Function adjustment.

7.2.1.1 Power section definition (P060 = 8)

The power section definition is necessary for compact, chassis and cabinet units. It informs

the control electronics about the power section that working with. Power section definition is

ready as delivered state, and it is therefore only necessary when the firmware is replaced with

a new parameter set.

 45

Figure 7.17 Detailed parameterization steps

P060 = 8 Power section definition

P070 = the relevant PWE is to be chosen depending on the unit that is going to be

parameterized. This can be defined by looking at the order number of the unit then check in

the list provided by siemens. For example the units that are been used in this project are;

 Order Number In [A] PWE
Frequency Converter, 6SE7011-5EP50 1.5 1

 46

Compact PLUS AC-AC
type

Inverter,
Compact PLUS DC-AC
type

6SE7012-0TP50

2.0 2

Table 7.2 Power section

Choose

P060 = 1 Return to parameter menu

7.2.1.2 Board Configuration (P060 = 4)

The visualization parameter r826.x is used for displaying the board codes. Here are board

codes that for the Inverter Compact Plus DC-AC;

Table 7.3 Board configuration

Looking at the tables provided in Compendium V1.66, and board codes listed in r826.x we

can find out the type of board used in the Inverter.

Board Slot Parameter Value
(PWE) Significance

CUMC 94 Basic board

CBP Slot A 143 Communication board
PROFIBUS

SLB Slot B 161 SIMOLINK bus interface
SBR 2 Slot C 115 Sensor board resolver 2

Table 7.4 Boards to be configured

Of course when parameterizing for fist time there won’t be any codes listed in parameter

r826.x. One must know which boards are installed in the device, and then find their

corresponding parameter values in Compendium. Below figure is showing the steps how to

configure CBx (CBP) board, which is going to be the PROFIBUS bus address, and going to

be used for communicating with the drive.

 47

Figure 7.8 CBP board parameterization

7.2.1.3 Drive Setting (P060 = 5)

The control electronics will be configured depending on the motor and motor encoder. In this

section motor data (normalization values) would be entered (parameterized) such as;

• motor type

• motor voltage

• motor current

• motor speed

• stator resistant

• motor torque

In addition, the type of motor control (V/f open-loop control or vector control) and the pulse

frequency are selected. In order to do drive setting; one must carefully study the motor

parameters and the control theory, because the performance of the application will greatly be

affected from it.

 P060 = 5 Select “Drive Setting” menu

 P071 = ? Input unit line voltage in V (540 V)

 P095 = ? Input motor type

 0 = No motor connected

1 = Synchronous servomotor 1FK6/1FT6

2 = Induction servomotor 1PH7/1PL6/1PH4

No

Yes

P060 = 4

CBx inserted

P918 = 1,2 =?

P060 = 1

Decides the menu

PROFIBUS address

 48

3 = Synchronous servomotor general

4 = Induction motor general

If Siemens servomotors are used and 1 or 2 is entered, the connected motor can be directly

selected in P096 and P097. The stored motor data are then taken automatically from an

internal list. If other motors are used (entry of 3 or 4), the motor data must be entered

separately. [4]

P096 = ? Enter Function parameter for selecting a 1FK6/1FT6 synchronous

servomotor from the internal list of motors. For parameter values, see

annex "Compendium".

Input
P096

Motor order number
(MPRD)

Speed
nn [rpm]

Torque
Mn [Nm]

Current
In [A]

Number
of pole
pairs

1 1FK6032-6AK7 6000 0.8 1.5 3

P128 = 3 A Max current

P130 = SBR Res. 2-Pole Select the motor encoder

P290 = 0 Current control Select the type of current control

P325 = 2 Input voltage boost

.

.

.

For more detailed information see the compendium.

7.2.1.4 Function adjustment

Up to now in parameterization hardware characterization has been done. Depending on the

application one must select, and interconnect suitable function blocs in the unit. The function

blocs are provided for study at the end of the compendium. As indicated earlier in this chapter

through the connectors and the binectors certain function blocks can be connected to build a

specific application.

 49

8 Modern Control

8.1 Synchronous Operation

Synchronous operation is a control strategy that is widely applied to industrial field for high

efficiency and precision. For example in fully automated print houses motors highly

synchronized. Synchronization does not mean operation under the same speed. Depending on

the gear diameter of each motor, speed shall be adjusted so the belt feeder moves smoothly.

Figure 8.1Gears

In the training setup there are LEDs synchronously flashing behind the gears. Every time the

hole is in front of the LED, it flashes so that one can visually see that it is synchronized. Also

there are LEDs flashing in between the gear teeth, which are confirming the synchronization

of the two gears.

There are two different methods for doing the Positioning;

1. Basic positioning

2. Technology Option F01

8.1.1Basic Positioning

The basic positioning can be done through the “Basic Positioner”, which is implemented by
connecting the free blocs. It provides operations modes to move axis from point-1 to point-2.
Advantages of basic positioner:

• Cost neutral (with basic unit functionality)
• Easy to understand (basic commissioning)
• Continuous setpoint evaluation (during constant transfer)
• Control/checkback interface using BICO technology (e.g. PLC connection)
• Mode change on the fly (REF, POS, SETUP)

 50

• Lower calculation time loading
• Lower project engineering costs
• Greater freedom for applications
• SIMATIC S7 not absolutely necessary [3]

The basic positioner made of the three free blocks, and it is available at no extra cost with the
same functionality as the basic unit to provide a solution for “basic” positioning applications.

Figure 8.2 Three free blocks

Setpoint transfer and mode management [FD789a]

Setpoint transfer block with mode management and edge-controlled setpoint transfer for

consistent data transfer.

Setup/positioning [FD789b]

Setup/positioning block that traverses a specified path relatively or absolutely using the

specified deceleration, acceleration and speed.

Correction value/homing [FD789c]

Correction block, which provides the position correction and position setpoints for linking to

the position controller and the position detection (see overview diagram FD788, FD788a for

linking to the basic unit). [4]

 51

8.1.2Technology Option F01

Technology option F01is another method to do positioning, which can only be used on a

MASTERDRIVES unit if the unit was supplied with the option by the manufacturer. Even

though it is supplied with option that does not mean it is ready for use. For that it should be

enabled, which involves in extra costs. By checking the display parameter n978 one can see if

the F01 option is present;

• n978 = 0 ==> F01 has been disabled

• n978 = 1 ==> F01 technology option has been enabled

• n978 = 2 ==> F01 technology option has been enabled for 500 hours

Function Diagram Sheet 850 shows that, how one can enable the technology option on a

permanent basis or for a 500-hours trial period.

The Technology Option F01 has the positioning and synchronizations functions. Positioning

can be done with or without help of the Technology Option F01.

The "Technology Software F01" software option contains the following functions:

• Positioning

• Angular synchronization

A MASTERDRIVES MC Power converter with the "technology" software option can be

ordered by specifying the MLFB extension "F01".

8.1.3General functions of Technology Option

Here are general functions that are included to the Motion Control technology software:

• Linear axis: With fixed stops and a maximum traversing range of 1000 m with a

resolution of 1 μm. Software limit switches are evaluated. Here is a transfer carriage,

which makes a good example of a linear axis.

 52

Figure 8.3 Linear axis [3]

• Rotary axis: Rotating infinitely, without fixed stops, with specification of the

direction or direction of the "shortest path”.

Figure 8.4 Rotary axis

• Roll feed: (infinitely rotating rotary axis with "cut-to-length" function). The figure

shows the roll feed as used in a cutting device[4]:

Figure 8.5 Roll feed [3]

 53

8.1.4Positioning

The MASTERDRIVES MC servo converter has an integrated positioning control system,

which includes the following functions (for the detailed explanation of the functions please

see the compendium):

Function name page number in function charts

• Setup 819

• Homing 821

• MDI 823

• Automatic mode 826-828

• Roll feed 830

8.1.5Synchronization

The function chart 831 shows the all the functional blocs which are used in synchronization.

Here some of the synchronization functions:

Function name page number in function charts

• Electronic shaft

• Electronic gearbox 835

• The change of transmission ratio

• Electronic cam 839

• The path/angle setpoint 834

• Two interrupt-capable digital inputs

 54

8.2 Application

Positioning and Synchronization with Virtual Master Axis

Figure 8.6 Description of the Application

The application includes the following configuration:

• Siemens synchronous servo motors: 1FK6 with resolver and 1FT6 with optical

sine/cosine encoder. 1FT6 is driven by the master, which is required for positioning.

• Two MASTERDRIVES MC Converters with technology option F01. Only one of the

converters is doing the positioning (Driver 2, the Master).

• Both drives should be operated in the following modes:

o Homing (this is required for positioning, since resolvers and optical encoders

are incremental and not absolute encoders)

o Point-to-point positioning (MDI; axis type "rotary axis", i.e. without fixed

stops)

o Synchronization with 1:1 transmission ratio using the virtual master axis and

the SIMOLINK drive interface

• When the two-axis pack is used, the synchronization can be checked with reference to

an LED light beam, which is visible through drilled holes in the flywheel mounted on

the motor shafts when the synchronization is operating correctly [4].

 55

SIEMENS Masterdrives MC 6SX7000-0AF10 unit is a training unit, and the positioning

had already done by Siemens. The Technology Option F01 had also been enabled.

Through Terminal Strip Diagnostics and parameter lists in Drive Monitor one can find out the

connection of the Digital Inputs (DI) from 1 to 6 for both drivers.

Figure 8.7 Digital Inputs (Terminal Strip Diagnostics)

LEDs show the status of the digital inputs if they are on or off, and the square buttons indicate

that there are more that one parameter used to get the input from DIs. If we look at the Figure

3.6 for the status of the DIs; tuning DI-1, DI-2, and DI-3 on results a synchronous operation.

Here are the parameters and interconnections for the manual (using the potentiometer and

switches on the unit) operation:

 DI Parameter # Index Value

U221 001 B10 DigIn 1
DI 1

U710 029 B10 DigIn 1 Mode

DI 2 U239 002 B12 DigIn 2

Acknowledge DI 3 P565 001 B14 DigIn 3

U178 B16 DigIn 4

U580 002 B16 DigIn 4

U536 004 B16 DigIn 4

U710 010 B16 DigIn 4

Rough pulse

MDI no.
DI 4

U923 005 B16 DigIn 4

P567 002 B18 DigIn 5 Jog+/

start

DI 5

U536 005 B18 DigIn 5

 56

U689 B18 DigIn 5

U710 003 B18 DigIn 5

U710 028 B18 DigIn 5

U923 006 B18 DigIn 5

P554 001 B20 DigIn 6

555 002 B20 DigIn 6 ON/OFF DI 6

U536 006 B20 DigIn 6

Tabelle 8.1 Digital Inputs

8.2.1 Operations modes

8.2.1.1 Synchronous Operation

The blow descriptions are true for the both drives, but he only thing should be kept in mind is

that; first the master drive (Drive 2), and then the slave drive (Drive 1) should be turned on.

8.2.1.2 Reference run (MDI = 0)

DI-1 = 1

DI-2 = 0

DI-3 = 0

DI-4 = 0

DI-5 = 1

DI-6 = 1

Note: Assuming all DIs are turned off (DIx = 0), and the following the

order should be taking place when turning DIs on: DI-1, DI-6, then DI-5.

If DI-5 is turned on firs the system will not start. In this case Turn DI-5

of then turn DI-6 on. Now DI-3 should be turned on and off again, then

turn DI-5 on. The system will now start working. It is possible to change

the speed by the potentiometer of the master system.

DI-1 = 0

DI-2 = 1

DI-3 = 0

DI-4 = 0

DI-5 = 1

DI-6 = 1

Turn DI-2, DI6, and DI-5 on.

The speed is not changeable by the potentiometers. It is set to 555 rpm for

both drivers.

 57

8.2.1.3 Reference run (MDI = 1)

DI-1 = 0

DI-2 = 1

DI-3 = 0

DI-4 = 1

DI-5 = 1

DI-6 = 1

Turn DI-2, DI-4, DI-6, and DI-5 on.

This time the motors running synchronously at single speed at 27 rpm

master, and 69 rpm slave. Here also speed is not changeable by the

potentiometers.

 58

9 Communication with the Masterdrives MC
Communication to the masterdrives is done through the PROFIBUS DP, therefore only this

method is going to be discussed. There are other methods can be used to communicate with

drivers depending on the application. For more detail on please refer to the compendium.

When PROFIBUS DP is used in a high-level automation system, the interface to the

masterdrives mc is done by CBP (Communications board PROFIBUS) or CBP2

communications boards.

Figure 9.1 CBP communications board (Communications board PROFIBUS)

The communications board has three LEDs, green, yellow, red, provide information on the

current operating status. A 9-pole SUB D socket (X448) performs as an interface for

PROFIBUS system connection, which complies with the PROFIBUS standard.

All connections of this RS485 interface are short-circuit-proof and floating.

The transmission rate of the CPB is between 9.6 kbaud and 12 Mbaud, which is suitable for

optical fibre link. Although it is suitable for an optical fibre link, due to special issues the

optical plugs are not installed to the compact Masterdrives MC units.

 59

9.1 Functionality of the CBP

• Cyclical user data exchange with the master according to the “PROFIBUS DP Profile

for PROFIDRIVE Variable-Speed Drives ”

• Acyclical communication channel for exchanging parameter values up to a length of

118 words with a SIMATIC S7 CPU.

• Acyclical communication channel for connecting the Drive ES Basic start-up,

parameterization and diagnostics tools.

• Support of the PROFIBUS DP control commands, SYNC and FREEZE, for

synchronized data transfer from the master to several slaves and vice versa.

Figure 9.2 Data traffic channels of CBP [4]

9.2 Useful Data

Useful data for the cyclical MSCY_C1 channel (see Figure 9.2) is defined in a certain

structure in the PROFIBUS profile for variable-speed drives version 2 as a parameter

process data object (PPO). Sometimes, the cyclical MSCY_C1 channel is called the

STANDARD channel as well.

The useful data is defined as two parts or areas, which is transmitted in each telegram.

• Process Data Area (PZD); which includes Controlword1 and Controlword2,

Statusword1 and Statusword2, Actualvalue, and Mainsetpoint

• Parameter Area (PKW); which is used for reading and writing parameters

 60

Useful Data Protocol frame

(Header) Parameters (PKW) Process data (PZD)

Protocol frame

(Trailer)

Figure 9.3 Parameter identifier value

There are 5 types of Parameter Process data Objects (PPO). The type of PPO to be used

depends on the task. The selection can be done in the S7 Project with the hardware

configuration.

Figure 9.4 PPO types

PKW: Parameter identifier value STW: Control word 1

PZD: Process data ZSW Status word 1

PKE: Parameter ID HSW: Main set point

IND: Index HIW: Main actual value

PWE: Parameter value

As part of telegrams PPO1, PPO2, and PPO5 one can read and write parameters from the DP

slave or to it, by using PKW (parameter identifier value

 PPO

 61

All of these telegrams PPO1, PPO2, PPO3, PPO4 and PPO5 PZD contain control words and

setpoints or status words and actual values.

The type of PPO to be used depends on the application, and they are defined during the

hardware configuration. In a configuration for direct data exchange (lateral communication),

local input address areas of an intelligent DP slave or of a DP master are assigned to the input

address areas of a PROFIBUS-DP partner.

The intelligent DP slave or the DP master uses these assigned input address areas to receive

the input data that the PROFIBUS-DP partner sends to its DP master. Depending on the PPO

type the number of words in a telegram will vary, and also the address range will vary

depending on the PPO type as well.

Figure 9.5 PPO overview in hardware configuration

For PPO1 address range is:

 PKW: 284-291 4 words (8 bytes)

 Actual value/setpoint: 292-295 2 words (4 bytes)

For PPO2 address range is:

 PKW: 284-291 4 words (8 bytes)

 Actual value/setpoint: 292-303 6 words (12 bytes)

One can compare the above information with the information given in Figure 9.4 about PPO

types to verify that if the actual hardware configuration agrees with the theoretical

information.

 62

PZD1

STW1

1st

Word

PZD2

HSW

2nd

Word

PZD3

3rd

Word

PZD4

4th

Word

PZD5

5th

Word

PZD6

6th

Word

PZD7

7th

Word

PZD8

8th

Word

PZD9

9th

Word

PZD10

10th

Word

16 bit process

data
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010

PPO1, PPO3 PZD2

PPO2, PPO4 PZD6

M
aster to Slave

PPo5 PZD10

PZD1

ZSW

1

1st

Word

PZD2

HIW

2nd

Word

PZD3

3rd

Word

PZD4

4th

Word

PZD5

5th

Word

PZD6

6th

Word

PZD7

7th

Word

PZD8

8th

Word

PZD9

9th

Word

PZD1

0

10th

Word

P734 P734 P734 P734 P734 P734 P734 P734 P734 P734

Slave to M
aster

001 002 003 004 004 006 007 008 009 010

Table 9.1 Fixed assignment and combination values

If the technology board is not mounted; one can use the fixed connections shown in Table 9.1.

Even if the board is mounted this table is very informative about the wirings of process data

from the master to the slave, and vice versa.

 Parameter ID (PKE)

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st word AK SPM PNU

2nd word Parameter index (IND)

 Parameter Value (PWE)

3rd word Parameter Value High (PWE1)

4th word Parameter Value Low (PWE2)

Table 9.2 Telegram Structure PKE area

The Table 9.2 only complies with the PPO1, PPO2, and PPO5. By using one of these PPOs

one can write or modify parameter in DP slaves. Normally parameterization is done through

Drive monitor or OP1S, but in S7 Project it is important to initialize or change some of the

 63

parameters depending on the application. For that reason PKW part of PPO is used very often

in the program. Figure 9.6 shows a piece of code which makes use of system function (SFC

15 "DPWR_DAT") to send a telegram which includes the information in the format of Table

9.2.

Figure 9.6 SFC 15 writing data to DP sale

Table 9.2 shows the structure of the PKE of a telegram. Where AK: Task ID or reply ID,

SPM: Toggle bit for processing the parameter change report, PNU: Parameter number.

Reply ID
Task ID Significance

Positive Negative
0 No task 0 7 or 8
1 Request parameter value 1or 2 7 or 8
2 Change parameter value (word) 1 7 or 8
3 Change parameter value (double word) 2 7 or 8
4 Request description element 3 7 or 8
5 description element (not with CBP) 3 7 or 8
6 Request parameter value (array) 4 or 5 7 or 8
7 Change parameter value (array, word) 4 7 or 8
8 Change parameter value (array, double word) 5 7 or 8
9 Request the number of array elements 6 7 or 8

Table 9.3 Task ID master to converter

 64

The task ID 7 is the most commonly used one.

Example: Decimal Hex

PNU (Parameter): 554 22A

IN (Index): 001 1

AK (Task ID): 7 7

PWE (Parameter value): 3100 C1C

SPM: 0 0

From table 4.3 the telegram can be constructed as;

1st word: AK SPM PNU: 722A

2nd word: IN 001

3rd word: PWE1 0000

4thword: PWE2 C1C

9.3 Starting the DP Slave through S7-Project

During the hardware configuration the DP Slave PROFIBUS bus addresses were configured.

DP Slave is already connected to the Drive Monitor, and it is possible to parameterize it

manually with Drive Monitor. Before starting to write the control program (S7 Program), we

are going to test the connection with SIMATIC S7-300, and run it through diagnostics tool of

S7-Project.

To do that; first some interconnections have to be done by connection some connector to

certain parameter so that it will be possible to gain the control over the control words and

Mainsetpoints. When the MASTSTERDRIVES MC training unit is turned on; by default it

will listen to the digital inputs from the manual switches. In order to control the unit from the

S7-project by using PROFIBUS connection; DIs must be taken from control words. For that

each DI should be addressed to the relevant bit of the control word. Binectors of the control

word1 are listed in Figure 9.7. For example bit number 0 is connected to the binector B3100.

For rest of the binector connections please see Table 9.4.

 65

Figure 9.7 PZD1 (Control word 1)

 DI Parameter # Index Value

U221 001 B3100
DI 1

U710 029 B3100 Mode

DI 2 U239 002 B3101

Acknowledge DI 3 P565 001 B3102

U178 B3103

U580 002 B3103

U536 004 B3103

U710 010 B3103

Rough pulse MDI

no.
DI 4

U923 005 B3103

P567 002 B3104

U536 005 B3104

U689 B3104

U710 003 B3104

U710 028 B3104

Jog+/

start
DI 5

U923 006 B3104

P554 001 B3105

555 002 B3105 ON/OFF DI 6

U536 006 B3105

Table 9.4 Connection DI to PZD1

 66

Once all the parameters modified according to the Table 9.4, there is one more thing to do;

which is connecting the mainsetpoint (KK3032) to the parameter U681 (2681).

Now it is possible to start/stop and change the speed from the diagnostic tool in S7 project.

Figure 9.8 Diagnostics tool read/write status and control words

Here are the commands for reading and writing PZD of the driver from SIMATIC S7-300;

Read command Address Write command Address

PIW 280 PQW 280

PIW 280: read status word1 at the address of 280 in DP slave

PQW 280: write the control word1 to the address of 280 in DP slave

 67

10 S7- Programming and Control
The control program is written in STEP 7 as Statement List (STL), which is a textual

programming language that can be used to create the code section of logic blocks. STL syntax

statements are similar to assembler language and consist of instructions followed by addresses

on which the instructions act. STL programming is very similar to machine languages; it has

all the necessary elements for creating a complete user program. It contains a comprehensive

range of instructions, and a total of over 130 different basic instructions and a wide range of

addresses are available. There are functions, function blocks, and data blocks allow you to

structure your STL program. It is not intend of this chapter to go through all the code of

program, but explain some of the key functionalities.

These are some documents one can read when/if needs some help;

• Working with STEP 7 V5.3, Getting Started Manual

• Programming with STEP 7 V5.3

• Configuring Hardware and Communication Connections, STEP 7 V5.3

• From S5 to S7, Converter Manual

The order number of the above documents is: 6ES7810-4CA07-8BW0

Block Description

Organization Blocks (OB) OBs determine the structure of the user program.

System Function Block

(SFC)

SFBs and SFCs are integrated in the S7 CPU, and permit

the programmers access to some important system

functions.

Function Block (FB)
FBs are blocks with a "memory" which can be programmed

by the programmer.

Functions (FC) FCs contain program routines for frequently used functions

Instance Function Blocks

(Instance DB)

Instance DBs are associated with the blocks when FBs of

SFBs are called. They are created automatically during

compilation.

Data Blocks (DB)

DBs are data areas for storing user data. In addition to the

data that are assigned to a function block, shared data can

also be defined and used by any blocks.

Table 10.1 Block types

 68

The control program consist of three main sections and a subsection; as they are seen in the

Figure 10.1; Synchronous operation, Asynchronous operation, Reset Synchronous operation,

Reset Asynchronous operation, which are communicating between Human Machine Interface

(HMI) and Masterdrives MCs. There sub section User Friendly HMI, designed to run

synchronous operation with more self descriptive GUI. User Friendly HMI will be an optional

HMI in Synchronous operation’s page. It uses the Synchronous operation mode’s

functionalities; therefore it will not be explained separately.

Figure 10.1 Flow diagram of S7 Control program

 69

As program starts at first the type of operation must be decided. Depending on the operation

new user interface will show up. If asynchronous operation is chosen then it is ready for

setting the speed independently, if synchronous operation is chosen then the next step is to

decide the mode of the operation, and if this user interface is complicated for you, then you

may want to choose the “User Friendly HMI”, which is easier to operate. There are three

modes that can be chosen from; synchronous mode, reference mode and MDI.

Figure 10.2 Flow diagram of control program

 70

10.1 Synchronous Operations

Points of programming view, both operations (synchronous and asynchronous) have some

commonalities that can be expressed by the blow flow diagram.

Figure 10.3 Common program flow

10.1.1Parameterization

In order to bring the Masterdrives MCs in the state that they are ready for the any given type

of operation, they must be parameterized. Just because there are more then one parameter to

configure there must be a piece of code that repeats the write operation in a loop, where the

number of parameters defines number of iterations.

 Bit-Nr.

1. Word

15 12

 AK

11

SPM

10 0

 PNU

 Bit-Nr.

2. Word

15 8

 Index High

7 0

 Index Low

3. Word Parameter Value High PWE1

4. Word Parameter Value Low PWE2

Table 10.2 Telegram PKW area

 71

To change (to write a value to a parameter in DP slave); one must use the system function

called SFC15, which only accepts the telegram in a certain format which is described in Table

10.2.

SFC15 “DPWR_DAT” :

CALL "DPWR_DAT" // SFC15

 LADDR :=#Adress_EA //The address of DB slave

 RECORD :=P#L 0.0 BYTE 8 //The prepared telegram to be sent

 RET_VAL:=#Alarm_send //Alarm

 NOP 0

The Figure 10.4 is the flow diagram is a section from the S7 Program, which performs the

parameterization task every time it is called. This section of the code is used for two main

tasks parameterizing the Masterdrives MCs, and resetting them. The reset task is basically

same as parameterization but the values are the default values that were before the change

took place.

Figure 10.4 Parameterization flow diagram

 72

Let us look at the function blocks used in Figure 10.4;

FB5:

In FB5 the DB number is assigned to the variable called “DB_Number”, to let the function

know which database is used for the data to be fetched from, and let the function know that

how many times it must repeat the task. Here is the code:

L 20

 T #Iteration // number of times hat loop take place

 L 85

 T #DB_Number // DB 85 is going to be used

 CALL FB1, DB1

 Iteration:=#Iteration

 DB_Number:=#DB_Number

FB1:

FB1 makes sure that after every read operation it points to the next parameter. Each parameter

takes 4-word space in database so the pointer has to jump 4 words after every read operation.

The only exception is that the first read operations start at the second line of the DB, because

the first line is the address of the Masterdrive MC (e.g.:272)

L 2 // jump to the next line where the first parameter is

 T #JumpAddress_DB

 L #Iteration // Number of iterations for loop

next: T MB 10

 CALL FC3

 DB_Number :=#DB_Number

 JumpValue :=#JumpAddress_DB

 Parameter_Sent:=#Parameter_Sent

 L #JumpAddress_DB

 L 8

 +I // add 8 bytes after each reading of parameter

 T #JumpAddress_DB

 L MB 10

 LOOP next

 73

Here is the small portion of a database, where the data is been read from.

Figure 10.5 DB85 Database used for MC 12

FC3:

FC3 does the main job; it constructs the telegram in format seen in Table 10.2 and sends it

using the SFC15 to Masterdrives MC.

Word 1 & Word 2

 L #DB_Number //Load DB number

 T #DB_Number_TEMP //and save it

 OPN DB [#DB_Number_TEMP] //Open Database with the corresponding DB#

 L #JumpValue //Decide where to start reading

 SLD 3

 LAR1

 L DBW [AR1,P#0.0] //Read the relevant parameter

 T #Parameter_INT //Save the parameter value

 L 2000 //if the value is bigger than 2000

 >=D

 JCN M001

 L #Parameter_INT

 L 2000

 -D //is it a U-Parameter

 T #Parameter_INT

 L W#16#80

 T #PNU_biger_2000

M001: L #JumpValue //Decide which value to read

 L 2 //load 2 in Accu 1

 74

 +I //increase jump value by two

 T #Jump_Mark_2Byte_Further //transfer to jump in db

 SLW 3

 LAR1

 L DBW [AR1,P#0.0] //load a word from the DBs

 SLW 8 //Shift Index 8 Bit to the left

 L #PNU_biger_2000

 +D

 T #INDEX_Word_2 //Save the value as word 2

 L #Jump_Mark_2Byte_Further //find out which bit to read

 L 2

 +I //increase the jump value

 T #Jump_Mark_2Byte_Further //decide which bit to read

 SLW 3

 LAR1

 L DBW [AR1,P#0.0] //load a word from the DBs

 T #AK_Save //Save the value as Task ID

 L #Parameter_INT //Parameter number in Accu 2

 L #AK_Save //Task ID in Accu 1

 SLW 12

 OW

 T #AK_PNU_Word_1

Word 3

 L 0

 T #PWE_Word_3

Word 4

 L #Jump_Mark_2Byte_Further //jump value

 L 2

 +I //jump value increased by 2

 T #Jump_Mark_2Byte_Further

 SLW 3

 75

 LAR1

 L DBW [AR1,P#0.0] //load a word from the DBs

 T #PWE_Word_4 //save it as word 4

Read the address of Masterdrive DM:

In every database the first line is the address off the DP slave, for example first line of DB85

is 272, which belongs to Masterdrives MC 12

 L DBW 0 //The first line of the DB is address of DP slave

 T #Adress_EA //PKW Address as Word for SFC15

SFC15:

SFC15 is a system function in SIMATIC S7 300, which is ready to use by the programmers.

It can be used two different ways; either with direct addressing or indirect addressing. It is

always easy to do tests or diagnostics with direct addressing. The only thing to be kept in

mind is that the numbers should be converted to Hexadecimal format.

CALL "DPWR_DAT"

 LADDR :=#Adress_EA //The address of DB slave

 RECORD :=P#L 0.0 BYTE 8 //The prepared telegram to be sent

 RET_VAL:=#Alarm_send //Alarm

 NOP 0

10.1.2FB10 Conversion

There are few tasks done in FB10;

1. Percentile speed <==> decimal speed: the Masterdrives MC takes the speed in percentile

for example 4000 is equivalent to 100% and 2000 corresponds to50% of the full speed. The

reason for that is; the values stored in the connectors are normalized values, with a few

exceptions (e.g. connectors for control words). The value range of these connectors covers a

percentage value range of:

-200 % (8000H) to +199.99 % (7FFFH).

 76

Figure 10.6 value range of 16-bit connectors (Kxxxx) [1]

According to Figure 10.6 one can calculate the constant value transfers Hex value to the

decimal value, keeping the maximum speed of the motor in mind the theoretical value should

be;

6000 rpm = 4000H = 16384Dec

1 rpm = K

K =16384/6000 = 2.730666

Which means when we want to set speed to 300rpm then we must multiply this value with

K = 2.730666. Although this value does not work, because the application saved in the

Masterdrivers MC limits the maximum motor speed to 2730rpm.

2730 rpm = 4000H = 16384Dec

1rpm = K

6
2730

16384
==K

When K = 6 is used the entered peed is equal to the speed read in PMU of the driver.

2. Check if entered speed exceeds the limit (SetValue>2500rpm):

To make sure to not overdrive the motors the speed is verified against a maximum value.

With the manual operation of the unit the maximum speed is about 2730rpm, therefore to be

on safe side I set the maximum speed limit to 2500rpm. If the maximum limit is exceeded the

value is not sent to Masterdrive MC, instead a warning bit is set (SetValueTooBig), which

alerts GUI to display a message that the entered value is too large.

 77

3. Initialize some of the bits in Control word:

Some of the bits in control word can be set when at the beginning of the operation. For

example the bit 11 is making the system to listen the PROFIBUS.

10.1.3 FC2 Write & Read operations for Control and Status words

There are external input and external output addresses and S7 functions to access these

addresses.

Figure 10.7 Input and Output addresses of peripherals

As it is explained before; peripheral addresses were configured during the hardware

configuration (see Appendix 1). Depending on the PPO types address range will change. For

example PPO1 has the 4+2 word format. The first four words describe PKW area and 2 words

describe PZD area. Here are the addresses of the both drivers 12, and 32, shown in Table

10.3. This table is an interpretation of Figure 10.7, where the address range of the parameter

ID value (PKW), and process data (PZD) are shown. Figure 10.7 is screen shots from

hardware configuration.

Useful Data

Parameters (PKW) Process data (PZD)

Masterdrive

MC

 Word 1 Word 2 Word 3 Word 4 PZD1
STW1
ZSW1

PZD2
HSW
HIW

12 272 274 276 279 280 282

32 284 286 288 290 292 294

Table 10.3 PKW and PZD peripheral addresses

 78

Name of Area Function of Area Access to Area
via Units of the Following

Size:

Abbrev.

Peripheral input byte PIB

Peripheral input word PIW

I/O:
external input

Peripheral input double word PID

Peripheral output byte PQB

Peripheral output word PQW

I/O:
external output

This area enables
your program to have
direct access to input
and output modules
(that is, peripheral
inputs and outputs).

Peripheral output double word PQD

Table 10.4 S7 functions to write and read external input and outputs

Here is a piece of code from FC2, which is used for reading (PIW) actual from the address of

282 at the peripheral side (first two lines). Next two lines of the code write (PQW) control

word to the peripheral.

L PIW 282 //Read Actual Value (input value)

 T "DB10 for DB100 interface".ActualValue //Save it to DB10

 L DB100.DBW 9 // Take Control word from DB100

 T PQW 280 //Write Control word to the DP

 // slave (output value)

 L "DB10 for DB100 interface".SetValue // Take the setpoint value from

 //DB40

 T PQW 280 //Write setpoint

Control word is named “ControlWord” and defined as word in DB100. The SIMATIC S7-

300 has a big-endian memory structure, which means for exampleWith 8-bit atomic element

size and 1-byte (octet) address increment.

increasing addresses →

... 0x0A 0x0B 0x0C 0x0D ...

 79

Here is the control word address range in database. For any kind of interaction with the

Masterdrives MCs these address of each bit must be known so that it is possible to set bits to

“0” or “1”.

Control word

Address Bits from 0-7

9.0 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0

10.0 10.7 10.6 10.5 10.4 10.3 10.2 10.1 10.0

Using the big-endian structure control word become as seen below

Control word

Bit

15
14 13 12 11 10 9 8 7 6 5 4 3 2 1

Bit

0

9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 10.7 10.6 10.5 10.4 10.3 10.2 10.1 10.0

Table 10.5 Control word in big-endian structure

Now it is easy to assign DIs to the control word. In this project for synchronous operation DI

assignments are as follows;

Digital Input (DI) Significance Bit address in DB100

DI-1 Operation mode 10.0

DI-2 Operation mode 10.1

DI-3 Acknowledge 10.2

DI-4 Reference operations 10.3

DI-5 Start/Stop 10.4

DI-6 ON/OFF 10.5

Table 10.6 DI assignments

Digital Input wirings also done with HMI to DB100 as well. That is how the connection
between the HMI and the S7 program interims of control word is done.

 80

10.1.4FB60 User Friendly HMI

The User Friendly HMI function block is making use of all the previous steps, except it

combines some of the control bits under one buttons function so that the user will be able to

run a specific mode just pressing one button for example DI-1 for driver-1 and driver-2 are

controlled by one button called “Synchronous”.

 This is an optional module, and does not add a new functionality to the operation modes.

 81

10.2 Asynchronous Operation

As it is seen from Figure 10.1, in terms of programming point of view, asynchronous

operation is very similar to synchronous operation. The difference between two operation

types is interconnection of connectors and binectors, which results using a different set of

parameters and parameter values during parameterization.

Control word in Table 10.5 is used for asynchronous operation as well. Each bit is assigned to

the parameters shown in Figure 10.8, and the assignment of the binectors from 3100 to3114

done by parameterization process, where the parameters are saved in DB15.

Figure 10.8 PZD1 Control word 1

The speed set point (KK3032) is connected to P209. The speed actual value (KK91) is
connected to P734.2.
In asynchronous operation there is no master slave relationship between two Masterdrives
MC therefore both drivers operate independently with any speed and direction.

 82

10.3 Reset Functionality
To switch from one operation type to other; some of the function blocks must be re arranged.

Functions used one operation may not be used in another so, it is a good idea to bring the

Masterdrivers MCs in to initial state, and then re-parameterize them accordingly. To bring

parameter values to original sate a reverse parameterization is done. It is done exactly the

way normal parameterization would be done, but the values of the parameters are the initial

values saved before any change.

Besides resetting parameter the control word also reset so that none of the operation modes

are in run mode.

 83

11 Human Machine Interface (HMI)
The user interface means that people (users) interact with a particular machine, device,

computer program or other complex tool, which provides means of; Input, allowing the users

to manipulate a system, Output, allowing the system to produce the effects of the users'

manipulation.

The main types of HMI are;

• Command-line interfaces: It is the oldest and a most powerful user interface, but he

only problem is that; it is not user friendly, because user must remember needed

commands. Input: text command typed by the user. Output: printed text on the monitor

by the system.

• Graphical user interface (GUI): The system accepts input through devices such as

keyboard and mouse and provide articulated graphical output on the computer

monitor. The user interface usually looks like a real device that user already has some

idea how to use. For example a soft multimedia player can operated via an interface

with buttons, switches, windows, which looks like a radio or a recorder.

• Web-based user interfaces: They accept input and provide output by generating web

pages which are transported via the Internet and viewed by the user using a web

browser program. Newer implementations utilize Java, AJAX, Microsoft.NET, or

similar technologies to provide real-time control in a separate program, eliminating the

need to refresh a traditional HTML based web browser [8].

• Touch interfaces: Touch interfaces are also using graphical user interfaces on

touchscreen displays. The screen is used for inputs and outputs as well. This type of

HMI is used in many types of industrial processes and machines.

In this project the second type of HMI (GUI) is implemented in conjunction with the third

type (Web-based user interface). A separate real-time Java and S7-Program used to

manipulate the data. Via java beans as java applets HMI is displayed on a web page for

taking inputs and printing the outputs. To do java programming one can use different editors

like Borland JBuilder, UltraEdit, and Eclipse and so on. Eclipse is an open-source software,

which comes for no cost. It is also one of the most used editors as well. There are a lot of

examples, plugins available on the Internet. Therefore in this project Eclipse is chosen to

develop the HMI, in java programming.

 84

11.1 Eclipse

Eclipse is an open source community, whose projects are

focused on building an open development platform comprised

of extensible frameworks, tools and runtimes for building,

deploying and managing software across the lifecycle. A large and vibrant ecosystem of

major technology vendors, innovative start-ups, universities, research institutions and

individuals extend, complement and support the Eclipse platform [9].

Eclipse is not only a java editor, today there are tens of projects been developed by its open

source community, and the project areas can be categorized in about 7 groups;

1. Enterprise Development

2. Embedded and Device Development

3. Rich Client Platform

4. Rich Internet Applications

5. Application Frameworks

6. Application Lifecycle Management (ALM)

7. Service Oriented Architecture (SOA)

Eclipse does not come with a Java virtual machine (JVM), so you have to get one yourself.

Note that Eclipse 3.0 needs a 1.4-compatible Java runtime environment (JRE).

To use Eclipse effectively, you will need to learn how to make Eclipse use a specific JRE. In

addition, you may want to influence how much heap Eclipse may allocate, where it loads and

saves its workspace from, and how you can add more plug-ins to your Eclipse installation. Of

course one does not need every plugin available. They must be chosen depending on need for

the specific projects. For example for the this project a plugin isstalled to save the project as a

Jar file, which reduces the saved project as a compressed single file.

11.1.1The Eclipse’s licence

Eclipse uses the Eclipse Public License (EPL). The EPL is a commercially friendly license

that allows organizations to include Eclipse software in their commercial products, while at

the same time asking those who create derivative works of EPL code to contribute back to the

community.

 85

11.1.2 How start using Eclipse

In order to get Eclipse running a few components have to be downloaded from the Internet

and installed;

• A compatible Java runtime environment (JRE)

• Eclipse Software Development Kit (SDK)

• Plugins that are required for specific purposes

• Java Swing a GUI tool kit for java

There are also a lot of tutorials, books and white papers to get more information and help

from. In addition, newsgroups are another useful way to find solutions to certain problems.

11.1.3 Download the JAVA S7 Beans Library from SIEMENS site

In automation HMI development in Java with SIMATIC requires Java S7 beans, where they

contain some of the soft gadgets such tachometer, level indicators, and thermometers. They

also enable java program to communicate with communication processor Siemens CP 343-2

IT device.

The library can be downloaded from siemens’ internet site;

http://support.automation.siemens.com

Automation and Drivers Service & Support Navigation Communication/Networks

SIMATIC NET Industrial Communication Industrial Ethernet System interfacing

SIMATIC S7 CP 343-1 Advanced

Here are the files to be downloaded:

• S7BeansAPI Release V2.5.5.zip (266 KB)

• S7BeansAPI JAVADocu V2.5.5.zip (116 KB)

• S7BeansAPI Runtime V2.5.5.zip (196 KB) As a result of code optimization and thus

quicker loading times, a runtime library without debug code is additionally available.

It can be loaded to the file system of the CP. (directory: /applets).

11.1.4Java visual project

Step by step a java project will be described to start designing a GUI.

• Start Eclipse by double clicking on icon

• When select a work space window comes up; select a specific place where you want

to save your current project.

• When Eclipse is open, go to menu choose file New Project Java Project

 86

Name the project (e.g.: Thesis_HMI) next

You will have a window with few tabs, as shown blow;

Figure 11.1 Add External JARs

• Choose Libraries tab Add External JARs

Now browse file selection window where the Siemens’ S7 APIs are saved (they had to be

unzipped). Select four of the APIs (s7api.jar, s7applets.jar, s7gui.jar, s7uti.jar), and press open

button.

 87

Figure 11.2 Import External JARs to the project

• finish
Now the Eclipse window should look like;

Figure 11.3 The project window with APIs

• to add visual class; file new Visual Class

Now we are ready to program the HMI using Siemens Java S7-Beans. To use S7-Beans in the

program one need to understand the mechanics of the java APIs. The next step is to explain

the S7-Beans APIs.

 88

11.2 S7-Beans and interconnection hierarchy

Creating the Java applet is based on the program library in S7 beans APIs, which provide for

the communication between the Java user program and the S7 program.

Figure 11.4 The structure of task

 89

11.2.1 S7-Beans

Java beans are Java components that have built-in functions, and they can be controlled with

known methods. Normally SIMATIC ITCP contains the some S7 beans, which manage the

communication with the CP or CPU. These APIs can be downloaded and saved in ITCP

manually as well. S7-Beans are saved in “Jar” archive files under three categories.

The S7 beans can be imported into the palette of components of a Java development

environment like, for example Eclipse where they can be used and configured by the

programmer using Drag-and-Drop in to visual class.

The following table shows the components after the import in a development environment.

Library IDE Components Significance

S7api.jar

device classes

S7gui.jar visual components

S7util.jar

auxiliary classes for

converting data types

Figure 11.5 API library V2.5.5

11.2.2 Hierarchical relationship between components

There is a hierarchical communicational relationship between S7CP, S7Device, and

S7Variable, which is explained in Figure 11.6. This relationship is a copy of the relationship

between hardware components. The program and variables are connected to the CPU; the

CPU is connected to CP 343-1 IT. It is even easier to see in VisualAge program, where all

the gadgets are connected through a linker (a line) with exactly same structure. Later we will

see how this hierarchical relationship programmed in Eclipse.

 90

Figure 11.6 Comparison between HW and S7-Beans

When any of these object are modified, each object informs its objects connected to it via a

Java standardized notification mechanism of the individual objects’ PropertyChange methods.

The S7 bean S7CP is the

representative of the IT-CP.

The entire protocol

communication to the

system is performed via this

bean.

The S7 device represents the

S7-CPU on the system.

The S7 item represents the

value of an S7 address

Components in SIMATIC Java-Beans Representative Comment

 91

Here is a piece of code, which realizes the structural relationship that is described in Figure

11.6. This code is written in Java, and it enables the communication between components.

 // Declaration of the required components -------------------------

 private S7CP s7CP1 = null; // CP (Communication Processor)
 private S7Device s7Device1 = null; // SIMATIC CPU
 private S7Variable s7Variable1 = null; // Variable in the CPU
 private CLTextOut cLTextOut1 = null;// a text box to connect Variable
 private CLTimer cLTimer1 = null // timer

 public void propertyChange(PropertyChangeEvent evt) {
 // Query whether event was triggered by S7CP.
 if (evt.getSource() == s7CP1)
 // If YES
// Pass event to the S7Device instance
 s7Device1.propertyChange(evt);
 // Query whether or not event was triggered by S7Device.
 // Connecting S7Device to CP ----------------------------------
 if (evt.getSource() == s7Device1)
 // If YES
// Pass event to the S7Variable instance
 s7Variable1.propertyChange(evt);
 // Query whether or not event was triggered by S7Variable.
 // Connecting S7Variable to S7Device --------------------------
 if (evt.getSource() == s7Variable1)
 // If YES
// Then transfer output value to the CLTextOut instance.

 //Connecting cLTextOut-bean to S7Variable ---------------------
 cLTextOut1.propertyChange(evt);
 }

1. Declaration of the all the required components including textboxes, variables, and

pointers.

2. The hierarchical communication start here from top to bottom; the communication

processor CP 343-1 IT is connected to the SIMATIC S7 300 CPU

3. The variable is connected to the SIMATIC S7 300 CPU

4. The textbox is connected to the variable

1

2

3

4

 92

11.3 Java Applet for displaying the HMI on a web browser

An applet is a software component that runs in the context of another program. Applets are

small programs usually perform a particular piece of the overall user interface in a web page.

There are some programs that are written in scripting languages, for example JavaScript, runs

in the context of a larger program, but not considered applets.

Common examples of applets are Java applets and Flash movies, and Windows Media Player

applet that are used to display embedded video files in Internet Explorer. Lately there are

some plugins designed to display various 3D model formats in a web browser, via an applet.

Many browser games are also applet-based, which come with various HMI that enable users

to interact.

Web browsers, which are often equipped with Java virtual machines, can interpret applets

from Web servers. Due to small file size, and cross-platformance compatiblity, and high

security of applets (can't be used to access users' hard drives), they are ideal for small Internet

applications that are accessible from a browser.

In this project the HMI is written in Java programming language, and it is displayed via

applet.

Figure 11.7 Java virtual machine [7]

 93

The below code is an example for an applet, which is displaying the first page of the HMI in

the Web browser.

<html>

<head>

<title>IT_Automation</title>

</head>

<body>

<H1></H1>

<APPLET CODE = Page1.class ARCHIVE = IT_Automation.jar

WIDTH = 1260 HEIGHT = 1024></APPLET>

</body>

</html>

Table 11.1 Java applet

<title>IT_Automation</title> : This line writes the title of the Browser that opens to view

the applet

APPLET CODE = Page1.class : This is the name of the Java Class that needs to be run in

the applet.

ARCHIVE = IT_Automation.jar : The archive file where the Page1.class file and other

classes are archived as jar file.+

WIDTH = 1260 HEIGHT = 1024></APPLET : With and height lines define with and height

of the visual object that displays the HMI in the Web browser.

 94

11.4 Developing HMI in Java and connecting it with S7 Program

Up to now the control program was developed in S7-program, and its functionality was tested

through diagnostic tools. The next step is how to visualize and run it through a Web page.

HMI must be designed such a way that the end user can easily relate it to functionality of the

system. The look and feel of HMI is limited by the S7 Java beans in the palette. Here are

some of the beans provided in Java S7-Beans library:

11.4.1 Siemens S7 Beans

11.4.1.1 Siemens S7 Device beans

Device S7 Beans are in the package of API included in a Jar file called: s7api.jar

Siemens S7 Device beans

S7-Bean Function

This bean represents the IT–CP serving as the host. Any other IT–
CPs that exist must be addressed using S7Device. This bean must be
used with each applet for addressing and for saving the host address.

S7Device represents any intelligent S7 module such as a CPU,
PROFIBUS CP, Ethernet CP, other IT–CPs (however, under no
circumstances the IT–CP serving as host for the applets, to be
addressed using the browser!)

 This bean represents variables in the S7 CPU.

CLTimer is required for cyclic calling of methods of other beans.
Whenever you want to monitor the status of an S7 module or a
process variable continuously (cyclically), you require this bean.
Note: CLTimer has no graphic representation

Table 11.2 S7-Beans for Devices

 95

11.4.1.2 Siemens S7 GUI beans

GUI beans are included in a Java file called: s7gui.jar

Siemens S7 GUI beans

S7-Bean Function Representation

CLTexIn CLTextIn is a bean for entering text. This text can
be passed on to the S7 variable bean.

Input field

CLTextOut
CLTextOut is a bean for the textual output of
values of process variables of the S7 variable bean

CLIdentOut
CLIdentOut is a bean required for the textual
display of an identification number of an IT-CP or
module using the S7 CP bean or s7 device bean.

CLStateLED

CLStateLED is a bean for graphic representation of
the status of an IT-CP or a module.

CLState3LED

CLState3LED is a bean for graphic representation
of the status of an IT-CP or a module.

CLTacho

CLTacho is a bean for graphic representation of a
pointer instrument.

CLLevel

CLLevel is a bean for graphic representation of the
level of a process variable.

CLPipe

CLPipe is a bean for graphic display or a horizontal
or vertical pipe.

CLValve

CLValve is a bean for graphic representation of a
valve The valve with its inlet can be displayed
horizontally or vertically.

Table 11.3 S7-Beans for GUI

 96

11.4.1.3 Siemens S7 Utility beans

Utility beans are packaged in s7util.jar file

Siemens S7 Utility beans

S7 Utility Bean Function

DATE
Supplies the S7 type DATE as a string in the format D#2000–12–

31.

TIME Supplies the S7 type TIME as a string in the format T#9h6m6s.

DATEandTIME
Supplies the S7 type DATE_AND_TIME as a string in the format

DT#00–12–31–12:31:47.487.

TIMEofDAY
Supplies the S7 type Time Of Day as a string in the format

TOD#9:6:6.127.

S5TIME
Supplies the S7 type S5TIME as a string in the format

S5T#1h3m2s.

ConvertNumberSystem
Supplies a decimal number in hexadecimal, octal, or binary format

(as a string).

Table 11.4 S7 utility beans

11.4.2 HMI Design page 1

In chapter 11.1.4 configuration of a Java project with S7-Beans is described. Now we can

continue using that project to design the first page to add a visual class so that we can design a

GUI;

• file new Visual Class

The visual class in Eclipse editor’s window will appear as it is seen in the Figure 11.8, which

includes a 300 x 200 content pane.

 97

11.4.2.1 Modifications to the class

11.4.2.1.1 Change layout

 In the properties window (bottom) the “layout” property should be changed to “null” so that

one can place the GUI components anywhere in the content pane. There is a palette on the

right for entering GUI elements by mouse. The “Choose Been” button in the palette enables

one to choose beans to be used in the project.

Figure 11.8 Visual project in Eclipse

 98

11.4.2.1.2 Modify the declaration line

In the code window modify the line where the class is declared;

public class HMI_Page1 extends JApplet{…

should be modified to;

public class HMI_Page1 extends JApplet implements ActionListener,

MouseListener, PropertyChangeListener{…

so that property changes, mouse actions will be detected.

11.4.2.1.3 Add terminating API mechanisms

All the applets with the S7-Beans must have these four methods in order to avoid resource

problems;

public void start() {
 super.start();

 }

 public void stop() {
 super.stop();
 }

 public void destroy() {
 super.destroy();

 S7Api.terminate();
 }

Since the S7BeansAPI uses static resources and threads internally for communication with the

IT–CP, the terminate() method was created in the S7Api class to release these resources and

to stop all threads. terminate() can normally be called after releasing all its own resources in

the destroy() method of the applet. [4]

11.4.2.2 Inserting S7 Device Beans

S7 device beans can be added to the visual class in two ways;

• Typing directly in the code window

• Inserting them from the “Choose Bean” button from the palette

The blow code (Device Beans) is manually entered by typing.
s7CP1 = new S7CP();

 s7CP1.setHostString(new HostString ("141.22.15.92:80"));

 99

 s7Device_1 = new S7Device();

 s7Device_1.setRack(0);

 s7Device_1.setSlot(2);

 s7Variable1 = new S7Variable();

 s7Variable1.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)10, (int)16, (int)1));

 s7Variable1.setVariableName("s7Variable1");

Figure 11.9 Adding beans from the palette

To be able to add S7 device beans from the palette one must remember or know first one or

two characters of the name. Once the character entered the name area in the window showing

above the list of beans will show up in the window, then it is easy to select one from the list.

 100

Figure 11.10 Device API inserted through palette

Here are some Device beans added to the project from the palette

• s7CP

• s7Device

• s7Variable

• s7Anypointer

• CLTimer

As it is described in this chapter (at 11.2) these beans must be connected hierarchically so that

the information flow can be established from HMI to hardware and vice versa.

 101

11.4.2.3 Design GUI

Figure 11.11 HMI page1

First the GUI is designed visually, which means the buttons and other GUI components added

are not functional. To make them functional they have to be connected to S7 control program

through an “S7Anypointer”s and “S7Variable”s.

The below code is generated by Eclipse when a button is added to the GUI.
private Button getButton_Page1() {

 if (Button_Page1 == null) {

 Button_Page1 = new Button();

 Button_Page1.setFont(new Font("Dialog", Font.PLAIN, 18));

 Button_Page1.setBounds(new Rectangle(58, 107, 168, 56));

 Button_Page1.setLabel("Synchronous");

 }

 return Button_Page1;

 }

 102

Figure 11.12 Components hierarch

The button “Synchronous” has two functions;

• Parameterize the Masterdrives MCs

• Enable the synchronous operation mode, when start button is pressed it should start

the motors under this mode.

Here are the S7variables that perform these functions;

s7Variable1.setS7Anypointer(// to start Synchronous op.
new S7Anypointer((int)1, (int)1, (int)132, (int)10, (int)8, (int)1));

s7Variable4.setS7Anypointer(// to parameterize
new S7Anypointer((int)1, (int)1, (int)132, (int)10, (int)8, (int)3));
/*---–––Bit number 0 ..7*/
/*–––––––––––––––––––––-------------------------–––Memory area offset*/
/*––––––––––––----------––––––––-----------–DB number or ’0’*/
/*–––––––––––––----------––––––--–Memory area 132 == DB*/
/*––––––––-------------–––Repetition factor 1 .. n*/
/*–-------------–Data type 1 == BOOL*/

To understand the parameter values of S7Anypointer one can see the table

11.5. Let’s take one of above S7Anypointers and explain the parameters

according to the table 11.5.

S7Anypointer ((int)1, (int)1, (int)132, (int)10, (int)8, (int)3))

S7Anypointer ((int)1 (int)1 (int)132 (int)10 (int)8 (int)3
 Arg1 arg2 arg3 arg4 arg5 arg6

Argument 1: 1 Boolean

Argument 2: 1 repetition factor 1 means do the reading once

To add functionality to the button, which

requires dealing with S7 program then a

variable with an “s7Anypointer” must

be declared and added to the class.

 103

Argument 3: 132 Storage in a Data Block

Argument 4: 10 is the data block number (e,g. DB10)

Argument 5: 8 the start address of the memory are (only the byte section)

Argument 6: 3 the bit section of the memory area

So this S7Anypointer pointing the bit of 8.3 in the DB10. The toggle button (button

“Synchronous”) is reading and writing this bit through the above S7Anypointer

Parameters Description

Data type of the variable (arguments) to be addressed

Data Type Value (integer) Significance

BOOL 1 Bit

BYTE 2 Bytes (8 bits)

CHAR 3 Characters (8 bits)

WORD 4 Words (16 bits)

INT 5 Integers (16 bits)

DWORD 6 Words (32 bits)

DINT 7 Integers (32 bits)

dataType

REAL 8 Floating point numbers (32 bits)

repFactor Number of variable to be read (repetition factor)

Area code to identify the memory area

Memory area Value (integer) Significance

E 129 Input memory area

A 130 Output memory area

M 131 Flag memory are

V 132 Storage are in Data Block

memArea

SM 5 Special memory area

subArea To specify DB number

byteAddress The beginning of the memory area for (byte section)

bitAddress The memory address (bit section)

Table 11.5 parameter values of the s7Anypointer

 104

The connection itself is not enough to define the functionality; there must be definitions for

the button, which tells it how to act. For example the button “Synchronous” is a toggle button,

when it is pressed it sends a “0” or “1” depending of the value of the specified bit.

First it checks the value, and then it writes a value to the destination address.

To check the value;

if (arg0.getSource() == s7Variable1){

if(((Boolean)arg0.getNewValue()).booleanValue()){

Button_Page1.setBackground(Color.green);}

else{

 Button_Page1.setBackground(Color.red);

 }

}

To write the value;
if (arg0.getSource() == Button_Page1){

 if(((Boolean)s7Variable1.getValue()).booleanValue()){

 s7Variable1.setValue(String.valueOf(false));

s7Variable1.waitOnNewData(100);}

else{

 s7Variable1.setValue(String.valueOf(true));

 s7Variable1.waitOnNewData(100);

 }

}

 105

11.4.3 HMI Design page 2 (Synchronous operation)

In Page2 also toggle buttons used for digital inputs (DI) for both sides. These buttons set the

defined addresses “ON” and “OFF” depending on the status of the bit. The bit is read, and

then the colour of the buttons is set. If the value of the bit is “1” the colour is set to green, if

the value is “0” then it is set to red.

Figure 11.13 A screen shot of page2 of GUI

in previous section the connection of the toggle buttons are described, in this part therefore

only connection of the tachos and text fields are going to be explained.

11.4.3.1 Adding Tacho

In eclipse editor do the following steps:

• Pres the “Choose Bean” button in the palette

• When the window shows up; write CLTocho. You will see it in the list, and then

double click on it.

• Now you are ready to add tocho any place on the pane.

• After adding it to the pane (GUI), click on the tocho then open the properties window

in the bottom of the editor window.

• Define maximum and minimum speed, overflow value, background colour etc.

 106

Connecting tacho to the S7Anypointer

To connect tacho to S7Aynpointer a virtual wire should be defined, and then this wire will be

used to connect tacho to S7Variable, which will be using S7Anypointer.

Virtual wire:
private void connEtoM31(java.beans.PropertyChangeEvent arg1) {

 try {getCLTacho_1().propertyChange(arg1);}

 catch (java.lang.Throwable ivjExc) {

 }

 }

Connect the virtual wire to S7Variable (e.g.: s7Variable5)

if (arg0.getSource() == s7Variable5){

 connEtoM31(arg0);

 }

The rest of the process for getting the value is the same as other variables, except the

argument of the S7Anypointer must be chosen accordingly. Here is the CLTacho_1

S7Variable:
s7Variable5 = new S7Variable();

s7Variable5.setS7Anypointer(

new S7Anypointer((int)5, (int)1, (int)132, (int)100, (int)6,

(int)0));

s7Variable5.setVariableName("s7Variable5");

• Arg1: 5 INT (16 bit)

• Arg2: 1 repeat factor

• Arg3: 132 Storage in a data block (DB)

• Arg4: 100 points to DB100

• Arg5: 6 Start address byte section

• Arg6: 0 Start address bit section

So S7Variable5 reads speed as 16 bit integer value from the database 100

(DB100) at start address of 6.00.

 107

11.4.3.2 Adding text box for displaying the speed

Enter a text field by pressing JTextField in palette of Eclipse. Change the properties of the

field by using properties window. Here is the code generated by visual editor of Eclipse:

private JTextField getjTextField_speed() {

 if (jTextField_speed == null) {

 jTextField_speed = new JTextField();

 jTextField_speed.setBounds(new Rectangle(430, 261, 89, 21));

}

 return jTextField_speed;

}

It has to receive the content (speed) from an S7Variable, so the connection to the S7 program

can be established as shown below;

if(arg0.getSource() == s7Variable6){

 jTextField_speed.setText(arg0.getNewValue().toString());

 }

. . .

s7Variable6 = new S7Variable();

s7Variable6.setS7Anypointer(

new S7Anypointer((int)5, (int)1, (int)132, (int)100, (int)6,

(int)0));

s7Variable6.setVariableName("s7Variable6");

This S7Variable reads an integer value from DB100, and then it is passed to the textfield to

be displayed.

 108

11.4.3.3 Adding text box for setting the speed

In order to set the speed; a value must read first, and then with an action it should be passed to

a variable and an S7Snypointer, which saves the value to the memory location in DB100. For

this reason a button is added to GUI, which is called “Set Value”.

Text field:

private JTextField getjTextField_set1() {

 if (jTextField_set1 == null) {

 jTextField_set1 = new JTextField();

 jTextField_set1.setBounds(new Rectangle(137, 369, 89, 21));

 jTextField_set1.setText("");

 }

 return jTextField_set1;

 }

“Set Value” button:

private JButton getJButton_set() {

 if (jButton_set == null) {

 jButton_set = new JButton();

 jButton_set.setText("Set Value");

 jButton_set.setBounds(new Rectangle(31, 365, 93, 28));

 }

 return jButton_set;

 }

Action: When the button is presses the value of text field will be passed to S7Variable;
if (e.getSource() == jButton_set) {

 s7Variable4.setValue(jTextField_set1.getText());

 }

The variable is passing the speed value to the DB100 memory location 2.0 as an integer value.
s7Variable4.setS7Anypointer(

new S7Anypointer((int)5, (int)1, (int)132, (int)100, (int)2, (int)0));

 109

11.4.3.4 Adding Digital Input (DI) buttons

The table below explains the connectivity of the control buttons with the memory areas via

S7Variables. Technically they are also toggle buttons as explained in previous sections. They

generate “0” or “1”, and the values are saved the specified locations that are listed in the table,

and then these values transferred to the Masterdrives MC as control words by S7 control

program.

Bit address in DB100 Digital Input

(DI)
Significance

Right side Left side

Control

buttons

DI-1 Operation mode 10.0 13.0

DI-2 Operation mode 10.1 13.1

DI-3 Acknowledge 10.2 13.2

DI-4
Reference

operations
10.3 13.3

DI-5 Start/Stop 10.4 13.4

DI-6 ON/OFF 10.5 13.5

Table 11.6 Control buttons and addresses

Right Side:
s7Variable1.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)10, (int)0));

s7Variable2.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)10, (int)1));

s7Variable3.setS7Anypointer(

 110

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)10, (int)2));

s7Variable9.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)10, (int)3));

s7Variable10.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)10, (int)4));

s7Variable11.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)10, (int)5));

Left Side:
s7Variable14.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)13, (int)0));

s7Variable15.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)13, (int)1));

s7Variable16.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)13, (int)2));

s7Variable17.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)13, (int)3));

s7Variable21.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)13, (int)4));

s7Variable19.setS7Anypointer(

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)13, (int)5));

11.4.3.5 Adding navigation buttons

After adding the button to the GUI, the button set to listen actions. When it is pressed, it will

open the Page2_1.htm, which is the user friendly HMI.

if("User Friendly HMI".equals(e.getActionCommand())){

 AppletContext am = getAppletContext();

 try{

 am.showDocument(new URL(getCodeBase(),"Page2_1.htm"));

 }catch (MalformedURLException e1) {

 }

 }

 111

11.4.4 User friendly HMI design Synchronous operation

Each drive has 6 buttons in the HMI for Synchronous operation (see figure 11.13) to operate

under different modes (e.g.: synchronous operation, reference run, reference run for 28 rpm,

and etc.). These operation modes and buttons are standard buttons for the SIMATIC

MASTERDRIVERS MC training set (6SX-7000-0AF10 see figure1.1). If one knows how to

operate the training set then he or she can run the system from the synchronous operation

HMI which designed in this project. The only problem is that the trainings set user interface is

not very user friendly. Therefore, the reason for a user friendly design is to make it more self

descriptive.

Figure 11.14 User friendly HMI

There are no difference between the Synchronous mode and user friendly Synchronous mode

HMI in terms of the functionalities, and Masterdrives MCs parameterizations. The only

difference is that same digital inputs (DI) for both drivers are directed (controlled) to a single

button, which is labelled with the operation mode. Therefore the user does not need to know

about the all combinations of the operation modes buttons on the training set. For example to

 112

operate under synchronous mode; one only needs to pres “Synchronous” then “ON”, and then

“Start” buttons. The “Synchronous” button is controlling DI-1s for the both drivers.

Here are the S7Variables that perform the control mechanism;

s7Variable1.setS7Anypointer(//-----Synch Op.-------------

new S7Anypointer((int)1, (int)1, (int)132, (int)60, (int)0, (int)0));

s7Variable2.setS7Anypointer(//-----Reference Op.-------------

new S7Anypointer((int)1, (int)1, (int)132, (int)60, (int)0, (int)1));

s7Variable3.setS7Anypointer(//-----Reference Op28rpm.------------

new S7Anypointer((int)1, (int)1, (int)132, (int)60, (int)0, (int)2));

s7Variable10.setS7Anypointer(//-----Akknowledge-------------

new S7Anypointer((int)1, (int)1, (int)132, (int)60, (int)0, (int)4));

s7Variable11.setS7Anypointer(//----- Start -------------

new S7Anypointer((int)1, (int)1, (int)132, (int)60, (int)0, (int)5));

s7Variable9.setS7Anypointer(//----- Back to Synch Op. page-------------

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)28, (int)0));

 113

11.4.5 HMI Design for Asynchronous operation

The HMI for asynchronous operation is a reduced version of HMI of Synchronous operation.

Just because all the program functionalities are implemented in the S7 control program the

only difference between synchronous and asynchronous operations comes with the

connectivity of the control buttons, where they are enabling/disabling relevant part of the S7

control program. Another difference is there are two speed setting buttons, one for each

drive, where each drive is operated independently.

Figure 11.15 HMI Asynchronous Operation

s7Variable2.setS7Anypointer(//Start Right

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)10, (int)0));

s7Variable3.setS7Anypointer(//ON Right

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)10, (int)1));

s7Variable9.setS7Anypointer(//Start Left

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)13, (int)0));

s7Variable10.setS7Anypointer(//ON Left

 114

new S7Anypointer((int)1, (int)1, (int)132, (int)100, (int)13, (int)1));

The “Type of operation” button has two tasks, as they are on the other HMIs, navigating to

the main page, and resetting the parameters so that the new operation will be able to start.

 115

12 Conclusion
The speed of growth in communications, computer science and semiconductor technologies is

directly affecting may other industries including automation. Nowadays it is desired to have

safer and more accessible automation systems. Today it is possible control, and manage life

threatening chambers without jeopardizing anybodies life with help of these new method in

automation.

The internet is one of the tools that find application area in almost every industry. The term

SCADA usually refers to a central system that monitors and controls a complete site or a

system spread out over a long distance. It makes a good use of the Internet to accomplish the

connection. Due to development in quality of service intenet service; it is possible to meet the

requirements of the SCADA in automation systems.

The goal of this master thesis was to develop an Embedded SCADA system with PLC and

Java Application for Synchronous Operation of Standard Servo Drives. The SCADA system

has two tasks; Data Acquisition, and Supervisory control. In the network system the data flow

is bidirectional therefore the both tasks can be performed at the same time.

In the system, Masterdrives MCs work standard PLC peripheral equipment to produce the

process data. The CPU 315-2 DP is the master device of the system. It is responsible for data

acquisition from the Motion Controllers via PROFIBUS-DP. On the other site, CPU 315-2

DP is directly connected with CP 343-1 IT and transfers the process data periodically via

TCP/IP connection. The user in the client site can access and send the process data through

the Internet using the web embedded HMI.

The Human Machine Interface of the system is developed with Java Applets, which is a cost

effective and a platform-free method. Although in this project it seems to be doable for the

automation systems, one must test it with more complex networks with heavy data load.

 116

12.1 Suggestions for the future work

Even though this project meets the requirements, and ready to deploy it in real environment

there has to be some improvements. They can be categorized in three groups; first two groups

are software related, and the last one is a hardware related one.

• Improvement in Java programming

• Improvement in S7 control program

• Improvement in hardware

Test program modules can be used to find out the reason behind slow down in HMI, which is

written in Java. There are few things can be investigated; number of the S7Variables, program

structure, and time intervals of the timers.

If number of S7Variables is the problem then a Step7 program can be developed to take most

of load from Java program. For example instead of separate DI and S7Varibales one can

combine the entire DIs in to one S7Variable, let S7 program do the work.

Second improvement can be done to improve error handling. Since Java programming in

Eclipse is done manually (compare to VisulAge) it is important to test the program for every

scenario and fix the bugs.

Third improvement can be done by using newer versions of hardware. For example instead of

using SIMATIC S7-300 one can try S7-400. Masterdrives MCs also a bit old the firmware

was updated from 1.3 to 1.66. They are not compatible with the newest firmware. Maybe

Motion controllers with newest firmware enable us to control better.

 117

13 References

[1] Siemens document: PI_ATEX1_x.pdf

[2] Siemens document: A01_TIA.pdf

[3]

https://www.automation.siemens.com/net/html_76/produkte/040_produkte.htm?HTTPS=RED

IR 06.03.07

[4] Siemens document: mc166_kompend_e.pdf

[5] http://en.wikipedia.org/wiki/User_interface 09.04.2007

[6] http://www.eclipse.org/ 10.04.2007

[7] http://www.java.com/en/download/manual.jsp

[8] Information Technology with the CP 3431 IT and CP 443-1 IT C79000 G8976-C120-0

[9] S7-300, CPU 31xC and CPU 31x: Hardware and installation, Siemens AG,

 GES73988FA10-8BA0

[10] SIMATIC NET IT-CP Programming Tips, Siemens AG, C79000 G8976-C153-02

[11] Industrial Ethernet, Siemens, http://www.ad.siemens.de

[12] S7Beans/Applets Programming Tips, Siemens AG, C79000 G8976-C153-01

[13] Instructions for the CP 343–1 IT and CP 443–1 IT C79000–G8976–C120 Release 04

[14] Statement List (STL) for S7-300 and S7-400 Programming, Siemens AG, 1-4

 6ES7810-4CA07-8BW1

[15] Ladder Logic (LAD) for S7-300 and S7-400 Programming, Siemens AG,

 6ES7810-4CA07-8BW1

[16] Process Control System PCS 7 Programming Instructions for Blocks, Siemens AG,

 Manuel

[17] Programming with STEP 7 V5.3, Siemens AG, 6ES7810-4CA07-8BW0

 118

Appendix

A Configuration

A.1 PC

In order to configure SIMATIK S7-300; first it has to be connected through MPI. MPI

connection is ready for any kind of upload and downloads operations before system

configuration is complete. In production floor MPI connection is widely used for engineering

support to re install the system configurations. A PROFIBUS network system configuration

can only be downloaded using MPI connection. Therefore we are going to configure MPI

first, and when the PROFIBUS bus system is configured it will be downloaded to the

SIMATIK S7-300 CPU, and then connection will be switched to PROFIBUS.

1. Configure PG/PC to MPI mode to be able to communicate with S7-300 CPU. For this

open the PG/PC from program menu.

Figure A.1 Starting PG-PC Interface

 119

2. Set CP5613A2 (MPI) active.

Figure A.2 Activate MPI

3. Connect the PG cable to the output of the CP5613A2 communication processor and MPI-

Bus socket on CPU.

A.2 S7-Hardware Configuration
1. Create the S7-Project

2. Double click SIMATIC Manager icon to start S7.

3. To create a new project; File New

When the blow window opens name the project (e.g.: IT_Control).

 120

Figure A.3 Create a new project

4. As we can see from the Figure A.4 the project only includes the MPI bus, for other

hardware components we must right click on the project icon, and enter the component

that we need.

Figure A.4 Entering hardware components

 121

5. Insert SIMATIC 300 station. To do this; right click on the “IT_Control” project Insert

New Object SIMATIC 300 Station.

Figure A.5 Enter SIMATIC 300 Station

6. Insert a subnet “Industry Ethernet”

Figure A.6 Enter Industry Ethernet

 122

A.2.1 Hardware configuration

1. Double click on hardware icon to open the hardware configuration view.

Figure A.7 Hardware configuration

2. Press the catalog button to open component list on the right.

Figure A.8Component catalogue

 123

3. Insert the “rail” the rack which the components are going to be mounted on. From the

catalog SIMATIC 300 RACK-300 Rail

Figure A.9 Insert rail

4. Add a power supply: in the catalog PS 300 PS 307 5A. PS 307 5A is the power supply

that is mounted my physical set up, so every time we add a component in the project it

must match with the product name and model in the physical hardware setup.

Figure A.10 Add power supply

 124

5. Insert the CPU; “CPU 315 2 DP”

SIMATIC 300 CPU 315-2 DP 6ES7 315-2AF03-0AB0 V1.2

Figure A.11 Insert CPU

6. Set the properties of the CPU as MPI network and data rate to 187.5 Kbps. To do this;

double click on CPU General Properties New

Figure A.12 MPI properties

 125

7. Insert Communication Processor “CP 343-1 IT”: SIMATIC 300 CP-300 Industrial

Ethernet CP 343-1 IT 6GK7 343-1GX20-0XE0

Figure A.13 Add communication processor

8. Set IP address of Communication Processor CP 343-1 IT. The IP address is written on the

CPU. In this case it is 141.22.15.92. Double click on “CP 343-1 IT”

General Properties New

Figure A.14 Set IP address

 126

9. Set Time-Of-Day Synchronization Select NTP Mode Active NTP time-of-day

synchronisation, Add NTP Server Address: 131.183.3.220, Select Time zone: (GMT +

1:00)Berlin

10. Add the users in the CP 343-1 IT Users properties window, and set the user rights and

enter the password. Double click “CP 343-1 IT” Users Add

Figure A.15 Add users

11. Set DNS server address,. Double click “CP 343-1 IT” DNS Parameters Add

12. Insert Digital Input module SM 321-1BH02-0AA0

SIMATIC 300 SM-300 DI-300 SM 321-1BH02-0AA0

 127

Figure A.16 Insert Digital Inputs (DI)

13. Insert Digital Output module SM 322-1BH01-0AA0

SIMATIC 300 SM-300 DO-300 SM 322-1BH01-0AA0

14. Configure Analogue I/O module

SIMATIC 300 SM-300 AI/AO-300 SM 334-0KE00-0AB0

15. In order to save and compile the project; the hardware configuration must be saved and

compiled by clicking on the button.

 128

A.2.2 Adding SIEMENS Simovert Masterdrives Motion Controllers

1. Insert Masterdrive MC 12: right click on PROFIBUS(1): DP master system(1) Insert

Object SIMOVERT MASTERDRIVES CBP Motion Control Plus

Figure A.17

Figure A.18 Add Drivers

 129

2. Set the PROFIBUS bus address: After choosing “Motion Control Plus” at step 22 a

window will open and ask for the bus address. One can address up to 128 components

with PROFIBUS DP. Here I am choosing address 12. When we press “OK” another

window will show up asking for Device version. This is the firmware version of the

Motion Controller; in this case it is 1.6.

Figure A.19 configure PROFIBUS

3. Set PPO type:

After step 23 there will be another window showing addresses of the Motion controller for

writing and reading parameters and “Main Setpoint”. Depending on application and the

controllers one has to decide the PPO types. In this case PPO 1 is chosen.

 130

Figure A.20 Configure PPOs

4. Insert Masterdrive MC 33: follow steps 22, 23, and 24, but use 33 as PROFIBUS bus

address.

5. Save the configuration then close the Hardware Configuration window.

 131

B Function Diagrams

Figure B.1 FD789a[4]

 132

Figure B.2 FD789b[4]

 133

Figure B.3 FD789c[4]

 134

Figure B.4 FD850 [14]

 135

C Instructions to start HMI from the Internet
The page is saved in SIMATIC NET CP 343-1 IT, in order to access the page it should be

turned on, and then below steps of instructions need to be followed;

• Use this address in internet browser http://141.22.15.92/MyProjekt/ you will see

the below screen:

Figure C.1 Index page

• Start (double click on) Page1.htm

You will be prompt blow page (Figure C.2 Login page):

 136

Figure C.2 Login page

• Username: Ali (A is capital)

• Password: 12345678

• Press “OK”

• Choose the type of operation; “Synchronous” or “Asynchronous”

 137

• If it is Synchronous operation; set the mode you want. For this there is table on the

GUI to inform the user to choose any mode he or she wants.

• First turn the right hand side on (Master); DI-1, DI-6, and then DI-5

• Then turn the left hand side on (Slave); DI-1, DI-6, and then DI-5

• If any side does not work; turn DI-5 and DI-6 OFF then turn DI-3 on then off again.

After this turn DI-6 and DI-5 on

Figure C.3 Synchronous Operation

 138

• If it is too complicated to operate synchronous mode then choose “User Friendly

HMI”, where it is more straightforward.

• Press the mode you want

• Press “ON” button

• Press “Start” button

Figure C.4 User friendly HMI

• If motor do not start then; press “Stop”

• Press “OFF”

• Press “Acknowledge” button

• Now press “ON” and “Start” buttons again.

• The speed can be changed.

 139

 Asynchronous operation

• Yu can start Asynchronous operation from the first page. If another operation is

currently in operation then stop it and then pres “Type of Operation” button for a

second.

• Now you are at the first page, and ready to start the Asynchronous operation.

Figure C.5 Asynchronous Operation

• Press “ON” button

• Press “Start” button

• Each side can independently be operated.

 140

D CD-ROM
This Master report contains an appendix of program listing:

• S7- Program including the S7-project

• Java source files

o Page1.html (Type of Opeation)

o Page2.html (Synchronous Operation)

o Page2_1.html (Synchronous Operation use friendly HMI)

o Page3.html (Asynchronous Operation)

o IT_Automation.jar (executable jar file)

• Thesis.pdf; a copy of Master Thesis as a PDF file

This appendix is deposited with Prof. Dr. Ing Gustav Vaupel.

 141

E List of Figures
FIGURE 3.1THE SYSTEM DESCRIPTION--- 10
FIGURE 4.1 SIMOVERT MASTERDRIVERS MC -- 11
FIGURE 4.2 SIMATIC S7-300--- 12
FIGURE 5.1 CP5613 A2 -- 14
FIGURE 5.2 PROFIBUS CONNECTOR --- 15
FIGURE 5.3 PROFIBUS CONNECTIONS--- 17
FIGURE 5.4 POWER SUPPLY 380 V -- 20
FIGURE 5.5 POWER SUPPLY 220 V -- 20
FIGURE 6.1 A SCREEN SHOT OF S7 COMMUNICATION MODULE --- 21
FIGURE 6.2 INDUSTRIAL COMMUNICATION PYRAMID [2] --- 22
FIGURE 6.3 MEANS OF COMMUNICATIONS WITH MASTERDRIVERS MCS ------------------------------ 23
FIGURE 6.4 CONNECTOR FOR MPI BUS --- 24
FIGURE 6.5 A SAMPLE VIEW OF PROFIBUS-- 25
FIGURE 6.6 INDUSTRIAL ETHERNET -- 27
FIGURE 7.1 SIMOVERT MASTERDRIVES MC -- 29
FIGURE 7.2 FREE BLOCKS [3] -- 30
FIGURE 7.3 FUNCTION BLOCKS --- 32
FIGURE 7.4 CONNECTORS AND BINECTORS -- 33
FIGURE 7.5 CONNECTING TWO FUNCTION BLOCKS --- 33
FIGURE 7.6 PARAMETER MENUS --- 34
FIGURE 7.7 PMU -- 35
FIGURE 7.8 OP1S-- 36
FIGURE 7.9 OP1S SCREEN SHOTS --- 37
FIGURE 7.10 DERIVE PROPERTIES-- 38
FIGURE 7.11 DRIVE MONITOR COMMUNICATION--- 39
FIGURE 7.12 SET SERIAL PORT BUS ADDRESS --- 39
FIGURE 7.13 PARAMETER ACCESS --- 40
FIGURE 7.14 DRIVE MONITOR ONLINE BUTTON--- 40
FIGURE 7.15 PROJENCT INSERT PARAMETER SET -- 41
FIGURE 7.16 DRIVE MONITOR DRIVE NAVIGATOR --- 42
FIGURE 7.17 DETAILED PARAMETERIZATION STEPS -- 45
FIGURE 8.1 GEARS--- 49
FIGURE 8.2 THREE FREE BLOCKS -- 50
FIGURE 8.3 LINEAR AXIS [3]-- 52
FIGURE 8.4 ROTARY AXIS--- 52
FIGURE 8.5 ROLL FEED [3] -- 52
FIGURE 8.6 DESCRIPTION OF THE APPLICATION-- 54
FIGURE 8.7 DIGITAL INPUTS (TERMINAL STRIP DIAGNOSTICS)-- 55
FIGURE 9.1 CBP COMMUNICATIONS BOARD (COMMUNICATIONS BOARD PROFIBUS)------------- 58
FIGURE 9.2 DATA TRAFFIC CHANNELS OF CBP [4] --- 59
FIGURE 9.3 PARAMETER IDENTIFIER VALUE--- 60
FIGURE 9.4 PPO TYPES --- 60
FIGURE 9.5 PPO OVERVIEW IN HARDWARE CONFIGURATION --- 61
FIGURE 9.6 SFC 15 WRITING DATA TO DP SALE --- 63
FIGURE 9.7 PZD1 (CONTROL WORD 1)--- 65
FIGURE 9.8 DIAGNOSTICS TOOL READ/WRITE STATUS AND CONTROL WORDS --------------------- 66
FIGURE 10.1 FLOW DIAGRAM OF S7 CONTROL PROGRAM--- 68
FIGURE 10.2 FLOW DIAGRAM OF CONTROL PROGRAM--- 69
FIGURE 10.3 COMMON PROGRAM FLOW--- 70
FIGURE 10.4 PARAMETERIZATION FLOW DIAGRAM--- 71
FIGURE 10.5 DB85 DATABASE USED FOR MC 12 --- 73
FIGURE 10.6 VALUE RANGE OF 16-BIT CONNECTORS (KXXXX) [1]-- 76
FIGURE 10.7 INPUT AND OUTPUT ADDRESSES OF PERIPHERALS-- 77
FIGURE 10.8 PZD1 CONTROL WORD 1 --- 81
FIGURE 11.1 ADD EXTERNAL JARS -- 86
FIGURE 11.2 IMPORT EXTERNAL JARS TO THE PROJECT --- 87
FIGURE 11.3 THE PROJECT WINDOW WITH APIS -- 87
FIGURE 11.4 THE STRUCTURE OF TASK -- 88

 142

FIGURE 11.5 API LIBRARY V2.5.5-- 89
FIGURE 11.6 COMPARISON BETWEEN HW AND S7-BEANS --- 90
FIGURE 11.7 JAVA VIRTUAL MACHINE [10] --- 92
FIGURE 11.8 VISUAL PROJECT IN ECLIPSE -- 97
FIGURE 11.9 ADDING BEANS FROM THE PALETTE --- 99
FIGURE 11.10 DEVICE API INSERTED THROUGH PALETTE -- 100
FIGURE 11.11 HMI PAGE1--- 101
FIGURE 11.12 COMPONENTS HIERARCH -- 102
FIGURE 11.13 A SCREEN SHOT OF PAGE2 OF GUI--- 105
FIGURE 11.14 USER FRIENDLY HMI--- 111
FIGURE 11.15 HMI ASYNCHRONOUS OPERATION-- 113
FIGURE A.1 STARTING PG-PC INTERFACE-- 118
FIGURE A.2 ACTIVATE MPI -- 119
FIGURE A.3 CREATE A NEW PROJECT --- 120
FIGURE A.4 ENTERING HARDWARE COMPONENTS --- 120
FIGURE A.5 ENTER SIMATIC 300 STATION-- 121
FIGURE A.6 ENTER INDUSTRY ETHERNET --- 121
FIGURE A.7 HARDWARE CONFIGURATION -- 122
FIGURE A.8COMPONENT CATALOGUE -- 122
FIGURE A.9 INSERT RAIL--- 123
FIGURE A.10 ADD POWER SUPPLY-- 123
FIGURE A.11 INSERT CPU -- 124
FIGURE A.12 MPI PROPERTIES-- 124
FIGURE A.13 ADD COMMUNICATION PROCESSOR-- 125
FIGURE A.14 SET IP ADDRESS -- 125
FIGURE A.15 ADD USERS--- 126
FIGURE A.16 INSERT DIGITAL INPUTS (DI) --- 127
FIGURE A.17 -- 128
FIGURE A.18 ADD DRIVERS --- 128
FIGURE A.19 CONFIGURE PROFIBUS --- 129
FIGURE A.20 CONFIGURE PPOS -- 130
FIGURE B.1 FD789A[4] --- 131
FIGURE B.2 FD789B[4] --- 132
FIGURE B.3 FD789C[4] --- 133
FIGURE B.4 FD850 [4] -- 134
FIGURE C.1 INDEX PAGE --- 135
FIGURE C.2 LOGIN PAGE --- 136
FIGURE C.3 SYNCHRONOUS OPERATION -- 137
FIGURE C.4 USER FRIENDLY HMI--- 138
FIGURE C.5 ASYNCHRONOUS OPERATION -- 139

 143

F List of Tables

TABLE 6.1 PROFIBUS TRANSMISSION RATES 26
TABLE 6.2 TYPES OF COMMUNICATIONS FOR S7 300/400 28
TABLE 7.1 SIMOVERT MASTERDRIVES MC SPECIFICATIONS 30
TABLE 7.2 POWER SECTION 46
TABLE 7.3 BOARD CONFIGURATION 46
TABLE 7.4 BOARDS TO BE CONFIGURED 46
TABLE 9.1 FIXED ASSIGNMENT AND COMBINATION VALUES 62
TABLE 9.2 TELEGRAM STRUCTURE PKE AREA 62
TABLE 9.3 TASK ID MASTER TO CONVERTER 63
TABLE 9.4 CONNECTION DI TO PZD1 65
TABLE 10.1 BLOCK TYPES 67
TABLE 10.2 TELEGRAM PKW AREA 70
TABLE 10.3 PKW AND PZD PERIPHERAL ADDRESSES 77
TABLE 10.4 S7 FUNCTIONS TO WRITE AND READ EXTERNAL INPUT AND OUTPUTS 78
TABLE 10.5 CONTROL WORD IN BIG-ENDIAN STRUCTURE 79
TABLE 10.6 DI ASSIGNMENTS 79
TABLE 11.1 JAVA APPLET 93
TABLE 11.2 S7-BEANS FOR DEVICES 94
TABLE 11.3 S7-BEANS FOR GUI 95
TABLE 11.4 S7 UTILITY BEANS 96
TABLE 11.5 PARAMETER VALUES OF THE S7ANYPOINTER 103
TABLE 11.6 CONTROL BUTTONS AND ADDRESSES 109

 144

Declaration

I declare within the meaning of section 25(4) of the Examination and Study
Regulations of the International Degree Course Information Engineering that:
this Master report has been completed by myself independently without
outside help and only the defined sources and study aids were used. Sections
that reflect the thoughts or works of others are made known through the
definition of sources.

City Date signature

	3.1 Chapter overview
	4.1 Hardware
	4.1.1 SIMOVERT MASTERDRIVES MC Setup 6SX-7000-0AF10
	4.1.1.1 Masterdrives MC 6SE7012-5EP50-Z
	4.1.1.2 Masterdrives MC 6SE7011-0TP50-Z (Right)

	4.1.2 Motors:
	4.1.2.1 SIEMENS 3-Permanent-Magnet-Motor 1FK6032-6AK71-1TG0
	4.1.2.2 SIEMENS 2-Magnet-Motor 1FT6031-4AK7

	4.1.3 Siemens SIMATIC S7-300 Setup
	4.1.4 Communication Board, PC and cables
	4.2 Software
	5.1 CP5613 A2 Communications Processor
	5.1.1 Instructions for assembly

	5.2 PROFIBUS
	5.2.1 Specifications
	5.2.2 Bus connection for the first and last node on PROFIBUS
	5.2.3 Installing components on the rail
	5.2.4 Power Supplies

	6.1 The Multipoint- Interface (MPI)
	6.2 The PROFIBUS DP
	6.3 Ethernet
	7.1 Parameterization
	7.1.1 Parameterization via PMU
	7.1.2 Parameterization via OP1S (6SE7090-0XX84-2FK0)
	7.1.3 Parameterization via Drive Monitor (Stand alone)
	7.1.3.1 Install Drive Monitor
	7.1.3.2 Parameterize the slave (Masterdrives MC)

	7.1.4 Parameterization via Drive Monitor (SIMATIC Manager)

	7.2 Parameterization Steps
	7.2.1 Main Steps for parameterization
	7.2.1.1 Power section definition (P060 = 8)
	7.2.1.2 Board Configuration (P060 = 4)
	7.2.1.3 Drive Setting (P060 = 5)
	7.2.1.4 Function adjustment

	8.1 Synchronous Operation
	8.1.1 Basic Positioning
	8.1.2 Technology Option F01
	8.1.3 General functions of Technology Option
	8.1.4 Positioning
	8.1.5 Synchronization

	8.2 Application
	8.2.1 Operations modes
	8.2.1.1 Synchronous Operation
	8.2.1.2 Reference run (MDI = 0)
	8.2.1.3 Reference run (MDI = 1)

	9.1 Functionality of the CBP
	9.2 Useful Data
	9.3 Starting the DP Slave through S7-Project
	10.1 Synchronous Operations
	10.1.1 Parameterization
	10.1.2 FB10 Conversion
	10.1.3 FC2 Write & Read operations for Control and Status words
	10.1.4 FB60 User Friendly HMI

	
	10.2 Asynchronous Operation
	10.3 Reset Functionality
	11.1 Eclipse
	11.1.1 The Eclipse’s licence
	11.1.2 How start using Eclipse
	11.1.3 Download the JAVA S7 Beans Library from SIEMENS site
	11.1.4 Java visual project

	11.2 S7-Beans and interconnection hierarchy
	11.2.1 S7-Beans
	11.2.2 Hierarchical relationship between components

	
	11.3 Java Applet for displaying the HMI on a web browser
	11.4 Developing HMI in Java and connecting it with S7 Program
	11.4.1 Siemens S7 Beans
	11.4.1.1 Siemens S7 Device beans
	11.4.1.2 Siemens S7 GUI beans
	11.4.1.3 Siemens S7 Utility beans

	11.4.2 HMI Design page 1
	11.4.2.1 Modifications to the class
	11.4.2.1.1 Change layout
	11.4.2.1.2 Modify the declaration line
	11.4.2.1.3 Add terminating API mechanisms

	11.4.2.2 Inserting S7 Device Beans
	11.4.2.3 Design GUI

	11.4.3 HMI Design page 2 (Synchronous operation)
	11.4.3.1 Adding Tacho
	11.4.3.2 Adding text box for displaying the speed
	11.4.3.3 Adding text box for setting the speed
	11.4.3.4 Adding Digital Input (DI) buttons
	11.4.3.5 Adding navigation buttons

	11.4.4 User friendly HMI design Synchronous operation
	11.4.5 HMI Design for Asynchronous operation

	12.1 Suggestions for the future work
	A.1 PC
	A.2 S7-Hardware Configuration
	A.2.1 Hardware configuration
	A.2.2 Adding SIEMENS Simovert Masterdrives Motion Controllers

