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Kurzzusammenfassung
Viele soziale Medien haben mit dem Auftreten von Hassrede zu kämpfen. Seit ein
paar Jahren wird vermehrt an der Erkennung von Hassrede mit Hilfe von maschi-
nellem Lernen und Computerlinguistik geforscht. Diese Arbeit befasst sich mit der
automatischen Erkennung von Hassrede im Internet. Dafür werden verschiedene
Verfahren des maschinellen Lernens sowie der Computerlinguistik kombiniert und
untersucht. Die Ergebnisse der durchgeführten Experimente werden im Hinblick auf
ihre Praktikabilität bewertet und verglichen.
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Abstract
Many social media platforms are a�ected by the presence of hate speech. In the last
couple of years, machine learning and natural language processing approaches have
been investigated to detect harmful user content on the web. This thesis deals with the
problem of automated hate speech detection. Di�erent machine learning and natural
language processing algorithms are combined and investigated. The experiment results
are then compared with respect to their usefulness for this task.
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1. Introduction

The growing presence of social media has brought up a multitude of possibilities.
Yet it also has created problems of a whole new dimension. Especially through the
large amount of users, online content has become extremely hard to control. In the
last decade, the use of machine learning has become increasingly popular in order to
support content moderation in online platforms. This work is dedicated to exploring
machine learning and natural language processing for the automated detection of
harmful content in social media.

1.1. The Problem of Hate Speech

The discrimination and public defamation of minorities or certain population groups
has always been a problem society has had to face. With the rise of modern media
formats, this issue is now more present than ever. Social media platforms like Facebook,
Twitter or Instagram, which heavily rely on user-generated content, provide stages not
only for self-expression and social networking, but also for stirring up hatred against
others.

By now, many countries have introduced laws to oppose what is commonly called
hate speech. Beyond that, most online platforms apply individual language regulation
policies, built up on their own de�nitions. While there is no universal de�nition of hate
speech, most regulations refer to it as the propagation of racism, sexism or religious
hate.

Di�erent approaches have been utilized to �ght the dissemination of this kind of
harmful content among the web. Due to the continuous generation and therefore
massive amount of data, online platforms often rely on �agging [10]. This means, that
users can report content directly to the platform provider, so that it can be evaluated
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1. Introduction

and removed. In addition to that, bigger platforms outsource active content moderation
to external companies [2].

In the last couple of years, automated hate speech detection mechanisms have
become a topic of particular interest. Companies like Facebook or Google are already
using arti�cial intelligence for this purpose. Still there is a lot of room for improvement,
since existing systems do not perform well enough to replace human reporters or
moderators. According to [19], only 38 percent of the posts that have been removed
from Facebook because of their hateful content, have priorly been marked by the
website’s detection system.

Not only for machines, hate speech detection is an extraordinarily hard task. In
many cases even for humans it is extremely di�cult to distinguish hate speech from
other content which might be toxic, but does not fall under the category of hate speech.
[33] and [29] for example show that hate speech annotators more often than not
disagree on their annotations, which is why human agreement can be seen as an upper
bound on machine learning classi�cation success [29].

1.2. Goals

This work focuses on exploring machine learning techniques for the purpose of identify-
ing hateful language in social media. Therefore di�erent preselected feature generation,
resampling and classi�cation algorithms are combined and applied on a social media
dataset. The main objective is to get an insight on how di�erent combinations algo-
rithms perform on the dataset in order to help with the decision on which methods to
use for programmatic hate speech detection.

1.3. Structure

Chapter 2 elaborates some of the principles of machine learning and natural language
processing. Furthermore an overview on past and current research on hate speech
detection through machine learning is given. Chapter 3 provides a deeper insight
on the dataset that this work is based on. In Chapter 4, the di�erent text processing,
resampling and machine learning algorithms which are used for classi�cation are
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1. Introduction

introduced and explained. The general test setup as well as implementation details
are described in Chapter 5. The test results of di�erent algorithm combinations are
then presented in Chapter 6. Finally, Chapter 7 shows an evaluation of the examined
methods and also provides an assessment on their viability in practice. In addition to
that, an outlook on further work regarding this topic is given.
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2. Conceptual Background

In order to fully understand the nature of the problem, it is necessary to explain
basic methodological concepts. Therefore this chapter introduces concepts of machine
learning and natural language processing. In addition to that, related work in the
context of automated hate speech detection is discussed.

2.1. Machine Learning Basics

Many tasks in decision making, pattern recognition and other areas, which used to
require human intelligence, have been automated through the use of machine learning
(further referred to as ML), which is a �eld of arti�cial intelligence. According to [30],
ML can be divided into three categories, brie�y described as follows:

• Supervised Learning
In this approach, a set of input/output tuples is given. Based on this training set,
a function is learned, which maps input to output values. This function, called
hypothesis, is then applied on a test set, in order to judge its predictive power and
to improve its performance on predicting new unseen instances. The learning
method is called regression, if the output is numeric. It is called classi�cation, if
output values can be seen as a �nite set of categories.

• Unsupervised Learning
In this approach, a set of unlabeled instances is given. The main goal here is to
�nd a model that recognizes potential patterns in the dataset, which is called
clustering. This method is often used to identify classi�cation categories, where
no prior information on categories is available.
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2. Conceptual Background

• Reinforcement Learning
This category is based on the principle of learning by positive and/or negative
feedback. It aims to train a model to �nd the best chain of decisions (policy),
solving a speci�c problem. Decisions which are bene�cial are rewarded whereas
disadvantageous decisions are punished.

Besides those three categories many popular algorithms use semi-supervised learn-
ing, which as the name suggests is a mix of supervised and unsupervised learning.
Here both labeled and unlabeled instances are used to train an ML model. This work
however makes use of supervised learning algorithms, since class labels for tweets are
already given.

2.2. Natural Language Processing

The computational processing of written and spoken natural language has a multitude
of use cases. Applications utilizing natural language processing (further referred to as
NLP) therefore are becoming increasingly popular. NLP combines di�erent �elds such
as signal processing, machine learning, linguistics and psychology, just to name a few
[9]. Besides speech recognition, machine translation or chat bots, NLP is also used for
text analysis and classi�cation. The automated detection of hate speech represents
such a text classi�cation problem.

Most NLP problems can be considered very di�cult to solve. Unlike formal lan-
guages, which can easily be handled by machines, human language has more nuances
to it, making it di�cult for computers to understand and interpret. Latent factors like
irony, sarcasm, humor or �gures of speech can drastically change the meaning of a
piece of text. Without context, it is almost impossible to fully determine the semantic
meaning of text using those factors. NLP methods therefore have to �nd a way to
overcome those obstacles.
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2. Conceptual Background

Figure 2.1.: Text classi�cation pipeline. Reproduced from [3].

Most NLP applications follow a number of sequential steps. The �rst step includes
transforming raw text into numerical feature vectors. To achieve this, the text has to
be split up into a �nite number of entities, which are called tokens. Accordingly, this
procedure is called tokenizing. The most common token granularity is a small set of
words or characters. Another popular preprocessing step is the removal of stop-words.
This term refers to words like ’a’, ’and’ or ’the’, which frequently appear in text and do
not carry any semantic information. In addition to that it can be useful to normalize
words by using their lowercased stems and remove punctuation. After transformation
the feature vectors can be used to train and test ML classi�ers, which expect numerical
features as input.

Figure 2.1 shows an exemplary pipeline with raw text documents as input and class
labels as output. Both in training and prediction, text samples are transformed into
feature vectors, before they can serve as input for the machine learning algorithm
in the training phase or the model in the test phase. The model training and class
prediction step does not di�er from other classi�cation problems that do not involve
text.
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2. Conceptual Background

2.3. Related Work

Research on automated hate speech detection, especially in social media, has become
increasingly relevant during the last couple of years. With the rise of social media, it
has become a subject of public interest. Companies like Facebook, Google or Yahoo
are actively participating in doing research in order to �nd solutions for this problem.

However, there are just a few publicly available datasets that are large enough to
train ML models with. To achieve suitable results, datasets have to be su�ciently big.
Besides that human workforce is needed in order to provide labels for the samples. In
the case of hate speech it can be useful to employ trained annotators to label a dataset.
The identi�cation of hate speech requires a certain amount of skills, especially when
it has to be distinguished from language that is just o�ensive. Most currently available
datasets di�er in the authors’ prede�ned sample categories. [25] extracted two dataset
(2,150,176 and 1,174,509 samples) from Yahoo! Finance and News, which were labeled
’clean’ or ’abusive’. These datasets are currently the biggest ones that have been
extracted so far. [32] collected a dataset of 1,000 samples, which were categorized as
’anti-semitic, antiblack, anti-asian, anti-woman, anti-muslim, antiimmigrant or other-
hate’ [32]. 16,914 samples were extracted from Twitter and annotated ’sexist’, ’racist’
or ’neither’ by [34]. [20] provided a set of 24,582 Tweets labeled ’racist’ or ’non-racist’.
[6] also used Twitter to extract 1,901 tweets labeled ’cyber hate’ or ’benign’.

Hate speech classi�cation approaches di�er mainly in feature engineering methods
and in using di�erent classi�ers. One of the most popular approaches for feature
engineering is the usage of word or character n-grams (see 4.1.1). This method is
used by [34], [23], [6], [25], [32], [20], [38] as well as [11]. [25], [32] and [13] use
grammatical characteristics to generate features. A popular example is part-of-speech
tagging, where each word is assigned its part of speech in its context. Lexicon-based
features are used by [6], [25], [13] and [38]. These approaches look for the presence of
certain words or phrases in the text by using word lists that contain o�ensive, racist or
sexist terms or by using lists that include words implying speci�c emotions. Features
deduced from a text sample’s sentiment score (see 4.1.4) are utilized by [13] and [38].
An increasingly popular feature generation method based on neural networks is the
use of word or document embeddings (see 4.1.3). [12], [37], [1] and [38] generate
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2. Conceptual Background

features through these methods. [36] and [38] make use of latent Dirichlet allocation
(see 4.1.2).

Many approaches, such as [11], [12], [6], [34] and [36], use Logistic Regression (see
4.3.1) for the purpose of classi�cation. Another popular approach is the use of Support
Vector Machines, which are utilized by [23], [6], [32] and [36]. Decision Trees, which
belong to the rule based classi�cation approaches, and Random Forest as an ensemble
method of Decision Trees, are used by [6] and [36]. [20] uses the fast and simple Naive
Bayes classi�er (see 4.3.3). Furthermore, deep learning approaches are becoming more
and more popular and are applied for example by [37] and [1].
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3. Dataset

The following chapter sheds light on the dataset that is used in this thesis. First, basic
features of the set are discussed. Furthermore an explanation is given, why this speci�c
dataset has been chosen for this work. The part that follows gives deeper insights on
qualitative and quantitative features of the dataset.

3.1. Description

The dataset used in this work has been created by [11]. It consists of 24,783 tweets
which have been sampled from Twitter using the Twitter API. The tweets have been
drawn from Twitter users who have posted content containing words from a collection
of hate speech terms maintained by Hatebase.org. All samples have been labeled by
human annotators as either ’hate speech’, ’o�ensive language’ or ’neither’.

Figure 3.1.: First �ve rows of the dataset.

Figure 3.1 shows the general structure of the dataset. The column count represents
the number of annotators that have assigned labels to the current tweet. The number of
annotators varies throughout the dataset. The columns hate_speech, o�ensive_language
and neither each contain the number of annotators which have assigned the respective
label to the tweet. The class column consequently contains the majority vote of the
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3. Dataset

three preceding columns. As the name says, the tweet column holds the extracted
tweet.

The decision to use this speci�c dataset for this thesis is based on several reasons.
A major point is the size of the dataset. Not many large enough annotated hate
speech datasets are publicly available. This set provides a su�cient amount of samples,
so that the chance for reasonable classi�cation results is bigger than with a smaller
dataset. Furthermore the distinction between hate speech and insulting, but not hateful
language is a problem that is far from trivial and harder to deal with than the binary
case of distinguishing between o�ensive and non-o�ensive language. Hate speech
detection systems in practice will have to be able to handle this distinction in order to
avoid censorship and concentrate on protecting users.

3.2. Data Exploration

Figure 3.2a shows that the dataset is highly imbalanced. With 77.4% the majority of
tweets is labeled o�ensive, whereas with 5.8% just a very small percentage of tweets are
actually considered hate speech. Most classi�ers tend to perform badly on imbalanced
datasets [8], because instances of the underrepresented class are likely to be ignored.
In this work oversampling is used to oppose the class imbalance problem.

Since a hate speech dictionary was used to extract the tweets, a multitude of the
samples contain terms that can be considered o�ensive. Figure 3.2b shows a word
cloud of the 90 most frequent words in the whole dataset. Besides obvious swear words
there are also terms like ’bird’ or ’trash’, which are not inherently o�ensive, but are
often used in a hate speech context. Figure 3.2c and Figure 3.2d show the most frequent
word combinations, which also underline the toxicity in many tweets. Looking at
Figure 3.2e and Figure 3.2f, it becomes visible that o�ensive and hate speech tweets
are shorter but in turn contain more o�ensive words on average.

Collectively the examined qualities suggest that the biggest di�culty lies in dif-
ferentiating between tweets that contain o�ensive content and tweets that contain
hateful content. Both categories show similar qualities and cannot necessarily be
distinguished by their o�ensive language. This underlines the inherent di�culty of
the hate speech detection problem.
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3. Dataset

(a) Distribution of classes. (b) Word cloud of tweets.

(c) The 15 most frequent word bigrams. (d) The 15 most frequent word trigrams.

(e) Tweet length by class. (f) Number of o�ensive words by class.

Figure 3.2.: Visualization of di�erent dataset and text qualities.
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4. Methods

The experiments conducted in this thesis are comprised of three main steps: Feature
generation, oversampling and classi�cation. In the feature generation step, raw text
is preprocessed and transformed into feature vectors. After that, an oversampling
algorithm is applied to the train data. This step is included because the dataset that
is used in this thesis is highly imbalanced. The hate speech class, which is the most
interesting one, is underrepresented, so that training suitable models can be di�cult.
Through oversampling this problem can be mitigated. The �nal step is the classi�cation
of the dataset, including training a classi�er with a train set and testing the resulting
model with a test set. The following chapter introduces the di�erent algorithms used
in this thesis and explains, why they have been chosen for the experiments.

4.1. Feature Generation

In this section di�erent feature generation methods are introduced. A suitable feature
engineering practice is a crucial part of text analysis. Other than for example in medical
or economic datasets, text data always has to be preprocessed and transformed in
order to be used as input for a ML classi�er. Therefore classi�cation performance
relies heavily on which feature generation method is used and which qualities of the
text are represented by the features.

The approaches that have been chosen to be compared are term frequency-inverse
document frequency (TF-IDF ), latent Dirichlet allocation (LDA), Paragraph Vector and
sentiment score. The �rst three are used as primary feature generation methods. The
sentiment score serves as a supplementary method, so that each of the other three
approaches are tested both alone and in combination with sentiment features.

12



4. Methods

Out of the multitude of available methods TF-IDF has been chosen because of its
popularity among text classi�cation applications. Even though the approach is rather
simple, it often leads to considerable results. The choice for LDA is based on curiosity
about how a statistical model performs in comparison to a simpler method like TF-IDF.
Paragraph Vector has been picked as a representative of the newer feature engineering
approaches that make use of neural networks. This choice addresses the question
if neural networks generally perform better than other feature generation methods.
Sentiment score features have been chosen in order to investigate whether adding
those values can improve the classi�cation performance.

The methods that have been chosen for this thesis are just a selection out of many
possible feature generation approaches. Lexicon-based feature engineering methods
however have not further been investigated because the dataset has been collected
by using a hate speech lexicon. Data exploration shows that the majority of sam-
ples contain o�ensive words, therefore those features might not contribute to good
classi�cation results.

4.1.1. TF-IDF

The TF-IDF algorithm is a variant of the so called bag-of-words models. These feature
generation models make use of word and character n-grams, which are sequences
of either words or characters of length n. A sentence is represented by a set (’bag’)
of n-grams, that are unordered and therefore independent of their actual position
in the text. Consequently this representation leads to the fact that information on
word or character order and context is lost. The goal of bag-of-words however is to
transform the text samples into feature vectors that contain (weighted) frequencies of
the n-grams present in each text sample. The sentence ’I am eating pizza.’ for example
would result in the bigrams ’I am’, ’am eating’ and ’eating pizza’.

The use of simple n-gram frequency can be problematic for text classi�cation. Very
frequent terms, as well as very rare terms are uninteresting for classi�cation, since
they do not provide information that is useful for predicting class labels. The TF-IDF
algorithm o�ers a strategy to overcome this problem. While word counting algorithms
only provide information on a term’s frequency in the current document, TF-IDF
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4. Methods

gives insight on its actual importance. It weighs each term frequency by a value
that represents the term’s relevance in the whole corpus. The TF-IDF algorithm is
comprised of the following steps:

• Compute the term frequency tft,d of term t in text document d:

tft,d =

1 + log10 count
(
t, d
)
, if count

(
t, d
)
> 0.

0, otherwise.
(4.1)

• Compute the inverse document frequency idft:

idft = log10

(N
dft

)
, (4.2)

where dft is the number of documents containing term t and N is the total
number of documents in the corpus.

• Multiply term frequency and inverse document frequency:

tf -idft,d = tft,d × idft. (4.3)

4.1.2. Latent Dirichlet Allocation

With latent Dirichlet allocation, a generative probabilistic model [5] is used to create
features. LDA is based on the assumption, that each document in a document collection
has an underlying distribution of topics, whereas each topic is modeled as a distribution
over all words from the collection. According to the assumptions LDA is based on, a
single document di with N words is generated by the following steps:

1. Draw θi ∼ Dirichlet(α)

2. For each word wj in di, j = 1...N :

a) Draw a topic zi,j ∼Multinomial(θi)

b) Draw a word wi,j ∼Multinomial(βzi,j )

14



4. Methods

LDA therefore tries to infer the distribution of topics in all documents as well as the
distribution of words belonging to a topic.

A graphical model of LDA can be seen in Figure 4.1. The nodes represent random
variables, of which shaded ones are observed and white ones are hidden. The plates
(rectangular boxes) stand for replicated variables, with the number of replications
on the bottom right side. The black continuous edges show dependencies between
variables.

M
N

α 
θ z w β 

document
collection

word collection
in a document

wordword
specific

topic

document
specific topic 
distribution 

K

topics

topic specific
word distribution

η 

Dirichlet
parameter

Dirichlet
parameter

Figure 4.1.: Graphical model of LDA. Adapted from [5].

To make use of LDA, the parameters α and η have to be estimated and the posterior
distributions of the hidden variables have to be inferred. Since this is computationally
intractable, approximation methods are used to learn an LDA model. Once a model
is learned, it can be used to generate features for classi�cation. The feature vector of
each document simply consists of the underlying topic probabilities. Thus the number
of features per sample corresponds to the number of topics in the document collection,
which is arbitrarily set before training the model.

Since the number of topics is just a fraction of the number of words present in a
corpus, LDA generates feature vectors that are remarkably smaller than with TF-IDF,
in which feature vectors correspond to the number of unique words in the whole
corpus. This is especially useful when the corpus is very big, as the training runtime
of the classi�er will be improved.
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4.1.3. Paragraph Vector

The Paragraph Vector framework [21] provides distributed representations of docu-
ments. In literature it is also referred to as Doc2Vec. There are two major versions of
Paragraph Vector. In the Distributed Memory version (PV-DM), a small window of
words is used to predict the next word in a context window. Each word is represented
by a unique column vector in a word matrix W . In addition to that, every document
is encoded in a separate unique column vector in a document matrix D. In order
to predict a certain word, context word vectors as well as the document vector are
averaged or concatenated. Word and document vectors are learned by using neural
networks.

In contrast to bag-of-words, Paragraph Vector creates word vectors that encode
similarities between words and takes their context into account, so that semantically
similar words will have similar vectors. These similarities can also be shown through
arithmetic operations like vector addition.

The other major variant is called Distributed Bag-of-Words version (PV-DBOW ). In
contrast to PV-DM, it only uses document vectors to predict a window of words in a
context. The training is also done with a neural network.

(a) PV-DBOW version of Paragraph
Vector. (b) PV-DM version of Paragraph Vector.

Figure 4.2.: Di�erent versions of Paragraph Vector. Reproduced from [21].

An illustration of Paragraph Vector’s working principles can be seen in Figure 4.2.
In this thesis the PV-DM version of Paragraph Vector is used. Comparing PV-DM
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4. Methods

and PV-DBOW exceeds the scope of this work. Therefore the default setting of the
implementation from the Python library is used.

4.1.4. Sentiment Score

Sentiment analysis is a scienti�c approach to �nding out ’what other people think’
[26]. With the help of ML and NLP methods it aims to quantify human emotion in
text. A popular example is the rating of online product reviews. Through text analysis
a sentiment score is assigned to each review, judging the user’s emotions towards
the respective product. In the context of hate speech detection, sentiment analysis is
used to evaluate the emotional polarity of a piece of text. It is especially helpful for
distinguishing between non-o�ensive and o�ensive language, since the latter one is
much more likely to have a negative sentiment score. A visualization of sentiment
scores per class for this dataset can be seen in Figure 4.3. The di�erence between the
neither class and the hate speech and o�ensive class becomes very visible here.

Figure 4.3.: Sentiment scores of tweets per class.
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This work makes use of the pre-trained sentiment analyzer VADER [17] to assign
sentiment scores to tweets. Every tweet is assigned three ratios for negative, neutral
and positive sentiment, which add up to 1. Sentiment features are used as an additive
for features generated by the other three methods that are used in the thesis. To
investigate the impact of the sentiment scores, TF-IDF, LDA and Paragraph Vector
are applied both with and without sentiment features, so that the di�erences can be
compared.

4.2. Oversampling

The following section describes the two di�erent oversampling methods that are used
in this work. Imbalanced datasets can be an obstacle when it comes to training ML
models. During the learning phase, classi�ers develop a bias towards the class or
classes that include the majority of samples. The models then tend to misclassify
minority class samples. This is especially fatal if the minority class constitutes the
’interesting’ class, which is the case in the present dataset.

Resampling the data often helps to gain better classi�cation results. There are two
major options for resampling. One possibility is to decrease the size of the majority
class by removing data. This is called undersampling. The other option includes
generating new minority class samples in order to adjust the class distribution, which
is called oversampling.

This work uses oversampling instead of undersampling, because the risk of losing
valuable information through removing single samples should be avoided. The two
oversampling algorithms SMOTE (Synthetic Minority Over-sampling Technique) and
ADASYN (Adaptive Synthetic Sampling Approach) have been chosen, because they can
be considered the most popular state-of-the-art oversampling algorithms. Simple
random resampling of data is not applied, since this method can lead to over�tting [8].

4.2.1. SMOTE

SMOTE constitutes an approach for resampling imbalanced datasets by generating new
synthetic data samples [7]. The amount of additional samples created by SMOTE can

18



4. Methods

be chosen arbitrarily. It is represented by a parameterN , so that a total of (N/100)×T
new samples are generated, where T is the count of minority class samples. For every
minority sample, SMOTE applies a k-nearest-neighbors algorithm, where k is also
arbitrarily set. A new synthetic sample is calculated as follows:

s = x + (nn− x)× d, (4.4)

where x is an existing minority sample, nn is a randomly chosen nearest neighbor,
d is a random weighting factor between 0 and 1 and s is the new synthetic feature
vector.

4.2.2. ADASYN

Similar to SMOTE, ADASYN also generates synthetic data samples [15]. But instead
of parameterizing the amount of resampled minority samples, a density distribution
is used to determine how many synthetic samples per minority class sample should
be generated. Through this technique, ADASYN focuses on data samples that are
especially hard to classify. In the original algorithm the number of new synthetic
samples gi for a minority sample xi is calculated as follows:

a) Calculate the number of synthetic data examples that need to
be generated for the minority class:

G = (ml −ms)× β (2)

Where β ∈ [0, 1] is a parameter used to specify the desired
balance level after generation of the synthetic data. β = 1

means a fully balanced data set is created after the generalization
process.

b) For each example xi ∈ minorityclass, �ndK nearest neighbors
based on the Euclidean distance in n dimensional space, and
calculate the ratio ri de�ned as:

ri = ∆i/K, i = 1, ...,ms (3)
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where ∆i is the number of examples in the K nearest neighbors
of xi that belong to the majority class, therefore ri ∈ [0, 1];

c) Normalize ri according to r̂i = ri/
∑ms

i=1 ri, so that r̂i is a density
distribution (

∑
i r̂i = 1)

d) Calculate the number of synthetic data examples that need to
be generated for each minority example xi:

gi = r̂i ×G (3)

whereG is the total number of synthetic data examples that need
to be generated for the minority class as de�ned in Equation 2.
[15]

The computation of the new feature values is similar to SMOTE. The quoted algo-
rithm shows that ADASYN pays special attention to data samples that are particularly
close to majority samples. The more majority samples can be found among the k near-
est neighbors of a minority sample, the more synthetic data points will be generated
for the respective minority sample.

4.3. Classification

This section describes the ML algorithms that are used for classifying the dataset.
As mentioned before, only supervised learning methods are used in this thesis. All
classi�ers go through two main phases, which are training and testing. In the training
phase, classi�ers will be fed with train data in order to learn a model. This model will
then be used in the testing phase to predict labels of test data.

The classi�cation algorithms chosen in this thesis are Logistic Regression, Support
Vector Machines (SVM), the Naive Bayes classi�er and the Multilayer Perceptron. The
�rst three have been chosen for this thesis because they are very popular in text
classi�cation. The main goal here is to compare between classi�cation results and
see if there are major performance di�erences. The last one has been chosen as a
representative of the neural network classi�er family. The Multilayer Perceptron is one
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of the simpler neural network models, unlike other deep learning approaches which
are more elaborate. Since it would exceed the scope, other deep learning methods are
not considered in this thesis.

4.3.1. Logistic Regression

Logistic Regression can be described as a statistical ML model. Originally, the model
has been designed to solve binary classi�cation problems. Multiclass problems however
can also be solved, for example by treating each class as a binary problem. As the
name suggests, Logistic Regression makes use of a logistic function (or logit) in order
to distinguish between classes. Its output acts as the probability that the given sample
belongs to the positive class. The de�nition of a logistic function can be seen in
Equation 4.5. It is a special form of a sigmoid function, which is outlined in Equation
4.6.

p = σ(θT (x)). (4.5)

σ(x) =
1

1 + ex
(4.6)

θ is the coe�cient vector that has to be learned during the training phase. Given the
logistic function’s output p for a speci�c sample, which lies in the range (0, 1), the
distinction between positive and negative class is done as follows:

y =

1, if p ≥ 0.5,

0, otherwise.
(4.7)

The training goal of Logistic Regression is to �nd a θ that results in the best prediction
results. This is done by minimizing the following cost function for the whole set of
training instances:

J(θ) = − 1

m

m∑
i=1

[
yi log(hθ(x

i)) + (1− yi) log(1− hθ(xi)
]
, (4.8)
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where xi represents the feature vector of the training instance, yi is the actual class
label and hθ(xi) is the predicted class label for xi. Many implementations of Logistic
Regression use gradient descent to solve this optimization problem.

4.3.2. Support Vector Machines

Support Vector Machines are ML models that use hyperplanes for classi�cation. A
hyperplane ~x is de�ned by the following equation:

~x : f(x) = ~w · ~x+ b = 0, (4.9)

where ~w is a normal vector and b marks the distance to the origin. SVM tries to �nd
hyperplanes that divide the data into di�erent classes, so that the prediction accuracy
based on those planes is maximized. The following rule can be applied in order assign
a class label y ∈ {1,−1} to a feature vector ~x with normalized parameters ~w and b:

y =

1, if ~w · ~x+ b ≥ 1,

−1, if ~w · ~x+ b ≤ −1.
(4.10)

The learning goal of SVM is to �nd the largest possible margin. This problem is
geometrically shown in Figure 4.4. (b) shows a hyperplane that provides a larger
margin and therefore results in a higher classi�cation accuracy than the hyperplane in
(a). The actual support vectors are the data points with the shortest distance to the
hyperplane on both sides.

In general, hyperplanes provide a good solution for data that is linearly separable. In
non-arti�cial datasets this case is rather rare. To achieve better classi�cation accuracy, a
kernel function is used to transform the data into a higher dimension, so that eventually
it can be linearly separated.
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Figure 4.4.: Dividing data samples through hyperplanes. Reproduced from [14].

4.3.3. Naive Bayes Classifier

The Naive Bayes classi�er belongs to the group of probabilistic ML models. It is a
simple and fast algorithm, that often performs relatively well despite its simplicity.
The Naive Bayes classi�er is based on Bayes’ Theorem, which is described in Equation
4.11. In connection with a classi�cation problem, the theorem provides a possibility to
estimate the probability that a sample belongs to a certain class, given the sample’s set
of feature values.

P (y|x1, x2, ..., xn) =
P (y)P (x1, x2, ..., xn|y)

P (x1, x2, ..., xn)
(4.11)

P (y|x1, x2, ..., xn) is the conditional probability of the class label given a certain set of
feature values, P (y) is the actual observed class label, P (x1, x2, ..., xn|y) is the condi-
tional probability of the feature values given a certain class label and P (x1, x2, ..., xn)

is the probability of the feature values.
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Naive Bayes utilizes the (’naive’) assumption, that all features are conditionally
independent from each other. Using the chain rule of probability calculation, this can
be formulated as follows:

P (xi|x1, x2, ..., xi−1, xi+1, ..., xn, y) = P (xi|y) (4.12)

The probability that a feature xi takes on a certain value, given all other feature values
of x1, x2, ..., xi−1, xi+1, ..., xn as well as the class label y, is the same as the probability
given just the class label y. This assumption leads to the following formulation:

P (y|x1, x2, ..., xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, x2, ..., xn)
(4.13)

The denominator is constant, since it represents feature value probabilities that are
already given through the observed feature values. Therefore the resulting model can
be described like this:

P (y|x1, x2, ..., xn) ∝ P (y)
n∏
i=1

P (xi|y) (4.14)

Consequently, a class prediction ŷ can be made through the following rule:

ŷ = argmax
y

P (y)
n∏
i=1

P (xi|y) (4.15)

The class label with the highest conditional probability will be chosen for a given
sample.

4.3.4. Multilayer Perceptron

The Multilayer Perceptron is one of the simpler classi�ers using the concept of neural
networks. The model consists of an input layer, an output layer and one or more
hidden layers in between. Every layer is comprised of a set of nodes, which are also
referred to as neurons according to their biological archetype. An exemplary neural
network with a single hidden layer is shown in Figure 4.5.
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Every node of the input layer represents a single feature from a feature vector. The
nodes of the hidden layers compute weighted sums of the �rst layer’s output and
transform it by applying a non-linear activation function. The most popular activation
functions are the hyperbolic tangent function, the logistic function (see Equation 4.5)
and the Recti�er Linear Unit. The latter one is used in this work and can be described
through Equation 4.16. Finally the output layer generates an output with which the
class label can be determined. Every neuron in the output layer represents one of the
possible classes. Since the data �ow is unidirectional from the input layer to the output
layer, the multilayer perceptron is called a feedforward neural network.

f(x) = max(0, x) (4.16)

For the learning process an error function has to be chosen in order to measure the
deviation between the predicted label and the actual label of a training sample. This
error function is minimized by gradually adjusting the individual weights in every
node. The most common way to learn the weights is gradient descent in combination
with backpropagation.

Figure 4.5.: Multilayer Perceptron with a single hidden layer.
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In order to investigate the problem this thesis deals with, a set of experiments are
conducted. The following chapter describes the concept and setup of the conducted ex-
periments. Furthermore it describes the technical details and concrete implementation
of the tests.

5.1. Test Pipeline

All experiments aim to compare combinations of di�erent feature generation, over-
sampling and classi�cation algorithms. Every test therefore follows the same pipeline,
which is shown in Figure 5.1. As a �rst step, the raw text data samples are prepro-
cessed. This includes tokenizing as well as the removal of common stop-words. The
actual feature generation procedure concludes with transforming every tweet into
a numerical feature vector, so that the dataset that is used for the following steps
is comprised of numerical feature vectors and their respective labels. The resulting

Figure 5.1.: Experiment pipeline.
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dataset is randomly split into a train set and a test set by a ratio of 4:1. The test set is
held out for model evaluation. This step is necessary to be able to estimate the model’s
actual performance. If a model is trained and tested with the same dataset, it is likely
to make very accurate predictions on the known dataset, since it has been trained
with it. This phenomenon is called over�tting. To actually evaluate the prediction
quality, the model has to be tested with unseen samples. Other over�tting prevention
approaches like cross-validation are not used in order to curb the overall experiment
runtime. After splitting, an oversampling algorithm is applied to the train set in order
to increase the amount of minority class samples. The resampled train set is then used
to train the respective classi�er. On completion of the learning phase, the resulting
model is used to predict class labels for the held out test set. Finally, the predicted
labels and the actual labels are used to compute metrics and to visualize classi�cation
results.

Many ML algorithms are sensitive to hyperparameter settings. These are the param-
eters that are not learned during training but initially have to be set. In order to tune
those hyperparameters, a grid search is initially performed for every combination of
algorithms. During the grid search procedures, classi�ers are initialized with di�erent
combinations of hyperparameters. For every combination, a model is trained and
tested using the whole dataset with 5-fold cross-validation. The hyperparameters with
which the model achieves the best classi�cation results are saved and used to train
the actual model with the test set in the respective test pipeline. All values have been
picked out of a range of the most common hyperparameter values for the respective
classi�ers. The actual values chosen for grid search can be seen in the Python code in
B.3.

5.2. Technical Implementation

All experiments are implemented in Python 3. Python in general is a popular choice
for machine learning purposes, besides the other fairly common language R. It o�ers a
broad range of ML and NLP libraries. Many of those frameworks come with a high
level of abstraction and allow a simple and straightforward usage. Apart from that,
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the decision for Python is based on personal preference and knowledge, which is why
it is preferred over R.

For most algorithms in this thesis the scikit-learn library [27] is used. Many scikit-
learn implementations of algorithms o�er similar interfaces. This is especially useful
for usage in pipelines. Furthermore, the Natural Language Toolkit (NLTK) [4] is used
for NLP speci�c functionality. NLTK is currently one of the most popular choices for
natural language processing and comes with extensive lexical resources, which is why
it is used for tokenizing, stop-word removal and sentiment analysis. The oversampling
algorithms are provided by the imbalanced-learn toolkit [22]. This is chosen because
the provided interface is very similar to scikit-learn and therefore eases the usage.
For the Paragraph Vector algorithm the Gensim framework [28] is utilized, since it is
currently the most elaborate Python solution for this purpose. In addition to that, scipy
[18] and pandas [24] are used for storing and handling the data, because both o�er
very useful data structures for managing big datasets. The classi�cation results are
plotted and visualized with the help of the matplotlib [16] and seaborn [35] libraries.

Figure 5.2.: Test system architecture.

The architecture of the test system can be seen in Figure 5.2. Every component
is established through a single Python script. The experiments component (see B.5)
constitutes the main entrypoint. In the main() function, the dataset is �rst read from a
�le. After that the dataset is passed to the feature generation endpoint of the features
component (see B.2). The resulting featuresets are then passed to the train and test
function of the classi�cation component (see B.4). The function also receives a �ag
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which indicates whether a grid search should be performed before the actual training
and testing. The search is implemented in the grid_search component (see B.3). The
results of the grid search (i.e. the best performing classi�er hyperparameters) are
stored in JSON �les in a dedicated directory. For the following training process, all
classi�ers except for the Naive Bayes classi�er are initialized with the hyperparameters
from the grid search �les. Naive Bayes does not require a grid search, since there are
no hyperparameters to optimize.

After the training and testing, results are written to CSV and JSON �les. Every
combination results in one CSV �le and one JSON �le each. The former ones contain
both predicted and true labels of the test sets. The latter ones contain certain metrics,
which are further described in Section 6.1. Finally, the endpoint provided by the
visualization component (see B.5) reads the results from the �les and creates graphics
and a table, which are saved to separate �les as well. Apart from the aforementioned
components, utils and constants are utilized by other components (see B.7 and B.6).
Feature generation as well as grid search and classi�cation are parallelized, so that
single jobs are distributed among cores. The Python library joblib is used for this
purpose.
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In this chapter the outcome of all experiments are presented. First, the statistical
measures used as evaluation metrics are introduced. After that, an overview on
method performances is given.

6.1. Metrics

To measure the classi�cation success, a set of statistical metrics is used. For their
computation an amount of basic measures has to be taken into account. All measures
are calculated per class, so that the present three-class classi�cation problem is treated
as three binary classi�cation problems with positive and negative samples. For every
class, true positives (TP), false positives (FP), true negatives (TN ) and false negatives (FN )
are counted. TPs are positive samples that have been classi�ed as such, whereas FPs
are negative samples that erroneously have been classi�ed positive. Correspondingly
TNs are negative samples that have been classi�ed correctly, and FNs are positive
samples that have been labeled negative. TPs, TNs, FPs and FNs are visualized through
a confusion matrix. All values are normalized by the respective class support.

Other metrics computed from those numbers are precision, recall and F1-score, which
are accumulated in a table. The precision gives an insight of how exact a model can
predict class membership. Therefore it measures the quality of the classi�cation results.
It is de�ned by the number of TPs divided by the sum of TPs and FPs. The recall
however indicates how complete the model can predict class membership and therefore
covers the quantitative aspect of classi�cation success. It is de�ned by the number
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of TPs divided by the sum of TPs and FNs. The F1-score is the harmonic mean of
precision and recall and can be computed by the following formula:

F1 =
2× precision× recall
precision+ recall

. (6.1)

6.2. Method Performances

In order to compare the results, weighted averaged precision values (P), recall values (R)
and F1-scores (F1) are depicted in radar charts in Figures 6.2 through 6.4. The values are
taken from Table A in Appendix A. A more detailed overview on method performances
can be seen there. In addition to that, confusion matrices for all experiments can as
well be seen in Appendix A.

Looking at the results, there is no clear ’winner’ combination. Nevertheless, some
insights can be drawn from the conducted experiments. Overall, Logistic Regression
and the Multilayer Perceptron are the best performing classi�ers. The latter one
however results in a higher recall than the �rst one. Especially in hate speech detection
applications in social media, a high recall is preferable over a high precision. If the
recall is high and the precision is in turn low, further measures can be taken to extract
the actual hate speech samples from the samples classi�ed as hate speech. This is not
the case, if the recall is low and very few hate speech samples are recognized.

There is no signi�cant performance di�erence between the two oversampling algo-
rithms SMOTE and ADASYN. The main di�erence between SMOTE and ADASYN is
the number of synthetic samples generated for every existing minority sample. This
might not be as important for classi�cation success.

In contrast to that, the feature generation methods have a comparably high in�uence
on the overall classi�cation performance. Combinations that use TF-IDF achieve the
best results. This goes along with TF-IDF’s popularity in text classi�cation. The worst
performing feature generation method is Paragraph Vector. Against the expectations,
adding sentiment features does not signi�cantly increase the performance.

In most cases, the precision is higher than the recall. This shows, that despite
oversampling it is di�cult to recognize actual hate speech, so that many hate speech
samples are misclassi�ed. A lot of hate speech samples are labeled o�ensive and not
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hateful, which can be seen in most of the confusion matrices. This underlines the fact
that the distinction between the hate and the o�ensive class is particularly di�cult.

In general, the experiments show that hate speech is much harder to classify than
just o�ensive language. The average F1-score for the hate speech class is only 0.281,
whereas the average F1-scores for the o�ensive and the neither class attain values as
high as 0.832 and 0.703.

(a) SMOTE (b) ADASYN

Figure 6.1.: Logistic Regression Metrics

(a) SMOTE (b) ADASYN

Figure 6.2.: Support Vector Machine Metrics
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(a) SMOTE (b) ADASYN

Figure 6.3.: Naive Bayes Classi�er Metrics

(a) SMOTE (b) ADASYN

Figure 6.4.: Multilayer Perceptron Metrics
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In this chapter, the results are discussed and put into context with the actual goal of
this thesis. Also, an overview on the achievements of this work are given. Finally an
outlook on further research regarding this topic is given.

7.1. Evaluation

In this thesis the automated detection of hate speech through the use of machine
learning has been investigated. Therefore di�erent machine learning and natural
language processing methods have been combined and tested on a social media dataset.
For every combination of algorithms, a test pipeline has been used in order to collect
classi�cation results.

The results of the conducted experiments have shown that detecting hate speech
in social media is in general very di�cult. Most experiments have provided a rela-
tively low recall concerning the hate speech class. Furthermore it has been shown
that especially the distinction between hate speech and other o�ensive language is
extraordinarily hard.

Di�erent algorithm combination performances have indicated that the choice of
the feature generation method a�ects classi�cation success the most. The choice
of the classi�cation algorithm also has a signi�cant in�uence. The oversampling
algorithm choice however has not had such a big impact. Also the use of sentiment
score features has not been substantially bene�cial for the classi�cation results. Overall
the combination of TF-IDF, SMOTE and Logistic Regression has produced the best
results.
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7.2. Outlook

It is important to note that the obtained results have to be interpreted with respect
to the dataset that has been used. In order to prove the feasibility of the examined
methods, experiments with other similar datasets should be conducted.

To increase classi�cation performance, feature generation algorithms could be
combined in order to increase the predictive quality of the featuresets. Furthermore, a
feature selection algorithm could be used to decrease the featurespace dimensionality
and seek out features that provide the most useful information.

Deep learning approaches have not been covered in the present thesis. Since this
area of research has justi�ably gained popularity not only in text classi�cation, further
investigation could be very promising.

All in all, further research should focus on completeness rather than correctness of
classi�cation results, which is indicated through a higher recall than precision. The
detection of hate speech with the help of machine learning could then serve as a �rst
step with the option of further processing and �ltering.
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A. Results Metrics

Hate O�ensive Neither Weighted AVG
F1 P R F1 P R F1 P R F1 P R

Lo
gi

st
ic

Re
gr

es
sio

n

A
DA

SY
N

PV 0.256 0.164 0.585 0.771 0.946 0.650 0.627 0.515 0.802 0.717 0.829 0.671
PV+ 0.248 0.161 0.542 0.796 0.951 0.685 0.680 0.563 0.859 0.747 0.843 0.707
LDA 0.303 0.208 0.558 0.850 0.970 0.757 0.713 0.608 0.863 0.795 0.865 0.762
LDA+ 0.314 0.213 0.594 0.850 0.970 0.757 0.741 0.634 0.892 0.801 0.871 0.770
TF 0.372 0.356 0.390 0.930 0.941 0.920 0.849 0.823 0.876 0.883 0.885 0.881
TF+ 0.390 0.382 0.398 0.930 0.940 0.921 0.838 0.807 0.872 0.885 0.886 0.883

SM
O

TE

PV 0.270 0.175 0.594 0.797 0.937 0.693 0.676 0.592 0.788 0.744 0.832 0.703
PV+ 0.248 0.159 0.565 0.797 0.951 0.686 0.694 0.594 0.834 0.748 0.845 0.704
LDA 0.301 0.200 0.606 0.854 0.968 0.764 0.736 0.655 0.839 0.803 0.872 0.767
LDA+ 0.309 0.210 0.581 0.852 0.964 0.764 0.719 0.629 0.839 0.798 0.864 0.765
TF 0.376 0.363 0.390 0.930 0.940 0.919 0.854 0.823 0.887 0.884 0.887 0.883
TF+ 0.392 0.392 0.392 0.932 0.939 0.924 0.866 0.837 0.896 0.888 0.888 0.887

M
ul

til
ay

er
Pe

rc
ep

tro
n

A
DA

SY
N

PV 0.229 0.144 0.561 0.735 0.951 0.599 0.646 0.520 0.852 0.689 0.829 0.640
PV+ 0.259 0.177 0.485 0.824 0.940 0.734 0.689 0.596 0.817 0.767 0.835 0.734
LDA 0.240 0.190 0.328 0.880 0.927 0.837 0.702 0.642 0.775 0.814 0.838 0.798
LDA+ 0.239 0.209 0.278 0.896 0.927 0.867 0.731 0.676 0.797 0.830 0.843 0.821
TF 0.332 0.355 0.312 0.931 0.930 0.932 0.818 0.807 0.830 0.879 0.877 0.880
TF+ 0.340 0.357 0.324 0.925 0.921 0.929 0.807 0.811 0.802 0.871 0.870 0.873

SM
O

TE

PV 0.281 0.202 0.458 0.835 0.938 0.752 0.683 0.576 0.840 0.776 0.833 0.749
PV+ 0.273 0.190 0.481 0.878 0.922 0.838 0.714 0.747 0.684 0.816 0.851 0.792
LDA 0.253 0.199 0.347 0.883 0.928 0.842 0.706 0.657 0.763 0.816 0.839 0.800
LDA+ 0.194 0.165 0.236 0.888 0.930 0.850 0.733 0.657 0.829 0.824 0.842 0.812
TF 0.372 0.405 0.343 0.929 0.924 0.934 0.828 0.827 0.829 0.879 0.877 0.882
TF+ 0.353 0.393 0.321 0.925 0.928 0.923 0.805 0.770 0.843 0.870 0.869 0.873

N
ai

ve
Ba

ye
s A

DA
SY

N

PV 0.207 0.135 0.444 0.742 0.922 0.621 0.573 0.461 0.755 0.680 0.795 0.633
PV+ 0.205 0.133 0.443 0.667 0.954 0.512 0.523 0.376 0.863 0.616 0.807 0.570
LDA 0.264 0.177 0.523 0.835 0.962 0.738 0.689 0.585 0.839 0.779 0.856 0.742
LDA+ 0.255 0.173 0.490 0.800 0.961 0.685 0.650 0.517 0.877 0.744 0.841 0.707
TF 0.358 0.282 0.489 0.892 0.929 0.858 0.770 0.734 0.810 0.841 0.859 0.829
TF+ 0.362 0.292 0.477 0.896 0.940 0.856 0.782 0.719 0.857 0.845 0.865 0.834

SM
O

TE

PV 0.181 0.112 0.476 0.752 0.923 0.635 0.600 0.530 0.691 0.693 0.811 0.634
PV+ 0.182 0.111 0.501 0.603 0.940 0.444 0.511 0.373 0.811 0.563 0.796 0.509
LDA 0.221 0.145 0.470 0.829 0.949 0.737 0.674 0.599 0.769 0.769 0.845 0.727
LDA+ 0.283 0.188 0.567 0.808 0.958 0.698 0.656 0.544 0.825 0.750 0.841 0.712
TF 0.388 0.315 0.507 0.899 0.932 0.867 0.766 0.728 0.807 0.847 0.862 0.836
TF+ 0.423 0.345 0.549 0.897 0.930 0.867 0.749 0.715 0.787 0.844 0.858 0.834
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Su
pp

or
tV

ec
to

rM
ac

hi
ne

A
DA

SY
N

PV 0.065 0.419 0.035 0.884 0.801 0.987 0.323 0.798 0.202 0.741 0.777 0.799
PV+ 0.155 0.087 0.714 0.329 0.974 0.198 0.549 0.399 0.880 0.357 0.826 0.343
LDA 0.277 0.205 0.424 0.866 0.961 0.789 0.721 0.602 0.897 0.811 0.860 0.789
LDA+ 0.288 0.196 0.546 0.821 0.976 0.709 0.699 0.557 0.940 0.772 0.863 0.739
TF 0.282 0.278 0.285 0.916 0.914 0.917 0.781 0.791 0.771 0.857 0.858 0.857
TF+ 0.344 0.340 0.349 0.923 0.919 0.927 0.800 0.819 0.781 0.870 0.870 0.870

SM
O

TE

PV 0.266 0.172 0.585 0.799 0.944 0.692 0.657 0.558 0.799 0.745 0.837 0.704
PV+ 0.127 0.068 0.919 0.394 0.974 0.247 0.369 0.796 0.240 0.375 0.893 0.283
LDA 0.275 0.187 0.519 0.850 0.962 0.761 0.718 0.619 0.853 0.796 0.861 0.763
LDA+ 0.293 0.199 0.554 0.856 0.966 0.768 0.728 0.634 0.856 0.802 0.867 0.770
TF 0.308 0.320 0.296 0.919 0.911 0.926 0.783 0.803 0.764 0.859 0.857 0.861
TF+ 0.332 0.330 0.333 0.921 0.921 0.921 0.805 0.807 0.803 0.866 0.866 0.866

Table A.1.: Table of classi�cation results metrics.
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A. Results Metrics

(a) Paragraph Vector (b) Paragraph Vector with Sentiment Features

(c) LDA (d) LDA with Sentiment Features

(e) TF-IDF (f) TF-IDF with Sentiment Features

Figure A.1.: Confusion Matrices of Logistic Regression with ADASYN
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A. Results Metrics

(a) Paragraph Vector (b) Paragraph Vector with Sentiment Features

(c) LDA (d) LDA with Sentiment Features

(e) TF-IDF (f) TF-IDF with Sentiment Features

Figure A.2.: Confusion Matrices of Logistic Regression with SMOTE
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A. Results Metrics

(a) Paragraph Vector (b) Paragraph Vector with Sentiment Features

(c) LDA (d) LDA with Sentiment Features

(e) TF-IDF (f) TF-IDF with Sentiment Features

Figure A.3.: Confusion Matrices of Multilayer Perceptron with ADASYN
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A. Results Metrics

(a) Paragraph Vector (b) Paragraph Vector with Sentiment Features

(c) LDA (d) LDA with Sentiment Features

(e) TF-IDF (f) TF-IDF with Sentiment Features

Figure A.4.: Confusion Matrices of Multilayer Perceptron with SMOTE
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A. Results Metrics

(a) Paragraph Vector (b) Paragraph Vector with Sentiment Features

(c) LDA (d) LDA with Sentiment Features

(e) TF-IDF (f) TF-IDF with Sentiment Features

Figure A.5.: Confusion Matrices of Naive Bayes Classi�er with ADASYN
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A. Results Metrics

(a) Paragraph Vector (b) Paragraph Vector with Sentiment Features

(c) LDA (d) LDA with Sentiment Features

(e) TF-IDF (f) TF-IDF with Sentiment Features

Figure A.6.: Confusion Matrices of Naive Bayes Classi�er with SMOTE
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A. Results Metrics

(a) Paragraph Vector (b) Paragraph Vector with Sentiment Features

(c) LDA (d) LDA with Sentiment Features

(e) TF-IDF (f) TF-IDF with Sentiment Features

Figure A.7.: Confusion Matrices of Support Vector Machine with ADASYN
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A. Results Metrics

(a) Paragraph Vector (b) Paragraph Vector with Sentiment Features

(c) LDA (d) LDA with Sentiment Features

(e) TF-IDF (f) TF-IDF with Sentiment Features

Figure A.8.: Confusion Matrices of Support Vector Machine with SMOTE
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B. Source Code

B.1. experiments.py
1 import argparse
2 import logging
3

4 import pandas as pd
5

6 import classification
7 from features import FeatureGenerator
8 import visualization
9

10 logging.basicConfig(level=logging.INFO)
11 logger = logging.getLogger(’experiments’)
12

13

14 def main():
15 parser = argparse.ArgumentParser()
16 parser.add_argument(’-gs’, ’--gridsearch’, help="Perform grid search.",
17 action=’store_true’)
18 args = parser.parse_args()
19

20 gs = " with grid search" if args.gridsearch else ""
21 logger.info("Starting experiments" + gs)
22

23 logger.info("Reading data from input file")
24 data = pd.read_csv(’input/labeled_data.csv’)
25 text = data[’tweet’]
26 labels = data[’class’]
27

28 featuresets = FeatureGenerator().generate_features(text)
29 classification.train_test(args.gridsearch, featuresets, labels)
30 visualization.plot(featuresets)
31

32

33 if __name__ == ’__main__’:
34 main()
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B.2. features.py
1 import logging
2

3 from gensim.models.doc2vec import Doc2Vec
4 from gensim.models.doc2vec import TaggedDocument
5 from joblib import delayed
6 from joblib import Parallel
7 from nltk.corpus import stopwords
8 from nltk.sentiment import SentimentIntensityAnalyzer
9 from nltk import TweetTokenizer

10 from scipy.sparse import coo_matrix
11 from scipy.sparse import hstack
12 from sklearn.decomposition import LatentDirichletAllocation
13 from sklearn.feature_extraction.text import CountVectorizer
14 from sklearn.feature_extraction.text import TfidfVectorizer
15 from sklearn.preprocessing import minmax_scale
16

17 from constants import NUM_CORES
18

19 logging.basicConfig(level=logging.INFO)
20 logger = logging.getLogger(’experiments’)
21

22 stop_words = set(stopwords.words(’english’))
23

24 tok = TweetTokenizer(
25 preserve_case=False,
26 reduce_len=True,
27 strip_handles=True,
28 )
29 for key in logging.Logger.manager.loggerDict:
30 if key != ’experiments’:
31 logging.getLogger(key).setLevel(logging.WARNING)
32

33

34 class TfIdfFeatures:
35 name = ’tfidf’
36

37 def generate(self, text):
38 word_vec = TfidfVectorizer(
39 decode_error=’ignore’,
40 strip_accents=’unicode’,
41 tokenizer=tok.tokenize,
42 stop_words=stop_words,
43 ngram_range=(1, 3),
44 max_features=5000,
45 sublinear_tf=True,
46 )
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47 char_vec = TfidfVectorizer(
48 decode_error=’ignore’,
49 strip_accents=’unicode’,
50 tokenizer=tok.tokenize,
51 analyzer=’char’,
52 stop_words=stop_words,
53 ngram_range=(2, 6),
54 max_features=10000,
55 sublinear_tf=True,
56 )
57 word_features = word_vec.fit_transform(text)
58 char_features = char_vec.fit_transform(text)
59 all_features = minmax_scale(
60 hstack([word_features, char_features]).toarray()
61 )
62 return coo_matrix(all_features)
63

64

65 class LDAFeatures:
66 name = ’lda’
67

68 def generate(self, text):
69 word_vec = CountVectorizer(
70 decode_error=’ignore’,
71 strip_accents=’unicode’,
72 tokenizer=tok.tokenize,
73 stop_words=stop_words,
74 ngram_range=(1, 3),
75 max_features=5000,
76 )
77 char_vec = CountVectorizer(
78 decode_error=’ignore’,
79 strip_accents=’unicode’,
80 tokenizer=tok.tokenize,
81 analyzer=’char’,
82 stop_words=stop_words,
83 ngram_range=(2, 6),
84 max_features=10000,
85 )
86 lda = LatentDirichletAllocation(
87 n_components=50,
88 max_iter=20,
89 )
90 word_counts = word_vec.fit_transform(text)
91 char_counts = char_vec.fit_transform(text)
92 all_counts = hstack([word_counts, char_counts])
93 all_features = minmax_scale(lda.fit_transform(all_counts))
94 return coo_matrix(all_features)
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95

96

97 class Doc2VecFeatures:
98 name = ’doc2vec’
99

100 def _clean(self, tweet):
101 tokens = tok.tokenize(tweet)
102 return [t for t in tokens if t not in stop_words]
103

104 def generate(self, text):
105 doc2vec = Doc2Vec()
106 docs = [
107 TaggedDocument(self._clean(t), [i]) for i, t in enumerate(text)
108 ]
109 doc2vec.build_vocab(docs)
110 doc2vec.train(
111 documents=docs,
112 epochs=20,
113 total_examples=doc2vec.corpus_count
114 )
115 all_features = [
116 doc2vec.docvecs[i] for i in range(doc2vec.corpus_count)
117 ]
118 return coo_matrix(minmax_scale(all_features))
119

120

121 class FeatureGenerator:
122 featuresets = {}
123

124 def _generate_sent_features(self, text):
125 sentiment = SentimentIntensityAnalyzer()
126 sent_features = minmax_scale(
127 [list(sentiment.polarity_scores(tweet).values()) for tweet in text]
128 )
129 return sent_features
130

131 def generate_features(self, text):
132 logger.info("Starting to generate featuresets")
133 sent_features = self._generate_sent_features(text)
134

135 generators = [TfIdfFeatures(), LDAFeatures(), Doc2VecFeatures()]
136 Parallel(n_jobs=NUM_CORES, require=’sharedmem’)(
137 delayed(self._generate_features)(gen, text, sent_features)
138 for gen in generators)
139 logger.info("All featuresets generated")
140 return self.featuresets
141

142 def _generate_features(self, gen, text, sent_features):
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143 logger.info("Generating " + gen.name + " features")
144 features = gen.generate(text)
145 features_with_sent = hstack((features, sent_features))
146 self.featuresets[gen.name] = features
147 self.featuresets[gen.name + ’+’] = features_with_sent

B.3. grid_search.py
1 import json
2

3 from sklearn.model_selection import GridSearchCV
4

5

6 log_grid = [
7 {
8 ’C’: [1, 10, 100, 1000],
9 ’solver’: [’liblinear’, ’saga’],

10 ’penalty’: [’l1’, ’l2’]
11 },
12 {
13 ’C’: [1, 10, 100, 1000],
14 ’solver’: [’newton-cg’],
15 ’penalty’: [’l2’]
16 },
17 ]
18 svm_grid = [{’C’: [1, 10, 100, 1000]}]
19 mlp_grid = [
20 {
21 ’hidden_layer_sizes’: [(50, 50), (100,)],
22 ’alpha’: [1e-3, 1e-4, 1e-5, 1e-6]
23 }
24 ]
25

26 grids = {’log’: log_grid, ’svm’: svm_grid, ’mlp’: mlp_grid}
27

28

29 def grid_search(clf, clf_name, features, labels, file_name):
30 search = GridSearchCV(clf, grids[clf_name], cv=5, scoring=’f1_macro’)
31 search.fit(features, labels)
32

33 with open(file_name, ’w+’) as f:
34 f.write(json.dumps(search.best_params_))

50



B. Source Code

B.4. classification.py
1 import json
2 import logging
3

4 from imblearn.over_sampling import ADASYN
5 from imblearn.over_sampling import SMOTE
6 from joblib import delayed
7 from joblib import Parallel
8 import pandas as pd
9 from sklearn.linear_model import LogisticRegression

10 from sklearn.metrics import classification_report
11 from sklearn.model_selection import train_test_split
12 from sklearn.naive_bayes import MultinomialNB
13 from sklearn.neural_network import MLPClassifier
14 from sklearn.svm import LinearSVC
15

16 import constants
17 from constants import Classifiers
18 from constants import Oversamplers
19 from grid_search import grid_search
20 import utils
21

22

23 classifiers = {
24 Classifiers.LOGISTIC_REGRESSION: LogisticRegression(),
25 Classifiers.SVM: LinearSVC(),
26 Classifiers.NAIVE_BAYES: MultinomialNB(),
27 Classifiers.MULTILAYER_PERCEPTRON: MLPClassifier(),
28 }
29

30 oversamplers = {
31 Oversamplers.ADASYN: ADASYN(),
32 Oversamplers.SMOTE: SMOTE(),
33 }
34

35 logging.basicConfig(level=logging.INFO)
36 logger = logging.getLogger(’experiments’)
37

38

39 def _train_test(clf_name, clf, perform_grid_search, featuresets, labels):
40 for os_name, os in oversamplers.items():
41 for gen_name, features in featuresets.items():
42 combination = clf_name + os_name + gen_name
43 param_file_name = utils.get_param_file_name(combination)
44 result_file_name = utils.get_result_file_name(combination)
45 pred_file_name = utils.get_prediction_file_name(combination)
46
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47 if perform_grid_search and clf_name != Classifiers.NAIVE_BAYES:
48 logger.info("Performing grid search for " + gen_name + ", " +
49 os_name + ", " + clf_name)
50 grid_search(clf, clf_name, features, labels, param_file_name)
51

52 if clf_name != Classifiers.NAIVE_BAYES:
53 with open(param_file_name, ’r’) as f:
54 clf.set_params(**json.load(f))
55

56 # split into train and test set
57 X_train, X_test, y_train, y_test = train_test_split(features,
58 labels)
59

60 # oversample train set
61 X_train_res, y_train_res = os.fit_sample(X_train, y_train)
62

63 # learn model
64 logger.info("Training " + clf_name + " classifier")
65 clf.fit(X_train_res, y_train_res)
66

67 # predict labels for test set
68 y_pred = clf.predict(X_test)
69

70 pred = pd.DataFrame({’y_true’: y_test, ’y_pred’: y_pred})
71 pred.to_csv(pred_file_name)
72

73 results = classification_report(y_true=y_test, y_pred=y_pred,
74 output_dict=True)
75

76 with open(result_file_name, ’w+’) as f:
77 f.write(json.dumps(results))
78

79

80 def train_test(perform_grid_search, featuresets, labels):
81 logger.info("Starting to train and test classifiers")
82 Parallel(n_jobs=constants.NUM_CORES, require=’sharedmem’)(
83 delayed(_train_test)(
84 name,
85 clf,
86 perform_grid_search,
87 featuresets,
88 labels
89 )
90 for name, clf in classifiers.items()
91 )
92 logger.info("Done with training and testing")
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B.5. visualization.py
1 import logging
2

3 from matplotlib.colors import ListedColormap
4 import matplotlib.pyplot as plt
5 import numpy as np
6 import pandas as pd
7 import seaborn as sns
8 from sklearn.metrics import confusion_matrix
9

10 from classification import classifiers
11 from classification import oversamplers
12 import utils
13

14 logging.basicConfig(level=logging.INFO)
15 logger = logging.getLogger(’experiments’)
16

17

18 def plot_confusion_matrix(name, y_true, y_pred):
19 adjust_plot_settings()
20 cmap = get_colormap()
21 class_names = [’Hate’, ’Offensive’, ’Neither’]
22

23 c_mat = confusion_matrix(y_true, y_pred)
24 c_mat = c_mat.astype(’float’) / c_mat.sum(axis=1)[:, np.newaxis]
25

26 plt.figure(figsize=(12, 9))
27 heatmap = sns.heatmap(c_mat, annot=True, cmap=cmap, linecolor=’white’,
28 linewidths=1)
29

30 heatmap.xaxis.set_ticklabels(class_names, ha=’center’, va=’top’,
31 rotation=0)
32 heatmap.yaxis.set_ticklabels(class_names, ha=’right’, va=’center’,
33 rotation=90)
34 heatmap.tick_params(length=0)
35

36 plt.xlabel(’Predicted’)
37 plt.ylabel(’True’)
38

39 plt.tight_layout()
40 plt.savefig(utils.get_graphics_file_name(name))
41

42

43 def plot(featuresets):
44 logger.info("Plotting results")
45 results = pd.DataFrame()
46

53



B. Source Code

47 for clf_name in classifiers.keys():
48 for os_name in oversamplers.keys():
49 for gen_name in featuresets.keys():
50 name = clf_name + os_name + gen_name
51

52 with open(utils.get_result_file_name(name)) as f:
53 data = pd.read_json(f)
54 data[’classifier’] = clf_name
55 data[’oversampler’] = os_name
56 data[’feature generator’] = gen_name
57 results = pd.concat([results, data], axis=0)
58

59 with open(utils.get_prediction_file_name(name)) as f:
60 pred = pd.read_csv(f)
61 plot_confusion_matrix(name, pred[’y_true’], pred[’y_pred’])
62

63 results = (results
64 .drop([’micro avg’, ’macro avg’], axis=1)
65 .drop(’support’, axis=0)
66 .set_index([’feature generator’, ’oversampler’, ’classifier’],
67 append=True)
68 .unstack(level=0)
69 .swaplevel(0, 2)
70 .sort_index()
71 )
72

73 tbl = results.to_csv()
74 with open(’results/table.csv’, ’w+’) as f:
75 f.write(tbl)
76

77

78 def get_colormap():
79 palette = sns.color_palette("GnBu_d", n_colors=10)
80 palette.reverse()
81 return ListedColormap(palette)
82

83

84 def adjust_plot_settings():
85 sns.set(style=’darkgrid’)
86 plt.rcParams[’savefig.dpi’] = 150
87 sns.set(font_scale=2)
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B.6. utils.py
1 def get_param_file_name(combination):
2 return ’params/’ + combination + ’.json’
3

4

5 def get_result_file_name(combination):
6 return ’results/’ + combination + ’.json’
7

8

9 def get_prediction_file_name(combination):
10 return ’results/’ + combination + ’.csv’
11

12

13 def get_graphics_file_name(combination):
14 return ’graphics/’ + combination + ’.png’

B.7. constants.py
1 import multiprocessing
2

3 NUM_CORES = multiprocessing.cpu_count()
4

5

6 class Classifiers:
7 LOGISTIC_REGRESSION = ’log’
8 SVM = ’svm’
9 NAIVE_BAYES = ’nvb’

10 MULTILAYER_PERCEPTRON = ’mlp’
11

12

13 class Oversamplers:
14 ADASYN = ’ada’
15 SMOTE = ’smt’
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