
Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Faculty of Engineering and Computer Science
Department of Information and

Electrical Engineering

Ivan Mihaylov

Comparison of different design patterns for Single
Page Applications using the example of a Chat and

Ticket management system

Bachelor Thesis

Ivan Mihaylov

Comparison of different design patterns for Single
Page Applications using the example of a Chat and

Ticket management system

Bachelor Thesis based on the examination and study regulations
for the Bachelor of Engineering degree programme
Information Engineering

at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner : Prof. Dr. Klaus Jünemann
Second examiner : Prof. Dr. rer. nat. Henning Dierks

Day of delivery March 21st 2019

Ivan Mihaylov

Thema der Bachelorarbeit

Vergleichen von verschiedenen Entwicklungsmustern für Single-Page-
Webanwendungen an dem Beispiel eines Chat und Ticket Management Systems

Stichworte

Single-Page-Webanwendung; SPA; Frontend Entwicklung; Zustandsverwaltung;
Angular; JavaScript; Redux

Kurzzusammenfassung

In dieser Arbeit wird der Entwicklungsprozess einer Single-Page-Webanwendung
dargelegt. Dem Verlauf des standardisierten Systementwicklungs-Lebenszyklus
folgend, wird ein Chat und Ticket Management Systems erstellt. Dieses Projekt zielt
darauf ab, die Schwierigkeiten bei der Zustandsverwaltung von Frontend-
Anwendungen durch einen Vergleich zwischen zwei verschiedenen
Entwurfsmustern für Anwendungszustände aufzuzeigen und zu beheben. Zu diesem
Zweck werden zwei Versionen derselben Anwendung bereitgestellt, in denen die
Vor- und Nachteile jeder Implementierung beschrieben werden.

Ivan Mihaylov

Title of the Bachelor Thesis

Comparison of different design patterns for Single Page Applications using the
example of a Chat and Ticket management system

Keywords

Single Page Application; SPA; Frontend development; State management; Angular;
JavaScript; Redux

Abstract

This work presents the process of development of a Single Page Application. It
follows the standard application development life-cycle to produce a Chat and
Ticket management system. This project aims to address the difficulties involved in
the state management of frontend applications by making a comparison between
two different application state design patterns. For this purpose, two versions of
the same application are provided, outlining the benefits and drawbacks of each
implementation.

Table of content

List of tables ... 7

List of figures .. 8

Acronyms and abbreviations ... 10

1 Introduction .. 11

1.1 Motivation .. 11

1.2 Goals ... 12

1.3 Problem Statement .. 12

1.4 Thesis Overview ... 13

2 Background ... 14

2.1 Angular framework and the SPA design pattern ... 14

2.1.1 Angular and Component-Based Architecture .. 16

2.2 State managing design patterns .. 18

2.3 Firebase .. 19

3 Requirement Analysis .. 21

3.1 Functional Requirements ... 21

Introduction 5

3.1.1 Authentication ... 21

3.1.2 Ticket board ... 22

3.1.3 Chat Service .. 24

3.1.4 Database... 24

3.1.5 Summary .. 25

3.2 Non-functional Requirements .. 27

3.2.1 High maintainability ... 27

3.2.2 High performance .. 27

3.2.3 Excellent user experience .. 27

4 Software design ... 28

4.1 Authentication ... 28

4.1.1 Authentication server-side ... 28

4.1.2 Authentication client-side .. 29

4.2 Ticket Management Board ... 29

4.2.1 Component structure ... 30

4.2.2 Operational flow .. 32

4.2.3 Data layer synchronization ... 33

4.2.4 Summary .. 36

4.3 Chat Service .. 36

4.3.1 Additional requirements .. 37

4.3.2 Structural changes .. 37

4.3.3 Component Structure .. 38

4.3.4 Workflow .. 42

4.3.5 Data structure .. 45

4.3.6 Summary .. 46

4.4 Central state management design ... 47

4.4.1 Additional requirements .. 47

4.4.2 Workflow .. 47

4.4.3 Summary .. 53

5 Implementation ... 54

Introduction 6

5.1 Authentication ... 54

5.2 Ticket management system ... 55

5.3 Chat Service .. 59

5.4 Central state management implementation ... 61

6 Testing .. 65

6.1 Unit tests .. 65

6.2 Manual testing ... 65

6.2.1 Authentication and board component .. 65

6.2.2 Chat service .. 68

7 Conclusion ... 70

7.1 Future work .. 70

References ... 72

Appendix A ... 74

Appendix B ... 76

Appendix C ... 79

Introduction 7

List of tables

Table 1: Comparison of NoSQL database and RDB [6] ... 25
Table 2: Functional requirements ... 27
Table 3: Table displaying the differences between Promises and Observables in JavaScript

 .. 36
Table 4: Functional requirements tests for the board component 68
Table 5 Functional tests for chat service .. 69

Introduction 8

List of figures

Figure 1: Page lifecycle diagram [3] .. 15
Figure 2: Diagram, representing the interaction between Angular’s building blocks [5] ... 17
Figure 3: Flow chart of Redux design pattern.. 19
Figure 4: Use case diagram of the authentication process. ... 22
Figure 5: Screenshot of a ticket board filled with example tickets. 23
Figure 6 : Screenshot, showcasing how tickets will be moved from one column to the

next. ... 23
Figure 7: Database user model representation .. 29
Figure 8: Class diagram of the ticket management board ... 31
Figure 9: Activity diagram representing the drag-and-drop action of the tickets 32
Figure 10: Use case diagram of ticket service ... 33
Figure 11: Sequence Diagram representing the ticket creation process 35
Figure 12: Block list diagram representing the root component structure 38
Figure 13: Component diagram of the chat functionality depicting the chat service

hierarchy .. 39
Figure 14: Class diagram of the chat functionality ... 41
Figure 15: Activity diagram of the chat functionality flow for displaying messages 42
Figure 16: Communication Diagram depicting communication between two components.

 .. 44
Figure 17: Sequence diagram representing the mechanism for unread messages

notification .. 45
Figure 18: Screenshot showing a possibility for a denormalized chat collection model 46
Figure 19: A flow chart representing a central state management system design 48
Figure 20: Sequence diagram showing a Redux implementation of a chat service function

 .. 51
Figure 21: Sequence diagram showing an implementation of a chat service function 52
Figure 22: Screenshot of the UI representing the Login component view 54
Figure 23: Screenshot of the UI representing the Sign Up component view with a wrong

validation attempt alert .. 55
Figure 24: Screenshot of the board component UI illustrating the main page view 56
Figure 25: Screenshot of the board component’s UI illustrating the drag and drop

functionality of the tickets .. 57
Figure 26: Screenshot of the ticket editing component’s UI illustrating the available

editing options ... 58

Introduction 9

Figure 27: Screenshot of the backlog component’s UI ... 58
Figure 28: Screenshot of the chat functionality UI showcasing a chat conversation 59
Figure 29: Screenshot of the users list UI illustrating the option for adding a new user to

the chat room’s list .. 60
Figure 30: Screenshot of the chat service UI illustrating the unread messages notification

implementation. .. 61
Figure 31: Class diagram of the chat service with Redux implementation 62
Figure 32: Screenshot of a code snippet, representing the top level reducer 64

Introduction 10

Acronyms and abbreviations

API Application Programming Interface
Baas Backend as a Service
CBA Component-Based Architecture
DOM Document Object Model
FaaS Functions as a Service
HTTP Hyper Text Transfer Protocol
JSON JavaScript Object Notation
MPA Multiple Page Application
NoSQL Not only SQL
SDLC System development life-cycle
SPA Single Page Application
UI User Interface

Introduction 11

1 Introduction

Nowadays web development has been undergoing rapid changes to meet the modern
requirements for faster development time, lower bandwidth restrictions for the 3G and 4G
consumers together with multiple platforms compatibility (web, mobile etc.). All these,
together with the evolution of technology and drive for automation have forced developers
to make a switch from the traditional Multiple Page Applications (MPA) to the more
modern web development design pattern of Single Page Applications (SPA).

This work will take a deeper look into SPAs and the different design patterns which could be
adopted when developing such web application. Moreover, several frontend frameworks
will be introduced to illustrate the different design patters involved, depending on the type
of the application. Using the example of Chat and Ticket management system, developed in
the scope of this work, I will outline the benefits of the selected architecture making a
comparison between two design patterns – Redux and CBA (Component-Based
Architecture).

1.1 Motivation

The motivation for this work stems from the desire to explore the newest available web
technologies, making a comparison between two cutting edge design patterns and showing
the advantages and disadvantages of each implementation. As the web development is
rapidly moving away from the Multi Page Application pattern and adopting the newer
lighter technology of Single Page Applications, newer frameworks and design patterns are
also being developed to utilize the development process. Therefore, even the most
traditional “Model-view-controller” design pattern is being replaced in favor of more
modern approaches. The value of this work comes from exploring these modern
approaches and making a practical and theoretical comparison between two of the
alternatives. This work could serve as guiding example for any future client side web
development applications.

Introduction 12

1.2 Goals

The primary goal of this thesis is to design and implement a Single Page Application which
would allow the user to interact with an interface, allowing him to create and order tickets,
together with an implementation of a chat service to make the management of tasks more
fluid and allowing for a higher level of coordination between users. This application will be
developed using two different implementations, one using the Redux design pattern and
one using the component based architectural pattern. The main purpose for creating this
application using two different approaches is to investigate the most important topics
when it comes to web development: scalability, maintainability and ease of development.
Although the function of the interface should not change the wiring of the components
internally together with the state management of the application will differ significantly
when inspected in detail. A discussion of this differences in the implementation process is
what will lie in the heart of this work.

1.3 Problem Statement

The design of a full stack web application comes with a wide range of complexities that
need to be handled in the different stages of development. For the development of the
current application the following problems were examined:

1. Project requirements: requirement gathering and analysis is usually the first and
most fundamental step in every Software Development Life Cycle (SDLC). As the
requirements cannot be gathered completely at the beginning, close relation with
the stakeholder is necessary to gather feedback after every release [1]. In this
project however since outsourcing tasks to third parties is not an option, the
requirements phase needs to be highly coordinated with the tools and knowledge
of the developer. Moreover, as the deadline cannot be postponed, the complete
list of requirements, provided in Table 2, is agreed upon at the beginning of the
project.

2. Client-side design: the design of the application should allow for an

implementation of a chat and ticket management system which would utilize two
different design patterns. The separate parts of the application have to be broken
down and specific design be created for each module. The data structures should
be designed in a way that allows future changes without the need of restructuring

Introduction 13

and consistency needs to be ensured. The system should provide the user with the
option to create and assign tickets, as well as move them to the appropriate
progress column, while having the opportunity to start a chat with a relevant
colleague.

3. Backend design: a backend architecture should be designed which would provide a

consistent and reliable data storage solution. Since the client-side of the application
will provide the user with the ability to interact with an interface, the results of
these interactions need to be stored and synchronized across multiple users.
Furthermore, the backend solution should be both time efficient and should not
require learning a new backend framework, so a serverless solution was chosen. As
opposed to the traditional backend development which requires designing and
setting up a server that would handle all data requests, Google’s latest cloud
service, Firebase, allows for coding functions for endpoints directly.

1.4 Thesis Overview

Here is a short description of the thesis and an overview of the chapters it contains:

Chapter 2 - Background: this chapter describes the building blocks of a Single Page
Application. It provides details of the client-side framework Angular and the server-side
platform Firebase used in this project.

Chapter 3 - Requirement Analysis: This chapter summarizes the function and non-
functional requirements for the chat and ticket management system.

Chapter 4 - Software Design: This chapter covers the client-side and server-side design of
the separate parts of the application, including authentication, chat service, ticket service
and backend synchronization.

Chapter 5 - Implementation: This chapter shows the implementation decisions taken while
following the design steps outlined in Chapter 4.

Chapter 6 - Testing: This chapter describes the options for testing the correct functionality
of the application.

Chapter 7 - Conclusion: This chapter presents a final overview of the project and thoughts
about the future development of the application.

Background 14

2 Background

This chapter will give a brief introduction into the Angular framework, the Redux state
management design pattern and Firebase. These technologies play a vital role in creating
the project and therefore understanding the project.

2.1 Angular framework and the SPA design pattern

Angular is a JavaScript framework that helps developers build applications. The library
provides a number of features that make it trivial to implement the complex requirements
of modern applications, such as data binding, routing, and animations. It is a platform that
makes it easy to build applications with the web by combining declarative templates,
dependency injection, end to end tooling, and integrated best practices to solve
development challenges. Angular empowers developers to build applications that live
on the web, mobile, or the desktop [2].

The first version of Angular called Angular.js was introduced in 2010 and with it came a
revolution to the way web applications were developed. It delivered a client-side
framework that would utilize the Model-View-Controller architecture, dependency
injection, two-way databinding and it was the first real Single Page Application
solution.

However, before SPAs became the standard for developing client-side web
applications, Multiple Page Applications (MPAs) were the standard. The largest
difference between the two is that while MPAs would load a new page from the back -
end every time the user clicks on a link on the page, an SPA would load a single page at
the beginning of the process and only re-render specific parts of that page as the user
interacts with it.

Background 15

Figure 1: Page lifecycle diagram [3]

As shown in Figure 1, in contrast to traditional web applications which constantly request
HTML files from the backend to be displayed in the browser, in the lifecycle of the SPAs
only data is being transferred. Such data transfer over HTTP request decrease the relevant
size of the communication and accordingly the time it takes for the page to load the data
and re-render. The advantages of JavaScript SPA design over traditional web pages do not
end here:

 No plugin required—Users access the application without concern for plugin
installation, maintenance, and OS compatibility. Developers also do not need to
worry about a separate security model, which reduces development and
maintenance headaches.

 Less bloat—An SPA using JavaScript and HTML should use significantly fewer
resources than a plugin that requires an additional run-time environment [4].

Background 16

 One client language—Web architects and most developers have to know many
languages and data formats—HTML, CSS, JSON, XML, JavaScript, SQL, PHP/
Java/Ruby/Perl, and so on. Using a single programming language for everything on
the client is a great way to reduce complexity [4].

 A more fluid and interactive page— With Flash or Java application on a web page,
often the application is displayed in a box somewhere and many details are
different than the HTML elements that surround it: the graphical widgets are
different, the right-click is different, the sounds are different, and interaction with
the rest of the page is limited. With a JavaScript SPA, the entire browser window is
the application interface [4].

2.1.1 Angular and Component-Based Architecture
Another main feature that Single Page Applications brought to the world of client-side
development was the concept of Component-Based Architecture (CBA). In essence, CBA
represents a method of encapsulation of large pieces of user Interface that differs from the
traditional MVC model. The need for such encapsulation is propagated by the structure of
the main building blocks of any SPA – the components.

In the case of the SPA pattern using the Angular framework, the most basic UI building
blocks are composed of four separate files:

 Two Typescript files containing the main functionality and the potential tests of a
component.

 An HTML file that hold all the mark-up language for the component.

 A CSS or SCSS file that contains all the styling for the component.

|-- header
 |-- header.component.ts|html|scss|spec.ts
|-- footer
 |-- footer.component.ts|html|scss|spec.ts

Example of component folder scaffold in the Chat and Ticket management system

Together all four files comprise the most basic structure for Single Page Applications called
a Component. While the traditional MVC approach is designed to separate the
responsibilities horizontally, CBA splits them vertically. This means that in the MVC case the
UI, business logic and model all live in different levels of the architecture. CBA on the other
hand tries to encapsulate all the relevant code that pertains to a given component inside its
class as it is displayed in the code snippet above. And the responsibility is split on a

Background 17

component-by-component basis. Each component has its own function, its own helper
methods and routes and they are all present at the same level of the architecture.

Figure 2: Diagram, representing the interaction between Angular’s building blocks [5]

The necessity for components and their integration into the SPA model comes from the
need of the SPA to be able to update dynamically the DOM. Since components have their
own interfaces that can make calls to the server and update their interfaces, one component
can refresh without affecting other components or the UI as a whole [6]. In the case of the
Chat and Ticket management system, this allows for the chat messages to appear creating a
new chat message component without the need for a page refresh or restructuring other
components. The Angular framework is using a diffing algorithm that would detect the
change in value of the “messages” array that triggers the DOM to re-render the messages
feed component only.

Background 18

2.2 State managing design patterns

One of the most notable features of the CBA architecture, the encapsulation of application
state into separate components is however also one of its most prominent weaknesses.
Since often components need to communicate with each other or share a piece of the
application state, mechanisms for this communication need to be provided. This however
poses a real challenge depending on the type and scale of the application. Each of the three
large front end development frameworks and libraries today Angular, React.js or Vue.js
offer their solution to this challenge, but in all three cases it comes down to the following
options:

1. Inputs and Outputs – the Angular framework provides a feature to communicate
state between nested components and that is through inputs from the parent
component to the child component or outputs from the child component back to
the parent one. This however limits the communication to only components that
have a parent-child relationship. Therefore, if the components need to share state
with unrelated components either third party software needs to be involved or one
of the other methods mentioned below should be used.

2. Services - Angular allows for global variables that could be shared through services.

Since services are built on the singleton pattern, they can be injected into any
component using a dependency injection. This is what makes them ideal containers
for methods that would be shared or reused in multiple components. However,
over time the state of any component would be spread this way across services and
would be hard for the developer to track the changes of state as the application
grows.

3. Central state management – Since both of the aforementioned options either

spread the component and application state across multiple services or multiple
other components it can become a real challenge to find where a change in the
state has been triggered from and therefore the cost of maintainability and
scalability will increase substantially. Therefore, a design pattern that would
alleviate this issue was necessary and the engineering team at Facebook came up
with the library called Redux in 2015 that provided a solution. Since then the design
pattern has been widely adopted in all major frontend development platforms and
has been given the name “Redux”.

Background 19

The Redux pattern in its core represents a one directional information flow. This means that
a central store holding the state of the application will be provided and the communication
between this store, the components and the views will follow the same pattern.

Figure 3: Flow chart of Redux design pattern

The main concept of the Redux pattern lies in the fact that the whole application state is
gathered in one object and this object is a pure function. This means that the state is never
mutated, instead a copy of the state is always provided and the changes to this copy are
always performed in an immutable manner. In this way the underlying change detection
system can pick up the changes and update the view.

2.3 Firebase

The traditional way of building a backend architecture for any application involves setting
up servers and databases. Nevertheless, for the purpose of providing a comparison of two
different frontend state management patterns the backend functionality could be mocked
and the clients could be supplied with mocked data. The purpose of this work however, is
to show a modern approach to data management architectures and patterns and provide a
complete working example including a backend infrastructure.

State

UI

ActionsReducer

Store

Background 20

Since, the way of building a backend has shifted in the last years with the emergence of
cloud computing services, when building a serverless backend two particular services are of
interest:

1. Backend as a service (BaaS) – an approach for providing web and mobile app
developers with a way to connect their applications to backend cloud storage and
processing while also providing common features such as user management, push
notifications, social networking integration and other features that users demand
from their apps [7].

2. Functions as a service (FaaS) – Firebase Functions, could be given as a good

example for what FaaS represents. These are stateless functions, which are written
in Node.js as a response to an HTTP call or some other type of cloud service event.
With the help of this approach, the main focus remains on the development
process and not on the architectural side. The FaaS provider takes care of the
maintainability and the scalability of the services.

To make the term serveless more clear, this does not mean that there are no servers
involved, rather the servers are provided and maintained by a third party that has built the
infrastructure for other companies to outsource. Some of the reasons for the success of
this approach nowadays include quicker releases of software, smaller operational cost, less
software complexity and simplified deployment.

Requirement Analysis 21

3 Requirement Analysis

3.1 Functional Requirements

The chat and ticket management application is a visualization tool where agile teams can
have an overview which person is working on which task over a given sprint session. The
tool provides a ticket generating functionality where a user can create a ticket and assign it
to a person that will be responsible for working on it. Afterwards this ticket could move
through the separate columns representing its working status. In this way, a stakeholder
can have an overview of what task each team member is doing and how far along is the
progress on it. Moreover, the tool provides chat functionality so that users can
communicate directly through the tool and discuss relevant topics. Lastly the tool provides
a backlog functionality where ideas could be saved for future tickets.

3.1.1 Authentication
The first of the many functional requirements that a project like this needs to fulfill comes
with the authentication of the users. In order to create separate teams so that the
privileged information can only be displayed to the appropriate people the users need to be
authenticated. This is a straight forward task where based on the authentication rights
certain navigation paths are shown and others are hidden from the user. The following use
case diagram in Figure 4 displays how the authentication should work.

Requirement Analysis 22

Figure 4: Use case diagram of the authentication process.

3.1.2 Ticket board
After authenticating the user, the most important functional requirements that stem from
the project description above regarding the ticket board are therefore the creation of
tickets and the ability to propagate these tickets along the separate progress columns. This
functionality needs to be persisted through the database and all changes need to be
displayed to all the users currently connected to this board.

Requirement Analysis 23

Figure 5: Screenshot of a ticket board filled with example tickets.

Figure 6 : Screenshot, showcasing how tickets will be moved from one column to the
next.

As depicted in Figure 5 and Figure 6 tickets should be able to be dragged and dropped from
the user from one column to the next, signifying that work has been done on the relevant
ticket. In this way the stakeholder can have an overview on the general progress of the
sprint session. Since nowadays the development process has been strongly influenced by

Requirement Analysis 24

this type of agile environments of development where everything happens in high paste
such visualization tools are necessary to help cope with the organization of work and
management of the working teams.

These columns however signify only the progress of a ticket that is already included in the
current sprint. Since the nature of the work for which this board is being developed is prone
to rapid changes, some tickets may need to be excluded from the current sprint, so others,
more urgent can come in. This necessitates the presence of a backlog where all the tickets
that are not relevant for the current sprint can be moved to. Therefore, a functionality,
which preserves the state of the ticket but would transfer this ticket from the current board
to the backlog and backwards is required.

3.1.3 Chat Service
To complement the development process a chat functionality needs to be implemented,
that allows users to communicate with each other. This communication needs to be
private so a simple single chat room will be insufficient for this task and private chatrooms
need to be available for the users. Moreover, a notification system needs to be
implemented that would allow a way of showing the user if there are messages in different
chatrooms that are awaiting. All this functionality needs to be persisted in an appropriate
way through the database.

3.1.4 Database
The choice of a particular database is an important moment for any application. This choice
will define to a certain extent how the application will be designed and implemented later
on. For this project’s database a decision between a relational database and a NoSQL
database type was of a particular importance.

Relational Databases (RDBs) which are based on the relational model are the best option
for storing information that ranges from financial records, personal data and much more.
However, as user requirements and hardware characteristics have evolved over time to
include data warehouses, text management, and stream processing, these kind of process
have very different requirements than traditional business data processing. Therefore,
NoSQL is a breed of databases that are appearing in response to the limitations of existing
relational databases. They are capable of handling large amounts of structured,
unstructured, semi-structured and hybrid data with an amazing performance at reduced
complexity and cost [8].

SL NoSQL Database Relational Database

1. Unstructured way of storing the
data

Completely structured way storing of data

Requirement Analysis 25

2. It can effectively handle million
and billions of records

It can effectively handle few thousands of
records

3. It is never advised for
transactional management

It is best suited for transactions

4. Availability is preferred over
consistency

Consistency is preferred over availability

5. It scales horizontally as well as
vertically.

It scales better vertically

6. There is no need of normalization Tables must be normalized

7. Most of the NoSQL databases are
schemaless

 Traditional databases use the strict schema of
database design.

Table 1: Comparison of NoSQL database and RDB [6]

Since the project is focused much more on chatting activity and other text management
functionality, rather than any payment or other types of value exchanging transactions a
NoSQL database choice provides a much more suitable solution. Even though this database
could be mocked and contained within the client application, a complete working example
was the desired outcome of this work. Therefore, appropriate NoSQL databases were
examined for compatibility with Angular based Single Page Applications.

The most matured database that has also good integration with Angular and is a NoSQL
type of database is MongoDB. However, MongoDB requires the development of a local
server and a local backend architecture which would add more complexity and time for
development. On the other hand, Firebase, which is a Google product like Angular, offers a
real-time NoSQL database that has a native integration with Angular. It does not require
additional development of backend since it is a cloud architecture that exposes a fully
functional API that provides server services.

3.1.5 Summary
After understanding the main functional requirements for this project, Table2 below
presents a full list with all the functional requirements originally agreed upon before
starting work.

ID Requirements Implementation

IM1 The tool should have a home page that lists its purpose and
gives brief introduction.

Must

Requirement Analysis 26

IM2 The tool should have a Sign up/ Register page where the user
will be able to create an account with which they will later be
able to log in.

Must

IM3 Upon clicking the Sing Up button an account will be created in
the database which will persist the user data.

Must

IM4 Minimum data requirements for the Sign up screen will be
required. (No empty fields/ password length).

Want

IM5 All other fields of the tool will be hidden since the user is not
yet Logged in.

Must

IM6 If an error occurs while the user is trying to register (using an
email that is already in use) - an error message will pop up and
the user will be denied registering.

Want

IM7 If the registration succeeds the user will be redirected to the
main page where he will be able to see the ticket board and
start a chat.

Must

IM8 The tool should have a Log in page for users who have already
created an account in our database.

Must

IM9 If a log in error occurs it should be displayed and the user
should be prompted to try again.

Want

IM10 The tool should have a Log out option on the Navigation bar
element which will become active after the user has
successfully logged in and upon selecting the option he should
be logged out and redirected to the login screen with all the
private fields hidden from him again.

Must

IM11 A logged user should be able to see all tickets and create new
ones on the main page.

Must

IM12 User should be able to assign a team member or himself to the
newly created ticket.

Must

IM13 User should be able to assign a priority to the ticket. Want

IM14 User should be able to edit a ticket. Want

IM15 User should be able to delete a ticket. Want

IM16 User should be able to drag and drop tickets between columns. Must

IM17 User should be able to send instant messages to other
members.

Must

Requirement Analysis 27

IM18 User should be able to post ideas to the backlog. Must

IM19 Data should be persisted in the database Must

Table 2: Functional requirements

3.2 Non-functional Requirements

3.2.1 High maintainability
At the time of writing the current version of Angular is Angular 6 in which the project has
been developed. However, Angular is a framework that has the support of Google as the
future platform for frontend development and new releases, most of them containing
braking changes come out approximately every eight months, so a good project structure is
required in order to keep the updating process possible. On the other hand, JavaScript is a
programming language that is notorious for its weak typing and even though TypeScript
tends to correct this fault, a lot of the time developers do not use this language property,
resulting in a code that is extremely difficult to maintain. Therefore, both of this
requirements need to be satisfied in order for this project to remain highly maintainable.

3.2.2 High performance
The high performance of any application nowadays is a must. Most of the time this is the
deciding factor when choosing a specific app for the task. Therefore, a rapid response is
expected when a new chat is being started and all the messages need to be loaded. An
appropriate data structure needs to be ensured that would require the least amount of
data transfers as well as a short querying time. Since Firebase was chosen as the backend
for this project which is a NoSQL database, appropriate flat models for the persisted objects
should be provided. Moreover, no leaking subscriptions and on time change detection
triggers have to be secured, to further optimize the application performance.

3.2.3 Excellent user experience
The high performance of the application is certainly one of the criteria for the good user
experience that every application needs to deliver. There are however, other smaller
aspects of the application that make it an all-round finished product. This project tries to
deliver such service with the implementation of HTTP request interceptors that would
invoke a loading spinner showing the user when he needs to wait before he can continue or
different pop-ups delivering information that would guide the user through his interaction
with the application. Ensuring at every step that the user knows what is happening is a vital
concept of frontend development that needs to be sustained.

Software design 28

4 Software design

This chapter will introduce the separate steps taken, when designing the different parts of
the application.

4.1 Authentication

4.1.1 Authentication server-side
For the authentication phase of the application, Firebase provides several methods allowing
the developer to choose from the database’s user interface. Multiple methods can be
selected simultaneously, including a sign in with Google account, Facebook account, phone
number and more. For the needs of the project a standard username and password
authentication was selected.

Firebase exposes two methods in its API for the successful registration and login using a
username and password called createUserWithEmailandPassowrd and
signInWithEmailAndPassword. Both methods return a promise with the user credentials
which makes them also the perfect place to update the user’s profile to show whether he is
online or not. Since this is a valuable feature for any chat application it is also added as part
of this project.

Software design 29

Figure 7: Database user model representation

Figure 7 presents a snapshot of the users’ database entries, together with a view of the
user model design. The user model is kept relevant and concise with only two extra
properties relevant to the user himself – status and currentChatroom, both of which are
relevant for the chat part of the application.

4.1.2 Authentication client-side
Furthermore, since the authenticated user and his details are relevant throughout the
application, the authentication is designed to happen in an Angular service. As mentioned
in Chapter 2, services in Angular are one of the three ways to share state in Angular. Since
services are built upon the singleton pattern and can be used through dependency injection
to be inserted into any component this makes them the optimal solution for the
distribution of the authentication state of the user across the components. In this way we
subscribe to the authentication state once and then distribute this state internally instead
of subscribing to the database from every component that requires the relevant
information.

4.2 Ticket Management Board

The ticket management system serves the purpose of allowing the user to organize given
tasks by providing a suitable structure for the tasks and a set of functionalities for working

Software design 30

with them. The tool is intended to provide a good overview of the workload in more agile
working environments. A description of the structure and the functionalities of the tool are
presented in the sections below.

4.2.1 Component structure
The ticket management board is the main page of the application. It consists of three
separate components extracted in a separate module that together comprise the view.
Being able to wrap separate components, pipes and services into a module is a feature that
is specific to the Angular framework. It helps not only with the organization of a project, but
it also gives the developers the ability to split a larger application into smaller bundles, that
would each be loaded at different times. This is an important feature since one of the main
drawbacks of Single Page Applications is that they would try to download the whole
application at the initialization of the app and afterwards only swap the data layer into the
views. That behavior normally leads to much larger loading times at the start of the
application. Angular therefore, gives the developers the ability to lazy load different
modules on demand.

The term lazy loading is reserved for modules that are not being downloaded as part of the
initialization of the application, instead the loading occurs when a specific route is being
requested. Once the module has been download it would become a part of the Document
Object Model (DOM) and Angular can preserve the fluidity of the application and the
navigation to this module. For the needs of the current application however, lazy loading of
the board module was considered, but since it would not at this point add benefit as the
application is still reasonably small, adding that complexity was decided against.

The three components comprising the ticket management board can be separated into two
groups. One purely presentational component, otherwise known as dumb component and
two smart components. While the smart components contain a part of the logic that
happens in the particular view, the dumb components are there usually for reusability
purposes as it will be demonstrated in Section 4.3 or as in this case for encapsulation of the
view.

The depth of the components constructing a view can be as large as the number of HMTL
elements that are included since in practice every single HTML tag can be extracted into a
separate component that has some additional functionality to it. It is therefore a task for
the application designer to determine the necessary component depth of each view.

As shown in the class diagram of the ticket management board in Figure 8, the
BodyContentsComponent class serves the single purpose of encapsulating the view. It sets a
frame where each of the two other components should be fitted which provides an easier
setup for styling the whole view as intentioned. This type of structure where similar
components are grouped together into a larger presentational component brings another
benefit in the Angular framework since it provides a parent-child relationship between the
separate components, allowing them to pass data between one another. In comparison,

Software design 31

the component structure in the React framework for comprising a similar view would most
likely look much more granulized since components in React are much simpler entities
which do not need separate files or classes as in the case of Angular components.

Figure 8: Class diagram of the ticket management board

The BoardComponent class provides the drag and drop functionality for the tickets,
together with the ticket editing view. The drag and drop functionality of the component is
achieved through an Angular library that provides a special directive.

There are three types of directives in Angular:

1. Components: directives with a template.

Software design 32

2. Structural directives: changes the DOM layout by adding and removing DOM
elements.

3. Attribute directives: change the appearance or behavior of an element, component
or another directive.

4.2.2 Operational flow
In the case of the board component functionality, a structural directive is used that allows
the rearrangement of DOM elements by providing handles to detect the changes to a
certain element. In this way every time a ticket is drag into a certain column, a function is
triggered that provides the object that has been dragged in its initial state, before the
dragging and the target element’s id in which it was dropped. In that way we can
programmatically update the relevant columns’ content while providing a nice animation
that the user can understand.

Figure 9: Activity diagram representing the drag-and-drop action of the tickets

Software design 33

Figure 9 presents an activity diagram with all possibilities that the user has after selecting a
certain ticket. In this use case, selecting is represented by a mousedown event which is a
native Angular mouse event. The drag-and-drop directive then listens for the other two
mouse events drag and mouseup. If a mouseup event is registered without the dragging
event, then the ticket will be opened for editing and the process will terminate there.
However, if the ticket is being dragged across columns, a check is made first whether or not
the selected column over which the element is dragged over, is an allowed zone for
dropping. If an attempt is made to drop the ticket over a no-drop zone, then the ticket will
appear in the column from which it originated and no further actions will be performed.

Figure 10: Use case diagram of ticket service

4.2.3 Data layer synchronization
The synchronization of the tickets is made possible through Firebase, which is a real-time
database. A real-time database system is a classic database system which is providing real-
time constraints and ensures reliability on system’s timing requirements. Timing constraints
are not required to be extremely short but the database needs to manage explicit time

Software design 34

constraints in a predictable way using time-cognizant methods. This kind of database
combines multiple features facilitation [9]:

 Description of data

 Maintenance of correctness and integrity of data

 Efficient access to the data

 Correct execution of query and transaction execution in spite of concurrency and
failures

The most valuable feature of Firebase however is that it actively notifies all clients
subscribed to the data of any changes. This means that all local variables that have a
subscription to Firebase will be updated automatically upon an update to the database.
Furthermore, this update of the local variables will cause Angular to refresh its views and in
this way we can achieve a real-time synchronization between the data changing events and
the particular view being displayed.

This sort of synchronization will not be possible out of the box if MongoDB was chosen as
the database client for this project. Since MongoDB does not have any real-time features,
every time we want to get an update of the data state in the database, a GET or a PUT
request needs to be performed. This indeed could be an acceptable solution for the ticket
management board, since we have to deal with only a few changes at a time. The chat part
of the application however will suffer unacceptable lagging and it will be hard to
synchronize the chat messages as they come. There are solutions through third party
software like Socket.io that can enable databinding between the database and the client
similar to what Firebase provides, but this would add a lot of complexity to the model as
well.

Software design 35

Figure 11: Sequence Diagram representing the ticket creation process

The sequence diagram in Figure 11 shows how the view ‘knows’ when to update itself
when a ticket is created. Since the client binds a variable to the tasks collection in the
database through a subscription in the ngOnInit() lifecycle hook of the component, this
variable gets updated every time the collection is also updated. Even though the lifecycle
hook is called only once at the initialization of the component, the variable continuously
gets update because of its subscription. This subscription persists indefinitely or until the
unsubscribe() method is called on it. This is the main difference between Observables and
Promises in JavaScript. While Promises and AJAX calls are used for asynchronous
operations, they are only able to handle single events. As soon as the operation completes
or fails the promise will be exhausted and will not produce other values. On the other hand,
an Observable acts as a steam of data.

 Observables Promises

1. Are cancellable Not easy to cancel

2. Emits multiple values over time Emits only a single value

3. Have a large amount of methods
(mergeMap, flatMap, etc.)

Have only a few methods available

Software design 36

4. Can be created from multiple sources,
including events

Usually used only with asynchronous data
return.

5. Observable are lazy and they do not
stream until they have been
subscribed to.

Promise executes always.

Table 3: Table displaying the differences between Promises and Observables in JavaScript

The ability of the Observable to emit a stream of data over time with only a single
subscription to it is what allows this active notification that Firebase provides. Therefore,
the client is being updated as a last action in the sequence diagram in Figure 11 with the
new state of the tasks collection without an explicit request to the backend.

Since the subscription was created with the initialization of the component it will persist
until the observable has been unsubscribed to. Best practices dictate, the unsubscribing to
happen in the ngOnDestroy() lifecycle hook which is called when the component is being
removed from the DOM.

4.2.4 Summary
The ticket management board allows the user to see the current state of the tasks in the
sprint session without the need to refresh the page in order to get the latest updates. With
the observable implementation of the backend and the leveraged capabilities of the
Angular framework, a real-time synchronization has been achieved which would help
significantly to improve the user experience when using the ticket board. The data structure
of the tasks collection allows for a single property to be updated in order for the task to be
moved from one column to the next which ensures the efficiency and high performance of
this approach. Furthermore, the extraction of the functionalities into a service allows for a
high maintainability of the code base. In this way all three non-functional requirements
listed in Section 3.2 are satisfied.

4.3 Chat Service

The main purpose of the chat functionality is to give the users of this application the ability
to exchange instant messages. In the requirement’s phase of this project no other
specifications for this functionality were requested. In the process of developing however,
it was established that a common chatroom where everyone is automatically included and
can post messages would not fit the organizational flow and needs of this application.

Software design 37

The need for private conversations however, brought a significant amount of structural
changes to the chat functionality. Not only the models at the backend needed to be
adjusted but also the component depth and structure on the client side.

4.3.1 Additional requirements
The introduction of a chat functionality in this project led to uncertainties about the
structure and the organization of the project’s components. This section will address this
issues.

Since the main purpose of the application is to provide a ticket management system and
the chat functionality is a supplementary service, an appropriate place for the chat needs to
be allocated. The main structural requirement for the chat is that it needs to be active on all
pages after the login of the user. This however, dictates that it cannot be assign to its own
page, but instead it would need to be sharing the view of all other pages. Therefore, finding
an appropriate way to show the chat while making it an active background service on all
views poses a challenge for the whole structure of the project.

Furthermore, the chat’s rich functionalities demand that the chat would have to take a
substantial part of the view. This is less relevant for the project’s structure, but it requires
an adequate solution that would solve those issues.

4.3.2 Structural changes
The structural design issues that were presented in the previous section were resolved by
placing the chat functionality into a side navigation component called a drawer component.
This drawer component is designed to add side content to a small section of the
application. It is designed to add collapsible side content alongside some primary content
to a full screen app [10].

Placing the chat functionality into a collapsible container allows it to be attached to all
pages without making in the primary focus of the view. In this way, the chat remains active
throughout the application but also does not overpopulate the view. Moreover, since it is
attached only to the main app component before the router-outlet which enables the
navigation, it is only loaded once regardless of the in-app navigation requests. In this way,
this approach for displaying the chat functionality provides multiple advantages:

1. Efficiency – it is loaded once after the user login. It is not reloaded with navigating
between routes.

2. User-friendliness – it is allowed to take as much space as needed for styling

without compromises and without taking any of the view space on the main page.
It does not require to navigate away from the current screen.

Software design 38

3. Maintenance – It requires only one extra component, on top of the chat service

implementation, that enables this functionality.

4. Implementation speed – it does not require any changes to the component

structure of the current views to be implemented.

Figure 12: Block list diagram representing the root component structure

Figure 12 represents the hierarchical structure of the root component of the application. It
shows how the chat component is nested in the top most level outside of the navigation
module. This allows the user to navigate to any available route in the application which will
be shown in the router-outlet window, while keeping the chat active through the process.

4.3.3 Component Structure
The chat functionality is composed of seven components. The component diagram in Figure
13 shows that there are two branches each with two levels of nested components inside
the ChatComponent class. The relatively flat structure is a design decision since the most
bottom components of both branches need to communicate with each other and passing
variables along the components’ tree needs to be facilitated. Since one of the two ways of

AppComponent

ngx-loading

NavbarComponent

DrawerContainer

router-outletChatComponent

Software design 39

passing state between components is through the parent-child relationship of the
components, the flat structure allows for a lot less tree nodes which need to pass the same
information until the state gets passed from the UserListComponent to the
ChatMessageComponent class.

Figure 13: Component diagram of the chat functionality depicting the chat service
hierarchy

The ChatComponent class serves as a wrapper class that provides the layout for the two
branches. It is a purely presentational component that has no other functions but passing
state between the two branches. All the functionality of the chat service is spread through
the rest of the components on Figure 13.

A brief description of the components functions can be found below:

 ChatroomListComponent – provides the user with the ability to select a chat room
from a list of chat rooms or create a new chat room from a list of users.

 UserListComponent – provides the user with a list of usernames from which he can
select one to be added to the shortlisted chat room names.

Software design 40

 ChatroomWindowComponent – provides a frame for the messages and the
message input field. It sorts and displays the messages exchanged by the user.

 ChatInputComponent – serves for the creation of the messages.

 ChatMessageComponent – A presentational component used for displaying and
styling each message individually, while having the same frame. It is created for
reusability purposes.

 ChatroomTitleBarComponent - A presentational component used for styling the
name of the active chatroom conversation.

Software design 41

Figure 14: Class diagram of the chat functionality

Software design 42

The class diagram displayed in Figure 14 shows a more detailed representation of the
component structure and the links between the components and services used for the
creation of the chat service.

The ChatroomService class provides the main functionality for the chat since all of the HTTP
requests that go out of this module are extracted here. Following the Façade design pattern
which dictates that complex sub-systems need to be encapsulated into a single interface,
the main functionality of this feature is encapsulated in this class.

Using the Façade design pattern for encapsulating the main functionality into a single
interface per feature for this application reduces the learning curve necessary to
successfully leverage the subsystem and it promotes decoupling the subsystem from its
potentially many clients [11]. Moreover, since services in Angular are built on the singleton
pattern and are initialized only once, they can preserve the state of all the local attributes
helping to reduce the amount of HTTP requests and improve performance as the user
navigates between routes in the application.

4.3.4 Workflow
The chat functionality is a typical case in an application where the user interacts frequently
with the program. Moreover, most of the parts of the chat need to be made functional and
not just presentational since they are all inter-related and the behavior of the chat depends
on all parts working together.

Figure 15: Activity diagram of the chat functionality flow for displaying messages

Software design 43

The activity diagram in Figure 15 shows the possibilities of user interaction with the chat
service to start a private conversation with another user. Because of the high level of
interconnectivity between the components in the chat service, each interaction of the user
with one component, leads to the update and re-rendering of a different component.

To utilize the full reactive potential of the framework the chat functionality was built using
the Observer design pattern. Several of the advantages of this approach include:

1. Support for broadcast communication – unlike an ordinary request, the
notification that a subject sends need not specify its receiver. The notification is
broadcast automatically to all interested objects that subscribed to it. The subject
does not care how many interested objects exist, its only responsibility is to notify
its observers. This provides the freedom to add and remove observers at any
time. It is up to the observer to handle or ignore a notification [12].

2. Unexpected updates - because observers have no knowledge of each other’s

presence, they can be blind to the ultimate cost of changing the subject. A
seemingly innocuous operation on the subject may cause a cascade of updates to
observers and their dependent objects [12].

3. Fluid framework integration – Angular uses at its core the Observer pattern to
provide most of its functionality, including data binding, event handlers, forms,
router events, etc. Developing a chat functionality involving predominantly user
interactions and database communication in this way preserves the integrity of
the code base and leverages fully the methods and utilities of the framework.

4. Reusability – This project requires two implementations with two different state

management patterns. The second implementation involves the redux state
management patter which has a completely reactive implementation in Angular.
Building the chat functionality in this manner would allow for reusing and simpler
rewriting of the existing code.

Appendix A shows the implementation of a single variable controlling the current active
chat room using the Observer pattern. It demonstrates how the component creates a
subscription to the database through the service.

Firstly, the component creates a subscription to a variable in the service, which in turn
creates a subscription to any changes in the database concerning the selected chat room

Software design 44

object. In this way the component stays updated with the current state of the object
without the need for explicit follow up requests.

As described in the previous Section 4.3.3 the flat structure of the service is such by design
in order to minimize the upstream and downstream communication paths between
components. A small example of this type of communication would be the process of
loading messages for a particular chat room. In this case the ChatroomListComponent and
the MessageComponent can be found on two different branches in Figure 13 sharing one
common parent component. Therefore, all of the data that needs to be exchanged
between those components should flow through the common parent component.

Figure 16: Communication Diagram depicting communication between two components.

The common-parent communication strategy is a typical example how most SPA
frameworks exchange data between components. Since creating singleton services in React
framework is not easy and the framework does not provide such functionality natively, data
is exclusively shared between components with common parents through a variable named
‘props’ or a third party software is used that offers some central state management
pattern.

Another feature built into the chat service is the notification for unread messages. It serves
to show the user if he has received messages in any other chat room than the currently
active one. An active subscription to all the available chat rooms in the user’s list takes care

Software design 45

of this functionality. Every time a user sends a message to a second user, a check is made to
see the last active chat room of that user and if it differs from the id of the sender a
notification is shown.

Figure 17: Sequence diagram representing the mechanism for unread messages
notification

4.3.5 Data structure
The structural changes related to the client structure discussed in Section 4.3.2 were
resolved with the collapsible design of the chat window. However, the need for a 1-to-1
chat service revealed other difficulties concerning the backend chat models.

The NoSQL nature of Firebase makes the efficient structuring of the chat objects difficult,
since it does not support data aggregation, allowing a single query to collect data from
multiple tables like regular RDBMS. In NoSQL databases the whole database is represented
as a large JSON object. And even though Firebase supports nesting up to 32 levels deep,
nesting should generally be avoided since it is costlier. Therefore, having a collection called
“messages” where we store all the messages with fields “sender”, “receiver”, “message”
and so on would be a poorly made structure since getting the necessary messages for a

Software design 46

chatroom would require the database to iterate over all message to grab only the ones
where the sender and receiver values match. For this reason, NoSQL databases like
Firebase work best with denormalized data.

In the case of storing the chat messages for the separate chatrooms, a possible solution for
flattening the “messages” collection would be to append the users’ unique ids on
conversation start to form a unique string that would identify a document containing the
whole chat history for a particular chat room. However, this strategy would lead to a
duplication of all the messages, since the whole conversation would have to be recorded in
both chatrooms for both users.

Solving this issue requires a string comparison between the two ids, which is an operation
allowed in JavaScript, and appending always the greater value at the end. In this way when
a conversation is started it would always have the same unique id, without the need for
nesting and data duplication.

Figure 18: Screenshot showing a possibility for a denormalized chat collection model

The backend data modeling for the rest of chat service is required to follow the same
principles of flatten data structure and composition that allows for fast retrieval of data
without the need for querying the database.

4.3.6 Summary
The chat functionality for this project provides the users with the ability to exchange instant
messages. During the development process of the project, the initial requirement of the
chat services for a simple common chatroom where everyone can post and see all
messages evolved to meet the standards and capabilities of other similar applications.

The change in requirements for the chat service however, necessitated changes in other
parts of the application to fit the new model. A new behavior of the chat components was

Software design 47

designed to meet the requirements for a separate 1-to-1 chat. The existing component
structure was adjusted, together with the backend models for the chat service collections.

The current design of the chat functionality, can serve as a guideline for creating a reactive
service in a Single Page Application by utilizing the Observer and Façade design patterns at
its core. It is designed as a complementary service that is active through the whole time
while a user is logged in, without taking the main focus off of the ticket management
system.

4.4 Central state management design

4.4.1 Additional requirements
An additional requirement for this project is that a second implementation of it is
developed, which utilizes a unidirectional data flow. This requirement serves the purpose of
producing an application that would have the same functionality, but would utilize the
central state management design pattern. In this way a comparison could be made
between the two projects that could serve as a guideline for development of modern Single
Page Applications.

4.4.2 Workflow
Development of SPAs is often complex because the application work cycle does not stop,
and user activity on the application results in changes in the application state on the client.
Some changes in the application state come through AJAX, but most of the changes do no
come from the server, but from the local variables in the application. Managing the state is
one of the most difficult parts of the SPA development in a safe, and time-wise sustainable
environment [13].

During the development of the frontend for an application the most critical requirement is
that the user interface reflects always the current application state. This means that the
state has to change every time the user interacts with the application and this change in
state has to be reflected in the UI in turn. Binding state variables to the DOM is the way all
major frameworks like Angular, React and Vue provide this functionality. In most simple
applications that would suffice to provide a coherent, in-time response of the UI to changes
in the state. However, as the application grows and the state becomes more complex, this
methodology often becomes inefficient for maintenance and reliability issues may occur.

The central state management pattern is intended to synchronize the state changing
operations, providing in the end always a predictable way of mutating the state object.
Moreover, since the reducers, which are the state mutating functions are built in an
immutable way, the change detection algorithms can track the changes correctly and

Software design 48

update the state on the screen. The main concept of the centralized state management
pattern is that it provides a unidirectional data flow.

By utilizing a unidirectional data flow, as a main concept in its architecture and the
immutable update patterns, the central state management pattern intends to make the
central state storage the single source of truth (SSOT) [14] for the application. Therefore, all
the changes relevant to the UI can be synchronized and the UI can always be an image of
the latest state object.

Figure 19: A flow chart representing a central state management system design

Figure 19 illustrates the unidirectional data flow that is implemented in the central state
management pattern called Redux.

The implementation of the Redux pattern does not require on its own any restructuring in
the project’s component architecture, it requires however a significant change to how the
data flows through the components and the way the data is being handled.

The three key concepts about the Redux pattern are:

1. Store – there is a central place in the application called “Store” that holds the
whole state of the application. The store is considered the single source of truth

Software design 49

and can be injected into any component, providing it with access to the latest
object representing the application state.

2. Reducer – Reducers are pure functions, since they are not allowed to have any

side effects such as mutating local variables, sending HTTP requests, etc. They
define how the state will look like after an action has been dispatched, by
transforming the current state in an immutable way. In this way the state object is
never really mutated, instead a new copy of the state is always provided that
contains the latest changes. This allows features such as time travel debugging
and ensures that change detection will work properly since the reference of the
object will change.

3. Unidirectional data flow – the flow of information from the UI to a reducer that

modifies the state, which in turn is passed back to the UI is an important feature
of the Redux pattern. In this way, it is ensured that the information flow is
predictable and easy to trace.

Furthermore, in Angular the Redux pattern can utilize Subjects and Observables [15] for its
functionality, allowing the user to treat its variables as streams to which the store can react
appropriately over time. Therefore, building the chat functionality and the ticket
management system with the Observer pattern facilitates an easier and better transition to
the second implementation where the store will be handling the state of the application.

As mentioned in the beginning of this section, the Redux pattern does not require
necessarily project restructuring, however for its implementation it requires a lot of
boilerplate that needs to be implemented in order to secure the unidirectional data flow.

Part of this boilerplate code includes:

 Actions and action creators - the first building blocks which need to be designed
when composing a Redux type of architecture are the actions and the action
creators. While the action creators are the interfaces which create and return an
action, the action itself is what the components use to notify the reducers that the
state of the applications needs to be modified. The action works as a message that
can be dispatched with the new information with which the state should be altered
or they can serve as a notification that a function needs to be triggered.

 Effects – Also known as side-effects, provide means for the application to handle
asynchronous events such as HTTP requests, server communication or other type of
event which are not pure functions in a safe and predictable way. In the flow of the

Software design 50

Redux pattern they serve as middleware, listening for specific actions dispatched
from the store to which they can react.

 Selectors – these are helper functions that allow the user to have quick access to
particular parts of the state. Since the Redux pattern creates one big JavaScript
object that represents the state of the application, the selectors are needed to
extract efficiently smaller piece of data relevant for the separate components.

Software design 51

Figure 20: Sequence diagram showing a Redux implementation of a chat service function

Software design 52

Figure 20 shows a sequence diagram representing the design of a single function from the
chat service that uses the Redux pattern. The function, which gets the messages from the
database after the user selects a chatroom, needs to go through all of the Redux
middleware implementation in order to preserve the unidirectional flow of data. Since the
function needs to reach out of the Redux environment to the database and perform an
HTTP request, this request must be processed by an effect to make sure that the right
information is being passed to the reducer. This effect will handle any errors if present and
would dispatch the correct action once the information is there and the reducer can work
with it in a synchronous manner.

Figure 21: Sequence diagram showing an implementation of a chat service function

Figure 21 on the other hand, shows the same function design without the Redux pattern.
The comparison between the two sequence diagrams reveals a much simpler data path for
the second implementation. However, it can immediately be recognized that the messages
are received by the client and the business logic is performed inside the client to transform
this messages into the appropriate application state. Consequently, as the application
grows and multiple components get nested within each other, the application state
modifications will get harder to track down. Moreover, in cases where multiple
components need access to the same state and can update this state in the same time, it
becomes very difficult to manage this process.

While the Redux pattern allows for the containing of the application state, making the store
the single source of truth for the application, it enforces simultaneously additional

Software design 53

complexity on that project. The library that provides the main implementation of Redux for
Angular is built on top of another library that provides Reactive Extensions for JavaScript
called RxJS. Even though this is the same library on which Angular is built and which allows
the Observer pattern implementation of the services in this project, it forces the user to use
reactive programming when this might not be necessary.

This additional complexity, together with the large amount of boilerplate code are the two
main drawbacks of the Redux pattern. Therefore, it might be the case that for smaller and
middle-sized applications this is not a desirable pattern to be used. However, since it
requires a complete rewriting of every function that alters the application state, it is best to
decide in the design phase of an application whether to use the pattern or not.

The benefits provided by Redux are not negligible at all. Securing a unidirectional data flow
and a centralized application state can be extremely beneficial for sustaining
maintainability and high performance of the application as it grows. Redux provides best
practices guidelines that help with error handling and fixed rules to help improve the
development process. Moreover, the store could be used as a cash. If other features are
designed, such as offline accessibility of the application that requires a portion of the state
to be stored in the Local Storage of the application, it would make sense to hydrate that
state object in the Local Storage for offline use from the store.

Lastly, to improve the performance of the application, the store could be leveraged to
provide optimistic UI updates [16] for an improved, snappier user experience as compared
to a traditional “loading” experience. By displaying data immediately upon navigation
change from the store, which can possibly be outdated, while requesting the latest version
of that data from the backend, the application will provide a feeling of responsiveness and
maximize in this way the user experience. This strategy is not applicable in every situation
but is a possibility provided by a centralized management system.

4.4.3 Summary
The central state management system represented by the Redux patter provides an
alternative for handling the state of an application. It deals with the flow of data through
the application, imposing a unidirectional data flow. In this way, the UI can be updated in a
safe and predictable way without any complication for the change detection mechanisms.
On the other hand, the cost of implementing Redux in an application includes added
complexity, a large amount of boilerplate code and therefore more time for development.
Section 5.3 shows the implementation of the data store and how this affects the data flow.

Implementation 54

5 Implementation

5.1 Authentication
The implementation of an authentication process in this project is based on Angular’s route
guard interfaces. There are several types of guard interfaces, but for the needs of the
project a CanActivate [17] interface has been implemented that can decide if the requested
route comes from an authenticated user or not. Consequently, if a user who is currently
not logged in attempts to call the board or backlog routes will be redirected to the login
window.

Figure 22: Screenshot of the UI representing the Login component view

Implementation 55

Figure 23: Screenshot of the UI representing the Sign Up component view with a wrong
validation attempt alert

For the purposes of logging in and registering, two components were created with the
appropriate form. Both views share similar features and they work internally the same way.
If a user creates a registration or logs in successfully, he is redirected to the main page of
the application and the chat functionality is activated. However, if the user does not fulfill
the criteria of the form validation or tries to log in with wrong credentials, an alert
component is triggered that notifies the user appropriately.

5.2 Ticket management system
The ticket management board implemented in this project provides a good range of
functionalities for displaying and working with tickets. It supports several functionalities
including:

1. Providing a tool for ticket creation.

2. Allowing the user to assign a person responsible for the ticket, skills required for

the ticket and a time estimation for which the ticket needs to be completed.

3. Assuring ticket state synchronization between users. The ticket creation, causes a
change in the ticket state of the application which in turn triggers a re-rendering

Implementation 56

of the UIs of all people currently visiting this page without the need for refreshing
the window.

4. Drag and drop functionality – The tickets can be dragged between columns and
dropped in a desired column depending on the state of the ticket’s progress. This
updates the pie chart on the side and the heading of the board that provides a
summary of all tickets.

5. Ticket editing functionalities, including editing of the ticket content, deleting the

ticket or sending the ticket to the backlog.

6. Visual summary of the tickets state. The board contains a pie chart providing a

visual representation of the ratio between tickets in progress and the ones
already completed.

Figure 24: Screenshot of the board component UI illustrating the main page view

Implementation 57

Figure 25: Screenshot of the board component’s UI illustrating the drag and drop
functionality of the tickets

The screenshot shown in Figure 25 illustrates how a ticket can be moved from one column
to the next, updating the summary on top of the board and the pie chart on the side. These
changes are synced across all users simultaneously through the backend. No manual
refreshing of the page is required to get the latest state of the objects.

Implementation 58

Figure 26: Screenshot of the ticket editing component’s UI illustrating the available
editing options

Figure 26 provides a screenshot of the editing tickets component which allows the user to
edit the ticket’s content as well as delete the ticket or send the ticket to the backlog
through pressing of a button. The component uses an overlay object which covers the rest
of the view and allows a single component to be active. As soon as the changes are saved,
the view is synced across all users.

Figure 27: Screenshot of the backlog component’s UI

Implementation 59

The backlog component implementation, captured in Figure 27 shows a table structure
representation of the tasks. It provides the users of the app with a container where tasks
that would be postponed could be saved. Finally, it gives the user the possibility to move
the backlog task from the backlog into the board component on demand.

5.3 Chat Service

The implementation of the second feature of this application, namely the chat service is
presented in Figure 28. The chat window opens up after the user clicks on the chat button
on the navigation bar. The chat service is already active after the user login has completed
and awaits the user to select a chatroom to start a conversation. The user is shown as
online to all other users and can also see which users are online from the green marker in
front of the chatroom. By selecting a chatroom, the user can see the messages left in this
chatroom and can start typing new messages on demand.

Figure 28: Screenshot of the chat functionality UI showcasing a chat conversation

However, if the desired chat room is not present in the user’s list, he can add a user to his
list from the dedicated button found on top of his chatroom list “+ Chat”. Selecting this
button, opens up a window, that presents the user with a list with all available users from
which he can select to be added to his chatroom list. Figure 29 presents this scenario.

Implementation 60

Figure 29: Screenshot of the users list UI illustrating the option for adding a new user to
the chat room’s list

Figure 30 below shows the mechanism for displaying a notification for the unread
messages. The flag is set every time a user receives a message in a chat room that differs
from the currently active chat room of that user. This flag signals the client to display a
notification which appears in two separate places in the user’s interface. Since the only
active component that is visible on all navigation paths is the navigation bar component,
one of the notifications is set on it. The second notification appears in the chat room list
component on the chat room element itself.

The clearing mechanism of the notifications works in a similar way. A notification is cleared
from the chat room element if a user selects this element. The second notification is
cleared if there are no chat rooms in the list of this user that have unread messages.

Implementation 61

Figure 30: Screenshot of the chat service UI illustrating the unread messages notification
implementation.

5.4 Central state management implementation

The Implementation of a central state management system does not come with changes to
the user interface as described in Section 4.4.2. However, the Redux patter introduces a
new form of state management that is allowed through a central store, reducers and the
implementation of middleware.

Implementation 62

Figure 31: Class diagram of the chat service with Redux implementation

Implementation 63

The class diagram on Figure 31 shows the design of the Redux pattern in handling the state
of the chat service. The classes of the chat service itself are left unfilled for readability
purposes. Furthermore, following the example of the sequence diagrams in Figure 20 and
Figure 21 showing the Redux implementation of a single function, the part of the class
diagram highlighted in red boundaries represents the Redux middleware which needs to be
included for the implementation of a single function.

In order for a single function, which makes an HTTP request, to be implemented using the
central state management pattern, three separate action classes have to be created every
time. Moreover, the listeners for these actions have to be created as well. Either an effect
or a reducer has to react to these actions which signify an intend to change the state of the
application. In this way the system can guarantee the unidirectional data flow and the
immutability of the application state changes.

Since the ticket state and the chat state are independent of each other and the rest of the
application state, they can be extracted each into a separate reducer that would manage
the complete state for that feature. The implementation of the ticket state reducer could
be found in Appendix B.

In a similar way as the Angular framework allows the encapsulation of a particular function
inside a component and then extends this encapsulation mechanism to a modular level for
a separate functionality of the application, we can modularize the reducers in the central
state management system.

By providing a separate reducer to handle the ticket state and the chat functionality state
we can compose our application state from both reducers by extending the abstraction
further and creating a top level reducer that would compose all his children in an
appropriate manner.

Implementation 64

Figure 32: Screenshot of a code snippet, representing the top level reducer

The last step after creating a top level reducer for a particular feature or application is to
create a selector for it as well. In this way the Redux pattern provides full flexibility in its
implementation when it comes to handling application state.

Overview

As a consequence of the added complexity and the large amount of boilerplate, a valid
argument could be made that introducing a central state management system into an
application could be counterproductive in many cases. Therefore, extracting separate
functionalities into feature modules could allow developers to introduce a Redux
environment only for certain features where state handling becomes otherwise
unmanageable or very hard to manage. In this way, a hybrid application state management
system can counteract the growing complexity of an application in a much more efficient
way.

Since the current project at this stage of development does not require many of the
features that are made possible with the implementation of a central state management
system, the overall addition of complexity and the amount of extra code required for its
implementation could not be appropriately justified. The Redux implementation however,
could be a good stepping stone for developing the future features of this application.

Testing 65

6 Testing

6.1 Unit tests

All Single Page Application platforms provide tools with which the developers can perform
unit tests. Every created component or service in Angular comes with a file that has a .spec
extension that holds the relevant tests. The testing tools provided by Angular in the case of
this project are named Karma and Jasmine [18]. Testing a single unit of work can become
complicated if it has external dependencies. To deal with this issue, a mocking framework is
used, which abstracts the external dependencies. This approach is very successful, because
all dependencies are supplied through dependency injection [19].

Appendix C shows a unit test, which tests the dynamic adding and removal of HTML tags.
The adding of the HTML tag, which provides the notification for unread messages into the
DOM tree, is based on a response from the chat service. The service tries to retrieve the
unread property of all chatrooms in the list of the current user and based on the response
of this request an additional HTML tag is added or removed from the DOM. Since the
response of the service, relies on Firebase which is not accessible in this testing
environment, the call and response to it are mocked. The mocked response returns an
already defined value for the unread property with which the testing platform checks
whether or not the element is part of the DOM.

6.2 Manual testing

6.2.1 Authentication and board component
The methodology used for testing the correct functionality of the application involves
mainly a set of scenarios and verifications that are conducted manually. The verifications
are specified depending on the features tested, these involve evaluating visually the UI
controls at runtime and in some cases inspecting the state of critical variables while
debugging the application [20]. The testing scenarios are intended to cover all of the
functional requirements described in Table 2.

Testing 66

Test sequence Expected result Outcome Functional
requirements

references

1. User tries to sign up
without filling all of the
fields out.

2. User tries to sign up with
invalid credentials

3. User tries to sign up with
credentials that are
already in use

Fail to sign up Fail to sign up
and display an
alert with a
message

IM2, IM4

1. User fills all the fields
correctly and submits the
form

Create registration
and navigate to
main page

Create
registration and
navigate to main
page

IM3, IM7

1. User tries to log in
without filling all of the
fields out

2. User mismatches the
username and password
for his account

Fail to log in Fail to log in and
display an alert
with a message

IM8, IM9,

1. User correctly inputs his
login credentials

Successful login
and redirection to
main page

Successful login
and redirection
to main page

IM6, IM8

1. Navigation bar items
change if authentication
is successful

Login and Signup
are hidden after
login and Chat,
Backlog and
Logout appear

Login and Signup
are hidden after
login and Chat,
Backlog and
Logout appear
and alert with a
message appears

IM10

1. Main navigation paths
are hidden if user is not
logged in or immediately
after he clicks on log out

Main navigation
routes are hidden
and unavailable.
Only Sign Up and
Login paths are
shown.

Main navigation
routes are hidden
and unavailable.
Only Sign Up and
Login paths are
shown.

IM5, IM10

1. User enters the ticket
board component

Be able to see all
tickets

All tickets are
present

IM11

Testing 67

1. User creates a ticket
without filling all of the
fields out

Fail to register a
new ticket

Fail to register a
new ticket and
alerts shows a
message

IM11

1. User creates a ticket and
fills all fields out

A ticket is posted
in the To Do
column and all
users can see it

A ticket is posted
in the To Do
column and all
users can see it

IM11, IM12,
IM13

1. User selects a ticket
without dragging

A ticket is opened
for editing

A pop up appears
that allows
editing
functionality on
the ticket

IM14

1. User presses a delete
button on the edit ticket
pop up window

Ticket is deleted
for all users

Ticket is removed
from the board
for all users

IM15

1. User edits the ticket and
saves it

Changes on ticket
are saved

Ticket appears
with changes to
all users

IM14

1. User saves ticket to
backlog

Ticket is removed
from board and
send to backlog

Ticket is removed
from board for all
users and
appears in the
backlog path for
all users a
message is
displayed

IM18

1. User selects ticket and
drags it to the next
column

Ticket is moved
from current
column to the
target column

Ticket is moved
to the new
column for all
users

IM16

1. Selecting window refresh
button on the main
board page

The state before
the refresh should
be the same as the
one after the
refresh if no other
user has made
changes

The state of the
tickets is
persisted after
refresh

IM19

1. User navigates to backlog Backlog tickets are
displayed

Backlog tickets
are displayed

IM18

1. User selects “Move to
sprint” button next to a

Backlog is sent to
Board Component

Ticket is removed
from the backlog

IM18

Testing 68

given backlog task list. Ticket
appears in the To
Do column for all
users

Table 4: Functional requirements tests for the board component

Table 4 provides a summary of manual testing of all the functional requirements that relate
to the board component functionality. During the testing procedures, critical variables were
inspected for correctness using the Chrome debugger and the state of the database was
supervised for correct behavior as well.

6.2.2 Chat service
The chat service functionality is tested using a predefined sequence of actions design to
test the full range of features for this service. For this purpose, two windows are opened
both of which connected to the internal Angular server running the application and a chat
simulation between User A and User B is performed. During the sequence of actions all
messages were transmitted and every action was reflected correctly in the database. The
relevant chat notifications were shown and after restarting the application, the users could
see their respective chat history correctly.

Since the chat service was developed to have different features than initially planned, the
functional requirements for it are missing in Table 2. Therefore, the tests performed to test
the correct functionality of the service do not have a reference to the “Requirements
analysis” chapter.

Action sequence Expected result Outcome

User A tries to access the
chat path before
authenticating

User is redirected
to login

A notification is displayed that user is not
authenticated and user is redirected to
log in screen

User A successfully
authenticates

User A get access
to the Chat
functionality

User A get access to the Chat
functionality

User A selects the chat
tab in the Navbar
component

Chat window opens Chat window opens

User A selects the
“+Chat” button to add a
new user

Window containing
all registered users
appears

Window containing all registered users
appears

User A selects User B to User B is added as The pop up window closes and User B

Testing 69

be added as a chatroom
on the new window

a chatroom in User
A’s list

appears as a chatroom in User A’s list

User A selects User B be
added as a chatroom on
the new window even
though User B is already
added

Nothing changes Window with user list is closed and the
list does not change. User B is not added
for a second time as a chatroom.

User A selects the User B
chatroom from his list

All messages
appear in the chat
window

- User B chatroom gets marked green as
selected

- chat history appears ordered by time

- chat messages are styled differently
based on the sender property

User A sends a message
into User B chatroom

User B receives a
chat message

- if User B does not have User A already
added as a chatroom, a notification is
send to User B that he has unread
messages and User A gets added
automatically to his chatroom list.

- if User B has user A in his chat room list
but he is currently using a different chat
room or has the chat window closed, a
notification is send that he has unread
messages and User A chat room gets
highlighted.

- if User B has User A in his chat room list
and the chat room is currently selected,
User B can see a received message from
User A

User A closes the chat
window

Chat is closed Chat is closed

User A navigates to the
backlog component and
opens the chat

Chat is opened Chat is opened and the messages from
the last selected chat are displayed.

Table 5 Functional tests for chat service

Conclusion 70

7 Conclusion

The work in this project provides an implementation of a Single Page Application using two
different application state models. While the UI has been kept identical for both
applications, one of them follows the Redux state management pattern to organize and
distribute the application state, while the second application utilizes dependency injection
and the parent-child component relationship to achieve this goal. Both state management
patterns have been examined theoretically and examples have been provided from the
project implementation. Moreover, to make the applications complete, a serverless
backend has been introduced, which comes with a real-time database for the data
persistence.

The main challenges faced during the work on this project include, creating a good
structure and designing an application that has two different implementations. Since, the
work on this application can continue in the future, a good structure, ensuring the
extensibility of the project was required that would facilitate the implementation process of
new features. Furthermore, for the purpose of comparing the two state management
patterns the design of the application had to allow for a smooth transition, which would
not require a complete revision of the codebase. Both of this challenges have been
examined in depth in Chapter 4 of this thesis.

In the process of developing the Chat and Ticket management system a deep
understanding of frontend state management patterns was achieved. Moreover, extensive
insights into the state-of-the-art technological stacks such as Angular, Firebase, RxJS, etc.
were established. This work can serve as a modern guide for the development of Single
Page Applications regardless of the development platform or size of the application. A
thorough comparison, supported with examples of the benefits and drawbacks of the
centralized state management pattern, was provided and recommendations were
presented.

7.1 Future work

One of the main benefits of developing a Single Page Application using Angular and
Firebase is the platform agnostic features of the frameworks. Using the current code base,
the application could be wrapped with little effort into a basic Cordova [21] application that

Conclusion 71

would allow the distribution and native functionalities of the Chat and Ticket management
system onto Android, IOS or Web platforms. Using this approach, we can minimize the time
for development of an application that would target a variety of operating systems.
Furthermore, because of the Redux implementation, the application could be enhanced to
a Progressive Web Application [22] with offline capabilities in an easier and more
structured manner. Finally, in order to achieve a true team separation capability, an
additional authentication step specifying a team name could be introduced that would add
one extra node, creating team database nodes inside Firebase.

References 72

References

[1] Y. T. W. Tiky, Software Development Life Cycle, The Hong Kong University of Science
and Technology, 2016.

[2] A. Hussain, Angular From Theory to Practice, vol. 1.2.0, 2017-11-24..

[3] M. Wasson, "ASP.NET - Single-Page Applications: Build Modern, Responsive Web Apps
with ASP.NET," [Online]. Available: https://msdn.microsoft.com/en-
us/magazine/dn463786.aspx. [Accessed 1 2 2019].

[4] J. C. Michael S.Mikowski, Single Page Web Applications, Manning Publications, 2014.

[5] "Angular Architecture overview," Google Inc., [Online]. Available:
https://angular.io/guide/architecture. [Accessed 2 February 2019].

[6] D. Shapiro, "Understanding Component-Based Architecture," A Medium Corporation,
2016. [Online]. Available: https://medium.com/@dan.shapiro1210/understanding-
component-based-architecture-3ff48ec0c238. [Accessed 16 3 2019].

[7] K. Lane, Overview Of The Backend as a Service (BaaS) Space, 2013.

[8] P. S. E. F. O. Dr. Alshafie Gafaar Mhmoud Mohmmed, Journal of Multidisciplinary
Engineering Science Studies (JMESS), 2017.

[9] B. N. a. B. Lucie, Real-Time database: Firebase INFO-H-415 : Advanced database, 2017-
2018.

[10] "Angular Material," Google Inc, [Online]. Available:
https://material.angular.io/components/sidenav/overview. [Accessed 27 2 2019].

[11] A. Shvets, Dive Into Design Patterns, vol. 1.1, 2019.

[12] R. H. R. J. J. V. Erich Gamma, Design Patterns – Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1994.

[13] K. T. Martin Kaluza, Comperison of Front-End Frameworks for Web Applications
development, vol. 6, Zbornik Veleučilišta u Rijeci, 2018.

References 73

[14] K. Sabadir, "React Redux," SiteOS, 2017.

[15] S. Mansilla, Reactive Programming with RxJS, The Pragmatic Programers, LLC, 2015.

[16] E. Aybar, "Optimistic UI Updates in React," 2018. [Online]. Available:
https://medium.com/@_erikaybar/optimistic-ui-updates-in-react-9e139ffa2e45.
[Accessed 5 February 2019].

[17] A. Morgan, "How to test Angular CanActivate Guards," 2018.

[18] A. V. Pranay Dutta, "Karma- The Test Runner, for Automated Testing of Web Based
Applications".

[19] P. Krastev, Design and implementation of a microservice for deletion of resources in
the Multi-Agent Research and Simulation distributed system, Hamburg: HAW
Hamburg, 2018.

[20] A. Figueroa, Development of a graphical user interface for X-ray, HAW Hamburg,
Hamburg, 2017.

[21] A. Grieve, The Cordova Development Lifecycle, 2014.

[22] D. A. Hume, Progressive Web Apps, Manning Publications, 2018.

[23] D. S.Cohen, C. &. Control, Ed., Int. J. of Computers, 2010.

References 74

Appendix A

The following code snippet has been taken from ChatroomService class, which can be found
at the following path: …src/app/services/chatroom.service.ts

export class ChatroomService {

public changeChatroom: BehaviorSubject<string | null> = new

BehaviorSubject(

 null

);

public selectedChatroom: Observable<any>;

this.selectedChatroom = this.changeChatroom.pipe(

 switchMap(chatroomId => {

 console.log(chatroomId);

 if (chatroomId) {

 this.loadingService.isLoading.next(true);

 db

.doc(`chatrooms/${this.authService.currentUserSnapshot.id}/chatrooms

/${chatroomId}`)

.update({unread: false})

.catch(err => console.log('Error in updating the unread property of

the chatroom', err));

 return db

 .doc(`chatrooms/${this.authService.currentUserSnapshot.id}/cha

trooms/${chatroomId}`)

 .valueChanges();

 }

 return of(null);

 }));

}

References 75

The following code snippet has been taken from ChatroomWindowComponent class, which
can be found at the following path: …src/app/pages/chat/components/chatroom-
window/chatroom-window.component.ts

export class ChatroomWindowComponent implements OnInit, OnDestroy,

AfterViewChecked, On-Changes {

 this.subscriptions.push(

 this.chatroomService.selectedChatroom.subscribe(chatroom => {

 this.chatroom = chatroom;

 this.loadingService.isLoading.next(false);

));

ngOnChanges(changes: SimpleChanges) {

this.chatroomService.changeChatroom.next(changes.chatroomID.currentV

alue);

 }}

Appendix C 76

Appendix B

The following code snippet has been taken from the task reducer file, which can be found
at the following path: …src/app/store/reducers/task-reducer.ts

import * as taskActions from '../actions/task-actions';

import { TaskModel } from 'src/app/shared/models/tasks.model';

import { Action } from 'rxjs/internal/scheduler/Action';

export interface TaskState {

 tasks: TaskModel[];

 backlog: TaskModel[];

}

// The state with which the reducer will be innitialized

export const innitialState: TaskState = {

 tasks: [],

 backlog: []

};

// State controller

export function reducer(

 state: TaskState = innitialState,

 action: taskActions.TaskActions

): TaskState {

 console.log(action);

 switch (action.type) {

 case taskActions.CREATE_TASK_FAIL:

 case taskActions.MOVE_TO_BACKLOG_FAIL:

 case taskActions.REMOVE_TASK_FAIL:

 case taskActions.REMOVE_TASK_FROM_BACKLOG_FAIL:

 case taskActions.GET_BACKLOG_TASKS_FAIL:

 case taskActions.GET_TASKS_FAIL: {

 console.log(action.payload);

 return { ...state };

Appendix B 77

 }

 case taskActions.CREATE_TASK:

 case taskActions.GET_BACKLOG_TASKS:

 case taskActions.MOVE_TO_BACKLOG:

 case taskActions.REMOVE_TASK:

 case taskActions.REMOVE_TASK_FROM_BACKLOG:

 case taskActions.GET_TASKS: {

 console.log(action.type);

 return { ...state };

 }

 case taskActions.GET_TASKS_SUCCESS: {

 console.log('Reducer TAsks action success');

 const newState = { ...state, tasks: action.payload };

 console.log(newState);

 return newState;

 }

 case taskActions.CREATE_TASK_SUCCESS: {

 console.log(action.type);

 const newTaskArr = state.tasks;

 newTaskArr.push(action.payload);

 return { ...state, tasks: newTaskArr };

 }

 case taskActions.GET_BACKLOG_TASKS_SUCCESS: {

 console.log('Reducer BacklogTasks action success');

 const newState = { ...state, backlog: action.payload };

 return newState;

 }

 case taskActions.MOVE_TO_BACKLOG_SUCCESS: {

 const newState = { ...state };

 newState.tasks.forEach(task => {

 if (task.id === action.payload.id) {

 newState.backlog.push(task);

 }

 });

 newState.tasks = newState.tasks.filter(

 task => task.id !== action.payload.id

);

 console.log(newState);

 return newState;

 }

 case taskActions.MOVE_TASK_TO_SPRINT: {

 const newState = { ...state };

Appendix B 78

 const backlogs = state.backlog;

 newState.backlog.forEach(task => {

 if (task.id === action.payload.id) {

 newState.tasks.push(task);

 }

 });

 newState.backlog = newState.backlog.filter(

 task => task.id !== action.payload.id

);

 console.log(newState);

 return newState;

 }

 default: {

 return state;

 }

 }

}

export const getTasks = (state: TaskState) => state.tasks;

export const getBacklog = (state: TaskState) => state.backlog;

Appendix C 79

Appendix C

The following code snippet has been taken from file, which can be found at the following
path: …src/app/pages/chat/components/chatroom-list/chatroom-list.component.spec.ts

import { async, ComponentFixture, TestBed } from

'@angular/core/testing';

import { ChatroomListComponent } from './chatroom-list.component';

import { ChatroomService } from 'src/app/services/chatroom.service';

import { of } from 'rxjs';

import { By } from '@angular/platform-browser';

describe('ChatroomListComponent', () => {

 let component: ChatroomListComponent;

 let fixture: ComponentFixture<ChatroomListComponent>;

 let chatroomService: ChatroomService;

 let spy: any;

 beforeEach(async(() => {

 TestBed.configureTestingModule({

 declarations: [ChatroomListComponent]

 })

 .compileComponents();

 }));

 beforeEach(() => {

 chatroomService = new ChatroomService(null, null, null);

 fixture = TestBed.createComponent(ChatroomListComponent);

 component = fixture.componentInstance;

 component.chatroomService = chatroomService;

 fixture.detectChanges();

 });

Appendix B 80

 it('should create', () => {

 expect(component).toBeTruthy();

 });

 it('should hide badge icon', () => {

 spy = spyOn(chatroomService, 'statArr').and.returnValue(

 of([{unread: false}])

);

expect(fixture.debugElement.query(By.css('.badge')).nativeElement).t

oBeUndefined();

 });

});

Declaration

I declare within the meaning of section 25(4) of the Exanimation and Study Regulations
of the International Degree Course Information Engineeting that: this Bachelor report
has been completed by myself independently without outside help and only the defined
sources and study aids were used. Sections that reflect the thoughts or works of others
are made known through the definition of sources.

Hamburg, 21.03.2019
 Signature: Ivan Mihaylov

