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Abstract

Automated segmentation of medical image data is an important, clinically relevant task
as manual delineation of organs is time-consuming and subject to inter- and intraob-
server fluctuations. This thesis builds upon a framework for segmentation of multiple
organs in three-dimensional images. The approach employs a supervised recognition,
where a training set with dense organs annotations is used to classify voxels in unseen
images based on similarity of binary features extracted from the data. A combination
of two different types of feature vectors is used to capture relevant structural and con-
textual information. The binary vectors are constructed by multiple pairwise intensity
comparisons. Hence, the method is invariant to monotonic gray-level changes and can
be applied to different imaging modalities or anatomies. The fast approximate nearest
neighbor search, using Vantage Point Forests, does not require any explicit prior shape
model knowledge and allows computationally efficient binary data classification. Train-
ing the algorithm takes several minutes, while segmenting a test image is in the order
of a few seconds. The method is successfully applied to 68 CT abdominal and 42 MR
pelvic images. With respect to ground truth, an average Dice overlap score of 0.74 for
the CT segmentation of liver, spleen and kidneys is achieved. The mean score for the
MR delineation of bladder, bones, prostate and rectum is 0.65. The results demonstrate
surprisingly accurate segmentation, robustness and data-efficiency.
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1. Introduction

1.1 Motivation

Image segmentation and object recognition are crucial procedures in areas such as au-
tonomous driving, visual recognition, as well as various technical research and clinical
settings. In general, segmentation refers to dividing an image into a set of semanti-
cally meaningful, homogeneous, and non-overlapping regions of similar attributes such
as intensity, depth, color or texture. It can result in either image of labels identifying
regions or a set of contours which describe the region boundaries [Despotović et al.,
2015]. In 3D medical imaging, segmentation refers to delineating anatomical structures
or abnormalities, which is an important preprocessing step for computer-assisted sys-
tems, image-guided interventions and radiation therapy planning. In traditional clinical
practice, the delineation of organs is semi-automatic. It requires an expert clinician to
perform the segmentation in an organ-by-organ and slice-by-slice manner in line with
given constructs1. Manual delineation, however, is tedious, time-consuming and prone
to inter- and intraobserver variability [Hu et al., 2016].

Several approaches have been proposed to complement and facilitate the work of the
clinicians. Watershed [Grau et al., 2004], level sets [Chan and Vese, 2001] or threshold-
ing methods, for instance, have been successfully applied to certain classes of images
and rough segmentation results have been obtained. These approximate delineations
can be then further refined by the intervention of human experts [Zhao and Xie, 2013].
Such methods provide valuable assistance as most of the manual work is cut down.
However, despite the advantages these techniques have, they are only specific to given
applications and require prior tuning of parameters.

Automatic medical image segmentation, on the contrary, aims to be more generic,
accurate, fast and simple. Generality, is of high importance as algorithms shall be

1In radiotherapy scenarios, for instance, segmentation of organs has to be in line with the constructs
introduced by the Radiation Therapy Oncology Group (RTOG).
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independent from the modality used to acquire the images and applicable to any organ.
High accuracy is essential in medical image segmentation. It is required both for the
recognition of anatomical parts and the delineation of their boundaries. This, however,
is often challenging due to image acquisition artifacts, anatomic variability of organs
in shape, size and appearance among patients, fuzzy boundaries between tissues, etc.
Speed is another major factor that has to be taken into account. Since large datasets
often need to be segmented and certain medical procedures are time sensitive, fast
segmentation algorithm is of interest. Moreover, the simpler such a method is, the
easier it is to maintain and adapt to changes. Previous studies have shown that there is
a trade-off between these four objectives when it comes to image segmentation. Highly
accurate methods, for example, usually only apply to a single organ and take long to
process and to develop.

The approach described in this thesis aims to find a balance between the four mentioned
goals. The method is based on the work of Heinrich and Blendowski [2016], where they
suggest a supervised machine learning segmentation, that employs a training set with
label annotations to classify voxels in an unseen image. The classification is based on the
similarity of features extracted within the voxels’ spatial proximity. The implementation
builds on the source code provided by them and is extended so that it can be used
in a Python environment. The code organization and the extensions can be seen in
Chapter A. The generality of the method is tested on two different modalities with four
organs each. Insights on the accuracy and speed of the algorithm are presented.

1.2 Structure of the Thesis

The thesis continues with a background chapter where the different concepts and meth-
ods required for segmentation are presented. The basics of supervised machine learning
are discussed in Section 2.1, two types of context features are presented in Section 2.2
and a classification algorithm is discussed in Section 2.3.1. Several segmentation eval-
uation metrics are presented in Section 2.5. In Chapter 3 the different components
are merged and the segmentation framework is illustrated. The delineation algorithm
is then applied to two different test scenarios (Section 3.4.1 and Section 3.4.2) and
the results are evaluated. Possible refinements of the method are derived from these
tests, before a final conclusion is drawn in Chapter 4 including the prospects of further
development.



2. Background and Methods

2.1 Machine Learning

In the age of constantly improving technology, gathering and maintaining large collec-
tions of data is far less challenging as it used to be. Its analysis and handling, however,
demands more care since it can hardly be manual and often high precision is desired.
Therefore, machine learning techniques are used to build analytical models, helping
computers ”learn” from this data and operate with it. Unlike traditional algorithms
that are explicitly programmed to perform certain tasks, machine learning methods are
experience-based and can potentially evolve over time. They are usually built on knowl-
edge from areas as statistics, control theory, machine vision, etc. and can be applied to
various tasks such as object recognition, natural language processing or organ annota-
tion in medical images. The techniques used for classification can be grouped into two
main categories: supervised and unsupervised learning. Supervised learning requires
data accompanied by labels, which is used as a reference for automatic classification of
new unseen ”test” data. Unsupervised learning, on the contrary, is expected to discover
patterns and relationships in the data without any prior knowledge about labels.

The approach used in this thesis follows the supervised learning principle. It relies on
features extracted from images with dense voxel annotations (labels) as a Ground Truth
(GT) training data. Representing the raw data by feature vectors is a dimensionality
reduction technique making the data more memory efficient, as well as, faster to process.
The vectors are then fed into a classification algorithm that is used for building a model
(classifier) to find similar features and predict the labels of the test data (Figure 2.1).
The exact extraction and classification methods are discussed in detail in Section 2.2
and Section 2.3.

An additional step in the supervised learning is the validation of the classification
algorithm. The k-fold cross-validation method, used here, repeatedly splits the training
dataset into k subsets (folds) of roughly equal size where 1 fold is retained as test set,
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Figure 2.1: Supervised Learning Flow

During the training phase of a supervised learning, features and labels are extracted from
images and fed into a classification algorithm. The classification algorithm is validated by a
cross validation procedure that gives an insight how well would the model perform on new
unseen data. The model itself is used to predict the labels of extracted features from the test
data.

and the others k − 1 are used to train the classifier. The operation is then executed
k rounds and each time the performance of the classifier is evaluated. Averaging the
validation results gives an estimate on how the model will generalize to an independent
dataset and how successful the segmentation will be when deployed.

2.2 Binary Context Features

When observing medical images, often the intensity of the anatomical structures, as
well as the contrast among them, differ, even when the same modality is used. Their
appearance and relative position, however, are similar due to both the characteristics of
the imaging systems and the human anatomy itself. Therefore, contextual information
is exploited when pixel-wise features are extracted instead of using intensities alone
[Deserno et al., 2014, p. 386]. In general, contextual feature descriptor algorithms
encode the neighborhood information on a pixel basis by using sampling patterns. The
binary descriptor methods, construct vectors by simply comparing the intensities of
pixel pairs from the pattern. The main benefit of the binary descriptors (compared to
vector-based descriptors) is the support of fast matching by calculating the Hamming
distance between two feature vectors. For binary strings of the same length (hi and hj
∈ [0, 1]n) the distance is the number of bits equal to 1 when using the XOR operator
between them:1

dH(hi, hj) = ||hi − hj||1 = #{hi ⊕ hj} (2.1)

Nowadays, the Hamming distance can be computed efficiently with the use of the
POPCNT instruction in x86 64 architectures [Persson and Loutfi, 2016].

1For instance, if hi = 100110 and hj = 010011, dH(hi, hj) = #{100110⊕010011} = #{110101} = 4
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Table 2.1 on the following page shows four common contextual descriptor algorithms
and the different sampling patterns they use. There has been an increased use of these
methods in literature lately [Kashif et al., 2016; Persson and Loutfi, 2016] and they
are proven to perform well even in challenging cases such as viewpoint changes (Bi-
nary Robust Invariant Scalable Keypoints (BRISK)), blurring (Fast Retina Keypoints
(FREAK)) or monotonic gray-level changes (Binary Robust Independent Elementary
Features (BRIEF), Local Binary Pattern (LBP)). Most of the tests, however, are only
applied on 2D images. In the context of this work, 3D descriptors are of interest and
thus, the methods need to be adapted. Extending FREAK and BRISK is not a straight
forward task, while doing this for BRIEF and LBP is almost trivial. Therefore a com-
bination of the latter two is used in this work and described in the next sections.

2.2.1 Binary Robust Independent Elementary Features

The first method, BRIEF, uses information from single pixels to construct a feature
vector and is thus, robust to monotonic intensity changes. Such a technique, however,
is susceptible to noise artifacts as pixel values are compared. This obstacle can be
avoided by prior smoothing of the images with a (Gaussian) filter and building the
vectors based on patch intensity differences. Calonder et al. [2010] defines a BRIEF
comparison test τ on a patch p of size S × S as:

τ(p; x,y) :=

{
1 if p(x) < p(y)

0 otherwise

where p(x) is the (smoothed) pixel intensity of p at x = (u, v)T . In 3D, a third
coordinate is added and x = (u, v, w)T . The same principle is then applied to a set of
nd (x,y) randomly selected location pairs, within a given displacement radius, to get a
nd-dimensional bitstring:

fnd
(p) :=

∑
1≤i≤nd

2i−1τ(p;xi, yi)

Figure 2.2 (a) shows a sample BRIEF sampling pattern applied to a patch (in blue).
The green patches indicate the intensity comparisons points.

2.2.2 Local Binary Pattern

The second descriptor used here is constructed in a similar way to BRIEF. Instead of
having all the sampling coordinates at random locations around the patch of interest,
however, LBP [Ahonen et al., 2006] fixes one of the patches to the central as seen in
Figure 2.2 (b).

Both BRIEF and LBP provide important contextual information. On the one hand,
LBP focuses on relations around the central region while, on the other, BRIEF cap-
tures interactions among neighboring structures. Therefore, a combination of both is
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Algorithm
Sampling
Pattern

Advantages Disadvantages

FREAK
(Fast Retina
Keypoints)

Robust to blurring

Sensitive to illumination
changes or compression
Sensitive to viewpoint
changes

BRISK
(Binary Ro-
bust Invariant
Scalable Key-
points)

Robust to viewpoint
changes

Sensitive to photometric
changes (blur, illumina-
tion changes)

BRIEF
(Binary Robust
Independent
Elementary
Features)

Easy to extend to 3D

Only tolerates small
amounts of rotation (in
most medical scans not
of high importance)

LBP
(Local Binary
Pattern)

Easy to extend to 3D

Table 2.1: Feature Descriptors

Source: Kashif et al. [2016]; Persson and Loutfi [2016]

Different feature descriptors algorithms extract contextual information on a pixel basis with
the help of sampling patterns. The methods construct binary vectors by comparing the
intensities at pixel pairs from the patterns. Using the sign of the comparisons, instead of
the actual differences, makes the algorithms robust to monotonic gray-level changes and also
efficient for further processing. The sampling can also be performed on pre-smoothed patches
in order to avoid any noise artifacts that may be sampled by the patterns.
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believed to capture more information and is therefore implemented here (Figure 2.2
(c)). Extending the algorithms to match the 3D images is done by adding a third coor-
dinate when selecting the random displacement of the comparison points. The choice
of displacement distribution around the central point, the length of the vectors, as well
as, the amount of BRIEF and LBP features are discussed in Chapter 3.

(a) BRIEF Sampling Pattern (b) LBP Sampling Pattern

(c) BRIEF and LBP Combined

Figure 2.2: Sampling Patterns

Contextual information for a patch (in blue) is captured by comparing the mean intensities
of offset patches around it (BRIEF) or by comparing the patch of interest to others (LBP).
Such comparisons can be also applied to single pixels. However, these tests would be sensitive
to noise artifacts.

2.3 Classification

In the context of machine learning there are various techniques used for classifying in-
formation, e.g. Neural Networks [Hall et al., 1992; Hu et al., 2016] or Support Vector
Machines [Zhang et al., 2004]. As the type of data influences the performance of these
algorithms, however, there is no generic solution that can be applied to all classification
problems. Wolpert and Macready [2005] define this as the No Free Lunch theorem and
state that there is no one model that works best for every scenario and that ”any two
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Figure 2.3: Finding Nearest Neighbors

The NN algorithm aims to find points PNN in a dataset P ’closest’ to a query point q. The
goal here is to find the color of a gray ball, based on the colors of the others. The distances to
all balls are calculated and ranked. The final decision is based on the four nearest neighbors.
By majority voting the color is predicted as yellow.

optimization algorithms are equivalent when their performance is averaged across all
possible problems”. In reality, there are trade-offs between speed, memory consump-
tion and accuracy. In the framework of 3D image segmentation where large number
of training features are processed, it is important to employ a non-parametric learning
algorithm that does not make assumptions on the underlying data distribution. The
classifier approach here is the Nearest Neighbor (NN) principle where new feature vec-
tors are labeled based on similarity and probability. The method looks for a subset
of points PNN in the training dataset P ”closest” to a query point q by a given dis-
tance d(p, q)2. Then it makes a decision based on labels of the neighbors with highest
probability.

Figure 2.3 illustrates the NN algorithm. The aim in this example is to predict the
color of the gray ball (q) based on the colors of the other balls in the dataset (P ). The
NN search starts by calculating the distance to all available balls and ranking them by
increasing distance to q: 1st NN, 2nd NN, and so on. In this case the decision is based on
the information about the four nearest neighbors. By using majority voting, the gray
point is predicted to be yellow. This procedure is known as exhaustive search or Brute
Force (BF) nearest neighbor search. It explores all possible solutions and retains the
best one(s). Although this search approach is straightforward and simple to construct,
it is inefficient as it has to be conducted from scratch for each new query point.

Alternative solutions for finding nearest neighbors are search trees that organize data
into hierarchical structures and thus, enable efficient search. In these trees, data points
are stored in leaf nodes and internal nodes are used to prune the list of leaves returned
by a query. Typically, tree construction begins by assigning all points to a root node.
Then they are recursively partitioned into one or several children nodes until some
termination criterion is met. The number of children, how they are chosen and how

2Common distances are Euclidean distance, Hamming distance, Manhattan distance, Minkowski
distance.
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the points are partitioned vary depending on the particular search tree method [Kumar
et al., 2008].

Searching for nearest neighbors in trees can be performed in two different manners. One
way, known as range nearest neighbor search, is to look for the set of points PNN ⊂ P
such that pi ∈ PNN ⇔ d(pi, q) ≤ ε. This method guarantees that all results are within
a preselected range ε. Alternatively, one can search for a set of k points PNN ⊂ P such
that ∀pi ∈ PNN and ∀pj /∈ PNN , d(pi, q) ≤ d(pj, q). This approach, called k Nearest
Neighbors (kNNs) search, does no promises on the distances to the most similar points,
but instead fixes the number of retrieved neighbors. The method used here is the kNN
as no assumptions on closeness of the training data need to be done.

Table 2.2 shows different search tree algorithms and a preview of how they would
partition a 2D points set. The line thickness denotes partition order (thicker lines were
performed first). As a direct consequence of their splitting rules, the algorithms result
in different construction and search time. The vantage point tree at the bottom has
both excellent search performance and fast construction time and is therefore selected
as a classifier for the image segmentation here.

2.3.1 Vantage Point Forests

Vantage Point Trees (VPTs) as proposed by Yianilos [1993] are constructed by recur-
sively splitting the data points using absolute distances from randomly chosen centers.
These centers, called Vantage Points (VPs), partition the data points at each iteration
in such a way that approximately half of them are within a threshold τ , and the other
half are not. This results in a structure where tree neighbors also tend to be neighbors
in space and thus, searching for such is efficient. Figure 2.4 visualizes a sample vantage
point tree construction for a 2D set of points (P Q R S T U V W). The procedure is as
follows. First, all points are assigned to the root node. Then a random Vantage Point
(R) is selected (Figure 2.4 (a)). The threshold τ is computed so that points are divided
into two equal parts (τ = 5). All points that d(Point, V P ) < τ move to the left child
node (P S Q) and the rest move to the right (U T V W) (Figure 2.4 (b)). First the
right child node is processed. Again a random VP is selected (U, τ = 4). Then all
points that d(Point, V P ) < τ move to the left child node (T) and the rest move to
the right (V W) (Figure 2.4 (b)). Then the left child node is processed. A random VP
is selected (P, τ = 6). Then all points that d(Point, V P ) < τ move to the left child
node (S) and the rest move to the right (Q) (Figure 2.4 (d)). The construction is then
terminated.

Once built, the tree can by queried for finding nearest neighbors. Figure 2.5 demon-
strates a simplified version of how the nearest neighbor for a new point (X) is found.
The process starts at the root node (R). Then the distance to the query point is mea-
sured (Figure 2.5 (b)). If d(QueryPoint, V P ) < τ , the process goes to the left child

3The big O notation (O) is often used in computer science to characterize runtime of algorithms by
showing how quickly the duration would grow relative to the input size (n), as the input gets arbitrarily
large.
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Structure
Data
partitioning

Time
Complexity3

(Construction,
Average Search)

Advantages Disadvantages

kd-trees
O(n log (n))
O(log (n))
True for low dimensions only

Simple construc-
tion
Efficient for low-
dimensional data

Poor search perfor-
mance for high di-
mensions

Ball Tree
O(n(log (n))2)
O(n log (n))

Excellent search
performance

Fair construction
performance

Vantage
Point
Trees

O(n log (n))
O(log (n))

Excellent search
performance
Excellent construc-
tion time

-

Table 2.2: Search Tree Algorithms

Source: Kumar et al. [2008]

Efficient searching can be enabled by organizing data into hierarchical structures (trees). The
table presents the partitioning of a 2D set of points using three different algorithms with a
maximum leaf size of 1 and branching factor of 2. Line thickness denotes partition order
(thicker lines were partitioned first). The different algorithms result in different construction
and search time. As the Vantage Point tree is fast to construct and query, it is the one chosen
for classification in this work.
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R

P

S

< 6

Q

> 6

< 5

U

T

< 4

V W

> 4

> 5

P Q R S T U V W
τ = 5

U T V W
τ = 4

P S Q
τ = 6

a: Set of 2D points b: R selected as VP c: U selected as VP d: P selected as VP

Figure 2.4: Vantage Point Tree Construction

The algorithm recursively chooses a random VP from a set of 2D points. Then divides the
rest into two equal (or approximately equal) sets so that half of them are within a threshold
τ and the rest are outside it. All points that d(Point, V P ) < τ move to a left child node
and the rest move to the right. The construction terminates when a predefined minimum
leaf size is reached.
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R

P

S

< 6

Q

> 6

< 5

U

T

< 4

V W

> 4

> 5

a: Query NN of X b: Measure distance
to R

c: Measure distance
to U

d: NN found

Figure 2.5: Vantage Point Tree Search

Searching for a NN starts at the root node. The distance the query point is measured and if
d(QueryPoint, V P ) < τ , the search continues to the left child node, otherwise to the right.
This method only finds approximate NNs and not necessarily the exact ones.

node, otherwise to the right. In this example, d(X,R) < τ = 5, thus it moves to right.
There again the distance to the VP (U) is measured and a decision is made (Figure 2.5
(c)). As d(X,U) < τ = 4, a move to left is done and the nearest neighbor (T) is found
(Figure 2.5 (d)).

Querying a VP tree for multiple k nearest neighbors does not require executing the
described steps k times. Instead, a fixed size array for storing the NNs is used where
elements go only if their distance to the query point is smaller than the distance to
query point of any previously seen point. The threshold distance is initialized with
infinity and is lowered every time a shorter distance is found. Before returning the
kNNs array, the entries are sorted.

It must be noted that this procedure is capable of finding approximate NNs, but does
not guarantee they are the absolute nearest ones. Finding the exact NNs requires
more care and backtracking overhead that results in longer query time. Therefore, the
approach here uses only approximate ones.
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Algorithm 1 shows the pseudo code used for training the Vantage Point Forest (VPF)
adopted from Heinrich and Blendowski [2016].

Algorithm 1: Vantage Point Forest Training

Input : |M | labeled training binary features hj with labels kj, parameters:
number of trees T, minimum leaf size Lmin

Output: T tree structures: indices of vantage points, thresholds τ for every
node, class probability distributions pki and sample indices for leaf
nodes

1 foreach t ∈ T do
2 S = Stack(), S.push(M)
3 while not S.isEmpty() do
4 s=S.pop(), select vantage point j ∈ s (randomly)

if |s| > Lmin then

5 calculate dH(i, j) = ‖hi − hj‖1 ∀i ∈ s, and median distance τ = d̃H ,
6 partition elements i of s: sLeft = {i|dH(i, j) < τ},

sRight = {i|dH(i, j) ≥ τ} (sRight ∪ sLeft = s, sRight ∩ sLeft = ∅ )
S.push(sLeft), S.push(sRight)

7 else
8 store pki and sample indices of Sl (leaf node)
9 end

10 end

11 end

2.4 Post Processing

With the help of the Vantage Point Forest, the indices of the nearest neighbors and their
input labels can be retrieved and used to create probability maps. As done in the ex-
ample with the circles, majority voting can be applied to predict final labels. This kind
of classification might, however, not be spatially consistent as no prior shape knowledge
is available. Therefore, a post processing step is required that takes into account the
spatial nature of the images and smoothens any noisy or fragmented segmentations.
Different algorithms such as graph cuts [Boykov and Jolly, 2001; Sinop and Grady,
2007], watersheds [Grau et al., 2004] or random walker [Grady and Funka-Lea, 2004]
are commonly used as a post processing step and perform well in various scenarios.
For the 3D image segmentation here, it is important that the smoothing incorporates
both the computed label probabilities and the available voxel intensities. Therefore,
the Random Walker Regularization algorithm is chosen.

2.4.1 Random Walker Regularization

The classical Random Walker (RW) algorithm, introduced by Grady and Funka-Lea
[2004] and further refined in Grady [2005, 2006], can be used as an interactive tool for
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image segmentation as seen in Dong et al. [2016]; Dukehart [2009]. It requires a set
of user input label seeds VS at a few pixels on the image and then ”releases” random
walkers from all the other unseeded pixels VU (VS ∩ VU = ∅ and VS ∪ VU = V , all
pixels). By running this process multiple times, the likelihood for each walker to reach
each label first is evaluated. Using this information, probability maps for all classes are
obtained and the final pixel segmentation is based on the label with highest probability.
Figure 2.6 illustrates the classification obtained by this procedure for a 4×4 image with
three different labels (L1, L2 and L3).

This process, however, is relatively slow to converge, and therefore an alternative so-
lution is of interest. For this purpose, the image segmentation task is treated as an
optimization problem on a weighted graph. On such a graph, each vertex v ∈ V repre-
sents a pixel from the image and each edge e ∈ E, spanning two neighboring vertices4 vi
and vj, is assigned a weight wij corresponding to the probability that a random walker
will cross that edge (e.g. a weight of zero means that the walker may not move along
that edge) [Grady and Funka-Lea, 2004]. The weighting function

wij = e
−

(I(xi)−I(xj))2

2σ2
w (2.2)

is based on the intensities of neighboring pixels (I(xi) and I(xj)) and has a maximum
weight of 1 when they are equal. σ is a free tuning parameter acting as a length scale
of similarity.

Finally, given the graph and set of classes K (k=1, 2, ..., K ), the aim of the method is
to assign a probability pki to each node v ∈ V that it is assigned a label k.

In Grady [2006], it was established that these probabilities pki = [pk1, p
k
2, ..., p

k
K ] can be

obtained by minimizing the energy function

Ek
RW (pki ) = (pki )TLpki ,

subject to pki = p̂ki ∀ vi ∈ V

∀ vi ∈ VS, p̂ki =

{
1 if pixel i is marked with label k

0 if pixel i is marked with another label

(2.3)

where L is the graph Laplacian matrix, defined as:

Lij =


di =

∑
j wij, i = j

−wij, (vi, vj) ∈ E
0, otherwise

(2.4)

4Neighboring vertices in 4-connected neighborhood for 2D and 6-connected neighborhood for 3D
images are assumed.
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(e) Final segmentation resulting from
assigning each node the label that cor-
responds to its greatest probability

Figure 2.6: Illustration of the Random Walker for Segmentation
Classification obtained by the Random Walker algorithm for a 4 × 4 image with 3 different
label seeds (L1, L2, L3). From each unseeded node a Random Walker is released and the
likelihood for each walker to reach each label first is evaluated. Final segmentation is based
on the label with highest probability [Dong et al., 2016].
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This matrix L can be also reordered to reflect the seeded and unseeded nodes parti-
tioning:

L =

[
LS B
BT LU

]
(2.5)

where LS are the edges between seeded nodes, LU are the edges between unseeded ones
and B are the edges between seeded and unseeded nodes. Then, Equation 2.3 can be
rewritten as

ERW (pU) =
1

2
[pTSp

T
U ]

[
LS B
BT LU

] [
pS
pU

]
=

1

2
(pTSLSpS + 2pTUB

TpS + pTULUpU) (2.6)

where pS and pU are the probabilities of the seeded and unseeded nodes respectively.

As the labels of the seeded pixels are already known, only the probabilities of the
unmarked portion of the Laplace matrix LU need to be found. By definition, L is
symmetric, positive semi-definite and therefore minima can be found at the critical
points of Ek

RW . Thus, differentiating ERW (pU) with respect to pU

∂ERW (pU)

∂pU
=

1

2
(2BTpS + 2LUpU) (2.7)

and finding the critical points yields

LUpU = −BTpS (2.8)

which is a system of linear equations with |VU | unknowns that the random walker needs
to solve for each label.5

After minimizing Ek
RW for every class, the segmentation is obtained by retaining the

label of maximum probability for each pixel ki = argmax pki [Baudin et al., 2012].

Figure 2.7 (a) shows a sample 3 × 3 grid with some label seeds (foreground in red,
background in green) and the assigned edge weights. Table 2.3 presents the Laplacian
matrix computed according to Equation 2.4 for this graph.

5We use the Successive Over Relaxation (SOR) [Allahviranloo, 2005] method that iteratively solves
the left hand side of an expression for an unknown parameter, using previous values for it on the right
hand side.
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(b) Segmentation after RW

Figure 2.7: Random Walker Segmentation

Random Walker segmentation on a graph with seeded nodes (foreground: red/ background:
green) and edges weights based on the image intensities.

A B C D E F G H I
A 2 -1 -1
B -1 2.5 -0.5 -1
C -0.5 1.5 -1
D -1 2.5 -1 -0.5
E -1 -1 3 -0.5 -0.5
F -1 -0.5 2.5 -1
G -0.5 1.5 -1
H -0.5 -1 2.5 -1
I -1 -1 2

Table 2.3: Laplacian Matrix L

The matrix is computed for the graph in Figure 2.7(a) according to Equation 2.4. The main
diagonal is colored in blue, LU is in yellow and LS - in green.

Solving Equation 2.8 for pu :

LU1.5 0 0
0 2.5 −1
0 −1 3


pUx1x2
x3

 =

BT

−

 0 −0.5 −1 0 0 0
−1 0 0 −0.5 0 0
0 −1 −0.5 0 −0.5 0


pS
1
1
0
0
0
0
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LU1.5 0 0
0 2.5 −1
0 −1 3


pUp1p2
p3

 =

−BT pS0.5
1
1


gives the foreground probabilities for the unseeded vertices: pU = [0.33, 0.61, 0.54].

Choosing the label with maximum probabilities (=thresholding at 0.5 when one fore-
ground label is present), results in the final segmentation as seen in Figure 2.7(b).

2.4.2 Random Walker Regularization with Label Priors

Relying on user input for image segmentation is time consuming and often not feasible.
Therefore, the Random Walker can be modified to regularize data when no label seeds
are available, but instead parameter maps are given. Such can be obtained from machine
learning algorithms, intensity-models or atlas-based registration.

Assuming a node-wise map λki representing the probability density that the intensity
at node vi belongs to gk, the RW can be generalized to

(L+ γI)pk = γλk (2.9)

where L is still derived from the original intensities, I is an identity matrix and γ is a
balancing regularization parameter [Grady, 2005]. Note that for γ → ∞, the previous
RW definition (Equation 2.8) is recovered. Solving Equation 2.9 for pk results in the
desired final smooth labels.

2.5 Evaluation Metrics

3D medical image segmentation is a challenging task and errors may occur. Such can
be added regions (labels), added background, inside holes or border holes. Therefore,
universal standard metrics are needed to reliably indicate the accuracy of the different
classification algorithms. Even though, there are various assessment methods available,
most of them can be grouped into overlap-based, volume-based, probabilistic-based, pair
counting-based, information theoretic-based, and spatial distance-based ones [Taha and
Hanbury, 2015].

The evaluation metrics used in this thesis are spatial overlap-based as they are the most
common ones in 3D medical image segmentation and comparison to similar works is
possible. The exact methods are discussed in detail in the following section.
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FP FN

Prediction Ground Truth

TN

TP

Figure 2.8: Classification Outcomes

The result of a classification procedure is rated against the ground truth. The four possible
outcomes are: correctly positive segmented (TP), falsely positive segmented (FP), correctly
negative segmented (TN) and falsely negative segmented (FN).

2.5.1 Spatial Overlap-based Metrics

The performance of the segmentation approach used in this thesis is evaluated during
the validation phase, where the classification is rated against the ground truth segmen-
tation. The four possible outcomes of such an assessment on a pixel (voxel) base are:
True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN)
classification as shown in Figure 2.8.

The four basic classification results are also often presented in the form of a confusion
matrix where the types of predictions are summarized with count values and provide an
insight on the kind of errors being made. Figure 2.9 shows a sample binary confusion
matrix for bladder segmentation where a total of 166 voxels are labeled as either bladder
or background. It can be observed that 100 voxels were correctly classified as a bladder
(TP) and 50 were labeled as background as they should be (TN). 6 voxels were falsely
considered as bladder when in fact they were background (FP) and 10 were classified
as background, although they were part of the bladder (FN).

When assessing multi-label segmentation, each pair of classes is evaluated separately
and the results are presented in a complex confusion matrix. Besides the informa-
tion about the four basic cardinalities, such a representation also gives an overview on
whether (and if true, how often) certain classes get confused with others. The matrix
in Figure 2.10 shows the outcomes of a three-class segmentation of 310 voxels. The
counts of correctly classified bladder, prostate and background voxels are placed on the
diagonal. The rest of the matrix indicates the incidence of confusion between the three
labels.

Given the confusion matrix, several rates can be computed to evaluate the classification.
Furthermore, depending on the purpose of the segmentation, the method can be adapted
to maximize the results of these metrics.
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A
ct

u
a
l

Predicted

Bladder Backgr. total

Bladder
True
Positive
100

False
Negative
6

106

Backgr.
False
Positive
10

True
Negative
50

60

total 110 56

Figure 2.9: Confusion Matrix

Sample confusion matrix for a binary bladder segmentation of 166 voxels. The table summa-
rizes the occurrences of the four possible voxel-wise outcomes from a segmentation procedure
(TP, TN, FP, FN).

A
ct

u
a
l

Predicted

Bladder Prostate Backgr. total

Bladder 100 0 10 110

Prostate 10 80 10 100

Backgr. 30 0 70 100

total 140 80 90

Figure 2.10: Confusion Matrix, Multiple Classes

Sample confusion matrix for multi-class segmentation of 310 voxels. The table summarizes the
occurrences of correctly classified voxels (on the diagonal). Additionally it gives and overview
how often classes get confused with others.
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Sensitivity, or recall, (TP/(TP + FN)), for instance, is a statistic that refers to the
portion of positive voxels in the GT that are identified as positive by the classification.
It is defined in the range [0,1] and a maximum sensitivity of 1 means that no under-
segmentation has occurred. It however, does not capture whether oversegmentation is
present.

Precision (TP/(TP+FP )), on the other hand, indicates the portion of correctly labeled
as positive samples from all positively labeled ones. Perfect precision (=1) implies
that there is no oversegmentation, but does not report on undersegmentation. Then
classifying every voxel as background will maximize the precision, but will result in zero
sensitivity.

The Dice score (2TP/(2TP +FP +FN)) incorporates both the precision and the sensi-
tivity of an algorithm. It is their harmonic mean (2×Precision×Sensitivity/(Precision+
Sensitivity)) and gives an insight on the spatial overlap between the ground truth and
the segmentation result. The Dice score can take values in the range [0,1], where 0
indicates no overlap and 1 - complete overlap.

Table 2.4 summarizes four common overlap based evaluation metrics and the formulas
that define them.

For the values in the binary confusion table in Figure 2.9 the overlap metrics are com-
puted as follows:

DICE =
2TP

2TP + FP + FN
=

2× 100

2× 100 + 10 + 6
= 0.93 (2.10)

Recall =
TP

TP + FN
=

100

100 + 6
= 0.94 (2.11)

Specificity =
TN

TN + FP
=

50

50 + 10
= 0.83 (2.12)

Precision =
TP

TP + FP
=

100

100 + 10
= 0.91 (2.13)

Since these four metrics are defined in the range 0-1, it can be seen that all results
are closer to the maximum of 1. It can be concluded that although some under- and
oversegmentation is present, the overall segmentation is good.

The spatial overlap rates for multiple classes are evaluated independently for each label
with respect to the background. Although there are different approaches how to merge
this into a single metric [Crum et al., 2006], the one adopted here is simply averaging
the final results.
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Metric Measure of interest Definition

Dice/F1-Measure Overlap index DICE = 2TP
2TP+FP+FN

True Positive Rate
Sensitivity/Recall

The portion of positive
voxels in the GT that are
identified as positive by
the segmentation

TPR = Recall = Sensitivity = TP
TP+FN

True Negative Rate
Specificity

The portion of negative
voxels in the GT that are
identified as negative by
the segmentation

TNR = Specificity = TN
TN+FP

Positive Predictive
Value
Precision

The portion of correctly
labeled as positive vox-
els from all positively la-
beled

PPV = Precision = TP
TP+FP

Table 2.4: Overlap-based Evaluation Metrics

Universal evaluation metrics are required as indicators of segmentation performance. Spatial
overlap based metrics are the most common ones for assessing 3D medical image delineation.
The methods shown in the table are based on the four possible outcomes (TP, TN, FP, FN)
of a segmentation procedure on a pixel/ voxel basis.



3. Experiments and Results

In this chapter, the image segmentation framework is presented and the nearest neigh-
bor search algorithm for binary features is described. Then the method is applied to
two different test scenarios. Finally, the results of the experiments are presented and
discussed.

3.1 Pipeline Overview

The suggested framework incorporates the concepts presented in Chapter 2. The
pipeline can be viewed as two independent procedures: training and testing. Figure 3.1
illustrates the main steps of the training phase. The algorithm assumes images with
dense voxel annotations (a), paired with binary body contour masks (b) that indicate
which regions of the images are relevant for feature extraction. After pre-smoothing
the images with a Gaussian filter, the feature extraction happens on regular grids (c)
within the masks using the BRIEF and LBP sampling patterns (d). The binary feature
vectors are then stored together with the labels1 of the voxels they characterize (e).

Figure 3.2 presents the classification procedure for a new test image. Just as in the
training phase, features are extracted from a regular grid with the BRIEF and LBP
patterns (a, b). Although the grid does not have to be the same as the one used in the
training phase2, the sampling pattern has to be identical. Then by using VPFs, the
indices of the nearest neighbors (of the test features vectors) are queried and their labels
are retrieved (c). This information is used to compute the probability for each label
at each location of the grid (d). The label probabilities are then linearly interpolated
across the whole image (e). Finally, Random Walker regularization is applied to ensure
smooth labels (f).

1Different labels are indicated by different colors.
2Denser grids result in better segmentation, but take longer to process as more features are sampled.
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(a) Input image with organ annotations
(Liver, Spleen, Left and Right Kidneys)

(b) Body contour mask

(c) Regular grid (d) Feature extraction

Feature
Index

0 1 2 3 4 5 6 7 ...

n=0 0 1 1 1 0 1 0 1 ...

n=1 0 1 0 0 0 1 0 0 ...

...
...

...
...

...
...

...
...

... ...

n=1280 0 0 1 1 0 0 1 1

Label ...

(e) Storing features and labels

Figure 3.1: Training Phase
During the training phase images with dense voxel annotations are loaded. If available, body contour masks (or any
other binary masks) can be used so that the training only focuses on data from relevant regions. Then BRIEF and LBP
features are extracted on regular grids within the masks and stored together with the labels.
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(a) Feature extraction on a test image (at 3 points)

Index 0 1 2 3 4 5 6 ...

n=0 0 1 1 1 0 0 0 ...

n=1 0 1 0 1 0 1 0 ...

...
...

...
...

...
...

...
...

n=1280 1 0 0 0 1 0 0 ...

(b) Test feature vectors

Index 0 1 2 3 4 5 6 ...

NN = 1 0 2 1 33 34 18 3 ...

NN = 2 8 63 9 13 27 29 55 ...

NN = 3 12 99 26 77 33 0 56 ...

NN = 4 5 14 8 9 13 1 57 ...

Labels ...

(c) Nearest neighbors querying and major voting

(d) Assigning labels to query points

(e) Label interpolation (inconsistent labels) (f) After post processing (RW smoothing)

Figure 3.2: Testing Phase
When segmenting a test image, the same type of BRIEF and LBP features as in the training phase
are extracted at points on a regular grid within mask. Querying VPFs containing the training feature
vectors, gives the indices of the NNs of the test vectors. The labels of the NNs are retrieved and the
probability for each label at each location of the grid is calculated. The probabilities are interpolated
across the whole image and the final labels are regularized by a Random Walker.
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3.2 Nearest Neighbor Visualization

The core of the segmentation algorithm proposed here is classifying voxels based on
similarity of features extracted from context. To better illustrate this, a visual repre-
sentation is shown in Figure 3.3 and Figure 3.4. They compare the results of querying
5 approximate nearest neighbors from VPF and Kd-trees trained on limited amount of
features. Additionally the absolute 5 NNs are found by the BF method. The images
show slices of the 3D patches around the voxels where the feature vectors were sampled.
Although the features were constructed by patterns with greater displacement distribu-
tion around the central voxel, the slices capture only ±30 voxels in x and y directions.
The distances to the queried test vector are given below the patches and the different
labels of the NNs are indicated by different colors. The vectors used for training and
testing are 1280 bits long.

Figure 3.3 presents a scenario where the test data is included in the training. It can be
observed that all three methods succeed in finding the same feature as an absolute near-
est neighbor with distance = 0. In all three approaches the Hamming distance increases
with the rank of the neighbor, as expected. From the results it can be concluded that
VPF finds neighbors with smaller distance compared to the Kd-trees, but they are not
always the absolute nearest ones as the BF provides. It can be also observed that after
the 4th NN for BF and after the 2nd for the other two methods, the labels do not match
the test feature class. This (intended) ”mistake”occurs due to the limited training data.
On the contrary, if more features are trained, the more ”closer” ones will be available
and getting nearest neighbors with different label will be less likely to happen.

Figure 3.4 is visualizing the same procedure as in Figure 3.3, but this time the test
features are not part of the training data. Again, VPF performs better than the Kd-
trees, but not as good as the BF approach. The difference to the absolute nearest
neighbors given by BF, however, is acceptable considering the much shorter construction
and search duration.

Additionally, the distribution of the distances to the nearest neighbors for both trained
and not trained test data are shown in Figure 3.5. It can be again seen that the
VPF results in nearer neighbors in every case compared to the Kd-trees. Additionally,
the VPF implementation used here is also faster than the Kd-trees and is therefore
preferred.
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Figure 3.3: NN Visualization by Patches (Test Data Included)

The 5 approximate NNs for a test feature vector, included in the training, are queried from a
VPF and Kd-trees trained on limited amount of data. Additionally, the absolute 5 NNs are
found by the BF method. For each feature, a slice of the 3D patch around it (±30 pixels in
x, y) is shown and its label is given by the color of the central point. The Hamming distances
to the test feature vector indicate that VPF finds closer neighbors than the Kd-trees, but
not always the absolute ones as the BF. Not having sufficient training features similar to the
query vector may result in NNs that have different labels.
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Figure 3.4: NN Visualization by Patches (Test Data not Included)

The 5 approximate NNs for a test feature vector, not included in the training, are queried
from a VPF and Kd-trees. Additionally, the absolute 5 NNs are found by the BF method.
For each feature, a slice of the 3D patch around it (±30 pixels in x, y) is shown and its label
is given by the color of the central point. The Hamming distances to the test feature vector
indicate that VPF finds closer neighbors than the Kd-trees. In this example the VPF actually
retrieves the absolute ones as the BF. The wrong labels of the retrieved NNs are due to limited
training data.
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(a) Test data included in training

(b) Test data not included in training

Figure 3.5: Distance to Nearest Neighbors

The distribution of the distances to the 5 NNs for 1280-bits long vectors is compared between
VPF and Kd-trees. In (a) the test data is included in the training, and in (b) it is not.
In (a) both methods find the exact test vectors (distance=0). Vantage Point Forest retrieves
neighbors with shorter distances to the query points compared to the Kd-trees and is therefore
chosen as a classifier.
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3.3 Parameters Settings

Over the course of the segmentation procedure, there are several parameters that can be
configured. Choosing optimal values for these, however, is not a straight forward task.
Figure 3.6 illustrates the effects of modifying the number or queried NNs, the minimum
leaf size limit Lmin, the number of VP trees T in a VPF, the regularization γ and σw
on the Dice score, the precision and the recall metrics. It can be observed that lowering
or incrementing the values does not improve or worsen the evaluation metrics in the
same manner over all images. Higher regularisation σw values, for example, improve
the Dice score of the forth image, but σw > 10 has no effect on the other three images.
When segmenting image 3, using less trees in a forest improves the recall, but lowers
the precision values.

On the other hand side, there are parameters that affect the results in a consistent
way. For instance, extracting features for each voxel of the training and testing data,
improves the segmentation accuracy. However, this results in less efficient classification.
On the contrary, if the feature vectors are only obtained for voxels far away from each
other, the procedure is much faster, but the accuracy is negatively influenced. The
exact BRIEF and LBP sampling patterns used to construct the binary strings directly
influence the performance of the classification too. When comparing intensities really
close to the the patch of interest to construct the features, the patterns ”oversee”relevant
neighborhood information. In contrast, by focusing on intensity information far away
they fail to represent the patch itself. Table 3.1 lists the configurations of some settings
so that a good balance between speed and accuracy is achieved. Moreover, it gives an
insight on how alternating these values would affect the results.

On average, the following parameter values resulted in the highest scores and are there-
fore selected in such a way. After pre-smoothing the images with a Gaussian kernel
with 3 voxels, 1280-bit long random features (BRIEF: 20-40%, LBP: 80-60%) are ex-
tracted. The displacement distribution of the sampling pattern points around the voxel
of interest is normal with a standard deviation of [20/30; 80]3. For each experiment
15 trees are either fully grown or terminated at a fixed leaf size of Lmin = 15 with
features extracted from every 4th/6th voxel in x, y, z directions. Then, for the feature
vectors extracted from each 2nd/4th voxel from the test images, 20 nearest neighbors
are queried. The labels of the neighbors are retrieved and the probability maps for each
label are regularized with γ = 20 and σw = 10.

3The minimum and maximum values correspond to the standard deviation of the displacement
distribution of the sampling points measured by voxels. These values are adapted for images of size
∼520×520×400.
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Figure 3.6: Parameter Settings, Effects of Modifications

The effects of modifying the number or queried NNs, the minimum leaf size limit Lmin, the
number of VP trees T, the regularization γ and σw are evaluated on four different images.
Even though the scores for some of the images benefit from higher (or lower) values for some
of the parameters, others do not. Therefore, the final values chosen for the experiments are:
kNN = 20, Lmin = 15, number of trees T = 15, γ = 20, σ = 10
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Parameter Smaller
Default
setting

Larger

Sampling pattern
std. deviation of dis-
placement distribution
[min, max]

Focus on too narrow
area around the patch
of interest, worse seg-
mentation

[20/30; 80]

Capture information
that is too far away from
patch of interest, worse
segmentation

BRIEF:LBP ratio

Features might over-
see important rela-
tions between neigh-
boring regions

0.2 ≤ ratio ≤ 0.4
Features might not char-
acterize sufficiently the
area of interest

Binary feature length
Not characteristic fea-
tures, worse segmen-
tation

1280 bits

Longer feature vector
will not necessarily cap-
ture more contextual
information, but will
slow down the procedure

Training grid stride
Slightly better seg-
mentation, but signif-
icantly slower

4 ≤ stride ≤ 6
Faster segmentation,
lower accuracy

Testing grid stride
Slightly better seg-
mentation, but signif-
icantly slower

2 ≤ stride ≤ 4
Faster segmentation,
lower accuracy

Table 3.1: Parameter Settings
We present the values chosen for the experiments so that a good balance between accuracy
and speed is achieved. Furthermore, the effects of incrementing or lowering these values are
listed.
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3.4 Experiments

3.4.1 CT Abdominal Data

Rapid and accurate segmentation of abdominal Computed Tomography (CT) images
is important for computer-aided diagnosis, radiotherapy planning as well as cancer
delineation and staging where the estimation of the anatomical boundaries needs to be
accurate [Hu et al., 2016]. This task, however, is challenging as large variations exist
in location, shape and size of abdominal organs among individuals. Moreover, these
organs are mainly surrounded by soft tissues with similar appearance and intensities,
resulting in fuzzy boundaries that are hard to delineate.

The CT data used here has dense segmentations of liver, spleen, left and right kidneys.
68 images of size 512×512×394 = 103 284 736 voxels, each voxel of size 1.37×1.37×1.36
mm, are used for a 4-fold cross validation. At each of the 4 rounds 3/4×68 = 51 images
are trained and 1/4× 68 = 17 are tested.

Initial tests showed that sampling training data from a regular grid results in imbalanced
data with high prevalence towards background features. Therefore, during the training
phase the size of background voxels within the body contour is downweighted by a
factor of 5.

Figure 3.7 presents the average confusion matrix over all classified images. The high
values on the diagonal indicate that voxels belonging to the organs are correctly classi-
fied in most cases. However, organs are occasionally labeled as background some of the
time as background features still dominate in the training data (∼2000 times more).
Inter-organ confusion happens in very few cases.

Figure 3.8 shows the distribution of the Dice overlap measure. It can be observed that
the results are relatively high and the spread is rather small. This means that algorithm
is stable across different organs and results in a good delineation. The average Dice
scores for the organs are: liver - 0.82, spleen - 0.71, left kidney - 0.72, right kidney
- 0.71. The overall Dice score is 0.74. These values give an impression how well the
algorithm would perform in general when new data with same parameters is tested.

Figure 3.9 illustrates the precision of the algorithm. As the precision presents the
portion of correctly labeled as positive voxels from all positively labeled voxels, it can
be seen that occasionally some voxels are classified as organs, although they belong to
the background. Such kind of faulty classifications indicate oversegmentation.

The sensitivity of the algorithm is also evaluated. In Figure 3.10 the recall values are
presented. They correspond to the portion of positive voxels in the ground truth that
are positively labeled by the segmentation. The high results in the figure indicate that
in most of the cases all voxel belonging to either the background or the organs are
also discovered by the algorithm. It can be concluded that undersegmentation is rarely
happening.

Figure 3.11 visualizes a sample ”good” CT abdominal segmentation. Each of the four
organs is presented separately and the achieved Dice scores are given. The figure gives
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Figure 3.7: CT Abdominal Segmentation (Confusion Matrix)

The confusion matrix summarizes the average outcome of the cross validation. The approx-
imate amount of features compared to the organ with the least samples (right kidney), is
indicated below each class. The strong diagonal gives an insight that most of the times voxels
are correctly classified. Rarely an organ is confused with another one. The biggest confusion
is when organs are predicted to be background. This is mainly due to the imbalanced training
data. Approximately 2000 times more background features are available compared to organ
features.

an overview of the label probabilities after interpolating the VPF data, the probability
maps after RW regularization and the final labels after majority voting. Additionally, in
the last column the segmentation is compared to the ground truth delineating. The TP
voxels are shown in green, FP in red and FN in blue. It can be seen that some under-
segmentation occur, but usually the errors are due to oversegmentation. Nevertheless,
most of the classification is correct.

Figure 3.12 illustrates one of the outlier cases where the segmentation has a lower Dice
score for the left and right kidneys. It can be observed that the locations of both organs
are correctly identified, but under- and over-segmentation occur. This example shows
that even though the algorithm performs well for bigger structures, the performance for
smaller ones has room for improvement.
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Figure 3.8: CT Abdominal Segmentation (Dice Score)

The box plot illustrates the distribution of the DICE score. The relatively small spread shows
that the algorithm is stable across the different organs.

Figure 3.9: CT Abdominal Segmentation (CT Precision)

The precision metric indicates the portion of correctly labeled as positive voxels from all
positively labeled voxels. The results show that the segmentation occasionally classifies voxels
as organs when they in fact belong to the background (oversegmentation).
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Figure 3.10: CT Abdominal Segmentation (CT Sensitivity)

Sensitivity or recall corresponds to the portion of positive voxels in the ground truth seg-
mentation that are positively labeled by the algorithm. The distribution of the sensitivity
measure indicates that in most cases all voxels belonging to organs are also discovered by the
algorithm. This means that undersegmentation is a rather seldom event.
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VPF VPF + RW Threshold Prediction vs GT

(a) Liver (Dice score = 0.89)

(b) Spleen (Dice score = 0.80)

(c) Left Kidney (Dice score = 0.89)

(d) Right Kidney (Dice score = 0.90)

Figure 3.11: CT Abdominal Segmentation (Inlier)

Preview of a CT abdominal image segmentation. From left to right: heat map showing the
label probability after interpolation of VPF results; heat map after RW regularization; final
labels after label major voting; difference image with ground truth image: TP in green, FP
in red, FN in blue.
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VPF VPF + RW Threshold Prediction vs GT

(a) Liver (Dice score = 0.85)

(b) Spleen (Dice score = 0.85)

(c) Left Kidney (Dice score = 0.54)

(d) Right Kidney (Dice score = 0.08)

Figure 3.12: CT Abdominal Segmentation (Outlier)

Preview of a CT abdominal image segmentation. From left to right: heat map showing the
label probability after interpolation of VPF results; heat map after RW regularization; final
labels after label major voting; difference image with ground truth image: TP in green, FP
in red, FN in blue.
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3.4.2 MR Male Pelvis Data

Segmenting male pelvic organs is a prerequisite for prostate cancer radiotherapy plan-
ning. Delineation of the prostate, bladder and rectum in MR images is a difficult task
as images often show several types of variabilities: field of view, variable clinical pro-
cedures, and inter-patient organ differences. Organ boundaries are often only partially
visible and the organs vary greatly in size, shape and appearance, especially the bladder
[Schadewaldt et al., 2013].

42 Magnetic Resonance (MR) inphase images with dense bladder, bone, prostate and
rectum segmentation are used for a 7-fold cross validation. Each image consists of
528 × 528 × 120 = 33 454 080 voxels with a spacing of 1.05 × 1.05 × 2.5 mm. As the
size of the voxels is not isotropic, the displacement distribution of the sampling points
of the BRIEF/LBP patterns is adjusted and is ∼2.5 times smaller in z direction. The
background training samples are again downweighted by a factor of 5 in order to have
better balanced data.

Figure 3.13: MR Pelvis Segmentation (Confusion Matrix)

Confusion matrix of the MR cross validation. The approximate amount of features compared
to the organ with the least samples (prostate), is indicated below each class. The high values
on the diagonal of the confusion matrix indicate that pelvic organs get correctly classified
in most of the cases. The confusion with background can be explained by the prevalence of
background training data (∼2500 times more). It can also be seen that the algorithm has
difficulties in recognizing the bladder and the prostate and occasionally confuses them with
other organs.

Figure 3.13 presents the confusion matrix of the classification. The strong diagonal
proves again that the algorithm is capable of correctly identifying organs. Occasionally,



40 3. Experiments and Results

however, it has difficulties in recognizing the prostate and the rectum, and is predicting
wrong labels for these organs. Confusion with the background occurs as well due to the
high prevalence of background training data.

Figure 3.14 summarizes the distribution of the Dice overlap measure for the different
pelvic organs. Even though the segmentation of some images has a high Dice score, the
delineation is not robust for all. The average achieved Dice scores are: bladder - 0.72,
bones - 0.65, prostate - 0.59, rectum - 0.64. The overall dice score is 0.65.

Figure 3.14: MR Pelvis Segmentation (Dice Score)

The wide spread of the Dice score distribution for bladder, prostate and rectum indicates that
the algorithm achieves good segmentation for some of the images, but it is not robust.

Figure 3.15 and Figure 3.16 give an overview of the precision and the sensitivity achieved
in the MR test scenario. The low precision values indicate frequent oversegmentation.
The high sensitivity values with low spread show that undersegmentation is rarely hap-
pening. This can be also observed in Figure 3.17 where a preview of the segmentation
of one pelvic image is shown. As in the CT example, for each organ the probabilities
before and after random walker regularization are shown, the final segmentation and
the difference to the ground truth image. The difference image adopts the same coloring
scheme: TP voxels are colored in green, FP - in red and FN in blue.

An outlier case in shown in Figure 3.18. The segmentation method successfully identifies
the locations of all organs. However, as the pelvic organs often vary in shape, size and
appearance, the algorithm has difficulties in finding the exact boundaries. This scenario
proves that the algorithm highly depends on the training data and would benefit from
more diverse features.
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Figure 3.15: MR Pelvis Segmentation (Precision)

The low precision of the of the MR pelvis segmentation shows that the method often labels
voxels positively, although they should be classified as background. Namely, oversegmentation
occurs frequently.

Figure 3.16: MR Pelvis Segmentation (Sensitivity)

The sensitivity distribution shows that portion of positive voxels in the GT that are positively
labeled by the segmentation is high for all organs, especially the bladder. This indicates that
almost no undersegmentation occurs.
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VPF VPF + RW Threshold Prediction vs GT

(a) Bladder (Dice score = 0.78)

(b) Bones (Dice score = 0.72)

(c) Prostate (Dice score = 0.72)

(d) Rectum, side view (Dice score = 0.81)

Figure 3.17: MR Pelvis Segmentation (Inlier)

Preview of a MR pelvis image segmentation. From left to right: heat map showing the label
probability after interpolation of VPF results; heat map after RW regularization; final labels
after label major voting; difference image with ground truth image: TP in green, FP in red,
FN in blue.
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VPF VPF + RW Threshold Prediction vs GT

(a) Bladder (Dice score = 0.48)

(b) Bones, front view (Dice score = 0.72)

(c) Prostate, side view (Dice score = 0.38)

(d) Rectum, side view (Dice score = 0.47)

Figure 3.18: MR Pelvis Segmentation (Outlier)

Preview of a MR pelvis image segmentation. From left to right: heat map showing the label
probability after interpolation of VPF results; heat map after RW regularization; final labels
after label major voting; difference image with ground truth image: TP in green, FP in red,
FN in blue.
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3.5 Time and Storage Evaluation

The duration of the experiments differs with the amount and size of training and testing
images. Furthermore, the length of each step can vary depending on the machine’s
parameters and computing power. To get a rough idea how long the steps take, the
duration of the main operations and the required storage during 1 fold of the CT 4-fold
cross-validation are listed in Table 3.2. It can be observed that extracting training
data takes several minutes. The obtained features, however, can be stored and loaded
whenever needed, instead of extracted for each test. Hence, when deployed less time
would be needed. Then, the classification of test data takes only several seconds per
file. The two steps that have the longest duration and highest memory consumption
are the interpolation and the RW regularization of label probabilities. Approximately
a minute for each of two steps is needed per test case.

From the overview of the time and storage required for a cross validation, it can be
concluded that the segmentation procedure is feasible even by a standard computer.
The segmentation, however, would benefit from machines with more CPUs and working
memory. Furthermore, speed would also improve when extracted training features and
labels are stored on disk and loaded whenever necessary, instead of extracted from
images each time. Nevertheless, the current implementation meets the constraints of a
typical clinical setting. Its duration and memory footprint are competitive with existing
methods.
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Procedure Duration
Memory
consumption

Loading 3/4×68 = 51 training images,
extracting ∼540 000 training features,
each 1280-bit long

18 min
(∼21 sec / file)

86 MB
(∼1.68 MB / file)

Loading 1/4× 68 = 17 test images,
extracting ∼3 100 000 test features,
each 1280-bit long (less images, but more
features due to denser grids)

4.5 min
(∼16 sec / file)

17 × 3 (test + mask + label)

images × (512 × 512 × 394)

voxels × 16 bits (int) =

10.5 GB images
(∼0.62 GB per file)
496 MB features
(∼30 MB per file)

Construct a VPF with ∼540 000 train-
ing samples, query ∼3 100 000

∼2 min

Retrieve labels of NNs
2 min
(∼7 sec / file)

20 NNs × 3 100 000 tr.
samples × 8 bits (char)=
∼ 62 MB

Interpolation of label probabilities
17 min
(∼1 min/ file)

17 files × (512 × 512 × 394)

voxels × 5 labels × 32 bits

(float) = ∼ 35 GB
(∼ 2 GB per / file)

RW Regularization
17 min
(∼1 min/ file)

17 files × (512 × 512 × 394)

voxels × 5 labels × 32 bits

(float) = ∼ 35 GB
(∼ 2 GB per / file)

Table 3.2: Duration and Storage Requirements
The duration of the experiments is dependent on the computing power of the machine used.
The approximate time of the main steps of one round of a 4-fold cross validation and the
required storage per procedure are presented. Training the classifier takes several minutes,
while testing a single image is in the order of seconds.



4. Conclusion and Outlook

A fully automatic method for multi-organ segmentation of 3D medical image data was
developed. After being trained for several minutes, the classifier is able to segment test
images within only a few seconds each. The classification itself, as presented, is simply
based on the nearest neighbor search algorithm and the similarity of binary features
extracted from the data.

The algorithm was successfully applied to images from two different modalities (MR
and CT) and several organs, justifying its generality. The method can also be easily
extended to other modalities and organs without further modifications. Satisfactory
results were obtained for segmentation of liver, spleen, kidneys (CT) and bladder (MR).
For the delineation of prostate, rectum and bones (MR), however, there is still room
for improvement.

There are several concepts that can further enhance the proposed method.

First, the robustness of the extracted features could be improved. Instead of using
the signs of the intensity comparisons, a minimum threshold value of difference can be
set. Furthermore, the sampling patterns for feature extraction can be adapted in a way
that the actual image parameters are considered. Alternative to providing displacement
radius based on voxel numbers, the patterns shall be specific to the real size extent.
Moreover, in the segmentation of MR data, the Dixon technique could be integrated so
that features are extracted from 4 different contrasts (in phase, opposed phase, water
and fat images) and the anatomical structures are better characterized.

Second, the classification could benefit from better balancing of the training data. Equal
or comparative amount of features from the different classes shall lead to less confusion
between organs.

Third, denser sampling of the training and testing data might improve the accuracy of
the algorithm. This, however, would take significantly longer to process unless more
powerful machines or parallel computing are available.
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Forth, if the segmentation has a certain objective, other than a high dice score or no
confusion between organs, a cost function specific to the task can be ”invented”. For
instance, for a given procedure oversegmentation might not have any adverse effects,
but undersegmentation should not happen at any time. Then the algorithm parameters
can be tailored to minimize the value of that cost function.

Last, the method can be further improved by using cascaded classification as suggested
by Heinrich and Blendowski [2016].

Nevertheless, the Vantage Point Forest algorithm with Binary Context Features was
justified as a very simple, data-efficient generic approach the yield surprisingly accurate
results and thus, has a potential in clinical usage.
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