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Development of an Open-Source Python Toolbox

for Heart Rate Variability (HRV)

Pedro Miguel Caridade Gomes

Abstract

Heart Rate Variability (HRV) is a continuously growing research sector, for which an

increasing number of new measures have been introduced over the recent decades.

For this reason, many software tools have been developed to support researchers

of this sector. However, closed-source tools prevent source code access to develop-

ers, while many open-source solutions face different issues, such as limited methods

of HRV feature extraction, lack of technical documentation, or support for less

mainstream programming languages. The goal of this work is to provide a fully

open-source Python 2.7 toolbox named pyHRV for HRV research and application

development.

The implementation of this toolbox is supported by several open-source packages to

compute Time Domain, Frequency Domain, and Nonlinear HRV parameters. As for

the evaluation, HRV parameters have been computed from 50 Normal-to-Normal

Interval (NNI) series of 5 minutes in duration and 50 NNI series of 60 minutes in

duration using pyHRV and KUBIOS HRV, the reference software. The NNI series

show no sign of pathological arrhythmias.

A multilevel package architecture has been implemented for pyHRV, which gives

the user the following computational options using a single line of code: (Level

1) computation of all HRV parameters, (Level 2) computation of domain-specific

parameters, or (Level 3) computation of individual parameters. In-code and sup-

port documentation is provided for support the implementation of pyHRV. Error

catching capabilities (e.g. automatic second to millisecond conversion) have been im-

plemented to reduce the occurrence of errors and increase the toolbox’s robustness.

pyHRV computes a total of 78 HRV parameters (23 Time Domain, 48 Frequency

Domain, 7 Nonlinear), from which in a direct comparison with KUBIOS 12 have

achieved identical results, with 38 parameters showing marginal differences, and 26

showing significant differences, thus, computing questionable results.

Overall, pyHRV provides a reliable, versatile, robust and user-friendly toolbox for

HRV researchers and application developers using the Python 2.7 programming

language. pyHRV has been publicly released on the GitHub repository system.
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iv



List of Figures

1 Stages of cardiac tissue excitation and ECG curve profiles . . . . . . . . 7

2 ECG electrode placement for Einthoven Leads. . . . . . . . . . . . . . . 9

3 ECG signal with falsely detected R-peak due to motion artifacts. . . . . 10

4 ECG signal at different sampling frequencies. . . . . . . . . . . . . . . . 11

5 Relationship between R-peaks, NN intervals, and NN interval differences. 15

6 Sample ECG signal and Tachogram with the derived NNI and HR series. 16

7 Block diagram of the SDNN Index computation. . . . . . . . . . . . . . . 18

8 Block diagram of the SDANN computation. . . . . . . . . . . . . . . . . 18

9 Visualization of the geometrical parameters . . . . . . . . . . . . . . . . 22

10 Sample PSD computed using the Welch’s method . . . . . . . . . . . . . 27

11 Sample PSD computed using the Autoregressive method . . . . . . . . . 28

12 Sample PSD computed using the Lomb-Scargle periodogram. . . . . . . . 29
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26 Sample Entropy - Template vector . . . . . . . . . . . . . . . . . . . . . 36

27 Sample Entropy - Chebyshev distance of vector pairs i+ n and k + n . . 36

vii



List of Equations

28 Sample Entropy - Count condition of the parameter A . . . . . . . . . . 36

29 Sample Entropy - Count condition of the parameter B . . . . . . . . . . 36

30 Sample Entropy - Negative logarithm of the A and B ratio . . . . . . . . 36

viii



List of Python Snippets

1 Minimum working example of the Python code used for the intended work-

flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Minimum working example of the Tool Module’s functions. . . . . . . . . . 54

3 Minimum working example of the Time Domain functions. . . . . . . . . . 55

4 Minimum working example of the Frequency Domain functions. . . . . . . 57

5 Minimum working example of the Nonlinear Parameter functions. . . . . . 59

6 General architecture of the HRV parameter functions shown on the exam-

ple of the RMSSD function. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A1 Minimum working example of the OpenSignalsReader package and class. .XIX

ix



List of Acronyms

ANS Autonomic Nervous System

AR Autoregression

BPM Beats per Minute

DFA Detrended Fluctuation Analysis

ECG Electrocardiography

FB Frequency Band

FFT Fast Fourier Transform

GUI Graphical User Interface

HF High Frequency

HR Heart Rate

HRV Heart Rate Variability

HRVA Heart Rate Variability Analysis

IBI Inter-Beat-Interval

IDE Integrated Development Environment

LF Low Frequency

LSP Lomb-Scargle Periodogram

NNI Normal-to-Normal Interval

NNx Number of NN Interval Differences Greater than x milliseconds

PNS Parasympathetic Nervous System

pNNx Ratio between NNx and Total Number of NN intervals

x



List of Python Snippets

PPG Photoplethysmography

PSD Power Spectral Density

RMSSD Root Mean Square of the Successive NN Interval Differences

RRI Interval Between Successive R peaks

SamPen Sample Entropy

SD Standard Deviation

SDANN Standard Deviation of the Mean of NN Intervals in all 5 minute

Segments

SDNN Standard Deviation of Successive NN Intervals

SDNNI Standard Deviation of Successive NN Intervals Index

SDSD Standard Deviation of Successive Differences

SNS Sympathetic Nervous System

TINN Triangular Interpolation of the NNI Histogram

TI Triangular Index

ULF Ultra Low Frequency

VLF Very Low Frequency

xi



Contents

List of Figures v

List of Tables vi

List of Equations vii

List of Python Snippets ix

List of Acronyms x

1 Introduction 1

1.1 A Brief History of Heart Rate Variability . . . . . . . . . . . . . . . . 1

1.2 State-of-the-Art of Heart Rate Variability Measures . . . . . . . . . . 2

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Goal of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentals of Heart Rate Variability 6

2.1 Physiological Background . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Heart Rate Regulation Mechanisms . . . . . . . . . . . . . . . 6

2.1.2 Electrocardiography and Electrocardiogram . . . . . . . . . . 7

2.2 Single Lead ECG Signals . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Acquisition of Electrocardiography Signals . . . . . . . . . . . 8

2.2.2 Signal Filtering, RR Intervals and NN Intervals . . . . . . . . 9

2.2.3 Sampling Frequency Selection . . . . . . . . . . . . . . . . . . 11

2.3 Overview of Heart Rate Variability . . . . . . . . . . . . . . . . . . . 13

2.3.1 Time Domain Parameters . . . . . . . . . . . . . . . . . . . . 13

2.3.1.1 NN Interval Parameters . . . . . . . . . . . . . . . . 14

2.3.1.2 Heart Rate . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1.3 Tachogram . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1.4 SDNN . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1.5 SDNN Index . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1.6 SDANN . . . . . . . . . . . . . . . . . . . . . . . . . 18

xii



Contents

2.3.1.7 RMSSD . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1.8 SDSD . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1.9 NNx and pNNx . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Geometrical Parameters . . . . . . . . . . . . . . . . . . . . . 21

2.3.2.1 Triangular Index . . . . . . . . . . . . . . . . . . . . 21

2.3.2.2 Triangular Interpolation of NNI Histogram (TINN) . 22

2.3.2.3 Physiological Context of Geometrical Parameters . . 23

2.3.3 Frequency Domain Parameters . . . . . . . . . . . . . . . . . . 24

2.3.3.1 Frequency Components . . . . . . . . . . . . . . . . 25

2.3.3.2 Welch’s Periodogram . . . . . . . . . . . . . . . . . . 26

2.3.3.3 Autoregression Periodogram . . . . . . . . . . . . . . 26

2.3.3.4 Lomb-Scargle Periodogram . . . . . . . . . . . . . . 28

2.3.3.5 Frequency Parameters . . . . . . . . . . . . . . . . . 29

2.3.4 Nonlinear Parameters . . . . . . . . . . . . . . . . . . . . . . . 32
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Chapter 1

Introduction

1.1 A Brief History of Heart Rate Variability

The Chinese physician Wang Shu He (180-270 A.D.) was one of the first documented

physicians to have had observed the pulse-to-pulse variability of sickened patients

and recognized its role as indicator of mortality stating that ”if the pattern of the

heartbeat becomes as regular as the tapping of a woodpecker or the dripping of rain

from the roof, the patient will be dead in four days” [54]. Although other physicians

have investigated the human pulse and its nature even the centuries before (between

ca. 200 B.C. and ca. 200 A.A.) and despite the technical limitations of that time -

especially compared to the modern times of multi-lead Electrocardiography (ECG)

acquisition and processing systems - Wand Shu He had discovered a remarkable

indicator for cardiac health, which only centuries after his observation has been

continued to be investigated [8].

In modern medicine, the importance of pulse-to-pulse variability as measure of car-

diac and overall health has been established due to the extensive research con-

ducted over the last decades. This has been made possible thanks to the fast pace

of technical advancements in the medical field [1, 86]. While Wang Shu He mea-

sured the pulse using a palpation method, by placing three fingers on different

locations near the patient’s wrist, modern physicians and researchers use ECG or

Photoplethysmography (PPG) systems and computational methods to extract the

Heart Rate (HR) information and to derive a variety of parameters to assess its

variability. Thanks to these efforts, this method of Heart Rate Variability Anal-

ysis (HRVA) has seen an increasing growth in application fields and number of

parameters that can be derived from the Inter-Beat-Interval (IBI) series, i.e. the

1



1. Introduction

intervals between successive heart beats [8, 32].

In the 1960’s, the first Time Domain parameters have been introduced, which con-

sisted of a series of basic statistical parameters derived from the IBI series. In the

following three decades, many methods of frequency analysis and non-linear assess-

ments have been suggested and partially added to the family of HRV parameters.

This increase in HRVA methods have primarily been made possible thanks to the

technical advancements in computational resources, which allowed the computation

of more complex methods [8]. However, a practical problem existed for cardiolo-

gists, where due to the great variety of computational methods, and the lack of

knowledge in the field of HRV, misleading physiological interpretation of the results

could potentially occur. The Task Force of The European Society of Cardiology and

The North American Society of Pacing Electrophysiology tackled this problem, con-

ducted a more in-depth investigation of suggestion methods, and issued the HRV

guidelines (”Heart Rate Variability: Standard of Measurement, Physiological Inter-

pretation, and Clinical Use”) in 1996, where a selection of suitable parameters has

been made according to clinical standards and physiological context known at the

time [86]. Nowadays, the role of HRV is well-known in modern medicine. However,

its appearance in clinical applications is still rare due to its complexity and yet lack

of a general and standardized selection of parameter values that define a healthy

subject. It is, however, a very popular research field with approx. 1100 HRV related

works being published within the first 9 months of 2018 alone1.

1.2 State-of-the-Art of Heart Rate Variability

Measures

The HRV guidelines managed to conduct a rigorous and in-depth review of the sug-

gested HRV measures at the time. This review did not only put many measures

into clinical and physiological contexts, but also established standards for minimum

requirements for ECG signal acquisitions and HRV parameters [86]. For instance,

many of the suggested Time Domain parameters (e.g., SDNN, RMSSD) have been

thoroughly investigated over the last two decades, and their importance has been

recognized [24, 48, 93, 98]. In the Frequency Domain, the application of the Fast

Fourier Transform (FFT)-based Welch’s and the Autoregression (AR) methods of

Power Spectral Density (PSD) estimation have been established as popular tools for

1Number of works based on the search results of the search term ”heart rate variability” in the
pubmed.gov platform (search term in the title/abstract, human research only)

2
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spectral analysis of IBI variability [42, 58]. However, new measures have been intro-

duced to HRVA, especially for the Nonlinear analysis domain, where the guidelines

failed to establish common standards due to the lack of clinical evidence.

The Poincaré plot, for example, is a popular scatter plot of IBI series often found in

HRV research. This tool provides a graphical visualization of the overall HRV, which

facilitates the identification of healthy patients vs. patients with existing cardiac

conditions, solely based on the form of the scatter plot [25, 46, 102]. Additionally,

other measures for the analysis of non-linearity have been introduced such as the

Approximate Entropy, the Sample Entropy (SamPen), Detrended Fluctuation Anal-

ysis (DFA), and Multi-Scale Entropy analysis, which are commonly in HRV research

[22, 64, 73, 82]. In the Frequency domain, an additional method of PSD estimation

has also been introduced, the Lomb-Scargle Periodogram (LSP) [27]. This method,

in comparison with FFT and AR methods, has the main advantage that it is cable

compute PSD estimation for irregularly sampled times series, which is the case in

IBI series. Reason for which it is an interesting measure for newer HRV applications,

such as real-time HRVA [71].

1.3 Motivation

There are many HRV software libraries available in the open- and closed-source

domain, with some of them being well-known in the field of HRVA. However, their

functionality or usability exhibits several shortcomings when it comes to software

development and integration. For instance, commercially available tools, such as

the well-established KUBIOS HRV 2 software provide well-designed Graphical User

Interface (GUI), but lack insights into the source code underneath the GUI with

no possibility of extracting single algorithms or features for integration into custom

software. Additionally, although free versions of such commercial tools are mostly

available, those versions have only limited functionality (e.g. limited duration of

processable signals), and the non-restricted usage of all features is only available

after the purchase of the software [65].

Available open-source alternatives, on the other hand, do not require purchases of

the software and provide open source codes, allowing users to modify the code to

fit their specific needs (e.g. extracting only a selection of algorithms). Such solu-

tions are openly available, with many of them being found on the popular GitHub

2Developed by Kubios Oy, Kuopio, Finland; https://www.kubios.com

3
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repository system3. These tools are also available in a variety of different program-

ming languages, including Swift, Python, Matlab and R [6, 60, 72, 74]. However,

these open-source solutions face three major problems. First, the most sophisticated

solutions are usually found for less mainstream programming languages, which are

designed for specific fields of application or purposes, such as the case of the RHRV

project for the R programming language [74]. Second, these solutions often provide

only limited documentation or poorly commented source code, which complicates

the usage and integration of the available libraries [6]. This issue can be frustrating

for new entrants in the already highly complex field of HRV. Third, in the specific

case of the Python programming language, the available solutions are still limited in

the number of the computed HRV parameter functions, thus failing to provide the

full range of parameter computations as recommended by the HRV guidelines and

newer measures [6]. Forth, some available tools may be argued to be too complex

in their use, which may also be an additional hurdle for new entrants [95]. Finally,

the solutions above do not provide any evaluation metrics on their performance, i.e.

they have not been tested against gold standard solutions.

1.4 Goal of this Work

The goal of this work is to develop a robust, versatile, and user-friendly HRV soft-

ware toolbox named pyHRV for the Python programming language. This toolbox

shall comply with the HRV guidelines, should be easily extended in the future to be

updated with new achievements in HRV research. Implementation of error-catching

features with understandable exception raisings and automatic data conversion to

suitable data formats (ensuring the use of the highly efficient NumPy array format)

as well as physical units (converting input data in s to ms) are intended to ensure

the robustness of this toolbox. Versatility is ensured by providing both functions

designed for the computation of a single, specific HRV parameter and functions

which compute a series of HRV parameters, allowing users to either call individ-

ual algorithms or entire domain-specific algorithm sets with a single line of code.

This toolbox will then be an extension to the open-source biosignal processing tool-

box BioSPPy [17]. Additionally, a step-by-step-like written source code style with

comprehensive function, variable and parameter names is applied in this toolbox to

help and guide the users - especially new entrants in the field of HRV - through

the implemented HRV algorithms, and their application. This is supported by a

3Web-based version control service using Git (https://github.com)
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1. Introduction

thorough publicly available technical documentation (API reference) on ReadThe-

Docs, a platform to support continuous documentation of open-source software4.

User-friendliness is also supported by the implementation of a multilevel toolbox

architecture. This architecture is designed to support the software development

process of different types of users, allowing them to either compute individual pa-

rameters, entire parameter series of a specific domain, or to compute the entire set

of HRV parameters over all domains using only a single line of code. Finally, the re-

sults computed with pyHRV are validated, by determining evaluation metrics from

the computed results in direct comparison with the HRV gold standard software

KUBIOS.

4https://docs.readthedocs.io/
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Chapter 2

Fundamentals of Heart Rate

Variability

2.1 Physiological Background

2.1.1 Heart Rate Regulation Mechanisms

The Autonomic Nervous System (ANS) is a subsystem of the central nervous sys-

tem of the human body, which influences the functionality of the internal organs,

including the heart. This system can be divided into three divisions of which two,

the Parasympathetic Nervous System (PNS) and the Sympathetic Nervous Sys-

tem (SNS), play a significant role in the regulation of cardiac and other vital ac-

tivities (e.g. respiration) [55]. The ANS responds to sensory input from the en-

vironment or the body itself and responds by stimulating physiological processes

through the SNS or by inhibiting them through the PNS. For this reason, the SNS

has also become known as the fight or flight division, which increases the activity

of physiological mechanisms to ensure that all the necessary resources are available

in situation of high stress [3]. The PNS, on the other hand, has become known

as the rest and digest division which reduces the activity of the controlling organs

and is linked to relaxation [3, 55]. The activity of these counterpart divisions play

a critical role in heart rate regulation, which can be observed and anlysed using

HRVA methods. For instance, it is known that physical or emotional stress results

in an increase in HR which can be indexed as increased activity of the SNS [91].

This alteration in HR is the fundamental information used in HRVA, from which a

series of features can be derived to identify the dominant physiological mechanisms
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2. Fundamentals of Heart Rate Variability

within this process [1].

2.1.2 Electrocardiography and Electrocardiogram

The Electrocardiogram is one of the most characteristic signals of the human body,

consisting of the sum of the electrical activity in the cardiac tissue, that triggers

the pumping mechanisms of the heart, i.e. the heartbeat. It is the result of an

ECG acquisition, one of the most important and well-established methods of cardiac

monitoring, where the electrical potential of the cardiac activity is measured using

purpose-built ECG sensors and surface electrodes placed on a subject’s skin. Its

characteristic form is achieved from the successive contraction of different sections

of the cardiac tissue, with each section being present in the signal itself.

Figure 1: Successive excitement stages of the different cardiac tissues throughout the heart,
during a heartbeat and the respective curve profiles of the caracteristic ECG signal [29].

Figure 1 shows the different stages of electrical excitation propagating throughout

the different tissue sections of the heart in a specific, successive order during a

heartbeat. At the beginning of a heartbeat cycle, the heart chambers are filled

with blood which will be pumped out of the heart (deoxygenated blood → lungs,

oxygenated blood → body). The signal waveform resulting from the heartbeat is

initiated at the Sinoatrial Node, Figure 1 (a), the heart’s primary pacemaker that is

closely interconnected with the ANS and SNS, therefore being the main influencer of

the HR. This excitation, followed by the excitation of the Atrioventricular Node, 1

(b), results in a slight elevation of the ECG signal known as the P- and PQ-segments.

Afterwards, the propagation proceeds down the inner ventricular walls, stimulates

the heart chambers, and causes the heart to contract and to empty its chambers,

Figure 1 (c-e). For HRVA, this signal characteristic is the most important one of
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2. Fundamentals of Heart Rate Variability

the ECG signal as it is the crucial segment that defines the chamber contraction in

the signal from which the fundamental IBI series, i.e. the measured time between

successive heartbeats, are derived for HRV parameter computation. Depending on

the methods being applied to extract this event from the ECG signal, the entire

QRS-segment (shown in Figure 1 c-e) is used as a fiducial complex for heartbeat

detection, although the most commonly used methods are designed for the detection

of the R-peak only, Figure (d). After the heartbeat, the heart restores its original

volume, to allow the chambers to be filled with blood again. During this action,

some repolarisation occurs along the chambers resulting in the T-segment of the

wave. The entire process is then repeated for each heartbeat [29].

2.2 Single Lead ECG Signals

HRVA is based on datasets of IBI, i.e. interval durations between successive heart-

beats. Conventional applications in medical research and practices derive these

datasets from ECG signals [3, 51, 52, 91]. It must be noted that other sensors

besides ECG sensors can be used to derive series of IBI data on which HRVA can

be conducted. For instance, sensors measuring blood flow variations such as Photo-

plethysmography (PPG) sensors or SpO2 sensors, with the capability of measuring

fluctuations in blood oxygen saturation can be used for this purpose, given that the

nature of both signals is found in the heart’s pumping mechanism [34, 79, 97].

The work presented in this thesis is focused on single-lead ECG signals derived from

the Einthoven Leads. For this reason, this section is intended to explain and raise

awareness of technical specifications, processes, and concerns that should not be

neglected when using single lead ECG signals for HRVA.

2.2.1 Acquisition of Electrocardiography Signals

Modern cardiac monitoring methods in medical applications acquire ECG data in

standardized electrode configurations of 3, 6, 12 and even 22 ECG leads, among

other possible and application-specific leads not named here [28, 39]. Although any

of the acquired leads could technically be used for HRVA - after all, the signal peak

(R-peak) is the most critical required information - commonly found derivations

being used in HRV research are the Einthoven Leads [3, 51, 52, 91]. The 3 bipolar

Einthoven leads (also known as the Standard Limb Leads) are acquired by placing

positive (+) and negative (-) electrodes at the skin surface of a subject’s right arm
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2. Fundamentals of Heart Rate Variability

Figure 2: Illustration of the electrode placement for the Einthoven Leads (left) and the Einthoven-
Triangle (right) [89].

(RA), left arm (LA) and left foot (LF) where the potential difference of the heart

is measured in the following directions as illustrated in Figure 2:

• Lead I: RA(-) → LA(+)

• Lead II: RA(-) → LF(+)

• Lead III: LA(-) → LF(+)

The Lead I derivation has the advantage of its simplicity, which makes it attractive

even for applications outside the medical field. In the recent past, off-the-person

ECG acquisition methods have been investigated and even implemented in end-

consumer products using the Lead I configuration [18].

2.2.2 Signal Filtering, RR Intervals and NN Intervals

In most cases, signal processing methods must be applied on single lead ECG signals

before conducting a HRVA, given that noise or other signal artifacts can influence

the overall results. For this reason, filters are applied on the signal to filter out

noise, ectopic heartbeats, baseline wandering (e.g. T-P knot algorithm, high-pass

filter) and signal artifacts (e.g. motion artifacts) before applying R-peak detection

algorithms to prevent the detection of false R-peaks, i.e. to prevent the detection

of signal peaks that are not caused by an actual heartbeat. Many algorithms and

signal processing methods, both in the analog and digital domain, have already been

proposed for this purpose, such as the application of high-pass and band-pass filters,

morphological transformation algorithms, wavelet transformation, and many others

[13, 62, 63]. Due to the complexity of such signal processing methods, and given

that there is already an extensive amount of literature about such methods, those
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will not be further discussed in this work. Nonetheless, their importance must not

be neglected.

After filtering the signal, R-peak or QRS-complex detection algorithms (e.g. Pan

Tompkins Algorithm [68]) are applied to identify the R-peaks in the ECG signal.

This information allows one to measure the duration between successive R-peaks

upon which the HRV parameters can be computed.

In HRV applications, two commonly used terms for the derived IBI series are used:

RR-intervals and NN-intervals. RR-intervals, i.e. Interval Between Successive R

peaks (RRI), are the durations between detected R-peaks in the ECG signal, where

it is often not immediately clear whether this includes or not falsely detected R-

peaks, due to signal artifacts or ectopic heartbeats. These falsely detected R-peaks

could have unwanted influences in the HRVA and distort the actual results. For

instance, when conducting frequency analysis, such ’R-peaks’ can introduce incorrect

frequency components and significantly alter the results due to the distortion of the

fundamental RRI series [69]. An example of such a problem is illustrated in Figure

3 (top), where it can be observed that an additional (false) RRI has been detected

leading to a significant separation of a single RRI of 760ms into two individual

intervals of 532ms and 228ms, thus significantly altering the actual information.

Figure 3: ECG signal with falsely detected R-peak due to motion artifacts.

Normal-to-Normal Interval (NNI) also measure intervals between detected R-peaks,
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however, it emphasizes that signal (pre-)processing techniques have been applied to

the ECG signal before the application of R-peak detection algorithms, thus, pro-

viding interval measures between real R-peaks with no influences of falsely detected

signal peaks or ectopic heartbeats. An example of a filtered signal with detected

normal R-peaks and RRI - or in this case NNI - intervals is illustrated in Figure

3 (bottom). The present work uses the NNI series as the fundamental input for

HRVA.

2.2.3 Sampling Frequency Selection

The selection of a proper sampling frequency for ECG recordings is a technical aspect

that must not be neglected, as it can have a significant impact on the accuracy of

HRV results. Detection of the QRS-complexes (or of the R-peaks only) in the ECG

signal, should be as accurate as possible to ensure a good determination of NNI.

Figure 4 shows the issues resulting from the use of low sampling frequencies. Higher

sampling frequencies (e.g. 1000Hz; left) provide a higher number of ECG samples

near R-peaks allowing more accurate detection of R-peaks and NNI. Lower sampling

frequencies, on the other hand, can vary significantly in distance between the actual

R-peak location and the available ECG samples due to the decreased number of

samples within a set interval (e.g. 250Hz or 100Hz; middle and right respectively1.

These inaccuracies in R-peak detection can significantly influence the measurement

of NNI and HRV results [1].

Figure 4: Example of ECG data with different sampling frequencies to illustrate the influence of
sample sparsity in R-peak detection as a results of lower sampling frequencies. This inaccuracy

can cause NNI variations that greatly influence HRV analysis results.

The guidelines propose a minimum sampling frequency of 128Hz when interpolation

is conducted on the signal to increase the accuracy in R-peak detection [86]. Mad-

hiani et al. [52] even went one step further and investigated the reliability of 50Hz

1ECG samples 250Hz and 100Hz sampling frequencies are downsampled signals of the 1000Hz
signal (Figure 4, left)
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sampling frequency, considering the importance of such low frequencies in wireless

and wearable body monitoring platforms to enable greater power efficiency. Their

research showed that reasonable time domain results could be achieved by applying

a cubic spline interpolation on ECG data sampled at 50Hz from healthy subjects.

However, it must be noted that the cubic spline interpolation is a suitable method

for R-peak interpolation in ECG signals of healthy individuals, which containing no

pathological arrhythmia, as the symmetric characteristics of the QRS-complex allow

an accurate R-peak interpolation. This might be less accurate in non-symmetric

QRS-complexes of subjects with existing heart conditions where these symmetric

characterstics are distorted (e.g. ST segment elevation) [52]. Hejjel et al. [35] on

the other hand have searched for the most adequate sampling frequency, i.e. the

frequency at which an interpolation is not required and where the use of higher sam-

pling frequencies would not provide any benefit for ECG signal processing methods.

According to their findings, they recommended 1kHz as the most suitable option

for ECG acquisitions, providing high accuracy without the need of an additional

interpolation.
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2.3 Overview of Heart Rate Variability

Generally speaking, HRV describes the variation of IBI from which time, frequency

and nonlinear components can be extracted, computed and analysed to assess car-

diac and overall health. It is the ability of the HR regulating mechanisms of the

human body to react to sensory inputs such as physical or emotional stress or re-

laxation and other outer influences, by adjusting the HR - and therefore the IBI

- accordingly [1]. A simple example of this ability can be observed by comparing

the HR of a subject in a resting position with the HR of the same subject during

or after physical activity, where an increase in HR can be experienced. Savonen et

al. [76] have also observed increases in HR with increasing intensities of physical

training. In such cases, the heart is able to adjust its performance by increasing

the HR which ensures that freshly oxygenated blood is distributed within the body

to keep up with the increased consumption of oxygen in the body in physically or

emotionally stressful situations is satisfied at a suitable rate [11].

2.3.1 Time Domain Parameters

The Time Domain parameters contain statistical information from three different

classes as recommended by the HRV guidelines: (a) parameters derived directly

from NNI or instantaneous HR (e.g., SDNN, SDANN), (b) those derived from the

differences between successive NNI (e.g. SDSD, RMSSD, NNx, pNNx), and (c)

geometrical paramaters that are derived from the NNI histogram (e.g., Triangular

Index, TINN) [86]. This section aims to present the commonly used time domain

parameters including information and equations about their computation and phys-

iological context. An overview of these parameters is presented in Table 1.
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Table 1: Overview of time domain parameters.

Time Domain Parameters

Parameter Unit Description
NNI ms NN interval parameters (min, max, mean, max difference)
HR BPM General heart rate parameters (min, max, mean)
SDNN ms Standard deviation of NN intervals
SDNN-i ms Mean of SDNN values of long-term ECG acquisitions
SDANN ms Std. deviation of the mean NN intervals in 5min segments
SDSD ms Std. deviation of successive NN interval differences
RMSSD ms Root mean square of successive NN interval differences
NNx - Number of NN interval differences greater the threshold x
pNNx % Ratio between NNx and total number of NN intervals
NN50 - Number of NN interval differences greater 50ms
pNN50 % Ratio between NN50 and total number of NN intervals
NN20 - Number of NN interval differences greater 20ms
pNN20 % Ratio between NN20 and total number of NN intervals
Geometrical Parameters
TriIndex - Triangular index (# of NNI/max of NNI histogram)
TINN ms Baseline width of the NNI histogram

2.3.1.1 NN Interval Parameters

The computation of a NNI series from a dataset with n R-peaks will returns a

dataset with n − 1 NNI elements as two R-peaks are required to determine the

interval between them and given that the last R-peak Rn has no succesive R-peak

to conduct such an operation (compare with Figure 5). The computation of a NNI

is done according to Equation 1 for 0 < i < n− 1.

NNj = Rj+1 −Rj (1)

with: NNj : NN interval i in [ms]

RRj : Current R-peak in [ms] or [s]

RRj+1 : Successive R-peak in [ms] or [s]

Conventional parameters extracted from this dataset are minimum NNI, maximum

NNI, mean NNI duration and the maximum difference between successive intervals.

For the latter parameter, an additional computation has to be conducated which

create a dataset of length n−2 with the differences between adjecent NNI according

to Equation 2. The relationship between R-peaks, NNI, and NNI differences is

illustrated in Figure 5.

14



2. Fundamentals of Heart Rate Variability

∆NNj = |NNj+1 −NNj| (2)

with: ∆NNj : NN interval difference in [ms]

NNj : Current NNI in [ms]

NNj+1 : Successive NNI in [ms]

Figure 5: Relationship between the ECG signal (red) R-peaks, NN intervals (blue), and NN
interval differences (green). From a signal with n R-peaks and n − 1 NN intervals, n − 2 NN

interval differences can be derived.

The NN parameters are usually not very meaningful parameters when used alone,

especially when based on a single NNI. For instance, the maximum or minimum

value of an NNI series alone does not provide enough significant information to make

any proper HRV assessment of a data set. For this reason, these parameters should

be used in relation with other time domain parameters presented on the following

pages.

2.3.1.2 Heart Rate

Heart Rate (HR) is the standard measure to indicate the number of occurring heart-

beats per minute (bpm) [2]. It is computed according to Equation 3 and is an user-

friendly measure of general monitoring of cardiac activity and the heart’s response

to physical or emotional stress [1, 86].

HR =
60000[ms]

NNI[ms]
=

60[s]

NNI[s]
(3)

with: HR : Heart rate in [bpm]

NNI : NN interval in [ms] or [s]
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The HR is known to adjust to physical and emotional conditions of the subject

as observed by Tolg et al. [91] in research conducted on subjects experiencing

performance anxiety in virtual reality environments, were increasing HR have been

observed with the increase of emotional stress. The most commonly used parameters

which are directly related to HR and used in HRVA are minimum HR, maximum

HR, mean HR and difference between maximum and minimum HR [1, 82].

2.3.1.3 Tachogram

HR series are often plotted with the NNI series in a plot named Tachogram, where

both series are plotted against their temporal occurrence. This plot provides a

clearer visual representation of both datasets, thus being a useful tool for a primary

visual inspection of HRV. Figure 6 (bottom) shows an example Tachogram with

NNI and HR series derived from a ECG signal (top).

Figure 6: Sample ECG signal (top) and Tachogram with the derived NNI and HR series (bottom).

2.3.1.4 SDNN

Standard Deviation (SD) is generally a measure to quantify the amount of dispersion

in a dataset. The Standard Deviation of Successive NN Intervals (SDNN) quantifies

this variation in NNI durations around the mean value of the NNI, and is computed

16



2. Fundamentals of Heart Rate Variability

according to Equation 4.

SDNN =

√√√√ 1

n− 1
·

n∑
j=1

(NNj −NN)2 (4)

with: SDNN : Standard deviation of the NNI series in [ms]

n : Number of NN intervals in [ms]

NNj : NN interval i in [ms]

NN : Mean of NN intervals in [ms]

SDNN serves as a measure for the activity of the entire autonomic nervous system

(the aggregated ANS and PNS) which is ultimately reflected in the NNI. ECG

datasets with low HRV, i.e. low variation in NNI durations, have been observed in

subjects with existing medical conditions (e.g., after myocardial infarction, diabetes

mellitus) and lead to small SDNN results, while higher SDNN results were observed

in datasets acquired from healthy subjects with greater NNI variations [81, 93]. As

for other HRV parameters, it is recommended to determine SDNN values on ECG

datasets with conventional durations of 5 minutes or 24 hours, although it has to be

noted that the duration itself influences the result given that the total variance does

naturally increase with the duration of the recording session [86]. For this reason, it

is recommended to split long-term acquisitions into shorter segments (with 5 minutes

of duration), and to individually analyse each segment to counteract against the lack

of robustness of the SD against outliers or non-stationary data series, as it is done

with the Standard Deviation of Successive NN Intervals Index (SDNNI) parameter.

Salahuddin et al. [75] have studied the possibilities and reliability of shorter record-

ing periods as an alternative to conventional 5 minutes short-term recordings, to

meet the increasing demand of mobile applications for clinical monitoring where

data acquisitions may only be possible during short intervals. Proposals of 60 sec-

onds recordings have shown to be insufficient for reliable measurements of SDNN

values, while recordings of 240 seconds in duration have shown to be good surrogates

for SDNN values derived from 5 minute recordings [4].

2.3.1.5 SDNN Index

The Standard Deviation of Successive NN Intervals Index (SDNNI) is an analysis

parameter based on SDNN takin into account the considerations of long-term ECG

acquisitions, and is most commonly applied to acquisitions of 24 hours in duration.
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For this parameter, the 24 hour ECG recording is split into segments of 5 minutes

in duration resulting in a total of 288 segments (24 hours · 60 minutes = 1440

minutes → 1440 minutes / 5 minutes = 288 (segments)). It is the mean of all

SDNN values computed from all 288 segments of the long-term ECG acquisition,

and it is computed through the steps shown in Figure 7, with the mean value being

computed according to Equation 5 [86].

Figure 7: Block diagram of the SDNN Index computation.

SDNNI =
1

N
·

n∑
j=1

SDNNj (5)

with: SDNNI : SDNN index in [ms]

n : Number of computed SDNN values from 5 minute segments

SDNNj : SDNN of the 5 minute segment j in [ms]

It is assumed that the SDNNI is primarily a measure of the ANS impact on the HRV

as it does also correlate with the Low Frequency (LF) spectral components (which

represent ANS activity) in 24 hour datasets [92].

2.3.1.6 SDANN

The SDANN is the SD of the mean of NNI within individual 5 minute segments in

long-term ECG acquisitions [1]. Similar to the process followed in the computation

of the SDNNI, the NNI series of a 24 hour ECG acquisition is split into 288 segments

of 5min in duration, followed by the computation of the mean value of each segment.

Afterwards, the SD of all mean values is computed. A visualization of the individual

steps of this computation is shown in Figure 8 and shown in Equation 6.

Figure 8: Block diagram of the SDANN computation.
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SDANN =

√√√√ 1

n− 1
·

n∑
j=1

(NNIj −NNI)2 (6)

with: SDANN : Standard deviation of the mean of NNI in all 5 minute segments in [ms]

n : Number of 5 minute segments

NNIj : Mean value of the 5 minute segment j in [ms]

NNI : Mean value of the means of the 5 minute segments in [ms]

2.3.1.7 RMSSD

The RMSSD is the root mean of the sum of the squares differences between succes-

sive NN intervals. This parameter is determined by first computing all differences

between adjacent NN intervals (see Equation 2), which are then used to compute

the RMSSD parameter according to Equation 7 [1, 86].

RMSSD =

√√√√ 1

n− 1
·

n∑
j=1

∆NNI2
j (7)

with: RMSSD : Root mean square of successive NNI differences in [ms]

n : Number of computed NNI differences

∆NNIi : NNI differences in [ms]

RMSSD measures the short-term variations of successive NNI and provides informa-

tion about the activity of the PNS. It is often used as an indicator for rehabilitation,

fitness, and health and is the primary parameter in the time domain for estimations

of vagally mediated changes in HRV [55]. High RMSSD indicates the ability of rapid

adaptations of the HR, while low RMSSD indicates a low ability of HR adjustments,

generally caused by physical, mental stress, or sickness with, the latter cause being

observed (e.g.) in patients with diabetes mellitus where significantly lower RMSSD

results could be derived when compared to healthy subjects [81].

Similarly to the SDNN, this parameter is generally applied on short-term ECG

recordings, although Thong et al. [90] have investigated the applicability and re-

liability of this parameter in ultra short-term recordings of 10 seconds, showing a

high correlation between the obtained values and values from 5 minute recordings.

This correlation opens new possibilities of RMSSD-based monitoring applications

in sports research and medical monitoring, by using only small sample sizes which
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provides an almost immediate biofeedback parameter. This is a characteristic which

can be useful for the development of wearable systems in both medical and consumer

applications.

2.3.1.8 SDSD

The SDSD is the SD of the differences of successive NNI and shares a great similarity

with the RMSSD parameter. However, the major difference between the SDSD and

the RMSSD is its dependence on the stationary characteristics of the NNI series.

This parameter is computed according to Equation 8.

SDSD =

√√√√ 1

n− 1
·

n∑
j=1

(∆NNIj −∆NNI)2 (8)

with: SDSD : Standard deviation of the successive NNI differences in [ms]

n : Number of NNI differences

∆NNIj : NNI difference j in [ms]

∆NNI : Mean of NNI differences in [ms]

The SDSD provides the same results as the RMSSD parameter when applied on

stationary time series, i.e. time series with no base level shifting of the signal or time-

independent spectra, thus sharing a similar physiological context as the RMSSD [42,

65]. However, as the SD is not robust against outliers or non-stationary time series,

an application of this parameter on such datasets will not provide proper results,

reason for which the usage of the RMSSD parameter is recommended. Both the

RMSSD and SDSD share a similar physiological context and clinical application.

2.3.1.9 NNx and pNNx

NNx parameters are based on the total count of differences between successive NNI

which are greater than a specific threshold x in milliseconds. Ewing et al. [26]

were the first to propose and explore this parameter in long-term recordings, with a

threshold set to 50 milliseconds, establishing it as a standard threshold used in con-

ventional HRVA. This proposal urged from the observation and comparison of ECG

datasets from healthy subjects and subjects with diabetes mellitus, where healthy

subjects showed significantly higher random occurrences of greater differences be-

tween successive NNI. The pNNx parameter has been added as a second parameter
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computed as the division of the NNx value by the total number of ∆NNI [86]. This

parameter facilitates the interpretation of the NNx parameters, as it provides a ra-

tio rather than an integer number, which is harder to interpret without if the total

number of ∆NNI is unknown.

pNNx =
NNx

n
(9)

with: NNx : Number of ∆NNI > x in [ms]

n : Number of ∆NNI differences

Newer studies have re-examined the 50 millisecond threshold to assess the appli-

cability of threshold variations ranging from 1 to 100 milliseconds. These studies

show that thresholds lower than 50 milliseconds were able to create significant dis-

tinctions between healthy and pathological patients, where NN50 parameters failed

to do so. However, these thresholds have been criticized for depending too much

on the methods of statistical comparison, when compared with the 50ms threshold,

and worked only in explicit comparisons rather than in general applications [57, 80].

2.3.2 Geometrical Parameters

The geometrical parameters are derived from the histograms of NNI series, with a

standard bin size set to 7.8125 millieconds due to the minimum recommended sam-

pling frequency of 128Hz as set forth by the HRV guidelines (1/128Hz = 0.0078125s

= 7.8125ms) [86]. Although ECG acquisitions are nowadays usually performed with

a diversity of sampling frequencies (e.g. 1000Hz), this bin size has been considered

as the reference bin size for comparison purposes. Any deviation is usually noted

in the HRV results [35, 86]. An example of a NNI histogram is visualized in Fig-

ure 9, with detailed explanations about the most commonly used parameters being

presented throughout the following pages.

2.3.2.1 Triangular Index

The Triangular Index (TI) is the most basic parameter that can be derived from the

NNI histogram. This parameter is the division between the integral over the entire

histogram, i.e. the total number of NNI of the distribution, and the distribution’s

maximum D[X] with X being the bin containing the distribution’s maximum. The
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formula for the computation of this parameter is presented in Equation 10, with an

example of a distribution with a given maximum D(X) visualized in Figure 9 [86].

TriangularIndex =
n

D[X]
(10)

with: n : Total number of NNIs

D[X] : Distribution’s maximum

X : Bin at which the distribution’s maximum occurs in [ms]

2.3.2.2 Triangular Interpolation of NNI Histogram (TINN)

Figure 9: Histogram of an artificial NNI series to show the geometrical parameters with the dis-
tributions maximum D[X] and the resulting function of the triangular interpolation in dependence

of the N and M parameters.

The TINN is defined by the baseline width of the histogram, based on the approach

of finding the triangular interpolation with the best fit to the NNI histogram. For

this approach, a triangle is fit in the NNI histogram with its corners being set at

the points (N, 0), (X,D(X)), and (M, 0) where N < X and M > X. The linear

functions between the points (N, 0) and (X,D(X)) and the points (X,D(X)) and

(M, 0) construct the triangular function q(bin,N,M) which, for values outside the

[N,M ] interval, is 0. N and M are then set by finding the q(t, N,M) with the lowest

error, i.e. deviation, from the original distribution function using the least-squares

method as presented in Equation 11. Afterwards, the computation of the baseline
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width of the histogram (TINN) can be computed by Equation 12 [86, 96].

∆ = argmin{
bmax∑
b=bmin

(D − q(bin,N,M))2} (11)

TINN = M −N (12)

with: ∆ : Triangular interp. with the best fit to the NNI histogram

bmin : Lowest bin containing non-zero value of the distribution in [ms]

bmax : Highest bin containing non-zero value of the distribution in [ms]

D : NNI distribution

q(bin,N,M) : Triangular interpolation function

N : Left corner of the interp. triangle with the best fit to the NNI histogram in [ms]

M : Right corner of the interp. triangle with the best fit to the NNI histogram in [ms]

TINN : Baseline width of the histogram in [ms]

An example of a triangular interpolation with the defined points in dependence of

N, M, and D(X) (and X) is presented in the histogram in Figure 9. The distribution

function D (blue) is defined by the histogram of the NNI series with q(bin,N,M)

(green) being defined by the N and M values that generate a triangular interpolation

with the lowest error compared to D.

2.3.2.3 Physiological Context of Geometrical Parameters

Given that the NNI histogram is highly dependent on the standard deviation of the

NNI series, i.e. the SDNN which has been observed to be significantly decreased in

subjects with existing medical conditions (e.g. diabetes mellitus), its form and the

derived geometrical parameters are known to be a measure of overall HRV [81, 86].

Similarly to the case of the SDNN parameter, both the TI and TINN have been

observed to be smaller in patients with existing medical conditions where reduced

HRV could be found. A lower SDNN leads to a decrease in overall histogram width

while causing an increase in the histogram’s values around its mean NNI (smaller

SD → compressed histogram → smaller histogram baseline and increased D) [81,

84, 94].
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2.3.3 Frequency Domain Parameters

Frequency analysis is generally a method to determine periodicity in a given signal

or dataset. It has been introduced in the 1970’s to the field of HRV research as

a new and interesting measure to reveal periodicities in NNI. With this method,

the estimation of a PSD in the form of a periodogram (a commonly used tool to

estimate the power in a signal in dependence of its frequencies) is used to identify

dominant, high powered frequencies and to link them to physiological mechanisms

[8, 86].

The general procedure of frequency domain analysis starts with the computation of a

PSD, followed by splitting the PSD into Frequency Band (FB)s and deriving a series

of overall parameters related with specific frequency bands. The guidelines, among

other HRV related publications, recommend different methods for the computation

of the PSD, which can be classified as (a) non-parametric and (b) parametric meth-

ods. Although both provide meaningful results, each method has its advantages over

the other: (a) non-parametric methods require no prior knowledge about the signal

model or its form. Additionally, these methods can be efficiently computed with

simple algorithms at high processing speeds (e.g., FFT and derived metrics, Lomb-

Scargle peridogram). (b) Parametric methods, on the other hand, provide smoother

spectral components and, accurate PSD estimations even on small sample numbers

[86]. However, parametric methods are highly dependent on the selection of suitable

parameters to ensure the accuracy of the PSD estimation, as such methods assume

that the given data fits a specific signal model for which it is necessary to define a

suitable estimation model order. This can constitute a practical issue, as the ideal

model order varies in dependence of the ECG duration and no one-size-fits-all order

is available [15].

The frequency domain parameters are derived from the methods presented on the

following pages. Additionally, this section aims to present some example of the

relationship between physiological mechanisms and FB, the most commonly used

frequency analysis methods, and the computation of the frequency parameters as

recommended by the HRV guidelines shown in Table 2 [86]. It has to be noted that,

due to the high complexity of the different PSD estimation methods, only their

HRV specific implementation will be presented rather than going into detail into

their mathematical background.
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Table 2: Overview of frequency domain parameters [86].

Frequency Domain Parameters - FFT Based

Parameter Unit Description
Total Power ms2 Power over all FC
Absolute Power ms2 Power of each FC
Relative Power % Relative power of each FC
Log(Power) - Natural logarithm of FC’s absolute power
Normalized Power - Normalized powers of each LF & HF components
Peak Frequency Hz Frequency where maximum power of the FC occurs
LF/HF Ratio % Ratio between the LF & HF components

2.3.3.1 Frequency Components

In HRVA, the computed PSD is segmented into three FB, when analyzing short-

term recordings of usually 5 minutes in duration, or four frequency bands when

analyzing long-term recordings of usually 24 hours, in duration as presented in

Table 3. Segmenting the PSD into specific frequency bands provides a method

to determine dominant frequencies in a NNI series, which are ultimately linked to

autonomic responses of a subject’s body.

Table 3: Frequency bands for ECG acquisitions of different durations, as recommended by the
HRV guidelines [86].

Short-term (5 minutes) Long-term (24 hours)
Component Min [Hz] Max [Hz2] Min [Hz] Max [Hz]
ULF - - 0.000 0.003
VLF 0.003 0.040 0.003 0.040
LF 0.040 0.150 0.040 0.150
HF 0.150 0.400 0.150 0.400

The Ultra Low Frequency (ULF) band is the only FB applied on long-term record-

ings. For the time being, it is still uncertain which physiological rhythms have the

greatest influence in this frequency band, although it is highly hypothesized that

circadian rhythms (periodic biological rhythms with 24 hour periods, e.g. sleep-

/wake cycle) may be the most dominant [82, 83, 99]. By this hypothesis, applying

this FB on short-term recordings would ot provide much added value for analytical

purposes.

The Very Low Frequency (VLF) band ranges between 0.003Hz (or in some cases

0Hz if the ULF is not computed) and 0.04Hz [86]. Research has shown that ther-

moregulatory mechanisms influence the energy in this FB [55]. Additionally, it has

been observed that lower power within this FB may be associated with pathological
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causes (e.g. inflammation) [45].

The LF band ranges between 0.04Hz and 0.15Hz, and reflects primarily baroreceptor

activity (blood pressure regulation) in resting positions. However, it has to be noted

that low breathing periods (approx. 7 to 10 seconds) can also influence the power

in this frequency band [82].

The last FB, the High Frequency (HF) band, ranges between 0.15Hz and 0.4Hz,

and is essentially known to reflect respiratory influences in the HRV and, therefore,

reflecting vagal inhibition (inhaling → increases HR) and activation (exhaling →
decreases HR), which are the fundamental mechanisms of respiratory regulation.

The respiratory influence causing these fluctuations in HR is known as Respiratory

Sinus Arrhythmia [55, 82, 103].

2.3.3.2 Welch’s Periodogram

The FFT based PSD estimation is a non-parametric method, i.e. a method that

does not make any assumption on the model which generates the NNI data [85].

This method requires some pre-processing of the NNI time series before it can be

properly computed. First, the NNI series has an unknown and uneven sampling

rate, reason for which it needs to be resampled to provide a dataset with evenly

spaced intervals. This step is required, as the FFT is designed to provide infor-

mation about the periodicity of an evenly sampled signal, which results would be

distorted when applied on unevenly sampled time series. The resampling is usually

achieved by application of a cubic-spline interpolation to the NNI series and by de-

riving a new time series with a 4Hz sampling frequency from the interpolated signal

[86]. However, it has to be noted that this resampling process can have a low-pass

filtering effect on the original NNI series [43, 86]. Afterwards, every sample in this

dataset is detrended, i.e. subtracted by the dataset’s mean value, to remove the

DC-offset, which would be reflected in the PSD as a high energy component around

the 0Hz frequency [41]. In HRVA applications, the recommended method for the

PSD estimation is the Welch’s Method [86, 100]. An example of a FFT based PSD

using the Welch’s method can be seen in Figure 10.

2.3.3.3 Autoregression Periodogram

The Autoregression (AR) based PSD estimation is a parametric method. This

estimation method assumes that each value of a given time series does linearly
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Figure 10: Sample PSD computed using the Welch’s method (NNI series segment extracted from:
[31]).

depend on one or multiple previous values. Due to this assumption, it differs from

the FFT-based method as the latter method does not assume the time series to be

generated by a specific signal model [15, 40]. As previously stated, this method has

the advantages of providing smoother spectral components and providing accurate

PSD estimations. However, due to the signal model assumptions, the selection of

a suitable model order, i.e. the number of previous samples being used for the

estimation of future samples, may cause a practical problem as investigated by

Kuusela et al. [42]. Choosing too low model orders can smooth and vanish PSD

peaks, while too high model orders can increase the influence of noise present the NNI

series. Reason for which the selection of suitable model orders has been thoroughly

investigated, with recommended model orders ranging from 9 to 25 with 16 being

the recommended minimum order for short NNI segments [10, 58]. An example of

an Autoregressive PSD plot is shown in Figure 11.
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Figure 11: Sample PSD computed using the Autoregressive (Yule-Walker) method (NNI series
segment extracted from: [31]).

2.3.3.4 Lomb-Scargle Periodogram

The Lomb-Scargle Periodogram (LSP) is a method for PSD estimation in non-

uniformly sampled datasets, and has originated from such problems in astrophysics.

Although the cause for non-uniformity in this field is of entirely different nature com-

pared to the causes for non-uniformity in NNI series (e.g. observational restrictions

due to bad weather conditions vs. spontaneous HR regulation), the obstacles for

PSD estimations for unevenly sampled datasets remain the same, and require resam-

pling and interpolation methods to minimize distortions in the frequency domain,

when applying traditional estimation methods (e.g. FFT) [44, 49, 61, 77].

The LSP uses the least-squares method to fit sinusoids to a dataset to compute a

FFT-like PSD. This method requires fewer additional steps than traditional FFT-

based PSD, considering that it does not require any pre-processing of the dataset

to conduct a resampling or interpolation in order to deal with the dataset’s non-

uniformity. However, this method does have its limitations, given that it requires a

warm-up phase, during which a minimum amount of samples or acquisition duration

for which the lower limit has yet to be further investigated. [19, 42, 61]. An example

of a possible HRV based LSP with the segmentation into the different FB is shown

in Figure 12.
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Figure 12: Sample PSD computed using the Lomb-Scargle periodogram (NNI series segment
extracted from: [31]).

2.3.3.5 Frequency Parameters

The absolute power of each FB is computed by integration of the PSD over the

component’s frequency band. As the signal used for HRVA is of discrete nature,

the sum of the power samples over the FB multiplied by the frequency resolution is

equal to the sum over the same interval (Equation 13).

Pabs,z = ∆f ·
fmax∑
f=fmin

S (13)

with: z : Frequency band (ULF, VLF, LF or HF) [n.u.]

Pabs,z : Absolute power of the frequency band z in [ms2]

∆f : Frequency resolution in [Hz]

fmin,z : Minimum frequency of the frequency band z in [Hz]

fmax,z : Maximum frequency of the frequency band z in [Hz]

S : PSD function (unit: [ms2])

The total power can either be computed by integrating the signal over the interval

between the lowest frequency band limit (lower limit of the ULF or VLF at 0Hz,

depending on which is being used) and the highest frequency of the HF frequency

band (at 0.4Hz). The total power is computed as the sum of the absolute powers of

all frequency bands (Equation 15).
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TP = ∆f ·
fmax∑
fmin

S (14)

with: TP : Total power in [ms2]

∆f : Frequency resolution in [Hz]

fmin : Minimum frequency of the lowest frequency band (ULF or VLF) in [Hz]

fmax : Maximum frequency of the HF frequency band in [Hz]

S : PSD function (unit: [ms2])

TP = PULF + PV LF + PLF + PHF (15)

with: TP : Total power in [ms2]

PULF : Absolute power of the ULF band in [ms2]

PV LF : Absolute power of the VLF in [ms2]

PLF : Absolute power of the LF in [ms2]

PHF : Absolute power of the HF in [ms2]

Relative powers are the ratio between the absolute power of the individual frequency

band and the total power of the PSD within the specified minimum and maximum

frequency interval, and are therefore expressed as percent (Equation 16). Newer

suggested implementations of the frequency domain parameters also provide the

logarithmic value of the absolute powers (Equation 17) [66].

Prel,z =
Pabs,z
TP

· 100% (16)

with: z : Frequency band (ULF, VLF, LF or HF) [n.u.]

Prel,z : Relative power of FB z in [%]

Pabs,z : Absolute power of the FB z in [ms2]

TP : Total power in [ms2]

Plog,z = log(Pabs,z) (17)

with: z : Frequency band (ULF, VLF, LF or HF)) [n.u.]

Plog,z : Logarithmic power value of FB z [n.u.]

Pabs,z : Absolute power of the FB z in [ms2]

Normalized powers are usually only computed for the LF and HF frequency band

and are computed as presented in Equations 18 and 19 [14].
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Pnorm,LF =
Pabs,LF

Pabs,LF + Pabs,HF
∗ 100 (18)

Pnorm,HF =
Pabs,HF

Pabs,LF + Pabs,HF
∗ 100 (19)

with: Pnorm,LF : Normalized power of the LF band [n.u.]

Pnorm,HF : Normalized power of the HF band [n.u.]

Pabs,LF : Absolute power of the LF band in [ms2]

Pabs,HF : Absolute power of the HF band in [ms2]

The LF/HF ratio can be computed as the ratio between the absolute powers in the

LF and HF FB (Equation 20)[86].

LF

HF
=
Pabs,LF
Pabs,HF

(20)

with: LF/HF : LF/HF ratio [n.u.]

Pabs,LF : Absolute power of the LF band in [ms2]

Pabs,HF : Absolute power of the HF band in [ms2]

31



2. Fundamentals of Heart Rate Variability

2.3.4 Nonlinear Parameters

The Nonlinear parameters are intended to enhance nonlinear characteristics and

unpredictability of NNI series, which are caused by the different complex physio-

logical dynamics of the human body that lead to HRV (e.g. SNS vs. PNS) [8, 82].

The HRV guidelines named multiple methods to derive a variety of parameters, but

failed to establish a selection of reliable and meaningful nonlinear methods for clin-

ical contexts, due to the lack of scientific evidence and technological advancements

at the time [86].

Over the last recent years, a variety of mathematical methods for nonlinearity anal-

ysis have been applied in HRV research. However, many of them have not been

found to be suitable for HRVA due to their complexity or lack of sufficient scientific

backing, with only a few methods being commonly found in HRV research [8, 42].

Table 4 presents a selection of the most commonly found methods [42, 70, 82, 87,

102].

Table 4: Overview of nonlinear parameters.

Nonlinear Parameters

Parameter Unit Description
Poincare Plot - Scatter plot of NN intervals (NNi+1 against NNi)
- SD1 ms Standard deviation along the minor axis
- SD2 ms Standard deviation along the major axis
- S − Area of the fitted ellipse (focus points SD1 & SD2)
- SD1/SD2 % Ratio between SD1 & SD2
Sample Entropy - Sample entropy of the NNI series
DFA beats Detrended fluctuation analysis

2.3.4.1 Poincaré Plot

The Poincaré plot is a scatter plot where a given NNIj is plotted against its succes-

sor NNIj+1. It is a graphical tool for HRV analysis of a NNI dataset, which allows

a rapid first judgment of a subject’s health, as the shape of the scatter plot provides

a visual representation of the overall HRV [87]. Woo et al. [102] have investigated

the patterns of healthy subjects with advanced heart failure and observed torpedo

or comet-like shaped Poincaré plots in datasets of healthy subjects while circular,

chaotic or fan-like shape, with multiple clusters of points, were observed in datasets

of patients with the named heart conditions.

Figure 13 (a) demonstrates an example Poincaré plot of a NNI dataset with relatively
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low HRV, as the majority of points is closely clustered around the dataset’s mean

point (at NNi+1 = NNi = NN , which in this case is 775.19ms). Figure 13(b) on

the other hand demonstrates an example Poincaré plot of an NNI dataset with high

HRV, with points being widely spread around the dataset’s mean value along the

plot’s major axis (identity line with y = x), creating a comet-like shape.

(a) (b)

Figure 13: (a) Poincaré plot of an NNI dataset of a normal subject while in rest. The points
of the plot are closely clustered around the dataset’s mean value. (b) Poincaré plot of an NNI
dataset with high HRV. The points of the plot are widely spread along the identity line and create

a comet-like shape (dataset source: [31]).

Besides the plot itself, the Poincaré method provides parameters that can be used

for a more detailed analysis of the NNI based scatter plot: SD1, SD2, ellipse area,

and SD1/SD2 ratio. SD1, the standard deviation of the points perpendicular to the

major axis along the minor axis, is a measure of instant beat-to-beat variability, i.e.

short-term variability, and is correlated with the HF powers of the NNI series [12,

33, 87]. This parameter can either be computed based on the SDSD time domain

parameter - the standard deviation of successive differences (see Chapter 2.3.1.8) -

according to Equation 21, or on a vector based computation as suggested by Tayel

et al. [87] according to Equation 22 - as the variance of the difference of the
−−−−→
NNi+1

and
−−→
NNi vectors [12]. The SD1 parameter is usually visualized in the plot as a

vector with its origin at the mean of the scatter plot and the length of SD1 along

the axis perpendicular to the major axis, as visualized in Figure 14 with the SD1

vector (green arrow) and the minor axis (green dotted line).
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Figure 14: Poincaré plot depicting of the SD1 parameter (green arrow) along the axis perpen-
dicular to the identity line (green dotted), the SD2 parameter (blue arrow) along the identity line

(blue dotted) and the ellipse with its center at the mean of the scatter plot.

SD1 =

√
1

2
· SDSD2 (21)

SD1 =
1√
2
· σ(
−−−−→
NNi+1 −

−−→
NNi) (22)

with: SDSD : Standard deviation of successive differences in [ms]
−−−−→
NNi+1 : Vector of successive NN intervals in [ms]
−−→
NNi : Vector of current NN intervals in [ms]

SD2, on the other hand, is the standard deviation of the points along identity line,

and is a measure of both short and long-term variability that correlates with the

LF power [82]. This parameter can be either computed based on the SDNN -

the standard deviation of successive NNI (see Chapter 2.3.1.4) - and the SDSD time

domain parameters according to equation 23, or also on a vector based computation,

as suggested by Tayel et al. [87] in Equation 24 - as the variance of the sum of the
−−−−→
NNi+1 and

−−→
NNi vectors [12]. The SD2 parameter is commonly depicted as a vector

with its origin at the mean of the scatter plot and the length of SD2 along the identity
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line, as presented in Figure 14, with the SD2 vector (blue arrow) and the identity line

(blue dotted line). Additionally, the SD1 and SD2 ratio, which measures both the

randomness of an NNI series and, with a sufficiently long monitoring duration, the

balance between sympathetic and parasympathetic activity, is another important

parameter of the Poincaré parameter family [47, 82].

SD2 =

√
2 · SDNN2 − 1

2
· SDSD2 (23)

SD2 =
1√
2
· σ(
−−−−→
NNi+1 +

−−→
NNi) (24)

with: SDNN : Standard deviation of successive NN intervals in [ms]

SDSD : Standard deviation of successive differences in [ms]
−−−−→
NNi+1 : Vector of successive NN intervals in [ms]
−−→
NNi : Vector of current NN intervals in [ms]

Another commonly adapted method used in Poincaré based analysis is the fitting

of an ellipse in the plot, with dependence of the NN , SD1 and SD2 parameters,

providing another visual highlight of such parameters. For this, the center of the

ellipse is placed at the mean of the plot (i.e. NNi+1 = NNi = NN , in this case

with775.19ms) with the ellipse’s focus points being the ends of the SD1 and SD2

vectors, as shown in Figure 14 (yellow ellipse). Tayel et al. [87] have shown that the

area S (in in [ms2]) of the ellipse is greater in healthy subjects due to the overall

higher HRV and very small for critical cases of subjects with existing heart condi-

tions, reason for which the area of the ellipse can also be computed with accordance

to Equation 25 [87].

S = π · SD1 · SD2 (25)

2.3.5 Sample Entropy (SampEn)

The SamPen is a measure of complexity or irregularity of a NNI series. It is a

vector-based computation, which is an improved version of the regular Approximate

Entropy algorithm as it can be applied on small sample sizes [42, 82].

The SamPen function (SamPen or sometimes found as SampEn(m, r,N)), is para-

metric function that depends on the embedding dimension m, the tolarance r, and
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the number of NNI data points. The embedding dimension m defines the length of

the vector Um(i) that is created from the original NNI series as presented in Figure

26.

Um(i) = (NNIi, NNIi+1, ..., NNIi+m−1) (26)

i = 1, 2, 3, ..., n−m+ 1

with: Um(i) : Template vector

n : Number of NNI

m : Embedding dimension

Next, the distance function d(Um(i), Um(j)) is computed using the Chebyshev or

Euclidean distance, to determine the maximum distance between the vector pairs

Um(i) and Um(j) (with i 6= j) constructed from the template vector resulting in

Equation 26.

d(Um(i), Um(j)) = max{|NNIi+n −NNIj+n|} (27)

From these functions, the parameters A and B are computed as the number of vector

pairs that are smaller than the defined tolerance r, i.e.

A = count{d(Um+1(i), Um+1(j)) < r} (28)

of the length m+ 1 and

B = count{d(Um(i), Um(j)) < r} (29)

of the length m. Finally, the SamPen is the negative logarithm of the ratio between

A and B.

SamPen = −log(
A

B
) (30)

In HRVA, the recommended default values for m and r are set to 2 and 2SDNN

[73]. Statistically, the SamPen is the negative logarithm of the probabilities of both

the template vector with the length m and the template vector with the length
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m+ 1 having distances < r within the tolerance limits (i.e. the probability that the

additional data point m+ 1 does not vary more than the tolerance r → low HRV).

Physiologically, low HRV is present in the NNI series due to low fluctuations in

successive NNI. In this case, the predictability of the a vector of m+1 in length and

m are similar, i.e. the m+1 data point does not exceed the specified tolerance levels,

thus resulting in low SamPen values (e.g. A = B = 1 ⇒ SampEn = −log(1/1) =

−log(1) = 0). High HRV on the other hand least to a lower predictability of a

given additional m+ 1 point due to the greater fluctuation between successive NNI

durations, i.e. more m + 1 data points reach outside the specified tolerance levels.

This decrease of m+1 predictability results in smaller A values, thus decreasing the

overall SamPen (e.g. A = 0.1, B = 1⇒ SampEn = −log(0.1/1) = 1).

2.3.6 Detrended Fluctuation Analysis (DFA)

The DFA is an index that expresses the correlation within the NNI series in long-

term acquisitions [65, 82]. This method has been introduced by Peng et al. and is

computed as follows [70]:

First, the sum of the NNI series is computed and detrended by the series’ mean.

Y [k] =
n∑
i=1

(NNIi −NNI) (31)

with: Y [k] : Sum of the NNI series in [ms]

n : Number of NNI

NNI : Mean of the NNI series in [ms]

Next, Y [k] is segmented into individual segments of length m, for which a line is

fitted to each of the segments using the least-squares, and the removal of any local

trends. The fluctuation of each segment is then computed by the root-mean-square

method of the detrended discrete integral function as presented in Equation 32.

F [m] =

√√√√ 1

n

n∑
i=1

(Y [i]− Ym[i])2 (32)

The computation of F [m] is repeated over different segment lengths m, which for

HRVA applications commonly range between 4 and 16 beats NNI to determine

short-term fluctuations and between 17 and 64 beats NNI for long-term fluctuations
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[101]. The results are plotted in a double logarithmic plot containing the fluctuation

results, with individual linear functions of slopes α1 and α2 fitted to the short and

long-term fluctuations. An example plot of the DFA results is presented in Figure

15 2.

Figure 15: Resulting plot of a Detrended Fluctuation Analysis visualizing the short-term fluctu-
ations (blue) and long-term fluctuations (green) [31].

2DFA computed based on a randomly selected 1 hour interval of NNI data from the MIT-BIH
NSRDB database (signal 19090) using pyHRV
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Chapter 3

Materials and Methods

3.1 Intended Workflow

The pyHRV toolbox developed in the scope of this work is intended to provide

functions to compute HRV parameters and other useful functionalities and features

often required, found, and used in HRV research applications to facilitate the use

and increase the usability of this toolbox (e.g., export of HRV results, generating

HRV reports). Although this toolbox’s use is not restricted to specific devices but

rather intended to be used with any ECG signal in combination with the BioSPPY

toolbox (e.g. extract R-peaks) or NNI series, independently of the acquisition device

being used, the intended workflow adopted in this work is focused on supporting

PLUX’s BITalino (r)evolution (BITalino) biosignal acquisition hardware toolkits,

their compatible OpenSignals (r)evolution software and the open-source BioSPPy

BioSPPy toolbox for biosignal processing in Python, for which the pyHRV toolbox

developed in this work will be integrated in the future. This approach is designed to

demonstrate a possible workflow and usage example of this toolbox in real research

applications.

BITalino boards are Arduino-like modular devices with single lead ECG sensors

(among other physiological sensors) designed for rapid-prototyping purposes in re-

search, development, and education (e.g. classroom support and student projects)

[7]. The BITalino ECG sensor used within this work (for testing purposes and to

ensure compatibility of the intended workflow with BITalino devices and this tool-

box) is shown in Figure 16. The BITalino system (Board Kit) used in this work is

presented in Figure 17. The datasheets of the ECG sensor and the BITalino Board

Kit can be found in Appendices D and E.
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Figure 16: BITalino (r)evolution ECG sensor with open pins for power and analog signal output
(right) and pinout for a Lead I single channel ECG setup (left).

Figure 17: BITalino (r)evolution Board Kit. The most important modules for the acquisition of
a single channel ECG signal are highlighted in color.

This workflow is split into two major steps: (a) signal acquisition and (b) scrip-

t/software development in Python. In step (a) users are intended to use BITalino

devices and the OpenSignals (r)evolution software to acquire ECG signals and to ex-

port the raw digitized signals in OpenSignals .TXT files. Afterwards in step (b), the

ECG signal(s) are imported and converted using the additional opensignalsreader

support packages developed within this work, which facilitates the signal import

and automatically converts the acquired signals into their original units (mV ) (see

Appendix C.1 and Appendix G)1. This step is followed by the use of the BioSPPy

toolbox to filter the ECG signal(s) and extract the R-peak locations upon which the

HRV are computed. The entire process is illustrated in Figure 18.

1The BITalino device must be configured correctly in the OpenSignals (r)evolution software,
i.e. the ECG channel must be configured as ECG, not as RAW or CUSTOM.
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Figure 18: Illustration of the intended workflow from the ECG electrode placement and signal
acquisition until the application of the HRV toolbox.

A minimal working example demonstrating step (b) of this workflow in the corre-

sponding Python code is presented in the Python Snippet 1 which shows that only

a few lines of code are necessary to go from the ECG signal import until the HRV

parameter computation.

1 # Import packages ( OpenSigna l s , BioSPPy and pyHRV)

2 from o p e n s i g n a l s r e a d e r i m p o r t O p e n S i g n a l s R e a d e r

3 from b i s p p y . s i g n a l s . ecg i m p o r t ecg

4 from pyhrv . h r v i m p o r t h r v

5

6 # Load ECG s i g n a l a c qu i r e d wi th B ITa l i no and OpenS igna l s

7 e c g s i g n a l = O p e n S i g n a l s R e a d e r ( ’ SampleECG . t x t ’ ) . s i g n a l s ( ’ECG ’ )

8

9 # F i l t e r ECG s i g n a l and Ex t r a c t R−peak l o c a t i o n s

10 r p e a k s = ecg ( e c g s i g n a l , show=F a l s e ) [ 2 ]

11

12 # Compute HRV paramete r s

13 r e s u l t s = h r v ( r p e a k s=r p e a k s )

Python Snippet 1: Minimum working example of the Python code required to import ECG

signals acquired from and stored in OpenSignals files as .TXT files (line 7), followed by ECG

filtering and R-peak extraction using the BioSPPy toolbox (line 10) upon which the HRV

parameters are computed using the HRV toolbox (line 13).

41



3. Materials and Methods

3.2 Third-Party Tools, Software and Packages

The main goal of this work was to create a novel toolbox named pyHRV for the

Python programming language; as such, multiple Python open-source libraries are

used for the computation of HRV parameters, file and data management, and plot-

ting the acquired signals and results. The development of this toolkit has been

conducted in a virtual environment created with the Conda package and virtual

environment management software, using a Python v.2.7.15 distribution and the

PyCharm Community 2017.2 Integrated Development Environment (IDE).

The BioSPPy package (v.0.5.1) is an open-source toolbox for biosignal processing in

which the HRV toolbox developed in this work will be integrated in the future [17].

For this reason, the HRV toolbox follows the same Python format and documen-

tation style guide as set forth by the NumPy/SciPy style format [53] (e.g. for the

docstrings2), and uses BioSPPy functions throughout its modules. For instance,

the biosppy.signals.ecg.ecg() function is used in the example code implemented in

each module, to demonstrate how to properly conduct signal pre-processing using

BioSPPy (e.g., ECG filtering, R-peak extraction), upon which the functions of the

HRV toolbox can be applied. Additionally, results generated by the HRV toolbox

are wrapped in objects of the BioSPPy ReturnTuple class found in the biosppy.tools

module. This package-specific class combines the advantages of Python dictionaries,

where values are stored in a mutable array-like object without a fix order and indexed

using keywords (dictionary keys)3, and Python tuples, an immutable array-like ob-

ject that is indexed as regular arrays with sequential numbers. These advantages of

immutability of the tuple format, combined with the advantages of the key-based

value indexing of dictionaries, facilitates the access of storing and reading parameter

results with a single object, without the need of additional index tracking (as would

be the case when using regular arrays or tuples).

The NumPy package provides an efficient array data type which is far more superior

- in both memory size and processing time - to Python’s native array-like list format

[67]. Series of R-peak locations, NNI, or PSD results computed within this toolbox’s

functions are stored and processed in the NumPy array format. Additionally, func-

tions to determine basic statistical parameters, such as the minimum, maximum or

mean value of a series, as well as array manipulation functions used in this work are

2docstrings provide information about the function and are the output of the help() function
when used in the Python interpreter (e.g. help(sdnn) prints the docstring of the SDNN function in
the terminal).

3Imagine a dictionary named results which stores a SDNN value (e.g. 800ms) with a string-key
named sdnn: results[’sdnn’] = 800
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conducted using functions of this package.

Frequency domain parameters are derived from PSD estimations obtained using dif-

ferent estimation methods. The computation of the FFT-based PSD estimation uses

the interpolation (scipy.interpolate.interp1d()) and Welch’s method (scipy.signal.welch())

algorithms from the SciPy (v.1.1.0) package for scientific computing in Python [38].

The LSP has been computed using SciPy’s scipy.signal.lombscargle(). The AR PSD

has been computed using the Yule-Walker algorithm implemented in the Spectrum

package (spectrum.pyule(), v.0.5.2) [20, 40]. For the computation of the Nonlinear

parameters (SamPen and DFA), an additional package known as nolds (NOnLinear

measures for Dynamical Sytems) (v.0.4.1) has been used, which has been specifically

developed for the computation and analysis of nonlinear measures in datasets.

All functions with plotting capabilites use the Matplotlib package (v.2.2.2) [37].

Matplotlib is the most commonly used package for data visualization and plotting

in Python, supported by many GUI development frameworks (e.g. TKinter4), and

compatibility can be useful for future users of the pyHRV toolbox developed within

the scope of this work and their application development.

Additional native Python packages have been used in this toolbox such as the date-

time package to create timestamps in files generated by this toolbox (e.g. reports),

the os package to help generate operating system compatible file paths for file man-

agement purposes, and the warnings package to trigger warnings printed to the

Python console to provide additional information to the user whenever required

(e.g. insufficient number of NNI samples to compute a parameter). Due to their

implementation in the Python distribution, these packages do not provide individual

version numbers, reason for which they will be listed as v.2.7.15 according to the

Python version used during the development of this work. The exception here is

the JSON package (v.2.0.9), which has been used to handle data import and export

between Python and .JSON files. The .JSON format is a convenient format to store

data in dictionary-like formats. Additionally, it also human-readable making it more

user-friendly compared to other file formats. In this work, the JSON library has

been used to read and write .JSON files storing parameter-specific information such

as the parameter keys of the BioSPPy ReturnTuple objects, the parameter descrip-

tions used when exporting HRVA results in HRV report files, and to read and write

the results of HRVA stored as BioSPPy ReturnTuple objects. An overview of all

third-party packages used in the HRV toolbox are listed in Table 5.

4Matplotlib example code: https://matplotlib.org/gallery/user_interfaces/

embedding_in_tk_canvas_sgskip.html
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Table 5: Third party packages & versions used in this work.

Third-Party Packages & Versions

Package Version Usage Sources
biosppy 0.5.1 Biosignal processing toolbox [17]
matplotlib 2.2.2 2D plotting library [37]
numpy 1.15.1 Efficient array manipulation library [67]
scipy 1.1.0 Welch’s method & signal interpolation [38]
spectrum 0.5.2 Spectral analysis in Python [20]
nolds 0.4.1 Nonlinear measures for nonlinear parameters [78]
json 2.0.9 Import & Export of HRV results, keys and

descriptionsn

-

os - Tools for operating system-specific
functionalityn

-

datetime - Manipulation of dates and timesn -
warnings - Issues user warning notificationsn -
n Native Python package integrated in Python 2.7.15

3.3 Evaluation Procedures

In order to verify the correct functionality of the developed functions and tools of

this toolbox, the developed parameter computation and helper functions (e.g. signal

segmentation for SDANN and SDNN Index parameters) have been thoroughly tested

and evaluated using the KUBIOS HRV software as reference software. KUBIOS is

a MATLAB based software and, at the time being, a popular HRV software in

HRV research, thus being considered as the gold standard among HRV tools [51, 52,

65, 66, 91]. The version used for the benchmarking in the scope of this work has

been v.3.1. The approach followed in order to provide proper evaluation metrics, is

summarized in Figure 19.

Step 1: Series of NNI have been selected from the physionet.org platform [31].

Although the physiological context(s) of the computed parameter results were ne-

glected in this evaluation approach - after all, this method is intended to measure the

correct functionality of the developed functions only - the NNI series used for this

purpose were taken from the MIT-BIH Normal Sinus Rhythm Database (MIT-BIH).

This dataset consists of long-term ECG recordings of 18 healthy subjects (5 men

between 26 and 40 years and 13 women between 20 and 50 years) with no observable

pathological ECG arrhythmias, from which the NNI series have been downloaded

directly from the physionet using the platforms PhysioBank ATM (Automated Teller

Machine) [31]. The use of the NNI series has been preferred over the use of the raw

ECG signals, to avoid possible differences in the implemented ECG pre-processing
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and R-peak detection algorithms between BioSPPy and KUBIOS. Such variations

could cause differences in the extracted R-peak series and the derived NNI series,

which could ultimately influence the parameters results. Additionally, NNI series

detrending has been deactivated in the KUBIOS software to avoid further processing

of the NNI series in the KUBIOS software, which may have not be reproduced with

pyHRV. This way, it is ensured that both tools are computing the HRV paramaters

on the exact same NNI series.

Figure 19: Flowchart of the evaluation metrics computation process.

Step 2: Outliers have been removed from the NNI series which have been introduced

in the ECG recordings due to signal artifacts (e.g., movement artifacts, interrupted

electrode-skin contact). In this series, NNI of up to approx. 42 seconds in duration

(=̂0.7 BPM) could be found which have been removed by applying a threshold of
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1.2s5 as maximum allowed NNI. If not removed, these outliers could distort the

Tachogram and the HRV parameter results and cause issues in the signal segmenta-

tion process used in the next step. An example of such issues is shown in Figure 20

(top), where the outliers stand out significantly when compared to the rest of the

NNI. The result of the filtered signal is shown in Figure 20 (bottom).

Figure 20: Tachogram comparison of a NNI series with NNI outliers caused by signal artifacts
during the ECG acquisition (top), and the NNI series after applying a NNI threshold of 1.2 seconds

(bottom) (signal 19090 [31]).

Step 3: The NNI series were split into segments of shorter durations, upon which the

HRV parameters could be computed and statistically compared. Given that 18 series

of NNI could be insufficient to conduct a significant comparison, the segmentation

process using the pyhrv.tools.segmentation() function has been conducted to extract

a greater number of NNI series from the original MIT-BIH database. A duration

of 5 minutes per segment has been set for the computation of most of the HRV

parameters, except for the SDANN and SDNN Index parameters, which required

segments of longer duration as their computation itself conducts an independent

segmentation process (see Chapters 2.3.1.5 and 2.3.1.6). For these parameters, a

duration of 60 minutes has been selected.

Step 4: 50 segments of each duration have been randomly selected using the NumPy

51.2 seconds =̂50 BPM; 10 BPM lower than the lower limit of normal HR in healthy adult
individuals according to the American Heart Association [2]
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numpy.random.randint() function to randomly select indices of the generated segment

series.

Step 5: The HRV parameters have been computed using pyHRV and KUBIOS and

the results have been sorted by parameter. In order to derive comparable results,

some parameter specific settings had to be equally set in pyHRV and KUBIOS. These

settings consist of a selection of parameter values (e.g., frequency bands, embedding

dimensions) that are listed in the table below.

Table 6: Selected parameter settings set in the toolbox and KUBIOS software to compute HRV
results on the same datasets and using equal parameters.

Parameter Settings

Parameter Specific Settings Set Value(s)
NNI detrending method Nonek

HR parameters computed as average of X heart beats 1 beatk

VLF Frequency Band 0.00Hz - 0.04Hz
LF Frequency Band 0.04Hz - 0.15Hz
HF Frequency Band 0.15Hz - 0.40Hz
FFT - Interpolation frequency 4Hz
FFT - Window width 300s
FFT - Window overlap 50 %
Lomb - Smoothing Nonek

AR - Model order 16
Sample Entropy - Embedding dimension 2
Sample Entropy - Tolerance 0.2 · SD
DFA - Short term fluctuations 4 - 16 beats
DFA - Long term fluctuations 17 - 64 beats
k KUBIOS HRV specific parameter settings only.

HRV results generated with KUBIOS were created by manually importing each

NNI segment into KUBIOS and exporting the results in report files (.TXT, .MAT,

and .PDF formats) of which a total of 200 KUBIOS6 individual reports of each file

format have been created as follows:

• 50 reports for the evaluation of FFT, time domain and nonlinear results

• 50 reports for the evaluation of AR results

• 50 reports for the evaluation of LSP results

• 50 reports for the evaluation of the SDANN Index and SDANN results

6The extensive amount of KUBIOS reports and NNI segments have also been generated to
provide enough data for the evaluation of new HRV features implemented in future versions of the
toolbox.
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Step 6: The results were exported using the toolbox’s hrv.tools.hrv export() func-

tion and were stored in the .JSON file format. Additionally, the results have been

sorted and summarized by parameter leading to data series of 50 results for each

parameter7.

Step 7: A statistical analysis has been conducted. Although the NNI series have

been randomly selected, it can be argued that the computed HRV results lost their

characteristics of a random variable as their computation follow an non-random and

structured method. Given that most statistical analysis methods depend on random

variables (e.g. Chi-Square), their use might not be the most suitable option for the

evaluation of the computed HRV results. Instead, the following statistical method

has been used.

The mean values, Px and Kx, and the SD, σ(Px) and σ(Kx) of each parameter series

has been computed for the pyHRV (Px) and KUBIOS (Kx) results, with x being on

of the computed HRV paramters. Additionally, the absolute difference ∆x between

the Px and Kx values has been computed. Finally, the pyHRV results have been

classified into 3 categories, Optimal, Acceptable, and Rejected, depending on ∆x and

the σ(Kx):

Optimal: ∆x = 0

The computed parameter results are identical, therefore, no difference

exists between Px and Kx

Acceptable: 0 < ∆x <= σ(Kx)

The computed parameter results are not identical, but the difference is

≤ the SD of the KUBIOS results. The difference is acceptable, as the

differences are not significant.

Divergent: ∆x > σ(Kx)

The computed parameter results are not identical and a significant dif-

ference exists. These computed results are questionable.

7Import of the KUBIOS results has been achieved due to the development and use of the kubios
support package (see Appendix C.2)
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Results

The implemented pyHRV toolbox has been developed in the Python package for-

mat, which allows developers to use it as an open-source library in their own soft-

ware development applications. pyHRV has primarily been developed under and

for Python 2.7 and has been publicly released on the GitHub repository system1.

An extensive API reference, which is intended to support users to implement the

pyHRV functions, has been released on the ReadTheDocs platform2. The entire list

of computable parameters and the respective keys are presented in Appendix B.

4.1 Implementation of the HRV Toolbox

4.1.1 Package Architecture

The toolbpx contains 2 package specific files (Table 7 files #1 and 2) required for

Python-specific purposes (e.g., package initialization, version tracking, storing pack-

age metadata), and the Tools module (Table 7 files #3), which provides fundamental

functions for the computation of HRV base data (e.g. NNI series) and other useful

features for HRV research (e.g. data import and export). The 4 core modules of

this package (Table 7 files #4 to 8) contain all the parameter functions to compute

the Time Domain, Frequency Domain, and Nonlinear parameters. Additionally, the

hrv keys.json file contains all the key and labels for the computed HRV parameters

stored in the BioSPPy ReturnTuple objects (Table 7 file #8; see also Annex B).

1pyHRV on GitHub: https://github.com/PGomes92/pyhrv
2pyHRV API Reference: https://pyhrv.readthedocs.io/en/latest/
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4. Results

The HRV feature extraction functions of the pyHRV toolbox have been implemented

and categorized into three levels, which are intended to facilitate the usage and in-

crease the usability of the toolbox according to the needs of the user or programming

background. This multilevel-architecture is illustrated in Figure 21 and explained

in greater detailed below.

Table 7: pyHRV package modules, files and descriptions.

pyHRV Package Files

# Module File Name Description
1 Package Init. init .py Package initialization file
2 Version version .py Package version tracker
3 Tools tools.py Fundamental tools and functions
4 HRV hrv.py Contains the hrv() function
5 Time Domain time domain.py Time Domain parameter functions
6 Frequency Do-

main
frequency domain.py Frequency Domain parameter

functions
7 Nonlinear nonlinear.py Nonlinear parameter functions
8 HRV Keys hrv keys.json Parameter keys and labels

Figure 21: Multilevel architecture of the HRV package.

Level 1 - HRV Level: Consists of a single function that allows users to compute

the full range of HRV parameters using only a single line of code by calling the hrv()

function found in the hrv.py. This function calls all underlying HRV parameter

functions and returns the bundled results in a biosppy.utils.ReturnTuple() object.

User-specific settings or parameters for the computation of these parameters can be

passed to the hrv() function if needed. Otherwise, the pre-set default values will
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be used. This function can be especially useful for users with little programming

backgrounds.

Level 2 - Domain Level: Consists of module/domain functions intended for users

that only want to compute all the parameters of a specific domain. Using the exam-

ple of the time domain, the time domain() function calls all the parameter functions

of this domain and returns the results bundled in a biosppy.utils.ReturnTuple() ob-

ject. As in the previous level, user-specific settings and parameters can be passed

to the domain functions, which are found in the respective modules. The module

level function can be found in the respective domain modules.

Level 3 - Parameter Level: Contains parameter-specific functions for users that

only want to compute single, specific parameters (individually) (e.g. sdnn() returns

the SDNN parameter). This allows the user to select only the parameters or features

required for their specific application with the advantage of avoiding unwanted addi-

tional processing time and memory spent on non-required parameters. User-specific

settings and parameters can be made directly when overloading the function. The

module level function can be found in the respective domain modules.

4.1.1.1 HRV Tools Module

The Tools Module (file: tools.py) contains functions with general purpose and key

functionalities for the entire pyHRV toolbox, among other useful features designed

to improve the usability of the entire toolbox. All functions are listed in Table 8

and can be categorized into four types of functions: (a) data series that generate

data directly (functions #1-7), (b) plotting functions, (c) data import and export

functions, and (d) data verification functions.

Functions of category (a) generate fundamental data series that are required for the

computation of HRV parameters such as the NNI, ∆NNI, HR or signal segmen-

tation series. Additionally, the time vector() computes a time vector from a given

ECG signal, which can used for ECG visualization purposes. The join tuples() joins

multiple biosppy.utils.ReturnTuple() objects and returns them in a single, bundled

object as used in the package level and domain level functions of this toolbox.

Functions of category (b) provide signal plotting facilities, commonly used in HRV

applications. The resulting plots of the plot ecg() and tachogram() functions are

shown in Figure 22 and Figure 6 (see also Section 2.3.1.3, page 16). The plot layout

generated by the plot ecg() function resembles medical-grade ECG paper with the
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Table 8: Functions of the Tools Module.

Tools Module

# Function Name Description
1 nn intervalss Computes a series of NNI from a series of R-peak locations
2 nn diffs Computes a series of ∆NNI from a series of NNI
3 heart rates Computes HR value(s) from NNI or R-peak data
4 segmentations Segmentation of R-peaks into individual segments of speci-

fied duration (e.g 5 minute) for computation of SDNN-index
or SDANN)

5 time vectors Computes time vector for an input ECG signal with speci-
fied sampling frequency

6 join tupless Bundles multiple biosppy.utils.ReturnTuple() objects
7 stds Computes standard deviation of an input array
8 plot ecgs Plots ECG signal on a medical-grade ECG paper styled fig-

ure
9 tachograms Plots NNI Tachogram
10 hrv reports Creates a HRV report file in .TXT or .CSV format
11 hrv exports Exports HRV results to .JSON file
12 hrv imports Imports HRV results from hrv export() .JSON file
13 check inputs Verifies and converts NNI and R-peak input data
14 nn formats Verifies that NNI series is in ms format (converts s to ms)
15 check intervals Checks interval boundaries of a given interval and fixes over-

laps
16 check limitsw Helper function for the check interval() function
17 check fnamew Verifies if given file name does not exists; creates a new file

name otherwise
s = strong function; callable outside the module

w = weak function; only callable inside the module

t-axis divisions being automatically adjusted depending on the visualized signal

interval to provide better visualization of the ECG signal.

The functions of category (c) are intended to facilitate the export and import of

HRV features computed using this pyHRV. The hrv export() function exports results

stored in a biosppy.utils.ReturnTuple() object into a .JSON file (e.g., to permanently

save results, export data to 3rd party software); latter these can be imported using

the hrv import(). Additionally, HRV reports in .TXT or .CSV format can be cre-

ated using the hrv report() function. An example of such a report can be found in

Appendix A.

Functions of the last category (d) are designed for data verification purposes and to

catch erroneous data or data formats, which are either automatically fixed due to the

implemented default values (and mechanisms), or that raise exceptions and notify
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Figure 22: Sample ECG signal plotted with different intervals. The divisions are adjusted de-
pending on the visualization interval (Top: 10 seconds signal interval with 1 second divisions;

Bottom: 20 seconds signal interval with 2 seconds divisions).

the user. The check input() and nn format() functions ensure that the NNI series

are available in the correct NumPy array in millisecond format. The check interval()

and its helper function check limits() verify interval limits and correct them if the

intervals are overlapping or incorrect (e.g., lower boundary > upper boundary, used

to check FB limits). The check fname() function is used by the functions of the

category (c) and checks if the provided output file name to which data is meant

to be written exist, and, if the file name exists, generates a new file name (e.g.

ReportFile.txt → ReportFile 1.txt) to avoid accidental overwriting of files.

A minimum working example of the Tool Module’s function is presented in the

Python Snippet 2.
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1 # Import l i b r a r i e s

2 i m p o r t pyhrv . t o o l s as t o o l s

3 i m p o r t pyhrv . t ime domain as td

4 from b i s p p y . s i g n a l s . ecg i m p o r t ecg

5 from o p e n s i g n a l s r e a d e r i m p o r t O p e n S i g n a l s R e a d e r

6

7 # Load sample ECG s i g n a l & e x t r a c t R−peaks u s i n g BioSppy f u n c t i o n s

8 ecg raw = O p e n S i g n a l s R e a d e r ( ’ SampleECG . t x t ’ ) . s i g n a l s [ ’ECG ’ ]

9 e c g f i l t e r e d , r p e a k s = ecg ( ecg raw , show=F a l s e ) [ 1 : 3 ]

10

11 # Plo t ECG & Tachogram ( f i r s t 10 s v i s u a l i z e d by d e f a u l t )

12 t o o l s . e c g p l o t ( e c g f i l t e r e d )

13 t o o l s . tachogram ( e c g f i l t e r e d )

14

15 # Compute NNI s e r i e s and an example paramete r o f the Time Domain ( e . g .

SDNN)

16 n n i = t o o l s . n n i n t e r v a l s ( r p e a k s )

17 r e s u l t s = td . sdnn ( n n i )

18

19 # Create HRV repo r t , JSON expo r t & impor t

20 h r v r e p o r t ( r e s u l t s )

21 h r v e x p o r t ( r e s u l t s , ’ /my/ path / ’ , ’ SampleExport ’ )

22 h r v i m p o r t ( r e s u l t s , f i l e n a m e= ’ /my/ path / SampleExport ’ )

Python Snippet 2: Minimum working example of the Tools Module’s functions.

4.1.1.2 Time Domain Module

The Time Domain Module (file: time domain.py) contains all functions to compute

the Time Domain parameters presented in Table 1, Chapter 2.3.1. Functions of the

Tools Module are used within this module to compute the series of NNI, ∆NNI, and

HR from which the time domain parameters are computed. In this module, each

function has been implemented according to the function architecture presented in

Chapter 4.1.2, and computes one specific time domain parameter (e.g. SDNN) or

parameter set (e.g. basic statistical parameters of NNI series). These functions

are listed in Table 9) and implemented according to the Equations 4-11 and the

methods presented in Chapter 2.3.1. Additionally, the implemented time domain()

function has been added, which calls all of the functions #1-11 in accordance with

the package architecture presented in Chapter 4.1.1.

A minimum working example to demonstrate the code required for the computation

of an individual time domain parameter, as well as for the set of Time Domain
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parameters using the time domain() function is shown in Python Snippet 3.

Table 9: Functions of the time domain module.

Time Domain Module

# Function Name Description
1 nn parameters Computation of NNI parameters (min, max, mean)
2 nn differences parameters Computation of ∆NNI parameters (min, max, mean)
3 hr parameters Heart rate parameters (min, max, mean)
4 sdnn Standard deviation of a NNI series
5 sdnn index Standard deviation of the means of 5 minute segments

of long-term recordings
6 sdann Mean of the standard deviations of 5 minute segments

of long-term recordings
7 rmssd Root mean of squared ∆NNI
8 sdsd Standard deviation of ∆NNI
9 nnXX Number & percentage of ∆NNI greater than threshold

XX in a NNI series
10 nn50 Number & percentage of ∆NNI greater than 50 mil-

liseconds in a NNI series
11 nn20 Number & percentage of ∆NNI greater than 20 mil-

liseconds in a NNI series
12 time domain Calls all of the functions above and returns results in

a single ReturnTuple object

1 # Import l i b r a r i e s

2 i m p o r t pyhrv . t ime domain as td

3 from b i s p p y . s i g n a l s . ecg i m p o r t ecg

4 from o p e n s i g n a l s r e a d e r i m p o r t O p e n S i g n a l s R e a d e r

5

6 # Load sample ECG s i g n a l & e x t r a c t R−peaks u s i n g BioSppy f u n c t i o n s

7 e c g s i g n a l = O p e n S i g n a l s R e a d e r ( ’ SampleECG . t x t ’ ) . s i g n a l s [ ’ECG ’ ]

8 r p e a k s = ecg ( e c g s i g n a l , show=F a l s e ) [ 2 ]

9

10 # OPTION 1 : Compute pa ramete r s & methods i n d i v i d u a l l y

11 r e s u l t s = td . sdnn ( r p e a k s=r p e a k s )

12 p r i n t ( r e s u l t s [ ’ sdnn ’ ] )

13

14 # OPTION 2 : Compute a l l Time Domain pa ramete r s & methods u s i n g

15 r e s u l t s = td . t ime domain ( r p e a k s=r p e a k s )

16 p r i n t ( r e s u l t s [ ’ sdnn ’ ] )

Python Snippet 3: Minimum working example of the Time Domain Module’s individual

parameter functions (in this case sdnn()) and the module level function time domain().
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4.1.1.3 Frequency Domain Module

The Frequency Domain Module (file: frequency domain.py) contains all functions to

compute the Frequency Domain parameters listed in Table 2, Chapter 2.3.3 and

presented in Chapter 2.3.3.5. These parameters are derived from the application of

the 3 different frequency analysis methods presented in Chapters 2.3.3.2 to 2.3.3.4,

i.e. they are applied to each of the methods generating method-specific results.

The FFT-based PSD estimation method has been implemented with the use of tools

from the SciPy package. This implementation uses the scipy.interpolate.interp1d()

function for the interpolation and re-sampling of the NNI series, followed by the

computation of the PSD estimation using the scipy.signal.welch() algorithm (Welch’s

method). The implementation of the Lomb-Scargle based PSD estimation has been

implemented using the scipy.signal.lombscargle() function of the SciPy package [38].

The implementation of the AR PSD uses the scipy.interpolate.interp1d() function for

the interpolation and re-sampling of the NNI series, followed by the computation

of the PSD estimation using the spectrum.pyule() class of the Spectrum package

[20]. For this function, a default model order of 16 has been set, according to the

minimum recommended model order for short NNI segments [10].

The functions that compute the FFT-based and Lomb-Scargle frequency analysis

methods are listed in Table 10 (functions #1 to 3), and have been implemented as

strong functions of this module (i.e. they can be used outside the module). This

module includes several additional functions to verify the correctness of the selected

frequency band limits (function #4), proceed with signal segmentation according to

the selected frequency bands (functions #5 and 6), compute the frequency domain

parameters according to the Equations 13-20 (function #7), and plot the resulted

PSD (function #8). These functions have been implemented as weak functions

(i.e. they can only be used within the module) due to their nature of being helper

functions for the functions #1 to 2.

A minimum working example of this module’s functionality is presented in the

Python Snippet 4.
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Table 10: Frequency Domain Module functions.

Frequency Domain Module

# Function Name Description
1 welch psds Computes the FFT-PSD (plot & parameters)
2 lomb psds Computes the Lomb-Scargle PSD (plot & parameters)
3 ar psds Computes the Autoregressive PSD (plot & parame-

ters)
4 check frequency bandsw Verifies the correctness of frequency band limits (e.g.

preventing overlapping bands)
5 get frequency indicesw Segments indices of the PSD frequency series accord-

ing to the frequency band boundaries
6 get frequency arraysw Segments sub-series of the PSD frequency series ac-

cording to frequency band boundaries
7 compute parametersw Computes Frequency Domain features
8 plot psdw Plots PSD and adds legends (optional)
9 frequency domains Calls all of the functions above and returns results as

a single biosppy.utils.ReturnTuple() object
s = strong function; callable outside the module

w = weak function; only callable inside the module

1 # Import l i b r a r i e s

2 i m p o r t pyhrv . t o o l s as t o o l s

3 i m p o r t pyhrv . f r e q u e n c y d o m a i n as f d

4 from b i o s p p y . s i g n a l s . ecg i m p o r t ecg

5 from o p e n s i g n a l s r e a d e r i m p o r t O p e n S i g n a l s R e a d e r

6

7 # Load sample ECG s i g n a l & e x t r a c t R−peaks u s i n g BioSppy f u n c t i o n s

8 e c g s i g n a l = O p e n S i g n a l s R e a d e r ( ’ SampleECG . t x t ’ ) . s i g n a l s [ ’ECG ’ ]

9 r p e a k s = ecg ( e c g s i g n a l , show=F a l s e ) [ 2 ]

10

11 # Compute NNI s e r i e s

12 n n i = t o o l s . n n i n t e r v a l s ( r p e a k s )

13

14 # OPTION 1 : Compute pa ramete r s & methods i n d i v i d u a l l y

15 r e s u l t s = f d . w e l c h p s d ( nni , show=True )

16 p r i n t ( r e s u l t s [ ’ f f t a b s ’ ] )

17

18 # OPTION 2 : Compute a l l f r e qu en c y pa ramete r s & methods

19 r e s u l t s = f d . f r e q u e n c y d o m a i n ( n n i )

20 p r i n t ( r e s u l t s [ ’ f f t a b s ’ ] )

21 p r i n t ( r e s u l t s [ ’ lomb abs ’ ] )

Python Snippet 4: Minimum working example of the Frequency Domain Module’s individual

parameter functions (here: fft analysis()) and the module level function frequency domain().
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4.1.1.4 Nonlinear Parameters Module

The Nonlinear Parameter Module (file: nonlinear.py) contains functions to compute

the nonlinear HRV parameters listed in Table 11.

Table 11: Functions of the nonlinear parameters module.

Nonlinear Parameters Module

# Function Name Description
1 poincare Plots Poincaré plot and computes related parameters

(SD1, SD2, ellipse area S, SD1/SD2 ratio)
2 sample entropy Sample Entropy
3 dfa Detrended Fluctuation Analysis for short and long

term fluctuations (α1 & α2)
4 nonlinear Calls all of the nonlinear functions above and returns

results in a single biosppy.utils.ReturnTuple() object

The poincare() function generates the Poincaré plot presented in Chapter 2.3.4.1

and derives the Poincaré parameters SD1, SD2, ellipse area (S), and SD1/SD2 ratio.

The computation of the SD1 and SD2 parameters has been implemented according

to the time domain based computations presented in Equations 21 and 23. The

computation of the ellipse area S has been implemented according to Equation 25

with the SD1/SD2 ratio computed as the division of both parameters.

The sample entropy() function has been implemented with the use of the nolds pack-

age with the default values set to embedding dimension = 2 and tolerance = 0.2

SDNN [73]. The DFA algorithm of the nolds package has been used and adjusted

for the HRV specific application with default values set to 4-16 beats for short-term

fluctuations and 17-64 for long-term fluctuations [101]. Additionally, error-catching

capabilities have been implemented to catch errors if a DFA could not be conducted

due to the lack of NNI samples (e.g. signal duration too short). In this case, an

empty plot is returned and a warning message triggered to the user, otherwise a

plot based on the DFA results will be returned as seen in Figure 15.

Python Snippet 5 presents a minimum working example of this module’s functions

using the example of the dfa() and nonlinear() functions.
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1 # Import l i b r a r i e s

2 i m p o r t pyhrv . n o n l i n e a r as n l

3 i m p o r t pyhrv . t o o l s as t o o l s

4 from b i o s p p y . s i g n a l s . ecg i m p o r t ecg

5 from o p e n s i g n a l s r e a d e r i m p o r t O p e n S i g n a l s R e a d e r

6

7 # Load sample ECG s i g n a l & e x t r a c t R−peaks u s i n g BioSppy f u n c t i o n s

8 e c g s i g n a l = O p e n S i g n a l s R e a d e r ( ’ SampleECG . t x t ’ ) . s i g n a l s [ ’ECG ’ ]

9 r p e a k s = ecg ( e c g s i g n a l , show=F a l s e ) [ 2 ]

10

11 # Compute NNI s e r i e s

12 n n i = t o o l s . n n i i n t e r v a l s ( r p e a k s )

13

14 # OPTION 1 : Compute pa ramete r s i n d i v i d u a l l y

15 r e s u l t s = n l . d f a ( n n i )

16 p r i n t ( r e s u l t s [ ’ d f a ’ ] )

17

18 # OPTION 2 : Compute a l l n o n l i n e a r pa ramete r s

19 r e s u l t s = n l . n o n l i n e a r ( n n i )

20 p r i n t ( r e s u l t s [ ’ d f a ’ ] )

Python Snippet 5: Minimum working example of the Nonlinear Parameter Module’s individual

parameter functions (here: dfa()) and the module level function nonlinear().

4.1.2 Function Architecture

The functions of this toolkit were implemented according to a 4-element architecture,

designed to improve their usability and robustness. This architecture is visualized

in the flow-chart presented in Figure 23.

Figure 23: Flowchart of the function architecture used in parameter functions of the pyHRV
toolkit.

Element 1: Consists of a comprehensive docstring containing a short description

of the function, the input and output parameters, a list of possible exceptions being

raised and, in some cases, further information about the correct usage of the function.

59



4. Results

This element does not have an influence in the function’s code, but is considered

good practice in Python programming, to provide in-code documentation for the

user.

Element 2: Verifies the correctness of the input data that the datasets used for

feature extraction have the right structure and units; this is done using the imple-

mented tools.check input() function. Depending on the provided input data, this

step follows one of the following processes:

(a) Input: R-peak series in [ms] or [s]

⇒ Computation of NNI series in milliseconds and NumPy array format

(b) Input: NNI series in [ms] or [s]

⇒ Computation of NNI series in milliseconds and NumPy array format

(c) Input: None or incompatible data format (not list or NumPy array)

⇒ Exception raised with comprehensive error descriptions to help the user

during debugging processes

This procedure is visualized in the flowchart in Figure 24. It must be noted that the

automatic second to millisecond conversion is conducted depending on the result of

the maximum NNI and a threshold of 10. If the NNI series maximum is 10, then it

is assumed that the input data is provided in ms given that a NNI of 10s (=̂6BPM)

is highly unlikely to be of physiological nature. Additionally, this straightforward

method assumes that the NNI series does not contain any erroneous NNI.

Figure 24: Flowchart of the tools.check input() function.
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Element 3: Computation of the HRV parameters according to the formulas, meth-

ods, and algorithms presented in Chapter 1.

Element 4: The results are wrapped and returned in a biosppy.utils.ReturnTuple()

object.

1 d e f rmssd ( n n i=None , r p e a k s=None ) :

2 ””” Computes r o o t mean o f s q u a r e d d i f f e r e n c e s o f s u c c e s s i v e NN

I n t e r v a l s .

3

4 Parameter s

5 −−−−−−−−−−
6 n n i : a r r a y

7 NN i n t e r v a l s i n [ ms ] o r [ s ] .

8 r p e a k s : a r r a y

9 R−peak t i m e s i n [ ms ] o r [ s ] .

10

11 R e t u r n s ( b i o s p p y . u t i l s . ReturnTuple Object )

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 rmssd : f l o a t

14 RMSSD v a l u e i n [ ms ] .

15

16 Notes

17 −−−−−
18 . . Only one t y p e o f i n p u t data i s r e q u i r e d .

19 . . I f both ’ n n i ’ and ’ r p e a k s ’ a r e p r o v i d e d , ’ r p e a k s ’ w i l l be chosen

20 o v e r th e ’ n n i ’ and th e ’ n n i ’ data w i l l be computed from th e ’ r p e a k s

’ .

21 . . NN and R−peak s e r i e s p r o v i d e d i n [ s ] fo rmat w i l l be c o n v e r t e d to

22 [ ms ] fo rmat .

23

24 ”””

25 # Check i npu t

26 nn = t o o l s . c h e c k i n p u t ( nni , r p e a k s )

27

28 # Compute RMSSD

29 nnd = t o o l s . n n i d i f f ( nn )

30 rmssd = np . sum ( x∗∗2 f o r x i n nnd )

31 rmssd = np . s q r t ( 1 . / nnd . s i z e ∗ rmssd )

32

33 # Output

34 r e t u r n u t i l s . ReturnTuple ( ( rmssd , ) , ( ’ rmssd ’ , )

Python Snippet 6: General architecture of the toolbox parameter functions shown on the

example of the RMSSD function.
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An example of this function architecture is shown in Python Snippet 6. A com-

prehensive docstring is provided at the beginning of the function (Element 1, lines

2-23), follow by the verification of the input data (Element 2, line 25), the compu-

tation of HRV feature, which in this case is the RMSSD parameter, (Element 3, line

28-29), and finally the output in a biosppy.utils.ReturnTuple() object (line 32-34).

This architecture has not been implemented in the functions of the Tools Module

(described in more detail in the following pages) as it might not be the most appro-

priate form of output. For instance, functions that create the NNI or ∆NNI series

return their results in the regular NumPy array as there is no need for a key-based

indexing method to access the data.

62



4. Results

4.2 Evaluation

4.2.1 Time Domain Parameters

The evaluation results for Time Domain comparison of the pyHRV and KUBIOS

results are presented in Table 12. Evaluation metrics could be computed from 12

of the 23 computable Time Domain parameters using pyHRV, with 11 parameters

being not comparable as these are not computed by KUBIOS.

Table 12: Evaluation results for the Time Domain parameters (pyHRV vs. KUBIOS)

Time Domain Evaluation metrics

Parameter Unit pyHRV KUBIOS ∆
Mean NNI [ms] 836.884 ± 143.429 836.884 ± 143.429 0.000

Min HR [bpm] 57.754 ± 7.508 57.754 ± 7.508 0.000

Max HR [bpm] 91.048 ± 16.342 91.048 ± 16.342 0.000

Mean HR [bpm] 74.505 ± 13.545 73.953 ± 13.422 0.552

SDNN [ms] 65.937 ± 26.291 65.937 ± 26.291 0.000

SDNN Index [ms] 60.018 ± 16.965 60.338 ± 17.354 0.320

SDANN [ms] 41.397 ± 18.281 42.113 ± 19.331 0.716

RMSSD [ms] 42.485 ± 22.611 42.484 ± 22.611 0.001

NN50 [−] 58.120 ± 46.789 58.120 ± 46.789 0.000

pNN50 [%] 17.187 ± 15.440 17.187 ± 15.440 0.000

Triangular Index [−] 9.128 ± 3.503 9.470 ± 3.886 0.342

TINN [ms] 110.313 ± 59.100 305.200 ± 104.915 194.887

Optimal Acceptable Divergent

Uncomparable parameters: NNI (Min, Max), ∆NNI parameters, NN20, pNN20, TINN N and M

∆: Difference between pyHRV and KUBIOS mean value

Overall 10 of the 11 comparable results lie within the optimal (A) and acceptable

(B) ranges, with the TINN parameter being the only divergent (C) parameter. The

TINN’s difference between the means is almost twice as high as the KUBIOS mean

resultm with pyHRV’s mean value at roughly only a third of the KUBIOS mean

(SD = 104.915ms vs. ∆ = 194.887ms), thus showing a significant difference.

Although KUBIOS does not return the N and M values of the TINN parameter

computation, it can be assumed that these parameters are also divergent given

that they are the base parameters for the computation of the TINN parameter (see

Equation 12, page 23).

The mean of the NNI, minimum HR, SDNN, NN50, and pNN50 parameter re-

sults show optimal performance being identical to the KUBIOS results. It can be

assumed that the uncompared NN20 and pNN20 parameters also achieve optimal
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results given that these parameters are computed by the same fundamental func-

tion as the NN50 and pNN50 parameters (tools.time domain.nnXX()). The mean

HR (SD = 13.422bpm vs. ∆ = 0.552bpm), SDNN index (SD = 17.352ms vs.

∆ = 0.320ms), Standard Deviation of the Mean of NN Intervals in all 5 minute

Segments (SDANN) (SD = 19.331ms vs. ∆ = 0.716ms), RMSSD (SD = 22.611ms

vs. ∆ = 0.001ms), and the Triangular index (SD = 3.886[−] vs. ∆ = 0.342[−])

lie within acceptable limits, with the RMSSD being close the values computed by

KUBIOS, with a marginal difference of 1µs.

4.2.2 Frequency Domain Parameters

The evaluation results of the Frequency Domain parameters consist of a comparison

of 16 parameters for the three PSD estimations according to the Welch’s, Lomb-

Scargle and Autoregressive methods, resulting in a total of 48 comparable parame-

ters.

Table 13: Evaluation results for the parameters extracted with Welch’s method (pyHRV vs.
KUBIOS)

Welch’s Method Evaluation Metrics

Parameter Unit pyHRV KUBIOS ∆
Peak Frequencies (VLF) [Hz] 0.012 ± 0.009 0.012 ± 0.010 0.000

Peak Frequencies (LF) [Hz] 0.071 ± 0.023 0.071 ± 0.023 0.000

Peak Frequencies (HF) [Hz] 0.226 ± 0.066 0.226 ± 0.066 0.000

Abs. Powers (VLF) [ms2] 2361.001 ± 2968.427 2325.941 ± 2963.510 35.060

Absolute Powers (LF) [ms2] 1518.788 ± 1292.658 1510.333 ± 1313.584 8.455

Absolute Powers (HF) [ms2] 883.304 ± 1561.402 884.503 ± 1568.995 1.199

Log Powers (VLF) [log] 7.192 ± 1.078 7.168 ± 1.088 0.024

Log Powers (LF) [log] 6.954 ± 0.931 6.933 ± 0.953 0.021

Log Powers (HF) [log] 6.115 ± 1.030 6.102 ± 1.050 0.013

LF/HF ratio [−] 3.234 ± 2.241 3.239 ± 2.280 0.005

Total Power [ms2] 4763.093 ± 4214.227 4722.274 ± 4243.256 40.819

Relative Powers (VLF) [%] 45.752 ± 20.912 45.594 ± 21.027 0.158

Relative Powers (LF) [%] 34.643 ± 14.488 34.572 ± 14.607 0.071

Relative Powers (HF) [%] 19.605 ± 17.882 19.793 ± 18.033 0.188

Normalized Powers (LF) [−] 67.638 ± 19.651 67.381 ± 19.915 0.257

Normalized Powers (HF) [−] 32.362 ± 19.651 32.548 ± 19.894 0.186

Optimal Acceptable Divergent

∆: Difference between pyHRV and KUBIOS mean value

The Frequency Domain parameters computed from the Welch’s method are pre-

sented in Table 13, and show overall optimal and acceptable results. pyHRV’s peak
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frequencies in each frequency band are identical to the results obtained with KU-

BIOS. Differences can be found for the rest of the parameters, although marginal,

given that the mean results exist within the acceptable ranges (see Table 13).

Table 14: Evaluation results for the frequency domain parameters extracted using the Lomb-
Scargle PSD (pyHRV vs. KUBIOS)

Lomb-Scargle Method Evaluation Metrics

Parameter Unit pyHRV KUBIOS ∆
Peak Frequencies (VLF) [Hz] 0.017 ± 0.010 0.011 ± 0.009 0.006

Peak Frequencies (LF) [Hz] 0.093 ± 0.032 0.065 ± 0.019 0.028

Peak Frequencies (HF) [Hz] 0.290 ± 0.045 0.227 ± 0.066 0.063

Abs. Powers (VLF) [ms2] 216.763 ± 49.541 2709.483 ± 3700.016 2492.720

Absolute Powers (LF) [ms2] 608.678 ± 155.304 1508.002 ± 1109.925 899.324

Absolute Powers (HF) [ms2] 1463.945 ± 267.442 826.661 ± 1454.514 637.284

Log Powers (VLF) [log] 5.354 ± 0.221 7.309 ± 1.038 1.955

Log Powers (LF) [log] 6.380 ± 0.251 7.038 ± 0.806 0.658

Log Powers (HF) [log] 7.271 ± 0.190 6.133 ± 0.911 1.138

LF/HF ratio [−] 0.417 ± 0.077 3.316 ± 2.111 2.899

Total Power [ms2] 2289.386 ± 414.363 5045.996 ± 4600.503 2756.610

Relative Powers (VLF) [%] 9.558 ± 1.777 46.894 ± 20.095 37.336

Relative Powers (LF) [%] 26.422 ± 3.418 34.626 ± 13.803 8.204

Relative Powers (HF) [%] 64.020 ± 3.843 18.432 ± 17.325 45.588

Normalized Powers (LF) [−] 29.225 ± 3.820 69.102 ± 18.750 39.877

Normalized Powers (HF) [−] 70.775 ± 3.820 30.809 ± 18.725 39.966

Optimal Acceptable Divergent

∆: Difference between pyHRV and KUBIOS mean values

The Frequency Domain parameters computed from the Lomb-Scargle method are

presented in Table 14. The evaluation results of this method identify half of the

parameters within acceptable ranges, with the other half providing rejected results.

No optimal results are computed by pyHRV. The Peak Frequencies show acceptable

results for the VLF (SD = 0.009Hz vs. ∆ = 0.006Hz) and HF (SD = 0.066Hz vs.

∆ = 0.063Hz) with the LF results being rejected due to a greater difference than

the KUBIOS results’ SD (SD = 0.019Hz vs. ∆ = 0.028Hz). Other acceptable

results could be achieved for the Absolute Powers in all FB, the Total Power, and

the Relative and Logarithmic Powers in LF band. The remaining parameters have

been rejected. It is worth mentioning that no consistency over FB-specific results

can be observed. For instance, the Absolute Powers provide acceptable results in

the VLF and HF band. However, parameters derived from these parameters (Log.

Powers and Relative Powers) show rejected results in these bands. This inconsistency

influences additional parameters which depend on the Absolute Powers of the HF
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band (LF/HF ratio and Normalized Powers), leading to the rejection of the results.

The evaluation results of the Autoregressive parameters are presented in Table 15.

Overall the results of 6 parameters lie within acceptable ranges, with 10 parameter

results being divergent due to differences greater than the SD of the KUBIOS results.

The Peak Frequencies lie within acceptable ranges for every FB. Other acceptable

parameter results were computed for the Absolute Powers (SD = 2666.353ms2 vs.

∆ = 645.599ms2), and Log. Powers (SD = 0.978ms2 vs. ∆ = 0.742ms2) of the

VLF band, and the Relative Powers of the LF frequency band (SD = 14.716%

vs ∆ = 6.466%). However, all remaining results lie outside the acceptable 1 SD

limits. It should be noted that overall the Absolute Powers, with the exception of

the VLF band, are significantly higher and lie multiple SD apart from the KUBIOS

results, being almost 4.3 times higher in the LF band (SD = 1137.171ms2 vs.

∆ = 4858.550ms2) 8 times higher in the HF band (SD = 1455.146ms2 vs. ∆ =

11512.643ms2).

Table 15: Evaluation results for the parameters extracted using the Autoregressive Method
(pyHRV vs. KUBIOS)

Autoregressive Method Evaluation Metrics

Parameter Unit pyHRV KUBIOS ∆
Peak Frequencies (VLF) [Hz] 0.000 ± 0.000 0.012 ± 0.015 0.012

Peak Frequencies (LF) [Hz] 0.040 ± 0.000 0.045 ± 0.018 0.005

Peak Frequencies (HF) [Hz] 0.155 ± 0.021 0.206 ± 0.071 0.051

Abs. Powers (VLF) [ms2] 2940.517 ± 62.056 2294.918 ± 2666.343 645.599

Absolute Powers (LF) [ms2] 6411.443 ± 159.130 1552.893 ± 1137.171 4858.550

Absolute Powers (HF) [ms2] 12379.985 ± 572.088 867.342 ± 1445.146 11512.643

Log Powers (VLF) [log] 7.986 ± 0.021 7.244 ± 0.978 0.742

Log Powers (LF) [log] 8.766 ± 0.025 7.056 ± 0.847 1.710

Log Powers (HF) [log] 9.423 ± 0.046 6.217 ± 0.903 3.206

LF/HF ratio [−] 0.518 ± 0.015 3.086 ± 1.943 2.568

Total Power [ms2] 21731.945 ± 748.929 4716.715 ± 3671.023 17015.230

Relative Powers (VLF) [%] 13.539 ± 0.299 44.497 ± 19.693 30.958

Relative Powers (LF) [%] 29.515 ± 0.492 35.981 ± 14.719 6.466

Relative Powers (HF) [%] 56.946 ± 0.766 19.482 ± 17.338 37.464

Normalized Powers (LF) [−] 34.138 ± 0.670 67.972 ± 19.013 33.834

Normalized Powers (HF) [−] 65.862 ± 0.670 31.949 ± 19.006 33.913

Optimal Acceptable Divergent

∆: Difference between pyHRV and KUBIOS mean value
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4.2.3 Nonlinear Parameters

The evaluation results for the Nonlinear parameters are listed in Table 16. Over-

all, the 7 comparable parameters provide acceptable results with the SD2/SD1

ratio showing even optimal results. Marginal differences are present for the SD1

(16.015msvs. ∆ = 0.044ms) and SD2 (SD = 35.962ms vs. 0.123ms) parame-

ters, with the SamPen results achieving almost optimal results (SD = 0.366ms vs.

∆ = 0.001). The highest relative differences are present in the results of the DFA

α1 (SD = 0.240[−] vs. ∆ = 0.022[−]) and α2 (SD = 0.199[−] vs. ∆ = 0.0.047[−])

parameters. The area of the fitted ellipse in the Poincaré plot could not be com-

pared, as this parameter is not computed by KUBIOS. However, given that this

parameters is computed based on a multiplication of the SD1 and SD2 parameters

with Pi (see Equation 25, page 35), and considering that these parameters have low

relative differences, it can be assumed that this parameter also lie within acceptable

limits.

Table 16: Evaluation results for the Nonlinear parameters (pyHRV vs. KUBIOS)

Nonlinear Parameters Evaluation Metrics

Parameter Unit pyHRV KUBIOS ∆
SD1 [ms] 30.041 ± 15.988 30.085 ± 16.015 0.044

SD2 [ms] 87.171 ± 35.907 87.294 ± 35.962 0.123

SD2/SD1 [−] 3.204 ± 1.306 3.204 ± 1.306 0.000

Sample Entropy [−] 1.332 ± 0.365 1.331 ± 0.366 0.001

DFA - α1 [−] 1.204 ± 0.264 1.182 ± 0.240 0.022

DFA - α2 [−] 0.886 ± 0.215 0.839 ± 0.199 0.047

Optimal Acceptable Divergent

Uncomparable parameter: Area of fitted Ellipse (Poincaré)

∆: Difference between pyHRV and KUBIOS mean value
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Conclusions

5.1 Discussion

The presented work provides an open-source toolbox for HRV named pyHRV for

the Python 2.7 programming language. The implemented multilevel package and

function architectures allow user to compute the entire set of computable HRV

parameters (Level 1 - HRV Level), domain-specific parameter sets (Level 2 - Domain

Level), or individual parameters only (Level 3 - Parameter Level). The implemented

error catching capabilities allow a reliable and robust use of this toolbox, even in

cases where unsuitable input data formats are provided (NNI series in seconds) or

where the selected method parameters are in conflict with the lenght of the analysed

NNI series, as in the case of the dfa() function. The implemented functions compute

a total of 87 parameters of the Time Domain (23), Frequency Domain (48) and

Nonlinear (7) parameters from NNI series extracted from single-lead ECG signals.

Additionally, pyHRV provides a series of tools with useful features for researchers

and developers of HRV applications such as ECG and Tachogram plotting, HRV

results exporting, importing, and HRV report generation.

The parameter functions have been tested and evaluated in a direct comparison with

the KUBIOS HRV software. For this purpose, 50 NNI series have been processed

by both pyHRV and KUBIOS, which results have been compared and evaluated.

The evaluation has been conducted by computing the difference between the mean

of each series of parameter results and the SD of the KUBIOS results. Parameters

with no differences between pyHRV and KUBIOS results have been classified as

optimal parameter results. Differences lower or equal than the SD of the KUBIOS

results were, although not optimal, considered acceptable, while parameter results
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with more significant differences have been classified as divergent. In the latter,

it means that the pyHRV function computed questionable results, which might re-

quire further investigation in future versions of the pyHRV toolbox. Overall, 12

HRV parameters computed with pyHRV have shown optimal results (identical to

the KUBIOS results), with 38 parameter being within acceptable ranges and 26

parameters presenting divergent results, .

In the Time Domain, the only concern lies within the computation of the TINN

parameters, where significant differences could be identified. Thorough revision of

the tinn() function is required for future versions of pyHRV, to identify possible

code segments that originate the differences and needs to be revised. On the other

hand, it is necessary to identify potential differences in the KUBIOS software. For

instance, pyHRV uses the 7.815 milliseconds bin size as recommended by the HRV

guidelines [86]. However, in KUBIOS, the bin size being used is not specified.

For instance, Figure 25 shows the histogram of a NNI series where 4 bins can be

found within an approximated interval of 100 milliseconds resulting in a bin size

of (approx.) 25 milliseconds, rather than the recommended 7.8125 milliseconds.

With the information provided, it is unclear whether this is merely a graphical

simplification of the NNI histogram or whether this does, in fact, compute the TINN

parameter on different bin sizes. Besides, KUBIOS does not provide information

about the number of NNI of each bin.

Figure 25: Example KUBIOS NNI histogram.

In the frequency domain, no adjustments are needed to the implemented Welch

function (welch psd()), as all parameters lie within optimal or acceptable ranges.

The results of Lomb-Scargle metho lomb psd() differ significantly from the KUBIOS

results with most of the parameters being rejected due to significant differences. For

this reason, this functions requires additional development in future pyHRV versions,

where the following aspects should be investigated: (1) frequency grid optimization,
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(2) moving average filter application, and (3) alternative algorithms.

(1) The implementation of the Lomb-Scargle method uses SciPy’s lombscargle() func-

tion to compute the PSD. SciPy’s algorithm requires the specification of a frequency

grid, i.e., an array of frequencies, for which the PSD is computed. In pyHRV, the

frequency grid is generated in dependence of the selected number of PSD samples

(NFFT) using the nfft input parameter [38]. This algorithm is susceptible to the

definition of the NFFT, which can greatly alter the results. For instance, increasing

the NFFT in the Welch’s method increases the frequency resolution of the computed

PSD, as shown in Figure 26 (a) (NFFT=28) compared to Figure 26 (b) (NFFT=212).

However, for the Lomb-Scargle method, the NFFT selection has a different effect,

where lower NFFT provides PSD estimations in which the dominant frequencies are

more likely to be identified, as seen in Figure 26 (c), while an increase of the NFFT

causes a more uniform PSD as seen in Figure 26 (d), resembling the white noise

on which basis the Lomb-Scargle method is computed [49]. This behaviour must

be further investigated to find a suitable NFFT value for the Lomb-Scargle method

in HRV applications. In the case of the present pyHRV version, the selection of a

suitable NFFT lies within the responsibility of the user.

(2) In combination with the NFFT review, it might be considered to investigate the

use of moving average filters to improve the results of the Lomb-Scargle PSD, by

smoothing the spectral components which can also be found in other HRV applica-

tions [66].

(3) Ultimately, in case that none of the previous methods provides reasonable re-

sults, it might be considered to investigate the use of other Lomb-Scargle algorithms

for HRV specific purposes. For instance, the AstroPy package’s Lomb() class has

implemented methods to automatically determine the most suitable frequency grid,

and has been successfully tested in HRV applications [71, 88]. However, first tests

have shown that although this feature provides promising results, a noticeable dif-

ference in run-time and system resources use does exist, which needs to be improved

in future work.

Although the pyHRV Autoregressive function has resulted in more rejected param-

eters than the Lomb-Scargle results (10 rejected parameters vs. 6), this method’s

results show a significant difference compared to the Lomb-Scargle results that,

with other additional factors, might argue in favor of its functionality and reliability

rather than the Lomb-Scargle method. As with the other methods, the majority

of the Frequency Domain parameters have been computed based on the Absolute

Powers of the Autoregressive PSD. Differences on these parameters have shown to
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(a) (b)

(c) (d)

Figure 26: Comparison of the effects of NFFT selection on the PSD estimation methods (a:
Welch’s method with nfft=28, b: Welch’s method with nfft=216, c: Lomb-Scargle method with

nfft=28, d: Lomb-Scargle method with nfft=216.

be significantly higher in this method when compared to the KUBIOS results, espe-

cially for the LF and HF bands where the Absolute Powers are multiple times (4.2

and 8) greater than the KUBIOS results. However, when analysing the resulting

Peak Frequencies, it is noticeable that the results are in accordance with the KU-

BIOS results. Given that the activity of a variety of physiological mechanisms is

derived from the dominant frequencies within the individual FB, it can be argued

that this method provides more reliable results than the implemented Lomb-Scargle

function, which fails to accurately compute dominant frequencies in the LF band.

As for the differences in the Absolute Powers, the following aspects are assumed to

be the cause of this effect. First, various models exist for AR PSD estimations, which

may differ in their fundamental computational methods (e.g., Burg, Yule). KUBIOS

does not specify the method being used for its implemented PSD estimation which

makes it difficult to ensure an entirely fair comparison. Second, while KUBIOS

allows the user to set the specifications of the moving average filter being applied

71



5. Conclusions

to this method, the spectrum.pyule() function comes with built-in functions that

automatically determine the optimal moving average filter specifications. These

differences may be the leading causes of the increased PSD estimation. However,

it is essential to acknowledge the usefulness of the pyHRV method, given that the

dominant frequencies and alterations can still be identified, thus, being a reliable

tool for HRV applications.

The comparison of the Nonlinear parameters have shown positive results, with 6 out

of 7 parameters showing acceptable results, and only marginal errors found when

compared to the KUBIOS results, and the SD2/SD1 ratio achieving even optimal

results. The functions of this module do not require any further optimization.

5.2 Future Work

In addition to the results discussed in the previous section, which require further

revision and improvements in some parameter computation functions of the Time

and Frequency Domains, the developed pyHRV toolbox will experience continued

development with the implementation of new HRV methods and features in the

future. Also, on a programming side, general improvements should be conducted

such as adding full support for the Python 3 programming language. On a HRV

feature extraction and method implementation side, the state-of-the-art methods

described next can be implemented, which have been proposed by HRV researchers

over the recent years.

Björkander et al. [9] have proposed a new geometrical Time Domain parameter

named Differential Index, which is computed based on the same NNI histogram as

shown in Figure 27. This parameter is computed from long-term ECG recordings

and requires no pre-filtering of the NNI series. For this parameter, the width of the

histogram at 10 000 (R1) and 1000 (R2) NNI intervals is measured, and a trian-

gular function is computed. The Differential Index is the baseline of the computed

triangular function and is an index for overall HRV, with increasing baseline width

presenting higher HRV.

For the Frequency Domain, German-Zallo [30] has investigated the use of a Wavelet

Package Transform as an alternative method to the FFT based PSD estimation

method, to measure the power variance and to identify dominant frequencies in a

NNI series. His approach has shown good time-frequency resolution and comparable

results for the LF/HF ratio, however, it still requires further investigation. Adding
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Figure 27: Illustration of the Differential Index computation [9].

this method to pyHRV would provide the tools for researchers to investigate this

method in further detail. Another interesting method would be the implementation

of adaptive frequency bands, as proposed by Long et al. [50], to increase the accuracy

of identifying dominant HR regulation mechanisms in sleep and wake states. Here,

the LF and HF frequency bands are adjusted based on time-frequency analysis of the

NNI series, to compensate the time-varying behavior of the dominant frequencies in

sleep vs. wake states.

Costa et al. [21] have developed and proposed a new method to quantify the com-

plexity of physiologic time series, the Multiscale Entropy. Traditional Nonlinear

entropy methods (e.g. SamPen) can cause misleading results when applied on ECG

recordings with pathological cardiac arrhythmia, where higher entropy values can

be found compared to healthy individuals even when the underlying HR regulation

systems show no sign of pathological influence. The Multiscale Entropy method

analyses the entropy of a NNI series based on multiple time scales, thus avoiding

the misleading characteristics of the traditional methods, and can now also be found

in other fields of research (e.g. analysis of EEG signals) for which pyHRV might

also be of added value [5, 16, 22, 23, 36]

Another interesting option, the implementation of existing and recent HRV methods,

could be the exploration and development of new methods that could be of additional

value for the pyHRV toolbox. For instance, one possibility could be to focus on

variations of commonly used parameters or methods that have shown to be easier to

interpret such as the Poincaré plot [33, 56, 59, 94]. The Poincaré plot is one of the

most comprehensive geometrical methods based on a NNIj vs. NNIj+1 scatter plot.

The form of the scatter plot has been thoroughly investigated and its importance for
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the identification of healthy (high) or pathological (low) HRV is widely recognized

[102]. However, little to no research has yet been conducted to investigate scatter

plots of other intervals (e.g., NNIj vs. NNIj+2, NNIj vs. NNIj+3) and their

potential capability to identify different scatter plot patterns as results of different

cardiac conditions.
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Appendix A

Sample HRV Report

SampleReport.txt

# BIOSPPY HRV REPORT - v.0.2.5

# Sampling Rate ; 1000Hz

# Date Time ; 2018-11-18_18-48-17

# File ; SampleFile

# Device ; BITalino revolution Board

# Identifier/MAC ; A0:B1:C2:D3:F4:H5

# Resolution ; 10-bit

----------------------------------------------------------------------

COMMENTS

This is a sample report.

----------------------------------------------------------------------

NN INTERVALS ms ; n/a

----------------------------------------------------------------------

Time Domain

----------------------------------------------------------------------

Number of NNIs - ; 4684.000

Mean NNI ms ; 768.438

Minimum NNI ms ; 562.000

Maximum NNI ms ; 1188.000

Mean Delta-NNI ms ; 42.199

Minimum Delta-NNI ms ; 0.000

Maximum Delta-NNI ms ; 360.000

Mean Heart Rate bpm ; 78.990

Minimum Heart Rate bpm ; 50.505

XI



A. Sample HRV Report

Maximum Heart Rate bpm ; 106.762

Standard Deviation of Heart Rate bpm ; 8.305

SDNN ms ; 85.357

SDNN Index ms ; 82.586

SDANN ms ; 22.347

SDSD ms ; 43.391

RMSSD ms ; 60.523

NN50 - ; 1338.000

pNN50 % ; 28.571

NN20 - ; 3008.000

pNN20 % ; 64.232

Triangular Index - ; 11.509

TINN ms ; 0.000

TINN N ms ; 0.000

TINN M ms ; 0.000

----------------------------------------------------------------------

Frequency Domain - FFT Welch’s Method

----------------------------------------------------------------------

Frequency Bands Hz ;

- None

- 0.0, 0.04

- 0.04, 0.15

- 0.15, 0.4

Peak Frequencies Hz ;

- 0.0185546875

- 0.0400390625

- 0.150390625

Absolute Powers Hz ;

- 2050.743568530359

- 2942.537244842369

- 1648.0967694750875

Logarithmic Powers Hz ;

- 7.62595772272

- 7.9870274966

- 7.40737642809

Relative Powers % ;

- 30.878286062618386

- 44.306127879882

- 24.815586057499615

Normalized Powers - ;

- 64.09871132538694

- 35.901288674613056

Total Power ms^2 ; 6641.378
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A. Sample HRV Report

LF/HF Ratio - ; 1.785

Number of PSD Samples - ; 4096.000

Window Function - ; hamming

Resampling Frequency Hz ; 4.000

Interpolation Method - ; cubic

----------------------------------------------------------------------

Frequency Domain - Autoregression Method

----------------------------------------------------------------------

Frequency Bands Hz ;

- None

- 0.0, 0.04

- 0.04, 0.15

- 0.15, 0.4

Peak Frequencies Hz ;

- 0.0

- 0.0400390625

- 0.150390625

Absolute Powers ms^2 ;

- 2779.1536684617004

- 6175.5637927489115

- 12477.064306903205

Logarithmic Powers Hz ;

- 7.92990172453

- 8.7283554598

- 9.43164738243

Relative Powers % ;

- 12.967441058010968

- 28.814980758794906

- 58.21757818319412

Normalized Powers - ;

- 33.10827707364245

- 66.89172292635755

Total Power ms^2 ; 21431.782

LF/HF Ratio - ; 0.495

Number of PSD Samples - ; 4096.000

AR Order - ; 16.000

----------------------------------------------------------------------

Frequency Domain - Lomb-Scargle Method

----------------------------------------------------------------------

Frequency Bands Hz ;

- None
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A. Sample HRV Report

- 0.0, 0.04

- 0.04, 0.15

- 0.15, 0.4

Peak frequencies Hz ;

- 0.02250980392156863

- 0.04341176470588235

- 0.2347450980392157

Absolute powers Hz ;

- 15.068433975736726

- 46.19183177960316

- 114.84694635936958

Logarithmic powers Hz ;

- 2.71260209057

- 3.83280298115

- 4.7436003407

Relative powers % ;

- 8.556398000282764

- 26.22938108265298

- 65.21422091706425

Normalized powers - ;

- 28.683670053520075

- 71.31632994647991

Total power ms^2 ; 176.107

LF/HF ratio - ; 0.402

Number of PSD Samples - ; 256.000

Moving Average Window Size - ; n/a

----------------------------------------------------------------------

Nonlinear Methods

----------------------------------------------------------------------

SD1 ms ; 42.797

SD2 ms ; 112.837

SD2/SD1 - ; 2.637

Ellipse Area S ms^2 ; 15170.898

Sample Entropy - ; 1.250

DFA alpha 1 long term fluctuation - ; 1.197

DFA alpha 2 long term fluctuation - ; 0.882

None None ; n/a
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B. Parameter Keys & Report Descriptions

Table A1: Time domain parameter keys and report descriptions.

Time Domain Keys & Descriptions

Parameter Key Report Description
NNI nn intervals NN INTERVALS
#ofNNI nni counter Number of NN Intervals [−]
NNmean nni mean Mean NN Interval [ms]
NNmin nni min Minimum NN Interval [ms]
NNmax nni max Maximum NN Interval Difference [ms]
∆NNmean nni diff mean Mean NN Interval [ms]
∆NNmin nni diff min Minimum NN Interval [ms]
∆NNmax nni diff max Maximum NN Interval Difference [ms]
HRmean hr mean Mean Heart Rate [BPM ]
HRmin hr min Minimum Heart Rate [BPM ]
HRmax hr max Maximum Heart Rate [BPM ]
HRstd hr std Standard deviation of the HR [BPM ]
SDNN sdnn SDNN [ms]
SDNNIndex sdnn index SDNN Index [ms]
SDANN sdann SDANN [ms]
SDSD sdsd SDSD [ms]
RMSSD rmssd RMSSD [ms]
NN50 nn50 NN50 [−]
pNN50 pnn50 pNN50 [%]
NN20 nn20 NN20 [−]
pNN20 pnn20 pNN20 [%]
TriIndex tri index Triangular index [−]
TINN tinn TINN [ms]
N tinn n TINN N [ms]
M tinn m TINN M [ms]

Table A2: Frequency domain parameter keys and report descriptions.

Frequency Domain Keys & Descriptions

Parameter Key Report Description
f −Bands X bands Frequency bands (Hz)
Peakf X peak Peak frequencies (Hz)
AbsolutePowers X abs Absolute powers [ms]
log(Powers) X log Logarithmic powers (log)
RelativePowers X rel Relative powers[%]
NormalizedPower X norm Normalized powers [−]
TotalPower X total Total power [ms]
LF/HF X ratio LF/HF ratio [−]
With X = ’fft’ for FFT based frequency methods, ’ar’ for Autoregression methods, or ’lomb’
for Lomb-Scargle methods.
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B. Parameter Keys & Report Descriptions

Table A3: Nonlinear parameter keys and report descriptions.

Nonlinear Keys & Descriptions

Parameter Key Report Description
SD1 sd1 SD1 [ms]
SD2 sd2 SD2 [ms]
SD2/SD1 sd ratio SD2/SD1 ratio [−]
EllipseArea ellipse area Ellipse Area S [ms2]
SampleEntropy sampen Sample Entropy [−]
α1 dfa short DFA alpha 1 (short-term fluctuation) [−]
α2 dfa long DFA alpha 2 (long-term fluctuation) [−]

Table A4: Plot keys.

pyHRV plot figure keys.

Plot Key
ECG ecg plot
Tachogram tachogram plot
Poincare poincare plot
WelchPSD fft plot
ARPSD ar plot
LombPSD lomb plot
NNIHistogram nni histogram
TINNHistogram tinn histogram
TriIndexHistogram tri histogram
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Appendix C

Developed Support Packages

C.1 OpenSignalsReader Package

The OpenSignalsReader package is designed to facilitate the import of sensor sig-

nals acquired with BITalino (r)evolution using PLUX’s OpenSignals (r)evolution

software into simple Python data containers. These containers consist of nested

NumPy arrays, lists, and dictionaries to store sensor signals and acquisition meta-

data (e.g., device type, sampling frequency, sampling resolution), which are ulti-

mately stored in am OpenSignalsReader() object. Imported signals are converted

by default into their original units using the transfer functions implemented in the

bitalino transfer function.py module taken from the sensor-specific datasheets1.

In this work, this package is only used to import ECG signals acquired with BITalino

devices for testing purposes of pyHRV and to provide application examples using

ECG acqusition hardware, which can be found in the API reference.

The open-source OpenSignalsReader package has been made available GitHub and

can be found under the following link:

https://github.com/PGomes92/opensignalsreader

1BITalino Datasheets: http://bitalino.com/en/learn/documentation
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C. Developed Support Packages

Python Snippet 7 demonstrates a minimum working example of the use of this

package and the OpenSignalsReader class.

1 # Import l i b r a r i e s

2 from o p e n s i g n a l s r e a d e r i m p o r t O p e n S i g n a l s R e a d e r

3

4 # Read OpenS igna l s a c q u i s i t i o n f i l e & p l o t a l l s i g n a l s

5 acq = O p e n S i g n a l s R e a d e r ( ’ SampleECG . t x t ’ , show=True )

6

7 # Plo t ECG s i g n a l on l y

8 acg . p l o t ( ’ECG ’ )

9

10 # Access ECG s i g n a l

11 acg . s i g n a l s ( ’ECG ’ )

Python Snippet 7: Minimum working example of the OpenSignalsReader package and class to

import BITalino (r)evolution sensor data stored in OpenSignals (r)evolution file.

C.2 Kubios Package

The kubios package is designed to facilitate the export of NNI series in KUBIOS-

friendly .TXT files and to import HRV parameter results computed with KUBIOS

and stored in KUBIOS .TXT report files.

In this work, this package has been used within the evaluatio process, to read KU-

BIOS results stored in the KUBIOS report files.

The open-source kubios package has been made available on GitHub and can be

found under the following link:

https://github.com/PGomes92/kubios
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Appendix D

BITalino (r)evolution Board

Datasheet

(Source: http://bitalino.com/datasheets/REVOLUTION_BITalino_Board_Kit_

Datasheet.pdf)
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BITalino (r)evolution Board  
Kit Data Sheet  BBK 160616 
	

	

	

 
PLUX – Wireless Biosignals, S.A. 

Av. 5 de Outubro, n. 70 – 8. 
1050-059 Lisbon, Portugal 

bitalino@plux.info 
http://bitalino.com/ 

 
REV A	

 
© 2016 PLUX  

 
This information is provided "as is," and we make no express or implied warranties whatsoever with respect to functionality, operability, use, 
fitness for a particular purpose, or infringement of rights. We expressly disclaim any liability whatsoever for any direct, indirect, consequential, 
incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, 
regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages. 
 

 BEWARE: DIRECT OR INDIRECT COUPLING TO THE MAINS MAY RESULT IN SHOCKING HAZARD  
   
	

SPECIFICATIONS 
> Sampling Rate: 1, 10, 100 or 1000Hz 
> Analog Ports: 4 in (10-bit) + 2 in (6-bit) +    
   1 auxiliary in (battery) + 1 out (8-bit) 
> Digital Ports: 2 in (1-bit) + 2 out (1-bit) 
> Communication: Bluetooth or BLE 
> Range: up to ~10m (in line of sight) 
> Sensors: EMG; ECG; EDA; EEG; ACC;  
   LUX; BTN 
> Actuators: LED; BUZ 
> Size: 100x65x6mm 
> Battery: 500mA 3.7V LiPo (rechargeable) 
> Consumption: ~65mA 
> Accessories: 1x 3-lead cable; 1x 2-lead  
   cable; 5x Electrodes; 1x ProtoBIT  
 
FEATURES 
> All-in-one ready-to-use design 
> Snappable blocks 
> Raw data acquisition 
> On-board battery charger 
> Easy-to-use 
> Affordable 
 
APPLICATIONS 
> Psychophysiology 
> Biomedical projects 
> Electrical engineering 
> Human-Computer Interaction 
> Robotics & Cybernetics 
> Physiology studies 
> Biofeedback 
 
GENERAL DESCRIPTION 
Our signature BITalino (r)evolution Board 
kits have an all-in-one hardware design, 
with all the blocks pre-connected between 
them and ready-to-use, making it perfect for 
biosignal exploration and lab activities. The 
kit includes all the basic accessories 
needed to get started, namely the hardware 
modules, battery, cables and electrodes. 
Along with our cross-platform OpenSignals 
software, it enables instant biosignal data 
visualization and recording out-of-the-box. 
 

 
Fig. 1. All-in-one design ready to use out-of-the-box; 

available with Bluetooth (Fig. 4) or BLE (Fig. 5). 
 

 
Fig. 2. The BITalino (r)evolution Board kits enable you to 

have your own personal biomedical research system. 
 

 
Fig. 3. Parts and accessories included in the kit. 



BITalino (r)evolution Board  
Kit Data Sheet   
	

 
 

PAGE 2 OF 3 
	

 
FUNCTIONAL BLOCKS 

 
Fig. 4. BITalino (r)evolution Board with Bluetooth connectivity. 

 

 
 

Fig. 5. BITalino (r)evolution Board with BLE connectivity. 
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PACKAGING 
 

  
Fig. 6. BITalino (r)evolution Board kits ship in a convenient eco-friendly packaging that can double as an enclosure. 

 
ORDERING GUIDE 
Part # Description 
KIT-REV-BOARD-BT-UCE6 BITalino (r)evolution Board kit with Bluetooth connectivity 

and UC-E6 connectors 
KIT-REV-BOARD-BLE-UCE6 BITalino (r)evolution Board kit with BLE connectivity and 

UC-E6 connectors 
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BITalino (r)evolution ECG Sensor

Datasheet

(Source: http://bitalino.com/datasheets/REVOLUTION_ECG_Sensor_Datasheet.

pdf)
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Electrocardiography (ECG) 
Sensor Data Sheet  ECG 100716 
	

	

	

 
PLUX – Wireless Biosignals, S.A. 

Av. 5 de Outubro, n. 70 – 8. 
1050-059 Lisbon, Portugal 

bitalino@plux.info 
http://bitalino.com/ 

 
REV A	

 
© 2016 PLUX  

 
This information is provided "as is," and we make no express or implied warranties whatsoever with respect to functionality, operability, use, 
fitness for a particular purpose, or infringement of rights. We expressly disclaim any liability whatsoever for any direct, indirect, consequential, 
incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, 
regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages. 
 

 BEWARE: DIRECT OR INDIRECT COUPLING TO THE MAINS MAY RESULT IN SHOCKING HAZARD  
	

	

SPECIFICATIONS 
> Gain: 1100 
> Range: ±1.5mV (with VCC = 3.3V) 
> Bandwidth: 0.5-40Hz 
> Consumption: ~0.17mA 
> Input Voltage Range: 2.0-3.5V 
> Input Impedance: 7.5GOhm 
> CMRR: 86dB 
 
FEATURES 
> Bipolar differential measurement 
> Pre-conditioned analog output 
> High signal-to-noise ratio 
> Small form factor 
> Raw data output 
> Easy-to-use 
> “On-the-person” and “off-the-person” use 
 
APPLICATIONS 
> Heart rate & heart rate variability 
> Human-Computer Interaction 
> Biometrics 
> Affective computing 
> Physiology studies 
> Psychophysiology 
> Biofeedback 
> Biomedical devices prototyping 
 
GENERAL DESCRIPTION 
Heartbeats are triggered by bioelectrical 
signals of very low amplitude generated by 
a special set of cells in the heart (the SA 
node). Electrocardiography (ECG) enables 
the translation of these electrical signals into 
numerical values, enabling them to be used 
in a wide array of applications. Our sensor 
allow data acquisition not only at the chest 
(“on-the-person”), but also at the hand 
palms (“off-the-person”), and works both 
with pre-gelled and most types of dry 
electrodes. The bipolar configuration is ideal 
for low noise data acquisition. 	
 

 
Fig. 1. Pin-out and physical dimensions. 

 

 
Fig. 2. Typical raw ECG data (acquired with BITalino 

(r)evolution) using an Einthoven triangle configuration. 
 

  
Fig. 3. Example of a 1-lead placement with IN+ & IN- on 

the collarbones and REF on the iliac crest.  
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TRANSFER FUNCTION 
[-1.5𝑚𝑉, 1.5𝑚𝑉] 
 

𝐸𝐶𝐺 𝑉 =
𝐴𝐷𝐶
2! − 12 .𝑉𝐶𝐶

𝐺!"#
 

 
𝐸𝐶𝐺 𝑚𝑉 = 𝐸𝐶𝐺 𝑉 . 1000 
 
𝑉𝐶𝐶 = 3.3𝑉 (operating voltage) 
𝐺!"# = 1100 (sensor gain) 
 
𝐸𝐶𝐺 𝑉  – ECG value in Volt (𝑉) 
𝐸𝐶𝐺 𝑚𝑉  – ECG value in millivolt (𝑚𝑉) 
𝐴𝐷𝐶 – Value sampled from the channel  
𝑛 – Number of bits of the channel1  
 
ORDERING GUIDE 
Part # Description 
SENS-ECG-NC Electrocardiography (ECG) sensor without connectors 
SENS-ECG-UCE6 Electrocardiography (ECG) sensor with UC-E6 sockets on both sides 

for seamless plug & play connection to a BITalino (r)evolution 
Plugged or Core 

SENS-ECG-SHER Electrocardiography (ECG) sensor with a Molex Sherlock 4-pin socket 
on one side and a Molex Sherlock 3-pin socket on the other for easy 
power and signal cable connection or pin breakout using PCB wires 

 
 
 
 
 
 

																																																								
1 The number of b ts for each channe  depends on the reso ut on of the Ana og-to-D g ta  Converter (ADC); n 
BITa no the f rst four channe s are samp ed us ng 10-b t reso ut on (𝑛 = 10)  wh e the ast two may be samp ed us ng 
6-b t (𝑛 = 6)  
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OpenSignals (r)evolution

Datasheet

(Source: http://bitalino.com/datasheets/OpenSignals_Datasheet.pdf)
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OpenSignals (r)evolution 
Software Data Sheet  OSR 160616 
	

	

	

 
PLUX – Wireless Biosignals, S.A. 

Av. 5 de Outubro, n. 70 – 8. 
1050-059 Lisbon, Portugal 

plux@plux.info 
http://www.plux.info/ 

 
REV A	

 
© 2016 PLUX  

 
This information is provided "as is," and we make no express or implied warranties whatsoever with respect to functionality, operability, use, 
fitness for a particular purpose, or infringement of rights. We expressly disclaim any liability whatsoever for any direct, indirect, consequential, 
incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, 
regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages. 
 
   
   
	

SPECIFICATIONS 
> Supported Devices: BITalino; BITalino 
(r)evolution; biosignalsplux; motionplux 
> Simultaneous Devices: up to 3 
> File Formats: TXT; HDF5 
> Plugins: Video synchronization; 
Electromyography (EMG) analysis; Heart 
Rate Variability (HRV); Electrodermal 
Activity (EDA) events; Respiration (PZT & 
RIP) analysis 
 
FEATURES 
> Real-time data visualization & recording 
> Visualization of recorded data 
> Feature extraction plugins with reporting 
> Synchronized multi-device recording 
> Multiplatform support 
> User-friendly GUI 
 
APPLICATIONS 
> Psychophysiology 
> Biomedical projects 
> Computer science 
> Electrical engineering 
> Human-Computer Interaction 
> Robotics & Cybernetics 
> Physiology studies 
> Biomechanics 
> Biofeedback 
 
GENERAL DESCRIPTION 
Our cross-platform OpenSignals software 
enables instant data visualization and 
recording from any PLUX device. With a 
web-based GUI and a Python backend, 
OpenSignals combines high performance 
data handling and computing with user-
friendly interfaces. The modular architecture 
enables it to be expanded with plugins for 
real-time or offline data processing and 
information extraction. Recorded data can 
be stored in a standard ASCII tab delimited 
file format or in the modern and highly 
efficient HDF5 format.	
 

 
Fig. 1. Main screen. 

 
Fig. 2. Example of a visualization screen. 

 

 
Fig. 3. Example of a recording stored in ASCII format. 

 



Appendix G

OpenSignals (r)evolution File

Format Description

(Source: http://bitalino.com/datasheets/OpenSignals_File_Formats.pdf)
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PLUX – Wireless Biosignals, S.A. 

Av. 5 de Outubro, n. 70 – 8. 
1050-059 Lisbon, Portugal 

plux@plux.info 
http://www.plux.info/ 

 
REV A	

 
© 2017 PLUX  

 
This information is provided "as is," and we make no express or implied warranties whatsoever with respect to functionality, operability, use, 
fitness for a particular purpose, or infringement of rights. We expressly disclaim any liability whatsoever for any direct, indirect, consequential, 
incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, 
regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages. 
 
   
   
	

FEATURES 
> Data visualization & recording 
> Feature extraction plugins with reporting 
> Multiplatform support 
> User-friendly GUI 
 
APPLICATIONS 
> Psychophysiology 
> Biomedical projects 
> Computer science 
> Electrical engineering 
> Human-Computer Interaction 
> Robotics & Cybernetics 
> Physiology studies 
> Biomechanics 
> Biofeedback  
 
GENERAL DESCRIPTION 
OpenSignals records data in ASCII tab 
delimited files (Fig. 1) and/or in the modern 
and highly efficient HDF5 format (Fig. 2). If 
the same format is followed, any third-party 
software can also export or record data in 
such a way that OpenSignals may be used 
as visualizer. 
 
 
 

 
Fig. 1. Example ASCII file for BITalino (r)evolution; Col. 1: 
Sample sequence number (4-bit) generated on the device 
to facilitate the detection of missing data; Col. 2 & 3: State 

of the digital inputs I1 & I2; Col. 3 & 4: State of the digital 
outputs O1 & O2; Col. 5-: Raw data for each analog input 

acquired during the recording session (in this case A1-A6). 
 

 
Fig. 2. Example of a recording stored in HDF5 format. 
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METADATA FIELDS SUMMARY  

Field Description 
channels Set of analog inputs selected for acquisition in the recording session 

that generated this file (last columns of the file) 
column Meaning of each column (in ASCII files) or group with acquired data 

(in HDF5 files) for a given device1 
comments User-defined text with notes or other content of interest to the file 
date Day, month and year in which the file was recorded 
device Type of recording device used to collect the data (e.g. biosignalsplux, 

BITalino (r)evolution) 
device connection Logical address used to establish a connection with the device2 
device name Friendly name manually assigned by the user to the device 
digital IO Set of digital channels available in this device (0 – Input; 1 – 

Output) 
firmware Version of the embedded software running on the device that 

acquired the data 
label Array with labels manually assigned by the user to each of the 

analogs channels 
mode Specifies the acquisition mode in which the device was used (0 – 

Regular acquisition; 1 – Multiple synchronized 
devices; 2 – Started by a triggering signal) 

resolution Resolution with which each of the columns (in ASCII files) or group 
with acquired data (in HDF5 files) are represented 

sampling rate Number of samples per second with which data has been acquired by 
the device on each channel 

sensor Array with the type of sensor connected to each analog port (e.g. as 
selected from the options available in the device configuration panel 
on OpenSignals) 

special List of non-standard channels acquired (e.g. SpO2 sensors with I2C 
interface connected on biosignalsplux hubs). 

sync interval Time interval (in seconds) at which a digital signal is sent by a 
“pacemaker” thread to a single device (used when the sync mode in 
on OpenSignals for synchronized data acquisition using multiple 
devices) 

position Order in which the block of columns corresponding to a given device 
appears in each line of the file (0 – First sequence of 
columns; 1 – Second sequence of columns; etc.) 

time Time at which the first sample was received by the software 
 
ASCII TEXT FORMAT  

OpenSignals ASCII text files have two parts, namely a header section and data section.  
 
The header section has 3 header lines, each starting with the pound (#) character, given that 
it is automatically ignored by ASCII text file loading functions in common scientific computing 
programming languages (e.g. loadtxt in Python). 
 
The header section begins after the line with the content “# OpenSignals Text File 
Format” and ends after the line “# EndOfHeader”. The second line has the metadata 
stored as a JSON object containing each device's MAC address as top-level keys. For each 
top-level key, there is a JSON object as value, containing the acquisition settings used for that 
																																																								
1	 e  nSeq s the samp e sequence number generated on the dev ce  Ix s the state of d g ta  nput x  Ox s the state 
of d g ta  output x  and Ax s the raw data samp ed by the dev ce 	
2	e g  AA:AA:AA:AA:AA:AA represents a connect on over a B uetooth socket  0.0.0.0:0000 represents a 
connect on over TCP/IP  and COM1 or /dev/tty.BITalino-AA-AA-DevB represents a connect on over ser a  port 	
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device in the recording session that produced the file in the form of key / value fields 
(described earlier). 
 
JSON has been chosen as the metadata representation format, given that in most scientific 
computing languages it can be directly unraveled as a dictionary, and it has parsers available 
for most mainstream programming languages. 
 

 
Fig. 3. Example of an ASCII text file header. 

 
On the data section, each column contains the signals labeled in the column field (see the 
caption on Fig. 1 for an example). To facilitate automated post-processing of the data, the 
resolution with which each column is recorded is stored in the resolution field (e.g. useful 
for a specific sensor’s transfer function found in the corresponding sensor datasheet).  
 
If the acquisition includes multiple devices, the metadata is stored following the same logic for 
each device, side by side, according to the position header field. 
 
HDF5 FORMAT  

OpenSignals HDF5 files comprise one group for each device used, represented by its MAC 
address. Each device’s group includes metadata fields containing the acquisition settings 
used for that device in the recording session that produced the file (described earlier) and 5 
sub-groups:  
 
> digital: includes a dataset for each digital channel (input channels followed by the output 
channels); 
> events: includes a dataset for digital events and dataset for sync events; 
> plugin: includes a group of datasets for each plugin used/processed; 
> raw: includes a dataset for the sample sequence number generated by the device and a 
dataset for each analog input selected for acquisition (each analog dataset includes the label 
and sensor type attributes). 
> support: includes a group of datasets with support information (mean, standard deviation, 
...) for each zoom level available for each channel, either analog or digital (t: initial time for 
the sample group; mean: average, sd: standard deviation; mx: minimum value; Mx: maximum 
value; mean_x2: average of the sample group's 2nd power). 
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Fig. 4. Example of an HDF5 file structure. 
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einer anderen Prüfungsbehörde vorgelegt noch veröffentlicht.
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