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Abstract

The focus of the thesis is the implmentation of the discrete convolution and the uniformly-

partitioned convolution on the CPU with C++ and on the GPU with OpenCL. When

comparing the performance of algorithms on di�erent processor types, it is uttermost

importance to exhaust their processing power. To obtain the maximum performance
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optimization of the code is required. There are several types of strategies available for

optimizing the code. Their e�ect on the performance is evaluate to show which are

absolute necessary and which have only a negligible e�ect.
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1 Introduction

Convolution reverb is a digital audio e�ect to simulate the reverberation of sound in an

environment. These reverberations are caused by changes in the direction of the sound

wave, mostly through di�use re�exion. Through the change in the propagation direction,

a wavefront can reach a speci�c point in an environment multiple times with variations

in traveling time and amplitude, creating reverberations. These reverberations alter the

perception of sound and give humans an impression of their surrounding environment.

Convolution reverb reproduces the reverberations created by an environment accurately.

The e�ect is applied by convolving an audio signal with the impulse response of the

environment, hence the name. The impulse response is an audio recording of the rever-

beration triggered by an impulse in the environment. The simulation of the reverb is

only accurate for a speci�c position of the audio source and the listener position. The

�rst is the position in the environment where the impulse was triggered, the latter where

the reverberations were recorded.

The application of convolution reverb in a real-time application is complicated. The main

problem with convolution reverb is the algorithmic complexity of convolution algorithms

combined with the high sampling rates of audio signals. This problem is only increased

by the requirement to convolve multiple audio signals to create any immersive auditive

environment. As an example, the pre-rendered acoustic simulation for the concert hall

of the WDR, created by Ralph Burgmeyer [5], convolved an audio signal 24 times to

recreate the reverberations of a single audio source. For the creation of an immersive

and interactive environment a �tting reverb is indispensable. When convolution reverb

is selected, proper optimization of the convolution algorithm is required.

Practical use of convolution reverb is not limited to music enthusiasts, but the e�ect is

also used for audio in Virtual Reality (VR). While VR is a niche product two frameworks

1



1 Introduction

using convolution reverb are available. The �rst one is VRWork from NVIDIA 1 and the

second Resonance Audio from Google 2.

The main aim of this thesis is to evaluate three di�erent convolution algorithms and

compare their performance on CPU and GPU. The algorithms are discrete convolution,

unpartitioned, and uniformly-partitioned fast convolution. GPUs are often used to in-

crease the performance of algorithms. This is enabled by their di�erent architecture.

For a performance comparison between the two processors it is necessary to fully use

their computational abilities. This is important, because the aim is to compare the

performance of the processors not how well optimized the code is.

An emphasis of this thesis is the optimization. Each device has its own optimization

strategies. For the CPU it is standard code optimization in C++ and the vector instruc-

tion unit. Strategies for the GPU are memory optimization and transfer optimization.

The algorithms are implemented in the form of convolution engines. A convolution

engine being a digital audio processor element. The purpose of the convolution engine

is to convolve multiple digital audio signals with their corresponding impulse responses.

Each engine is customizable in at least three parameters: I/O bu�er size, �lter response

length, and the number of channels for the convolution.

To showcase the e�ect of the optimization di�erent versions of the algorithms were im-

plemented. Each version uses di�erent optimization strategies. The purpose is to �nd

out which optimizations are necessary to achieve the maximum performance and are

therefore necessary to apply for comparisons between the two processors.

Evaluation of the engines is conducted in a test environment. The test environment allows

the testing of the engines in similar conditions with di�erent test parameters. The aims

of the tests are to �nd the break-even point between CPU and GPU implementations,

and between the di�erent algorithms.

As proof of concept, a VST Plug-in was created that combined with a Digital Audio

Workstation (DAW) realizes the acoustic simulation of the WDR concert hall[5] in real-

time.

1https://developer.nvidia.com/vrworks/vrworks-audio
2https://resonance-audio.github.io/resonance-audio/

2
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2 Related Work

Arti�cial reverberations is a relatively old topic. The development of arti�cial reverbera-

tions started in the 1920 with analog methods. The �rst digital solution where developed

in the 1960 through digital �lters structures. The real-time usage of convolution reverb

is a development over the last 10 years that was enabled by the increasing processing

power of CPUs and the usage of GPUs for the convolution. [20]

That a GPU can be used to increase the performance of di�erent audio processing task

was shown by L.Savioja, V.Välimäki, J.O. Smith. [17]. They showed that with using

CUDA a GPU can be used to increase the performance of additive synthesis, discrete

and fast convolution. Since hardware and the compiler for said hardware-improves with

the time the result of older papers may not re�ect the current state.

This is not the only paper that examined the performance of convolution algorithms

on GPUs. An implementation of the uniformly-partitioned convolution with CUDA

showed that the GPU performed better for larger problem sizes [22]. Similar �ndings

were reported in a paper that implemented partitioned convolution with CUDA [14].

This paper focused on running the convolution completely on the GPU. Combination of

CPUs and GPUs can be bene�cial as well. This was demonstrated for non-uniformly-

partitioned convolution algorithms [11]. Non-uniformly-partitioned convolution algo-

rithms use Fourier transforms of di�erent sizes. The idea is to execute smaller transforms

on the CPU while the larger transforms are executed on the GPU. Last but not least

a di�erent paper examined the e�ect of pipelined algorithms for the convolution on the

GPU [2].

There are three problems with these papers. Firstly the results are only accurate for

hardware similar to the hardware used in the tests. There is currently no solution to this

problem. A more signi�cant problem is the evaluation of the performance. The usual

approach is to compare the performance of the new GPU implementation with a reference

implementation on the CPU. For an accurate comparison it is necessary to optimize the

3



2 Related Work

di�erent implementations to their optimum, or at least close to it [8]. The problem with

the mentioned papers is that implementation detail to the reference implementations are

only brief or completely missing. The best description to the reference implementation

found in the papers is: �As a reference implementation we used CPU implementation

of convolution reverb e�ect using FFTW for FFT and OpenMP for parallelization of

Overlap-Add method�[14]. It is not comprehensible from this description if the reference

implementation is ell optimized. The probable cause is the page limit of papers. This

forces the authors to only describe what they deem the most important aspects, even if

this means that important information is missing.

The last problem is the focus on algorithms based on fast convolution. The advantage of

these algorithms is their lower algorithmic complexity. The algorithmic complexity is only

a good indicator for large problem sizes. For smaller problems the details implementation

decide which the faster algorithm is.

The discrete convolution is not only interesting, because of the potential better perfor-

mance for certain problem sizes. A problem with real-time audio processing is the latency

between input and output. The latency depends on the size of the internal audio bu�er,

a smaller bu�er means a shorter latency. When an e�ect is added to an instrument in

real-time this latency becomes noticeable. At which point the latency becomes noticeable

depends on the instrument. The acceptable range can range from 1.4 to 42 milliseconds

[12]. The processing bu�er size for 1.4ms latency would be 62 samples for a sample rate

of 44.1 kHz and 68 samples for 48kHz. Fast convolution works better for larger bu�er

sizes while the discrete convolution, at least in theory, is una�ected by the bu�er size.

The fast convolution has a far more severe problem in environments where the �lter can

change during run time. Unlike the discrete convolution the �lter has to be preprocessed

before being used in the convolution process. In the preprocessing the �lter is partitioned,

if necessary, and transformed into the frequency domain. For a system running already

running close to the capacity, this can lead to errors in the audio output. Through careful

load balancing and other replacement strategies, the additional load can be reduced, but

not eliminated [4].

Other applications where discrete convolution can be better than fast convolution is

in usage with hybrid reverb algorithms [16] and for the smaller partition sizes of non-

uniformly-partitioned convolution. Hybrid reverb algorithms only convolve the direct

sound and the early re�ection and use other methods to create the remaining reverbera-

tions.

4



3 Digital Audio Signals and Real-time

Digital Audio Processing

In digital environments sound is represented in the form of a digital audio signal. Digital

audio signals are discrete in time and amplitude. A signal is a sequence of samples, each

sample is a amplitude value. Time information is stored by the position of the sample in

the sequence and the sample rate. [24]

Common formats for the amplitude value are �oating point number or signed integer.

While in a sample the full range of the integer is used, the range of the �oating point

is limited to −1.0 ≤ x ≤ +1.0. Values that are outside of the range are clipped. When

converting between the formats -1.0 in �oating point is equivalent to the minimal value

of the integer and +1.0 to the maximum. The simplest way to store a digital audio signal

in a program is as an array of either integers or �oating points.[3]

The quality of a digital audio signal depends on the sampling rate and the number

of bits used for a sample. A higher sample rate means a higher Nyquist frequency,

a higher Nyquist frequency means an extended frequency bandwidth or simply put a

higher sampling rate allows an audio signal to contain higher frequencies. An audio

signal has to have at least a sample rate of 44.1 kHz to contain all frequencies that can

be perceived by the average human. All frequencies above the Nyquist cannot properly

be sampled and it leads to aliasing. A higher bit depth allows a better resolution of the

amplitude. [24]

Real-time processing of digital audio signals on a PC is always problematic. The cause of

the problem are the real-time requirements of the processing. At a sample rate of 48kHz,

the time the CPU has between each sample is roughly around 20µs. This timeframe

has to be su�cient for processing the sample. The problem is a CPU on a PC has

usually other tasks as well. A short spike in the execution time can mean that the

audio processing process misses the deadlines. While audio processing has only a soft

deadline, missing it leads to audible artifacts in the output. Audio samples are usually
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not processed sample per sample, but rather in blocks of audio data. This does not

solve the problem of spikes during the execution, but the additional time needed for the

execution is distributed on all samples in the bu�er rather than a single sample.

The usage of audio data blocks has its advantages and disadvantages. Besides the in-

creased robustness against �uctuations in the processing times, an algorithm can need

fewer operations per sample to process the audio. The disadvantage is that they intro-

duce latency between capturing a signal, processing it, and playing it. Capturing as well

as playing audio requires a full block of audio data. The minimum achievable latency for

real-time processing of audio is at least two times the block size divided by the sample

rate. For real-time applications it is bene�cial to use small block sizes to reduce the

latency (I/O Latency).

From the view of an audio processing element the audio blocks of the input signals

are bu�ers. The input bu�er refers to the bu�er that holds the data that needs to be

processed, while the output bu�er holds the processing result. Since most processing

elements use the same bu�er for in- and output the bu�er in this document is referred

to as I/O bu�er.

6



4 Convolution and its Implementation for

Audio Processing

As mentioned in the introduction, the reverberation of a sound wave in an environment is

simulated by convolving a dry audio signal with an impulse response of the environment.

This is possible, because the propagation of the sound waves in an environment is linear

and time-invariant due to the superposition property of waves. A general property of

Linear and Time-Invariant Systems (LTI-Systems) is that the output can be simulated

by convolving the input with the impulse response of said system. In audio processing

this property of LTI-Systems is used to implement Finite Impulse Response Filters (FIR-

Filters). In terms of audio processing convolution reverb is simply a FIR-Filter. [24]

The convolution operation itself is an operation that takes two functions as operands

and creates a new function as a result. The symbol for the convolution is the asterisk

(*) and it has the following properties: distributive, associative, and commutative. The

de�nition of the convolution depends on the functions that are convolved. In the case of

implementing FIR-Filters the operands, as well as the result, are digital audio signals.

One of the operands is referred to as the �lter, the impulse response of said FIR-Filter,

the other as the input signal. The result of the convolution is simply referred to as the

output signal. There are di�erent algorithms for convolving digital audio signals, the

discrete, and the fast convolution. [19]
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4.1 Discrete Convolution

Digital audio signals are discrete and �nite. In this case the convolution is referred to as

discrete convolution and is de�ned as:

(f ∗ g)[n] =
M∑

m=−M
f [n−m]g[m] (4.1)

Where -M and M are the index of the �rst and last element of the function g. [19]

For understanding convolution it is helpful to understand the impulse response. The

impulse response describes the behavior of a LTI-System after an impulse. In digital form

the impulse is an audio signal with only a single sample with the maximum amplitude.

When the input is shifted in time the impulse response is shifted with the same amount

and when the amplitude is changed the amplitude in each sample of the impulse response

is changed by the same proportions (linearity and time-invariant).

An approach to visualizing the convolution process is to treat one of the signals as a

sequence of impulses (Fig. 4.1 ). Each impulse creates a new response of the LTI-

System. The output of the LTI-System is the �lter response shifted in time by the

sample position of the triggering samples with each sample multiplied by the amplitude

value of the triggering sample. The result of the convolution is the sum of all the �lter

responses. [19]

Figure 4.1: Convolution of two signals f and g
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The order of algorithmic complexity of the discrete convolution of two functions f(x)

and g(x) is O(|f | · |g|). Since the reverberations of the last sample in f(x) have a length
of |g| the total length of the result is |(f ∗ g)| = |f |+ |g| − 1. [19]

4.2 Fast Convolution

Fast convolution is, as its name suggests, in most cases a faster way to convolve two

signals. This is, because it has lower algorithmic complexity of O(log(|f |+ |g|−1) · (|f |+
|g| − 1)). The principle behind the fast convolution is that a convolution in the time

domain is equal to a multiplication of the signals in the frequency domain. [19]

Theoretically, the fast convolution only works for periodic signals of equal length. The

problem is that if the reverberation of a sample would exceed the length of the signal

they wrap around and are added to the start of the signal. This problem is circumvented

by appending zeros to the signals f and g until both signals have a length of |f |+ |g|−1,

so that the result can be properly stored. While the wraparound technically still exists,

the samples that are a�ected by the wraparound are all zero and thus do not have any

reverberations that would be added at the beginning of the convolution result. [19]

There are di�erent algorithm based on the fast convolution. The simplest is the unpar-

titioned convolution. Unpartition is referring to the unpartitioned �lter, while the input

may be partitioned.

4.2.1 Unpartitioned Convolution

The process for the unpartitioned convolution is �rst to extend the input signal and the

�lter to a length of input length + �lter length - 1 and then transform them into the

frequency domain with the Fast Fourier transform (FFT). During the transformation

the format changes from real to complex numbers. In the frequency domain the com-

plex numbers are than multiplied. The last step is to execute the Inverse Fast Fourier

transform (IFFT) to transform the multiplication result back in to the time domain.

[19]
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4.2.2 Partitioned Convolution

The problem of the fast convolution is that the transform for the FFT need to be equally

long for both the input as well as the �lter. In real-time processing the size of the I/O

bu�er is usually far smaller the size of the �lter. A larger transform is executed to transfer

a relatively small signal into the frequency domain.

A solution to this problem is the segmentation or partitioning of the �lter. This increases

the number of operations for the multiplication in the frequency domain, but drastically

reduces the number of operations for the FFT and the IFFT. There are two variants: the

uniformly-partitioned convolution where the �lter response is divided into equal parts

and the Non-Uniformly-Partitioned Convolution.

Uniformly-Partitioned Convolution

The usual algorithm for uniformly-partitioned convolution partitions the �lter response

in the segments of the same same size as the input. This is not the optimal partition size

for the partitions, but close to optimal for smaller segments sizes and easier to implement

as an algorithms where any partition size can be chosen [23].

As preparation for the processing the �lter is divided into partitions of the same size as

the input bu�er B. Each partition is then transformed into the frequency domain via

FFT with a transform size of 2B. The �rst half of the transform is �lled with a �lter

partition the other half with zeroes. [21]

The algorithm starts with transferring the input into the input save bu�er (Fig. 4.2

). The input save bu�er holds the current input data and the data of the last input

bu�er. In case of the �rst processed input bu�er the values of the last bu�er are all zero.

Totaling to a size of 2B. The data from the input save bu�er is transformed into the

frequency domain, with the oldest sample leftmost in ascending order. The transformed

data of the input save bu�er is then stored in a Frequency-domain delay-line (FDL) and

all previously stored input shifted accordingly. [21]

After this the �rst entry of the FDL is multiplied with the �rst �lter partition, the second

entry with the second �lter partition, etc. The FDL entries are multiplied with the �lter

partition by element-wise multiplication of the complex numbers. The multiplication

results are then summed up in an accumulation bu�er. [21]
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Figure 4.2: Convolution procedure of the uniformly-partitioned convolution

Lastly, the content of the accumulation bu�er is transformed with the IFFT into the

time domain. The �rst of the accumulation bu�er is discarded, the second half is the

convolution result. [21]

The main bene�t of uniformly-partitioned convolution is that only a single FFT and IFFT

are needed to convolute an I/O bu�er. The main cost in the process is the multiplication

of the complex numbers. The number of partitions depends on the I/O bu�er size and

�lter length and can easily reach more than a hundred partitions for a single channel.

The number of partitions at an I/O bu�er size of 256 samples for a �lter length of one

second audio at a frequency of 48 kHz is 188.

Non-Uniformly-Partitioned Convolution

The main purpose of non-uniformly-partitioned convolution is not to increase the perfor-

mance but, to reduce the I/O latency. It solves the problem that fast convolution works

better for larger I/O bu�er sizes, but with larger I/O bu�er sizes the latency increases. In

principle, non-uniformly-partitioned convolution is actually multiple convolutions with

di�erent I/O bu�er sizes. In this work, this kind of optimization is not further pursued

because of this aspect. A good estimate for non-uniformly-partitioned convolution would

be to create multiple engines with the right parameter for the convolution and sum up

the bu�er processing times together.
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Since the non-uniformly-partitioned convolution is not relevant to the rest of this doc-

ument the term partitioned convolution is used as a term to reference the uniformly

partitioned convolution.

4.3 Segmented Convolution

Digital audio is usually processed on a bu�er by bu�er basis. In the case of segmented

convolution the input signals are divided into multiple segments that are convolved sepa-

rately. This is possible because of the distributive property ((A+B)∗C) = (A∗C+B∗C))
of the convolution.

There are two di�erent approaches for implementing segmented convolution: overlap

add and overlap save. While both terms are more often used in the context of the fast

convolution the concept behind them can be applied to the discrete convolution as well.

The two approaches are basically two di�erent approaches to handling the time behavior

of the convolution algorithm. This is necessary, because the result of processing an I/O

bu�er is longer than the I/O bu�er itself. A short way to express the di�erence would

be: overlap add stores the result, while overlap save stores the input.

4.3.1 Overlap Add

The concept of overlap add is the implementation of the distributive property (Fig. 4.3

). The �rst step is to convolve the audio data in the input bu�er with the �lter response.

The result of the convolution is added to an internal bu�er that stores the result. Lastly,

the output bu�er is �lled with values of the result bu�er.

Implementations of overlap add use a ring bu�er to save memory as a bu�er for the

result. The size of the result bu�er must be at least as high as the number of samples in

the I/O bu�er and the �lter response combined. The write pointer of the ring bu�er is

the starting point where the result of the convolution of the input bu�er and the �lter

response is written and is incremented in I/O bu�er size steps. The read pointer points

to the location from which the samples are transferred to the output bu�er.
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Figure 4.3: Depiction of the overlap add process

4.3.2 Overlap Save

The basic idea of overlap save is to save enough of the input bu�er to calculate the values

of the samples in the output bu�er. The �rst step is to copy the data of the input bu�er

at the end of the save bu�er. After this, the values for the samples in the output bu�er

are calculated. For the discrete convolution the value of a sample is calculated by the

previously mentioned equation (eq. 4.1).

Overlap save for the fast convolution is slightly more complex. With the fast convolution

the value of a speci�c sample in the result can be calculated by convolving a section of

the input signal with the length of the �lter response with the �lter response (Fig. 4.4 ).

The position of the last sample of the section is the position of the sample in the result.

Expanding the section by X samples increases the number of calculated values by X as

well. This means that the section for overlap save needs to have a total length of the

�lter response length + I/O bu�er size - 1. The result of the convolution has the same

length as the input signals. The values for the output bu�er are at the end of the result.

The part of the convolution results before the last segment are useless byproducts and

are discarded. Because of this, the approach is also called overlap discard.
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Figure 4.4: Depiction of processing the Nth I/O bu�er with overlap save
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Convolution algorithms have high algorithmic complexity, but the choice of the algorithm

is not the only in�uencing factor on the performance. A major contributing factor is how

well optimized the code is and on what kind of device the code is executed. There are

di�erent approaches for optimizing the code. Examined strategies are standard code

optimization, vector operation through intrinsic functions, and outsourcing of the code

on to the GPU with OpenCL. The latter entails its own optimization.

5.1 Code Optimization

Code optimization can be achieved by various means. The options include: reducing the

number of CPU operations, replacing slow operations through faster ones, reducing the

memory transfer between RAM and CPU Caches as well as between cashes and the CPU

registers.

One of the most helpful tools for optimizing code is the compiler. A problem for the

optimization process is that information available to the programmer may not be available

to the compiler. To achieve the best performance it is necessary to either apply the

optimization manually or to enrich the code with as much information as possible.

The most common drawback of code optimization is that the code becomes increasingly

longer and more complex. This makes the code less readable thus harder to maintain

and more prone to errors.

5.1.1 Operator Replacing

Replacing of slow operations can drastically reduce the execution time of code. Two of

the slowest arithmetic operations are the division and modulo operation, but both can
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be replaced under certain circumstances. Other costly operations like function calls and

branches cannot be replaced only avoided. [10]

The division operation can be replaced by multiplication with the multiplicative inverse

when using �oating point arithmetic. This is not an optimization on its own, because

an additional multiplication is required, but it increases the performance when multiple

values have to be divided by the same value or when the multiplicative inverse can be

calculated outside of the performance critical code section. [10]

The replacement of the modulo operation has a few more conditions. Replacing the

modulo operation is only possible when using integer arithmetic, both operands are

positive, and the right operand is a power of two. When these conditions are met the

modulo operation can be replaced by a bitwise AND:

x% 2n = x& (2n − 1)|x, n ε N (5.1)

This is possible because of the properties of the binary system and the modulo operation,

speci�cally the base two of the binary system. When calculating the modulo Y from X

(X % Y) all digits from X with an equal or higher value than Y, are always an integer

multiple of Y, whereas all digits with a value less than Y can maximally sum up to Y

- 1. The modulo operation there gives as result only the last n - 1 digits of X where

n is: 2n = Y . In the end, the modulo operation only sets all digits with a value equal

or higher than Y to zero. This can far better be achieved, by a bitwise AND operation

where the last n - 1 digits are one, which is the case for Y - 1.[10]

5.1.2 Loop unrolling

Loop unrolling is common practice to reduce the number of operations and jumps in the

code. Loop unrolling means to reduce the number of iterations by executing the loop

body multiple times in a single iteration or in the extreme the loop is completely replaced.

Each time the body of the loop is executed, the condition of the loop is checked and a

jump to another part of the code is executed. When the number of loop iterations is

reduced the number of jumps and comparisons are reduced which is helpful since jumps

are expensive operations. [10]
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5.1.3 Register Optimization

When in a code block more variables are used than the CPU has registers, register spilling

can occur. Register spilling is when the CPU has to store the content of the register into

the cache to free up space for further operations. This slows down the execution time,

because the CPU has to store and load from the cache whenever a variable needs to be

switched. The transfer between the register and the cache takes multiple clock cycles

(Table 5.1). Usage of the registers can only be directly controlled in assembler, but by

reducing the number of currently used variables the compiler can optimize the register

usage. [10]

Level Latency

L1 4 cycles

L2 11 cycles

L3 ∼34 cycles

Table 5.1: Minimum number of cycles needed to access the caches on the Haswell mi-
croarchitecture [10]

5.2 Advanced Vector Extensions

Advanced Vector Extension is an instruction set extension for the x86 architecture. The

instruction set enables the usage of the Single Instruction, Multiple Data (SIMD) unit of

the CPU, if the CPU has one. In Advanced Vector Extension (AVX) each register of the

SIMD unit has 256-bit. This is double the register size as AVX predecessor Streaming

SIMD Extensions (SSE). Each register is a vector with multiple elements. The number

of elements the vector can hold depends on the size of the element, eight integers, four

doubles, etc. Adding two vectors in AVX means that all elements of the �rst vector are

added with the corresponding element of the second vector. [10]

AVX improves the performance by processing multiple data simultaneously. The problem

is that AVX can only be used for uniform operations. AVX cannot be used for di�erent

operation for the elements in the vector. AVX instructions are either used directly in

assembler code or by using intrinsic functions in C/C++. AVX can also be used by the

compiler if enabled, but there is no guarantee that the compiler will use it. [10]
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5.3 FFTW

The FFTW Library is a library for high-performance FFT. The main advantage of FFTW

is that the library supports the FFT for signals of any length. Other libraries often only

support a length which only has small prime factors for performance reasons. While the

FFTW Library support signals of all lengths, it performs better when the length does

not contain large prime factors. [7]

5.4 OpenCL

The OpenCL is a framework for developing and executing programs on di�erent devices

for parallel computing. OpenCL accomplishes this by providing a standard interface to

access the hardware. The speci�c implementations are provided by the hardware vendors.

[13]

OpenCL is used to accelerate resource-intensive parts of an application by outsourcing

them on better-suited hardware. OpenCL di�erentiates between two kinds of devices,

host and computing device. The host device acts as a master that starts the execution of

OpenCL programs, the so-called kernels, and controls the memory transfer between the

devices. Since OpenCL does not provide functionalities to get data from other devices

all data for processing needs to be loaded to the computing device by the host. The

number of computing devices a host can control depends on the hardware, but is -at

least theoretically- unlimited. The kernels are written in Open CL C, a programming

language that is based on the syntax of C. The compilers for OpenCL are provided by

the hardware vendor. Devices from di�erent vendors need di�erent compilers. [13]

In OpenCL the kernel code describes what a single thread on the computing device should

do. Each kernel has a three-dimensional ID that is usually used to select the elements the

thread is working on (Fig.5.1). The task of the host device is to spawn the appropriate

amount of threads to solve the calculation.

1 add ( f l o a t ∗ a , f l o a t ∗ b , f l o a t ∗ c ) {
2 i n t i = getID (0) ;
3 c [ i ] = a [ i ] + b [ i ] ;
4 }

Figure 5.1: Pseudo kernel code for summing up two arrays in OpenCL

18



5 Basics of Performance Optimizations

The main advantage of OpenCL, and why it is used in this project, is its portability.

OpenCL is not limited to the GPU but also supports execution on the CPU, FPGA

and DSP. Implementation is provided by open source projects and most major hardware

vendors, but not always the most recent version. Using OpenCL instead of a vendor-

speci�c framework, like CUDA, can cause a loss in performance.

A paper reported that in the tested benchmark cases OpenCL code was compared CUDA

was up to 63% slower, but also stated that properly optimized OpenCL code should

perform equally well [6]. A test that compared the performance between OpenCL and

CUDA for the convolution validate the statement, but the di�erence is not as huge [18].

While the CUDA implementation performed better with real-time support of a 7 second

�lter length for 24 Channels the OpenCL implementation came close with real-time

support of up to 6.65 seconds with OpenCL. The conclusion of these papers is that while

OpenCL can be used on di�erent computing devices, the best performance is achieved

when the code is optimized for a speci�c type of device.

5.4.1 GPU Architecture for OpenCL

GPUs have often smaller clock frequencies and less memory than CPUs, but have far

more cores. The higher number of cores is possible, because GPUs have a di�erent

architecture. GPUs implement the Single Instruction, Multiple Threads (SIMT) model,

which is an extension of SIMD.

Instead of vector arithmetic, the SIMT model uses threads to work on a large number of

elements at once. The cores for the threads are relatively simplistic, at least compared

to a core of the CPU, and are bundled into groups. In each group the cores share a local

memory that e�ectively acts as a cache and an instruction unit. While all cores share the

same instruction unit, the code can branch into di�erent cases. This is possible, because

a core can decide if an instruction is carried out or not. When a branch is executed the

thread ignores the commands if the condition for entering the branch is not met. Since

there is only a single instruction unit the branches have to be executed sequentially. While

a branch is executed only the threads in the branch perform the instruction. Excessive

branching can therefore have a signi�cant impact on the performance, because only a

few threads are working while the rest are idling. [9, 15, 1]

OpenCL code can be optimized to improve the performance. Optimizations which reduce

the number of operations, like loop unrolling, can be applied to improve the performance.
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A major di�erence between standard C and OpenCL C is that the management of all

memory is done manually in OpenCL C, instead of relying on the CPU to utilize the

caches. For the best performance on a GPU, the programmer has to properly make use

of global and local memory. A common optimization strategy for the memory usage is

tiling. In tiling, a problem is divided into multiple smaller parts. Each part is small

enough that it can be executed in a single working group of cores. This allows the cores

to load the data from the global memory into the local memory, where the processing

takes place. After processing the result is loaded into the global memory. [9, 15, 1]

The advantage of GPUs is that they have a higher computing power than CPUs, be-

cause of their high number of threads. The drawbacks are that their unique architecture

means that they may not necessary can make full use of their computing power and that

additional data transfers between host and device are needed.

Currently, there are two di�erent kinds of GPU, one for consumer and one for scienti�c

application. They di�erentiate in the kind of �oating points they use. Consumer GPU

use only 32-bit �oating points, with a single 64-bit �oating point unit per instruction

group while scienti�c GPU use 64-bit �oating points as default. In audio processing, as

well as in 3D-rendering, the accuracy provided by the 64-bit �oating points is not needed

so both are equally �ne for usage.
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To make this project more manageable and reduce compile time it is separated into

multiple parts. These are multiple static libraries, dynamic libraries (Dynamic Link

Library (DLL) and Shared Object (so)), and executable �les (Fig. 6.1 ). A special case

is the VST Plugin which technically is a DLL, but has to ful�ll special requirements. The

test environment, as well as the VST Plugin, load the dynamic libraries during runtime.

This chapter provides a brief overview of the di�erent libraries and executables and their

purpose.

Figure 6.1: Building dependencies of the libraries and executables. Executable (Green),
Static Library (Blue), Dynamic Library (white), Third Party Library (Red)
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6.1 Third Party Libraries

Currently, the project uses six third-party libraries/frameworks for cross-platform sup-

port, faster code, and access to audio hardware.

• PortAudio: PortAudio is an open-source cross-platform C library for accessing the

audio devices. The library supports audio drivers like Jack or ASIO.

• libsnd�le: libsnd�le is a cross-platform C library for reading or writing audio data

into di�erent audio formats through a uniform interface.

• FFTW: The FFTW (Fastest Fourier Transform in the West) is a cross-platform C

library to compute the discrete Fourier transform.

• OpenCL: Open Computing Language is a cross-platform framework for executing

code on CPU, GPU, Digital Signal Processor (DSP) and Field-Programmable Gate

Array (FPGA).

• clFFT: The clFFt library is a well-optimized library for executing the fast Fourier

transform with OpenCL.

• JUCE: JUCE is a cross-platform C++ application framework and was used to

create the VST Plug-In. The framework makes the creation of plug-ins simpler by

providing a pre-generated class to implement. The class is then wrapped by the

actual plug-in through the framework. Other types of audio plug-ins are supported

as well.

6.2 EngineCore

The library Engine Core provides functionalities for implementing the convolution al-

gorithms. Core features are the Convolution Engine Interface that every convolution

algorithm implements (Ch. 7), a class for dynamic loading of classes that implement

the Convolution Engine Interface, and the AudioBu�er class that handles multi-channel

audio data. Another function in the library is the �nding of a normalization value for

the convolution.
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6.2.1 Audio Normalization

A problem with the convolution is that the maximum amplitude of the resulting signal

is normally higher than the input signals,the amplitude value of the samples in the

result could leave the value range. For integer based sample format this means under-

and over�ows, for �oating point format clipping to the maximum or minimum value in

the range (1.0 or -1.0). To prevent this the convolution result has to be normalized.

The normalization of the audio is carried out by multiplying all sample values in the

convolution result with the normalization parameter.

For the �oating point format, the optimal value for the normalization is the multiplicative

inverse of the highest absolute sample value in the convolution result. The main problem

is that the optimal value can only be found after the signals are convolved. An application

that uses real-time convolution could never use the optimal value.

A value that guarantees that no clipping occurs when no signal is known as the multi-

plicative inverse of the �lter length (eq. 6.1). The only problem is that the amplitude of

the normalization is far too low.

nv =
1

|filterResponse|
(6.1)

A better approach for �nding a normalization value is, to sum up, the absolute values for

the amplitude of the �lter response (eq. 6.2). This is the highest amplitude value a sample

can potentially have as the result of a convolution with the given �lter response. As before

the normalization value is the multiplicative inverse of said value. This normalization is

the best value that still prevents clipping when only the �lter is known, but after the

normalization, the audio signal is still far to quiet.

nv =
1∑

i|n |filterResponse(i)|
(6.2)

The audio normalization class provides a function to analyze the �lter response and

suggest a normalization parameter for �oating point convolution. The normalization

value is the square root of the equation 6.2. The value does cannot guarantee that clipping

is prevented, but the resulting signal is louder. In the end, it is only an estimation for a

good value for normalization in the hope that the value found is su�cient.
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There is no optimal solution for the problem of normalization. The solution is either

far to quiet or does not prevent clipping. But the problem of audio normalization is not

the focus of this work. When convolving multiple channels the normalization value is

the same for all channels. Otherwise di�erences in the amplitudes in the �lter response

would be ignored.

6.3 AudioIO

The Audio I/O library contains classes for handling audio, a wrapper for reading and

writing of audio �les with libsnd�le, and streaming of audio to and from devices with

PortAudio. Through a shared interface device I/O and �le I/O can be used interchange-

ably. The full list of supported audio �les is found at: http://www.mega-nerd.com/

libsndfile/. The full list of audio interfaces is found at: http://portaudio.com/

docs/v19-doxydocs/api_overview.html.

6.4 Convolution Engine Libraries

Each of the four convolution engine libraries contains a number of convolution engines

sorted by the algorithm used for the convolution and their primary usage of the CPU

or the GPU. The term of convolution engines refers to the convolution algorithm that

implements the convolution engine interface. Further information on the implementation

can be found in chapter 7.

6.5 Test Environment

The purpose of the test environment is to test the performance of the convolution engines.

The test environment is described in detail in chapter 9.

6.6 VST Plugin

The VST Plugin allows using the convolution engines in a DAW. Further information is

found in chapter 13.
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7 Convolution Engine Interface

The main goal of the project is the implementation of convolution engines. The purpose of

a convolution engine is to convolve multichannel audio signals with the �lters. For editing

purposes, the channels are handled as multiple mono channels instead of an interleaved

signal, like stereo. This means that the convolution of a channel is independent from the

other channels.

To allow interchangeability between the engines they all need to implement the same

interface. The interface was designed to accommodate two goals. The interface has to

be integrable into a VST3 plug-in and only use the C++ 14 standard. While the reason

for the �rst goal is pretty self-explanatory, the reasons for the second is to reduce the

dependencies to the minimum. For dynamic loading an engine only needs to implement

the interface, that is, in this case, a small single �le.

7.1 Interface Functions

The interface declares the following functions for initialization, processing of audio, re-

setting of the engine, and error handling:

• int resize(size_t noChannels, size_t ioBu�erSize, size_t minFilterLength, �oat

normalizationValue)

• int setFilterResponse(size_t channel_index, �oat* �lter, size_t �lterLength)

• int processAudio(�oat** bu�er)

• void clearBu�er()

• const int getLastError()

• const char* getLastErrorInfo()
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The implementation does not synchronize the functions. Calling the functions from

di�erent threads is not recommended.

7.1.1 Resize

The function resizes changes the parameters for the convolution. The function has four ar-

guments: noChannel, the number of audio channels the engine needs to process, ioBu�er-

Size, the size of the I/O bu�er, minFilterLength, the minimum �lter length the engine has

to support, the actual value can be higher for performance reasons, and the normalization

value, the parameter for the audio normalization.

Resize is used for initializing the engine after its instantiation. The function can also

be called again to reset the engine and initialize it with new parameters. While the

acceptance of the parameters di�ers from engine to engine, the parameters must all be

larger than zero and for the ioBu�erSize a multiple of 32. The function returns a negative

number if an error occurs.

7.1.2 SetFilterResponse

The function setFilterResponse sets the �lter response used by the convolution for one

channel. The function has three arguments channel_index, the index of the audio channel

with which the �lter response will be convolved, the second is the �lter response in form

of a pointer to an array and the last argument is the length of the array. The function

returns a negative number if for some reason the function failed to set the �lter, like

selecting a non-existing channel.

7.1.3 ProcessAudio

The function processAudio has one argument: bu�er. Bu�er is an array over an array

and is the I/O bu�er. The �rst dimension is the channels of the bu�er the second the

samples of the audio signals. ProcessAudio processes the data in the bu�er and �lls the

arrays with the result. The two dimensions are given by the resize functions. Using a

bu�er that is too small leads to an error. The function returns a negative number if the

processing failed. For performance reasons, it is a single check if the engine was initialized
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or not. The return value of called library functions, for example, when using OpenCL,

are not checked.

7.1.4 ClearBu�er

For correctly implementing the time behavior of the convolution the engine needs internal

bu�ers. When clearBu�er is called these bu�ers are set to zero to reset the engine. This

function does not reset the �lter responses.

7.1.5 Error Handling

The function getLastError returns the last occurred error as an integer. GetLastErrorInfo

returns a C-String describing the cause for the error.

7.2 Dynamic Loading

The advantage of the interface is that it allows dynamic loading of the engines during

run-time. The main bene�t is that the application does not need to know a speci�c engine

and can use di�erent engines without a lot of e�ort. The ConvolutionEngineLoader is a

class that provides functions for loading the convolution engines for Windows/VisualC++

and Linux/GCC. For the ConvolutionEngineLoader to work, the dynamic library has to

provide a factory function to create the engine. The function prototype is:

ConvolutionEngineInterface* name(int nrParameters, int* parameters)

The parameters are optional to con�gure engines, like the number of threads the engine

can use. The number and function of the parameters depend on the implementation and

a full list can be found in the appendix (Ch. 15).
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Several versions of discrete and fast convolution algorithms were implemented. Each

algorithm has multiple versions that di�er in the optimization and the language used

(C++ or OpenCL). While the implementations of the convolution engine interface di�er

in the used hardware, and algorithm, the internal bu�er structure is similar. All of them

have a bu�er for the �lter, the I/O bu�er, and a bu�er to hold either partial results in

the case of overlap add or the input signal in the case of overlap save.

The convolution algorithms are explained with the help of the pseudocode. To improve

the readability the pseudocode describes only the convolution of a single channel. The

iteration over the di�erent audio channels as well as the normalization of the audio is

missing. The normalization is simply a multiplication of all samples in the result. The

iteration over the audio channels is an additional loop and index for all bu�er accesses.

The pseudocode uses the following naming scheme:

• I/O_Bu�er: Bu�er used to transfer the data between the Convolution Engine and

the application

• Add_Bu�er: Bu�er that which holds the partial result when implementing Overlap

Add

• Save_Bu�er: Bu�er that which holds the input signal for Overlap Save

• currentRingBu�erPos: Pointer pointing to the current position in the ring bu�er

• Filter: Bu�er which holds the �lter

Further missing steps are adding the I/O_Bu�er to the Safe_Bu�er, the partial clearing

of the Add_Bu�er and the setup of the �lter. To further enhance readability not all

optimizations are displayed. For example, most algorithms replace the modulo operation,

but is usually not displayed to make the code easier to understand.
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8.1 Discrete Convolution Engine

The discrete convolution engine implements, unsurprisingly, the discrete convolution us-

ing the overlap save. This implementation was created to have an unoptimized imple-

mentation as a reference of the discrete convolution for comparison with other engines.

The discrete convolution engine is intended to be a worst case scenario, without actively

trying to reduce the performance.

The discrete convolution engine implements the convolution by implementing the equa-

tion 8.1 to calculate a sample for the result. The only di�erence to the Equation 4.1

mentioned in Chapter 4 is that the �lter always starts at the index 0.

(f ∗ g)[n] =
|g|∑

m=0

f [n−m] · g[m] (8.1)

The convolution engine implementation needs two for loops for processing an I/O bu�er

(Fig. 8.1). The �rst for loop iterates over the samples in the I/O bu�er and the second

loop implements the sum in the equation.

1 i n t n = currentRingBuf ferPos ;
2 f o r ( i n t i = n ; i < I /O_Buffer . s i z e ; i++, n++){
3 f o r ( i n t m = 0 ; m < F i l t e r . s i z e ; m++){
4 I /O_Buffer [ i ] += Save_Buffer [ ( n − m) % Save_Buffer . s i z e ] ∗ F i l t e r [m] ;
5 }
6 }

Figure 8.1: Pseudocode for the discrete convolution

The implementation of the discrete convolution is the implementation of the equation

8.1 with only a small modi�cation in the form of a modulo operation (Fig. 8.1, line 4).

The modulo operation is necessary because the Save_Bu�er is a ring bu�er. The access

to the Save_Bu�er in line 4 runs backwards. Through the modulo operation, the access

jumps from the lowest element of the bu�er to the highest.

8.1.1 Optimized Discrete Convolution

Optimizations for reducing the execution time of code are usually applied at the expense

of the readability and maintainability of the code (Fig. 8.2). The most e�cient way to
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optimize code is to optimize the parts of the code that are executed the most, meaning

mostly the bodies of loops.

When processing an I/O bu�er in real-time the convolution engine only has a limited

amount of time to process it. Most of the time is spent in the loops to convolve the

signals. Outside the loops, the code mostly consists of memory management, transfer of

audio data and management of the ring bu�er. While optimizations can be applied, the

time needed to execute these operations is nearly irrelevant compared to the time spent

in the loops.

Reducing the number of operations in the innermost loop can have a large impact on

the execution time. The innermost loop in the convolution can easily have a few mil-

lions iterations. Each clock tick saved in the loop body can have a huge impact on the

processing time.

The convolution operation of a single channel in the convolution engine was optimized

in several ways. The �rst was to unroll both loops. The �rst loop iterating over the

samples in the output bu�er was unrolled eight times (Fig. 8.2, line 3). Since the size of

the I/O bu�er is limited to a multiple of 32 this is not a problem since every multiple of

32 is also a multiple of eight.

The second loop that is calculating the result for the sample in the output bu�er was

unrolled four times (Fig. 8.2, line 2), meaning the size of the �lter has to be a multiple

of four to work. The length of the �lter is automatically increased to the next multiple

of four to avoid problems. In the worst case scenario, the size of the �lter is three

samples longer than needed. Compared to the thousands of samples a �lter usually has

the impact of these three samples negligible, especially if it means that the loop header

is only executed a quarter of the time.

Simply unrolling the loop would increase the total amount of local variables leading to

register spilling. Therefore the number of local variables was reduced. This leads to the

cyclic changing of the val variables (Fig. 8.2, line 17, 20, 23 , etc.).

The last optimization was to replace the modulo operation with a bitwise AND (Fig. 8.2,

line 8 - 11). This is only possible when the size of the ring bu�er is a power of two. Since

the ring bu�er is only limited in the minimal size, the size of the ring bu�er is simply

rounded up to the next power of two. In the worst case the ring bu�er needs nearly twice

as much memory as actually needed for the convolution. Replacing the modulo operation

is an optimization that sacri�ces memory e�ciency in favor of execution time.
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1 s i ze_t moduloMask = Save_Buffer . s i z e − 1 ;
2 i n t n = currentRingBuf ferPos ;
3 f o r ( i n t i = 0 ; i < I /OBuffer . s i z e ; i += 8) {
4 f o r ( i n t j = 0 ; j < F i l t e r . l ength ; j += 4) {
5 f l o a t f i l t e r_0 = F i l t e r [ j ] ;
6 f l o a t f i l t e r_1 = F i l t e r [ j + 1 ] ;
7 f l o a t f i l t e r_2 = F i l t e r [ j + 2 ] ;
8 f l o a t f i l t e r_3 = F i l t e r [ j + 3 ] ;
9

10 f l o a t va l0 = Save_Buffer [ ( n + i − j ) & moduloMask ] ;
11 f l o a t va l1 = Save_Buffer [ ( n + i − j − 1) & moduloMask ] ;
12 f l o a t va l2 = Save_Buffer [ ( n + i − j − 2) & moduloMask ] ;
13 f l o a t va l3 = Save_Buffer [ ( n + i − j − 3) & moduloMask ] ;
14

15 I /O_Buffer [ i ] += val0 ∗ f i l t e r_0 + val1 ∗ f i l t e r_1
16 + val2 ∗ f i l t e r_2 + val3 ∗ f i l t e r_3 ;
17 val3 = Save_Buffer [ ( n + i − j − 1) & moduloMask ] ;
18 I /O_Buffer [ i + 1 ] += val3 ∗ f i l t e r_0 + val0 ∗ f i l t e r_1
19 + val1 ∗ f i l t e r_2 + val2 ∗ f i l t e r_3 ;
20 val2 = Save_Buffer [ ( n + i − j − 2) & moduloMask ] ;
21 I /O_Buffer [ i + 2 ] += val2 ∗ f i l t e r_0 + val3 ∗ f i l t e r_1
22 + val0 ∗ f i l t e r_2 + val1 ∗ f i l t e r_3 ;
23 val1 = Save_Buffer [ ( n + i − j − 3) & moduloMask ] ;
24 I /O_Buffer [ i + 3 ] += val1 ∗ f i l t e r_0 + val2 ∗ f i l t e r_1
25 + val3 ∗ f i l t e r_2 + val0 ∗ f i l t e r_3 ;
26 val0 = Save_Buffer [ ( n + i − j − 4) & moduloMask ] ;
27 I /O_Buffer [ i + 4 ] += val0 ∗ f i l t e r_0 + val1 ∗ f i l t e r_1
28 + val2 ∗ f i l t e r_2 + val3 ∗ f i l t e r_3 ;
29 val3 = Save_Buffer [ ( n + i − j − 5) & moduloMask ] ;
30 I /O_Buffer [ i + 5 ] += val3 ∗ f i l t e r_0 + val0 ∗ f i l t e r_1
31 + val1 ∗ f i l t e r_2 + val2 ∗ f i l t e r_3 ;
32 val2 = Save_Buffer [ ( n + i − j − 6) & moduloMask ] ;
33 I /O_Buffer [ i + 6 ] += val2 ∗ f i l t e r_0 + val3 ∗ f i l t e r_1
34 + val0 ∗ f i l t e r_2 + val1 ∗ f i l t e r_3 ;
35 val1 = Save_Buffer [ ( n + i − j − 7) & moduloMask ] ;
36 I /O_Buffer [ i + 7 ] += val1 ∗ f i l t e r_0 + val2 ∗ f i l t e r_1
37 + val3 ∗ f i l t e r_2 + val0 ∗ f i l t e r_3 ;
38 }
39 }

Figure 8.2: Pseudocode for the optimized version of the discrete convolution. Shorter
and more readable than the actual implementation
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8.1.2 AVX Discrete Convolution

The vector arithmetic unit of a CPU allows operations on 256-bit vector, therefore en-

abling to add or multiply eight �oats simultaneously. The vectors can be initialized by

loading data from a �oat array (Fig. 8.3, line 5) and can also be written into a �oat

array (Fig. 8.3, line 9). The AVX implementation always calculates eight samples for

the result simultaneously. The result is calculated by loading a block of eight samples

from the Save_Bu�er and multiply them with a single value of the �lter. The result of

the multiplication is added to a result register (Fig. 8.3, line 5 - 7).

The main advantage of AVX is the potentially higher throughput by the use of vector

instructions. Additionally, the header of the second loop is executed less often since eight

samples are processed at the same time, the same e�ect as loop unrolling (Fig. 8.3, line

2).

A problem that is not addressed in the pseudocode is the wrap around of the ring bu�er.

The vector is a sliding window on the bu�er containing eight values, that moves one

sample back with every iteration of the inner loop. When the wrap around happens, the

window jumps to the last sample in the bu�er and loads bytes from outside the array.

The simple solution is to make the bu�er slightly larger and copy the �rst seven �oat

values of the bu�er behind the last element of the ring bu�er.

1 f o r ( i n t i = 0 ; i < I /OBuffer . s i z e ; i += 8) {
2 s i ze_t moduloMask = Save_Buffer . s i z e − 1 ;
3 vecResu l t = loadValue (0 ) ;
4

5 f o r ( i n t j = 0 ; j < F i l t e r . s i z e ; j++){
6 vecIn = load(&Save_Buffer [ ( i − j ) & moduloMask ] ) ;
7 v e cF i l t e r = loadValue ( F i l t e r [ j ] ) ;
8 vecResu l t += vecIn ∗ v e cF i l t e r ;
9 }

10 s t o r e (&I /OBuffer [ i ] , vecResu l t )
11 }

Figure 8.3: Pseudocode for the discrete convolution using vector instructions

8.2 Unpartitioned Convolution Engine

The unpartitioned convolution engine implements the fast convolution algorithm with

overlap add. Fast convolution has a complexity class of O(n · log(n)), but the algorithm
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consists of three parts: the FFT to transform a signal into the frequency domain, the

multiplication in the frequency domain and the IFFT to transform the multiplied signal

back to the time domain. FFT and IFFT both have an algorithmic complexity of O(n ·
log(n)). The implementation of the two transforms is provided by the FFTW library and

are well optimized. Optimizing the fast Fourier transform to have a similar performance

as the implementation provided by the library would exceed the scope of the project.

The fast convolution has the following steps (Fig. 8.4): the �rst step is to copy the data

from the I/O bu�er into a larger bu�er for the transform. The usage of an extra bu�er

is required, because the FFT has a transform size of I/OBu�er.size + �lter.size - 1. The

samples in the transform bu�er not �lled with data from the I/O bu�er are set to zero.

The next step is to execute the FFT transform to transform the audio data into the

frequency domain. This changes the number format from �oat to complex numbers. The

actual convolution is carried out by multiplying the transformed I/O bu�er data with

the transformed �lter. Afterward, the IFFT is executed to transform the convolution

result back into the time domain. The result is added to the Add_Bu�er and I/O bu�er

is �lled with the result.

1 copy ( transform_time , I /O_Buffer )
2 f f t ( transform_time , transform_freq )
3 f o r ( i n t i = 0 ; i < transform_freq . s i z e ; i++){
4 transform_freq [ i ] ∗= Fi l t e r_ f r eq [ i ] ;
5 }
6 i f f t ( transform_freq , transform_time )
7 n = cur r en tR ingBu f f e rPos i t i on ;
8 f o r ( i n t i = 0 ; i < transform_time . s i z e ; i++){
9 Add_Buffer [ ( i + n) % r e s u l tBu f f e r . s i z e ] += transform_time [ i ] ;

10 }
11 copy ( I /OBuffer , Add_Buffer [ n ] , I /OBuffer . s i z e ) ;

Figure 8.4: Pseudocode for the fast convolution

The code outside of the transforms is optimized as well, but the same optimizations are

found in the optimized variant of the discrete convolution. Describing them again would

be pointless and adding them to the pseudocode would only have a negative impact on

the readability. For example, the implementation does not use modulo, but a bit-wise

AND, even if the pseudocode would suggest otherwise (Fig. 8.4, line 8). For obvious

performance reasons the �lter are stored in the frequency domain. Transforming the �ler

whenever the processing function is called would be waste of time.
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8.2.1 AVX Unpartitioned Convolution Engine

As for the discrete convolution engine, a convolution engine using AVX was implemented.

The AVX version uses the vector instructions for the multiplication of the complex num-

bers in the frequency domain and to add the convolved I/O bu�er to the result. To speed

up the complex multiplication the format of the complex number is important.

Arrays of complex numbers can have two di�erent formats. The more commonly found

format is the interleaved format. In a bu�er in the interleaved format, the complex

numbers are stored behind each other with the real part �rst, followed by the imaginary

part of the number. The second format is the planar format where the real and imaginary

part of the numbers are stored in two separate arrays.

For the speed up it is vitally important that the bu�er is in a planar format. While

complex multiplication in the interleaved format is possible it requires a lot of shu�ing

of elements in the vectors. This requires to much time to be a viable optimization.

8.3 Uniformly-Partitioned Convolution Engine

The implementation of the partitioned algorithm follows the description in chapter 4.2.2.

The algorithm starts with copying the last I/O bu�er into the �rst half of a trans-

form bu�er and the current I/O bu�er into the second half (Fig. 8.5, line 1-2). The

transform bu�er is transformed into the frequency domain and its content is put into a

Frequency-domain delay-line (FDL) (Fig. 8.5, line 4-5). The convolution is carried out

by multiplying the �lter partitions with the entries in the FDL and summing the results

up in an accumulation bu�er (Fig. 8.5, line 7-12). The last step is to transform the

accumulation bu�er into the frequency domain and copy the second half into the I/O

bu�er (Fig. 8.5, line 14-15).

A particular optimization is the access to the FDL. The FDL is a ring bu�er, since shifting

every entry in the domain line would need a lot of time. The required modulo operation

could be replaced by an AND operation if the size of the FDL would be increased to a

power of two, but instead, the size of the FDL is doubled. The �rst half of the FDL are

pointers to the bu�ers storing the frequency data. The second are a copy of the pointers.

Since the implementation iterates backward over the entries the implementation starts
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in the second half. When the wrap around would happen the implementations simply

enters the �rst half.

A version using AVX for the multiplication of the complex numbers exists as well.

1 copy ( transform_time , l a s t_I /O_Buffer )
2 copy(&transform_time [ transform_time /2 ] , I /O_Buffer )
3

4 f f t ( transform_time , transform_freq )
5 copy ( f d l [ c u r r en tPa r t i t i o n ] , t rans form_freq )
6

7 i n t n = cu r r en tPa r t i t i on + nrOfPar t i t i on
8 f o r ( i n t j = 0 ; j < nrOfPar t i t i on ; j++)
9 f o r ( i n t i = 0 ; i < transform_freq . s i z e ; i++){

10 f req_accumulation [ i ] = f i l t e r_ f r e q [ j ] [ i ] ∗ f d l [ n − j ] [ i ] ;
11 }
12 }
13

14 i f f t ( freq_accumulation , transform_time )
15 copy ( I /O_Buffer , &transform_time [ transform_time /2 ] ) ;
16

17 cu r r en tPa r t i t i on = ( cu r r en tPa r t i t i on + 1) % nrOfPar t i t i on
18 l a s t_I /O_Buffer = I /O_Buffer

Figure 8.5: Pseudocode for the fast convolution for partitioned convolution

8.4 Multithreading

All modern CPUs have multiple independent cores. Using them is an e�ective approach

to increase the sample throughput, but additional time is needed for the synchronization

of the threads. The multithreading in the convolution engines was designed to minimize

the synchronization overhead. The overhead was kept at a minimum by assigning the

convolution of an audio channel to a single thread. The channels are equally distributed

to the threads with a maximum di�erence in the number of channels of one. Because

each thread fully utilizes the computing power of a core, using more threads than the

CPU has cores does not increase the sample throughput.

The advantage of this approach is that the threads are completely independent of other

threads during the convolution. Synchronization is only needed to start the threads and

to wait until all threads have completed their task.
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The disadvantage of the approach is that each channel is only convolved by one thread.

When the number of channels is not a multiple of the number of threads some threads,

and with them the cores, idle while others have to process the remaining channels. The

total time needed for the convolution in an ideal environment is:

timetotal = d
no_channels

no_threads
e · timechannel (8.2)

Using multiple threads to convolve one channel would be possible, but the threads would

need to synchronize more often and not every part of the convolution can be executed in

parallel. For this reason, one thread per channel seemed to be the better approach, even

if this means that some CPU Cores have to idle if the number of convolution channels is

not a multiple of the number CPU cores.

8.5 OpenCL Implementations

Convolution engines using the discrete and the partitioned convolution have been imple-

mented for OpenCL. The OpenCL implementations try to reduce the involvement of the

CPU to a minimum. The only task of the CPU is the memory transfer and calling of

the kernels. The convolution itself is only carried out on the GPU.

In OpenCL, the optimizations can be categorized into two categories: optimization of

the kernel code and optimization of the memory transfer between the devices. OpenCL

is supported by a range of devices, but the optimizations of OpenCL code were applied

to maximize the performance on a GPU. The applied optimization of the code may lead

to worse performance on other device types.

8.5.1 Discrete Convolution

The simple implementation of the discrete convolution with the GPU is similar to the

implementation of the discrete convolution on the CPU (Fig. 8.6). Like the CPU version

the GPU version implements overlap save. The major di�erence is that the loops of the

samples over the I/O bu�er is missing. The loop is implemented by spawning a GPU

thread for every iteration of the loop. The amount of threads spawned is controlled by

the host device (Fig. 8.7, line 8).
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1 convolve ( I /OBuffer , Save_Buffer , F i l t e r , n ) {
2 i n t channel_id = get_global_id (0 ) ;
3 i n t sample_id = get_global_id (1 ) ;
4

5 channel_save = SaveBuf fer [ channel_id ]
6 channe l_ f i l t e r = F i l t e r [ channel_id ]
7

8 f l o a t r e s u l t ;
9 f o r ( i n t m = 0 ; m < I /OBuffer . S i z e ; m++){

10 r e s u l t += channel_save [ ( n + sample_id − m) % channel_save . s i z e ]
11 ∗ channe l_ f i l t e r [ i ] ;
12 }
13 I /OBuffer [ channel_id ] [ sample_id ] = r e s u l t ;
14 }

Figure 8.6: Pseudocode for the computation device for the discrete convolution with
OpenCL

1 cl_cmdQueue . wr i t eBu f f e r ( I /OBuffer , I /OBufferCL )
2

3 c l_kerne l . setArg (0 , I /OBufferCL ) ;
4 c l_kerne l . setArg (1 , CL_Save_Buffer ) ;
5 c l_kerne l . setArg (2 , CL_Filter ) ;
6 c l_kerne l . setArg (3 , cu r r en tR ingBu f f e rPos i t i on ) ;
7

8 c l : : NDRange g l oba l (Number o f Channel , I /OBuffer . S i z e ) ;
9 cl_cmdQueue . c a l lKe rn e l ( convolve , g l oba l ) ;

10

11 cl_cmdQueue . r eadBuf f e r ( I /OBuffer , I /OBufferCL )

Figure 8.7: Pseudocode for the host for executing the discrete convolution with OpenCL

The kernel is the implementation of the equation for the discrete convolution (eq. 8.1).

The equation calculates a single value for the result. The thread gets the information

which channel and sample they have to calculate by the ID of the thread. In OpenCL

a thread has a three-dimensional ID. In this case, the �rst dimension is the index of the

audio channel and the second the sample in the result that the thread has to calculate

(Fig. 8.6, line 2-3). The last dimension is unused.

8.5.2 Kernel Optimization

The main di�erence between the standard discrete convolution kernel and the optimized

version is the usage of tiling. Tiling is a technique to improve the sample throughput by

dividing a calculation into smaller tiles to make use of the local memory of the device.
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In OpenCL each thread is part of a work group. A work group on the GPU consists

of multiple GPU cores for parallel code execution and shared local memory. The local

memory is smaller, but faster than the global memory of the GPU. The number of cores

in a working group varies from one device to another. On a GPUs a working group has

at least 32 cores. [9, 15, 1]

Because the local memory is limited, larger problems like the convolution have to be

divided into multiple tiles. In practice, the processing of the I/O bu�er is divided into

multiple tiles. This is generally like splitting the I/O bu�er into multiple smaller bu�ers.

Each working group fully processes one tile (Fig. 8.9) and, like the unoptimized version,

every thread calculates one sample for the result. [9, 15, 1]

For the fast transfer between local memory and global memory the loading process of

the thread in a working groups needs to be aligned (Fig. 8.9, line 8 - 13). Aligned means

that when a thread with the id x transfers element x from local to global memory the

thread with id (x + 1) has to do same for the element (x + 1). If the transfer is aligned,

the transfer is a single instruction if not, the GPU needs one instruction for every single

transferred value. [9, 15, 1]

The convolution process starts with loading two memory tiles from the save bu�er and

one from the �lter (Fig. 8.9, line 12, 18, 19). The convolution is than partially calculated.

When the threads are �nished with processing the tiles new data is loaded (Fig. 8.9,

15).

Figure 8.8: Depicts the data blocks that are loaded in the local memory for the iterations
of the loop (Fig. 8.9, 15). The currently loaded blocks are colored green.
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1 convolve ( I /OBuffer , Save_Buffer , F i l t e r , n ,
2 l o c a l save , l o c a l f i l t e r , t i l e_ s i z e ) {
3 f l o a t r e s u l t = 0 ;
4 i n t channel_id = get_global_id (0 ) ;
5 i n t t i l e_ i d = get_global_id (1 ) ;
6 i n t sample_id = get_global_id (2 ) ;
7

8 saveIndex = n + sample_id + t i l e_ i d ∗ t i l e_ s i z e ;
9 f i l t e r I n d e x = sample_id ;

10 bu f f e rPo in t e r = 0 ;
11

12 save [ bu f f e rPo in t e r ] = SaveBuf fer [ channel_id ] [ saveIndex ] ;
13 bu f f e rPo in t e r = ( bu f f e rPo in t e r + t i l e_ s i z e ) % save . s i z e ;
14

15 f o r ( i n t i ; = 0 ; i < F i l t e r . S i z e / t i l e . S i z e ; i++){
16 saveIndex = ( saveIndex − t i l e S i z e ) % SaveBuf fer [ channel_id ] . S i z e ;
17

18 save [ bu f f e rPo in t e r ] = SaveBuf fer [ channel_id ] [ saveIndex ] ;
19 f i l t e r [ bu f f e rPo in t e r ] = F i l t e r [ channel_id ] [ f i l t e r I n d e x ] ;
20 bu f f e rPo in t e r = ( bu f f e rPo in t e r + t i l e_ s i z e ) % save . s i z e ;
21

22 f o r ( i n t m = 0 ; m < t i l e_S i z e ; m++){
23 r e s u l t += save [ ( bu f f e rPo in t e r + sample_id − m) % t i l e_ s i z e ]
24 ∗ f i l t e r [m] ;
25 }
26 f i l t e r I n d e x += t i l e S i z e ;
27 }
28 I /OBuffer [ channel_id ] [ sample_id + t i l e_ i d ∗ t i l e_ s i z e ] = r e s u l t ;
29 }

Figure 8.9: Pseudocode for an optimized version of the discrete convolution with
OpenCL. For this code to work all bu�ers have to have a size that is a
multiple of the tile_size
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8.5.3 Memory Transfer

The convolution can be optimized by better usage of the involved hardware, mainly the

PCI-E bus. The execution time required to process a I/O bu�er can be divided into

three parts (Fig. 8.11 ): Transfer of the data to the OpenCL device, execution of the

convolution, and data transfer to the host. This means that during the time the device

processes the current I/O bu�er, the memory bus is idling and vice versa.

By changing the host code the available hardware can be better used by implementing

a pipeline (Fig. 8.10). Processing the I/O bu�er needs three processing cycles. During

the �rst cycle, the input from the I/O bu�er is transferred to the device, in the second

cycle the bu�er is processed, and in the last cycle, the processed data is transferred from

the device to the host. This means that at any given time three I/O bu�ers are in the

pipeline.

The advantage of the pipeline is that the time for processing an I/O bu�er depends only

on the longest execution time for one of its components and thus increasing the sample

throughput. This is only the case when the memory bus is either full duplex or dual

simplex, like PCI-E.

The disadvantages are a latency between in- and output of three full I/O bu�ers and

more memory is needed on the computing device. (Fig. 8.10, 1-4).

1 temp = outputBuf fer ;
2 outputBuf fer = pro c e s s i n gBu f f e r ;
3 p ro c e s s i n gBu f f e r = inputBuf f e r ;
4 i nputBuf f e r = outputBuf fer ;
5

6 cl_cmdQueue . wr i t eBu f f e r ( I /OBufferCL [ inputBuf f e r ] , I /OBuffer )
7 cl_cmdQueue . r eadBuf f e r ( I /OBufferTempOut , I /OBufferCL [ outputBuf fer ] )
8

9 c l_kerne l . setArg (0 , I /OBufferCL [ p r o c e s s i n gBu f f e r }) ;
10 c l_kerne l . setArg (1 , CL_Save_Buffer ) ;
11 c l_kerne l . setArg (2 , CL_Filter ) ;
12 c l_kerne l . setArg (3 , cu r r en tR ingBu f f e rPos i t i on ) ;
13

14 c l : : NDRange g l oba l (Number o f Channel , I /OBuffer . S i z e ) ;
15 cl_cmdQueue . c a l lKe rn e l ( convolve , g l oba l ) ;
16

17 copy ( I /OBufferTempOut , I /OBuffer )

Figure 8.10: Pseudocode for the host for executing the discrete convolution with a
pipeline aproach for memory transfer and device computation
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Figure 8.11: Pipline Models for the Open CL Implementation

8.5.4 Uniformly-Partitioned Convolution

The implementation of the partitioned convolution is similar to the CPU version. The two

notable di�erences are that the clFFT library is used and that all channels are convolved

at once rather than sequentially like the CPU version. For the latter, the memory for

the partition has to have a speci�c layout. The memory is a logical four-dimensional

array which is due to the limitation of OpenCL stored in a physical one-dimensional

array. The �rst dimension is the partitions of either the FDL or the �lter partitions. The

second dimension are the di�erent channels. The third dimension are the frequencies of

the transformed signals, and the fourth dimension is the real and imaginary part of the

complex number (Fig. 8.12 ).

The main kernel for the partitioned convolution is the multiplication of the entries in the

FDL with the �lter partitions. The kernel itself has two dimensions. The �rst being the

channel on which the thread works, the second the complex number in the transform.

The thread than iterates over all partitions and multiplies each time his complex number

from the FDL with the corresponding number in the �lter partitions and adds them to

the accumulation result.

Two versions of the partitioned convolution were implemented. Both versions only di�er

in the kernel. One uses a modulo operation to access the entries in the FDL, the other

replaces the operation.
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Figure 8.12: Memory layout of the arrays for the implementation of the partitioned convo-
lution with OpenCL. Real part of the complex number in dark the imaginary
part in brighter color. The marked green part are the complex numbers a
single thread handles during the convolution
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9 Test Environment

The evaluation of the convolution engines requires the testing of the engines. To simplify

the testing process a test environment was created. The purpose of the test environment

is to test the convolution engines under the same conditions, or at least as similar as

possible, on an operating system.

9.1 Test Design

The aim of the tests is to allow a rating of the di�erent convolutions based on their

performance. How well an engine performs can be determined by three performance

indicators.

• Throughput: How many samples can be convolved in a second

• I/O Latency: Time between data input and corresponding data output

• Memory Consumption: The amount of memory allocated by the engine.

How well an engine performs in these indicators depends on a number of parameters

that can be divided into hardware parameters, how powerful the platform the engine is

tested on is, and convolution parameters, how much work the engine has to do. The

main parameters are:

• Hardware parameters

� CPU

� GPU (if used by the implementation)

� RAM
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• Convolution parameters

� number of parallel convolutions

� size of the I/O bu�er

� length of the �lter

From the three indicators, the throughput and the I/O latency are to some extent linked.

The I/O latency depends on the I/O bu�er size. The size of the I/O bu�er should be

as low as possible, but in the case of the fast convolution, this reduces the throughput.

The size of the I/O bu�er should be just large enough to have an above real-time sample

throughput. The memory consumption, on the other hand, is nearly irrelevant, since on

current platforms the bottleneck is the processing bu�er, not the memory.

From the two important performance indicators, the I/O latency can be easily calculated

while the throughput can only be measured. Therefore the test case the environment

executes is designed to measure the throughput. The throughput is measured by mea-

suring the processing time of the engine. The processing time is the time between calling

the processAudio function of an engine and the return from that function. Since the

test is executed on an operating system the resulting measurements di�ers, caused by

other interfering processes. To limit the in�uence of other processes on the processing

time measurement the processing time is not only measured once, but rather several

hundred times. The sample throughput is calculated by dividing the I/O bu�er size by

the processing time (Eq. 9.1). The sample throughput is the maximum sample rate the

convolution engine could support in real-time at the given parameters.

throughput =
1

processingT ime
· I/OBufferSize = I/OBufferSize

processingT ime
(9.1)

9.2 Test Procedure File

The testing procedure in the test environment is automated by script �les. The structure

of the test procedure �le is relatively simplistic. Each line can at maximum only contain

one command and comments starts with # and end at the line break. There are only

three di�erent commands that the test environment accepts: setting a variable in the

test environment, creating a new test case, and opening of another test �le. The �rst

word in the command always determines the type.
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9.2.1 Setting of an Environment Variable

The command identi�er for the �set variable� command depends on the type of the

variable. the identi�er can be �bool �, �int �, ��oat �or �string �. The identi�er is followed

by the name of the variable and its value.

typeId global_settings::varName = value

9.2.2 Creation of a new Test Case

The creation of a new test case starts by the identi�er �test � followed by the location

of a dynamic library (path/name) and the name of a factory function for creating the

engine. The next three parameters are integers for setting the convolution parameters.

The order is �rst the number of parallel convolutions, second the size of the I/O bu�er,

and lastly the minimum size of the �lter. Additional integers can be appended. Their

function di�ers from engine to engine. Their function is either to set the number of

threads the engine uses, or the devices used with OpenCL.

test filename factoryFunction channel bufferSize impulseSize

additionalParameters∗

9.2.3 Opening of another Script File

Another script �le can be opened by �rst writing the command identi�er �test�le �

followed by a name for the test and the path of the �le. The purpose of opening other

test�les is to group speci�c test together. All results of the test cases in a test�le are

saved in their own folder with the name in the command. The folder structure represents

the order of the test�les, the start folder at the top where each opened test�le has its

own subfolder.

testfile testName = filePath
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9.3 Test Data

The test environment creates a CSV �le for each test case containing the data and a log

entry in the summary. The summary is a log �le o� all test cases in a test �le. The entry

contains all parameter of the test and some key performance indicators. In the CSV �le

each line contains �rst the number of the measurement and second the time needed for

processing in milliseconds. The CSV header looks like this:

Buffer Number;Buffer Calculation Time(ms)

The character for the separation of two �elds in the CSV �le is a semicolon to avoid the

problem with the decimal separator.
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Setup

The problem with measuring execution time on any given OS is that the result will

rarely be the same, as seen in Figure 10.1. For more reliable time measurement the

platform the engine is tested on should be properly con�gured. The main reason for the

inaccuracy during the measurement is caused by other processes that the CPU executes

in the background, at minimum the thread scheduler. The most obvious way to increase

the accuracy is to terminate all unnecessary threads and run the threads with the highest

priority. A more unique problem face Intel CPUs with hyper-threading.

Hyper-threading is Intels version of simultaneous multithreading. Other vendors have

their own versions, but the term hyper-threading is more commonly used. Intel CPUs

with hyper-threading have two virtual cores for each physical core. The virtual cores

share the physical core, but each has its own register sets and the cache is partitioned

between them. The aim of hyper-threading is to increase the performance by switching

between the virtual cores. When the currently working virtual core has to wait for data

of the RAM or to �ll the command pipeline after a jump in the code the other core can

use the waiting time to execute its own task. For real-time applications hyper-threading

has some problems.

The question if hyper-threading should be enabled for measurements or during runtime

can not easily be answered. To �nd a conclusion if it should be enabled for the measure-

ments three tests were conducted. Each test used the same engine and the processing time

of the engine was measured 1000 times. The test was conducted for hyper-threading and

normal threading, so that the total number of test runs is six. The CPU was a Quadcore,

meaning the number of virtual cores is eight.

The �rst comparison between normal threading and hyper-threading was with four con-

volution channels and a �lter length of 44100 (Fig. 10.1 ). Half the cores for hyper-

threading, full usage for normal threading. The average processing time for normal
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threading with 6.8 milliseconds was shorter than the average of 8 milliseconds when ex-

ecuted with hyper-threading. Figure 10.1 shows that there is more variation in the

processing time when executed with hyper-treading causing the higher average, while

the lowest calculation time is similar. This is probably caused by the scheduler when it

allocates threads to the same physical core.

Figure 10.1: Comparison between the engine processing times for a �lter length of 44100
samples and 4 convolution channels

This is contrary to the result of the second test. In the second test the engine was tested

with the same number of channels, but only a tenth of the �lter length (Fig. 10.2 ).

The average for normal threading here is 0.98ms against 0.64ms with activated hyper-

threading. When looking at the diagram a large number of measurements took twice

as long as the lowest. The most likely explanation is that the scheduler scheduled two

threads on the same core, convolving the channels sequentially instead of parallel. Hyper-

threading seems to cope better with the short activities of threads. Probably, because

it can suspend the lower priority threads from other processes more easily by switching

the active core. A costly context switch is not necessary.

The last test was to check if there is a performance di�erence when all virtual cores are

used. The engine was tested with a �lter length of 44100 samplesand eight convolution

channels (Fig. 10.3 ). Here the variation of the processing time is similar between normal

and hyper-threading, but normal threading is faster, with an average of 12.7ms against

an average of 13.9ms.

In conclusion hyper-threading is deactivated for the measurements for better performance

and more accurate measurements. Hyper-threading only performances better for shorter
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Figure 10.2: Comparison between the engine processing times for a �lter length of 4410
samples and 4 convolution channels

Figure 10.3: Comparison between the engine processing times for a �lter length of 44100
samples and 8 convolution channels

�lter lengths, which is not the primary test case. The probable cause for the poorer

performance of hyper-threading are the optimizations. Reducing the number of cache

misses and jumps means less idle time for the cores. Therefore the cores rarely have to

wait, which is where hyper-threading would usually be bene�cial.
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11 Algorithmic Behavior

While the di�erent implementations of the convolution algorithms perform di�erently,

the implementations behave in a similar manner.

11.1 Discrete and Fast Convolution

The plot in Figure 11.1 shows the sample throughput of a discrete convolution engine

and a unpartitioned convolution engine for di�erent I/O bu�er sizes for all powers of two

between 32 and 8192. As seen in the plot the discrete convolution is mostly una�ected by

the changes. The reason is that the discrete convolution is linear. When the number of

samples in the I/O bu�er is doubled the required processing time doubles as well, while

the time needed to process a single sample stays the same.

On the other hand, the sample throughput of the unpartitioned convolution grows expo-

nentially with the size of the processing bu�er. The discrete convolution has a throughput

of roughly 200000 Samples per Second (SpS), while the unpartitioned convolution starts

with 5000 at a bu�er size of 32 breaks the 44100 marks at a bu�er size of 512 and over-

takes the discrete convolution at a bu�er size of 1024. This also means that, unlike the

discrete convolution, the convolution of two signals needs more time than convolving a

single signal with twice the �lter length.

The reason why the unpartitioned convolution is not drawn in line in the Figure 11.1 has

to do with the calculation time of the FFT and the IFFT. The time needed to calculate the

transform is not linear. Only small changes can drastically a�ect the sample throughput

(Fig. 11.2 ). At a transform size of 65536, a unpartitioned convolution algorithm has

a sample throughput of over 80 thousand samples. Increasing the transform size slightly

by six samples to 65542 samples reduces the sample throughput to under 20 thousand

samples. The reason is that the unpartitioned convolution works better when the prime

factors are small. The drop is explained because 65536 is a power of two while 65542
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is two times a large prime. The prime factors for the transform sizes in the plot are in

Table 11.1.

Figure 11.1: Sample throughput for the discrete convolution (red) and the unpartitioned
convolution (blue) for di�erent processing bu�er sizes with a �lter length of
44100 Samples. The 44100 samples per second line is marked in gray.

While it is easy to avoid large prime numbers it is not as easy to �nd the optimal size.

As seen in Figure 11.1 the transform sizes of 65610 and 81920 roughly perform the

same while one is much larger, with the largest prime in both of them being a 5. Simply

rounding to the next power of two is not the ideal solution; a smaller transform size (in

this case 73728) can have a higher sample throughput then the larger transform size and

also requires less memory. In conclusion, the time needed for the execution of the FFT

is a little bit unpredictable.
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Figure 11.2: Sample throughput for the unpartitioned convolution for di�erent sizes of
the FFT transform, with a processing bu�er size of 256. The 44100 samples
per second line is marked in gray.

Transform size Prime factors

65536 216

65542 2 · 32771
65610 2 · 38 · 5
73728 213 · 32
81920 214 · 5
131072 217

Table 11.1: Prime factors of the transform sizes in Fig. 11.2 .

11.2 Multithreading

While multithreading does not lead to speci�c behavior the chosen implementation does.

As seen in �gure 11.3 the sample throughput only drops every four channel increments

drastically. This is not accidentally the number of cores the processor has. As mentioned

52



11 Algorithmic Behavior

before the multithreaded solution assigns a convolution channel only to a single core.

This means the convolution is completely executed on a single core and the performance

drops only if the number of threads per core rounded down changes.

Figure 11.3: Sample throughput of a multithread engine for di�erent numbers of channel
on a Quadcore

11.3 GPU Memory Transfer

Similar to the multithreading the memory transfer optimization leads to a speci�c behav-

ior.When using the pipeline approach the �rst two I/O bu�ers return �lled with zeroes

from the processing functions. Only after this, the engines start to return the actual

result. The audio signals in Figure 11.4 show the resulting signals for two di�erent

OpenCL engines, one with a memory pipeline, one without. With a processing bu�er

size of 64, the latency is 128 samples compared to the non-pipeline engine and 256 samples

with an I/O bu�er size of 128 samples. This is additional to the one bu�er size latency

found in every convolution engines and all other forms of digital audio processing.
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Figure 11.4: In�uence of the processing bu�er size on the latency of the OpenCL pipeline
approach.
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12 Evaluation

The evaluation of the di�erent convolution engines consists of two di�erent sections. The

�rst section is the evaluation of the optimizations. The second is a test between the

convolution engines to �nd their maximum performance and break-even points.

12.1 Hardware

The CPU used for the main test is an Intel Core i7-4770 CPU with 4 cores and a

maximum clock frequency of 3.9GHz with 16 GB RAM. The GPU is a GTX 970 which

has a maximum clock frequency of 1.316 GHz, 4 GB memory and, 13 computing units.

12.2 Evaluation of the Optimizations

The aim for evaluating the optimizations applied to the di�erent convolution algorithms

is to show the e�ect proper optimization can have on the performance and also reduce

the number of tests for later tests. When an implementation of an algorithm is better

than another implementation it will always be superior for all possible parameters for the

convolution. This is only true for the same device since CPU and GPU scale di�erently.

The test case for the di�erent implementations was to convolve a single channel with

a �lter with a length of 44100 samples, and an I/O bu�er size of 256 samples. The

measurement of the processing time was conducted 25000 times for each test. The engines

were compiled with maximum optimization in favor for speed, not memory consumption

and with enabling AVX instructions for the compiler, both in terms of manual usage and

optimization by the compiler.
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12.2.1 Discrete Convolution (CPU)

The discrete convolution on the CPU has three di�erent versions. In this test case, the

unoptimized version performed unsurprisingly the worst (Table 12.1). The unoptimized

discrete convolution implementation needs roughly 70ms to process a single I/O bu�er.

This results in a sample throughput of 3633 samples per second which is not even a tenth

of the required throughput for real-time convolution.

That the performance can be greatly increased shows the optimized version. By sim-

ple replacement of operators and loop unrolling the optimized version reaches a sample

throughput of 78672.64 samples per second, a sample throughput more than 20 times

greater than the unoptimized version. While this is already far better the AVX version

of the discrete convolution has a sample throughput of 189325.3 samples per second, 2.4

times better than the optimized version.

The conclusion for this test is relatively straight forward. Using AVX is the best solu-

tion for the discrete convolution, and that even if the compiler is allowed to use AVX

instructions for optimization purposes does not mean that thr compiler will use them.

The second test for the discrete convolution was how much multithreading, especially

the synchronization e�ects the performance. Since the tested CPU had four cores, the

number of convolution channels for the test was increased to four. This means the CPU

had to solve a task four times larger with four times more resources. This means in the

best case the multithreaded version requires the same amount of time for four channels

than the single-threaded version for one.

The result of the test is that the optimized version with only one thread had an av-

erage processing time of 3.25 milliseconds while the multithreaded version was slightly

faster with only 3.21 milliseconds. This is contradictory to the expectation since the

multithreaded version does exactly the same plus synchronization overhead. In this case,

minimal processing time can be interesting.

The measurements of the processing time always slightly di�er because of interference

of the operating system and other, processes but when a test is executed 25000 times

it is quite likely that the shortest measured time is close to the shortest possible time.

In the case of the single-threaded version, the shortest measured time is 3.06 ms while

the multithreaded version had a time of 3.08ms. This means the multithreaded version
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Engine Name
Processing Time (ms) avg. Sample

Troughput(SpS)average minimum

Discrete 70.4624 68.5641 3633.143

Discrete (opt) 3.25399 3.06125 78672.64

Discrete (opt, mul) 3.20848 3.08329 79788.56

Discrete (AVX) 1.35217 1.32188 189325.3

Discrete (AVX, mul) 1.44619 1.32581 177016.9

Table 12.1: Comparison between the di�erent implementations for the discrete convolu-
tion on the CPU

needs roughly 0.02 ms for thread synchronizations. Similar times are found for the AVX

version with a di�erence of 0.04 ms in favor of the single threaded version.

This shows that the engine can fully utilize the cores without major impact on the

performance. Since synchronization is only performed at the beginning of the processing

function and at the end the total cost is �x. The proportion amount of time for the

synchronization becomes less when the problem size for the convolution increases.

12.2.2 Discrete Convolution (OpenCL)

The discrete convolution for OpenCL has two di�erent optimizations, transfer optimiza-

tion and kernel optimization. The standard version for OpenCL uses the same opti-

mization found in the optimized version of the discrete convolution for the CPU. In this

test case, the standard version of the discrete convolution has a sample throughput of

81003.69 samples per second, while the discrete convolution that uses an optimized kernel

to better utilize the GPU reaches a sample throughput of 179620.13 (Table 12.2). This

shows that the optimization of the kernel has a huge impact on the overall performance.

The optimization of the transfer improves the throughput of the standard version by

roughly 1000 samples per second (Table 12.2). This minor improvement does not really

justify the increased latency in the engine. While memory transfer optimizations are

often recommended as an optimization the minor e�ect can be explained by the design

choices. The convolution is completely executed on the GPU and only the I/O bu�er is

transferred during the processing. In this case, only 2048 bytes are transferred between

CPU and GPU. This requires an insigni�cant amount of time compared to the actual

convolution. The only way that the transfer optimization could be viable is to drastically

shorten the length of the �lter. The time for the convolution would decrease and therefore
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Engine Name
Processing Time (ms) avg. Sample

Troughput(SpS)average minimum

Discrete 3.16035 2.96224 81003.69

Discrete (transfer opt) 3.11782 2.94745 82108.65

Discrete (kernel opt) 1.42523 1.35358 179620.1315

Table 12.2: Comparison between the di�erent implementations for the discrete convolu-
tion on the GPU with OpenCL

Engine Name
Processing Time (ms) avg. Sample

Troughput(SpS)average minimum

Unpartitioned (opt) 1.69001 1.64549 151478.4

Unpartitioned (AVX) 1.64539 1.60413 155586.2

Partitioned (opt) 0.0956714 0.092372 2675826

Partitioned (AVX) 0.027986 0.026263 9147431

Table 12.3: Comparison between the di�erent implementations of the fast convolution on
the CPU

the proportion of the transfer at the total processing time would increase. But it would

be far more likely that in that case, the convolution on the CPU is the better option.

12.2.3 Unpartitioned and Uniformly-Partitioned Convolution

The implementation of the unpartitioned and the partitioned convolution for the CPU

show the same pattern as the discrete convolution (Table 12.3). The AVX implementation

is always faster, but the gain in sample throughput is very di�erent. While the sample

throughput for the unpartitioned convolution is 151478.4 samples the AVX version has

slightly better 155586.2 SpS, roughly two percent faster. The e�ect of the usage of AVX

on the partitioned convolution is more noticeable. The sample throughput is increased

from 2675826 SpS to 9147431 SpS, more than three times as much.

The reason why the unpartitioned convolution is e�ected by AVX to a much lesser extent

is that the unpartitioned convolution uses a larger proportion of the processing time

on the Fourier transforms while the partitioned convolution mostly spends its time on

complex multiplication. The usage of AVX is limited to the multiplication of the complex

numbers, because the Fourier transforms are provided by the FFTW library.

That the unpartitioned convolution is not worthy for further examinations can be seen

when comparing the performance between the unpartitioned convolution and the par-
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Figure 12.1: Sample throughput for the unpartitioned convolution and the partitioned
convolution for di�erent parameters for the convolution. In blue the un-
partitioned convolution, in red the uniformly-partitioned convolution. The
default �lter length is 48000 samples and a I/O bu�er size of 256 samples

titioned convolution under di�erent parameters (Fig. 12.1 ). The partitioned performs

always better than the unpartitioned convolution even for larger bu�er sizes. This is,

because the FFT transform is much lower for the partitioned convolution than for the

unpartitioned convolution. The transform size for the partitioned is twice the I/O bu�er

size while the unpartitioned convolution has the �lter length + bu�er size - 1. The

drawback is that the number of complex multiplications for the partitioned convolution

is twice the �lter length compared to again �lter length + bu�er size - 1. There are cases

where the unpartitioned convolution performs better than the partitioned convolution,

but these cases require an I/O bu�er size that is greater than the �lter length, but that

is rarely the case.

12.2.4 Uniformly-Partitioned Convolution with OpenCL on GPU

With OpenCL only the uniformly-partitioned convolution was implemented, because test

data from the CPU implementations clearly shows that the unpartitioned convolution is

inferior to the uniformly-partitioned convolution. The optimizations for the code are only

minimal, because the most complex part is handled by the library, meaning the FFT,

and the complex multiplication cannot be optimized to a similar degree as the discrete
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Engine Name
Processing Time (ms) avg. Sample

Troughput(SpS
)

average minimum

Partitioned 0.647911 0.4398 395116

Partitioned (opt) 0.422281 0.334169 606231,4

Table 12.4: Comparison between the di�erent implementations for the partitioned con-
volution on the GPU

convolution. Nonetheless one unoptimized and an optimized version were implemented.

The code between them is mostly shared only the kernel code for the complex multi-

plication di�ers. The unoptimized version reaches only 2/3 of the sample throughput

of the optimized version with 395116 SpS compared to 606231 SpS. The only di�erence

between the implementations is that the unoptimized version uses a modulo operation

which is replaced in the (Fig.12.4) optimized version.

12.3 Performance comparison between CPU and

OpenCL/GPU Implementations

The test between the di�erent implementations of the algorithm shows that some imple-

mentation of the same algorithm is clearly superior. Since testing a convolution engine

can require a substantial amount of time only the implementation that makes best use

of the computing power of their device are compared. The AVX implementation per-

formed far better than the implementation using only code optimization, therefore the

AVX multithreaded variants are selected for the CPU algorithms. From the OpenCL im-

plementations the kernel optimized version showed the best performance for the discrete

convolution, and for the partitioned convolution the optimized version was the best.

The problem for the comparison is that the convolution engine has three parameters the

I/O bu�er size, the length of the �lter and the number of audio channels. Testing every

possible con�guration would require too much time. Because of this, the behavior of

the di�erent convolution engine implementations is compared when only one parameter

changes while the others stay �xed. The default parameters are:

60



12 Evaluation

• I/O Bu�er Size: 256

• Filter Length: 48000

• Number of Channels: 4

That the number of channels has a default of four is, because of the way multithreading

is implemented. To make full use of the CPU the number of threads must be equal to

the number of cores, in this case, four. The number of times the execution time of the

processing function is measured is 10000.

12.3.1 I/O Bu�er Size

The �rst engine parameter tested is the I/O bu�er size. While theoretically, the size of

the I/O bu�er does not matter the performance of the discrete convolution the sample

throughput on the GPU changes with the I/O bu�er size (Fig. 12.2 ). The lowest sample

throughput for the discrete convolution on the GPU is with 40 thousand SpS at an I/O

bu�er size of 32 samples too low for real-time processing. With increasing bu�er size

the sample throughput of this convolution engine increases through to better e�ciency

of the memory transfer. The sample throughput peaks at a bu�er size of 2048 with a

throughput of 1524 kSpS. On the CPU the sample throughput is in comparison relatively

constant. The peak is at an I/O bu�er size of 512 with 175 kSpS and at its lowest at a

bu�er size of 4096 with a throughput of 136 kSpS. A comparable performance between

the two convolution engines is at a bu�er size of 128 where the CPU version has with

172 kSpS a slightly higher throughput than the OpenCL version with 155 kSpS.

For the partitioned convolution the behavior is slightly di�erent (Fig. 12.2 ). Like the

discrete convolution the OpenCL implementation of the partitioned convolution starts

lower than the CPU implementation with a sample throughput of 52 kSpS, but unlike

the discrete convolution the OpenCL implementation is not able to surpass the CPU

implementation. The CPU implementation starts with a sample throughput of 295 kSpS,

a value that is surpassed by the OpenCL implementation at a bu�er size of 128 samples.

The throughput of both implementations increases with increases in the I/O bu�er size.

At the last measured bu�er size of 4096 the OpenCL implementation has a throughput

of 6.6 mSpS, and the CPU version an throughput of 45 mSpS.
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Figure 12.2: Sample throughput of the convolution engines by varying size of the I/O
bu�ers. Start value for the bu�er size is 32 samples, end 4096. Measurement
points were all power of twos in between. The CPU implementations in
blue, the OpenCL implementations in red. In grey the 48 kHz threshold for
processing audio in real-time for the common sample rates

12.3.2 Channel Number

The next parameter to be examined is the number of parallel convolutions. The plots 12.4

show the behavior of the convolution engines when the number of channels is increased.

The tests start at four channels, are incremented in four channels steps and �nally ends

at a channel number of 48. All convolution engines start with a higher sample rate

than 48kHz. No engine with the exception of the CPU discrete convolution fall below

this threshold, but the CPU partitioned convolution is at a channel number of 48 only

slightly above with a throughput of 51.5 kSpS. The CPU discrete convolution falls under

the 48 kHz threshold when convolving 12 channels. The sample throughput at this point

46,8 kSpS, rough than a third of the sample throughput for four channels 153.5kHz. This

sample throughput is low for a sample rate of 48 kHz, but su�cient for convolving 12

channels at a sample rate of 44.1 kHz.

The sample throughput of the convolution engines decreases with increasing number

of channels for the OpenCL implementations in a somewhat linear fashion. On the

other hand the CPU partitioned convolution �rst drastically loses performance and then

seemingly slows down. The sample throughput of this engine decreases fast from 5.92
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mSpS to 585 kSpS at a channel size of 12, the break-even point between the CPU and the

OpenCL version. This behavior is found on the other implementations as well, with the

exception of partitioned convolution with OpenCL. The cause for this is that doubling

of the problem size means roughly halving of the sample throughput. That this is not

the case for partitioned convolution shows the strange behavior of GPUs.

Figure 12.3: Sample throughput of the convolution engines by a varying number of chan-
nels for the convolution. The start number of channels is 4, and the end 48.
Test were executed between start and end in increments of four. The CPU
implementations in blue, the OpenCL implementations in red. In grey the
48 kHz threshold for processing audio in real-time for the common sample
rates

12.3.3 Filter Length

The last parameter to be examined is the length of the �lter. The test for the �lter

length is divided into two parts; one with the range of 24000 to 480000 (0.5s - 10s at 48

kHz) (Fig. 12.4 ), the second to �nd out if the partitioned convolution is better than the

discrete convolution for small problem sizes. (Fig. 12.5 ). The former is the test between

the di�erent engines, the latter if there is a case where discrete convolution is faster than

the partitioned convolution.

The plots in Figure 12.4 show that the engine behaves similarly in regard to the

�ler length as to the number of channels. The OpenCL implementation of the discrete
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convolution is yet again always better than the CPU implementation, but this time both

end up under the 48 kHz threshold. The CPU engine after a �lter length of 144000

samples, the OpenCL engine at 288000 samples. Coincidentally the OpenCL discrete

convolution engine reaches twice as many samples.

The CPU partitioned convolution outperforms the OpenCL version, but breaks even with

it between 144000 and 168000 samples. While the OpenCL implementation outperforms

the CPU implementation the CPU has still a sample throughput of 84 kSpS at a �lter

length of 480000. The point when the CPU version falls below it is reached far later,

outside of the scope of the plot at a �lter length of around 720000 samples. The limits of

the OpenCL implementations lay somewhere after 5760000 samples. At this point, the

sample throughput is still 50000 SpS. This �lter length is equal to 120 seconds of audio

at a sample rate of 48 kHz.

Figure 12.4: Sample throughput of the convolution engines by varying �lter length. The
start �lter length is 24000, the end 480000. Tests were executed between
start and end in increments of 24000. The CPU implementations in blue, the
OpenCL implementations in red. In grey the 48 kHz threshold for processing
audio in real-time for the common sample rates

That the partitioned convolution is not only good for long �lter length shows another plot

displaying the sample throughput for smaller �lter lengths for the CPU implementations

(Fig. 12.5 ). As is always the case the partitioned convolution outperforms the discrete

convolution. The value range of the discrete convolution is between 25000 kSpS and

322 kSpS, while the value of the partitioned convolution ranges from 7250 kSpS to 1686
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kSpS. This clearly shows that the partitioned convolution also handles relatively small

�lter lengths far better than the discrete convolution.

Figure 12.5: Sample throughput of the convolution engines by varying �lter length. The
start �lter length is 2400, the end 20600. Tests were executed between start
and end in increments of 2400. The size of the I/O bu�ers is in this case
64. The discrete convolution in blue, the partitioned convolution in red. In
grey the 48 kHz threshold for processing audio in real-time for the common
sample rates

12.4 Performance of Filter Changing

For an interactive environment it is necessary to change the �lter during runtime. How

long an engine needs to replace the �lter depends on the algorithm. Each algorithm has

only one implementation for the �lter changed per processor. Testing involves therefore

far less di�erent implementations.

The discrete convolution does not require preprocessing of the �lter. It is therefore

unsurprising that the discrete convolution needs the shortest amount of time to change

the �lter. On the CPU the change of a single �lter needs 10µs (Tab.12.5). The GPU
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version need more than 10 times as long with 127µs. Nearly all of the time the GPU

needs longer is attributed to the transfer between the memories over the PCI-E bus.

The fast convolution algorithm require more time to replace the �lter. Unpartitioned

convolution needs 891µs to execute the FFT and change the �lter. The partitioned

convolution has to execute one transform for every partition, but despite this the re-

placement is faster with 231µs. The main reason is that the Fourier transforms are much

smaller.

The partitioned convolution is much slower with a replacement time of 32ms. The main

reason is that unlike the processing changing of a �lter is not optimized. In the current

implementation the �lter for the channel as well as the partitions are processed sequen-

tially. A parallel solution would be better suited for the GPU. An estimation value when

properly optimized would be 360µ. The estimation is based on the replacement times

of the discrete GPU convolution and the partitioned CPU convolution. With proper

optimization the time should be below the estimation value, but it will always take

longer to replace a �lter for partitioned GPU convolution than with the discrete GPU

convolution.

Filter Changing Time (ms)

Algorithm CPU OpenCL/GPU

Discrete 0.01 0.127

Unpartitioned 0.891 -

Partitioned 0.231 32.5842

Table 12.5: Time needed to change a 48000 samples �lter for di�erent algorithms

66



13 VST Convolution Plug-In

The VST plug-in is a proof of concept, that the theoretical real-time processing of the

engines works in practice. The plug-in was created with JUCE. JUCE is a cross-platform

C++ framework for developing di�erent kinds of audio plug-in types. The plug-ins in

JUCE are created by implementing an interface. The framework than use wrapper for

a speci�c plug-in type to call the functions from the interface. The convolution plug-in

itself is mostly a wrapper around the convolution engine interface with a GUI (Fig 13.1 ).

The GUI is used to set the parameters of the engine. The only parameters not controlled

by the GUI are the size of the I/O bu�ers and the number of channels. These parameters

are controlled by the DAW.

GUI Elements:

1. Selection of a convolution engine out of a list

2. Setting of the �lter length used by the convolution algorithm

3. Setting of a parameter for the normalization

4. Maximum number of threads used for the convolution

5. Selection of a platform for running OpenCL

6. Selection of the device for OpenCL to run on

7. Selection of the channel for setting the �lter response

8. Setting of the �lter response either through browsing, entering the path or drag

and drop

9. Toggle box for rendering of the �lter response. Rendering of longer audio signal for

the preview requires a noticeable amount of time

10. Button for applying or reverting changes of the parameters
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13 VST Convolution Plug-In

Figure 13.1: Screenshot of the plug-in GUI
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In conclusion, the discrete and the partitioned convolution can be implemented with

OpenCL, but this does not necessarily mean better performance. If the OpenCL im-

plementation is better than the CPU implementation depends on the convolution pa-

rameters, with OpenCL generally being better for larger problem sizes. For the discrete

convolution, the main contributing parameter is the size of the I/O bu�ers. For the

conducted tests the break-even point was around 128 samples. While the discrete convo-

lution with OpenCL is better in nearly every tested case the break-even point between

the two partitioned convolutions is more complex. The break-even point depends on the

number of channels and the �lter length and only to a minor extent on the I/O bu�er

size. While the partitioned convolution on the GPU with OpenCL can convolve the most

channels / longest �lter lengths, the actual use case may not require the performance.

A performance comparison between the implementations is always di�cult. How well the

convolution engine performs is highly dependent on the hardware used. A comparison

between the result of other papers is hard, because similar hardware is not available and

they often use di�erent metrics to evaluate the performance. As mentioned before an

additional problem is that often implementation details for the comparison algorithms

are missing when comparing CPU and GPU implementations. As shown the optimization

can make huge di�erences in the performance. In case of the discrete convolution, simple

optimization of the code can reduce the processing time to 5% of the original time. When

implementing reference implementation on the CPU for comparison, it is necessary to use

AVX if possible. Otherwise only a fraction of the processing power of the CPU is used.

The implementation of the discrete convolution as well as the partitioned convolution

are more than twice as fast. The code for the CPU is not the only one that requires

optimization. The performance di�erence an optimized kernel can make is signi�cant.

On the other hand optimization of the memory transfer can be neglected. PCI-E o�ers

a high bandwidth and at least in this case it is unlikely that the memory transfer has a

huge e�ect on the total execution time.
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On an algorithmic basis there are two interesting aspects. First, fast convolution is nearly

always worse than partitioned convolution even for larger I/O bu�er sizes. Second, that

partition convolution is better than discrete convolution smaller problem sizes, at least

in the tested cases. The only redeeming aspect of discrete convolution is the shorter time

it needs to replace the �lter.

Which engine to select depends on the use cases. Discrete convolution is easy to im-

plement but does not o�er a high performance. Partitioned convolution requires third

party libraries or good implementations of the FFT. The OpenCL implementation have

the problem that the OpenCL 2 standard is not universally supported.

There are several steps that can be taken next. One is to implement a convolution engine

using non-uniformly-partitioned convolution. Another is to make use of the portability

of OpenCL to test the convolution engines on di�erent devices like FPGAs and DSPs.

A very interesting aspect would be if the optimization for the kernel code has the same

e�ect for other devices. The test could be repeated for di�erent platforms, but an impor-

tant question is how to properly test something that is so reliable on hardware and the

operating system, what metric to use, and how to handle the multitude of parameters

for the test. Another option unexplored is the performance of integer arithmetic. While

convolution with integer arithmetic is more complex due to possible over- and under�ows,

the arithmetic operations on integers is faster than on �oating point.
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15.1 Convolution Engine Overview

A full list of all factory functions in the dynamic libraries with the name of the function

to create the engine and the technologies:

DiscreteConvolutionEngines:

Function name Overlap Add/Save Paramters

createEngine Save

createOptimizedEngine Save

createMultithreadedEngine Save nrOfThreads

createAVXEngine Save

createMultithreadedAVXEngine Save nrOfThreads

DiscreteConvolutionEnginesOpenCL:

Function name Overlap Add/Save Paramter

createEngine Save platformId, deviceId

createTransferOptimizedEngine Save platformId, deviceId

createKernelOptimizedEngine Save platformId, deviceId

createFullOptimizedEngine Save platformId, deviceId

FastConvolutionEngines:

Function name Overlap Add/Save Paramter

createEngine Add

createAVXEngine Add

createMultithreadedEngine Add nrOfThreads

createMultithreadedEngineAVX Add nrOfThreads

createUniformEngine Save nrOfThreads

createUniformEngineAVX Save nrOfThreads
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FastConvolutionEnginesOpenCL:

Function name Overlap Add/Save Paramter

createEngine Save platformId, deviceId

createOptimizedEngine Save platformId, deviceId

15.2 Test Procedure File Variables

For easier use custom highlighting for notepad++ was created. To use the highlighting

it must be imported from the ScriptFileHighlighting �le. Every name is case sensitive.

15.2.1 Set Variable

typeId global_settings::varId = value

typeId

• bool

• int

• float

• string

Bool Variables

Set if a given test scenario is tested. The compare bools check the result of a test scenario.

This is only needed when testing a new implementation of a convolution algorithm to

ascertain that the convolution was performed correctly.

• ImpulsConvolution

• ImpulsConvolutionCompare

• SquareSignalConvolution

• SquareSignalConvolutionCompare
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Integer Variables

• NrOfTestRuns: number of test runs for the loop test

Float Variables

All �oat values are the normalization value for the test scenarios to prevent clipping.

• Normalisation_Impulse

• Normalisation_Square

• Normalisation_Real

String Variables

• ImpulseFileName: name pre�x for the result of the impulse test

• SquareFileName: name pre�x for the result of the square signal test

• SummaryName: name for the summary �le

• ImpulseInputPath

• ImpulseImpulsePath

• ImpulseOutputPath

• ImpulseComparePath

• SquareInputPath

• SquareImpulsePath

• SquareOutputPath

• SquareComparePath

• ...InputPath: audio input �le for the convolution

• ...ImpulsePath: impulse response for the convolution

• ...OutputPath: saving location for the result of the convolution

• ...ComparePath: audio �le to validate the result of the convolution
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Accepted Boolean Values

• true

• True

• TRUE

• false

• False

• FALSE
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Glossary

clFFT The clFFt library is a well optimized library for executing the fast Fourier trans-

form with OpenCL. https://github.com/clMathLibraries/clFFT.

FFTW The FFTW (Fastest Fourier Transform in the West) is a cross-platform C library

to compute the discrete Fourier transform. It was developed by Matteo Frigo and

Steven G. Johnson at the Massachusetts Institute of Technology and is published

under the GNU General Public License. http://www.fftw.org/.

JUCE JUCE is a cross-plaform C++ application framework, developed by ROLI, mainly

used for creating audio plug-ins. It is not only cross-platform but also allows to

build di�erent kinds of audio plug-ins, like VST and AZ. https://juce.com/.

libsnd�le libsnd�le is a cross-platform C library for reading or writing audio data into

di�erent audio formats through a uniform interface. Developt by Erik de Castro

Lopo and published under the GNU Lesser General Public License. http://www.

mega-nerd.com/libsndfile/.

OpenCL Open Computing Language is a cross-platform framework for executing code

on CPU, GPU, DSP and FPGA. The API is developed by the Khronos Group

https://www.khronos.org/opencl/.

PortAudio PortAudio is an open-source cross-platform C library for accessing the audio

inputs and outputs of a computer. The library support audio driver like Jack or

ASIO. http://www.portaudio.com/.
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