

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Masterarbeit im Studiengang pharmazeutische Biotechnologie

Online-Überwachung der Sauerstoffaufnahme-

rate (OUR) in CHO Kultivierungssystemen

zur Erlangung des Grades

Master of Science

vorgelegt von B. Sc. Katharina Dahlmann

geboren am

Matrikelnummer:

Hannover, August 2017

Referent : Dr. Gesine Cornelissen

Korreferent: Dr. Dörte Solle

"Der Teufel steckt im Detail."

Sprichwort seit 1940, [1]

Inhaltsverzeichnis

Ei	dessta	atlic	he Erklärung	4		
A	bkürzı	ıngs	verzeichnis	5		
1.	. Einleitung und Zielsetzung					
2.	Gru	ndla	igen	2		
	2.1.	CH	O Zellkultivierung	2		
	2.2.	Onl	ine Überwachung	4		
	2.3.	Mes	ssung des Sauerstoffpartialdrucks	7		
	2.4.	Sau	erstoffübertragung	9		
	2.4.3	1.	$Der \ Sauerstoff \ übertragungskoeffizient \ k_La$. 10		
	2.4.2	2.	Die Sauerstoffaufnahmerate OUR	. 15		
	2.5.	Des	sign of Experiments	. 19		
	2.5.	1.	Definition der Einflussgrößen	. 19		
	2.5.2	2.	Versuchsplanung	. 19		
	2.5.3	3.	Rohdatenanalyse	. 20		
	2.5.4	4.	Regressionsanalyse	. 21		
	2.5.	5.	Güteprüfung des Modells	. 22		
3.	Met	hod	en	. 24		
	3.1.	Bes	timmung der Henry-Koeffizienten	. 24		
	3.2.	Ver	such splan zur Bestimmung des $k_{\rm L}$ a-Wertes	. 25		
	3.3.	Bes	timmung des k_L a-Wertes	. 26		
	3.3.3	1.	Ausgasungsmethode	. 26		
	3.4.	Dyr	namische Methode zur Bestimmung des k_La und der OUR	. 32		
	3.5.	Bes	timmung der qOUR	. 33		
	3.6.	Onl	ine OUR	. 33		
4.	Erg	ebni	sse und Diskussion	. 36		
	4.1.	Bes	timmung des k_La - Wertes	. 36		

4.1.1. Analyse der Einflussparameter und Bestimmung der Parametergleichung					
des k _L a-Wertes über Multilineare Regression					
4.1.2. Modellbildung zu den Daten des zellfreien Modellsystems					
4.1.4. Kultivierung					
4.2. Vergleich der Modelle51					
4.3. Vergleich Modellsystem PBS mit dem Kultivierungsmedium55					
4.4. Online Bestimmung der OUR und qOUR57					
4.4.1. Bestimmung der OUR und qOUR aus den Modellen57					
4.4.2. OUR Bestimmung über die Dynamische Methode als Referenz					
4.4.3. Vergleich der online OUR Modelldaten mit Referenz Daten					
5. Zusammenfassung und Ausblick62					
Anhang1					
Danksagung1					
1. Material1					
1.1. CHO Zell Kultivierung1					
1.2. Material und Geräte1					
1.3. Chemikalien und Kulturmedien2					
1.4. Software					
2. Abbildungsverzeichnis					
3. Tabellenverzeichnis					
4. Literaturverzeichnis					
5. Versuchsplan für die k_La -Wert Bestimmung9					
6. Berechnung des Henry-Koeffizienten über die Formel der					
Temperaturabhängigkeit10					
7. Herleitung der Analogiedes Sauerstoffübertragungsverhalten über ein					
Elektrotechnisches Ersatzschaltbild11					
8. Matlab Skripte16					
8.1. $k_L a$ über PT_3 System					
8.2. Ermittlung der empirischen Parameter für Van't Riet-Gleichung					

8.3.	online OUR
9. W	Veitere Auswertungsmethoden zur k_La -Wert Bestimmung19
9.2.	k _L afit
9.3.	kLa Ln
10.	Ergebnisse zur Bestimmung der Zeitkonstante T_M der pO2- Sonde 26
11.	Ergebnisse der k _L a-Werte Bestimmung durch Annäherung an das PT ₃ -
Übert	ragungssystem
12.	Koeffizienten des MLR Modells aus den k_La Werte der Näherung über das PT_3 -
System	n

Eidesstaatliche Erklärung

Diese Arbeit wurde in Kooperation des Instituts für Technische Chemie der Leibniz Universität Hannover, Deutschland, mit der Hochschule für Angewandte Wissenschaften, Hamburg, Deutschland, in der Zeit von 01.03.2017 bis 31.08.2017 im Arbeitskreis von Herrn Prof. Dr. Thomas Scheper durchgeführt. Der Verfasser versichert, die vorliegende Arbeit eigenständig durchgeführt und alle verwendeten Hilfsmittel angegeben zu haben. Fremde Gedanken sind als solche kenntlich gemacht worden.

Katharina Dahlmann

Abkürzung	Ausgeschriebenes Wort/Wortgruppe	Ggf. Übersetzung
a'	Mittlere spezifische Austauschfläche	
А	Austauschfläche Gasblasenoberfläche	
A _{Kat}	Fläche an der Kathodenspitze	
b	Dicke der Teflon -Membran	
C _{AF}	Antischaumkonzentration	
c _{Gi} *	Thermodynamischer Gleichgewichtszustand auf der Seite der Gasphase G	
c _{Gi}	Konzentration der Komponente i in der Gasphase	
	G	
c _G	Konzentration im Kern der Gasphase	
СНО	Chinese hamster ovary	
c _{Li}	Konzentration der Komponente i in der Flüssig-	
	phase L	
c_{Li}^{*}	Thermodynamischer Gleichgewichtszustand auf	
	der Seite der Flüssigphase G	
CL	Konzentration im Kern der Flüssigphase	
c _{OL}	Konzentration des Sauerstoffs in der Flüssigphase	
c_{L}^{*}	Konzentration in der Flüssigphase im Gleichge-	
	wichtszustand	
C_{NL}	Stickstoffkonzentration in der Flüssigphase	
C _{NL max}	Maximale Stickstoffkonzentration in der Flüssig-	
	phase	
F	Faraday Konstante	
F _{nG}	Begasungsrate im Luftraum unter Normalbedin-	
	gungen	
F _{nG}	Begasungsrate bezogen auf Normalbedingungen	
	$(T = 273.15 K, p = 101 325 \frac{N}{m^2})$	
F _x	Begasungsrate mit dem Gas X	
Н	Henry Verteilungskoeffizient	

Abkürzungsverzeichnis

Abkürzung	Ausgeschriebenes Wort/Wortgruppe	Ggf. Übersetzung	
k _G	Stoffübertragungskoeffizient von der Seite des Ga-		
	ses		
k _L	Stoffübertragungskoeffizient von der Seite der		
	Flüssigkeit		
K _L	Gesamtstoffaustauschkoeffizienten		
M _{N2}	Molare Masse von Stickstoff		
M _{O2}	Molaremasse von Sauerstoff		
n	Anzahl der Blasen		
n _e -	Anzahl der dreien Elektronen durch die chemische		
	Reaktion		
n ₀₂	Sauerstoffstromdichte		
n ₀₂	Volumenbezogener Stoffstrom		
N _{St}	Rührerdrehzahl		
NTR	Strickstoff Transfer Coefficient		
NTR _{max}	Maximale NTR		
OTR	Oxygen Transfer Rate	Sauerstoff-Transfer	
		Rate	
OUR	Oxygen Uptake Rate	Sauerstoffaufnahme-	
		rate	
PAT	Process analytical technology	Prozess-Analytische	
		Technologie	
P _M	Permeabilität für Sauerstoff durch die Teflon-		
	Membran		
<i>p0</i> ²	Sauerstoffpartialdruck		
pO ₂ %	Sättigungsanteil des Sauerstoffpartialdrucks		
<i>pO</i> ₂ %	Sauerstoffsättigungsanteil		
$pO_2(t)$	Aktueller Sauerstoffpartialdruck		
pO _{2 cal}	Sauerstoffpartialdruck bei der Kalibrierung		
p0 _{2, max} %	Maximaler Sättigungsanteil für Sauerstoff über den		
	gesamten Messverlauf		
V _L	Volumen der Flüssigphase		

Abkürzung	Ausgeschriebenes Wort/Wortgruppe	Ggf. Übersetzung
V _{nM}		
	gen	
Х	Durchmesser der einzelnen Blase	
x _{NG}	Strickstoffanteil im Ingas	
x _{OGin}	Sauerstoffanteil im Ingas	
x _{OG out}	Sauerstoffanteil im Abgas	

1. Einleitung und Zielsetzung

In der modernen Biotechnologie werden Kultvierungsprozesse zumeist nur durch Kontrolle des pH-Wertes, der Temperatur und des Sauerstoffgehalts überwacht. Vereinzelnd wird auch der Verlauf Nähstoffkonzentration gemessen. Für hohes Zellwachstum und eine hohe Produktausbeute sind jedoch viele weitere Prozessgrößen ebenfalls Ausschlag gebend. Aussagen über die metabolische Aktivität der Zellen oder die Zellzahl selbst lassen sich meistens erst nach der Kultivierung machen, da eine Überwachungsmöglichkeit während der Kultivierung fehlt.

Eine dieser prozessrelevanten Größen zur Überwachung von biotechnologischen Prozessen ist die Menge des Sauerstoffs, der von den Zellen aufgenommen wird. Viele der in der Biotechnologie verwendeten Expressionssysteme für z.B. pharmazeutische Produkte sind auf Sauerstoff angewiesen. Mit steigender Produktivität im Kultivierungsverlauf steigt auch der Sauerstoffbedarf der Zellen. Eine aussagekräftige Größe zur Beurteilung der metabolischen Zellaktivität ist über die Sauerstoffaufnahmerate *OUR* und die zellspezifische Sauerstoffaufnahmerate *qOUR* möglich. Eine kontinuierliche Überwachung der Sauerstoffaufnahmerate *OUR* ist derzeit nur mit teurer Messtechnik wie Massenspektrometern und in mikrobiellen Kultivierung möglich. Für eine Aussage in Tierzellkultivierung sind bisher nur Methoden bekannt, die die Produktivität der Zellen stören können. Für eine effiziente Überwachung der metabolischen Aktivität ist eine Echtzeitbetrachtung des Sauerstoffverbrauchs gerade für Tierzellkultivierungen notwendig.

Ziel dieser Arbeit ist es eine online Bestimmung der Sauerstoffaufnahmerate (OUR), der zellspezifische Aufnahmerate (qOUR) und des Sauerstoffübertragungskoeffizienten (k_La) in einer tierischen Zellkultivierung zu etablieren. Diese Größen sollen während der Kultivierung aus den Prozessparametern bestimmt werden ohne die Zellen dabei zu schädigen. Dafür die Systemcharakterisierung zur Bestimmung des Sauerstoffübertragunsgkoeffizienten (k_La) über Modellsysteme durchgeführt. Außerdem werden unterschiedliche Auswertungsmethoden, sowie Anwendungsmethoden während des Prozess verglichen.

2. Grundlagen

2.1. CHO Zellkultivierung

Chinese hamster ovary (Chinesischer Hamster Eierstock) oder CHO Zellen wurden 1957 das erste Mal charakterisiert und anschließend als Suspensionszelllinie CHO-K1 etabliert. Heute wird diese Zelllinie als Expression System für rekombinante Proteine genutzt. 60-70 % der rekombinant hergestellten Proteine der Biopharmazeutika werden in Säugetierzellen produziert [2], 70 % davon durch den Einsatz von CHO-Zellen [3]. Die Glykosylierung der produzierten rekombinanten Proteine ist nachweislich dem des human-Produktes entsprechend bzw. diesem sehr nah. [4]

Als Suspensionskultur liegen die Zellen in der Flüssigkeit als Einzelzellen vor [3] oder sammeln sich auch in kleinen Aggregaten an. Säugetierzellen besitzen keine stabile Zellwand. Nur die empfindliche Zellmembran schützt die Zelle vor physikalischen oder mechanischen äußeren Einflüssen. Daher ist die Anpassung der Kultivierungsbedingungen durch das passende Kultivierungsmedium, die Begasungsrate, die Rührerdrehzahl und die Rührergeometrie von entscheidender Bedeutung für die Gesundheit bzw. das Wachstum der Zellen. Das Kultivierungsmedium sollte genau dem osmotischen Druck der Ursprungsumgebung der Zellen von 250 bis 400 mOsm entsprechen. Das Rühr- und Begasungssystem steht vor der Herausforderung für eine ausreichende Sauerstoffversorgung der Zellen bei optimaler Durchmischung des Reaktors zu sorgen, ohne die scherempfindlichen Zellen zu beschädigen. [4]

Am Institut für Technische Chemie wurde ein Benchmark-Prozess zur Kultivierung von tierrischen Zellen im 7.5 L Maßstab erfolgreich etabliert. Für die Kultivierung der Zellen wird ein 15L CSTR (continuos stirred tank reactor) Bioreaktor vom Typ C + der Firma Sartorius Stedim Biotech GmbH genutzt. Dieser Prozess lässt sich in drei Fütterungsphasen unterteilen: Batch, Fed-batch 1 und Fed-batch 2. Die Kultivierung in der Batchphase ist auf zwei Tage begrenzt und wird am dritten Tag durch die Fed-batch- Phase 1 durch eine tägliche Fütterung von Feed-Medium abgelöst. Die Fed-batch 2 beginnt, sobald die Glucose Konzentration auf etwa 0.6 g/L abgesunken ist. Ab diesem Zeitpunkt startet eine automatisierte Glucose-Regelung. Ein schematischer Verlauf der Phasen ist in Abb. 1 dargestellt.

Die Zellen wachsen zunächst exponentiell. Für das Wachstum brauchen die Zellen Sauerstoff, der Verbrauch des Sauerstoffs wird im Anstieg der Sauerstoffverbrauchsrate *OUR* wiedergegeben. Durch Limitierungen im Bioprozess geht das Wachstum der Zellen von der exponentiellen in die stationäre Phase über. In dieser Phase stoppen die Zellen die Vermehrung und gehen in den Erhaltungsstoffwechsel über. Die stationäre Phase ist gefolgt von der Sterbe-Phase in der die Zellen anfangen zu lysieren. Der Übergang von der stationären Phase in die Sterbe-Phase lässt sich anhand des Wendepunkts der *OUR* erkennen. Dieses Indiz kann z.B. für die Effizienz der Prozessplanung genutzt werden, um zu entscheiden ab wann der Prozess abgebrochen werden kann, da sich das Absterben der Zellen ankündigt.

Abb. 1 - Schematische Darstellung der Fütterungsstrategie des Benchmark Prozesses

Über den gesamten Prozess werden pH und pO_2 geregelt. Das pH-Optimum von 7.1 wird über die Zugabe von Natriumcarbonat (Na_2CO_3) geregelt. Der Sauerstoffanteil soll auf 40% gehalten werden. Die Regelung des pO_2 beginnt über die erste Kaskade durch das Mischen von Sauerstoff und Luft, über deren Begasungsraten. Sobald fast ausschließlich mit Sauerstoff begast wird, wird die Begasungsrate F_{nG} von 24 L h⁻¹ auf 60 L h⁻¹ angehoben. Die Regelung wir erneut über das Begasungsverhältnis und damit dem Sauerstoffenteil im Ingas geregelt (2. Kaskade). Als dritter und letzter Kaskadenschritt wird die Rührerdrehzahl N_{st} zwischen 100 und 200 rpm variiert. Der Verlauf der pO_2 -Regelung während der Kultivierung ist schematisch in Abb. 2 dargestellt.

Nach etwa 15 Tagen endet die Kultivierung, wobei sich die Zelldichte durch diese Strategie auf etwa 32×10^6 Zellen mL⁻¹ erhöht hat, mit einer Viabilität von etwa 60%.

Abb. 2 – Schematischer Verlauf der p0₂- Regelung des Benchmark Prozesses

2.2. Online Überwachung

Die Process analytical technology (PAT) versucht über den Einsatz von verschiedenen Techniken und Methoden eine zeitnahe Erfassung stoffspezifischer Parameter in der Verfahrenstechnik und in Umweltprozessen zu ermitteln. Um eine Prozessoptimierung bzw. eine konstante Produktqualität zu erzielen, werden Informationen zu stoffspezifischen und qualitätsrelevanten Daten der Prozesse gesammelt. Man differenziert hierbei

Abb. 3 - Veranschaulichung der Messcharakterisierung an einem beispielhaften Bioprozess [5], [8]

die folgenden Messmethoden: online, inline, atline und offline. Die Messmethoden der online und inline Messungen werden in der Literatur häufig synonym verwendet [5].

Während der Kultivierung werden unterschiedliche Messverfahren genutzt um den Prozess zu überwachen. Die Zelldichte wird online über die Aber® Futura Sonde und offline über das Zellzählsystem CEDEX® gemessen. Die Viabilität wir offline über CE-DEX® bestimmt, die Glucose- und das Lactatkonzentration atline über das TRACE® System und offline über das YSI® aufgezeichnet. Zur Betrachtung weiterer unterschiedlicher Prozessgrößen werden verschiedene Spektrometer wie UV/VIS, NIR und 2D-F eingesetzt. Die online Abgase-Analyse wird mithilfe des Blue-Vis® Sensors vorgenommen. Eine Regelung des pH-Wertes und des pO_2 ist über die Messergebnisse der inline-Messung der entsprechenden Sonden möglich (vgl. Abb. 3).

Die Messungen lassen sich wie folgt charakterisieren:

Online-Messung: Bedingung für online-Messsystem ist, dass der Zeitverzug zwischen der Messung inkl. Auswertung und dem Übersenden der Daten an den Zentralrechner bzw. das Prozessleitsystem kleiner ist, als die Zeit in der sich die Prozesseigenschaften ändern. Diese Messungen werden automatisch über einen kontinuierlichen Probenstrom, oft im Bypass, in der Prozessumgebung vorgenommen und ausgewertet. Die online-Messung zeichnet sich durch eine kontinuierliche Korrelation zwischen Messergebnissen und den Prozesseigenschaften bzw. Produkteigenschaften aus. Die Steuerung oder Regelung, die aus den Messdaten erfolgt, wird ohne große Zeitverzögerung gewährleiste. Die meisten inline- und atline-Messungen werden durch das Messen einer kontinuierlichen Größe als online eingestuft, da die Messverzögerungszeit im Vergleich zur Änderungszeit der gemessenen Größe im System sehr gering ist [6].

- Inline-Messung: Die Messstelle befindet sich direkt im Messstrom (invasive) und es ist keine manuelle Probenahme notwendig [7]. Dabei ist die Positionierung der Messsonde entscheidend, sie muss so gewählt werden, dass sie das homogen durchmischte System repräsentiert [6], [7]. Wie bei der Onlinemessung befindet sich die Analyseeinheit in unmittelbarer Prozessnähe, so dass auch hier die Auswertung und die daraus bedingte Steuerung des Prozesses ohne große Zeitverzögerung erfolgen können. Werden Messungen dieser Klassifizierung im Bypass vorgenommen, besteht das Risiko, dass sich die Messung durch die Abweichung der Temperatur und des Sauerstoffgehalts im Vergleich zur Inprozessmessung verändert und daher abweicht [7].
- Atline-Messung: Die Probe für die Messung wird hier von der Prozessumgebung entfernt und in unmittelbarer Nähe vermessen und ausgewertet. Die Probenahme geschieht dabei automatisch. Durch den entstehenden Zeitverzug kann sich das Produkt ändern. Die Ergebnisse der Messungen lassen eine manuelle und automatische Steuerung des Prozessablaufes mit einer Zeitverzögerung zu. Für den Einsatz dieser Messungen werden häufig Filtrations-Module eingesetzt, diese nehmen häufig Einfluss auf die Probe und können dadurch nicht mehr repräsentativ für den Messzeitpunkt im Messsystem sein [6].
- Offline Messung: Die Probe für die Messung wird aus der Prozessumgebung entfernt und zum Analysegerät transportiert. Die Messung ist diskontinuierlich. Ähnlich wie bei der atline Messung kann sich das Produkt über den Transport- und ggf. Lagerungszeitraum verändern. Für die Bestimmung des Zeitintervalls der Probenahme ist Expertenwissen essentiell, um abzuschätzen wie groß die Messabstände sein müssen, damit ggf. über eine manuelle Regelung in den Prozess eingriffen werden kann oder Änderungen der detektierten Größe angemessen nachzugewiesen werden können. Gleichzeitig kann die Probennahme und die folgende Analyse flexibel gestaltet werden.

2.3. Messung des Sauerstoffpartialdrucks

Die Sauerstoffmessung in der Flüssigphase wird durch die kontinuierliche Messsignalfolge als inline Messung klassifiziert und ist neben der pH und Temperaturmessung die wichtigste und gängigste Messung in Bioprozessen[6]. Der Sauerstoffpartialdruck pO_2 kann über eine amperometrische Messung oder eine faseroptische Messung bestimmt werden.

Abb. 4 - Aufbau einer Sauerstoffpartialdruck Sonde – nach dem Clark Messprinzip

Für die amperometrische Messung des Sauerstoffpartialdrucks nach Clark wird die in Abb. 4 gezeigte Aufbau genutzt. Die Clark-Elektrode besteht aus zwei Elektroden: einer Silber-Anode und einer Platin-Kathode. Die Platin-Kathode ist in Glas eingefasst. Nur die Spitze der Kathode wird in den umgebenen Elektrolyten exponiert. Der Elektrolyt ist eine halb-gesättigte KCl-Lösung zum Transport von freien Elektronen. Anode und Kathode werden durch eine Teflon-Membran von dem umgebenen Medium getrennt. Die Teflon-Membran ist semipermeabel für Sauerstoff. Dieser kann durch Diffusion in die Elektrolytlösung gelangen. Durch das Anlegen einer negativen Polarisationsspannung von $-600 \, mV$ wird der gelöste Sauerstoff an der Oberfläche der Platin-Kathode reduziert. An der Silber-Silber-Chlorid-Anode werden die Elektronen dafür durch Oxidation frei und wandern zur Kathode. Diese Elektronenwanderung stellt das Messsignal dar.

Reduktion an der Katode	$O_2 + 2 H_2 O + 4 e^- \rightarrow 4 O H^-$	(1)
Oxydation an der Anode	$4 \text{ Ag } \rightarrow 4 \text{ Ag}^+ + 4 \text{ e}^-$	(2)

Der Messstrom ist über folgende Formel proportional zum Sauerstoffpartialdruck:

		$I = n_{e^-} \cdot F \cdot P_M \cdot \frac{p_{O_2}}{b} \cdot A_{Kat}$	(3)
n _e -	-	Anzahl der freien Elektronen durch die chemi- sche Reaktion	[-]
F	-	Faraday-Konstante	$\left[\frac{\text{As}}{\text{mol}}\right]$
P_M	-	Permeabilität für Sauerstoff durch die Teflon- Membran	$\left[\frac{\text{mol}}{\text{mm}^2 \text{ s}}\right]$
p_{O_2}	-	Sauerstoffpartialdruck	[bar]
b	-	Dicke der Teflon-Membran	[mm]
A_{Kat}	-	Fläche an der Kathodenspitze	[mm ²]

[10]

Der pO_2 kann sowohl als Partialdruck in der [mbar] oder [mN m⁻²] angegeben werden oder als Sättigungsanteil zum Partialdruck der Kalibrierung in [%].

$$pO_2\%(t) = \frac{pO_2(t)}{pO_{2 cal}} \cdot 100\%$$
(4)

<i>pO</i> ₂ %	- Sauerstoffsättigungsanteil	[%]
$pO_2(t)$	- Aktueller Sauerstoffpartialdruck	[mbar]
pO _{2 cal}	- Sauerstoffpartialdruck bei der Kalibrierung	[mbar]

An dieser Stelle soll darauf hingewiesen werden, dass bei der Angabe des Sauerstoffsättigungsanteils, also dem Bezug des aktuellen Partialdrucks $pO_2(t)$ auf den zur Kalibrierung $pO_{2 cal}$, folgende Nomenklatur verwendet wird: $pO_2\%(t)$. Beim Bezug auf den Sauerstoffpartialdruck in [mbar] wird diese Nomenklatur verwendet: $pO_2(t)$.

2.4. Sauerstoffübertragung

Für die Sauerstoffversorgung einer Kultivierung wird oft ein mit Luft oder Sauerstoff durchströmter Begasungsring – Sparger - im unteren Reaktor drittel genutzt. Die Sauerstoffübertragung findet zwischen den Gasblasen und der Flüssigphase des Systems statt (vgl. Abb. 5). Die Löslichkeit von Sauerstoff in wässriger Lösung ist sehr gering und bedarf daher großer Aufmerksamkeit, um die Zellen mit ausreichend Sauerstoff zu versorgen. Der Sauerstofftransfer von der Gasphase in die Flüssigphase findet durch Molekülbewegung statt. Der Konzentrationsunterschied der Gas-Flüssig-Phase ist die treibende Kraft. Der Sauerstoffeintrag wird in den meisten Kultivierungen durch den Leistungseintrag des Rührers und die Begasungsrate begünstigt. Über die Blasen wird eine große Austauschfläche über die Gasblasenoberfläche erzeugt. Der Konzentrationsunterschied wird durch die immer neu gebildeten Gasblasen hochgehalten.

Abb. 5 - Gasblasen in Flüssigkeit mit Konzentrationsunterschied von Sauerstoff

Der Sauerstoff muss bei seinem Weg von der Gasblase durch die Flüssigkeit zur Zelle unterschiedliche Widerstände überwinden (vgl. Abb. 6):

- 1. Kern der Gasblase zur Grenzschicht Gas/Flüssigkeit
- 2. Grenzschicht Gas/Flüssigkeit
- 3. Das die Blase umgebende, nicht gemischte Flüssigkeitsgebiet
- 4. Das gut gemischte Flüssigkeitsgebiet
- 5. Das den Zellverband umgebende, nicht durchmischte Flüssigkeitsgebiet
- 6. Den Zellverband
- Die Zellmembran und intrazelluläre Komponenten zu den Reaktionsplätzen
 [4]

Abb. 6 - Schematische Darstellung der Widerstände beim Durchlaufen des Sauerstoffs auf seinem Weg von der Gasblase zu den Zellen/Zellverbund [28]

2.4.1. Der Sauerstoffübertragungskoeffizient kLa

Für den Übergang des Sauerstoffs von der Gas- in die Flüssigphase muss zunächst der Widerstand der Gasblasengrenzschichten überwunden werden. Zur Betrachtung dieses Transportvorgangs wird das vereinfachte Modell der Zweifilmtheorie angenommen (siehe Abb. 7). Die Grenzschichten werden dabei in die Grenzschicht der Flüssigkeit und die des Gases unterteilt. Das Modell der Zweifilmtheorie beruht darauf, dass auf den beiden Seiten der Grenzflächen je ein stagnierender laminarer Fluidfilm entsteht. Durch diese beiden Filme findet der Stofftransport ausschließlich durch molekulare Diffusion statt. Der gesamte Transportwiderstand liegt dabei auf der Seite des Fluidfilms. [11], [12] Andere Stofftransportwiderstände, beispielsweise die durch die Zellen, werden komplett vernachlässigt [13]. An den Phasengrenzen wird ein thermodynamisches Gleichgewicht angenommen. In Abb. 7 ist rechts der Verlauf des resultierenden linearen Konzentrationsgradienten und der Transportkoeffizienten dargestellt. [11] Die angenommenen laminaren Fluidströme können experimentell nicht nachgewiesen werden [4]. Aufgrund der verhältnismäßig simplen Berechnungsweise und der viel verbreiteten Modellbeschreibung, wird das Zweifilmmodell für die weiteren Betrachtungen

Abb. 7 Zweifilmtheorie – Schematische Darstellung der Sauerstoffkonzentration im Übergang von der Gas- in die Flüssigphase [4]

genutzt [13].

In der Grenzschicht der Flüssigkeit bzw. der Gasphase gilt folgende Beziehung für den Sauerstofftransport beschrieben durch die Sauerstoffstromdichte \dot{n}_{O_2} :

Gasfilm: Flüssigkeitsfilm:		$\dot{n}_{O_2 G} = k_G \cdot (c_G - c_{Gi})$	(5)
		$\dot{n}_{O_2 L} = k_L \cdot (c_L - c_{Li})$	(6)
$\dot{n_{O_2}}$	-	Sauerstoffstromdichte	$\left[\frac{g O_2}{m^2 s}\right]$
k_{G}	-	Stoffübertragungskoeffizient von der Seite des Gases	$\left[\frac{m}{s}\right]$
k_L	-	Stoffübertragungskoeffizient von der Seite der Flüssigkeit	$\left[\frac{m}{s}\right]$
CL	-	Konzentration im Kern der Gasphase	$\left[\frac{g}{L}\right]$
C _G	-	Konzentration im Kern der Flüssigphase	$\left[\frac{g}{L}\right]$

Da die Grenzflächenkonzentration nicht gemessen werden kann, wird der Transportwiderstand über beide Schichten zusammen über den Gesamtstofftransportkoeffizienten K_L betrachtet. Die treibende Kraft für den Sauerstofftransport ist Konzentrationsdifferenz $c_{OL}^* - c_{OL}$. Dabei ist c_{OL}^* die Konzentration von Sauerstoff in der Flüssigphase, die im Gleichgewichtszustand mit der Gasphase entsteht. Sie lässt sich über das Henry Gesetz bestimmen [4], [14]:

$$H_n \cdot c_L^* = c_G \tag{7}$$

bzw.

$$c_{O_2}^* = c_{OL}^* = \frac{p_{O_2,G}^*}{H_{O_2}} \cong \frac{p_{O_2,G}}{H_{O_2}}$$
 (8)

<i>C</i> ₀₂ *	- Konzentration des Sauerstoffs im Gleichge- wichtszustand	$\left[\frac{g O_2}{L}\right]$
c_{OL}^{*}	- Konzentration des Sauerstoffs in der Flüssigkeit im Gleichgewichtszustand	$\left[\frac{g O_2}{L}\right]$
<i>p</i> _{02,G} *	- Sauerstoffpartialdruck im Gleichgewichtszu- stand in der Gasphase	[Pa]
<i>p</i> _{02,G}	- Messbarer Sauerstoffpartialdruck in der Gas- phase	[Pa]
<i>H</i> ₀₂	- Henry-Koeffizient für Sauerstoff	$\left[\frac{\text{Nm}}{\text{kg}}\right]$

Solange die Konzentration in der Flüssigkeit c_{OL} die Sättigungskonzentration c_{OL}^* nicht erreicht, wird Sauerstoff aus der Gas- in die Flüssigphase transportiert[13].

Durch Zusammenfassung der Transportkoeffizienten k_L und k_G zu K_L wird die Sauerstoffstromdichte wie folgt beschrieben:

$$\dot{n}_{O_{2L}} = \dot{n}_{O_2} = K_L \cdot (c_{OL}^* - c_{OL})$$
(9)

Der Gesamtstoffaustauschkoeffizienten K_L lässt sich über den folgenden Zusammenhang beschreiben:

$$\frac{1}{K_L} = \frac{1}{k_L} + \frac{1}{H^{cc} \cdot k_G}$$
(10)

Sauerstoff als gering lösliches Gas hat einen Henry-Koeffizienten H^{cc} größer als 1. Der Stoffübertragungskoeffizient von der Seite der Flüssigkeit ist deutlich kleiner als der Übertragungskoeffizient von der Seite des Gases. Man geht davon aus, dass kein gasseitiger Stofftransportkoeffizient berücksichtig werden muss [15]. Es wird daher folgende Annahme getroffen: - Grundlagen -

$$\frac{1}{K_L} = \frac{1}{k_L} + \frac{1}{H^{cc} \cdot k_G} \qquad | H^{cc} > 1 ; k_G \gg k_L$$
$$K_L = k_L \qquad (11)$$

Gleichzeitig geht aus dieser Betrachtung hervor, dass der Stofftransportwiderstand auf der Seite des Flüssigkeitsfilms liegt.

Überträgt man dieses Modell zur Berechnung des Sauerstofftransportes auf ein Bioreaktorsystem, müssen das gesamte Verhältnis der Austauschfläche A_G zum Flüssigkeitsvolumen V_L berücksichtigt werden:

$$n_{o_{2}}^{\cdot} = k_{L} \cdot \frac{A_{G}}{V_{L}} \cdot (c_{oL}^{*} - c_{oL})$$

$$= k_{L} \cdot a \cdot (c_{oL}^{*} - c_{oL}) = k_{L}a \cdot (c_{oL}^{*} - c_{oL}) = k_{L}a \cdot (c_{o_{2}}^{*} - c_{o_{2}}) \quad (12)$$

$$n_{o_{2}}^{\cdot} - Volumenbezogener Stoffstrom \qquad \left[\frac{g}{s m^{3}}\right]$$

$$A_{G} - Austauschfläche \cong Gasblasenoberflä- \qquad [m^{2}]$$

$$che$$

$$V_{L} - Flüssigkeitsvolumen \qquad [m^{3}]$$

$$a - Gas/Flüssigkeitsgrenzfläche pro Re- \qquad [m^{-1}]$$

Die in Gleichung (11) betrachtete Näherung gilt auch für Gleichung (12). k_L beschreibt den Stofftransportkoeffizienten über beide Teilsysteme der Grenzschicht. Da die Austauschfläche für Sauerstoff schwer zu bestimmen ist, wird der Sauerstofftransportkoeffizient oft zu der Größe $k_L a$ [h⁻¹] zusammengefasst. In der Literatur wird häufig die Größe $k_L a'$ betrachtet. Sie bezieht sich im Vergleich zu $k_L a$ nicht auf das Flüssigkeitsvolumen, sondern auf das gesamte Reaktorvolumen mit Gas- und Flüssigphase.

Der volumenbezogene Stoffstrom \dot{n}_{0_2} ist eine örtliche Größe. Mittelt man diese Größe über das gesamte Reaktorvolumen, erhält man den Zusammenhang der Sauerstofftransportrate *OTR*:

$$\overline{\dot{n}_{O_2}} = OTR = \frac{1}{V_L} \cdot \int_0^{V_L} \dot{n}_{O_2} \, dV_L$$

$$OTR - Oxygen Transfer Rate - \left[\frac{g}{Lh}\right]$$
Sauerstofftransportrate
$$(13)$$

)

[4]

Daraus folgt:

Die Korrelation der Sauerstofftransferrate *OTR* von dem Massentransportkoeffizienten k_L auf der Flüssigkeitsseite und der Gasblasenaustauschfläche *a* ist in Gleichung (12) und (13) zu erkennen:

$$\overline{\dot{n}_{O_2}} = OTR = \frac{1}{V_L} \cdot \int_0^{V_L} n_{O_2} \, dV_L \qquad (13) \qquad | \text{ mit Gleichung (12)}$$
$$\overline{\dot{n}_{O_2}} = OTR = \frac{1}{V_L} \cdot \int_0^{V_L} k_L \cdot \frac{A_G}{V_L} \cdot (c_L^* - c_L) \, dV_L$$

Der $k_L a$ ist als der volumetrische Stofftransportkoeffizient oder auch die Belüftungskonstante bekannt [15]. Die verschiedenen Einflüsse auf den Transport von Sauerstoff aus der Gas in die Flüssigkeitsphase kann unterschiedlicher Natur sein und lassen sich wie folgt unterteilen:

Tabelle 1 – Charakterisierung der Einflussgrößen des Sauerstoffübertragungskoeffizienten

Ко	nstruktionsgrößen	Betriebsgrößen			Medieneigenschaften		
•	Reaktorgröße und -	•	Rührerdrehzahl	•	Viskosität		
	form	•	Begasungsrate	•	Dichte		
•	Rührerdurchmesser	•	Flüssigkeitsvolumen	•	Sauerstofflöslichkeit		
	und -art	•	Temperatur	•	Diffusivität		
•	Stromstörer/Beweh-			•	Koaleszenzverhalten		
	rungssystem						
•	Begasungssystem						

Über die Kenngröße des $k_L a$ lässt sich ein direkter Zusammenhang mit der Größe des Sauerstofftransports erkennen. Je größer der Sauerstofftransportkoeffizient $k_L a$, desto größer ist der Sauerstofftransport von der Gas- in die Flüssigphase. Zusammen mit der *OTR* sind beide wichtige Größen für die Zellkultur, um die Sauerstoffversorgung der Zellen zu gewährleisten. Kennt man die Einflussgrößen eines Systems, lassen Änderungen in der Betriebsart oder der Konstruktion vornehmen, um den $k_L a$ -Wert zu vergrößern. Zudem schafft der Sauerstofftransportkoeffizient $k_L a$ eine Vergleichbarkeit zwischen unterschiedlichen Begasungssystemen. Über den $k_L a$ lassen sich maximale Wachstumsraten oder Biomassekonzentrationen abschätzen, wenn die Organismen unter Sauerstofflimitierung wachsen. [13] Hauptsächlich ist der k_La -Wert von den Eigenschaften und dem Verhalten der eingebrachten Gasblasen abgängig. Typische k_La -Werte in einem Produktionsbioreaktor mit Säugetierzellen können zwischen 0.9 – 4.29 h⁻¹ liegen[13], [16], [17].

2.4.2. Die Sauerstoffaufnahmerate OUR

Die Sauerstoffaufnahmerate (Oxygen Uptake Rate - *OUR*) ist eine fundamentale Größe, die das physiologische Verhalten der Zellen charakterisiert. Sie wird häufig genutzt, um Bioprozesse zu optimieren. Mit der Bestimmung der *OUR* kann auf die Viabilität der Zellen rückgeschlossen werden [18], [19].

Die Sauerstoffaufnahmerate *OUR* beschreibt das Aufnahmeverhalten der Zellen von Sauerstoff. Die Aufnahme von Sauerstoff ist stark bedingt durch die Verfügbarkeit an Sauerstoff in der Flüssigphase. Die Verfügbarkeit an Sauerstoff wiederrum hängt mit der Größe der Transferleistung – der *OTR*- zusammen. Da der Transfer durch den Sauerstoffkonzentrationsgradienten von der Gas- in die Flüssigphase bedingt ist, bestimmen die Zellen durch ihren Sauerstoffverbrauch die Konzentrationsdifferenz und damit gleichzeitig die *OTR*. [12], [18] Der Zusammenhang dieser beiden Größen wird über die folgende Funktion deutlich [12]:

$$\frac{d c_{L O_2}}{d t} = OTR(t) - OUR(t)$$
- Änderung der Sauerstoffkon-
zentration über die Zeit
$$\begin{bmatrix} g \\ Lh \end{bmatrix}$$
(14)

 $\frac{d c_{L O_2}}{d t}$

In Abb. 8 ist der Zusammenhang grafisch dargestellt.

Abb. 8 – Verlauf der Sauerstoffkonzentration von der Gasblase zu den Zellen über die Flüssigphase [4], [13]

Ein charakteristischer Verlauf einer batch-Kultivierung ist in Abb. 9 dargestellt. Sobald die Zellen in das Kultivierungsmedium überführt werden, sinkt die Sauerstoffkonzentration exponentiell. Der Prozess wird über den gesamten Kultivierungszeitraum begast.

Abb. 9 - schematischer Verlauf der Größen OUR, qOUR und col während einer batch-Kultivierung

Die Zellen brauchen viel Sauerstoff, um ihren Bedarf zum Überwinden der lag-Phase zu decken und anschließend in der exponentiellen Wachstumsphase das vorliegende Substrat mit einer hohen Stoffwechselrate zu konsumieren. Infolge dieser Zusammenhänge, steigt sowohl die Sauerstoffaufnahmerate *OUR* als auch der der zellspezifischen Sauerstoffaufnahmerate *qOUR* steil an. Während der exponentiellen Wachstumsphase der Zellen ist die Sauerstoffkonzentration der Flüssigphase c_{OL} auf einem Minimum. Mit dem Verlassen des exponentiellen Wachstums und dem Übergang der Zellen zu einer konstanten Zellzahl steigt die Konzentration des Sauerstoffs in der Flüssigkeit c_{OL} wieder an. Zellen verstoffwechseln nur noch so viel Subtrat wie nötig, wie für die Selbsterhaltung gebraucht wird und vermehren sich nur noch sehr wenig bis sie schließlich anfangen zu lysieren. Durch dieses Verhalten sinkt die Sauerstoffaufnahmerate *OUR* und die zellspezifische Sauerstoffaufnahmerate *qOUR*. [18]

Die Bestimmung der *OUR* wird mithilfe der Gleichung (14) gelöst. Wenn die Änderung der Sauerstoffkonzentration gleich 0 ist, also $\frac{d c_{OL}}{d t} = 0$, gilt:

$$OTR = OUR \tag{15}$$

Zur Bestimmung der *OUR* werden unterschiedliche Möglichkeiten beschrieben. Diese sind jedoch zu aufwendig und für das System nicht geeignet. Der Vollständigkeit halber sollen sie jedoch kurz beschrieben werden:

2.4.2.1. Gasmassenbilanz

Die Bestimmung der *OUR* kann über die Bilanzierung des Sauerstoffs über die Differenz der Konzentration aus dem Ingas und dem Abgas bestimmt werden. Wichtig dafür sind genaue Messungen der Sauerstoffkonzentration über z.B. ein Massenspektrometer.

Abb. 10 – Aufbau eines Reaktors zur Bestimmung der OUR über die Gasmassenbilanzierung [20]

- Grundlagen -

Die Zuluft wird beispielsweise über den Begasungsring des Spagers mit der Begasungsrate $F_{nG in} [L h^{-1}]$ und der Sauerstoffkonzentration $x_{OG in}$ [-] in den Reaktor gebracht. Über die Austauschfläche der Gasblasen wird der Sauerstoff in die Flüssigkeitsphase übertragen (*OTR*) und dort von den Zellen aufgenommen (*OUR*) und verbraucht. Das Gas verlässt das System mit der Begasungsrate $F_{nG out}$ und dem Sauerstoffanteil $x_{OG out}$ [20]. Über eine globale Massenbilanzierung der Flüssig- und Gasphase, lässt sich die *OUR* bei konstanter Sauerstoffkonzentration ($\frac{d c_{OL}}{d t} = 0$ und $\frac{d c_{OG}}{d t} = 0$) über die folgende Gleichung bestimmen:

$$OUR = \frac{F_{nGin} \cdot x_{OGin} - F_{nGout} \cdot x_{OGout}}{V_L}$$
(16)

Die Messinstrumente für diese Methode und müssen mit hoher Präzision arbeiten. Die Sauerstoffdifferenz zwischen dem Ingas und dem Abgas ist besonders gering. Zudem stört die Begasung von CO₂ für die pH-Regelung oder die Begasung des Headspayes. Daher entfällt diese Art der Bestimmung der *OUR* für den Rahmen dieser Arbeit.

2.4.2.2. Modifizierte dynamische Methode

Um nicht alle Zellen dem Stress des pO_2 -Abfalls auszusetzen, werden die Zellen kontinuierlich durch ein Bypass-System gepumpt. Über die Strecke des Bypasses ist ein linearer Abfall des pO_2 -Signals zu beobachten. Mit einer Messung der pO_2 -Werte am Anfang und am Ende des Bypasses lässt sich über die folgende Gleichung die *OUR* bestimmen:

$$OUR = \frac{1}{\Delta t} \cdot \left(c_{OL \, Ende} - c_{OL \, Anfang} \right) \tag{17}$$

Vorteil dieser Methode ist es, dass sie unabhängig vom k_La -Wert ist und nicht alle Zellen dem Stress des Sauerstoffabfalls ausgesetzt werden. Problematisch gestaltet sich bei dieser Methode die Differenz der beiden pO_2 -Signale, da der Sauerstoffverbrauch der Zellen und nicht der Unterschied des pO_2 -Signals durch unterschiedliche Kalibrierung gemessen werden soll. Durch diesen Anspruch ist der Kalibrierungsaufwand sehr hoch. Es müssen Messsysteme installiert werden, die genau aufeinander abgestimmt werden. [21]

Da die Methode der Bestimmung der OUR über die Gasmassenbilanz und die modifizierte dynamische Methode nicht zur Verfügung stehen, wurde ein anderer Ansatz gewählt. Näheres zu den verwendeten Methoden folgt in Kapitel 3 Methoden.

2.5. Design of Experiments

Die meisten Versuchsergebnisse hängen nicht von einem einzelnen Einflussfaktor ab, sie lassen sich meistens auf die Kombination der Faktoreneinstellungen zurückführen. Um Fragestellungen hinsichtlich Optimierung, Screening oder Robustheitstest zu beantworten, wird das Prinzip des "Design of Experiments" (DoE) genutzt. Dabei wird versucht im Rahmen einer Versuchsplanung mit der systematischen Änderung der Einflussfaktoren eine qualitative und quantitative Aussage über den Einfluss der Faktoren und deren Kombinationen zu treffen. [22] Die Herangehensweise des DoE wird in vieler Hinsicht als eines der wichtigsten Werkzeuge in der Entwicklung von PAT-Modellen gesehen [23].

2.5.1. Definition der Einflussgrößen

Die Reaktion eines Systems auf Änderungen von Einflussgrößen wird in Form einer Systemantwort wiedergegeben. Die Einflussgrößen sollten für die Systemanalyse unabhängig sein und in einem variablen Intervall kontrolliert auf einen konstanten Wert gesetzt werden können. Über die gemessene Systemantwort lässt sich anschließend das Systemverhaltens analysieren. [22]

2.5.2. Versuchsplanung

Es gibt verschiedene Strategien zur Versuchsplanung, die in Abhängigkeit der Fragestellung angewendet werden. Das Ziel bestimmt dabei das Modell und den Versuchsplan. Unterschieden werden drei Schritte der strategischen Versuchsplanung: Screening, Optimierung und Robustheitstest. Für den Schritt des **Screenings** werden viele mögliche Einflussfaktoren ausgewählt und in einem systemrepräsentativen Untersuchungsintervall festgelegt. Über einen teilfaktoriellen Versuchsplan (VP) kann anschließend ein lineares oder interagierendes Versuchsmodell interpoliert werden. Bei dem Schritt der **Optimierung** wird aus den relevanten Einflussfaktoren der "perfekte" Arbeitspunkt bestimmt. Die Versuche hierfür werden häufig vollfaktoriell oder zentral zusammengesetzt durchgeführt, anschließend kann ein quadratisches oder kubisches Versuchsmodell abstrahiert werden. Für die **Robustheitstestung** wird die Beständigkeit eines Modells geprüft, indem betrachtet wird, wie das System auf leichte Schwankungen der Einflussgrößen reagiert. Auch dies wird über eine teilfaktorielle oder vollfaktorielle VP durchgeführt und anschließend mit einem linearen oder interagierenden Modell beschrieben. Eine grafische Darstellung des VP ist in Abb. 11 abgebildet. Der teilfaktorielle und vollfaktorielle Versuchsplan zeichnet sich durch Versuche an den Eckpunkten der Einflussgrößen aus. Dabei deckt das vollfaktorielle Design alle Eckpunkte des VP ab, das teilfaktorielle nur ausgewählte Eckpunkte. Zusammen mit mindestens drei Versuchen im Zentrum (Center Point) decken sie den Versuchsraum ab. Die Versuchspunkte des zentral zusammengesetzten Versuchsplans liegen unter anderem außerhalb bzw. innerhalb der Güteintervallgrenzen des Versuchsraums. [22]

Abb. 11 - Darstellung der drei verschiedenen Versuchsplanmodelle teilfaktoriell, vollfaktoriell und zentral zusammensetzt für drei normierte physikalische Einflussfaktoren. Dabei stellen die Kreise die durchzuführenden Experimente da, das Kreuz in der Mitte steht für die Zentral Versuche (Center Points), in jedem Versuchsplan werden dafür drei oder mehr von den Center-Point-Versuchen durchgeführt.

2.5.3. Rohdatenanalyse

Für die Analyse der Versuchsergebnisse wird eine Normalverteilung vorausgesetzt. Das Prüfen auf eine Normalverteilung kann mit Hilfe grafischer Histogramme vorgenommen werden (vgl. Abb. 12). Eine Normalverteilung kann ggf. über eine Transformation der Daten vorgenommen werden. [22]

Abb. 12 - Grafische Darstellung zur Hilfe bei der Auswertung zur Normalverteilung. links nicht normalverteilt. rechts normalverteilt

- Grundlagen -

2.5.4. Regressionsanalyse

Zur Erstellung der linearen Zusammenhänge wird die Gleichung der *multi linearen regression* (MLR) genutzt:

$$y_{m} = b_{0} + \sum_{i=1}^{n} b_{i} \cdot x_{i} + \sum_{1 \leq i \leq j}^{n} b_{ij} \cdot x_{i} \cdot x_{j} + \sum_{i=1}^{n} b_{ii} \cdot x_{i}^{2} + \varepsilon$$
(18)

$$y_{m} - \text{Berechnete Systemantwort}$$

$$b_{0} - \text{Grundsystemantwort} - \text{Offset}$$

$$b_{i} - \text{Interpolierter Regressionsfaktor zur Einflussgröße i}$$

$$b_{ij} - \text{Interpolierter Interaktions-Regressionsfaktor zur Einflussgröße i}$$

$$b_{ii} - \text{Interpolierter quadratischer-Regressionsfaktor zur Einflussgröße i}$$

$$x_{i} - \text{Einflussgröße i}$$

$$x_{j} - \text{Einflussgröße j}$$

$$\varepsilon - \text{Unbekannter Fehler, Differenz zum realen Zustand}$$

In die Berechnung zur Signalantwort werden nur Faktoren integriert, die signifikant sind. Durch die Varianzanalyse kann ein Ausschluss der Faktoren vorgenommen werden, indem betrachtet wird, ob der Vertrauensbereich des Faktors größer ist als der Einfluss des Faktors selber. Die Faktoren werden dabei schrittweise aus dem Berechnungsmodell der Systemantwort entfernt. Durch das Entfernen eines Faktors verschiebt sich die Verteilung der Vertrauensbereiche der übrig gebliebenen Faktoren. Die Reihenfolge der Eliminierung kann zu unterschiedlichen Ergebnissen führen. Vorgegangen wird bei der Faktor-Eliminierung dabei wie folgt: erst werden quadratische b_{ii} oder die Interaktions-Faktoren b_{ij} entfernt. Erst danach werden die Faktoren b_i oder b_j selber eliminiert. In Abb. 13 ist exemplarisch ein fiktives Koeffizienten Diagramm der Faktoren dargestellt. Hier müsste zunächst der quadratische Faktor b_{ii} entfernt werden. Durch die Änderung der Varianz durch die Eliminierung des quadratischen Faktors könnte der Interaktions-Regressionsfaktor b_{ij} noch im Modell enthalten bleiben.

Abb. 13 - Beispiel eines Koeffizienten Diagramms eines Interaktionsmodells zur Varianzanalyse vor der Eliminierung einzelner Regressionsfaktoren

2.5.5. Güteprüfung des Modells

Für die Güte-Beurteilung eines Regressionsmodells werden die folgenden Größen betrachtet:

• Bestimmtheitsmaß R²:

Hat eine minimal Anforderung von > 0.5 in einem Wertebereich zwischen 0 und 1. Das Bestimmtheitsmaß beschreibt die Differenz zwischen dem Regressionsmodell und den Rohdaten. Der Wert von 1 repräsentiert dabei ein perfektes angepasstes Modell.

• Vorhersagegüte Q²:

Sollte größer als 0.1 für ein signifikantes und größer als 0.5 für ein gutes Modell sein. Q² kann im Wertebereich zwischen - ∞ und 0 liegen. Die Vorhersagegüte ermöglicht eine Bewertung der Güte für zukünftige Werte.

- Differenz zwischen R² und Q²:
 Für ein gutes Modell sollte die Differenz zwischen dem Bestimmtheitsmaß R²
 und der Vorhersagegüte Q² nicht größer als 0.3 sein.
- Modellvalidität MV:

•

Werte dieser Gütegröße sollten größer als 0.25 sein. Sie können zwischen - ∞ und 1 liegen. Die Modellvalidität gibt an, wie weit das Regressionsmodell das

Systemverhalten repräsentiert. Mitunter kann diese Größe bei sehr guten Modellen ($Q^2 > 0.9$) sehr klein ausfallen, wenn die Empfindlichkeit im Test sehr hoch war oder die Wiederholungen der Center Points CP extrem gut sind.

• Reproduzierbarkeit RP:

Die Reproduzierbarkeit sollte mindestens bei 0.5 des Wertebereichs von 0 bis 1 liegen. Durch die Gütegröße RP lassen sich Aussagen über die Wiederholbarkeit von Experimenten machen.

[22]
3. Methoden

In dem folgenden Kapitel werden die Methoden beschrieben, die genutzt wurden, um zunächst den $k_L a$ Wert zu bestimmen und im Anschluss daran den Software Sensor zur Bestimmung der online-*OUR* zu entwickeln. Dabei wurde über einen DoE-Versuchsplan mit 19 Vorversuchen eine Gleichung zur Bestimmung des $k_L a$ -Wertes während der Kultivierung entwickelt. Die *OUR* lässt sich im Anschluss über online-Messungen der Prozessgrößen bestimmen.

3.1. Bestimmung der Henry-Koeffizienten

Der Henry-Koeffizient gibt über das Henry Gesetz Auskunft über das Löslichkeitsverhalten von Gasen in Flüssigkeiten. Für den Übergang von der Gas- in die Flüssigkeitsphase der Koeffizient als "Henry Volatilität" bezeichnet. [14] Aus dem Henry-Gesetz, Gleichung (8), lässt sich die Gelöstsauerstoffkonzentration im Gleichgewichtszustand c_{OL}^* über den Druck der Gasphase p_G bestimmen. Sowohl der Henry-Koeffizient, als auch die Gelöstsauerstoffkonzentration im Gleichgewichtszustand c_{OL}^* werden gebraucht, um den k_La -Wert und die *OUR* zu berechnen.

$$c_{O_2}^* = c_{OL}^* = \frac{p_{O_2,G}^*}{H_{O_2}} \cong \frac{p_{O_2,G}}{H_{O_2}}$$
 (8)

$$p_{O_2,G} = p_G \cdot x_{OGin} \tag{19}$$

Die experimentelle Bestimmung des Henry-Koeffizienten für das Kultivierungsmedium ist kompliziert und mit einem hohen materiellen Aufwand verbunden. Der Henry-Koeffizient für reines Wasser ist in der Fachliteratur zu finden. Dieser als Grundlage zur Bestimmung des Henry-Koeffizienten für das Kultivierungsmedium und die Kultivierungsbedingungen genutzt. Der Henry-Koeffizient wird in Abhängigkeit der Temperatur (Kultivierungstemperatur 37 °C) berechnet. Der Einfluss durch den Ionengehalt des Medium [13] wird außer Acht gelassen.

Die Abhängigkeit des Henry-Koeffizienten zur Temperatur wird über das Bunsen-Gesetz oder die Formel der Temperaturabhängigkeit beschrieben (vgl. Anhangskapitel 6 Seite X). Der Henry-Koeffizient wurde mit dem Bunsen-Gesetz bestimmt.

- 24 -

mit

- Methoden -

$$H_{02}(T) = \frac{H_{n02}}{1 + \sum_{i=1}^{4} K_{i \, 0_2} \cdot \vartheta_L^{\ i}(t)} \tag{20}$$

$H_{nO2} = 1.448 \cdot 10^6 \ Nm/kg$	Theoretischer Henry-Koeffizient für Sauer-
	stoff bei 0°C und unter Standardbedingungen
$K_{10_2} = -2.723 \cdot 10^{-2} ^{\circ}C^{-1}$	1. Konstante des Bunsen-Gesetzes
$K_{2 0_2} = 5.627 \cdot 10^{-4} \circ C^{-2}$	2. Konstante des Bunsen-Gesetzes
$K_{3 0_2} = -6.597 \cdot 10^{-6} {}^{\circ}C^{-3}$	3. Konstante des Bunsen-Gesetzes
$K_{4O_2} = 3.283 \cdot 10^{-8} ^{\circ}C^{-4}$	4. Konstante des Bunsen-Gesetzes

[24]

Mit diesen Daten ergibt sich für die Kultiverungstemperatur von 37 °C ein Henry-Koeffizient von:

$$H_{O2}(37^{\circ}C) = 2.95 \cdot 10^{6} \, \frac{\text{Nm}}{\text{kg}} = 29.5 \, \frac{\text{L bar}}{\text{g}}$$

Fermentationsmedien haben Henry-Koeffizienten zwischen 28 - 40 $\frac{bar L}{g}$ bzw. 2.8 · 10⁶ - 4.0 · 10⁶ $\frac{Nm}{kg}$ [13].

3.2. Versuchsplan zur Bestimmung des kLa-Wertes

Wie in Kapitel 2.4.1 auf Seite 10 beschrieben, hängt der k_La -Wert von vielen Prozessgrößen ab. Zur Bestimmung eines mathematischen Zusammenhangs der Prozessgrößen auf den k_La wurden der Einfluss der Rührerdrehzahl N_{St} , der Begasungsrate F_{nG} , des Begasungsverhältnis r, des Volumens V_L und der Antischaumkonzentration c_{AF} in DoE-Versuchen untersucht.

Diese Größen wurden gewählt, da sie bekanntermaßen Einfluss auf den k_La -Wert haben und während der Kultivierung verändert werden. Größen die während eines Kultivierungsprozesses konstant gehalten werden (Temperatur und Druck), werden nicht als Einflussgrößen untersucht. Das Begasungsverhältnis wird durch den folgenden Zusammenhang beschrieben:

$$r = \frac{F_{n02}}{F_{n02} + F_{nAIR}}$$
(21)

<i>F</i> _{<i>n</i>02}	-	Begasungsrate von Sauerstoff	$\begin{bmatrix} \frac{L}{h} \end{bmatrix}$
F _{nAIR}	-	Begasungsrate von Luft	$\left[\frac{L}{h}\right]$

Die Einflussfaktoren bewegen sich während der Kultivierung in den in Tabelle 2 aufgelisteten Grenzen.

Zustandsgröße	Variablenzeichen	Grenzintervall
Rührerdrehzahl	N _{St}	100 – 200 rpm
Begasungsrate	F _{nG}	$24 - 60 \text{ L/}_{h}$
Begasungsverhältnis	R	0 - 1
Flüssigkeitsvolumen	V _L	6 – 10L
Antischaumkonzentration	c _{AF}	0-0.4 %

Tabelle 2 – Grenzpunkte des Design Raums zum Do
E zu Bestimmung des $k_{\rm L}a^\prime {\rm s}$

Es wurde ein teilfaktorieller Versuchsplan mit 19 Versuchen entwickelt, siehe *Anhang Kapitel 5 - Versuchsplan für die kLa-Wert Bestimmung Seite IX.*

3.3. Bestimmung des k_La-Wertes

Da das Kultivierungsmedium sehr teuer ist, wurde sich ein passendes Modelsystem für die Bestimmung des k_La -Wertes gesucht. Für die Untersuchungen wurde PBS als zellfreies Modellsystem gewählt. Messungen der Leitfähigkeit und der Osmolarität vom PBS-Puffer, dem Kultivierungsmedium und der Zellsuspension wurden durchgeführt, um die Vergleichbarkeit zu überprüfen.

3.3.1. Ausgasungsmethode

Für die Ausgasungsmethode wird das zellfreie Modellsystem PBS genutzt. Unter eingeschalteter Begasung wird gewartet, bis sich die Gleichgewichtskonzentration in der Flüssigphase einstellt. Hat sich eine konstante Sättigungskonzentration eingestellt, kann die Begasung von Luft auf Stickstoff umgestellt werden. Die Gelöstsauerstoffkonzentration sinkt mit einem sigmoiden (S-förmigen) Verlauf auf null. Dieser Verlauf von der Gleichgewichtskonzentration bis zur Nullkonzentration wird als **Abnahmekurve** oder **Entladekurve** bezeichnet. Anschließend wird die Begasung wieder auf Luft umgestellt. Die Sauerstoffkonzentration der Flüssigphase steigt wieder auf die Gleichgewichtskonzentration an. Der Anstieg hat einen umgekehrt sigmoiden Verlauf wie die Abnahmekurve. Der Anstieg von der Gelöstsauerstoffkonzentration von 0 $\frac{g}{L}$ auf die Sättigungskonzentration wird als **Aufladekurve** bezeichnet. Ein Modellverlauf der Gelöstsauerstoffkonzentration ist in Abb. 14 dargestellt.

Abb. 14 - Bestimmung des k_{La} - Wertes im Zellfreien Modellsystem mit der Ausgasungsmethode [13]

Das oben beschriebene Modell wurde sowohl mit Luft, als auch mit einem Sauerstoff-Luft-Gemisch und reinem Sauerstoff begast. Dadurch bewegt sich die Sauerstoffkonzentration c_{02}^* zwischen 10 und 35 $\frac{\text{mg}}{\text{L}}$. Es lassen sich $c_{02}(t)$ und c_{02}^* für den praktischen Gebrauch gegen $pO_2\%(t)$ und 100 % bzw. 477 % austauschen [25]. Durch die Kalibierung der pO_2 -Sonde mit Luft zeigt die Sonde bei reiner Sauerstoffbegasung einen maximal Wert von 477 % an.

$$\frac{x_{OGin}(t)}{x_{OG cal}} \cdot 100\% = pO_2(t)$$
(22)
Mit $x_{OGin} = 1$ und
 $x_{OG cal} = 0.2094$ $\frac{1}{0.2094} \cdot 100\% = 477\%$

Ausgewertet wurde für jeden Versuch nur die Aufladekurve, da bei dieser die Begasungsrate durch den Massendurchflussregler bekannt war. Für die Begasung des Reaktorsystems mit Stickstoff ist kein Massendurchflussregler vorhanden. In der weiteren Auswertung wird die Aufladekurve energiefrei "gesetzt", indem die Gleichgewichtskonzentration, die sich nach der Begasung mit Stickstoffeingestellt eingestellt hat - $pO_2 %_{N2 \, off}$, von allen Datenpunkt der Aufladekurve abgezogen wird (Gleichung (23)).

$$pO_2 \%_{norm}(t) = pO_2 \%_{org} - pO_2 \%_{N2 off}$$
(23)

$pO_2\%_{norm}$	-	Normierter pO_2 -Wert	[%]
$pO_2\%_{org}$	-	Originaler $pO_2 - Wert$ der Aufladekurve	[%]
$pO_2\%_{N2 \ off}$	-	<i>p0</i> ₂ -Wert des Gleichgewichtszustands nach der Begasung mit Stickstoff – Offset	[%]

3.3.1.1. Auswertung durch Näherung der Sprungantwort an ein PT₃-System

Für die mathematische Beschreibung des Verlaufs der Systemantwort aus der Ausgasungsmethode kann ein bekanntes System zur Hilfe genommen werden, bei dem das gleiche Systemverhalten zu beobachten ist und der mathematische Zusammenhang bereits bekannt ist.

Einer charakteristischen pO_2 -Aufladekurve zeichnet sich durch seine sigmoide Form aus. Der gleiche Verlauf wird in der Elektrotechnik als Ausgangssignal einer RC-Kombination(R=Widerstand; C=Kondensator) beobachtet. Die RC-Kombination lässt sich mathematisch beschreiben. Zur Beschreibung des Übertragungsverhaltens von Sauerstoffs aus der Gasphase über die Flüssigphase zur pO_2 - Messsonde kann die Analogie über ein elektrotechnisches Ersatzschaltbild hergestellt werden. Das betrachtete Ersatzschaltbild und die Analogie aus dem Sauerstoffübertragungssystem ist in Abb. 15 abgebildet. Eine detaillierte Herleitung und Beschreibung des Analogieverhaltens ist im Anhang beschrieben, siehe Anhangskapitel 7 Seite XI.

Abb. 15 - Analogie zwischen dem Sauerstoffübertragungsverhalten und dem Elektrotechnischen Ersatzschaltbild

Für das Systemverhalten sei an dieser Stelle der folgende Zusammenhang festgehalten:

- Das Übertragungsverhalten lässt sich als Verzögerungssystem dritter Ordnung über ein PT₃-System über drei Differenzialgleichungen beschreiben
- Das System wird von einem energiefreien Startpunkt aus aufgebaut
- Es gibt eine Rückwirkung von der Flüssig in die Gasphase

Angewandt wird diese Analogie in Form einer Simulation der Systemantwort. Die simulierte Systemantwort wird über die Minimierung der Fehlerquadratsumme nach dem Algorithmus von Nelder-Mead dem Verlauf des pO_2 -Signals angepasst. Über die charakterisierten Zeitkonstanten des PT₃-Systems lässt sich der k_La -Wert bestimmen und als Ausgabeparameter der Simulation formulieren.

Die drei Differenzialgleichungen lauten:

1. Differentialgleichung

Diese Differentialgleichung beschreibt das P-T₁-System für den Übergang der Sauerstoffmoleküle aus der Gasphase:

$$\dot{x}_{OG}(t) = \frac{1}{T_{11}} \cdot \left[\left(x_{OGin}(t) - x_{OG}(t) \right) - \frac{T_{12}}{T_{22}} \cdot \left(x_{OG}(t) - x_{OL}(t) \right) \right]$$
(24)

$$\dot{x}_{oG}$$
 - Änderung des Sauerstoffanteils in der Gasphase [-]

$$T_{12}$$
-Zeitkonstante zur Beschreibung der Rückwir-
kung aus der Gas- in die Flüssigphase[h]

2. Differentialgleichung

Diese Differentialgleichung beschreibt das P-T₁-System für das Eintreten der Sauerstoffmoleküle in die Flüssigphase:

$$\dot{x}_{OL}(t) = \frac{1}{T_{22}} \cdot \left[x_{OG}(t) - x_{OL}(t) \right]$$
(25)

$$x_{OG}$$
-Verlauf des Sauerstoffanteils in der Gasphase[-] x_{OL} -Verlauf des Sauerstoffanteils in der Flüssig-
phase[-]

3. Differentialgleichung

Diese Differentialgleichung beschreibt die Änderung des pO_2 -Signals

$$\dot{pO}_{2}(t) = \frac{1}{T_{M}} \cdot \left[K_{M} \cdot x_{OG}(t) - pO_{2}(t) \right]$$
(26)

T_M	- Zeitkonstante der pO_2 -Sonde	[h]
K_M	- Proportionalitätsfaktor der <i>p0</i> ₂ -Sonde	[-]
$pO_2(t)$	- Messdaten aus der Versuchen	[%]

Die Zeitkonstanten haben folgende Zusammenhänge:

$$T_{11} = \frac{V_G}{F_G} = \tau_G$$
 (27)

$ au_G$	-	Verweilzeit des Gases in der Flüssigphase	[h]
V_G	-	Volumen der Gasphase	[L]
F _G	-	Begasungsrate	$\begin{bmatrix} L \\ h \end{bmatrix}$

$$T_{22} = \frac{c_{OLmax}}{OTR_{max}} = \frac{1}{k_L a} \tag{28}$$

C _{OLmax}	- Maximal mögliche Konzentration von Sauerstoffs in der Flüssigphase	$\left[\frac{g}{L}\right]$
OTR _{max}	Maximale Sauerstofftransferrate	$\left[\frac{g}{L h}\right]$

$$T_{12} = \frac{c_{OLmax}}{Q_{O2max}}$$
(29)
 Q_{O2max} - Maximale Sauerstoffeintragsrate $\left[\frac{g}{Lh}\right]$

Aus den simulierten Daten zur Zeitkonstante T_{22} lässt sich der $k_L a$ direkt bestimmen.

Aus gemessenen Aufladekurven der 19 Versuche des DoE-Versuchsplans können so die jeweiligen k_La -Werte bestimmt werden. Im Anschluss kann über die Multilineare-Regression bzw. nach der Gleichung von Van't Riet ein Zusammenhang zu den Faktoreinstellungen beschrieben werden.

3.3.1.2. Berechnung des k_La Wertes über die Gleichung nach Van't Riet

Ein weiterer Ansatz zur Beschreibung des Zusammenhangs des k_La -Wertes von den Einflussfaktoren ist über die Gleichung von Van't Riet möglich. Diese Gleichung wurde 1979 für Newtonsche Flüssigkeiten entwickelt.

$$k_L a = C \cdot \left(\frac{P_g}{V_L}\right)^{\alpha} \cdot u_S^{\beta} \tag{30}$$

С	-	Empirisch bestimmter Vorfaktor	[-]
P_g	-	Eingebrachte Leistung in begasten Bioreaktor	[W]
V_L	-	Reaktorvolumen	[L]
u _S	-	Gasleerrohrgeschwindigkeit	$\left[\frac{m}{s}\right]$
α,β	-	Empirische Parameter	[-]

Diese Gleichung ist eine empirische Bestimmungsgleichung. Zu der keine sinnvolle Einheitenrechnung gemacht werden kann. [3]

Der Leistungseintrag P_g ist proportional zur Rührerdrehzahl hoch drei, N_{St}^3 . Die Gasleerrohrgeschwindigkeit u_S ist proportional zur Begasungsrate F_{nG} . Darüber lässt sich die folgende Gleichung entwickeln:

$$k_L a = k_L a_{EP} \cdot \left(\frac{N_{St}(t)}{N_{St EP}}\right)^{3\alpha} \cdot \left(\frac{F_{nG}(t)}{F_{nG EP}}\right)^{\beta} \cdot \left(\frac{V_L}{V_{L EP}}\right)^{-\alpha}$$
(31)

$$EP$$
-Entwicklungspunkt[-] $k_L a_{EP}$ - $k_L a$ des EP- Werts aus Vorversuchen $\left[\frac{1}{h}\right]$

 $N_{St}(t)$ - Rührerdrehzahl zum aktuellen Zeitpunkt [rpm] $N_{St EP}$ - Rührerdrehzahl vom EP [rpm]

$$F_{nG}(t)$$
-Begasungsrate zum aktuellen Zeitpunkt $\left[\frac{L}{h}\right]$ $F_{nG EP}$ -Begasungsrate vom EP $\left[\frac{L}{h}\right]$ V_L -Flüssigkeitsvolumen zum aktuellen Zeitpunkt[L] $V_{L EP}$ -Flüssigkeitsvolumen vom EP[L]

$$\alpha$$
 - Empirisch ermittelter Parameter [-]
 β - Empirisch ermittelter Parameter [-]

Als Entwicklungspunkte können in dieser Gleichung die maximalen Parameter des Versuchsplans mit den Größen $k_L a_{max}$, $N_{St max}$, $F_{nG max}$ und $V_{L max}$ genommen werden. Eine weitere Möglichkeit ist die Gleichung über die Parameter der "System Mitte" zu entwickeln. In der Versuchsplanung des DoE werden diese Versuche durch die Center Points repräsentiert. [26]

Die empirischen Parameter wurden über den Optimierungsalgorithmus nach Nelder-Mead bestimmt. Über die Simulation der Van't Riet Daten, wird die Minimierung der Fehlerquadratsumme zu den Messwerten bestimmt. Das verwendete Matlab- Skript befindet sich im *Anhangs Kapitel 8.2 - Matlab Skripte - Ermittlung der empirischen Parameter für Van't Riet Seite XIX.*

3.4. Dynamische Methode zur Bestimmung des kLa und der OUR

Abb. 16 - Modellverlauf der dynamischen Methode zur Bestimmung der OUR und des k_La

Zur Bestimmung des $k_L a$ -Wertes während der Kultivierung kann die dynamische Methode verwendet werden. Ein schematischer Verlauf ist in Abb. 16 gezeigt. Das System befindet sich in Phase I im Gleichgewicht. Zu diesem Zeitpunkt gilt Gleichung (15), da sich die Sauerstoffkonzentration in den untersuchten kurzen Zeitintervallen näherungsweise nicht ändert, $\frac{d c_{0L}}{d t} = 0$. Es gilt also OUR = OTR. Zum Zeitpunkt t_1 wird die Zuluft ausgeschaltet. Die Zellen verbrauchen den Sauerstoff in der Flüssigkeit, es wird kein weiterer Sauerstoff aus der Gasphase nachgeliefert, die Gelöstsauerstoffkonzentration sinkt. Um die Zellen nicht unter Stress zu setzen wird die Zuluft zum Zeitpunkt t_2 wieder angeschaltet-Phase II. Die Gelöstsauerstoffkonzentration steigt wieder bis auf den Gleichgewichtszustand an – Phase III. [4] Nach der Bestimmung der *OTR*, als Steigung der Gelöstsauerstoffkonzentration zwischen den Zeitpunkten t_1 und t_2 , kann durch das Umformen des folgenden Zusammenhangs der $k_L a$ bestimmt werden:

$$(c_{OL}^* - c_{OL\,ss}) = \frac{OUR}{k_L a}$$
$$k_L a = \frac{OUR}{(c_{OL}^* - c_{OLss})}$$
(32)

$$c_{OL ss}$$
 - Gelöstsauerstoffkonzentration im Gleich-
gewichtszustand $\left[\frac{g}{L}\right]$

[16]

Zu Bestimmung des $k_L a$'s während der Kultivierung der CHO Zellen wurde die Zuluft am Kultivierungstag mehrmals am Tag abgeschaltet. Der $pO_2\%(t) - Wert$ sank dabei von seinem Sollwert von $pO_{2w} = 40\%$ auf $pO_2 = 10\%$, anschließend wurde die Zuluft wieder angeschaltet. Die pH Regelung und die Begasung mit CO₂ wurde über den Versuchszeitraum abgeschaltet.

3.5. Bestimmung der qOUR

Aus der *OUR* kann mit der Information der aktuellen Zellzahl die zellspezifische Sauerstoffverbrauchsrate *qOUR* berechnet werden:

$$qOUR = \frac{OUR}{X} \tag{33}$$

$$X$$
 - Zellzahl viabler Zellen $\left[\frac{10^{6} \text{ Zellen}}{\text{mL}} \right]$

3.6. Online OUR

Bei bekanntem $k_L a$ und Sättigungskonzentration c_{0L}^* des Sauerstoffs in der Flüssigphase kann die *OUR* bzw. die *OTR* die Messwerte der pO_2 -Sonde berechnet werden. Die Änderung der Sauerstoffkonzentration in der Flüssigphase kann über die folgende Gleichung bestimmt werden:

$$\frac{dc_{OL}}{dt} = OTR - OUR \tag{34}$$

Im Gleichgewichtszustand, ändert sich die Sauerstoffkonzentration nicht, d.h. $\frac{dc_{OL}}{dt} = 0$. Es gilt:

$$OUR = OTR = k_L a \cdot (c_{OL}^* - c_{OL})$$
 (35)

Über das Henry-Gesetzt lässt sich die Sättigungskonzentration bestimmen:

$$c_{O_2}^* = c_{OL}^* = \frac{p_{O_2,G}^*}{H_{O_2}} \cong \frac{p_{O_2,G}}{H_{O_2}} = \frac{p_{nG} \cdot x_{OGin}}{H_{O_2}}$$
(8)

 x_{OGin} lässt sich aus den Begasungsraten der Massendurchflussregler bestimmen. [18], [27] Durch den vorher berechneten Henry-Koeffizienten lässt sich die Sättigungskonzentration c_{OL}^* bestimmen und damit über das pO_2 -Signal die OUR ermitteln:

$$OUR = \frac{k_L a \cdot}{H_{O_2}} \left(p_{nG} \cdot x_{OGin} - \frac{pO_2\%}{100\%} \cdot p_{Gcal} \cdot x_{OGcal} \right)$$
(36)

$$p_{G cal}$$
-Druck bei der Kalibrierung $\left[\frac{N}{m^2}\right]$ $x_{OG cal}$ -Sauerstoffanteil im Ingas bei der Kalibrierung $[-]$

Abb. 17 zeigt die Kommunikation der Softwarekomponenten während der Kultivierung zum Ermitteln der online *OUR* aus den Betriebsparametern N_{St} , F_{nG} , V_L , pO_2 %, X und c_{AF} . MFCS-WiPro als Reaktorsteuerungssoftware kommuniziert über seine eigene MFCS-WiPro-Datenbank mit SIMAC Sipat. SIMAC Sipat als Datenmanagementsoftware hat die Möglichkeit über Matlab Skripte online Berechnungen während der Kultivierung durchzuführen. Die gemessenen Werte aus der MFCS-WiPro-Datenbank werden für die Berechnung des k_La -Wertes, der *OUR* und der *qOUR* genutzt. Da die Antischaumkonzentration noch durch keine Messung aus der Kultivierung zurückgegeben werden kann, wird sie über eine Konstante mit $c_{AF} = 0.3$ %, in der Berechnung vorgegeben.

Der Kapazitätswert der Zellzahl der Kultivierung wurde über den Futura® OPC Sever weiter an SIMATIC Sipat gegeben. Über die lineare Geradegleichung (37) wurde die Zellzahl berechnet.

$$X(t) = X_0 + Y_{C zu X} \cdot C_{Zelldichte}(t)$$
(37)

X ₀	- Inokulierte Zellzahl	$\frac{10^6 \text{ Zellen}}{\text{mL}}$
Y _{C zu X}	_ Umrechnungsfaktor von Kapazität zu Zellzahl, ermittelt aus offline Messungen der Zellzahl	$\begin{bmatrix} 10^6 \text{ Zellen} \\ mL \cdot F \end{bmatrix}$
$C_{Zelldichte}(t)$	- Kapazitätssignal zum Zeitpunkt t	[F]

Abb. 17 - Darstellung der Softwarestruktur zur online Bestimmung der OUR während der Kultivierung

Die Benchmark-Kultivierung der CHO-Zellen wurde etabliert um verschiedene Sensorund Modellsysteme zur Bioprozessautomatisierung zu testen. In dieser Arbeit wurden Modelle entwickelt, die den Verlauf des k_La -Wertes aus den Systemparametern berechnen und in der Verbindung mit weiteren online Daten die *OUR* und die *qOUR* berechnen. Als Referenz zu diesen Werten gelten dabei die Ergebnisse der *OUR* und der k_La Bestimmung aus der dynamischen Methode.

4.1. Bestimmung des k_La- Wertes

Für die Bestimmung des k_La -Wertes wurde zunächst der Ansatz der Ausgasungsmethode des zellfreien Modellsystems PBS gewählt.

Aus den daraus ermittelten Daten soll dann in zwei unterschiedlichen Ansätzen je eine Gleichung entwickelt werden. Die Gleichungen sollen das Systemverhaltens in Form des k_La -Wertes in Abhängigkeit der Prozessparameter während der Kultivierung beschreiben.

Es werden dafür die Ansätze der multilinearen Regression (MLR) und die von Van't Riet genutzt.

4.1.1. Analyse der Einflussparameter und Bestimmung der Parametergleichung des k_La-Wertes über Multilineare Regression

Für die Vorversuche zur Parameterbestimmung wurden das zellfreien Modellsystem PBS genutzt und über die Ausgasungsmethode die Systemantwort in Form des pO_2 %-Verlaufs aufgezeichnet. Es wurde für unterschiedliche Systemparameterkombinationen die Sprungantwort durch das Umschalten der Begasung von Stickstoff (nach konstantem pO_2 %) auf ein Luft-Sauerstoff-Gemisch aufgenommen.

Zur Bestimmung der Systemantwort als $k_L a$ wurden zunächst unterschiedliche Auswertungsmethoden genutzt. Die Methode der $k_L a$ -Wert-Bestimmung über die Annäherung an das PT₃-System-Verhalten entwickelt aus dem elektrotechnischen Ersatzschaltbild, repräsentierte das Systemverhalten dabei am besten. In dieser Auswertungsmethode wird die Verzögerung durch die pO_2 -Sonde durch die Zeitkonstante T_M mitberücksichtig. Die Ergebnisse der anderen Methoden und Versuche zur Bestimmung der pO_2 -Sonden-Zeitkonstante T_M sind im Anhang dieser Arbeit zu finden (*Anhangs Kapitel 9 - Seite XIX und 10 - Seite XXVI*). In Abb. 18 ist exemplarisch einer der insgesamt 19 durchgeführten Versuche zur Bestimmung des k_La -Wertes gezeigt. Durch rote Punkte (\bigcirc) sind in beiden Abbildungen die Datenpunkte des p02%-Verlaufs abgebildet. Der simulierte Verlauf über die Annäherung an das Systemverhalten des PT3-Systems ist als eine blaue Linie (---) dargestellt. Abb. 18 zeigt dabei eine nahezu optimale Annäherung an den Verlauf der gemessen pO_2 %-Daten.

Die so bestimmten $k_L a$ - Werte aus dem teilfaktoriellen Design des Versuchsplans sind in Tabelle 3 zu sehen.

.

Ver-	Nst	\mathbf{V}_{L}	r	F _{nG}	CAF	k _L a
suchsnr	[rpm]	[L]	[-]	[L/h]	[%]	[1/h]
2	100	10	0	24	0	1.39
3	100	6	0	24	0.4	1.89
5	100	6	0	60	0	6.16
8	100	10	0	60	0.4	2.28
9	200	6	0	60	0	8.22
12	200	10	0	24	0.4	2.48
14	200	10	0	60	0	7.21
15	100	10	1	60	0	2.67
17	100	6	1	24	0	2.72

Tabelle 3- Versuchsergebnisse der kLa-Wert-Bestimmung aus den Vorversuchen über das Modellsystem PBS _____

Ver-	Nst	\mathbf{V}_{L}	r	F _{nG}	CAF	k _L a
suchsnr	[rpm]	[L]	[-]	[L/h]	[%]	[1/h]
18	100	10	1	24	0	1.55
20	100	10	1	24	0.4	1.19
23	100	6	1	60	0.4	5.28
26	200	10	1	24	0	3.10
27	200	6	1	24	0.4	3.21
29	200	6	1	60	0	11.21
32	200	10	1	60	0.4	3.93
33	150	8	0.5	42	0.2	3.06
34	150	8	0.5	42	0.2	2.66
35	150	8	0.5	42	0.2	2.66

Die über das zellfreie Modellsystem PBS bestimmten k_La -Werte liegen zwischen 1.19 und 11.21 h⁻¹. Diesen Werten lassen sich folgende Parametereinstellungen zuordnen:

Tabelle 4- Parameter zu den maximalen und minimalen kLa-Wert des zellfreien Modellsystems PBS

	Ver- suchsnr	N _{St}	\mathbf{V}_{L}	r	F _{nG}	CAF	k _L a
		[rpm]	[L]	[-]	[L/h]	[%]	[1/h]
Maximaler k _L a	29	200	6	1	60	0	11.21
Minimaler k _L a	20	100	10	1	24	0.4	1.19

4.1.2. Modellbildung zu den Daten des zellfreien Modellsystems

Für die Bestimmung des k_La -Wertes aus den DoE-Versuchen für die online Bestimmung während der Kultivierung wurden zwei verschiedene Modelle genutzt. Das MLR-Modell beschreibt dabei einen multilinearen Zusammenhang der Einflussgrößen des Systems. Das Modell von Van't Riet löst sich vom linearen Modell und nutzt empirisch ermittelte Exponenten zur Beschreibung der Zusammenhänge zwischen den Einflussgrößen.

4.1.2. MLR

Da zunächst keine Normalverteilung der k_La -Werte vorlag wurde diese über eine logarithmische Transformation hergestellt (vgl. Abb. 19). Die Transformationskonstanten C1 und C2 haben dabei die folgenden Werte:

$$C1 = 1.4$$
 $C2 = -0.6$

Abb. 19 - Histogramm vor und nach der Transformation zur Normalverteilung des kLa-Wertes

Dies erfordert eine Rücktransformation der berechneten k_La -Werte. Abb. 21 zeigt die Effekte aller untersuchten Einflussgrößen (F_{nG} , N_{St} , V_L , r und c_{AF}) auf den k_La -Wert. Die Einflussgrößen der Begasungsrate F_{nG} und der Rührerdrehzahl N_{St} wirken sich über einen positiven Effekt auf den k_La -Wert aus. Dabei hat die Begasungsrate F_{nG} einen größeren positiven Einfluss, als die Rührerdrehzahl N_{St} . Negative Effekte auf den k_La -Wert haben das Flüssigkeitsvolumen V_L und die Antischaumkonzentration c_{AF} . Der Einfluss des Flüssigkeitsvolumens V_L ist dabei deutlich größer als der Einfluss der Antischaumkonzentration c_{AF} . Der Interaktionseffekt zwischen der Rührerdrehzahl N_{St} und dem Flüssigkeitsvolumen V_L übt sich positiv auf den k_La aus. In Abb. 21 ist auch zu sehen, dass das Begasungsverhältnis r keinen signifikanten Einfluss hat. Daher wird das Begasungsverhältnis r nicht bei der Bestimmung des k_La -Wertes berücksichtigt. Das Begasungsverhältnis r zeigt den Sauerstoffanteil im Ingas an x_{OGin} an, der k_La -Wert hängt also nicht von dem Sauerstoffanteil im Ingas ab.

Abb. 21 - Effekte und deren Standardabweichungen im MLR Modell

Die Koeffizienten der resultierenden MLR-Gleichung sind in Abb. 20 gezeigt. Die Koeffizienten dieser Abbildung sind skaliert und zentriert und lassen daher einen direkten Vergleich der Koeffizienten und eine Beurteilung ihrer Einflussreichweite zu.

Abb. 20 - *Finale Koeffizienten der MLR Gleichung zu den über Matlab bestimmten k*_L*a Daten.*

Zur Beurteilung der Modellgüte wird der "Summary of fit" herangezogen (siehe Abb. 22). Alle Gütegrößen liegen über den Mindestanforderungen. Die Regressionsgleichung weist ein Bestimmtheitsmaß R² von 0.963 auf, die Differenz zwischen den Rohdaten und dem Regressionsmodell ist verhältnismäßig gering. Zukünftige Werte haben eine relativ hohe Güte, da die Vorhersagegüte Q² bei 0.923 liegt. Das Modellverhalten wird in einem angemessenen Rahmen durch die Regressionsgleichung repräsentiert. Die Modelvalidität liegt bei MV = 0.666. Die Experimente weisen eine sehr gute Wiederholbarkeit auf, mit einer Reproduzierbarkeit von RP = 0.982.

Abb. 22 - Güteprüfungsgrößen der MLR-Gleichung zur kla-Wert Berechnung

Die Einflüsse der Faktoren die über das MLR-Modell festgestellt wurden lassen sich auch in den Versuchsverläufen der Vorversuche wiedererkennen. In Abb. 23 ist der Vergleich von Vorversuch 18 zu anderen Vorversuchen gezeigt, bei denen jeweils nur ein Einflussparameter geändert wurde. Die Steigung der Aufladekurve repräsentiert den k_La -Wert.

Die Kurve des Verlaufs von Vorversuch V17 mit einem Flüssigkeitsvolumen von $V_L = 6L$ ist deutlich steiler als die von Vorversuch V18 mit einem Flüssigkeitsvolumen $V_L = 10L$. Durch den steileren Anstieg ist der $k_L a$ -Wert von V17 höher als der von V18. Der negative Einfluss des Flüssigkeitsvolumens lässt sich hier wiederzufinden. Aus der Betrachtung der Effekte ist hervorgegangen, dass das Begasungsverhältnis r keinen signifikaten Einfluss auf den $k_L a$ -Wert hat. Betrachtet man dafür V18 gegenüber V2 in Abb. 23, ist hier zwar ein Unterschied in der Steigung und damit im $k_L a$ -Wert zu erkennen, die Differenz der Steigungsabweichung ist jedoch deutlich geringer als die Differenz, die in den anderen Gegenüberstellungen zu beobachten ist.

Die MLR Gleichung für den logarithmierten $k_L a$ -Wert lautet:

 $k_l a_{lg} = 0.883 + 0.00084 \cdot N_{St}(t) + 0.0105 \cdot F_{nG}(t) - 0.14 \cdot V_L(t) - 0.377 \cdot c_{AF}(t) + 0.0005 \cdot N_{St}(t) \cdot V_L(t)$ (38)

Anschließend muss dieser Rücktransformiert werden, über die folgende Gleichung:

$$k_L a = \frac{10^{k_l a_{lg}} - C2}{C1} \tag{39}$$

Mit C1 = 1.4 und C2 = -0.6

In Abb. 24 werden die aus dem MLR-Modell berechneten k_La -Werte gegenüber den gemessenen k_La -Werten gezeigt. Die Korrelation zeigt, dass das MLR-Modell sehr gut in der lage ist, die gemessenen k_La -Werte zu beschreiben.

Mit Hilfe dieser Vorversuche und der multilinearen Gleichung kann jeder Prozessparameter der zugehörigen $k_L a$ -Werte online bestimmt werden.

Abb. 24 - Gegenüberstellung der Analysierten k_{La} Daten mit den Berechneten k_{La} -Daten aus dem daraus gefolgerten MLR- Modell

4.1.3. Van't Riet

Aus den Daten der k_La -Werte der Vorversuche, wurde die empirischen Parameter der Van't-Riet-Gleichung bestimmt. Die Gleichung wurde zum einen auf den maximalen Werten der Vorversuche entwickelt, d.h. auf k_La_{max} , $N_{St max}$, $F_{nG max}$ und $V_{L max}$. Diese Gleichung wird im weiteren Van't Riet Max genannt. Eine weitere Gleichung wurde auf den Werten der Center Points der Vorversuche entwickelt, d.h. auf k_La_{CP} , $N_{St CP}$, $F_{nG CP}$ und $V_{L CP}$. Dieser Zusammenhang wird im weiteren Van't Riet EP genannt. Dabei ergaben sich die folgenden beiden Gleichungen:

Auf Basis der Maximalwerte:

Van't Riet Max:

$$k_L a = 11.21 \cdot \left(\frac{N_{St}(t)}{200 \text{ rpm}}\right)^{3 \cdot 0.43} \cdot \left(\frac{F_{nG}(t)}{60 \text{ L/}_{h}}\right)^{1.83} \cdot \left(\frac{V_L}{10L}\right)^{-0.43}$$

(40)

Auf Basis der Entwicklungspunkte (EP = Center Points): Van't Riet EP:

$$k_L a = 2.8 \cdot \left(\frac{N_{St}(t)}{150 \text{ rpm}}\right)^{3 \cdot 0.2} \cdot \left(\frac{F_{nG}(t)}{42 \text{ L/}_{h}}\right)^{0.42} \cdot \left(\frac{V_L}{8L}\right)^{-0.2}$$

Die empirischen Parameter α und β unterscheiden sich deutlich voneinander. So ist das α der Van't Riet Max Gleichung mit $\alpha = 0.43$ fast doppelt so groß wie das α der Van't Riet EP Gleichung, $\alpha = 0.2$.

Das β der Van't Riet Max Gleichung β = 1.83, ist viermal so groß wie das der Van't Riet EP Gleichung, β = 0.42. Auf Basis der angenäherten Datenpunkte unterscheiden sich die Parameter des $k_L a_{EP}$ mit einem Faktor von vier sehr stark voneinander, $k_L a_{EP EP}$ = 2.8; $k_L a_{EP max}$ = 11.21.

In Abb. 25 sind die ermittelten $k_L a$ -Werte aus den Vorversuchen gegenüber den berechneten $k_L a$ -Wertes aus dem Van't Riet Modell – EP dargestellt. Zu erkennen ist hier, dass die berechneten $k_L a$ -Werte die gemessenen Werte nicht beschreiben können. Die Abweichungen der $k_L a$ -Werte sind sehr groß. Aus dem Modell ergeben sich keine $k_L a$ -Werte größer als 3 h⁻¹, wo hingegen in den Vorversuchen Werte bis 11 h⁻¹ gemessen

Abb. 25 - Gegenüberstellung der Analysierten k_La Daten mit den Berechneten k_La -Daten aus dem daraus Van't Riet Modell entwickelt über die Center Points

wurden. Dieses Modell ist daher nicht in der Lage die k_La -Werte des Modellsystems zutreffend zu beschreiben.

Abb. 26 - Gegenüberstellung der Analysierten k_La Daten mit den Berechneten k_La-Daten aus dem daraus gefolgerten Van't Riet Modell entwickelt über die Maximalwerte der Vorversuche

In Abb. 26 sind die ermittelten $k_L a$ -Werte aus den Vorversuchen gegenüber den berechneten $k_L a$ -Wertes aus dem Van't Riet Modell Max dargestellt. Die berechneten $k_L a$ -Wertes aus diesem Modell sind im unteren Wertebereich innerhalb einer annehmbaren Toleranz. Im oberen Bereich weichen sie jedoch stark von den Original Daten ab. Für $k_L a$ -Werte zwischen 2 und 3 h⁻¹ sind große Varianzen zu beobachten. Auch dieses Miodell beschreibt die $k_L a$ -Werte aus den Vorversuchen nur unzureichend.

Aus den Vorversuchen konnte ein Zusammenhang der Prozessparameter zum k_La -Wert hergestellt werden, sodass es basierend hierauf möglich ist, online in einer Kultivierung den k_La -Wert zu jedem Zeitpunkt zu bestimmen.

4.1.4. Kultivierung

Die Kultivierung wurde mit einer Batch-Phase gestartet, auf die zwei Fed-batch Phasen folgen. Während der Kultivierung wurde der pH und der pO_2 geregelt. Der pO_2 wurde über drei Regelungskaskaden auf dem Sollwert gehalten.

Abb. 27 - Verlauf der einzelnen Parameter über den gesamten Verlauf der Kultivierung, gemittelt über 10 Wertepaare bzw. 30min

Die Kultivierung verlief wie in Kapitel 2.1 Seite 2 beschrieben. In Abb. 27 ist der Verlauf der der Zellzahl $X[10^6$ Zellen mL⁻¹], des Flüssigkeitsvolumen V_L [L], der Rührerdrehzahl N_{St} [rpm], des $pO_2\%$ [%], des Sauerstoffanteils im Ingas x_{OGin} [-] und der gesamte Begasungsrate F_{nG} [L h⁻¹] dargestellt. Über die ersten 50 h ist keine pO_2 -Regelung nötig. Die Zellen wachsen exponentiell, die Rührerdrehzahl N_{St} , die Begasungsrate F_{nG} und der Sauerstoffanteil im Ingas x_{OGin} sind konstant. Nach etwa 70 h beginnt die pO_2 -Regelung durch das Anheben des Sauerstoffanteils im Ingas x_{OGin} . Etwa zum gleichen Zeitpunkt beginnt die erste Fed-batch Phase, durch manuelle Zugabe von Feed-Medium,

wodurch sich das Volumen der Flüssigkeit erhöht. Die Zellen wachsen weiterhin exponentiell, die Rührerdrehzahl N_{St} und die Begasungsrate F_{nG} bleiben unverändert. Nach einer Prozesszeit von 120 h wird nur noch mit reinem Sauerstoff begast ($x_{OGin} \approx 1$). Da dies nicht ausreicht um den pO_2 % auf seinem Sollwert von 40% zu halten, wird die Rührerdrehzahl N_{St} von 100 rpm automatisch Schrittweise angehoben auf etwa 125 rpm. Nach 130 h Kultivierung wird im Rahmen der zweiten Regelungskaskade die Begasungsrate F_{nG} von 30 L h⁻¹ manuell auf 60 L h⁻¹ angehoben. Die Regelung beginnt erneut über das Verhältnis der Begasungsrate von Sauerstoff und Luft zu regeln, wodurch der Sauerstoffanteil im Ingas x_{OGin} sinkt, genauso wie die Rührerdrehzahl N_{St} .

Bis zu diesem Zeitpunkt wachsen die Zellen exponentiell mit ihrer maximalen Wachstumsrate. Anschließend sinkt die Wachstumsrate. Ab einer Prozesszeit von etwa 200 h ist der Anteil der sterbenden und neu wachsenden Zellen im Gleichgewicht, bis ab einer Prozesszeit von 270 h der Anteil der lysierenden Zellen überwiegt und die Zellzahl sinkt. Nach 170 h Kultivierung kommt die pO_2 -Regelung an ihre Grenzen. Die Begasung mit reinem Sauerstoff ($x_{OGin} \approx 1$) reicht nicht aus und die dritte Regelungskaskade über den Rührer beginnt erneut. Die Rührerdrehzahl N_{St} steigt bis auf 200 rpm. Der pO_2 % steigt zwischen 225 und 250 h Prozesszeit wieder über seinen Sollwert. Der Sauerstoffanteil im Ingas x_{OGin} geht zurück und auch die Rührerdrehzahl N_{St} sinkt auf 100 rpm, solange bis der pO_2 % wieder unter 40 % sinkt. Nach etwa 300 h Kultivierungszeit ist die Viabilität der Zellen unter 60 % und der Prozess wird abgebrochen. Die kleinen Peaks im pO_2 %-Signal, die deutlicher in dem Prozesszeitintvall von 0 bis 180 h zusehen sind, repräsentieren die Messungen der dynamischen Methode.

4.1.4.1. Ergebnisse aus der Referenzmethode

Über die dynamische Methode wurde mehrmals am Tag während der Kultivierung der k_La - Werte bestimmt. Der Verlauf des k_La -Wertes ist zusammen mit den einflussnehmenden Prozessparametern in Abb. 28 abgebildet. Die *OUR* wurde über die Steigung des Sauerstoffabfalls über die dynamische Methodebestimmt. Über die Divison der *OUR* durch die Differenz der Sauerstoffkonzentration der Sättigungskonzentration c_{OL}^* zum Gleichgewichtszustands c_{OLss} , kann der k_La -Wert bestimmt werden.

Abb. 28 - Einflussnehmende Prozessparameter auf den k_La -Wert zusammen mit dem Verlauf des k_La -Wertes aus der Kultivierung bestimmt über die dynamische Methode

Der Verlauf dieses k_La -Wertes ist zusammen mit den einflussnehmenden Prozessparametern in Abb. 28 abgebildet. Der maximale k_La -Wert der in dieser Abbildung bei einer Prozesszeit von etwa 230 h zu sehen ist, hängt durch die Berechnung aus der *OUR* direkt mit dem Sauerstoffanteil im Ingas x_{OGin} zusammen. Da dieser Datenpunkt nicht repräsentativ für das System ist, da der k_La -Wert nicht vom Sauerstoffgehaltes des Ingases x_{OGin} abhängt, wird dieser Datenpunkt als Ausreißer klassifiziert.

4.1.5. Modellbildung zu den Daten der Referenzmethode über Van't Riet

Aus den Datenpunkten der dynamischen Methode währender der Kultivierung wurde ebenfalls nach dem Ansatz von Van't Riet eine Gleichung zum beschreiben des Zusammenhangs zwischen den Prozessparametern und des k_La -Wertes entwickelt. Dabei wurden die Gleichung einmal auf Basis aller Datenpunkte aus der dynamischen Methode bestimmt, die entwickelte Gleichung wird im weiteren Verlauf Van't Riet I genannt. Zusätzliche wurde eine weitere Gleichung ohne den oben beschriebenen Ausreißer entwickelt, diese wird im weiteren Verlauf Van't Riet II genannt.

Van't Riet I - Auf Basis aller Datenpunkte

$$k_L a = 3.64 \cdot \left(\frac{N_{St}(t)}{200.76 \text{ rpm}}\right)^{3 \cdot 0.7} \cdot \left(\frac{F_{nG}(t)}{60.65 \text{ L}/h}\right)^{0.25} \cdot \left(\frac{V_L}{8.06\text{L}}\right)^{-0.7}$$
(42)

Van't Riet II - Ohne den Datensatz des Ausreißers

$$k_L a = 2.04 \cdot \left(\frac{N_{St}(t)}{198 \text{ rpm}}\right)^{3 \cdot 0.27} \cdot \left(\frac{F_{nG}(t)}{60.65 \text{ L/}_{h}}\right)^{0.62} \cdot \left(\frac{V_L}{8.06 \text{L}}\right)^{-0.27}$$
(43)

Im Vergleich dieser beiden Gleichungen fällt auf, dass sich die empirischen Parameter α und β nahezu vertauscht haben. Das bedeutet, dass für die Gleichung Van't Riet II der Einfluss der Begasungsrate F_{nG} stärker berücksichtig wird, als der Einfluss der Drehzahl N_{St} . Bei der Gleichung Van't Riet I wird der Einfluss der Rührerdrehzahl N_{St} mehr gewichtet als der Einfluss der Begasungsrate F_{nG} . Im Vergleich zu den Parametern der Van't Riet Gleichung aus den Vorversuchen sind die empirischen Parameter der Gleichung Van't Riet EP ähnlich groß wie die von Van't Riet II (vgl. Tabelle 5). Die Parameter der Van't Riet Max Gleichung haben keine Vergleichbarkeit zu den anderen Modellen, nur dass β größer ist als α wie bei der Van't Riet EP und Van't Riet II.

Tabelle 5 – Vergleich der Parameter der Van't Rietgleichung auf Basis der Vorversuche und der Referenzdaten der dynamischen Methode

Gleichung	$k_L a_{EP} \left[h^{-1} \right]$	α	β	β/α
Van't Riet Max	11.21	0.43	1.83	4.2
Van't Riet EP	2.8	0.2	0.42	2.1
Van't Riet I	3.64	0.7	0.25	0.35
Van't Riet II	2.04	0.27	0.62	2.2

In Abb. 29 sind die aus der Kultivierung ermittelten k_La -Werte gegenüber den Modellwerten aus Van't Riet Modells I dargestellt. Die berechneten k_La -Werte im oberen und unteren Wertebereich sind in etwa so groß wie die Daten auf denen sie entwickelt wurden. Der Abstand im mittleren Wertebereich von den berechneten Daten zu den Entwicklungsdaten ist jedoch zu groß.

Abb. 29 - Gegenüberstellung der Datenpunkte der k_La-Wert Bestimmung aus der dynamischen während der Kultivierung mit den Berechneten k_La-Daten aus dem daraus gefolgerten Van't Riet Modell entwickelt über diese Datenpunkte mit dem Ausreißer

In Abb. 30 sind die aus der Kultivierung ermittelten $k_L a$ -Werte gegenüber denen berechneten Modellwerten aus Van't Riet Modells II dargestellt. Die berechneten $k_L a$ -Werte passen nur für den Ausreißer nicht zu den gemessenen Werten. Die übrigen Werte, aus denen das Modell entwickelt wurde, werden gut abgebildet.

Aus der Referenzmessung ist somit ein mathematischer Zusammenhang zwischen den Prozessparametern und dem k_La -Wertes für die Kultivierung entwickelt worden. Dieser Zusammenhang sollte auch für weitere CHO-Kultivierungen gültig sein, sodass die Entwicklung der Modellgleichung nicht bei jeder Kultivierung durchgeführt werden muss.

Abb. 30 - Gegenüberstellung der Datenpunkte der k_La-Wert Bestimmung aus der dynamischen während der Kultivierung mit den Berechneten k_La-Daten aus dem daraus gefolgerten Van't Riet Modell entwickelt über diese Datenpunkte ohne den Ausreißer

4.2. Vergleich der Modelle

Der Verlauf des $k_L a$ -Werts über die unterschiedlichen Berechnungsarten in der Kultivierung ist in Abb. 31 und Abb. 32 gezeigt. In Abb. 31 sind die Modelle, die auf der Basis der Vorversuche entstanden sind, gezeigt. In Abb. 32 sind die Modelle abgebildet, die auf der Basis der Daten aus der dynamischen Methode entwickelten wurden. In beiden Abbildungen sind die Datenpunkte der dynamischen Methode als Referenz mit abgebildet. Aus Abb. 31 ist zu erkennen, dass die Modelle auf Basis der Vorversuche zwar den Verlauf des $k_L a$ -Wertes während der Kultivierung abbilden, aber die Größenordnung viel zu hoch ist. Die Bestimmung des $k_L a$ -Wertes über das Modellsystem PBS ist somit nicht ohne Weiteres auf die Bedingungen einer Kultivierung im Medium übertragbar. PBS scheint daher das falsche Modellsystem für diese Versuche zu sein.

Abb. 31- Gegenüberstellung der Berechnungsmodelle auf der Basis der Vorversuche mit den Datenpunkten aus der Bestimmung des kLa-Wertes über die dynamische Methode über den Verlauf der Kultivierung

Aus Abb. 32 lässt sich erkennen, dass das Van't Riet Modell II – ohne Berücksichtigung des Ausreißers- den Referenzwerten am nächsten ist. Die Parameter des Van't-Riet-Modells I (mit Ausreißer) und II sind antisymmetrisch. So ist der α -Parameter des Van't Riet Modells I in der gleichen Größenordnung wie der β -Parameter des Van't-Riet-Modells II. Die Gewichtung des Einflusses der Drehzahl N_{St} und der Begasungsrate F_{nG} wird dadurch verschoben. Zu sehen ist dies in Abb. 32 zur Prozesszeit 125 h, wo der Anstieg der Kurve unterschiedlich hoch ist.

Abb. 32 - Gegenüberstellung der Berechnungsmodelle auf der Basis der Vorversuche mit den Datenpunkten aus der Bestimmung des kLa-Wertes über die dynamische Methode über den Verlauf der Kultivierung

In Abb. 33 sind noch einmal beide Modelle von Van't Riet I und II zusehen, zusammen mit den Verläufen der Rührerdrehzahl N_{St} , der Begasungsrate F_{nG} und des Flüssigkeitsvolumens V_L in der gemittelten Form über 30 min. In lila gefärbten Verlauf des k_La -Wertes nach dem Van't-Riet-Modell II ist der Sprung der Begasungsrate F_{nG} bei einer Prozesszeit von etwa 130h zu erkennen. Kurz davor in dem grau gefärbten Verlauf des Van't-Riet-Modells I der Anstieg der Rührerdrehzahl N_{St} zu sehen. Die Änderung der Rührerdrehzahl N_{St} und der Begasungsrate F_{nG} ist in beiden Modellen zu sehen, jedoch in entgegen gesetzter Größenordnung. Die jeweils andere Prozessgröße ist deutlich schwächer zu erkennen. Die Einflussstärke der Begasungsrate F_{nG} und der Rührerdrehzahl N_{St} des Van't-Riet-Modell I steht dadurch entgegen der Aussage von den ermittelten Effekten aus der MLR Methode, bei der die die Begasungsrate F_{nG} den größeren Einfluss hat als die Rührerdrehzahl N_{St} .

Abb. 33 - Verlauf des $k_La's$ bestimmt aus den Modell Gleichungen Van't Riet I und II im Vergleich zu den Datenpunkt aus der dynamischen Methode und den Prozessgrößen N_{St} , F_{nG} und V_L

Auch wenn das Van't-Riet-Modell die Daten besser wiedergibt, so kann es nicht den Einfluss des Antischaummittels abbilden. Dies ist eine Schwäche des Van't-Riet-Modells, da die Vorversuche gezeigt haben, dass die Antischaumkonzentration einen Einfluss auf den k_La -Wert hat. Da sich die Antischaumkonzentration während einer Kultivierung ändert, sollte dieser Faktor für eine zutreffende Bestimmung des k_La -Wertes auch berücksichtigt werden.

4.3. Vergleich Modellsystem PBS mit dem Kultivierungsmedium

Um zu überprüfen, ob PBS das richtige Modellsystem für die Vorversuche ist, wurde die Osmolarität und die Leitfähigkeit von PBS und dem Kultivierungsmedium bestimmt. Des Weiteren wurde die Leitfähigkeit und Osmolarität für Reinstwasser gemessen. Da der Henry-Koeffizienten auf Basis von Reinstwasser berechnet wurde und eine Abhängigkeit des Henry-Koeffizient zum Ionengehalt besteht, kann über die Leitfähigkeit ein Zusammenhang zu einem passenden oder unpassenden Henry- Koeffizienten für das Kultivierungsmedium abgeleitet werden. Die Ergebnisse der Messung sind in Tabelle 6 dargestellt.

Probeninhalt	ð [°C]	Leitfähigkeit $\begin{bmatrix} mS \\ cm \end{bmatrix}$	Osmolarität $\left[\frac{\text{mOsmol}}{\text{kg}}\right]$
PBS	37	15.37	260
PBS mit $c_{AF} = 0,2\%$	37	15.31	257
PBS mit $c_{AF} = 0,4\%$	37	15.82	269
Reinstwasser	37	0.001	9
Kultivierungsprobe mit Zellen	33.1	10.7	298
Kultivierungsmedium	31.8	10.08	284
Feed-Medium	32.3	6.92	578

Tabelle 6 – Messungen der Leitfähigkeit und Osmolarität der Modellsysteme im Vergleich

Die Leitfähigkeit und auch die Osmolarität von PBS und dem Fermentationsmedium liegen in der gleichen Größenordnung. Die Leitfähigkeit und die Osmolarität von Reinwasser weichen stark von denen des Kultivierungsmedium ab.

Daher wurde ein Teil der DoE Versuche aus dem Versuchsplan mit Fermentationsmedium durchgeführt. Eine Gegenüberstellung der Aufladekurven von PBS und Medium ist in Abb. 34 dargestellt.

Aus Abb. 34 lässt sich ein Unterschied im Systemverhalten zwischen PBS und Kultivierungsmedium erkennen. Das Kultivierungsmedium weist generell einen schlechteren Sauerstofftransport als das PBS-System auf. Dies lässt sich in einem niedrigeren k_La -Wert des Kultivierungsmedium im Vergleich zum PBS-System in allen drei Versuchen beobachten. Die Abweichung des Transportkoeffizienten ist dabei nicht konstant. Ein Zusammenhang zwischen weiteren Parametern wie der Begasungsrate F_{nG} scheinen die Transporteigenschaften zu reduzieren. Weitere Versuchen zur Analyse des Verhalten vom Kultivierungsmedium sollten daher durchgeführt werden.

4.4. Online Bestimmung der OUR und qOUR

Die OUR-Referenzwerte wurden über die dynamische Methode währende der Kultivierung bestimmt. Zusammen mit dem Signal der Zellzahl wurde daraus die qOUR berechnet. Über die Modelle zur Bestimmung des k_La -Wertes wurde aus den Prozesssignalen des Drucks p und des pO_2 -Wertes die OUR berechnet und anschließend über das Zellzahlsignal die qOUR bestimmt. Zunächst wird der Verlauf der OUR und der qOUR aus den unterschiedlich berechneten k_La -Modellen betrachtet. Anschließend wird der Verlauf der OUR und der qOUR aus den Messungen der dynamischen Methode betrachtet. Abschließend werden die gemessenen Daten denen der berechneten Ergebnisse gegenübergestellt.

4.4.1. Bestimmung der OUR und qOUR aus den Modellen

In Abb. 35 ist der Verlauf der Kultivierung abgebildet, zusammen mit den berechneten Größen $k_L a$, *OUR* und *qOUR* aus den Modellen MLR, Van't Riet über den Entwicklungspunkt und über die Messwerte der dynamischen Methode II (Datenreihe ohne den Ausreißer).

Die *OUR* steigt zu nächst exponentiell an, bis sie bei etwa 130 h einbricht. Nachdem Einbruch steigt die *OUR* erneut exponentiell an. Ab einer Prozesszeit von etwa 230 h sinkt die *OUR* ab. Bei einer Prozesszeit von etwa 250 h steigt die *OUR* sprungartig wieder an, bleibt vorerst konstant und beginnt bei 250 h zu sinken.

Die *qOUR* sinkt die ersten 30 h der Kultivierung. Anschließend bleibt sie konstant mit leichten Schwankungen bis zu einer Prozesszeit von etwa 230 h. Ein Peak ist bei einer Prozesszeit von 70 h zu beobachten. Ab einer Prozesszeit von 230 h sinkt die *qOUR* zunächst, steigt bei 250 h wieder sprunghaft an. Die *qOUR* bleibt bis 270 h Prozesszeit konstant und sinkt dann bis zum Ende der Kultivierung stätig ab.

Der oben beschriebene Verlauf der *OUR* und der *qOUR* ist in allen drei Modellen zu erkennen. Sie unterscheiden sich lediglich in der Größenordnung und der Ausprägung der Sprünge.

Die Sprünge und der absinkende Verlauf lassen sich auf den Verlauf des Sauerstoffanteils im Ingas x_{OGin} zurückführen.

Der Peak bei einer Prozesszeit von etwa 70 h ist sowohl in der qOUR, als auch in der OUR zu erkennen. Er scheint direkt in Verbindung mit dem Sprunghaften Anstieg gefolgt von einem direkten Abfall des Sauerstoffanteils im Ingas x_{OGin} zu stehen (vgl. Abb. 35). Eine

ähnliche Verbindung zum Sauerstoffanteil im Ingas x_{OGin} lässt sich bei einer Prozesszeit von etwa 130 h erkennen. Hier sinkt der Sauerstoffanteil des Ingases x_{OGin} von 1 ab auf etwa 0.6. Ähnliche Verläufe sind bei der *qOUR* und der *OUR* zu beobachten. Die Korrelation der Größen x_{OGin} und *qOUR* bzw. *OUR* lässt sich erneut bei einer Prozesszeit von 230 h bis 250 h beobachten.

Abb. 35 - Vergleich der unterschiedlichen Bestimmungsmethoden der Größen kLa, OUR und qOUR im Vergleich zusammen mit den Prozessgrößen der Kultivierung

4.4.2. OUR Bestimmung über die Dynamische Methode als Referenz

Während der Kultivierung wurde zu unterschiedlichen Zeitpunkten über die dynamische Methode die *OUR* und die *qOUR* bestimmt, diese sind in Abb. 36 dargestellt.

Abb. 36 - Verlauf zu den Messungen der dynamischen Methode zur Bestimmung der OUR

Wie erwartet steigt die *OUR* zunächst an. Bei einer Prozesszeit von etwa 250 h erreicht die *OUR* ein Maximum bei etwas über 115 mg L⁻¹ h⁻¹und fällt dann unter 30 mg L⁻¹ h⁻¹. Die *qOUR* bleibt zunächst konstant bei etwa 2 pg Zelle⁻¹ h⁻¹, steigt dann sprungartig an auf etwa 3.5 pg Zelle⁻¹ h⁻¹ und fällt dann ab auf einen Wert unter 1 pg Zelle⁻¹ h⁻¹.
4.4.3. Vergleich der online OUR Modelldaten mit Referenz Daten

In Abb. 37 sind die Modelle zur Berechnung der *OUR* gegenüber den Datenpunkten der Referenzmessung gezeigt. Abb. 38 zeigt die Modelle zur Berechnung der *qOUR*, zusammen mit den Datenpunkten der Referenzmessung. Die *OUR* wird aus den k_La -Werten berechnet, zusammen mit der Zellzahl wird daraus die *qOUR* berechnet. Für die Berechnung der *OUR* wurden die k_La -Modelle aus den Methode der MLR und Van't Riet basierend auf den Daten der Vorversuche genutzt. Als drittes k_La -Modell, wurde die Van't Riet II genutzt, die auf der Grundlage der Datenpunkte aus der dynamischen Messung ohne den Ausreißer Punkt entwickelt wurde. Der Verlauf während der Kultivierung wurde bereits in den beiden vorherigen Kapiteln beschrieben. Nun sollen die Modelle direkt verglichen werden.

Abb. 37 - Vergleich der Modelle zur Berechnung der OUR mit den Ergebnissen der Referenzmethode

Schon zu Beginn der Kultivierung liegen nur die berechneten OUR- Werte nach der Gleichung von Van't Riet II nahe an den Messpunkten der dynamischen Methode. Mit fortschreitender Prozesszeit vergrößert sich der Abstand der anderen beiden Modelle Van't Riet EP und MLR zu den Referenzdatenpunkten. Es ist ein geringer Abstand des Verlaufs der berechneten OUR aus dem k_La -Werten der Van't Riet II Gleichung zu sehen. Die Abweichung wird ab einer Prozesszeit von 230 h größer. Ab diesem Zeitpunkt schwanken die Prozessparameter stark, sodass die Verlässlichkeit der Mittelwertbildung hinterfragt werden muss. Die Modelle auf Basis der Vorversuche Van't Reit EP und MLR bilden das System nicht repräsentativ ab. Der Verlauf der *OUR* nach der Gleichung von Van't Riet II ist den Datenpunkten der Referenzmessung sehr nah.

Der Verlauf der berechneten *qOUR* bewegt sich für keines der Modelle auf Basis der Vorversuche in der Größenordnung der gemessenen *qOUR* aus der dynamischen Methode. Der Verlauf der *qOUR* auf der Basis der Van't Riet II Gleichung ist den Datenpunkten der Referenzmessung sehr nah. Ähnlich wie bei der *OUR* ist eine Abweichung ab der Prozesszeit von 230 h zu den Referenzpunkten größer. Aus der Gleichung zur Be-

Abb. 38 - Vergleich der Modelle zur Berechnung der qOUR mit den Ergebnissen der Referenzmethode

rechnung des k_La -Wertes nach der Van't Riet II, ermittelt aus den Datenpunkten der Referenzmethode, lassen sich sowohl die *OUR*, als auch die *qOUR* in einer repräsentativen Größenordnung berechnen. Nur bei starken Schwankungen der Prozessparameter kann das Systemverhalten nicht gut abgebildet werden. Die Gleichungen zur Berechnung des k_La -Wertes auf der Basis der Vorversuche können das Systemverhalten, welches während der Kultivierung vorliegt, nicht abbilden. Diese Modelle sind ungeeignet für die Bestimmung der online Sauerstoffaufnahmerate *OUR*. Ein Rückschluss auf den Verlauf der metabolische Aktivität der Zellen über die *qOUR* lässt sich aus allen Modellen erkennen. Die wichtigsten Punkte sind trotz der Großen Abweichungen der Modelle auf Basis der Vorversuche sind gut zu erkennen.

5. Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden verschiedene Methoden zur online Sauerstoffaufnahmerate OUR über einen Software-Sensor bei einer CHO-Zellkultivierung etabliert. Für die Bestimmung der OUR wurde zunächst eine Analyse des Systemverhaltens zur Bestimmung des k_La-Wertes gemacht. Für die Prozessparameter der Rührerdrehzahl N_{St}, Begasungsrate F_{nG} , Flüssigkeitsvolumen V_L und Antischaumkonzentration c_{AF} konnte ein Einfluss auf den $k_L a$ nachgewiesen werden. Diese Prozessparameter werden für die Berechnung des k_La -Wertes während der Kultivierung genutzt. Aus dem k_La -Wert kann über das Signal des Sauerstoffpartialdrucks p02, des Drucks p und der Sauerstoffkonzentration im Ingas x_{OGin} die OUR berechnet werden. Die zellspezifische Sauerstoffaufnahmerate qOUR kann anschließend über das Zellzahlsignal abgeleitet werden. Für die Berechnung des k_La -Wertes wurden zwei Ansätze gewählt. Der Ansatz der Multilinearen Regression MLR und den nach Van't Riet. Über Vorversuche mit einem zellfreien Modellsystem PBS konnten über die Ausgasungsmethode zwei Gleichungen zur Berechnung des k_La -Wertes ermittelt werden. Die Versuchsplangestaltung wurde im Rahmen eines teilfaktoriellen DoE Analyse durchgeführt. Die beiden daraus entwickelten Gleichungen bilden nicht die Größenordnung der Referenzmessung ab, die während der Kultivierung über die dynamische Methode, gemacht wurden. Aus den Datenpunkten der Referenzmessungen wurden ebenfalls zwei Gleichungen nach dem Ansatz von Van't Riet zur Beschreibung des k_La -Wertes entwickelt. Einer dieser beiden Gleichungen schafft es das System adäquat zu repräsentieren.

$$k_L a = k_L a_{EP} \cdot \left(\frac{N_{St}(t)}{N_{St EP}}\right)^{3\alpha} \cdot \left(\frac{F_{nG}(t)}{F_{nG EP}}\right)^{\beta} \cdot \left(\frac{V_L}{V_{L EP}}\right)^{-\alpha}$$
(31)

Aus ihr lässt sich ein repräsentativer Wert der Sauerstoffaufnahmerate OUR und der zellspezifischen Sauerstoffaufnahmerate qOUR berechnen. Alle Gleichungen des Van't Riet Ansatzes beinhalten dabei nicht den Einfluss der Antischaumkonzentration c_{AF} auf das System. Gleichzeitig kann das System bei starker Schwankung der Prozessparameter nicht gut repräsentiert werden.

Aus den Ergebnissen der Leitfähigkeits- und Osmolaritätsmessung ist zu erkennen, dass die Eigenschaften von dem verwendeten Modellsystem PBS zu Bestimmung des k_La -Wertes in einer Größenordnung mit der des Kultivierungsmedium liegen. Die Näherung für den Henry-Koeffizienten aus Reinstwasser verfälscht die Berechnungen der *OUR* aus dem k_La -Wert. Eigenschaften von Reinstwasser in Bezug auf die Leitfähigkeit und die Osmolarität sind nicht gleich denen des Kultivierungsmedium. Eine Berechnung des Henry-Koeffizienten auf der Grundlage von Reinwasser ist nicht repräsentativ für das System. Hier sollten weitere Nachforschungen angestellt werden, in dem andere Henry-Koeffizienten bestimmt werden oder weitere Versuche mit dem Kultivierungsmedium über die Ausgasungsmethode durchgeführt werden. Werden diese Versuche im Rahmen des bereits erstellen Versuchsplan durchgeführt, kann der Intervall der Einflussgröße des Flüssigkeitsvolumens V_L auf 6-8.5 L eingegrenzt werden. Gleichzeitig kann mit diesen Versuchen weiter analysiert werden ob die Gleichungen der Multilineare Regression oder die des Van't Riet-Ansatzes das Systemverhalten besser beschreiben. Eine Anpassung der Gleichung nach Van't Riet um die Antischaumkonzentration c_{AF} zu berücksichtigen müsste zusätzlich näher untersucht werden.

Viele der abgeleiteten Schlüsse aus den Vorversuchen der k_La - Bestimmung können nicht durch die durchgeführten Versuche belegt werden. Da ein teilfaktorieller Versuchsplan (Screening) genutzt wurde, wird nicht die Gesamtheit des Versuchsraums abgedeckt. Eine Erweiterung des Versuchsplan auf einen vollfaktorielles Design wäre daher sinnvoll um das Systemverhalten besser beschreiben zu können. Weitere Analysen zum Vergleich des zellfreien Modellsystems PBS mit dem Medium sollten dabei aus dem vollfaktoriellen Versuchsplan abgeleitet werden.

Die Annäherung des simulierten PT_3 -Systemverhalten an die Systemantwort zur Bestimmung des $k_L a$ -Wertes wurde über den Algorithmus nach Nelder-Mead vorgenommen. Eine Analyse mit einem weiteren Optimierungsalgorithmus könnte die Modellbildung zusätzlich verbessern, da eventuell nur ein lokales und kein globales Minimum für die Parameteranpassung gefunden wurde.

In der aktuellen Version des Software Sensors wird die Antischaumkonzentration c_{AF} als konstanter Wert für die gesamte Kultivierung vorgegeben. Die Antischaumkonzentration c_{AF} kann sich bei Schaumbildung während der Kultivierung durch die Zugabe von Antischaummittel erhöhen. Eine Berechnung der dann vorliegenden Antischaumkonzentration c_{AF} kann über das Batch-Management System von MFCS-WiPro realisiert werden.

Um den Einfluss der Schwankung der Prozessgrößen auf die Berechnungen zu reduzieren, wäre zusätzlich die Etablierung eines Median-Filters oder die Berücksichtigung der Standardabweichungen möglich. Des Weiteren ist zu testen, ob sich die entwickelten Gleichungen auch für weitere Kultivierungen nutzen lassen und diese das Systemverhalten genauso gut wiedergeben können.

Anhang

Danksagung

Diese Arbeit wurde mit Unterstützung der Hochschule für Angewandte Wissenschaften Hamburg und dem Institut für Technische Chemie der Leibniz Universität Hannover angefertigt.

Herrn Thomas Scheper danke ich für das ermöglichen dieser Arbeit.

Frau Dr. Dörte Solle danke ich für vertiefende Diskussionen und einer allgemein vorbildlichen Betreuung.

Herrn Florian Aupert danke ich für die vielen fruchtbaren Diskussionen, wertvollen Hinweisen und Ratschlägen und einer allgemein vorbildlichen Betreuung.

Der Firma Knick Elektronische Messgeräte GmbH & Co. KG, Berlin für das Bereitstellen ihrer Messsonde.

Zugleich danke ich Frau Chantal Brämer, Frau Lena Stuckenberg und Herrn Dirk Oehler für die Beratung und die kritische Durchsicht des Manuskripts.

- 1. Material
- 1.1. CHO Zell Kultivierung

1.2. Material und Geräte

Tabelle 7 – Liste der in dieser Arbeit genutzten Materialien und Geräte

Bezeichnung	Produkt	Bezugsquelle
pO2- Sonde	Während der Kultivierung:	
	Oxyferm FDA425 der	Hamilton Messtechnik GmbH, Höchst
	Während der Kultivierung	Knick Elektronische Messgeräte
	und der Vorversuche:	GmbH & Co. KG, Berlin
	SE 706	
Reaktor	BIOSTAT ®Cplus	Satorius Stedim Biotech, Göttingen
Osmometer	Osmoat 3000	Gonotec GmbH, Berlin
Leitfähigkeits-	KLE 325	Xylem Analytics Germany Sales
sonde		GmbH & Co. KG, Weilheim
Zellzähler	CEDEX	Roche Innovatis AG, Penzberg

Bezeichnung	Produkt	Bezugsquelle
	Futura	Aber Instruments Ltd, Aberystwyth
		UK
Abgasanalytik	BlueOne Cell	BlueSense gas sensor GmbH, Herten

1.3. Chemikalien und Kulturmedien

Tabelle 8 – Lister der Chemikalien für den 1-fach PBS

Bezeichnung	Chemikalie	Konzent- ration	$\left[^{g}\!/_{L}\right]$	Hersteller
1 x PBS	Natriumchlorid (NaCl)	8,00		Fluka, Buchs, Schweiz
	Kaliumchlorid (KCl)	0,20		AppliChem, Darm- stadt
	Di-Natriumhydrogen- phyosphat (Na ₂ HPO ₄)	1,42		Sigma-Aldrich, Mün- chen
	Kaliumdihydrogenphos- phat (KH ₂ PO ₄)	0,24		Sigma-Aldrich, Mün- chen

Tabelle 9- Liste der verwendeten Kultivierungskomponeten

Bezeichnung	Chemikalie	Hersteller
Antischaum	Pluronic F68	Thermo-Fisher
Kultivierungs-Medium	CHOMACS CD	Miltenyi Biotec, Ber-
		gisch Gladbach
Feed-Medium	Basic Feed Medium	Xell AG, Bielefeld

Tabelle 10 - Liste der sonstigen verwendeten Chemikalien

Bezeichnung	Hersteller
Natriumhydroxid, NaOH	Merck, Darmstadt
Glutamin	Biochrom, Berlin
Glucose	Sigma-Aldrich, München

1.4. Software

Bezeichnung	Produkt	Bezugsquelle
Datenbank Software	Simatic Sipat	SIPAT, Siemens Inc, Brüssel Berlgien
SCARDA Software	MFCS WiPro	Satorius Stedim System GmbH, Göt- tingen
Statistische Versuhcs- planung	MODDE	Umetrics, Malmö, Schweden
pO2-Überwachung	Paraly SW 112	Knick Elektronische Messgeräte GmbH & Co. KG, Berlin

Tabelle 11 - Liste der in dieser Arbeit genutzten Software

2. Abbildungsverzeichnis

Abb. 1 - Schematische Darstellung der Fü	tterungsstrategie des Benchmark Prozesses3
Abb. 2 – Schematischer Verlauf der <i>p02-</i> 1	Regelung des Benchmark Prozesses4
Abb. 3 - Veranschaulichung der Messel	harakterisierung an einem beispielhaften
Bioprozess [5], [8]	
Abb. 4 - Aufbau einer Sauerstoffpartialdr	uck Sonde – nach dem Clark Messprinzip . 7
Abb. 5 - Gasblasen in Flüssigkeit mit Kor	nzentrationsunterschied von Sauerstoff9
Abb. 6 - Schematische Darstellung der Wi	derstände beim Durchlaufen des Sauerstoffs
auf seinem Weg von der Gasblas	e zu den Zellen/Zellverbund [28]10
Abb. 7 Zweifilmtheorie – Schematische	Darstellung der Sauerstoffkonzentration im
Übergang von der Gas- in die Fli	issigphase [4]11
Abb. 8 - Verlauf der Sauerstoffkonzentrat	ion von der Gasblase zu den Zellen über die
Flüssigphase [4], [13]	
Abb. 9 - schematischer Verlauf der Größe	n OUR, qOUR und c_{OL} während einer batch-
Kultivierung	
Abb. 10 - Aufbau eines Reaktors zu	r Bestimmung der OUR über die
Gasmassenbilanzierung [20]	
Abb. 11 - Darstellung der drei verschie	denen Versuchsplanmodelle teilfaktoriell,
vollfaktoriell und zentral zusan	nmensetzt für drei normierte physikalische
Einflussfaktoren. Dabei stellen di	e Kreise die durchzuführenden Experimente
da, das Kreuz in der Mitte steht	für die Zentral Versuche (Center Points), in

jedem Versuchsplan werden dafür drei oder mehr von den Center-Point-
Versuchen durchgeführt20
Abb. 12 - Grafische Darstellung zur Hilfe bei der Auswertung zur Normalverteilung.
links nicht normalverteilt. rechts normalverteilt
Abb. 13 - Beispiel eines Koeffizienten Diagramms eines Interaktionsmodells zur
Varianzanalyse vor der Eliminierung einzelner Regressionsfaktoren22
Abb. 14 - Bestimmung des kLa- Wertes im Zellfreien Modellsystem mit der
Ausgasungsmethode [13]27
Abb. 15 - Analogie zwischen dem Sauerstoffübertragungsverhalten und dem
Elektrotechnischen Ersatzschaltbild
Abb. 16 - Modellverlauf der dynamischen Methode zur Bestimmung der OUR und des
k _L a32
Abb. 17 - Darstellung der Softwarestruktur zur online Bestimmung der OUR während
der Kultivierung
Abb. 18 - V12 - N _{St} : 200 rpm <i>FnG</i> : 24 L/h
Abb. 19 - Histogramm vor und nach der Transformation zur Normalverteilung des $k_{\text{L}}a$ -
Wertes
Abb. 20 - Finale Koeffizienten der MLR Gleichung zu den über Matlab bestimmten $k_{\rm L}a$
Daten
Abb. 21 - Effekte und deren Standardabweichungen im MLR Modell
Abb. 22 - Güteprüfungsgrößen der MLR-Gleichung zur $k_{\rm L}a\text{-Wert}$ Berechnung
Abb. 23 - Vergleich des Einflusses der Untersuchten Parameter im direkten Vergleich
der p02-Aufladekurven einzelner Vorversuche
Abb. 24 - Gegenüberstellung der Analysierten $k_{\text{L}}a$ Daten mit den Berechneten $k_{\text{L}}a$ -
Daten aus dem daraus gefolgerten MLR- Modell
Abb. 25 - Gegenüberstellung der Analysierten k_{La} Daten mit den Berechneten k_{La} -
Daten aus dem daraus Van't Riet Modell entwickelt über die Center Points44
Abb. 26 - Gegenüberstellung der Analysierten k_La Daten mit den Berechneten k_La -
Daten aus dem daraus gefolgerten Van't Riet Modell entwickelt über die
Maximalwerte der Vorversuche45
Abb. 27 - Verlauf der einzelnen Parameter über den gesamten Verlauf der Kultivierung,
gemittelt über 10 Wertepaare bzw. 30min46
Abb. 28 - Einflussnehmende Prozessparameter auf den k_La -Wert zusammen mit dem
Verlauf des k_La -Wertes aus der Kultivierung bestimmt über die dynamische
Methode

Abb. 42 - Beispiel für die Ergebnisse des kLa-fits über die Solverfunktion von Excel 365,
in blau mit durchgezogener Linie pO2- Messdaten, Ergebnis-Kurve 1 und 2
des Solvers für das Kurvenmodel mit zu großer Fehlerquadrat-Summe, Kurve
3 ist die Lösung mit der kleinsten Fehlerquadrat-Summe
Abb. 43- gemessenen gegen berechnete k_La -Werte der kLa -fit Methode mit dem MLR
Modell
Abb. 44 - Verlauf Änderung der Gelöstsauerstoffkonzentration über die Zeit zur
Bestimmung des <i>kLa</i> 23
Abb. 45- gemessenen gegen berechnete k_La -Werte der kLa-Ln Methode mit dem MLR
Modell

3. Tabellenverzeichnis

Tabelle	1	-	Charakterisierung	der	Einflussgrößen	des
	Sauersto	offüberti	agungskoeffizienten			14
Tabelle 2	- Grenzp	ounkte d	les Design Raums zum l	DoE zu Be	estimmung des k _L a's.	
Tabelle 3	- Versuch	nsergebr	nisse der kLa-Wert-Best	immung	aus den Vorversuche	en über
	das Mod	lellsyste	em PBS			
Tabelle 4	4- Param	eter zu	den maximalen und	minimale	en kLa-Wert des ze	llfreien
	Modells	ystems	PBS			
Tabelle 5	- Verglei	ich der I	Parameter der Van't Rie	etgleichun	g auf Basis der Vorve	ersuche
	und der	Referer	zdaten der dynamische	en Method	le	
Tabelle 6	6 – Mess	sungen	der Leitfähigkeit und	Osmolar	tät der Modellsyste	me im
	Vergleic	h				55
Tabelle 7	- Liste de	er in die	ser Arbeit genutzten Ma	aterialien	und Geräte	1
Tabelle 8	– Lister d	ler Cher	nikalien für den 1-fach I	PBS		2
Tabelle 9	- Liste de	r verwei	ndeten Kultivierungsko	mponeter	۱	2
Tabelle 1	0 - Liste d	der sons	tigen verwendeten Che	mikalien.		2
Tabelle 1	1 - Liste d	ler in die	eser Arbeit genutzten So	oftware		3
Tabelle 1	2 – Versu	chsplan	, Reihen und Einstellur	ngen für d	ie Einflussfaktoren d	es DoE
	zur Erm	ittlung	des k _L a's			9
Tabelle 1	3 – Ergeb	nisse de	r Auswertungsmethode	e kLafit		
Tabelle 1	4 – Coeffi	zienten	der MLR Gleichung üb	er die Dat	en von kLafit	21
Tabelle 1	5 - Ergebr	nisse der	r Auswertungsmethode	kLaLn		23
Tabelle 1	6 Coeffizi	ienten d	er MLR Gleichung über	die Dater	n von kLaLn	24

4. Literaturverzeichnis

- G. J. Metcalf, "Heinz Küpper, Wörterbuch der deutschen Umgangssprache: Hamburg: Claassen Verlag, 1955. Pp. 421." Taylor & Francis, 1957.
- [2] F. M. Wurm, "Production of recombinant protein therapeutics in cultivated mammalian cells," *Nat. Biotechnol.*, vol. 22, no. 11, p. 1393, 2004.
- [3] W. Storhas, *Bioverfahrensentwicklung*. John Wiley & Sons, 2013.
- [4] H. Chmiel, *Bioprozesstechnik*. Springer-Verlag, 2006.
- [5] R. W. Kessler, Prozessanalytik: Strategien und Fallbeispiele aus der industriellen Praxis.
 John Wiley & Sons, 2012.
- [6] P. Biechele, C. Busse, D. Solle, T. Scheper, and K. Reardon, "Sensor systems for bioprocess monitoring," *Eng. Life Sci.*, vol. 15, no. 5, pp. 469–488, 2015.
- [7] J. Claßen, F. Aupert, K. F. Reardon, D. Solle, and T. Scheper, "Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application," *Anal. Bioanal. Chem.*, pp. 1–16, 2017.
- [8] G. Cornelissen, "Integration of analytical measurment methods," 2016.
- [9] W. Beyeler *et al.*, *History of Modern Biotechnology II*, vol. 70. Springer, 2003.
- [10] E. K. Springer, "Dissolved Oxygen Measurement Theory Pracitce," Höchst.
- [11] J. Kemper, "Kinetik und Stoffübertragung bei der reaktiben CO2-Absorption/Desorption in speziellen Amin-Blends," Ruh-Universität Bochum, 2012.
- [12] F. Garcia-Ochoa and E. Gomez, "Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview," *Biotechnol. Adv.*, vol. 27, no. 2, pp. 153–176, 2009.
- [13] V. C. Hass and R. Pörtner, *Praxis der Bioprozesstechnik: mit virtuellem Praktikum*. Heidelberg: Spektrum, Akad. Verlag, 2011.
- [14] R. Sander, "Compilation of Henry's law constants (version 4.0) for water as solvent.," Atmos. Chem. Phys., vol. 15, no. 8, 2015.

- [15] A. Moser, Bioprozeßtechnik: Berechnungsgrundlagen d. Reaktionstechnik biokatalyt. Prozesse. Springer, 1981.
- [16] Y.-S. Kyung, M. V Peshwa, D. M. Gryte, and W.-S. Hu, "High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements," *Cytotechnology*, vol. 14, no. 3, pp. 183–190, 1994.
- [17] R. R. Deshpande and E. Heinzle, "On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors," *Biotechnol. Lett.*, vol. 26, no. 9, pp. 763–767, 2004.
- [18] F. Garcia-Ochoa, E. Gomez, V. E. Santos, and J. C. Merchuk, "Oxygen uptake rate in microbial processes: an overview," *Biochem. Eng. J.*, vol. 49, no. 3, pp. 289–307, 2010.
- [19] L. A. Palomares and O. T. Ramirez, "The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture," *Cytotechnology*, vol. 22, no. 1–3, pp. 225–237, 1996.
- [20] S. Yoon and K. B. Konstantinov, "Continuous, real-time monitoring of the oxygen uptake rate (OUR) in animal cell bioreactors," *Biotechnol. Bioeng.*, vol. 44, no. 8, pp. 983–990, 1994.
- [21] A. A. Kamen, C. Bédard, R. Tom, S. Perret, and B. Jardin, "On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures," *Biotechnol. Bioeng.*, vol. 50, no. 1, pp. 36–48, 1996.
- [22] E. Johansson, N. Kettaneh-Wold, C. Wikstrom, S. Wold, and L. Ericksson, "Design of Experiments, Principles and Applications," *Umetrics Acad. Umeå*, 2000.
- [23] K. A. Bakeev, *Process analytical technology: spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries.* John Wiley & Sons, 2010.
- [24] G. Cornelissen, "Pharmaceutical Biochemical Engineering Process Sheet Off-gas balace 1," Hamburg, 2016.
- [25] P. M. Doran, *Bioprocess engineering principles*. Academic press, 1995.
- [26] R. Luttmann, "Vorlesung Bioprozess Automatisierung," Hamburg, 2016.
- [27] P.-A. Ruffieux, U. von Stockar, and I. W. Marison, "Measurement of volumetric (OUR) and determination of specific (qO 2) oxygen uptake rates in animal cell

cultures," J. Biotechnol., vol. 63, no. 2, pp. 85–95, 1998.

- [28] J. E. Bailey and D. F. Ollis, "Biochemical engineering fundamentals.," Chem. Eng. Educ., 1976.
- [29] R. Luttmann, "Experimental and theoretical determination of the kLa value," Hamburg, 2013.

5. Versuchsplan für die kLa-Wert Bestimmung

Tabelle 12 – Versuchsplan, Reihen und Einstellungen für die Einflussfaktoren des DoE zur Ermittlung des k_La's

Voranchanz	Reihen-	N _{St}	F _{nG}	r	VL	c _{AF}
versuchsnr.	folge	[rpm]	[L/min]	[-]	[L]	[%]
18	1	100	0.40	1.00	10	0.00
33 - CP	2	150	0.70	0.50	8	0.20
20	3	100	0.40	1.00	10	0.40
23	4	100	1.00	1.00	6	0.40
27	5	200	0.40	1.00	6	0.40
5	6	100	1.00	0.00	6	0.00
34 - CP	7	150	0.70	0.50	8	0.20
8	8	100	1.00	0.00	10	0.40
29	9	200	1.00	1.00	6	0.00
17	10	100	0.40	1.00	6	0.00
32	11	200	1.00	1.00	10	0.40
2	12	100	0.40	0.00	10	0.00
12	13	200	0.40	0.00	10	0.40
14	14	200	1.00	0.00	10	0.00
35 - CP	15	150	0.70	0.50	8	0.20
9	16	200	0.40	0.00	6	0.00
3	17	100	0.40	0.00	6	0.40
15	18	200	1.00	0.00	6	0.40
26	19	200	0.40	1.00	10	0.00

6. Berechnung des Henry-Koeffizienten über die Formel der Temperaturabhängigkeit

$$H(T) = H^{\theta} \cdot e^{\left(\frac{-\Delta_{sol}H}{R} \cdot \left(\frac{1}{T} - \frac{1}{T^{\theta}}\right)\right)}$$
(44)

ττ Ω	Henry-Koeffizient basierend auf Standard Bedin-	ر mol ا
Н° -	gungen bei der Temperatur T^{θ}	Latm
T^{Θ}	- Referenztemperatur $T^{\theta} = 298,15 \text{ K} \cong 25^{\circ}C$	[K]
$-\Delta_{sol}H$	- Enthalpie während des Verlaufs einer Liquidation	$\left[\frac{J}{mol}\right]$
R	- Allgemeine Gaskonstante	$\left[\frac{J}{\text{mol }K}\right]$

Mit den folgenden Tabellendaten bzw. den Prozessbedingungen ergibt sich daraus der folgende Henry-Koeffizient:

$$H(T) = H^{\theta} \cdot e^{\left(\frac{-\Delta_{sol}H}{R} \cdot \left(\frac{1}{T} - \frac{1}{T^{\theta}}\right)\right)}$$

$$= 1.3 \times 10^{-5} \frac{\text{mol}}{\text{m}^{3} \text{ Pa}} \cdot e^{\left(1500K \cdot \left(\frac{1}{310.15 K} - \frac{1}{298.15 K}\right)\right)} = 1.0763 \times 10^{-5} \frac{\text{mol}}{\text{m}^{3} \text{ Pa}}$$
Tabellenwert für den Henry-Koeffizient ba-

$$H^{\theta} \quad \text{sierend auf Standard Bedingungen bei der} \qquad 1.3 \times 10^{-5} \frac{\text{mol}}{\text{m}^{3} \text{ Pa}}$$
Temperatur T^{θ} für Sauerstoff in Wasser.

$$T^{\theta} \quad \text{Referenztemperatur } T^{\theta} = 298.15 \text{ K} \stackrel{\text{a}}{=} 25^{\circ}C \qquad [\text{K}]$$

$$T \quad - \frac{\text{Kultivierungstemperatur } T = \frac{1}{310.15 \text{ K} \stackrel{\text{a}}{=} 37^{\circ}C} \qquad [\text{K}]$$

[14]

Nach dem Umformen dieses Henry-Koeffizienten in die Einheit Nm/kg folgt daraus der folgende Henry-Koeffizient:

$$H(37^{\circ}C) = 2.9034 \times 10^{6} \frac{\text{Nm}}{\text{kg}} = 29.034 \frac{\text{L bar}}{\text{g}}$$

7. Herleitung der Analogiedes Sauerstoffübertragungsverhalten über ein Elektrotechnisches Ersatzschaltbild

Zur Betrachtung des Sauerstoffübergangs von der Gas- in die Flüssigphase kann ein Elektrotechnisches Ersatzschaltbild genutzt werden, siehe Abb. 39. Mit diesem Ersatzschaltbild lassen sich die komplexen Zusammenhänge besser sinnbildlich betrachten

Abb. 39 - Elektronisches Ersatzschaltbild zur Sauerstoffübertragung von der Gas- in die Flüssigphase [29] und analysieren.

Für das in Abb. 39 gezeigt Ersatzschaltbild gelten folgende Analogien:

$$u_{E} = x_{OG in}(t) \qquad u_{C1} = x_{OG}(t) \qquad u_{C2} = x_{OL}(t)$$

$$G_{1} = Q_{O2 max}(t) \qquad G_{2} = OTR_{max}(t) \qquad i_{1} = Q_{O2}(t)$$

$$C_{1} = c_{OL max}^{*}(t) \qquad C_{2} = c_{OL max}(t) \qquad i_{2} = OTR(t)$$

$$i_{1} = Q_{O2} \qquad i_{2} = OTR$$

Daraus folgt:

$$u_{R1}(t) = R_1 \cdot i_1 = \frac{1}{G_1} \cdot i_1 = \frac{Q_{O2}(t)}{Q_{O2 \max}(t)}$$
(45)

$$u_{C1}(t) = \frac{1}{C_1} \cdot i = \frac{1}{C_1} \cdot (i_1 + i_2) = \frac{Q_{O2}(t) + OTR(t)}{c_{OL max}^*(t)}$$
(46)

$$u_{R2}(t) = R_2 \cdot i_2 = \frac{1}{G_2} \cdot i_2 = \frac{OTR(t)}{OTR_{max}(t)}$$
(47)

$$u_{C2}(t) = \frac{1}{C_2} \cdot i_2 = \frac{OTR(t)}{c_{OL max}(t)}$$
(48)

Für die Maschen I-III lassen sich folgende Maschengleichungen aufstellen:

$$I: \quad u_e(t) = u_{R1}(t) + u_{C1}(t) \tag{49}$$

$$II: \quad u_{C1}(t) = u_{R2}(t) + u_{C2}(t) \tag{50}$$

$$III: \quad u_a(t) = \ u_{C2}(t) \tag{51}$$

Für die Knotengleichung gilt:

$$i_1(t) = i_{C1}(t) + i_2(t) \tag{52}$$

Daraus folgt:

$$u_e(t) = u_{R1}(t) + u_{C1}(t)$$

= $R_1 \cdot i_1 + u_{R2}(t) + u_{C2}(t)$
= $R_1 \cdot i_1 + R_2 \cdot i_2 + u_a(t)$

Für die Ströme ergibt sich:

$$i_2 = C_2 \cdot \dot{u}_{C2}(t)$$

 $i_{C1} = C_1 \cdot \dot{u}_{C1}(t)$
 $i_1 = i_{C1} + i_2$

Daraus folgt für die Eingangsspannung:

$$u_{e}(t) = R_{1} \cdot i_{1} + R_{2} \cdot i_{2} + u_{a}(t)$$

$$= R_{1} \cdot (i_{c1} + i_{2}) + R_{2} \cdot i_{2} + u_{a}(t)$$

$$= R_{1} \cdot (C_{1} \cdot \dot{u}_{c1}(t) + C_{2} \cdot \dot{u}_{c2}(t)) + R_{2} \cdot i_{2} + u_{a}(t)$$

$$= R_{1}C_{1} \cdot \dot{u}_{c1}(t) + R_{1}C_{2} \cdot \dot{u}_{c2}(t) + R_{2}C_{2} \cdot \dot{u}_{c2}(t) + u_{a}(t)$$

$$= R_{1}C_{1} \cdot \dot{u}_{c1}(t) + (R_{1}C_{2} + R_{2}C_{2}) \cdot \dot{u}_{c2}(t) + u_{a}(t)$$

Mit $u_{C1} = u_{R2} + u_{C2}$ und $u_{C2} = u_a$ folgt:

$$u_e(t) = R_1 C_1 \cdot \frac{d}{dt} (u_{R2}(t) + u_a(t)) + (R_1 C_2 + R_2 C_2) \cdot \frac{du_a(t)}{dt} + u_a(t)$$

Mit $u_{R2}(t) = R_2 \cdot i_2 = R_2 \cdot C_2 \cdot \dot{u}_{C2}(t) = R_2 \cdot C_2 \cdot \dot{u}_a(t)$ folgt:

$$u_{e}(t) = R_{1}C_{1} \cdot \frac{d}{dt} (R_{2} \cdot C_{2} \cdot \dot{u}_{a}(t) + u_{a}(t)) + (R_{1}C_{2} + R_{2}C_{2}) \cdot \frac{du_{a}(t)}{dt} + u_{a}(t)$$
$$= R_{1}R_{2}C_{1}C_{2} \cdot \frac{d^{2}u_{a}(t)}{dt} + R_{1}C_{1} \cdot \frac{du_{a}(t)}{dt} + (R_{1}C_{2} + R_{2}C_{2}) \cdot \frac{du_{a}(t)}{dt} + u_{a}(t)$$

$$= R_1 R_2 C_1 C_2 \cdot \frac{d^2 u_a(t)}{dt} + (R_1 C_1 + R_1 C_2 + R_2 C_2) \cdot \frac{d u_a(t)}{dt} + u_a(t)$$

 $R_1 = G_1 \text{ und } R_2 = G_2$ folgt daraus: mit

$$u_e(t) = \frac{C_1 C_2}{G_1 G_2} \cdot \frac{d^2 u_a(t)}{dt} + \left(\frac{C_1}{G_1} + \frac{C_2}{G_1} + \frac{C_2}{G_2}\right) \cdot \frac{d u_a(t)}{dt} + u_a(t)$$

Unter den oben festgelegten Bezügen kann daraus folgender Zusammenhang hergeleitet werden:

$$x_{OG in}(t) = \frac{c_{OL \max}^* \cdot c_{OL \max}}{Q_{O2 \max} \cdot OTR_{\max}} \cdot \ddot{x}_{OL} + \left(\frac{c_{OL \max}^*}{Q_{O2 \max}} + \frac{c_{OL \max}}{Q_{O2 \max}} + \frac{c_{OL \max}}{OTR_{\max}}\right) \cdot \dot{x}_{OL} + x_{OL}$$

Aus diesem Zusammenhang lassen sich folgende Zeitkonstanten des Systems herleiten:

 \sim

$$T_{11} = \frac{C_1}{G_1} = \frac{c_{OL\,max}^*}{Q_{O2\,max}} = \frac{p_{nG} \cdot V_{nM} \cdot V_G}{R \cdot T_G \cdot F_{nG}} = \frac{V_G}{F_{nG}} \qquad \begin{array}{l} \text{Gasphasenkonstante, be-schreibt die Verweilzeit des} \\ \text{Sauerstoffs in der Flüssig-phase} \end{array} \tag{53}$$

$$T_{22} = \frac{C_2}{G_2} = \frac{c_{OL\,max}}{OTR_{max}} = \frac{1}{k_L a} \qquad \begin{array}{l} \text{Grenzflächentransferzeit} \end{array} \tag{54}$$

$$T_{12} = \frac{C_2}{G_1} = \frac{c_{OL\,max}}{Q_{O2\,max}} \qquad \begin{array}{l} \text{Rückwirkung aus der Gas-und Flüssigphase} \rightarrow \text{parasi-} \end{aligned} \tag{55}$$

Das Übertragungsverhalten lässt über ein nicht-rückwirkungsfreies PT₂- System beschreiben. Das bedeutet, dass das System in seinem Verhalten einen proportional Faktor (P) hat und zwei Energiespeichersysteme beinhaltet, die in der Form von zwei zeitlichen Ableitungen (T₂) mathematisch beschrieben werden können.

Für den Bildbereich ergibt sich daraus:

$$G_L(s) = \frac{x_{OL}(s)}{x_{OGin}(s)} = \frac{1}{T_{11} \cdot T_{22} \cdot s^2 + (T_{11} + T_{12} + T_{22}) \cdot s + 1}$$
(56)

Daraus sollen sich zwei entkoppelte Gleichungssysteme ableiten:

$$G_L(s) = \frac{1}{(1 + T_1 \cdot s) \cdot (1 + T_2 \cdot s)}$$
(57)

täre Zeitkonstante

Das Lösen von Gleichung (57) führt zu folgender Lösung:

$$T_{1,2} = \frac{T_{11} + T_{12} + T_{22}}{2} \cdot \left(1 \pm \sqrt{1 - \frac{4 \cdot T_{11} \cdot T_{22}}{[T_{12} + T_{11} + T_{22}]}} \right)$$
(58)

Diese Gleichung beschreibt das Systemverhalten vom Übergang des Sauerstoffs aus der Gas- in Flüssigkeitsphase.

Im Reaktorsystem kommt ein zusätzliches System hinzu: das Messsystem der pO₂-Sonde. Das elektrotechnische Ersatzschaltbild zum Gesamten Systemaufbau ist in Abb. 40 gezeigt. Das Ersatzschaltbild ist das gleiche wie in Abb. 39 gezeigt, nur an den Ausgangklemmen wurde das Messsystem der pO₂-Sonde angehängt.

Abb. 40 - Elektrotechnisches Ersatzschaltbild zur Sauerstoffübertragung von der Gas- in die Flüssigphase[29]

Das Übertragungsverhalten der pO₂- Sonde lässt sich mit folgender Formel beschreiben:

$$pO_2(t) = \frac{c_{OL}(t)}{c_{OL\ 100}(t)} = \frac{c_{OL\ max}(t)}{c_{OL\ 100}(t)} \cdot x_{OL}(t)$$
(59)

Der Termin $\frac{c_{OL max}(t)}{c_{OL 100}(t)}$ lässt sich zu dem einem Proportionalitätsfaktor K_M zusammenfassen, für den gilt:

$$K_M = \frac{c_{OL\,max}(t)}{c_{OL\,100}(t)} = \frac{p_G(t)}{p_{G\,cal} \cdot x_{OG\,cal}} \tag{60}$$

Der Druck im System beeinflusst den Verstärkungsfaktor im Messsystem. Ist dieser konstant, lässt sich daraus folgende Messcharakteristik für die pO₂ Sonde herleiten:

$$T_M \cdot p \dot{O}_2(t) + p O_2(t) = K_M \cdot x_{OL}(t)$$
(61)

Die komplexe Übertragungsfunktion dazu lautet:

$$G(s) = \frac{pO_2(s)}{x_{OL}(s)} = \frac{K_M}{(1 + T_M \cdot s)}$$
(62)

Das Messverhalten der pO2 Sonde stellt ein PT1 System dar mit dem Proportionalitäts-

Abb. 41 - PT3- Übertragungsverhalten der gesamten Messstrecke von Sauerstoff aus der Gas- in die Flüssigkeitsphase in das Messsystem der pO₂- Sonde

faktor K_M . Kombiniert man das PT₂- System vom Saustoffübergang der Gas- in die Flüssigkeitsphase mit dem PT₁- System des pO₂- Messsystems ergibt sich daraus ein PT₃-System. Beschrieben werden, kann dieses System mit der folgenden komplexen Übertragungsfunktion:

$$G(s) = \frac{pO_2(s)}{x_{OGin}(s)} = \frac{K_M}{(1 + T_1 \cdot s) \cdot (1 + T_2 \cdot s) \cdot (1 + T_M \cdot s)}$$
(63)

Zur Berechnung des Systemverhaltens auf eine Sprungfunktion wird ein energiefreies System mit $pO_2(0) = x_{OL}(0) = x_{OG}(0) = 0$ vorausgesetzt. Dafür wird in der Versuchsdurchführung der Reaktor mit Stickstoffbegast, bis der pO₂-Wert auf 0 % gesunken ist und der Abgassensor einen Sauerstoffanteil von 0 anzeigt.

Die Sprungantwort wird mit der Laplace-Transformation beschrieben:

$$pO_2(t) = \mathcal{L}^{-1}\left\{\frac{G(s) \cdot x_{OG in}}{s}\right\}$$
(64)

Für die Eingangsgröße gilt:

$$x_{OG in}(t) = x_{OG in} \cdot \varphi(t)$$

$$x_{OG in}(t) = x_{OG in} \cdot \frac{1}{s}$$
(65)

Daraus folgt:

$$pO_2(s) = G(s) \cdot x_{OG in}(s) = \frac{G(s) \cdot x_{OG in}}{s}$$

$$pO_{2}(s) = \mathcal{L}^{-1}\left\{\frac{G(s) \cdot x_{OG in}}{s}\right\} = x_{OG in} \cdot \mathcal{L}^{-1}\left\{\frac{G(s)}{s}\right\}$$
$$= x_{OG in} \cdot \mathcal{L}^{-1}\left\{\frac{K_{M}}{(1 + T_{1} \cdot s) \cdot (1 + T_{2} \cdot s) \cdot (1 + T_{M} \cdot s) \cdot s}\right\}$$
$$pO_{2}(t) = K_{M} \cdot x_{OG in} \cdot \left[1 - \frac{T_{1}^{2} \cdot e^{-\frac{1}{T_{1}}}}{(T_{1} - T_{2}) \cdot (T_{1} - T_{M})} + \frac{T_{2}^{2} \cdot e^{-\frac{1}{T_{2}}}}{(T_{2} - T_{1}) \cdot (T_{2} - T_{M})} + \frac{T_{M}^{2} \cdot e^{-\frac{1}{T_{M}}}}{(T_{M} - T_{1}) \cdot (T_{M} - T_{2})}\right] \quad (66)$$

Das Sauerstoffübertragungsverhalten wird mit einem nicht-rückwirkungsfreien PT₃-System beschrieben.

Die Versuchsdaten, die über den DoE Versuchsplan aufgenommen wurden, werden über die Solver-Funktion auf der von Gleichung **Fehler! Verweisquelle konnte nicht gefunden werden.**gefittet. Änderbare Parameter sind dabei K_M , T_1 , T_2 und T_M . Die Zeitkonstanten T_M werden anschließend mit dem pO₂-Verlauf der Versuchs in ein MatLab file importiert. Hier werden die Daten auf Grundlage eines energiefreien Anfangszustandes mit einer minimalen Fehlerquadratsumme einer von MatLab generierten Funktion angenähert

8. Matlab Skripte

8.1. k_La über PT₃ System

Verwendete Gleichungen und Erläuterung der Variablen:

$$Q_{02max}(t) = \frac{F_{nG}(t) \cdot M_{02}}{V_{nM} \cdot V_L(t)} \stackrel{!}{=} Q_{02max}$$
(67)

F _{nG}	-	Begasungsrate bezogen auf Normalbedingungen ($T = 273.15 \text{ K}$, $p = 101325 \frac{N}{m^2}$)	$\left[\frac{L}{h}\right]$
<i>M</i> ₀₂	-	Molare Masse von Sauerstoff	$\left[\frac{g}{mol}\right]$
V _{nM}	-	Molares Volumen bezogen auf Normalbedingungen	$\left[\frac{L}{mol}\right]$

 Q_{O2max}

-

$$c_{OLmax}(t) = \frac{p_G(t)}{H_{O2}(t)} \stackrel{!}{=} c_{OLmax}$$
(68)

$$c_{OLmax}$$
 - Maximale gelöste Sauerstoffkonzentration im Sätti-
gungs/Gleichgewichtszustand $\begin{bmatrix} g \\ L \end{bmatrix}$
 $OTR_{max}(t) = k_L a(t) \cdot c_{OLmax} \stackrel{!}{=} OTR_{max}$ (69)

$$OTR_{max}$$
 - Maximaler Sauerstofftransport $\left[\frac{gL}{h}\right]$

$$K_{M}(t) = \frac{p_{G}(t) \cdot 100\%}{p_{Gcal} \cdot x_{OGcal}} \stackrel{!}{=} K_{M} \qquad | p_{Gcal} = p_{G} ; x_{OGcal} = x_{OAIR} \qquad (70)$$

mit

$$K_M = \frac{100\%}{x_{OAIR}} \tag{71}$$

$$K_M$$
-Verstärkungsfaktor der Messsonde $[-]$ p_{Gcal} -Druck zum Zeitpunkt der Kalibrierung $\left[\frac{N}{m^2}\right]$ x_{OGcal} -Sauerstoffanteil in der Zuluft zum Zeitpunkt der Kalibrierung $[-]$ x_{OAIR} -Sauerstoffanteil in der Luft: 0.20946 $[-]$

1. Differentialgleichung

Diese Differentialgleichung beschreibt das P-T₁-System für den Übergang der Sauerstoffmoleküle aus der Gasphase:

$$\dot{x}_{OG}(t) = \frac{1}{T_{11}} \cdot \left[\left(x_{OGin}(t) - x_{OG}(t) \right) - \frac{T_{12}}{T_{22}} \cdot \left(x_{OG}(t) - x_{OL}(t) \right) \right]$$
(72)

$$\dot{x}_{OG}$$
-Änderung des Sauerstoffanteils in der Gasphase[-] T_{12} -Zeitkonstante über[]

- T_{22} Zeitkonstante über []
- 2. Differentialgleichung

Diese Differentialgleichung beschreibt das P-T₁-System für das Eintreten der Sauerstoffmoleküle in die Flüssigphase:

$$\dot{x}_{OL}(t) = \frac{1}{T_{22}} \cdot \left[x_{OG}(t) - x_{OL}(t) \right]$$
(73)

x_{OG} -

Verlauf des Sauerstoffanteils in der Gasphase [-]

 x_{OL}

Verlauf des Sauerstoffanteils in der Flüssigphase

3. Differentialgleichung

-

Diese Differentialgleichung beschreibt die Änderung des pO_2 -Signals

$$\dot{pO}_{2}(t) = \frac{1}{T_{M}} \cdot \left[K_{M} \cdot x_{OG}(t) - pO_{2}(t) \right]$$
(74)

- T_M Zeitkonstante der pO_2 -Sonde [h]
- K_M Proportionalitätsfaktor der pO_2 -Sonde [-]
- $pO_2(t)$ Messdaten aus der Versuchen [%]

Die Zeitkonstanten haben folgende Zusammenhänge:

$$T_{11} = \frac{V_G}{F_G} = \tau_G \tag{75}$$

[-]

$ au_G$	-	Verweilzeit des Gases in der Flüssigphase	[h]
V_G	-	Volumen der Gasphase	[L]
F _G	-	Begasungsrate	$\left[\frac{L}{h}\right]$

$$T_{22} = \frac{c_{OLmax}}{OTR_{max}} = \frac{1}{k_L a} \tag{76}$$

C _{OLmax}	-	Maximal mögliche Konzentration von Sauerstoffs in der Flüssigphase	$\left[\frac{g}{L}\right]$
OTR _{max}		Maximale Sauerstofftransferrate	$\left[\frac{g}{L h}\right]$

$$T_{12} = \frac{c_{OLmax}}{Q_{O2max}} \tag{77}$$

$$Q_{02max}$$
 - Maximale Sauerstoffeintragsrate $\left[\frac{g}{Lh}\right]$

8.1.1. Code

8.1.1.1. sim-file

Befindet sich auf dem beigelegten Datenträger.

8.1.1.2. est-file

Befindet sich auf dem beigelegten Datenträger.

8.1.1.3. mod-file

Befindet sich auf dem beigelegten Datenträger.

8.2. Ermittlung der empirischen Parameter für Van't Riet-Gleichung

8.2.1. Code

8.2.1.1. sim-file

Befindet sich auf dem beigelegten Datenträger.

8.2.1.2. est-file

Befindet sich auf dem beigelegten Datenträger.

8.3. online OUR

8.3.1. DataPrep

Befindet sich auf dem beigelegten Datenträger.

8.3.2. kLaPrep

Befindet sich auf dem beigelegten Datenträger.

8.3.3. OUR_final

Befindet sich auf dem beigelegten Datenträger.

8.3.4. OUR_final_VD

Befindet sich auf dem beigelegten Datenträger.

8.3.5. TextdateiIni

Befindet sich auf dem beigelegten Datenträger.

8.3.6. FunctionCall_kLaPrep

Befindet sich auf dem beigelegten Datenträger.

9. Weitere Auswertungsmethoden zur kLa-Wert Bestimmung

9.2. k_Lafit

9.2.1. Methode

Der sigmoide Verlauf der Gelöstsauerstoffkonzentration kann durch folgende Formel beschrieben werden:

$$pO_2\%(t) = pO_{2,max}\% - pO_{2,max}\% \cdot e^{-k_L a \cdot t}$$
(78)

 $pO_{2,max}$ %-Maximaler Sättigungsanteil für Sauerstoff über[%]den gesamten Messverlauf

Über den Solver von Excel 365 wurde über ein "was-wäre-wenn" Szenario der k_La-Wert gesucht, welcher die kleinste Summen-Fehlerquadrat($Summe_{FQS}$ vgl. Gleichung(80)) als Abweichung zur aufgenommenen Kurve ($pO_{2,Messdaten}$ %(t)) darstellt.

$$FQS = \sqrt{(pO_{2,Messdaten} \%(t) - pO_{2,fitting Funktion} \%(t))^2}$$
(79)

$$Summe_{FQS} = \sum_{i=1}^{n} FQS_i \tag{80}$$

 $pO_{2,Messdaten}\%$ - Messpunkte zum Zeitpunkt t [%]

$$pO_{2,fitting Funktion}\%$$
-Simulierter Messwert aus der Funktion ([%]78) zum Zeitpunkt t

Eine mögliche Solverfunktion ist in Abb. 42 gezeigt. Im weiteren Verlauf werden die Ergebnisse dieser Methode zur Bestimmung **"kLa-fit"** genannt.

Abb. 42 - Beispiel für die Ergebnisse des kLa-fits über die Solverfunktion von Excel 365, in blau mit durchgezogener Linie pO2- Messdaten, Ergebnis-Kurve 1 und 2 des Solvers für das Kurvenmodel mit zu großer Fehlerquadrat-Summe, Kurve 3 ist die Lösung mit der kleinsten Fehlerquadrat-Summe

9.2.2. Ergebnisse

Tabelle 13 - Ergebnisse der Auswertungsmethode kLafit

Ver-	N _{St}	\mathbf{V}_{L}	r	F _{nG}	C _{AF}	k _L a
suchsnr	[rpm]	[L]	[-]	[L/h]	[%]	[1/h]
2	100	10	0	24	0	1.60
3	100	6	0	24	0.4	2.29
5	100	6	0	60	0	5.56
8	100	10	0	60	0.4	2.68
9	200	6	0	60	0	11.77
12	200	10	0	24	0.4	3.00
14	200	10	0	60	0	7.80
15	100	10	1	60	0	3.23

Ver-	Nst	\mathbf{V}_{L}	r	F _{nG}	CAF	k _L a
suchsnr	[rpm]	[L]	[-]	[L/h]	[%]	[1/h]
17	100	6	1	24	0	3.94
18	100	10	1	24	0	1.90
20	100	10	1	24	0.4	1.47
23	100	6	1	60	0.4	6.17
26	200	10	1	24	0	3.89
27	200	6	1	24	0.4	4.73
29	200	6	1	60	0	12.98
32	200	10	1	60	0.4	4.65
33	150	8	0.5	42	0.2	3.58
34	150	8	0.5	42	0.2	3.18
35	150	8	0.5	42	0.2	3.16

9.2.3. Modell

Tabelle 14 – Coeffizienten der MLR Gleichung über die Daten von kLafit

kLafit~	Coeff.	Std. Err.	Р	Conf. int(±)
Constant	0.482494			
Drehzahl	0.00334641			
Begasungsrate	0.00870082			
Flüssigvolmen	-0.0737946			
Antischaumanteil	-0.318387			
N = 19	Q2 =	0.904	Cond. no. =	1,316
DF = 14	R2 =	0.946	RSD =	0.07749
	R2 adj. =	0.931		
			Confidence =	0.95
kLafit~	Coeff. SC	Std. Err.	Р	Conf. int(±)
Constant	0.695857	0.0181416	1.39E-10	0.0389102
Drehzahl	0.167321	0.0196668	6.64E-02	0.0421814
Begasungsrate	0.156615	0.019846	1.60E-01	0.0425658
Flüssigvolmen	-0.147589	0.0196668	2.86E-01	0.0421814

Antischaumanteil	-0.0636773	0.0196582	0.00593862	0.042163
N = 19	Q2 =	0.904	Cond. no. =	1,316
DF = 14	R2 =	0.946	RSD =	0.07749
	R2 adj. =	0.931		
			Confidence	0.95
			=	

Abb. 43- gemessenen gegen berechnete kLa-Werte der kLa-fit Methode mit dem MLR Modell

9.3. kLa Ln

9.3.1. Methode - Trendlinie der logarithmischen Funktion

Da es sich um ein zellfreies System handelt, ist die Sauerstoffverbrauchsrate bzw. die Sauerstoffaufnahmerate OUR gleich null. Dadurch ergibt sich folgender Zusammenhang:

$$V \frac{dc_{O_2}}{dt} = V \cdot \dot{n}_{O_2} - V \cdot qOUR \tag{81}$$

 $\left[\frac{L}{h}\right]$

V qOUR - Integrale Sauerstoffaufnahmerate pro Zelle

Zellfreies Modellsystem = > qOUR = 0

$$\frac{dc_{OL}}{dt} = \dot{n}_{O_2} = k_L a \cdot (c_{OL}^* - c_{OL})$$

Umstellen und integrieren:

$$k_{L}a \cdot t = ln \left(\frac{c_{OL}^{*}}{c_{OL}^{*} - c_{OL}(t)}\right)$$
(82)

Die Steigung des Verlaufs von Gleichung (82) über die Zeit ergibt somit den k_La . Da $pO_2\%(t)$ und $c_{OL}(t)$ direkt proportional zueinander sind, können sie für die Auswertung direkt gegeneinander ausgetauscht werden, was somit eine Auswertung der direkten Prozessdaten ermöglicht, vgl. Abb. 14.

$$k_L a \cdot t = ln \left(\frac{100\%}{100\% - pO_2(t)} \right)$$
(83)

Abb. 44 - Verlauf Änderung der Gelöstsauerstoffkonzentration über die Zeit zur Bestimmung des k_La

[13]

9.3.2. Ergebnisse

Ver-	Nst	VL	r	F _{nG}	CAF	k _L a
suchsnr	[rpm]	[L]	[-]	[L/h]	[%]	[1/h]
2	100	10	0	24	0	1.60
3	100	6	0	24	0.4	2.26
5	100	6	0	60	0	5.55
8	100	10	0	60	0.4	2.68
9	200	6	0	60	0	10.37

Tabelle 15 - Ergebnisse der Auswertungsmethode kLaLn

Ver-	Nst	\mathbf{V}_{L}	r	F _{nG}	CAF	k _L a
suchsnr	[rpm]	[L]	[-]	[L/h]	[%]	[1/h]
12	200	10	0	24	0.4	2.97
14	200	10	0	60	0	7.78
15	100	10	1	60	0	3.46
17	100	6	1	24	0	3.89
18	100	10	1	24	0	1.89
20	100	10	1	24	0.4	1.56
23	100	6	1	60	0.4	6.41
26	200	10	1	24	0	4.02
27	200	6	1	24	0.4	3.83
29	200	6	1	60	0	13.21
32	200	10	1	60	0.4	5.03
33	150	8	0.5	42	0.2	3.70
34	150	8	0.5	42	0.2	3.29
35	150	8	0.5	42	0.2	3.39

9.3.3. Modell

Tabelle 16 Coeffizienten der MLR Gleichung über die Daten von kLaLn

kLaLn~	Coeff.	Std. Err.	Ρ	Conf. int(±)
Constant	0.874599			
Drehzahl	-4.39E-05			
Begasungsrate	0.00932997			
Flüssigvolmen	-0.119359			
Antischauman- teil	-0.340802			
NSt*VL	0.00038012			
N = 19	Q2 =	0.898	Cond. no. =	1,398
DF = 13	R2 =	0.953	RSD =	0.07274
	R2 adj. =	0.936		

kLaLn~	Coeff. SC	Std. Err.	Ρ	Conf. int(±)
Constant	0.692988	0.0170468	4.35E-10	0.0368274
Drehzahl	0.149853	0.0186251	2.10E-01	0.0402372
Begasungsrate	0.167939	0.0186319	5.92E-02	0.0402519
Flüssigvolmen	-0.124682	0.0186251	1.48E+00	0.0402372
Antischauman- teil	-0.0681604	0.0186068	0.0028642	0.0401975
NSt*VL	0.0380117	0.0186487	0.0623981	0.0402881
N = 19	Q2 =	0.898	Cond. no. =	1,398
DF = 13	R2 =	0.953	RSD =	0.07274
	R2 adj. =	0.936		
			Con-	0.05

fidence = 0.95

Abb. 45- gemessenen gegen berechnete kLa-Werte der kLa-Ln Methode mit dem MLR Modell

10. Ergebnisse zur Bestimmung der Zeitkonstante T_M der pO2- Sonde

Tabelle 17 - Ergebnisse der T_M-Bestimmung

	TM [h]	TM[s]
Auf 1	0.00607952	21.8862557
Auf 2	0.0057451	20.6823447
Mittelwert	0.00591231	21.2843002

11. Ergebnisse der kLa-Werte Bestimmung durch Annäherung an das PT₃-

Übertragungssystem

Befindet sich auf dem beigelegten Datenträger.

12. Koeffizienten des MLR Modells aus den k_La Werte der Näherung über

kLaMatlab~	Coeff. SC	Std. Err.	Р	Conf. int(±)	Coeff.
Constant	0.594318	0.0163386	1.82E-09	0.0352974	0.882517
Drehzahl	0.150239	0.0178514	1.28E-01	0.0385655	- 0.00083776
Begasungsrate	0.18903	0.0178579	9.26E-03	0.0385797	0.0105017
Flüssigvolumen	-0.13207	0.0178514	5.21E-01	0.0385655	-0.138082
Antischaumanteil	-0.0753256	0.0178338	0.00099456	0.0385275	-0.376628
NSt*VL	0.0480317	0.017874	0.0186419	0.0386144	0.00048032
N = 19	Q2 =	0.923	Cond. no. =	1,398	
DF = 13	R2 =	0.963	RSD =	0.06972	
	R2 adj. =	0.949			
			Confidence =	0.95	

das PT₃-System

C1

1.4 C2

-0.6