Inhaltsverzeichnis

Inhaltsverzeichnis				
Ał	obildun	ngsverzeichnis	IV	
Aι	AufgabenstellungVII			
1	Einleit	tung	. 1	
	1.1 B	estehendes analoges RC-Kanalmodell	. 2	
	1.2 R	C-Kettenschaltung der "Ti-TP Kette"	. 2	
2	Theor	etische Grundlagen	. 4	
	2.1 Fe	ourierreihe des periodischen Rechteckimpulszuges	. 4	
	2.2 S ₁	pektrum des periodischen Rechteckimpulses	. 6	
	2.3 Pe	eriodischer Rechteckimpuls am RC-Tiefpassnetzwerk	. 8	
	2.4 Z	usammenfassung	10	
	2.5 Pe	eriodischer Rechteckimpuls am CR-Hochpassnetzwerk	12	
3	Unters	suchung des bestehenden Systems	13	
	3.1 Sj	pannungsmessung am Ausgang der "Ti-TP Kette" bei OZ1 bis OZ8	13	
	3.2 A	uswirkungen auf das Signalspektrum des periodischen Rechteckimpuls-		
	zu	ges durch die "Ti-TP Kette" bei OZ1 bis OZ8	14	
	3.3 B	estimmung der Übertragungsfunktion für die "Ti-TP Kette"	15	
	3.	3.1 Spannungs- / Impedanzanalyse	15	
	3.	3.2 Knotenpotentialanalyse mit "Mathematica 5.0"	19	
	3.	3.3 Morgan-Voyce-Algorithmus	21	
	3.4 B	estimmung des Amplitudenganges der ermittelten Übertragungsfunktionen		
	m	it Matlab zum Vergleich mit der Messung am Modell	22	
	3.5 B	erechung der TP-Grenzfrequenzen und Kontrollmessung	24	
	3.	5.1 Mathematische Bestimmung der Grenzfrequenzen	24	
	3.	5.2 Vergleichstabelle der ermittelten Grenzfrequenzen	26	
	3.6 P.	Spice-Simulation der TP-Amplitudengänge und Vergleichsmessung	26	
	3.7 Po	olstellenbestimmung für die "Ti-TP Kette"	28	
	3.8 B	estimmung der Übertragungsfunktion für die HP-Einsteckkarte	31	
4	Planui	ngs- und Entwurfsphase für die digitalen IIR-Filter	32	
	4.1 U	mrechnung der analogen RC-Tiefpassfilter in digitale IIR-Filter	32	
	4.	1.1 Mathematische Bestimmung der digitalen Koeffizienten nach der		
		"bilinearen Transformation"	32	
	4.	1.2 Berechnung nach der "impulsinvarianten Nachbildung"	33	
	4.	1.3 Bestimmung der digitalen Koeffizienten für die "Ti-TP Kette" mit Hilfe		
		von Matlab	34	

	4.2 Transformation der analogen, aktiven Hochpassfilter in digitale IIR-Filter	. 36
	4.3 Matlab/Simulink Simulation	. 38
	4.4 Digitalfilter allgemein und entsprechende Theorie zur Realisierung	. 39
	4.4.1 Bestimmung des Amplitudenganges für die ermittelten digitalen	
	TP-Filter	. 39
	4.4.2 Bestimmung der Grenzfrequenzen für die digitalen TP-Filter	. 42
	4.4.3 Polstellenermittlung für die digitalen TP-Filter	43
	4.5 Theorie zur Filterrealisierung	46
	4.6 Berechnungszeit für ein IIR-Filter nach Kap. 4.5 mit einem Mikrocontroller	. 49
5	Lösungs- bzw. Realisierungssansätze für die Nachbildung der "Ti-TP Kette"	51
	5.1 In der Diplomarbeit verwendeter Controller (DSP "C6713")	51
	5.1.1 CodeComposerStudio (CCS)	. 52
	5.1.2 Berechnungszeit für ein IIR mit dem "TMS320C6713 DSK-Board" und	
	Programmoptimierungen	. 52
	5.2 Realisierung von IIR-TP-Filtern mit dem "AIC23" on-board-Codec	56
	5.3 Realisierung von IIR-TP-Filtern mit dem "ADDA16" (500KHz-Codec)	58
	5.4 Synchronisierung von Bitgenerator und Bord	. 59
	5.5 Synchronisierung mit Interrupt-Progarmm	60
	5.6 Anforderungen an eine fertige DSP-Bord Lösung mit Codec	61
6	Realisierung der digitalen "Ti-TP Kette"	62
	6.1 Realisierung des Filters ohne AD-Wandler und mit DA-Wandler EvalBord	62
	6.1.1 Serielle Ansteuerung des DAC	63
	6.1.2 Parallele Ansteuerung des DAC per GPIO	63
	6.1.2.1 Initialisierung der McBSP Register	65
	6.1.2.2 External Interrupts als General-Purpose I/O nutzen	66
	6.1.2.3 Programm mit Interrupt und Ausgabe über GPIO-Pins an "J3"	. 67
	6.1.3 Parallele Ansteuerung des DA per EMIF	69
	6.2 DA-Wandler Evaluationsbord mit AD9752	. 71
	6.2.1 "Unbuffered Voltage Output"-Modus	. 72
	6.2.2 "Unipolar Buffered Voltage Output"-Modus	. 74
	6.3 Realisierung des ITP bzw. Rekonstruktionsfilter	. 77
	6.4 Spannungsversorgung mit dem LM2662	. 82
	6.5 Hochpass	. 82
7	Realisierungskonzept der "Ti-TP Kette" und HP-Einsteckkarte	. 85
8	Zusammenfassung	. 86
A	nhang	. 87

Literaturverzeichnis	138
Versicherung über die Selbstständigkeit	139

Abbildungsverzeichnis

Abb. 1.1	Analoges Kanalmodell mit den nachzubildenden Einsteckkarten	2
Abb. 1.2	Ersatzschaltbild der nachzubildenden RC-Kette und der Einsteckkarte	2
Abb. 1.3	Einsteckkarte "RC-Kette"	3
Abb. 1.4	Anwendungsprinzip des Kanalmodells	3
Abb. 2.1	Periodischer Rechteckimpulszug	4
Abb. 2.2	Überlagerungen der Harmonischen zum periodischen Rechteck	6
Abb. 2.3	Spektrum eines periodischen Rechteckimpulses	6
Abb. 2.4	Gemessenes Spektrum des periodischen Rechtecks am Generatorausgang	7
Abb. 2.5	Periodischer Rechteckimpulszug	8
Abb. 2.6	Veranschaulichung der Entstehung eines Rechteckimpulses	9
Abb. 2.7	Ausgangsspannung am RC-Netzwerk mit unterschiedlichen Zeitkonstanten	10
Abb. 2.8	Abgebrochene Fourierreihendarstellung des periodischen Rechteckimpulses1	10
Abb. 2.9	Gleichanteil und die ersten 7 Harmonischen	10
Abb. 2.10	Ausgangssignal des RC-Tiefenpasses	1
Abb. 2.11	Gleichanteil und die ersten 7 Harmonischen	1
Abb. 2.12	Ausgangssignal des CR-Hochpasses und die ersten 7 Harmonischen	12
Abb. 3.1	Ausgangssignal "Ti-TP Kette" bei OZ1 und Eingangssignal	13
Abb. 3.2	Ausgangssignal und Takt vom Wortgenerator	13
Abb. 3.3	Ausgangssignal der "Ti-TP Kette" bei OZ2 und bei OZ6	13
Abb. 3.4	Signalspektrum am Eingang der "Ti-TP Kette"1	14
Abb. 3.5	Signalspektrum am Ausgang der "Ti-TP Kette" bei OZ1	14
Abb. 3.6	Signalspektrum am Eingang der "Ti-TP Kette" und am Ausgang bei OZ1	14
Abb. 3.7	RC-Glied 1.Ordnung	15
Abb. 3.8	RC-Glied 2.Ordnung	15
Abb. 3.9	RC-Glied 3.Ordnung	16
Abb. 3.10	RC-Glied 2.Ordnung mit Spannungsquelle und mit gewandelten Quellen	19
Abb. 3.11	Darstellung des Koeffizienten des Morgan-Voyce-Polynoms als TriangularArray.	21
Abb. 3.12	Messung des Frequenzganges der "Ti-TP Kette" bei OZ5 mit dem FSP3	22
Abb. 3.13	Messaufbau mit FSP3	22
Abb. 3.14	Simulation des Amplitudenganges der ermittelten Übertragungsfunktion	
	mit Matlab für OZ1 bis OZ4	23
Abb. 3.15	Messung des Amplitudenganges der "Ti-TP Kette" mit FSP3 für OZ1 bis OZ42	23
Abb. 3.16	PSpice-Schaltung der RC-Kette für OZ8	26
Abb. 3.17	Ergebnis der PSpice-Simulation für OZ1 bis OZ4 und Vergleichsmessung	27

Abb. 3.18	Ergebnis der Pspice-Simulation für OZ5 bis OZ8 und der Vergleichmessung	27
Abb. 3.19	Pol-/Nullstellenplan als 3D-Grafik für OZ2	28
Abb. 3.20	Pol-/Nullstellenplan für OZ3	29
Abb. 3.21	HP 1.Ordnung	31
Abb. 4.1	Eingangssignal z.B. mit $T_0=31,25\mu s$	33
Abb. 4.2	RC-Glied 1.Ordnung	33
Abb. 4.3	Simulink-Simulation der analogen TP und der ermittelten digitalen TP für OZ2	2.38
Abb. 4.4	Rechteckantwort	38
Abb. 4.5	Amplitudengang digitaler TP	39
Abb. 4.6	Amplitudengang digitaler TP OZ1 und das analoge Filter OZ1	40
Abb. 4.7	Amplitudengang digitaler TP OZ2 und analoger TP zum Vergleich	41
Abb. 4.8	Amplitudengang digitaler TP OZ2 und analoger TP zum Vergleich/Ausschnitt.	41
Abb. 4.9	Pol-/Nullstellenplan für den digitalen TP OZ1	43
Abb. 4.10	Pol-/Nullstellenplan für OZ2 als 3D-Grafik mit Einheitskreis	43
Abb. 4.11	Polstellenplan für den ermittelten digitalen Filter 6.Ordnung	45
Abb. 4.12	Koeffizentenkonstellation für reellwertige Systeme 2.Ordnung	45
Abb. 4.13	Filternetzwerk für transversales Filter 2.Ordnung	46
Abb. 4.14	Rein rekursives Filternetzwerk	47
Abb. 4.15	Allgemeine Übertragungsfunktion 2.Ordnung	47
Abb. 4.16	Umsetzung der drei Teilgleichung	48
Abb. 4.17	StaVer40 Bord mit µC AltMega32	49
Abb. 4.18	Struktogramm für die Ermittlung der Berechnungzeit mit StaVer40 Bord	49
Abb. 5.1	Das komplette Starter-Kit (DSK) für den TM320C6713 DSP	51
Abb. 5.2	"Circular Buffer"	56
Abb. 5.3	Prinzipschaltbild des Testaufbaus mit Codec	57
Abb. 5.4	Einfluss des digitalen Filters (OZ2) mit 12-fach Oversampling und Messung	57
Abb. 6.1	Prinzipschaltbild des geplanten Kanalmodells	62
Abb. 6.2	DAC mit serieller Ansteuerung	63
Abb. 6.3	DAC mit paralleler Ansteuerung	64
Abb. 6.4	Initialisierung der McBSP-Pins als GPIO-Pins	65
Abb. 6.5	Funktionsblock Diagramm	66
Abb. 6.6	Initialisierung der ext. Interrupt-Pins als GPIO-Pins	67
Abb. 6.7a	Struktogramm für GPIO-Programm	67
Abb. 6.7b	Struktogramm für GPIO-Programm	68
Abb. 6.8	Programmoptimierung 1	68
Abb. 6.9	Programmoptimierung 2	68

Abb. 6.10	Programmausschnitt mit EMIF -Initialisierung	69
Abb. 6.11	EB-9752	71
Abb. 6.12	Zeitliches Ablaufdiagramm zur Ansteuerung des "AD9752"	72
Abb. 6.13	OV bis 1V "Unbuffered Voltage Output"	72
Abb. 6.14	50Ω-SMA-Stecker	73
Abb. 6.15	Vergleichsmessung des analogen mit dem digitalen Flter	73
Abb. 6.16	Ausgangssignalstufen im "Unbuffered Voltage Output"-Modus	74
Abb. 6.17	"Unipolar Buffered Voltage Output"	74
Abb. 6.18	Vergleichsmessung des zu interpolierenden Signals	75
Abb. 6.19	Inverterschaltung	76
Abb. 6.20	Darstellung der zu interpolierenden Stufen	76
Abb. 6.21	Darstellung der zu interpolierenden Stufen mit großer Auflösung	76
Abb. 6.22	Interpoliertes Signal	77
Abb. 6.23	Verstärkungsbandbreiteprodukt des TL074	77
Abb. 6.24	ITP mit TL074	78
Abb. 6.25	Amplitudengang des ITP0	78
Abb. 6.26	Ausgangssignal vor dem ITP	79
Abb. 6.27	Messung der digitalen IIR-Filter	79
Abb. 6.28	Interpoliertes Ausgangssignal	80
Abb. 6.29	Übersichtsplan des Testaufbaus für die "Ti-TP Kette"	81
Abb. 6.30	HP-Algorithmus 2. Ordnung	82
Abb. 6.31	"Unipolar Buffered Voltage Output" Modus mit Offset	83
Abb. 6.32	"Single Supply DC Differential" Modus	83
Abb. 7.1	Verarbeitungskette für das digitale Kanalmodell	85
Abb. 8.1	Benutzeroberfläche für das digitale Kanalmodell	85

Anhang

Inhaltsverzeichnis des Anhangs

Inhaltsverzeichnis des Anhangs	87
Anhang A Anhang zu Kapitel 1	88
A.1 Kanalnachbildung	88
A.2 Ersatzschaltbild der "Ti-TP Kette"	92
Anhang B Anhang zu Kapitel 2	93
B.1 Ersatzschaltbild der Einsteckkarte "HP"	93
Anhang C Anhang zu Kapitel 3	94
C.1 Messergebnisse der "Spannungsmessung am Ausgang der "Ti-TP Kette"	
bei OZ1 bis OZ8"	94
C.2 Auswirkungen auf das Signalspektrum des periodischen Rechtecks durch	
die "Ti-TP Kette" bei OZ1 bis OZ8	95
C.3 Spannungs- / Impedazanalyse für OZ4 und OZ5	96
C.4 Knotenpotentialanalyse	97
C.5 Bestimmung des Amplitudenganges der ermittelte Ünertragungsfunktionen	
mit Matlab zum Vergleich mit der Messung am Modell	.100
C.6 Bestimmung der Grenzfrequenz ab OZ4	.101
C.7 Messung des Amplitudenganges mit dem Aidioanalysator	.103
Anhang D Anhang zu Kapitel 4	.105
D.1 Bestimmung der Übertragungsfunktion mit Hilfe von Matlab	.105
D.2 Ermittelte Koeffizienten für ein digitales IIR-Filter	.105
D.3 Testprogramm für ein IIR-Filter mit Umspeichern und Erkärungen	.106
D.4 Testprogramm für ein IIR-Filter ohne Umspeichern mit dem ATmega32	.107
Anhang E Anhang zu Kapitel 5	.108
E.1 Testprogramm für ein IIR-Filter mit dem "TMS320C6713 DSK-Board"	.108
E.2 Realisierung der "Ti-TP Kette" mit dem "AIC23" on-board-Codec	.109
E.3 Realisierung eines IIR-Filters mit dem "ADDA16" Aufsteckmodul	.113
E.4 Johnson Counter	.114
E.5 Angebote der Firma GBM	.115
E.6 Verwendete Wandler-ICs und Bauteile	.117
Anhang F Anhang zu Kapitel 6	.118
F.1 "J3" Connector	.118
F.2 Register zur Initialisierung der McBSP-Pins als GPIO	.119
F.3 Register zur Initialisierung der externen Interrupts-Pins als GPIO	.120
F.4 GPIO-Programm mit Ausgabeoptimierungen	.122
F.5 "J4" EMIF-Connector	.126
F.6 Schaltbild des EB-9752	.127
F.7 Active Filter Design Tool	.128
F.8 EMIF-Register	.129
Anhang H CD mit elektronischer Ausführung der Diplomarbeitin der Rück	seite

Quellenverzeichnis

- [1] Prof. Dr.-Ing. Hans Jürgen Micheel: Unterlagen zum Praktikumsversuch "Entzerrung von Digitalsignalen" (*Versuch 56*), 22.04.2002
- [2] Werner, Martin: Nachrichtentechnik, Vieweg Verlag, 4. Auflage 2003, ISBN: 3-528-37433-0
- [3] Müller-Wichards, Dieter: Transformationen und Signale, B.G. Teubner Verlag, 1999, ISBN: 3-519-02742-9
- [4] Kröger, Peter; Gerdsen, Peter: Digitale Signalverarbeitung in der Nachrichtenübertragung, Springer Verlag, 2. Auflage 1997, ISBN: 3-540-61194-0
- [5] Görth, Joachim: Bauelemente und Grundschaltungen, B.G. Teubner Verlag, 1999, ISBN: 3-519-06258-5
- [6] Chassaing, Rulph: Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience Verlag, 2005, ISBN: 0-471-69007-4
- [7] Tietze / Schenk: Halbleiterschaltungstechnik, Springer Verlag, 2002, ISBN: 978-3-540-42849-7
- [8] Lancaster, Don: Das Aktiv-Filter-Kochbuch, IWT Verlag, 1982, ISBN: 3-88322-007-8
- [9] Kammermeyer, Karl-Dirk; Kroschel, Kristian: Digitale Signalverarbeitung, Teubner Verlag, 2006, ISBN: 3-8351-0072-6
- [10] Morgan-Voyce Algorithmus <u>http://mathworld.wolfram.com/Morgan-VoycePolynomials.html</u> (16.12.2007) <u>http://www.research.att.com/%7Enjas/sequences/table?a=85478&fmt=312</u>
- [11] spru190d.pdf, sprs266e.pdf, spra186l.pdf, TMS320C6713techref .pdf, Programming reference §install dir (Hilfeordner der installierten CCS Version)
- [12] AD9764, AD5444, AD9752, EB-9752, AD8047, AD9765, AD9774 http://www.analog.com/en/subCat/0,2879,761%255F795%255F0%255F0%255F0%255F0%255F,00.html (11.10.07)
- [13] Active Filter Design Tool <u>http://www.analog.com/Analog_Root/static/techSupport/designTools/interactive</u> Tools/filter.html (10.11.2007)
- [14] TMS320C6000 EMIF calculator http://www.dsignt.de/support/tools/c6000emif.html (23.10.07)