

Dominik Löffler

Development of Predictive Maintenance Concepts
for a Networked Production Plant

Masterarbeit

Faculty of Engineering and Computer Science
Department of Information and

Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Dominik Löffler

Development of Predictive Maintenance Concepts
for a Networked Production Plant

Masterthesis eingereicht im Rahmen der Masterprüfung
im Studiengang Automatisierung
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr.-Ing. Florian Wenck
Zweitgutachter: Associate Prof. Dr.-Ing. Shen JianQiang

Abgegeben am 10. August 2019

Dominik Löffler

Thema der Masterthesis
Entwicklung von prädiktiven Instandhaltungskonzepten für eine vernetzte Produkti-
onsanlage

Stichworte
Industrie 4.0, Prädiktive Wartung, Internet der Dinge, Cyber-Physische Systeme, In-
telligente Daten, Cloud

Kurzzusammenfassung
Diese Arbeit beschreibt die Erweiterung einer Industry 4.0 Produktionsanlage um prä-
diktive Instandhaltungskonzepte. Im Mittelpunkt steht die Vernetzung der physischen
Daten mit der dienstbasierten Cloud-Plattform Machine Advisor, die eine kontinuierli-
che Überwachung der Systemleistung ermöglicht. Der Betreiber der Anlage wird infor-
miert, sobald die Daten auf mögliche Fehlerzustände hinweisen. Darüber hinaus wird
MATLAB für eine detailliertere Analyse der gesammelten Informationen verwendet.

Dominik Löffler

Title of the paper
Development of Predictive Maintenance Concepts for a Networked Production Plant

Keywords
Industry 4.0, Predictive Maintenance, Internet of Things, Cyber-Physical Systems,
Smart Data, Cloud

Abstract
This paper describes the extension of an Industry 4.0 production plant by predictive
maintenance concepts. The focus is on networking the physical data with the service-
based cloud platform Machine Advisor, enabling continuous monitoring of system
performance. The operator of the plant is informed as soon as the data indicates
potential error conditions. Furthermore, MATLAB is used for a more detailed analysis
of the collected information.

Acknowledgments

Above all, I want to express my sincere gratitude to Prof. Dr.-Ing. Florian Wenck and Associa-
te Prof. Dr.-Ing. Shen JianQiang for their friendly and competent advice and the opportunity
to realize this project in Shanghai.

Furthermore, thanks to the Hamburg University of Applied Sciences and the Shanghai-
Hamburg College, making the whole stay possible.

I also would like to thank the company Lucas-Nuelle for providing the production plant at
SHC and their great support.

For the great collaboration, I would like to thank all employees at SHC. A special thanks to
Wu Di for translating and explaining Chinese documentation.

An exceptional thanks go to my friends and family for their great support not only during this
thesis but during my studies.

On a final note, thanks to all those from Shanghai, especially Kong Qiangqiang, who suppor-
ted me the last months and made me feel homelike.

Contents

List of Figures 8

List of Tables 10

Listings 11

1 Introduction 14
1.1 Motivation . 14
1.2 Research Goals . 15
1.3 Structure of the Thesis . 15

2 Theoretical Foundations 16
2.1 Industry 4.0 . 16

2.1.1 Cyber-Physical Systems . 16
2.1.2 Internet of Things . 18

2.2 Predictive Maintenance . 19
2.3 Programmable Logic Controller . 20

2.3.1 Definition of a Control System . 20
2.3.2 Functioning of a PLC . 21
2.3.3 The PLC in Terms of Industry 4.0 . 22

2.4 Open Platform Communications Unified Architecture 23
2.4.1 Generic OPC UA Information Models 24
2.4.2 Address Space Model . 24

2.5 Profinet . 25
2.5.1 Profinet IO Real-Time Behavior . 25
2.5.2 Profinet IO-System . 25

2.6 Modbus/TCP-Communication . 27
2.7 Machine Learning . 27

2.7.1 Classification . 28
2.7.2 Neural Network . 29

2.8 Development Tools . 30
2.8.1 Totally Integrated Automation Portal 30
2.8.2 Siemens OPC UA Modeling Editor 30

Contents 6

2.8.3 KUKA.WorkVisual . 31
2.8.4 Machine Advisor . 31
2.8.5 ComXBox . 32
2.8.6 MATLAB . 33

3 Industry 4.0 Production Line 34
3.1 Technical Description . 35

3.1.1 Process Specification . 35
3.1.2 Components . 37

3.2 Application of Industry 4.0 . 46

4 Requirements Analysis 47
4.1 Functional Requirements . 47
4.2 Comparison between Machine Advisor and MATLAB 48

5 Hardware Configuration 50
5.1 Plant Networking . 50
5.2 Communication between Controllers . 51
5.3 Data Exchange with KUKA Robot . 53

5.3.1 Selection of Robot Transfer Data . 54
5.3.2 Configuration in KUKA.WorkVisual 55
5.3.3 Configuration in TIA Portal . 58

5.4 Connection to Machine Advisor . 60
5.4.1 Setup of Modbus TCP/IP Server . 60
5.4.2 Configuration of ComX Box and Machine Advisor 63

5.5 Establishment of OPC UA Communication 67
5.5.1 Activation of OPC UA Server . 67
5.5.2 Creation of an OPC UA Client . 68

6 Program Design and Implementation 70
6.1 Data Collection . 70

6.1.1 Selection of IMS Stations Data . 70
6.1.2 Introduction of User-Defined Data Types 72
6.1.3 Program Extension of IMS Stations 73
6.1.4 Program Extension of KUKA Robot 76
6.1.5 Program Extension of PLC_1 . 77

6.2 Data Analysis in Machine Advisor . 81
6.2.1 Interpretation of Data . 81
6.2.2 Alarm Management . 82

6.3 Data Analysis in MATLAB . 83
6.3.1 Creation of a server interface with SiOME 83

Contents 7

6.3.2 Querying Data . 84
6.3.3 Pattern Recognition Network . 86

7 Functional Test 89
7.1 Data Monitoring in Machine Advisor . 89
7.2 Evaluation in MATLAB . 94

8 Conclusion 99
8.1 Summary . 99
8.2 Outlook . 100

Bibliography 101

A Appendix 105
A.1 Parameter Template: USST_industrylab4_0 106
A.2 Data Type: DATA_TO_MASTER . 110
A.3 Data Type: KUKADATA_TO_MASTER . 111
A.4 Data Block: ModbusServerData . 112

List of Figures

2.1 Decomposition of the automation hierarchy 17
2.2 Smart Metering – Measurement of physical data 18
2.3 Schematic structure of a control circuit . 21
2.4 OPC UA layer model . 23
2.5 Profinet IO sytem . 26
2.6 Modbus frame encapsulation in TCP segments 27
2.7 Neural network for classification . 29
2.8 SiOME operating principle . 31
2.9 Machine Advisor . 32
2.10 ComXBox . 33

3.1 Industry 4.0 production line . 34
3.2 Workpieces . 35
3.3 Plant schematics . 36
3.4 IMS1: Conveyor belt with PLC . 37
3.5 IMS3x: Assembly station of the bottom part 38
3.6 IMS4x: Assembly station of the top part . 39
3.7 IMS5x: Assembly station of the bolt . 40
3.8 IMS6: Testing station . 41
3.9 IMS7: Handling station . 42
3.10 KUKA robot . 43
3.11 Structure of the ERP-Lab . 44
3.12 SCADA tab of the ERP-Lab . 46

5.1 Plant network . 50
5.2 Operating mode of I-Device . 51
5.3 Configuration of the transfer area . 52
5.4 I-Device communication . 53
5.5 Axes of the robot . 54
5.6 KUKA Profinet configuration . 56
5.7 IO mapping editor . 56
5.8 Mapping fieldbus IO signals . 57
5.9 KUKA IO-Device in TIA Portal . 59

List of Figures 9

5.10 TIA Portal network view . 59
5.11 Communication between Modbus TCP/IP server and client 60
5.12 MB_Server function block . 61
5.13 Data block attributes for Modbus server data 61
5.14 Connection parameters for Modbus communication 62
5.15 Parameter template . 64
5.16 ComX Box Modbus TCP/IP configuration 64
5.17 Operating mode of the ComX Box . 65
5.18 Definition of the gateway . 65
5.19 Upload settings . 66
5.20 Configured ComX Box gateway . 66
5.21 Activation of the OPC UA Server . 67
5.22 OPC UA subscriptions . 68
5.23 Selection of the runtime license . 68

6.1 User-defined data type in the PLC tags . 72
6.2 Data collection function block . 74
6.3 Function block FB_CONTROLLERDATA . 78
6.4 Data block structure in TIA Portal . 80
6.5 Alarm settings . 82
6.6 Data and alarm management view . 83
6.7 Information model for the plant data . 84

7.1 Data monitoring view . 89
7.2 Historical data view . 90
7.3 Dashboard for IMS1 . 91
7.4 Low-level Error occurrence . 91
7.5 Creation of an alarm ticket . 92
7.6 Notification of an open alarm ticket . 92
7.7 Acknowledgment of an alarm . 93
7.8 Notification of a high-level alarm . 93
7.9 Regular samples of axis one . 94
7.10 Error samples of axis one . 95
7.11 Network structure . 96
7.12 Performance . 96
7.13 Confusion matrix . 97
7.14 Influence of the error of axis one . 98

List of Tables

3.1 IMS1: Conveyor Belt with PLC . 37
3.2 IMS3x: Assembly Station of the Bottom Part 39
3.3 IMS5x: Assembly Station of the Bolt . 40
3.4 IMS6: Testing Station . 41
3.5 IMS7: Handling Station . 43

4.1 Functional requirements . 47
4.2 Comparison between Machine Advisor and MATLAB 48

5.1 Addresses of I-Device communication . 53
5.2 Configuration of robot variables . 57
5.2 Configuration of robot variables . 58

6.1 IMS stations data . 70
6.1 IMS stations data . 71
6.2 "BELT".IMS identifier . 73
6.3 Monitoring types . 81

7.1 Parameter comparison . 95

Listings

5.1 Creation of an OPC UA client . 69

6.1 Data collection function block . 75
6.2 Signal declarations in the config.dat . 76
6.3 Assignment of variables in sps.sub . 76
6.4 Recording of the motor runtime . 78
6.5 Conversion of robot data . 79
6.6 Function TransferControllerData . 80
6.7 Reading the OPC UA node array . 84
6.8 Reading the OPC UA node array . 85
6.9 Output of the analyzeData function . 86
6.10 Parameter for the neural network . 87
6.11 Creation of the pattern recognition network 87

List of Abbreviations

CPS Cyber-Physical System

PLC Programmable Logic Controller

IMS Industrial Mechatronic System

RFID Radio-Frequency Identification

HMI Human Machine Interface

MES Manufacturing Execution System

ERP Enterprise Resource Planning

SCADA Supervisory Control and Data Acquisition

IoT Internet of Things

HTML Hypertext Markup Language

CPU Central Processing Unit

TCP/IP Transmission Control Protocol/Internet Protocol

OPC Open Platform Communications

UA Unified Architecture

TSN Time-Sensitive Networking

SOA Service-Oriented Architecture

DA Data Access

AC Alarms and Conditions

HA Historical Access

IO Input and Output

CBA Component Based Automation

RT Real-Time

Listings 13

IRT Isochronous Real-Time

MBAP Modbus Application Header

PDU Protocol Data Unit

TIA Totally Integrated Automation

GSD General Station Description

SiOME Siemens OPC UA Modeling Editor

FTP File Transfer Protocol

PC Personal Computer

I Input

Q Output

INT Integer

DWORD Double Word

SIM Subscriber Identity Module

SCL Structured Control Language

LSB Least Significant Byte

MSB Most Significant Byte

XML Extensible Markup Language

SMS Short Message Service

1 Introduction

1.1 Motivation

For several years, the industry has been undergoing a significant evolution known as Industry
4.0. While the meaning of this term as a high-tech strategy was initially unclear, it is now
crystallizing more and more. In order for such a great change in industrial processes to take
place and for new technologies to be used in an economically beneficial and high-quality
way, the industry has to agree on the content of the industrial revolution [1].

An essential characteristic is the digitally networked realization of industrial processes from
product design through production design to the operation of the entire production plant. In a
smart factory, the combination of software components with mechanical and electronic parts
is called cyber-physical system (CPS). To achieve Industry 4.0, these CPS have to fulfill
special requirements concerning architectural models, communication and data continuity,
data processing for humans and intelligent products and production units [2].

Another product that emerges from the fourth industrial revolution is data. Already referred to
as the fourth production factor, the variety of data produced by a smart factory is becoming
increasingly important. Established data management systems such as database systems
are often no longer sufficient enough and have to be extended by appropriate software trans-
forming a large amount of heterogeneous data into smart data [3]. An application scenario
for data analysis is predictive maintenance. Any production plant aims to ensure the avail-
ability, performance, and reliability of each component. Avoiding expensive downtimes and
keeping maintenance costs as low as possible, thus maintenance is optimally scheduled
during planned downtimes. Only elements that could impair the operation of the plant are
replaced. While the reason for the sudden failure of a plant during production operation is
quite obvious once the fault has occurred, predicting when it will happen is much more diffi-
cult. The analysis of the smart data at runtime can provide information on upcoming failures
and their type as well as on the remaining runtime.

1 Introduction 15

1.2 Research Goals

The most important and usually the most challenging step of the improvement of mainte-
nance processes is the correct identification and classification of the maintenance demand.
As an essential component of the fourth industrial revolution, predictive maintenance con-
cepts benefit in particular from the data consistency of complex production systems. Data
is now available at all communication levels and can be evaluated profitably using suitable
software.

The goal of this thesis is the development of predictive maintenance concepts for a networked
production plant. The production plant is an Industry 4.0 plant designed for training purposes
by Lucas-Nuelle. It is located at the University of Shanghai for Science and Technology at the
Shanghai-Hamburg College. The collected data ought to be loaded into the Machine Advisor
of Schneider Electric. The Machine Advisor is a cloud-based service platform allowing the
plant operator to view machine data from anywhere around the world. Furthermore, MATLAB
is used for a more detailed analysis of the data.

1.3 Structure of the Thesis

Chapter 2 informs the reader about the foundations of Industry 4.0 and predictive mainte-
nance as well as programmable logic controllers. A special attention is attached to commu-
nication protocols and shallow neutral networks. Furthermore, all development tools used
are explained.

After the theoretical foundations, the Industry 4.0 production line is explained in detail in
Chapter 3.

Functional requirements to Machine Advisor and MATLAB are expounded in Chapter 4
where they are also being compared.

The network structure of the plant and the required configurations for data exchange as well
as the connection to Machine Advisor and MATLAB are described in Chapter 5.

Chapter 6 conduces to the program design and implementation. The data collection is clari-
fied, followed by the data analysis in Machine Advisor and MATLAB.

The funcional test of the plant is part of Chapter 7. Being displayed and supervised in
Machine Advisor, the data is also evaluated in MATLAB.

The final Chapter 8 implicates a summary of the results as well as an outlook to future
projects.

2 Theoretical Foundations

For a better understanding of the thesis, this chapter discusses the theoretical foundations.
This includes information about Industry 4.0, predictive maintenance, programmable logic
controller, neural networks, and the used communication protocols. Finally, the development
tools are briefly described.

2.1 Industry 4.0

As an essential aspect of the high-tech strategy Industry 4.0, the further development of
production and value creation systems has become evident [4]. This is particularly possible
due to the progressive linking of the real and the digital world. As a result of this high-level
linkage and the resulting ubiquitous availability of data, new perspectives are emerging for
the near future of automation. The aim is to achieve more economical and efficient production
through adaptive, self-configuring, and partly self-organizing flexible systems [5].

Vertical integration in production is not entirely new but is regaining importance as a result of
horizontal integration in business processes and company networks along with the integra-
tion of consistent engineering processes [6]. Considering this almost unlimited networking of
different locations, companies will be able to benefit from the experience and knowledge of
various production sites.

Another keyword that has emerged from the Industry 4.0 initiative is the Smart Factory. It
uses the Internet of Things (IoT) and consists of so-called CPS. Here, humans and machines,
as well as other used resources, interact as naturally as in a social network [7].

2.1.1 Cyber-Physical Systems

CPS are the basis of Industry 4.0. Especially in implementation recommendations, they
assume a central role [8]. The term CPS refers to intelligent machines or equipment, in-
dependently exchanging information, interacting and controlling each other. In [9], CPS are
defined as embedded systems with the following characteristics.

2 Theoretical Foundations 17

• Direct acquisition of physical data using sensors and influencing physical processes
by actuators,

• Evaluation and storage of data as well as active or reactive interaction with the physical
and digital world based on this data,

• Connected to other CPS through digital networks,

• Use of data and services available worldwide,

• Application of several multimodal human-machine interfaces for more differentiated
and dedicated communication and control.

In the conventional automation pyramid, the various levels are usually assigned specific
tasks. With the introduction of CPS, data, services, and functions can be stored, accessed,
and executed where it is most useful for flexible, effective development and production [5].
Therefore, it is no longer necessary to assign these CPS to a specific automation level. For
example, sensor data can not only be accessed directly at the field level but can also be
read using the services of a cloud. This trend leads to a step-by-step modularization of the
existing automation pyramid (see Fig. 2.1).

Figure 2.1: Decomposition of the automation hierarchy [10]

This creates a network in which all services, data, and hardware components are distributed
in the nodes. The interaction of use and the provision of decentralized services create an
automation cloud wherein the nodes abstract into functional modules. While real-time-critical
controls remain at the field level close to the process, research is being done on communica-
tion protocols being able to transfer data to the cloud in real time. For this purpose, the open
platform communications (OPC) foundation is investigating an extension for the OPC unified
architecture (UA) in combination with time-sensitive networking (TSN) [11].

2 Theoretical Foundations 18

2.1.2 Internet of Things

The emergence of the IoT offers space for innovations, product functionalities, and efficien-
cies in value creation processes [1]. New networking structures are necessary, in order
for machines to be able to communicate with other devices, for people to interact with the
machine, and for resources such as intelligent workpieces to influence their processes. Fur-
thermore, the networking of suppliers, other plants, marketing, and sales, as well as the
customer, ought to be expanded. With conventional IT systems, this can only be achieved
to a limited level [12]. In the future, system architectures have to be able to connect different
networks in a service-oriented way.

Figure 2.2: Smart Metering – Measurement of physical data [13]

During the development and implementation of applications for the IoT, the large amounts
of data pose a challenge [6]. Especially at the field level, enormous amounts of data are
generated in real time. Fig. 2.2 shows an application of the IoT implemented by Beckhoff
Automation. In this example, the controller can communicate directly with the cloud via
OPC UA connection, and the data is available for other devices for consumption or control
purposes. Also, an analysis app whose evaluation has a positive effect on the efficiency of
the system is used. In the IoT context, the term digital twin has become established for a
virtual representation of a real plant or service [3]. The digital twin combines different types
of information in order to represent an entire system as completely as possible.

One of the major tasks is to manage the data overflow. Moreover, the data can only be used
profitably with appropriate analysis. Existing data repositories and architectures are going to
reach their limits in terms of data amount and analysis speed.

2 Theoretical Foundations 19

2.2 Predictive Maintenance

Maintenance procedures can be divided into three different concepts: reactive, preventive,
and predictive maintenance. Even though the latter concept is gaining importance due to the
increasing spread of IoT and big data, the others will still exist in the future. For this reason,
they are also briefly explained.

Reactive maintenance is the least complex concept. The system only reacts when an equip-
ment failure occurs. However, this is only possible when the equipment can be replaced
cost-effectively and does not cause major damage. A more sophisticated concept is preven-
tive maintenance. As a result of the experience or recommendations of the system manu-
facturers, fixed maintenance intervals are planned. This can significantly reduce the risk of
a breakdown, but the replacement of operational parts can increase costs, and no current
plant-specific conditions are considered.

Industry 4.0 addresses this issue and improves current concepts with the possibilities of pre-
dictive maintenance. An important contribution to this is the expansion of existing machines
and systems with appropriate sensors. Thus, machine data can be obtained in real time,
and its evaluation contains information on the current operating status, the degree of wear,
or any imminent defects. This makes it possible to predict errors and machine failures in
advance and to initiate and plan countermeasures at an early stage [6]. Another advantage
of this method is the continuous monitoring of all components. While regular maintenance
can result in breakdowns before the maintenance interval is reached and high damage is
caused, predictive maintenance reduces this risk [12]. In addition to the many advantages
of predictive maintenance, there is also a disadvantage of this approach. Often the algo-
rithms for data analysis reach a high complexity, and the implementation is associated with
an immense engineering effort.

An essential stage in the implementation of predictive maintenance concepts is the selection
of data. Besides sensor data such as temperature and vibrations, information like environ-
mental conditions or machine operating time can also be used for evaluations. The methods
can range from the calculation of simple condition indicators to the use of complex machine
learning algorithms, allowing error patterns, trends, and correlations to be identified and a
prognosis for the next maintenance time to be made. In general, the following three different
approaches are used to detect possible abnormal behavior of a plant at an early stage:

Isolation of defective components
Data recorded at runtime can detect faulty behavior of individual components or pro-
vide indications of a trend towards an imminent failure. For example, vibration mea-
surements can reveal the state of a component;

2 Theoretical Foundations 20

Isolation of causes of defect
Measured values from the system can also detect conditions, possibly leading to in-
correct behavior. For example, the temperature monitoring of lubricants can increase
the reliability of motors;

Isolation of environmental conditions
The last approach includes the change of environmental conditions for the prediction
when and how faulty behavior may occur [14].

For efficient production, every company needs to maximize the uptime of its equipment,
resulting in a lack of error occurrences in industrial data. Yet, this data would be worth
knowing for optimal identification and prognosis algorithms. Past projects have shown that
especially the interdisciplinary cooperation of engineers, product experts, and data analysis
improves the value of the acquired information and the service quality [6].

2.3 Programmable Logic Controller

Control technology is one of the main areas of automation. In industry, programmable logic
controllers (PLC) have become indispensable. As the basis for the advancing development
of industry, controllers are becoming more and more powerful and taking on a wider range
of tasks. While control systems were developed mostly proprietary for local and real-time
critical applications, the manufacturers are now changing their strategy [15]. In the following,
the definition of a controller and the principle of its operation are described. Last but not
least, the necessary adaptions to controllers for Industry 4.0 are considered.

2.3.1 Definition of a Control System

In a control circuit, actuating values are set via defined regularities by measuring the process
states [16]. A typical control circuit is shown in Fig. 2.3.

2 Theoretical Foundations 21

Figure 2.3: Schematic structure of a control circuit [16, adapted from Fig. 1.1]

The regularities are defined in the control algorithm allowing the controller to generate actu-
ating values ~y(k) from the target values ~w(k). All values are written or read at the discrete
sampling time k . The actuating values control the actuators of the plant affecting the pro-
cess, which is called an open loop control circuit. Additionally, the state of the process is
often monitored by sensors, and the information ~x(k) is transferred to the controller. Thus,
this is known as a closed control loop.

2.3.2 Functioning of a PLC

In a PLC, the control task is set in the program as a result of instructions [17], being stored
in the working memory of the PLC and holding their own address. During execution, the
instructions are loaded into the central processing unit (CPU) according to their address.
After processing, the next instruction is loaded by incrementing the address counter. This is
called cyclic program processing.

A controller works pursuant to the input-processing-output (IPO) model [18]. Accordingly,
a cycle essentially consists of three work steps. In the first step, the process image of the
inputs is created, involving evaluating all input channels and writing the current values to the
controller memory. During the second step, the program is processed sequentially, and at
the same time, the process image of the outputs is created. Finally, the process image of the
outputs is forwarded to the hardware.

Furthermore, cyclic program processing can be interrupted periodically or event-driven [19].
In this way, input and output (IO) signals can be processed acyclically or time-critical instruc-
tions can be executed.

2 Theoretical Foundations 22

2.3.3 The PLC in Terms of Industry 4.0

If conventional controllers need to be networked with each other, proprietary transmission
control protocol/internet protocol (TCP/IP) or standardized fieldbuses such as Profinet or
Modbus TCP will be commonly used in automation. These standard technologies usually
distinguish significantly from the communication methods used by the Internet. As the fourth
industrial revolution progresses, manufacturers of control systems have to enhance their
products. The following points are mentioned as requirements for Industry 4.0 compatible
controllers.

• Autonomy, reconfigurability and agility (Plug & Work),

• Overcoming the strict information encapsulation of controllers,

• Introduction of the service paradigm in production automation (production services),

• Networking in local and global networks,

• Interoperability between heterogeneous control systems,

• Dependencies have to be changeable dynamically during runtime,

• Use of models for the development of “higher-quality” control approaches,

• Orchestration of heterogeneous controllers [15].

In order to ensure the achievement of these requirements, manufacturers have to address
two key issues emerging from state of the art.

First of all, basic web technologies need to be introduced. While newer models have already
implemented web servers and hypertext markup language (HTML) pages for accessing pro-
cess variables and configurations, further adaptation of the controllers is necessary. In most
cases the connection via hypertext transfer protocol is relatively slow and therefore unsuitable
for large amounts of data. Besides, most solutions are proprietary and open web interfaces
are not available.

Secondly, the process data has to be accessible in the global or local network. For the inte-
gration of PLCs in supervisor, management, and coordination systems, the data transfer to
the latter systems is essential. Often the communication does not take place from the con-
trollers themselves but is taken over by human machine interfaces (HMI) which are located
one level higher in the automation hierarchy. The resulting latency times are not always pre-
dictable but are usually slower than the process itself. Lean and standardized protocols such
as MQTT and AMQP can enable communication directly from the controller. The OPC foun-
dation has also recognized this and is developing a publish/subscribe-based specification to
make the data available in a cloud [20].

2 Theoretical Foundations 23

2.4 Open Platform Communications Unified Architecture

OPC UA is a communication standard for the data exchange of mainly industrial compo-
nents. By introducing such standard solutions, the integration of information systems can be
realized more cost-effectively and time-saving in the long-term run [21]. The communication
interface is independent of the manufacturer, the programming language or the operating
system.

One of the essential innovations to the previous version is the extension of the information
model. OPC UA continues to enable horizontal integration, allowing different automation
devices to communicate with each other. Furthermore, the new specification can also be
applied to vertical integration, including the connection between the various automation levels
[22]. Accordingly, the new standard enables communication from the controllers at the field
level to the associated servers at the production planning level. For this OPC UA uses a
TCP-based, optimized, binary protocol [23].

As a communication basis, OPC UA follows the design paradigm of service-oriented architec-
ture (SOA), meaning that a service provider receives requests, processes them, and returns
the result in the form of a response [24]. For this task, the OPC UA specification defines
different groups of services. Flexibility is achieved through the information model. Any com-
plex extensions can optimize the basic model for the desired application without affecting the
interoperability [23]. The OPC UA layer model is shown in Fig. 2.4.

Figure 2.4: OPC UA layer model [25]

2 Theoretical Foundations 24

2.4.1 Generic OPC UA Information Models

According to the requirements of the industry, four standard information models have been
developed. Their purpose is explained in the list below.

Data access (DA)
The OPC DA interface provides real-time access to process data, allowing to read,
write and monitor variables. It is the most widely used interface of the standard models
[26]. In this use case, a client establishes a connection to the server. The variables
are usually updated after a fixed cycle or based on event occurrence;

Alarms and conditions (AC)
The AC model defines the handling of events and alarms. If a change of a condition
causes an event, the clients having subscribed to this event will receive a notification.
Also, accompanying values for corresponding states can be sent;

Historical access (HA)
Historical Access allows a client to access past variable values or events. The data is
timestamped and stored in a database, archive, or other memory. A unique feature is
the possibility to preprocess the information on the server [21];

Programs
In a program, access to functions on a server is described. The programs are struc-
tured as state machines whose end of processing or state transitions are transmitted
to the client.

In addition, the standard models can be adapted to the models of other organizations or
any other specifications. This is the only way to establish the basis for a standardized data
exchange.

2.4.2 Address Space Model

The address space model is the number of objects that an OPC UA Server offers to the
connected clients. Its purpose is to establish a standard method for the server to provide
objects for the clients. The object information is mapped to nodes which can be simple
variables or complex data types. References can represent relationships between multiple
objects.

2 Theoretical Foundations 25

2.5 Profinet

Profinet is a communication protocol optimized for industrial applications. Based on Ethernet,
it is a comprehensive standard fulfilling all requirements for the use in automation technology
[27]. A distinction is made between Profinet IO and Profinet component-based automation
(CBA). Latter is designed for the realization of modular applications as well as machine-to-
machine communication and is not further considered.

Profinet IO is optimized for communication between a controller and decentralized field de-
vices. It has established itself as one of the leading industrial Ethernet networks [28]. Opti-
mized for the fast transmission of IO signals in real time, it also offers the possibility to send
data via TCP/IP. All signals are read in, processed and retransmitted in each cycle without
being requested by a communication partner.

2.5.1 Profinet IO Real-Time Behavior

Profinet IO distinguishes between real-time (RT) communication and isochronous real-time
(IRT) communication. In the former case, RT capability is ensured by prioritizing the IO tele-
grams over the data telegrams, containing, for example, parameters or configurations. IRT
communication is a synchronized transmission method for the cyclic exchange of data. For
this purpose, a specific bandwidth is reserved in the transmission cycle, making the trans-
mission of IRT data insensitive to a high network load and thus enabling clock-synchronous
data exchange [29].

2.5.2 Profinet IO-System

Profinet IO does not only refer to the communication of individual controllers with their decen-
tralized peripherals but can also be applied to entire systems. Fig. 2.5 shows the components
of such a system.

2 Theoretical Foundations 26

Figure 2.5: Profinet IO sytem [29]

According to their number, the elements from Fig. 2.5 are explained in the following list.

1. IO-Controller
The IO-Controller is a PLC executing an automation program and addresses con-
nected IO-Devices. Therefore, the IO-Controller exchanges IO signals with the de-
centralized field device.

2. IO-Device
An IO-Device is a decentralized field module, usually assigned to an IO-Controller.
For example, it can be a valve terminal, a distributed IO module or any other device
with Profinet IO functionality. In most cases, the manufacturer provides so-called gen-
eral station description (GSD) files allowing the user to utilize these IO-Devices in the
configuration tool of the IO-Controller.

3. Shared device
If an IO-Device contains relevant data for several IO-Controllers, it can be declared as
a shared device and therefore provides the data for more than one controller.

4. I-Device
Allowing any IO-Controller to be used as an IO-Device, the I-Device function enables
the possibility of realizing subordinate Profinet IO networks. Simultaneously, the pos-
sibility to use the I-Device as a shared device is maintained [29].

2 Theoretical Foundations 27

2.6 Modbus/TCP-Communication

Modbus is a simple communication protocol for industrial control systems and is still widely
used today [30]. Transmitting data via Modbus over TCP/IP, the Modbus slave acts as a TCP
server and thus the Modbus master like a TCP client. The server waits for the client’s request
and returns its message in response. In this form of transmission, the Modbus packets are
embedded in the TCP segments (see Fig. 2.6).

Figure 2.6: Modbus frame encapsulation in TCP segments [31]

The Modbus telegram consists of a seven-byte Modbus application header (MBAP) and the
Modbus protocol data unit (PDU) with a size of up to 253 bytes. The MBAP contains a
two-byte transaction identifier, a two-byte protocol identifier set to 0x0000 for Modbus, a
two-byte length field, and a one-byte unit identifier. In the first byte of the PDU segment, a
function parameter between one and 255 is set, whereby entries 128-255 are reserved for
exceptions. During transmission, these parameters specify the type of action to be executed
by the server. Besides, additional information for processing can be added to the message.

2.7 Machine Learning

As the amount of available data increases, the analytical methods also need to evolve. Ma-
chine learning approaches this challenge by enabling the automated analysis of data. In [32],
machine learning is defined as a set of methods for recognizing patterns, allowing to predict
future behavior or to make other decisions based on these revealed patterns.

In the industrial sector, time series patterns can indicate possible error states in a system.
Potential failure causes can be identified with the automatic classification of these patterns.
A conventional algorithm for this application is neural networks. In the following, both are
explained in detail.

2 Theoretical Foundations 28

2.7.1 Classification

The supervised learning approach has the goal to find a mapping from given inputs x to
outputs y . Therefore the training set

D = f(xi ; yi)g
N

i=1
(2.1)

contains labeled input and output pairs that are used for training. D is called a training set
and N is the number of available training examples.

The input values xi may consist of more complex data such as images or time series, al-
though in a simpler variant it may consist of vectors with numbers representing the attributes
of the input signal. For instance, the attributes of a time series can be values such as mean
value or variance.

The outputs yi are part of a finite set

yi 2 f1; : : : ; Cg: (2.2)

Assuming the set of possible values of y represents different categories in which the input
values are assigned, this is referred to as classification or pattern recognition. In this case C

corresponds to the number of classes.

In the case of C = 2, it is called a binary classification. If more than two classes are available,
it will be called multi-class classification. Typically the input is assigned to exactly one class,
otherwise it is called multi-label classification [32].

The formalization of the problem can be seen in its simplest form as function approximation.
The equation

y = f (x) (2.3)

contains the unknown function f which ought to be determined by training with the labeled
datasets. Finally, the function has to be sufficiently approximated to correctly classify future
unknown data.

2 Theoretical Foundations 29

2.7.2 Neural Network

Artificial neural networks are information processing systems whose function is modeled
similar to a human brain. The structure resembles a nervous system consisting of a large
number of parallel units, the neurons [33].

The communication flow proceeds via directional connections that are weighted. The actual
learning process does not influence the active neurons but changes the adaptive weights of
the connections. If a neuron receives a sufficiently high stimulation through these weighted
connections, it will become active and send a signal to another neuron. Perceptrons are
introduced to reproduce this behavior, summarizing the weighted inputs and forming their
outputs by the activation function

y =

{
1; falls

∑
n

i=1
wixi � �

0; sonst.
(2.4)

whereby n corresponds to the number of inputs xi with the weight wi and y corresponds to
the output. A threshold value � is assigned to each perceptron.

One or more perceptrons form a layer in a neural network consisting of an input layer, one
or more hidden layers, and the output layer. The most common is the feedforward structure,
where each perceptron only has connections to the next higher layer. Fig. 2.7 shows a
feedforward neural network for classification.

Figure 2.7: Neural network for classification [34]

2 Theoretical Foundations 30

By specifying the coordinates, an unknown object has to be assigned to one of the three
classes. Using the input and output vectors of the known cubes, the weights of the connec-
tions are optimized to minimize the error between the output vector of the network, and the
target output vector of the training data. The actualization of the weights follows the used
training algorithm of the network.

2.8 Development Tools

In this section, the used development tools are briefly explained, including the Totally Inte-
grated Automation Portal (TIA Portal) for programming the controllers, the Siemens OPC UA
Modeling Editor (SiOME) for defining a custom information model, the Machine Advisor for
data monitoring in the cloud, the ComX Box used for uploading the data to the Machine Ad-
visor, KUKA.WorkVisual for the programming of the robot, and finally, Matlab for additional
analysis of the collected data.

2.8.1 Totally Integrated Automation Portal

The TIA Portal allows the implementation of complex automation tasks from digital planning
through integrated engineering to transparent operation, combining all engineering functions
into a single framework [35].

For the realization of this thesis, software STEP 7 is used. This extension enables the plan-
ning, programming, and commissioning of projects with Siemens controllers. The program-
ming languages are based on the open international standard IEC 61131-3. Especially due
to its high integration capability and the support of industry standards such as OPC UA,
Siemens has taken one of the market-leading positions in automation.

2.8.2 Siemens OPC UA Modeling Editor

The SiOME is used to define custom OPC UA information models. The information models
are generated as extensible markup language (XML1) files and can be imported directly into
the TIA Portal. This allows variables to be mapped from the control program to the server
interface, making them uniformly accessible to the clients. In Fig. 2.8, the operating principle
of the SiOME is illustrated. In addition to the self-defined information models, standardized
OPC UA models can be imported and adapted to the individual application.

1XML is a markup language for the platform-independent exchange of data

2 Theoretical Foundations 31

Figure 2.8: SiOME operating principle [36]

2.8.3 KUKA.WorkVisual

The KUKA.WorkVisual environment enables intuitive configuration, programming, commis-
sioning, and diagnosis of robot systems. Besides offline programming, the software offers
extensive online diagnostic options for safe operation. The development environment is op-
timized for the dedicated KRC4 controllers and enables simple connection to other control
systems by supporting fieldbuses such as Profinet, Profibus, or EtherCAT.

2.8.4 Machine Advisor

The Machine Advisor, developed by Schneider Electric, offers a cloud-based service platform
for machine manufacturers to monitor performance data. Multiple machines can be regis-
tered and located in the cloud, maintenance schedules can be created, machine documents
can be uploaded, and tickets for the operator can be prepared. A significant advantage is the
availability of the data as it is accessible at any time and any place. By creating dashboards,
the data can be visually presented and, for example, compared with data from the previous
year. A machine manufacturer can use this tool to monitor all his machines and observe
trends at an early stage. The aim is to increase the availability of systems while reducing
support costs. Fig. 2.9 shows the possible use of a dashboard in the Machine Advisor.

2 Theoretical Foundations 32

Figure 2.9: Machine Advisor [37]

2.8.5 ComXBox

The ComXBox represents an interface between the data collection devices and the cloud
platform. It stores the data locally and loads it into the cloud at a minimum interval of fifteen
minutes. The box can be configured via web interface allowing the user to parameterize
communication settings. Modbus/TCP is used for collecting data from the controllers, and
the file transfer protocol (FTP) is applied for uploading data to the cloud. Besides, alarms for
the collected data can be defined. Fig. 2.10 shows the use of the ComXBox.

2 Theoretical Foundations 33

Figure 2.10: ComXBox [38]

2.8.6 MATLAB

The MATLAB desktop environment developed by MathWorks is based on a proprietary pro-
gramming language. Combining numerical analysis, matrix calculation, signal processing,
and visualization, the tool is designed to solve mathematical problems. By applying tool-
boxes, the functionality can be extended in various aspects.

One of the used toolboxes is the OPC Toolbox enabling access to OPC data directly from
MATLAB. Thus, the data from a PLC can be read, written, and logged. As well as accessing
data from live servers using OPC DA, it also supports OPC HA allowing historical data to be
obtained.

Another toolbox used is the Deep Learning Toolbox allowing neural networks to be designed
and implemented. Executable apps provide simple configuration of network architectures
and training parameters as well as monitoring of the training progress in appropriate dia-
grams. Additionally, pre-trained models can be used to improve the results of small data
sets.

3 Industry 4.0 Production Line

This chapter introduces the Industry 4.0 production line of Lucas-Nuelle which will be en-
hanced in this thesis (see Fig. 3.1). The plant belongs to the laboratory of Shanghai-
Hamburg College and provides training of students.

Figure 3.1: Industry 4.0 production line [39]

In the following sections, the production process and the associated components of the plant
are explained. If all parts of the plant are known, reference will be made to the application
of the aspects of Industry 4.0. Predictive maintenance is particularly highlighted as a single
aspect here.

3 Industry 4.0 Production Line 35

3.1 Technical Description

The Lucas-Nuelle production line offers highly flexible production and individualization of
products up to batch size one. The system informs the user about the current status of
production at any time. Before the associated components and their structure are explained
in detail, the dynamic production process is described.

3.1.1 Process Specification

The manufacturing purpose of the plant is the production of workpieces. In this process, the
bottom and top parts, shown in Fig. 3.2, are joined together and optionally pinned. According
to the individual request of the customer, the products will be automatically assembled.

Figure 3.2: Workpieces [39]

The system has an OpenCart1 webshop for the customer to place an order. The customer
can intuitively place a request according to his purposes. After selecting a workpiece with or
without bolt, a selection of the desired composition can be made. Generated in OpenCart,
the orders are transmitted into the manufacturing execution system (MES) database and will
be produced if the system is ready.

The production of the workpieces requires a total of eight stations. Furthermore, there is an
extension for checking the workpieces, accessible with a robot manufactured by KUKA. Fig.
3.3 illustrates the structure of the plant.

1Open source online store management program

3 Industry 4.0 Production Line 36

Figure 3.3: Plant schematics

When the system is in idle state, three workpiece carriers are integrated into the system.
The waiting positions are behind industrial mechatronic system (IMS) 7 and IMS1 as well
as in front of station IMS3a. With radio-frequency identification (RFID) read and write units,
mounted on the stations marked in blue, each carrier is assigned a unique ID and the corre-
sponding product information. As a result, the system does not only know the position of the
carriers in the system but also the current production status of each order. Being referred
to as an intelligent workpiece under Industry 4.0 criteria, the workpiece has self-knowledge.
More precise, it knows the desired final state and the necessary production sequence.

As soon as the customer has entered an order, the system starts producing automatically.
If there is a free carrier in the waiting position in front of IMS3a, the RFID unit can write the
product information. Consequently, all stations to be approached are known. In the station
IMS3a the black bottom parts are assembled, and the same applies to the white bottom
parts in station IMS3b. In the following, the top parts are assembled in black (IMS4a) or
white (IMS4b). Each workpiece has to consist of at least one bottom and one top part.
Furthermore, the customer can decide whether both parts shall be fixed with a bolt. For
this purpose, the IMS5a station contains plastic bolts, and the IMS5b station contains metal
bolts. If no bolts are selected, the carrier will pass through both stations without action.
Before the carrier reaches the handling station and the production process is finished, the
operator decides whether the workpiece should be checked or not. For this, the KUKA robot
can be selected by a HMI touch panel. During the checking process, the carrier stops behind
IMS5b, and the robot grabs the workpiece for transport to the testing station. The testing
station, equipped with several sensors, compares the actual properties of the workpiece with
the properties desired by the customer and displays the result on the HMI touch panel. If
the evaluation is negative, the workpiece will be removed from the process. Therefore, the
robot places it in one of three intended deposit positions. If the inspection is successful, the
workpiece will be reintegrated into the process, and the carrier can move to the last station.

3 Industry 4.0 Production Line 37

At the handling station, the correct parts are lifted out of the process with a vacuum suction
cup and are thus completed for the customer.

3.1.2 Components

As the process is known, the most important components working together are explained. In
addition to the description of the stations with all their sensors and actuators, the ERP-Lab
for Industry 4.0 by Lucas-Nuelle are also described.

IMS1: Conveyor Belt with PLC

The conveyor belt with PLC forms the basis for all other stations. The workpiece carriers are
transported between the stations with a double strap. A DC motor is available for this pur-
pose, making it possible to rotate the belt in both directions. Besides, two inductive proximity
switches monitor the end positions of the belt. The conveyor belt can be seen in Fig. 3.4.

Figure 3.4: IMS1: Conveyor belt with PLC

All sensors and actuators are directly connected to a Siemens S7-1200 PLC. The IO signals
are listed in Tab. 3.1.

Table 3.1: IMS1: Conveyor Belt with PLC
Description ID IO

End position sensor - left B1 %I1.3
End position sensor - right B2 %I1.4
Conveyor belt - right %Q1.0
Conveyor belt - left %Q1.1

3 Industry 4.0 Production Line 38

IMS3x: Assembly Station of the Bottom Part

The station for the assembly of the bottom parts is, like all other stations, placed on a con-
veyor belt (see Fig. 3.5). If the carrier has to be equipped with a bottom part, it will travel
through the station until a stopper prevents it from continuing. Now a bottom part can be
dropped onto the carrier from the stock containing a maximum of five elements. Releasing
the stopper enables the carrier to continue.

Figure 3.5: IMS3x: Assembly station of the bottom part

To realize the described process, the assembly station owns the IO signals listed in Tab. 3.2.
Additionally to the sensors and actuators of the conveyor belt, the station consists of a mag-
netic sensor for monitoring the stopper position, a mechanical position switch for magazine
occupancy and two electro-pneumatic valves for controlling the cylinders for separating the
parts and controlling the stopper.

3 Industry 4.0 Production Line 39

Table 3.2: IMS3x: Assembly Station of the Bottom Part
Description ID IO

End position sensor - left B1 %I1.3
End position sensor - right B2 %I1.4
Conveyor belt - right %Q1.0
Conveyor belt - left %Q1.1
Magnetic sensor - stopper at top B3 %I0.2
Switch - magazine occupancy B4 %I0.3
Lower stopper M1 %Q0.0
Activate sort cylinder M2 %Q0.2

IMS4x: Assembly Station of the Top Part

The assembly station for the mounting of the top parts mainly corresponds to the structure
of the IMS3x stations. Only mechanical adjustments to the size of the parts are required.
For this reason, the IO signals match the elements in Tab. 3.2. The station is shown in Fig.
3.6.

Figure 3.6: IMS4x: Assembly station of the top part

3 Industry 4.0 Production Line 40

IMS5x: Assembly Station of the Bolt

In the stations IMS5x, top and bottom parts are pinned together. Fig. 3.7 shows the station
for mounting the plastic bolts. Again, a stopper secures the correct positioning of the work-
piece. Next, a pneumatic cylinder presses the pin from the stock into the intended fit in the
workpiece. The assembly process is now complete, and the carrier can continue after the
stopper is retracted.

Figure 3.7: IMS5x: Assembly station of the bolt

In contrast to the monitoring of the stock occupancy at the IMS3x and IMS4x stations, light
barriers with reflectors are used here. Besides, the press cylinder has two magnetic sensors
for observing the end positions. Tab. 3.3 shows the overview of all IO signals of the IMS5x
stations.

Table 3.3: IMS5x: Assembly Station of the Bolt
Description ID IO

End position sensor - left B1 %I1.3
End position sensor - right B2 %I1.4
Conveyor belt - right %Q1.0
Conveyor belt - left %Q1.1
Magnetic sensor - stopper at top B3 %I0.2
Sensor - magazine occupancy B4 %I0.3
Magnetic sensor - pressing cylinder not actuated B5 %I0.4
Magnetic sensor - pressing cylinder actuated B6 %I0.5
Lower stopper M1 %Q0.0
Activate pressing cylinder M2 %Q0.2

3 Industry 4.0 Production Line 41

IMS6: Testing Station

The testing station receives the workpiece from the KUKA robot. During the checking pro-
cess, the carrier travels to the stopper and remains there for a short moment until the result
is determined. Finally, the carrier returns to the end position of the conveyor belt, where the
robot can pick up the workpiece (see Fig. 3.8).

Figure 3.8: IMS6: Testing station

The station IMS6 has to be able to identify all possible variations of the workpieces. There-
fore, it has four sensors whose functions are explained in the following paragraph.

Two optical sensors are positioned in a manner that one directs towards the bottom part and
the other towards the top part. The sensors return a logical one for a white part and a logical
zero for a black part. While the capacitive sensor is used to check whether a bolt is integrated
into the workpiece, the inductive sensor can check if the material is out of plastic or metal.
The hardware addresses can be found in Tab. 3.4.

Table 3.4: IMS6: Testing Station
Description IO

End position sensor - left %I1.3
End position sensor - right %I1.4
Conveyor belt - right %Q1.0
Conveyor belt - left %Q1.1
Magnetic sensor - stopper at top %I0.2
Optical sensor - bottom part %I0.3
Inductive sensor %I0.4
Capacitive sensor %I0.5
Optical sensor - top part %I0.6
Lower stopper %Q0.0

3 Industry 4.0 Production Line 42

IMS7: Handling Station

The handling station represents the last step in the production process. Equipped with a
swivel table and a lifting cylinder, this station can pick up the workpieces from the process. If
the carrier is correctly positioned, the swivel table can be actuated and moves into the pick-
up position. When it arrives, the lifting cylinder extends, and the suction cups are placed on
the workpiece. By activating the vacuum, the workpiece is fixed and can be transported. The
lifting cylinder retracts, and the swivel table moves to the deposit. To place the workpiece in
the storage position, the lifting cylinder extends once more, and the vacuum is deactivated.
A maximum of two workpieces can be positioned on the deposit. The station IMS7 is shown
in Fig. 3.9.

Figure 3.9: IMS7: Handling station

A sensor monitors the vacuum to ensure that the workpiece is suctioned. Furthermore, the
swivel table is equipped with end position sensors indicating the pick-up and deposit position
for the workpieces. Tab. 3.5 lists all signals for the IMS7.

3 Industry 4.0 Production Line 43

Table 3.5: IMS7: Handling Station
Description ID IO

End position sensor - left B1 %I1.3
End position sensor - right B2 %I1.4
Conveyor belt - right %Q1.0
Conveyor belt - left %Q1.1
Magnetic sensor - stopper at top B3 %I0.2
Magnetic sensor - swivel table 0� B4 %I0.3
Magnetic sensor - swivel table 90� B5 %I0.4
Vacuum monitoring B6 %I0.5
Switch - lift cylinder at top B7 %I0.6
Swivel table from 0� to 90� M1 %Q0.0
Lower stopper M2 %Q0.1
Lower cylinder M3 %Q0.2
Vacuum on M4 %Q0.3

KUKA Robot

A 6-axis articulated manipulator is used to transport the workpieces. The robot is a KR6
R700 from KUKA. The system also includes a KRC4 controller and a Smartpad. In the idle
position, the robot is waiting above station IMS5b (see Fig. 3.10). If the system informs
the robot that a part is ready for transport, the robot will grab and transport it to the testing
station. During the inspection process, the robot is waiting for the result. If the workpiece
passes the check, the robot will reintegrate the workpiece into the production line. The robot
places negatively checked workpieces in one of three designated deposit positions and then
returns to its idle position. Once all three storage positions are occupied, the system operator
has to clear them and confirm this on the touch panel.

Figure 3.10: KUKA robot

3 Industry 4.0 Production Line 44

ERP-Lab for Industry 4.0

The ERP-Lab forms the basis for equipment management. It is structured as a cloud having
no connection to the Internet and only being accessed from the plant’s network. The data
storage and the hardware are provided by the central computer which is the host for this
application. The cloud runtime operates on a virtual Linux system. Fig. 3.11 shows the
structure of this configuration.

Figure 3.11: Structure of the ERP-Lab [40]

In this context, the Industry 4.0 plant represents the IoT device and is connected to the
cloud service by an IoT adapter provided by the PLC. On the server side, the constrained
application protocol (CoAP) is used for reading and replying to communication requests from
the controllers. For the controller, only the interface specification is of importance [40]. The
data is exchanged with the user datagram protocol (UDP) which is a transport protocol for
sending and receiving data in IP-based networks.

A further interface to the cloud is the web server which can read and write data via HTML.
It is the user interface and enables the operator to place orders. The system can also be
configured and extended here. The web server offers various views whose functionality is
summarized in the following list.

Order
In the order overview, all transacted orders are listed. Besides, information such as
production duration, time of completion or order ID, the ordered workpieces can be
viewed here.

Stock
In this tab, the plant operator can view the current status of each stock. It can be filled
up to the maximum level of five by pressing the corresponding buttons.

SCADA
The supervisory control and data acquisition (SCADA) view is shown in Fig. 3.12. The

3 Industry 4.0 Production Line 45

current status of the stations being integrated into the production line can be viewed
here. This is the most important screen for the operator of the plant, as all error
messages of the system appear here. As soon as the error has been corrected, it is
possible to reset the station.

MES
The MES system is the interface between the webshop and the production line. In this
menu, the layout of the system is configured, and the functions of the individual stations
are defined. Furthermore, the workpiece carriers are added and the corresponding
items assigned to the stations (see Fig. 3.2). An action table determines which stations
are activated for each OpenCart order.

ERP
The enterprise resource planning (ERP) view allows the configuration of the webshop.
Aside from creating new products, the existing ones can be modified. Further functions
are design adjustments of the website or customer relationship management.

Shop
The webshop is used to generate new orders for the plant. The handling is similar to a
standard e-commerce solution. All orders placed by the customer are transmitted into
the MES database. The resulting action table contains all the information required for
production.

Analytics
In Analytics, the data can be loaded from the ERP Lab database into a time series
analysis software. As a result, data can be observed over a certain time period and
additional alarms for the signals can be set.

3 Industry 4.0 Production Line 46

Figure 3.12: SCADA tab of the ERP-Lab

3.2 Application of Industry 4.0

Distributed as a plant corresponding to the aspects of Industry 4.0, the considered produc-
tion line applies modern production strategies. From self-organization to self-optimization,
it works almost without human intervention and offers a high level of individualization of the
desired customer products. The system informs the operator about the status of production
and also assists in control.

The IMS stations form the technical basis of the entire system. Since they represent a com-
bination of software and mechanical components communicating with the cloud via Ethernet
interface of the controller, the IMS stations can be identified as CPS. In this case, the cloud
represents the IoT and contains the virtual representation of the physical CPS. Due to the
availability of the data, the virtual production planning can optimize the process by making
decisions based on this information. For example, if a CPS reports an empty stock, work-
pieces that require parts from that stock will be queued, and other orders will be prioritized.
As a result, more efficient production can be guaranteed while reducing the workload of
operators [40].

So far, the focus of the collected plant data has been on pure production information. Thus,
it is not possible to monitor the condition of the plant. For this reason, concepts for the
implementation of predictive maintenance and plant monitoring are developed and applied
in this thesis.

4 Requirements Analysis

In this chapter, the requirements placed on the topic of this thesis are defined, structured
and summarized in tabular form. Section 4.2 compares the software applications for the
realization of these requirements.

4.1 Functional Requirements

The following requirements relate to the extension of the Lucas-Nuelle Industry 4.0 plant. For
the realization, it is necessary to select relevant data, to adapt the control technology while
maintaining modularity, and to extend the communication by Modbus/TCP and OPC UA. In
Tab. 4.1 all requirements are listed. The numbering specifies the priority, whereby number
one is assigned the highest and number nine the lowest priority.

Table 4.1: Functional requirements
Number Requirement

1 Transmission and display of relevant live data
2 Accessibility of historical data
3 Setting of simple thresholds for monitoring
4 Feedback to the operator about the current condition
5 Acknowledgment of current error states by the operator
6 Web interface for accessing collected information from the Internet
7 Enhancement opportunities by the implementation of machine learning
8 Support of open communication standards
9 Issue specific maintenance tickets

4 Requirements Analysis 48

First of all, it is important to implement data transmission and display live data in appropriate
software. The availability of the data in the network forms the foundation of concepts for live
monitoring and predictive maintenance. On this basis, historical data of the plant also ought
to be accessible. Many changes in the data, indicating possible error conditions, are only
recognizable over a longer observation period. Hence, the insight of historical data can be
used profitably in this context.

Since the availability of data alone is not sufficient for reliable monitoring, the possibility of
setting simple thresholds has to be given in the first step. Violating these limits requires
notification of the operator about the current situation. At the same time, the operator has to
be able to acknowledge these alarms or issue maintenance tickets to remedy the causes.

All relevant plant’s information should be accessible via web interface. Furthermore, the user
ought to be able to configure the display according to his needs.

If more complex maintenance concepts have to be applied to this plant, the system shall be
capable of enhancement by introducing machine learning. As a result, predictive mainte-
nance, using appropriate algorithms, leads to benefits, like the provision of early warning of
error conditions. In order to enable simple integration of additional devices into the existing
system, the solution has to support open communication standards.

4.2 Comparison between Machine Advisor and MATLAB

In this section, the applicability of both development tools for the pre-defined requirements
is reviewed. Focusing on the theoretical possibility of implementation and not on assessing
feasibility, the results are listed in Tab. 4.2.

Table 4.2: Comparison between Machine Advisor and MATLAB
Number Machine Advisor MATLAB

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X X

9 X X

4 Requirements Analysis 49

As shown in Tab. 4.2, neither application is able to satisfy all requirements individually.
For this reason, both solutions are developed simultaneously. To keep the workload within
the scope of this master thesis, the requirements are split between both tools. Only the
accessibility of the live data, being the fundament for each further work step, has to be
available in both solutions.

The Machine Advisor, promoted as a cloud-based service platform for monitoring perfor-
mance data, provides a configurable web interface. The website ought to display live ma-
chine data and furthermore enable access to historical data. Based on this information,
the plant’s operator has to be informed about the violation of defined limit values and can
acknowledge them. If the cause is identified, maintenance tickets can be created and sched-
uled using the web interface.

MATLAB stands out in particular due to its wide range of capabilities. By providing vari-
ous toolboxes, it offers plenty of room for future enhancements. With the data available in
MATLAB, a more detailed assessment of the condition of the system can be made. Applying
machine learning algorithms ought to extend the analysis of the data.

5 Hardware Configuration

Before the software development can begin, the structure of the network and the necessary
hardware configuration are explained. Once all participants are known, the setup of the
communication for the data transfer is described step by step. First of all, the connection
between the different controllers and the robot is established, allowing access to all data on
a central controller. Secondly, it is explained how the data is transferred to the analysis and
visualization software Machine Advisor and MATLAB.

5.1 Plant Networking

In this section, the structure of the network, including all its participants, is explained. For
visualization Fig. 3.3 is extended. In addition to the known components, Fig. 5.1 contains the
personal computer (PC), the PLC_1, and the ComX Box. The black lines correspond to the
production-relevant connection of the stations, and the blue lines indicate the communication
connections.

Figure 5.1: Plant network

5 Hardware Configuration 51

The PLC_1, a Siemens S7-1500 controller, assumes an essential role for data collection,
storing all relevant plant information provided by the controllers and the robot. Furthermore,
it is an interface to other participants of the network not using the TIA Portal development
tool. For the connection to MATLAB, running as an application on the PC, the PLC_1 pro-
vides an onboard OPC UA server. Simultaneously, it operates as a Modbus/TCP server for
communicating with the ComX Box.

5.2 Communication between Controllers

Since each station has a controller linked to the sensors and actuators, simple deterministic
communication is essential. The I-Device function is used for the transfer of all necessary
information to the PLC_1 acting as an IO-Controller. Thus, the stations become IO-Devices
and can send and receive data via Profinet IO.

With this type of communication, configurable virtual IO is added to the controllers. In this
application, only the I-Device ought to send data to the IO-Controller, therefore a unidirec-
tional connection is sufficient. The configuration is done in the TIA Portal and is shown in
Fig. 5.2.

Figure 5.2: Operating mode of I-Device

At first, the I-Device functionality has to be activated by setting the check mark, allowing
to select and assign an IO-Controller. It is crucial that the device number is unique in the
network. Otherwise, error messages will occur. This setting is necessary for each station of
the system. Thereby all PLCs are assigned to PLC_1, the IO-Controller in this application.

5 Hardware Configuration 52

In the next step, the transfer area for the communication between the IO-Controller and the
I-Device has to be defined. As an example, this is done for station IMS1. The configuration
is documented in Fig. 5.3.

Figure 5.3: Configuration of the transfer area

More than one transfer area can be created and identified by its individual name. For data
collection, the identifier DATA_TO_MASTER is used. Below, both communication partners
are displayed. To ensure unidirectional communication between both devices, the signals of
ims_1 are configured as Q1 and the signals of PLC_1 as input (I).

The complete transfer area can be defined by the starting address and the length. The local
start address is mapped to the start address of the communication partner, causing a direct
change in the address range of the IO-Controller if there is any status change in the address
range of the I-Device. For the data collection, 100 bytes are allocated. In case this amount
of data is not sufficient, it can be extended here. These settings only have to be made locally
on the I-Device and are automatically applied by the IO-Controller.

Following this procedure, the configuration for all further stations is executed. The structure
of the I-Device communication is schematically shown in Fig. 5.4.

1Abbreviation for output in the TIA Portal

5 Hardware Configuration 53

Figure 5.4: I-Device communication

In order to maintain the modularity of the control software, the PLCs of the stations are
configured identically. To prevent data overlapping in the IO-Controller, the information of
the individual stations are located in successive address areas. The complete assignment is
documented in Tab. 5.1.

Table 5.1: Addresses of I-Device communication
Station PLC_1 Address Local Address Size
IMS1 I 500...599 Q 200...299 100 bytes
IMS3a I 600...699 Q 200...299 100 bytes
IMS3b I 700...799 Q 200...299 100 bytes
IMS4a I 800...899 Q 200...299 100 bytes
IMS4b I 900...999 Q 200...299 100 bytes
IMS5a I 1000...1099 Q 200...299 100 bytes
IMS5b I 1100...1199 Q 200...299 100 bytes
IMS6 I 1200...1299 Q 200...299 100 bytes
IMS7 I 1300...1399 Q 200...299 100 bytes

5.3 Data Exchange with KUKA Robot

As already described in Section 3.1.2, the KUKA robot has a KRC4 controller. The pro-
gram of this controller programmed using KUKA.WorkVisual has to be adapted for the data
collection.

5 Hardware Configuration 54

Since the robot has to be specified as an IO-Device with a fixed IO module size in the
TIA Portal, the data being transferred is selected first. Subsequently, the configuration in
KUKA.WorkVisual and the TIA Portal is described.

5.3.1 Selection of Robot Transfer Data

Aim of monitoring the robot is to obtain information about the state of each axis. To give a
better overview of the 6-axis articulated manipulator, it is shown in Fig. 5.5.

Figure 5.5: Structure of the ERP-Lab [41]

The robot is mounted on a rotating base driven by the axis. The unit between the arm and the
base is called linking arm which is controlled by axis A2 and contains the motor for moving
the arm (A3). Ultimately, the arm connects the 3-axis central joint consisting of axes A4, A5,
and A6.

Information about all axes can be collected by using the system variables of the KRC4 con-
troller. These variables contain configuration parameters, motion parameters, and reference
values as well as information on current positions, velocity, and temperatures. The following
variables are used to monitor the robot.

5 Hardware Configuration 55

$CURR_ACT[AxisNumber]
Returns the actual current of each robot axis as a percentage of the maximum ampli-
tude from -100.0 % to +100.0 %. The data type is a REAL floating-point number with a
length of 32 bits.

$MOT_TEMP[AxisNumber]
Returns the current temperature of each motor, measured in Kelvin with a tolerance of
�12K. The data type is an integer (INT) with a length of 16 bits.

$TORQUE_AXIS_ACT[AxisNumber]
Returns the current torque of the motor for each robot axis in Newton meters. The
data type is a REAL floating-point number with a length of 32 bits.

$VEL_AXIS_ACT[AxisNumber]
Returns the current motor speed of each robot axis as a percentage of the maximum
speed from -100.0 % to +100.0 %. The data type is a REAL floating-point number with
a length of 32 bits.

The label AxisNumber has to be replaced by the corresponding axis number for use in the
program code. Axis A1 corresponds to number one, Axis A2 corresponds to number 2, and
the other identifiers are following this pattern.

During the execution of this thesis, overlaps have occurred in the transfer. These overlaps
have only occurred in the address range of the motor temperature. Increasing the variable to
32 bits, similar to the other variables, has solved this problem. As a result of the four system
variables selected for each axis,

32 bits � 6 � 4 = 768 bits (5.1)

are required to receive and interpret all data in the controller. To provide a reserve for possible
extension by additional variables, the module with 1536 IO signals is selected.

5.3.2 Configuration in KUKA.WorkVisual

In KUKA.WorkVisual the Profinet communication has to be added to the bus structure, al-
lowing the Profinet IO connection to be configured. Before the variables can be mapped, the
size of the Profinet device has to be specified. For this purpose, the Profinet settings have to
be opened (see Fig. 5.6).

5 Hardware Configuration 56

Figure 5.6: KUKA Profinet configuration

The device name defines the name for the robot in the network. Placing the check mark for
activation the Profinet device stack leads to the S7-1500 being able to send control data to
the robot. Also, the required number for the IO signals can be specified. As defined in 5.3.1,
the module with 1536 IO is selected here. Finally, the Profinet version has to be set to v8.3
and PNet 3.3, and the other settings remain with the default settings.

According to this configuration, the KUKA controller has internal IO that have to be linked
to the IO of the Profinet fieldbus. For this purpose, KUKA.WorkVisual offers an IO mapping
editor. As shown in Fig. 5.7, the internal IO has to be selected on the left and the Profinet
fieldbus on the right.

Figure 5.7: IO mapping editor

The window from Fig. 5.7 is followed by the actual Mapping Editor, consisting of three tables.
Whilst the upper table shows all already linked signals, the other two tables are showing

5 Hardware Configuration 57

the internal and the fieldbus IO signals. By default, only the individual IO are displayed as
boolean data types. Nevertheless, since 32 bits are necessary for the transmission of the
individual variables, the corresponding data area has to be grouped before linking.

The internal signals of the KRC4 controller can be combined to different data types by mark-
ing corresponding blocks of signals. Therefore, 32 bit are marked and combined to a double
word (DWORD) for each variable. As the default settings already map system variables to
internal IO, the lowest address used for data collection is 2000.

The inegrated signal editor is used for the clustering of the fieldbus signals, allowing the
combination of 32 boolean output signals to a DWORD by drag and drop. In order to keep a
certain distance to the control signals, the address of the first data entry is 20. The configured
IO mapping editor is shown in Fig. 5.8.

Figure 5.8: Mapping fieldbus IO signals

The internal signals are thus directly coupled to the signals of the fieldbus and can be trans-
mitted. Tab. 5.2 shows an overview of all configured addresses of the variables.

Table 5.2: Configuration of robot variables
Identifier Output Address Fieldbus Address Size

CURR_ACT_Axis1 2000 20 32 bytes
CURR_ACT_Axis2 2032 24 32 bytes

5 Hardware Configuration 58

Table 5.2: Configuration of robot variables
Identifier Output Address Fieldbus Address Size

CURR_ACT_Axis3 2064 28 32 bytes
CURR_ACT_Axis4 2096 32 32 bytes
CURR_ACT_Axis5 2128 36 32 bytes
CURR_ACT_Axis6 2160 40 32 bytes
MOT_TEMP_Axis1 2192 44 32 bytes
MOT_TEMP_Axis2 2224 48 32 bytes
MOT_TEMP_Axis3 2256 52 32 bytes
MOT_TEMP_Axis4 2288 56 32 bytes
MOT_TEMP_Axis5 2320 60 32 bytes
MOT_TEMP_Axis6 2352 64 32 bytes
TORQUE_ACT_Axis1 2384 68 32 bytes
TORQUE_ACT_Axis2 2416 72 32 bytes
TORQUE_ACT_Axis3 2448 76 32 bytes
TORQUE_ACT_Axis4 2480 80 32 bytes
TORQUE_ACT_Axis5 2512 84 32 bytes
TORQUE_ACT_Axis6 2544 88 32 bytes
VEL_ACT_Axis1 2576 92 32 bytes
VEL_ACT_Axis2 2608 96 32 bytes
VEL_ACT_Axis3 2640 100 32 bytes
VEL_ACT_Axis4 2672 104 32 bytes
VEL_ACT_Axis5 2704 108 32 bytes
VEL_ACT_Axis6 2736 112 32 bytes

5.3.3 Configuration in TIA Portal

In order for the PLC to access the fieldbus variables, the KUKA robot has to be adapted
in the TIA portal. Before the robot can be inserted as an IO-Device, the GSD file for the
robot controller has to be imported. After a successful installation, the robot is added to the
hardware catalog and can be integrated into the project (see Fig. 5.9).

5 Hardware Configuration 59

Figure 5.9: KUKA IO-Device in TIA Portal

The KRC4 controller can be inserted into the TIA Portal network view via drag and drop. In
this view the connection to the Profinet interface of the PLC_1 is established. This connection
is indicated in the complete network view in Fig. 5.10 by the green line.

Figure 5.10: TIA Portal network view

5 Hardware Configuration 60

The IO module for the KUKA controller is selected in the device view, having to match the
selection in KUKA.WorkVisual. Before the variables from the robot can be used within the
TIA Portal program, they have to be read from the fieldbus. The defined address range maps
the data to the addresses 150 to 341. These addresses are treated in the program, similar
to the virtual inputs of the I-Devices, as regular hardware inputs.

5.4 Connection to Machine Advisor

In the next step, the data has to be transferred from the TIA Portal to the analysis software.
Therefore, the communication to the Machine Advisor ought to be established first. In the
following, the enhancements in the TIA Portal as well as the configuration of the ComX Box
and the Machine Advisor are explained.

5.4.1 Setup of Modbus TCP/IP Server

The PLC_1 running the Modbus TCP/IP server, provides specific instructions for this appli-
cation, implementing the functionality of the Modbus communication and thus just require
parameterization. No additional hardware module is necessary for the application, because
communication with the network is possible directly via the Profinet interface.

The server receives connection requests from the client as well as Modbus function requests,
and sends response messages. The ComX Box is the client sending the command to read
the holding register and receives the content as a response (see Fig. 5.11).

Figure 5.11: Communication between Modbus TCP/IP server and client

The MB_SERVER instruction is used to activate the server on the controller. To ensure
continuous execution, it is called cyclically in the organization block OB1. The corresponding
network is shown in Fig. 5.12.

5 Hardware Configuration 61

Figure 5.12: MB_Server function block

The block has predefined IO ports requiring appropriate parameterization. The holding reg-
ister MB_HOLD_REG, containing all relevant data of the plant, is implemented using a data
block. Therefore, the data block ModbusServerData with the number 21 is created. The
attributes of the block have to be modified as shown in Fig. 5.13 to enable access by a
pointer.

Figure 5.13: Data block attributes for Modbus server data

By default, the optimized module access is activated, reducing the memory requirement as

5 Hardware Configuration 62

it is without a fixed structure. Yet, communication with the ComX Box needs a fixed structure
assigning a fixed address to the data. Consequently, optimized access has to be deactivated.
The expression P#DB21.DBX0.0 Byte 556 creates a pointer to the first element of the data
block with a length of 556 bytes and assigns the content of the ModbusServerData to the
holding register. The length has to be chosen according to the size of the data block.

The other parameters of the MB_SERVER instruction are summarized in the data block
ModbusServerStatus (see Fig. 5.14).

Figure 5.14: Connection parameters for Modbus communication

The parameter connectParamServer, including all necessary variables for communication, is
particularly important. For that reason, the individual values are explained in the following
list.

InterfaceId
The interface ID is the hardware identifier of the local interface. Since the Profinet in-
terface [X1] is used for communication, this hardware ID has to be used. The identifier
can be found in the device view of the PLC_1 in the list of hardware system constants.

ID
The ID identifies the connection and has to be unique within the CPU. Both server and
client ought to have the same ID for Modbus communication.

ConnectionType
The connection type is determined by 11 (decimal), representing a TCP connection.

5 Hardware Configuration 63

ActiveEstablished
ActiveEstablished is the identifier for the type of connection setup. A logical false
indicates a passive connection setup and a logical true indicates an active connection
setup. As the client controls the connection setup in this case, the value is set to false.

RemoteAddress
The remote address contains the IP address of the connection partner. Using 0.0.0.0
as the address, the Modbus server allows connection requests from any communica-
tion partner.

RemotePort
The remote port determines the port used for communication by the remote partner.
In order for the Modbus server to accept requests from any port of the client, the port
is set to the value 0.

LocalPort
The local port defines the port used to receive the client’s connection requests. Ac-
cordingly, the port number of the client, port 502, has to to be used.

This parameterization enables the Modbus client to access the data within the holding regis-
ter. The retentivity is set to ensure that the configuration is permanently maintained.

Besides the variables for the connection configuration, the structure serverData is created,
containing information of the current status of the connection, including, for example, the
display of incorrect parameterization or other error messages.

The Modbus TCP/IP server is now completely set up in the TIA Portal. During programming,
it is only necessary to ensure that the data is written to the data block ModbusServerData
and thus transferred to the holding register.

5.4.2 Configuration of ComX Box and Machine Advisor

Before the ComX Box functions as an interface between the PLC_1 and the Machine Advisor,
several configurations have to be made.

First, a parameter template ought to be created, as this is necessary for the configuration
of Modbus communication. As soon as all data to be transmitted have been defined, the
template can be updated. Until the table will be completed in Chapter 6, it is used without
data entries.

The table has to contain predefined columns, allowing the entered information to be inter-
preted by the Machine Advisor. From the left, the columns are data-name, parameter cate-
gory, monitoring type, alarm level, curve type, short name, ID, unit, scale factor, data type,

5 Hardware Configuration 64

transmission type, transmission frequency, address, size, upload, and remarks. The final ta-
ble can be found in the appendix of this thesis. In the platform management of the Machine
Advisor, the created Excel table can be uploaded as a parameter template (see Fig. 5.15).

Figure 5.15: Parameter template

As the ComX Box maps the collected data from the holding register to the entries in the
table, it is important that the parameter template has the same structure as the data block
in the PLC_1. Otherwise, the entries in the Machine Advisor may not be assigned to the
appropriate devices of the plant.

During the next step, the Modbus communication is configured. Therefore, a device is added
to the equipment management of the ComX Box. The parameters to be set are shown in
Fig. 5.16.

Figure 5.16: ComX Box Modbus TCP/IP configuration

The device description Industry 4.0 Lab as well as the overall name of the equipment USST
are shown in the left half. Below, the communication protocol and the IP address of the Mod-
bus TCP/IP server have to be selected. The IP address corresponds to the address of the
PLC_1. The right half contains, among other parameters, the name of the device and the de-
vice ID which has to match the ID set in the Modbus server. Furthermore, the communication
port 502 and the parameter template USST industrylab4.0 are selected here.

These settings enable the ComX Box to read the data from the controller and map it to the
entries of the parameter template. The local stored data ought to be uploaded into the cloud
and as a result be available in the Machine Advisor. The ComX Box has a subscriber identity

5 Hardware Configuration 65

module (SIM) card allowing the connection to the Internet. The operating mode has to be set
to 3G in the network settings (see Fig. 5.17) to use this interface.

Figure 5.17: Operating mode of the ComX Box

Next, the cloud platform communication has to be configured. In Fig. 5.18, the name of the
box and the customer name, as well as the MAC address and ID of the box, are defined. After
the configuration has been uploaded, these settings are assumed by the Machine Advisor.

Figure 5.18: Definition of the gateway

The actual upload settings have to be configured in the FTP settings (see Fig. 5.19). Here,
the address of the server and the FTP port for the connection to the Machine Advisor are
entered as well as memory and upload cycles are set. Both cycles are at the lowest time

5 Hardware Configuration 66

interval of 15 minutes in order to provide as many data as possible to the Machine Advisor.
In the last entry, the type of access to the server address is defined. The selection allows
active or passive access, whereby active access has to be selected for this application.

Figure 5.19: Upload settings

Once all settings have been made, the configuration has to be uploaded to the cloud platform.
This can be done in the configuration synchronization tab of the cloud platform settings.

In the Machine Advisor, below the gateway tab, the ComX Box can be selected to display
the available devices, including the configured ComX Box with the gateway name USST_02.
Clicking on this gateway opens the window in Fig. 5.20.

Figure 5.20: Configured ComX Box gateway

5 Hardware Configuration 67

The ComX Box is now linked to the Machine Advisor and transmits the information of the
Industry 4.0 plant. Fig. 5.20 shows the current connection status of the SIM card and enables
the activation and deactivation of configuration synchronization, the upload of alarm data,
and the upload of real-time data. Furthermore, a short message service (SMS) can be send
to the plant operator, if the gateway is offline. The operator of the plant to be contacted in
case of error occurrences can be defined in the alarms view of the production line.

5.5 Establishment of OPC UA Communication

The communication between MATLAB and PLC_1 is done via OPC DA. Accordingly, a client-
server structure has to be set up. For the server, the onboard OPC UA server functionality
of the Siemens S7-1500 controller is used, and the OPC UA client is implemented in MAT-
LAB.

5.5.1 Activation of OPC UA Server

The onboard OPC UA functionality of the PLC_1 controller has to be activated in the device
configuration. In the settings for OPC UA, the accessibility of the server can be activated by
setting a check mark (see Fig. 5.21).

Figure 5.21: Activation of the OPC UA Server

Due to this setting, the OPC UA server is running on the controller and is available in the
network. The accessibility from OPC UA check mark has to be activated to ensure visibility

5 Hardware Configuration 68

of the variables for the client. This option can be selected directly in the variable list whilst
creating the variable or can be defined for entire data blocks.

Furthermore, the intervals for the sampling and publishing of the server can be adjusted.
The settings are shown in Fig. 5.22. Particularly important is the publishing interval which is
set to the minimum value of 200 ms. Accordingly, each 200 ms, the client can read new data
from the controller.

Figure 5.22: OPC UA subscriptions

In the last step, a runtime license needs to be selected for the execution of the server. The
SIMATIC OPC UA S7-1500 medium license is required for the used controller (see Fig.
5.23).

Figure 5.23: Selection of the runtime license

For a uniform interface to access the plant data, an information model is created in SiOME
and imported into the TIA portal, enabling MATLAB to access the same data being available
in the Machine Advisor. Since all collected data has to be available, the creation of the
information model is described in Chapter 6.

5.5.2 Creation of an OPC UA Client

MATLAB provides OPC UA client objects for the connection to an OPC UA Server, allowing
existing functions to be used whilst programming. The establishment of the connection can

5 Hardware Configuration 69

thus be realized in a simple form. Listing 5.1 shows the creation of an OPC UA client and the
connection to the server.

1 %Query for accessible OPC UA servers
2 serverInfo = opcuaserverinfo(’192.168.2.161’);
3 %Construct an OPC UA Client object
4 opcClient = opcua(serverInfo);
5

6 connect(opcClient); %Connect to the server

Listing 5.1: Creation of an OPC UA client

In the second line, the information of the available OPC UA servers is retrieved and stored in
the variable serverInfo. The variable contains the hostname, the port for communication and
the name of the OPC UA server. Based on this information, an OPC UA client associated
with the referenced server is created in the fourth line. By using the connect command the
connection to the specified server is established, and the client can access the contained
nodes with appropriate functions.

6 Program Design and Implementation

In this chapter, software development is explained. Starting with data collection, the en-
hancement of the control software in the TIA Portal and KUKA.WorkVisual is described.
Subsequently, the data monitoring and alarm management of the Machine Advisor is estab-
lished. Finally, MATLAB is used for a more detailed analysis of the data.

6.1 Data Collection

The data collection forms the basis for the beneficial monitoring of a plant. Resulting data
has to provide as much information about the current status as possible. Based on the
previously configured communication interfaces, this section explains the provision of data
from the individual IMS stations and the KUKA robot.

6.1.1 Selection of IMS Stations Data

Before programming the data collection, the information to be collected from all IMS sta-
tions needs to be defined. The available information is selected according to the component
description in Section 3.1.2 and is documented in Tab. 6.1.

Table 6.1: IMS stations data
Name Data type Description

current Real Analog value of the current
voltage Real Analog value of the voltage
power Real Calculated value of the power
motorOperatingHours LTime Operating time of the motor
countSenBeltLeft DInt Number of activations: Sensor belt left
countSenBeltRight DInt Number of activations: Sensor belt right
countMotorIsActive DInt Number of activations: Belt motor
countCylStopper DInt Number of actuations: Stopper cylinder
countCylSort DInt Number of actuations: Sort cylinder

6 Program Design and Implementation 71

Table 6.1: IMS stations data
Name Data type Description

countSenStopperTop DInt Number of activations: Sensor stopper
Top

countSenMagazine DInt Number of activations: Sensor magazine
countCylPressing DInt Number of actuations: Pressing cylinder
countSenPressCylNotActuated DInt Number of activations: Sensor pressing

cylinder not actuated
countSenPressCylActuated DInt Number of activations: Sensor pressing

cylinder actuated
countSenOptBottom DInt Number of activations: Optical sensor

bottom part
countSenOptTop DInt Number of activations: Optical sensor top

part
countSenInd DInt Number of activations: Inductive sensor
countSenKap DInt Number of activations: Capacitive sensor
countCylSwivelTable DInt Number of actuations: Swivel table cylin-

der
countCylLift DInt Number of actuations: Lift-cylinder
countVacuumValve DInt Number of activations: Vacuum Valve
countSenSwivelTable0 DInt Number of activations: Sensor swivel

table 0 degree
countSenSwivelTable90 DInt Number of activations: Sensor swivel

table 90 degree
countSenVacuumMonitoring DInt Number of activations: Sensor vacuum

monitoring
countSwitchLiftTop DInt Number of actuations: Switch lift-cylinder

top

The monitoring of the plant consists of signals from the binary sensors and the power con-
sumption measurement. Not all entries of Tab. 6.1 are available for each station, as the
sensors are different.

Since the time course of the binary sensor signals is uninteresting for the condition of the
plant, only the number of activations of the respective sensor is counted. The same applies
to the actuation of the pneumatic cylinders and motors, whereby the motor running time is
additionally recorded.

6 Program Design and Implementation 72

The measurement of the power consumption consists of analog values of the current and
the voltage as well as the calculated power. These variables are available as floating point
numbers for each station.

6.1.2 Introduction of User-Defined Data Types

In order to create a uniform interface for data transfer, the two user-defined data types
DATA_TO_MASTER and KUKADATA_TO_MASTER are introduced. Especially for the IMS
stations, this can be used beneficially, as all controllers can access the same data type and
thus the information is uniformly known.

The data types contain all variables being essential for the data collection and have to be
sent to the PLC_1. Since the transfer data has been determined for the stations and the
robot, a tabular representation is omitted. Only one change was made to the data of the IMS
stations. In contrast to the S7-1500 controller, the S7-1200 controller does not support the
data type LTime which is intended to provide a sufficiently large time window for recording
the motor runtime. For this reason, the data type DATA_TO_MASTER does not contain the
variable motorOperatingHours but the boolean variable motorIsActive, allowing the S7-1500
controller to record the motor runtime. Both data types can be viewed in the appendix of this
thesis.

The user-defined data types have to be added to the variable lists of the respective controller
to use them for the transfer of information. As an example, the interpretation of the incoming
data is explained for the PLC_1.

Figure 6.1: User-defined data type in the PLC tags

According to the address ranges assigned in the hardware configuration, the PLC_1 receives
all data as virtual inputs. By applying the user-defined data types in the variable list shown
in Fig. 6.1, all virtual inputs can be directly assigned to the variables in the custom data

6 Program Design and Implementation 73

type. In this process, it is crucial to ensure that the sent data has the same order as the
interpreting data type. For the stations, this is ensured by the fact that both the I-Devices and
the IO-Controller use the same data type. When communicating with the KUKA robot, it has
to be ensured by the configuration of the fieldbus variables.

6.1.3 Program Extension of IMS Stations

The programs, running on the individual controllers of the stations, contain information about
all process operations. In this way, each controller is able to fulfill all functionalities, allowing
the stations to be easily exchanged without having to change the conveyor belt. The MES
system, containing the plant layout configuration, transmits the functionality to perform to
each controller.

Consequently, the data collection has to be able to recognize the station and the available
sensors and actuators. For this purpose, the identifier "BELT".IMS is used, containing a
number corresponding to the function of the module. A breakdown of the numbers can be
seen in Tab. 6.2.

Table 6.2: "BELT".IMS identifier
Identifier Station

0 IMS1
3 IMS3a, IMS3b
4 IMS4a, IMS4b
5 IMS5a, IMS5b
6 IMS6
7 IMS7

The now known available sensors and actuators can be transferred to the function block
for data collection. A module with a uniform interface is programmed to avoid each station
having to use its individual module for data collection. The module is included several times
in the program code and is linked to the corresponding signals for each station. The identifier
then decides which block has to be executed. Fig. 6.2 shows the function block for recording
data from IMS7.

6 Program Design and Implementation 74

Figure 6.2: Data collection function block

The input EN enables the execution of the block and is activated when the identifier is equal
to seven. All other input parameters are linked to the corresponding signals of the sensors
and actuators of the station. Signals that are not available are set to false to avoid any effect

6 Program Design and Implementation 75

on the data collection. The output, summarizing all relevant data in the user-defined data
type, is forwarded directly to the output address for communication to PLC_1.

The structured control language (SCL) is used to program the data collection within the
function block. The incoming signals are either transmitted directly to the output signal or
passed to an incremental counter. Listing 6.1 shows the processing of the signals provided
by each station, including the current, voltage, and power values as well as the counters
for the conveyor belt sensors. The boolean variable motorIsActive is set when the motor is
activated.

1 // Data collection for all devices
2 // Allocation of measurement-values
3 #DATA_OUTPUT.Current := #Current;
4 #DATA_OUTPUT.Voltage := #Voltage;
5 #DATA_OUTPUT.Power := #Power;
6

7 // Counters
8 "senBeltLeftCounter".CTU(CU:= #senBeltLeft,
9 R:= FALSE,

10 PV:= 0,
11 CV=> #DATA_OUTPUT.countSenBeltLeft);
12

13 "senBeltRight".CTU(CU := #senBeltRight,
14 R := FALSE,
15 PV := 0,
16 CV => #DATA_OUTPUT.countSenBeltRight);
17

18 // Check and count if motor is active
19 #DATA_OUTPUT.motorIsActive := #MotorRight OR #MotorLeft;
20

21 "motorIsActiveCounter".CTU(CU:=#MotorRight OR #MotorLeft,
22 R:=FALSE,
23 PV:=0,
24 CV=>#DATA_OUTPUT.countMotorIsActive);

Listing 6.1: Data collection function block

The remaining input signals are also assigned to incremental counters to provide the required
data. If the sensor is not available, the input value false will cause the counter to remain at
zero.

6 Program Design and Implementation 76

6.1.4 Program Extension of KUKA Robot

In the hardware configuration, outputs have already been linked to the fieldbus. Before these
outputs can be used in the program code, signal declarations have to be created. For this
purpose, KUKA provides an area for the declaration of user variables in the configuration file
config.dat of the robot. Listing 6.2 shows the declaration of the current signals for the six
axes of the robot.

1 ; Userdefined Variables
2 SIGNAL CURR_ACT_Axis1 $OUT[2000] TO $OUT[2031]
3 SIGNAL CURR_ACT_Axis2 $OUT[2032] TO $OUT[2063]
4 SIGNAL CURR_ACT_Axis3 $OUT[2064] TO $OUT[2095]
5 SIGNAL CURR_ACT_Axis4 $OUT[2096] TO $OUT[2127]
6 SIGNAL CURR_ACT_Axis5 $OUT[2128] TO $OUT[2159]
7 SIGNAL CURR_ACT_Axis6 $OUT[2160] TO $OUT[2191]

Listing 6.2: Signal declarations in the config.dat

Using this signal declaration, the defined variables are mapped to the corresponding output
address ranges. Once this has been done for all variables, values can be assigned in the
program code. The variables of the signal declaration are always interpreted as INT.

The KRC4 controller is running two tasks. On the one hand, the robot interpreter, executing
motion programs for the robot, and on the other hand, the controller interpreter, executing a
parallel control program. Latter ought to be used for the assignment of the variables, since it
enables an independent monitoring of the parameters. Listing 6.3 shows the modification of
the controller interpreter for assigning the system variables to the declared variables.

1 ;FOLD USER PLC
2 ;Make your modifications here
3 CURR_ACT_Axis1 = $CURR_ACT[1]*1000 ; %
4 CURR_ACT_Axis2 = $CURR_ACT[2]*1000 ; %
5 CURR_ACT_Axis3 = $CURR_ACT[3]*1000 ; %
6 CURR_ACT_Axis4 = $CURR_ACT[4]*1000 ; %
7 CURR_ACT_Axis5 = $CURR_ACT[5]*1000 ; %
8 CURR_ACT_Axis6 = $CURR_ACT[6]*1000 ; %
9 MOT_TEMP_Axis1 = $MOT_TEMP[1] ; kelvin

10 MOT_TEMP_Axis2 = $MOT_TEMP[2] ; kelvin
11 MOT_TEMP_Axis3 = $MOT_TEMP[3] ; kelvin

6 Program Design and Implementation 77

12 MOT_TEMP_Axis4 = $MOT_TEMP[4] ; kelvin
13 MOT_TEMP_Axis5 = $MOT_TEMP[5] ; kelvin
14 MOT_TEMP_Axis6 = $MOT_TEMP[6] ; kelvin
15 TORQUE_ACT_Axis1 = $TORQUE_AXIS_ACT[1]*1000 ; Nm
16 TORQUE_ACT_Axis2 = $TORQUE_AXIS_ACT[2]*1000 ; Nm
17 TORQUE_ACT_Axis3 = $TORQUE_AXIS_ACT[3]*1000 ; Nm
18 TORQUE_ACT_Axis4 = $TORQUE_AXIS_ACT[4]*1000 ; Nm
19 TORQUE_ACT_Axis5 = $TORQUE_AXIS_ACT[5]*1000 ; Nm
20 TORQUE_ACT_Axis6 = $TORQUE_AXIS_ACT[6]*1000 ; Nm
21 VEL_ACT_Axis1 = $VEL_AXIS_ACT[1]*1000 ; %
22 VEL_ACT_Axis2 = $VEL_AXIS_ACT[2]*1000 ; %
23 VEL_ACT_Axis3 = $VEL_AXIS_ACT[3]*1000 ; %
24 VEL_ACT_Axis4 = $VEL_AXIS_ACT[4]*1000 ; %
25 VEL_ACT_Axis5 = $VEL_AXIS_ACT[5]*1000 ; %
26 VEL_ACT_Axis6 = $VEL_AXIS_ACT[6]*1000 ; %
27 ;ENDFOLD (USER PLC)

Listing 6.3: Assignment of variables in sps.sub

Since values for the current, torque and motor speed of each axis are floating-point numbers
and the conversion to INT would mean a loss of information, they are multiplied by the factor
1000, shifting the decimal point, and previous decimal places can be transferred. When
interpreting the values in the PLC_1, it is necessary to divide them by the same factor.

6.1.5 Program Extension of PLC_1

The control program of the PLC_1 has to be extended to allow to read the data from the
individual controllers as well as from the robot and to write them into the data block for
communication with the Machine Advisor and MATLAB.

First, the data of the IMS stations ought to be read. For this purpose, a function block is
created, expecting the user-defined data type DATA_TO_MASTER as input. When calling a
function block, an individual instance data block is created, allowing to call the same function
block for each station and supply it with the corresponding inputs. The resulting instance
data blocks allow access to all data within the PLC_1 program. The call of the block for the
station IMS1 is shown in Fig. 6.3.

6 Program Design and Implementation 78

Figure 6.3: Function block FB_CONTROLLERDATA

Besides, the motor running time has to be recorded. The instruction time accumulator is
being used, enabling the recording of time in a given period PT. As soon as IN turns to a
logical one, the time recording is started. The parameterization of the counter is shown in
Listing 6.4.

1 // Measurement of the Operating Hours of the Motor
2 #motorOperatingHoursTimer(
3 IN := #DATA_FROM_PLC.motorIsActive,
4 R := FALSE,
5 PT := LT#106750d,
6 ET => #TEMPmotorOperatingHours);
7

8 #motorOperatingHours := LTIME_TO_LINT(#
TEMPmotorOperatingHours) / (60 * (10 ** 9));

Listing 6.4: Recording of the motor runtime

The input parameter for the time accumulator is the signal monitoring the motor activity. The
period PT is set to the largest possible value of the data type LTime to allow to record over
a long period. Yet, the Machine Advisor does not support this data type. Thus, the output
value has to be converted first. The function LTIME_TO_LINT converts the time signal into
a 64 bit INT, representing the time in nanoseconds. For a more suitable representation in the
Machine Advisor, the time is converted to minutes in line number eight.

6 Program Design and Implementation 79

Similarly, the data from the KUKA robot is processed in the PLC_1. Again, a function block
is created for the data, storing all information in an instance data block. Within the function
block, the variables have to be converted. Listing 6.5 shows the conversion of the data for
axis one.

1 // Swap the DWord because Kuka handles litte endian
2 // Conversion to Ampere
3 #CURR_ACT_Axis1 := (DINT_TO_REAL(SWAP(#DATA_FROM_KUKA.

CURR_ACT_Axis1)) / 1000) * (40 / 100);
4 // Conversion from Kelvin to Celsius
5 #MOT_TEMP_Axis1 := SWAP(#DATA_FROM_KUKA.MOT_TEMP_Axis1)

-272;
6 // Conversion to Newton Meters
7 #TORQUE_ACT_Axis1 := DINT_TO_REAL(SWAP(#DATA_FROM_KUKA.

TORQUE_ACT_Axis1))/1000;
8 // Conversion to Rounds per Minute
9 #VEL_ACT_Axis1 := (DINT_TO_REAL(SWAP(#DATA_FROM_KUKA.

VEL_ACT_Axis1))/1000)*(6000/100);

Listing 6.5: Conversion of robot data

One change required for all data from the robot is to adjust the order of the bytes. KUKA
uses the little-endian format, where the least significant byte (LSB) is stored at the lowest
memory location, while Siemens uses the big-endian format with the most significant byte
(MSB) at the lowest memory location. The SWAP function performs this swap operation.

The current, motor temperature and torque have to be divided by 1000 to represent the con-
tained information as a floating-point number. Additionally, the values have to be converted
into their units. The temperature requires only a subtraction for the conversion from Celsius to
Kelvin. For the current and motor speed, given as a percentage of their maximum, the nomi-
nal current and speed of the motor need to be determined. These can be found in the motor
files, located in the project directory ConfignUsernCommonnMadanNGAxisnA1....6.xml. The
current for axis A1 is 40 A, and the speed for the motor is 6000 rpm.

6 Program Design and Implementation 80

The collected data is now available in several data blocks in the PLC_1 (see Fig. 6.4). Finally,
the data has to be transferred to the data block ModbusServerData which is accessed by the
Machine Advisor and MATLAB.

Figure 6.4: Data block structure in TIA Portal

All variables relevant for data collection have to be defined in the data block ModbusServer-
Data before assignment. The complete table can be found in the appendix of this thesis. If
all variables are defined, they will be assigned in the function TransferControllerData. The
access to the variables is shown exemplarily for the power of the motor in Listing 6.6.

1 // Allocation of Motor Power for all Stations
2 "ModbusServerData".MotorPowerIMS1 :=

"CONTROLLERDATA_IMS1".DATA_FROM_PLC.power;
3 "ModbusServerData".MotorPowerIMS3a :=

"CONTROLLERDATA_IMS3a".DATA_FROM_PLC.power;
4 "ModbusServerData".MotorPowerIMS3b :=

"CONTROLLERDATA_IMS3b".DATA_FROM_PLC.power;
5 "ModbusServerData".MotorPowerIMS4a :=

"CONTROLLERDATA_IMS4a".DATA_FROM_PLC.power;
6 "ModbusServerData".MotorPowerIMS4b :=

"CONTROLLERDATA_IMS4b".DATA_FROM_PLC.power;
7 "ModbusServerData".MotorPowerIMS5a :=

"CONTROLLERDATA_IMS5a".DATA_FROM_PLC.power;

6 Program Design and Implementation 81

8 "ModbusServerData".MotorPowerIMS5b :=
"CONTROLLERDATA_IMS5b".DATA_FROM_PLC.power;

9 "ModbusServerData".MotorPowerIMS6 :=
"CONTROLLERDATA_IMS6".DATA_FROM_PLC.power;

10 "ModbusServerData".MotorPowerIMS7 :=
"CONTROLLERDATA_IMS7".DATA_FROM_PLC.power;

Listing 6.6: Function TransferControllerData

Within the function only simple assignments are necessary, writing the information from the
data blocks of the individual stations or the robot into the data block ModbusServerData. By
calling it in OB1, all variables are updated cyclically and can be captured by the analysis
software.

6.2 Data Analysis in Machine Advisor

In order to display the data in the cloud and generate alarms based on this data, further
configuration is necessary in the Machine Advisor and the ComX Box.

6.2.1 Interpretation of Data

The parameter template, introduced in Section 5.4, has to be completed for communication
to the cloud platform. Therefore, the variables from the ModbusServerData data block are
written into the Excel table for the parameter template. It is crucial to keep the same order,
otherwise the data of the PLC_1 will be mapped incorrectly.

The Machine Advisor provides predefined monitoring types which are identified by the corre-
sponding indicator in the parameter template. The used data types are listed in Tab. 6.3.

Table 6.3: Monitoring types
Monitoring Type Description

CUR Current
VOL Voltage
POW Power
TIS Number of repeats
TIM Time
TEM Temperature

6 Program Design and Implementation 82

Furthermore, the smallest possible size of a variable, specified in the parameter template, is
a Word. Accordingly, the size for a 32 byte variable has to be two and for a 64 byte variable
four.

The transmission type offers three options: a single transmission at the beginning of the
connection, a transmission at a certain frequency or a transmission when the variable has
changed. A fixed transmission interval is best suited for the transfer of the plant data, there-
fore a R is entered in the parameter template for the transmission type. The transmission
frequency is set to the minimum value of five seconds.

In order to update a variable in the cloud, it has to be indicated by a Y in the upload column.

The final table has to be uploaded to the platform management of the Machine Advisor
to overwrite the empty table. Once the new parameter template is activated, the data is
transferred to the cloud.

6.2.2 Alarm Management

The alarm management is intended to offer the operator feedback on the status of the plant.
The alarms are divided into the three categories low-level, medium-level, and high-level,
whereby only a high-level alarm has the option of sending an SMS to the operator.

The configuration is set in the web interface of the ComX Box and is described using the
temperature variables of the robot. In the data and alarm management view, all variables
are listed, and alarms can be added. Fig. 6.5 shows the configuration window for the motor
temperature of axis one.

Figure 6.5: Alarm settings

6 Program Design and Implementation 83

The alarm can be set with two upper limits and two lower limits. The robot specification
[42] defines a recommended operating temperature between +5 �C and +45 �C. Reaching
these limits generates a low-level alarm and if the temperature continues to rise or fall to
+50 �C or 0 �C a high-level alarm will be triggered.

Once the setting has been confirmed, the alarms are automatically synchronized with the
cloud. In the data and alarm management view the successful configuration is indicated by
a tick in the last column (see Fig. 6.6).

Figure 6.6: Data and alarm management view

6.3 Data Analysis in MATLAB

The first step in data analysis with MATLAB is to display the received data. Furthermore,
a pattern recognition network is used to provide a perspective for the advanced analysis of
plant data.

6.3.1 Creation of a server interface with SiOME

An information model is created to enable MATLAB to read the data from the OPC UA server.
The SiOME allows to import TIA Portal projects and thus enables an easy selection of the
data to be transferred. In the view of the program blocks, the data block ModbusServerData
can be transferred by drag and drop into the objects directory of the information model (see
Fig. 6.7).

6 Program Design and Implementation 84

Figure 6.7: Information model for the plant data

As a result, an automatically generated XML file can be exported, mapping the program’s
internal variables to the server interface. The last step is to add this file to the PLC_1 program
in the OPC UA communication server interface.

6.3.2 Querying Data

With an existing connection to the OPC UA Server, the contained nodes can be read using
the predefined function for an OPC UA client object. Listing 6.8 shows the reading of the
data in the ModbusServerData data block.

1 % Recieve OPC UA Node array:
2 % 1:Server, 2:DeviceSet, 3:PLC_1, 4:ModbusServerData
3 nodeList = getNamespace(opcClient);
4 % Recieve the data nodes of the ModbusServerData
5 dataNodes = nodeList(4).Children;

Listing 6.7: Reading the OPC UA node array

The variable dataNodes contains all entries of the data block in the controller. Using the
readValue() function, the current value can be read from the OPC UA server.

The focus of the more detailed analysis in Matlab is on the variables of the KUKA robot.
Therefore, a variable kukaProcessing is transmitted to MATLAB to signal the start of the

6 Program Design and Implementation 85

robot process to ensure that a fixed timeframe is maintained when the robot data is recorded.
The data nodes 80 to 103 contain the collected data for all robot axes and is written in a loop
into a cell array (see Listing 6.8).

1 for i = 1:numberOfRecordings
2 % Wait for the kuka process to begin
3 while ~(readValue(kukaProcessing))
4 end
5

6 % Collect data
7 stopTime = datetime(’now’) + seconds(timeDuration);
8 while datetime(’now’) <= stopTime+seconds(timeInterval

)
9 % Start the time measurement

10 tic
11 % Collect the data of the KUKA robot
12 collectedData(count,:) = readValue(dataNodes

((80:103)));
13 % If the elapsed time is smaller than the time

intervall pause the loop
14 elapsedTime = toc;
15 if elapsedTime < timeInterval
16 pause(timeInterval - elapsedTime);
17 else % Else create a warning for the operator
18 warning([’Required time to collect the data is

greater than the selected time interval. ’
...

19 ’This can lead to data loss.’]);
20 end
21 count = count + 1;
22 end

Listing 6.8: Reading the OPC UA node array

Since the data in the OPC UA Server is only updated every 200 milliseconds, the reading of
the data is monitored. If the time interval is not reached, the system will wait for the respective
time or, if the time interval is exceeded, will issue a warning, as this can lead to data loss.

The resulting cell array contains the recording of a working cycle of the robot and is saved
in an Excel table for further evaluation. The variable numberOfRecordings determines the
number of cycles to be recorded.

6 Program Design and Implementation 86

6.3.3 Pattern Recognition Network

A pattern recognition network is a neural network in feedforward structure. It can be trained to
classify inputs into corresponding classes. For the KUKA robot, the time signals of the current
ought to be evaluated to classify the state into one of the five classes regular operation, error
axis one, error axis two, error axis three and error axis four.

The first step is to generate data for training the neural network. The method described under
6.3.2 is used to record the working process of the robot. For regular operation, the cycle is
recorded 50 times, and for the individual failures, manually induced to operation, 30 cycles
are recorded. The function analyzeData analyzes this data. It expects the time series of the
current as input and returns a set of parameters describing the input signal. The contained
parameters can be found in Listing 6.9.

1 param = [meanValue, ...
2 medianValue, ...
3 rmsValue, ...
4 variance, ...
5 peak, ...
6 peak2peakValue, ...
7 signalSkewness, ...
8 signalKurtosis, ...
9 crestfactor, ...

10 medianAbsoluteDeviation, ...
11 rangeOfCumulativeSum];

Listing 6.9: Output of the analyzeData function

Performing this for all training data, each data set will no longer contain the time series for a
work cycle, but 44 parameters describing the current signals of axes one, two, three and four
in that period. These parameters and the corresponding target class can be used to train the
pattern net.

The neural network expects the input values and the corresponding target values in the form
of a matrix, with each column representing one training example. In the target matrix, a
one in the corresponding row represents the affiliation to this class. The first row stands for
regular operation, the second row for an error axis one, the third row for an error axis two, the
fourth row for an error axis three, and the fifth row for an error axis four. Listing 6.10 shows
the declaration of the input and target matrix.

6 Program Design and Implementation 87

1 %% Parameter for the neural network
2 % Input matrix
3 x = [parameter, errorA1Parameter, errorA2Parameter,

errorA3Parameter, errorA4Parameter];
4 % Target matrix
5 t = [ones(1,50), zeros(1,30), zeros(1,30), zeros(1,30),

zeros(1,30);...
6 zeros(1,50), ones(1,30) , zeros(1,30), zeros(1,30),

zeros(1,30);...
7 zeros(1,50), zeros(1,30), ones(1,30), zeros(1,30),

zeros(1,30);...
8 zeros(1,50), zeros(1,30), zeros(1,30), ones(1,30),

zeros(1,30);...
9 zeros(1,50), zeros(1,30), zeros(1,30), zeros(1,30),

ones(1,30)];

Listing 6.10: Parameter for the neural network

The neural network has 44 input values and in the output layer five neurons, each represent-
ing one class. The parameterization and the training can be found in Listing 6.11.

1 %% Neural Network
2 % Choose a training function
3 trainFcn = ’trainscg’; % Scaled conjugate gradient

backpropagation.
4 % Set the hidden layer size
5 hiddenLayerSize = 15;
6 % Create a pattern recognition network
7 net = patternnet(hiddenLayerSize, trainFcn);
8 % Choose a perfomance function
9 net.performFcn = ’crossentropy’;

10 net.performParam.regularization = 0.1;
11 net.performParam.normalization = ’none’;
12

13 % Setup division of data for training, validation,
testing

14 net.divideParam.trainRatio = 70/100;
15 net.divideParam.valRatio = 10/100;
16 net.divideParam.testRatio = 20/100;

6 Program Design and Implementation 88

17

18 % Train the network
19 [net,tr] = train(net,x,t);

Listing 6.11: Creation of the pattern recognition network

Since this application is only intended to provide a perspective for the possible evaluation
of the data, the parameterization of the neural network is not fully described. More detailed
information about the parameterization can be found in [43].

The training function and the size of the hidden layer have to be defined to create a pattern
net. The former is left with the standard function when using pattern recognition networks in
MATLAB. Generally, when choosing the size of the hidden layer, a higher number of neurons
is able to solve more complicated problems but tends to over-fit the data. At this point, a size
of 15 has proved to be suitable by empirical determination. The input data is divided into
three categories. The largest portion is the network training rate, followed by the test data.
The validation data is completely independent data that is also used to test the network.

7 Functional Test

In the functional test, the developed software is tested relating to the requirements defined
in Chapter 4, and the results are documented. The first step shows the data monitoring in
the Machine Advisor and documents an error case of the system from the occurrence to the
acknowledgment. Secondly, the data query is demonstrated in MATLAB, and the function of
the pattern recognition network is tested.

7.1 Data Monitoring in Machine Advisor

The availability of data is a central requirement. The Machine Advisor provides monitoring of
all transmitted variables, historical signal traces, and dashboards, displaying selected data.
The different display formats are presented below.

The asset view of the Machine Advisor offers an overview of the plant’s real-time data. Each
variable can be combined into individual groups and display its current value, refreshed every
five seconds. Fig. 7.1 shows the arrangement of the current for all stations.

Figure 7.1: Data monitoring view

7 Functional Test 90

By clicking on a variable, the historical data can be retrieved. The data is displayed in a
graph that can be extended by additional variables. The user can vary the displayed period.
Figure 7.2 shows the power consumption of all stations for one production day. Individual
data points, available at 15-minute intervals, can be selected and displayed in the graph.

Figure 7.2: Historical data view

The historical data can also be exported as an Excel spreadsheet and used for further anal-
ysis. When displaying the historical data, the course of the signals appears almost arbitrary
due to the 15-minute interval. Conspicuous features in the signal behaviour are difficult to
detect with these data.

The last variant of the display options is the creation of a dashboard. Figure 7.3 shows the
dashboard for selected data of the IMS1 station. The right half shows the current and voltage
as well as the resulting power consumption over one day. The graphs on the left show the
counter values for motor activation (top) and the activation of the conveyor belt’s end position
sensors.

7 Functional Test 91

Figure 7.3: Dashboard for IMS1

Besides the display of the data, the supervision of these is of great importance for the
achievement of the requirements. In the following, the occurrence and acknowledgement
of an alarm as well as the occurrence of a high-level alarm is documented and described.

The upper limit of the motor temperature of axis one is set to a value of 30 �C to generate an
alarm. The error message appearing in the asset view is shown in Figure 7.4. In addition to
current pending messages, past alarms can also be viewed.

Figure 7.4: Low-level Error occurrence

The error message contains information about the time of occurrence, the affected system,
which variable causes the alarm, as well as the specified limit and current value.

With this information, the operator of the plant can already narrow down the error and react
accordingly. If the alarm is classified as false or not relevant, it may be acknowledged under
Detail. Otherwise, an alarm ticket can be created, containing all information about the error
and the task to be performed (see Fig. 7.5).

7 Functional Test 92

Figure 7.5: Creation of an alarm ticket

Simultaneously, the ticket executor receives a notification in the form of an SMS with basic
information about the alarm (see Fig. 7.6). The complete alarm ticket can be viewed in the
app or on the website.

Figure 7.6: Notification of an open alarm ticket

As soon as the ticket is reported as finished, it can be seen in the Detail view shown in
Fig. 7.7. The alarm can be acknowledged with Release Alarm and is then written to the
archive.

7 Functional Test 93

Figure 7.7: Acknowledgment of an alarm

Apart from alarm tickets, tickets for one-time or cyclic maintenance can also be created and
planned. Similarly, the ticket executor is informed about the work to be done and can finish
the ticket at the end of the work.

All tickets are automatically entered in a calendar, which simplifies the planning of new main-
tenance tasks.

If a high-level alarm occurs in the system, a notification will automatically be sent to the
contacts specified in the production line. The SMS, shown in Fig. 7.8, contains information
about the error type and the affected plant.

Figure 7.8: Notification of a high-level alarm

Thus the implementation of the analysis in the Machine Advisor could meet the requirements
1-6 and 9 in Tab. 4.1.

7 Functional Test 94

7.2 Evaluation in MATLAB

The connection to MATLAB allows the recording of all data recorded by the PLC_1. In com-
parison to the Machine Advisor, the capability for more detailed analysis stands out. For this
reason, this section will evaluate the error detection performed with the pattern recognition
network.

The working process of the robot is recorded, including the transport of a workpiece to the
inspection station and back to the IMS5b station. The current during the movement of axes
1-4 is recorded for 50 cycles in order to have regular operation data for the training of the
neural network. Fig. 7.9 shows the current course of axis one. The small deviations can
result from non-identical sampling times as well as external influences and the load on the
robot.

Figure 7.9: Regular samples of axis one

Errors are induced manually in the system to provide error data for the training. For each
axis, 30 erroneous data sets are created. The current of the data set for axis one is shown
in Fig. 7.10.

7 Functional Test 95

Figure 7.10: Error samples of axis one

The visual deviations of the two graphs are also reflected in the parameters given as in-
put values to the patter recognition network. Tab. 7.1 shows the maximum and minimum
parameter values of all regular and error samples.

Table 7.1: Parameter comparison
Parameter Regular Samples Error Samples

max min max min
mean -0,0676 -0,0986 0,0775 -0,2322
median -0,1762 -0,3102 0,0924 -0,3524
rms 0,7381 0,6990 0,9145 0,7296
variance 0,5379 0,4850 0,8374 0,5178
peak 1,8772 1,4596 2,2628 1,5980
peak to peak 3,7112 3,0400 4,9092 3,3968
skewness 0,4328 0,1264 0,5874 -0,5230
kurtosis 2,7280 2,4503 4,5153 2,2709
crestfactor 2,9026 2,1893 3,5057 2,3110
median absolute deviation 0,5900 0,5489 0,7258 0,5232
range of cumulative sum 31,5444 26,9832 44,3576 20,5492

7 Functional Test 96

The structure of the trained net is shown in Fig. 7.11. For each training example, the 44
input parameters are assigned to one of the five classes of the output layer. The hidden layer
consists of 15 neurons.

Figure 7.11: Network structure

When training the neural network, the error in the training data and the test data decreases
as desired. The validation data ensures that the neural network is not only optimized for the
test data. Before over-adaptation occurs, the neural network stops training and selects the
best performance.

Figure 7.12: Performance

7 Functional Test 97

A confusion matrix (see Fig. 7.13) shows the classification of the input data according to the
output classes and indicates the accuracy as a percentage. The main diagonal contains the
correctly classified data sets and elements on secondary diagonals are incorrectly classified.
Both the training and the test confusion matrix classify the data sets into the correct classes.
Only during the validation, a training example is wrongly classified.

Figure 7.13: Confusion matrix

Thus, the classification of the validation data has a high accuracy rate of 94,1 % and the
neural network is well suited for the classification of the input data into the error categories.

One possible reason for this very high rate of accuracy could be the separability of the error
patterns. Due to the manual induction of the errors, the other axes are only slightly affected

7 Functional Test 98

(see Fig. 7.14). In the case of an error occurring during production, it cannot be assumed
that this error will only affect one axis of the robot.

(a) Axis 1 (b) Axis 2

(c) Axis 3 (d) Axis 4

Figure 7.14: Influence of the error of axis one

This result is sufficient for a perspective on a possible analysis of the plant data, but it should
be pointed out that for a reliable statement about the performance of the neural network
significantly larger data sets are necessary.

The implementation in MATLAB meets the requirements 1, 6 and 7 from Tab. 4.1.

8 Conclusion

In the preceding thesis, an extension for an Industry 4.0 production plant located at SHC has
been developed. Special attention is attached to the implementation of predictive mainte-
nance concepts.

8.1 Summary

The first part establishes the necessary communication between the participants, including
the communication between the individual stations and the robot with the main controller, as
well as the connection to the cloud platform and the setup of an OPC UA server for data ex-
change with MATLAB. A precise analysis of the plant forms the basis for the identification of
the collectible information. In the first step of the implementation, the data of the stations and
the robot were collected and stored centrally on the main controller. The second step was to
transfer the data to the Machine Advisor and MATLAB. The Machine Advisor is responsible
for displaying the real-time as well as historical data and for the alarm management of the
plant, whereby variables are monitored by setting simple thresholds. MATLAB allows time
series to be displayed at a higher sampling rate and allows more detailed analysis. In this
thesis, a pattern recognition network for classifying fault data was implemented as a per-
spective. The generated software was transferred to the model plant and tested according
to the defined requirements.

The display of the historical data in the Machine Advisor proved to be insufficient for this
process. Since data points can be uploaded at a minimum interval of 15 minutes, dynamic
signal characteristics such as conveyor belt current or voltage are not fully recorded. The
resulting data points, appearing almost arbitrary, lead to a more complicated analysis of the
actual behavior.

Initially, no variables could be read from the server during the communication configuration
between the OPC UA Server and MATLAB. Although the server setup allows access to the
contained variables, they were not visible to the MATLAB client. Only the implementation of
an information model allowed the client to access and read the variables.

8 Conclusion 100

During the execution of this thesis, the accurate description of the model plant turns out to
be particularly valuable. Only if the interaction of the individual components is known, the
obtained data can be interpreted correctly and contribute to the monitoring of the plant.

8.2 Outlook

One option for improving system monitoring is to extend it by adding appropriate sensors.
For example, vibration sensors can additionally monitor the movement of the robot and are
indicators of faulty behavior.

Furthermore, there is still room for improvement, especially in data analysis in MATLAB.
Besides the classification of current data, future signal characteristics can be predicted, and
the resulting mean time to failure can be determined. The required error data could be
obtained from a MATLAB Simulink model of the plant, where error signals can be injected or
the system failure dynamics modeled.

Another conceivable step would be to connect the analysis in MATLAB to a cloud. Integrated
interfaces for cloud storage and databases enable convenient read and write access to data.
Other systems could use the availability of the analyzed data in the cloud. For example, the
information could be displayed for the plant operator using augmented reality glasses.

Bibliography

[1] SENDLER, Ulrich: Industrie 4.0–Beherrschung der industriellen Komplexität mit SysLM
(Systems lifecycle management). In: Industrie 4.0. Springer, 2013, S. 1–19

[2] BAUERNHANSL, Thomas ; TEN HOMPEL, Michael ; VOGEL-HEUSER, Birgit: Industrie
4.0 in Produktion, Automatisierung und Logistik: Anwendung-Technologien-Migration.
Springer, 2014

[3] HUBER, Walter: Industrie 4.0 kompakt–Wie Technologien unsere Wirtschaft und unsere
Unternehmen verändern. Springer, 2018

[4] BRACHT, Uwe ; GECKLER, Dieter ; WENZEL, Sigrid: Digitale Fabrik: Methoden und
Praxisbeispiele. Springer-Verlag, 2018

[5] BETTENHAUSEN, Kurt D. ; KOWALEWSKI, Stefan: Cyber-physical systems: Chancen
und Nutzen aus Sicht der Automation. In: VDI/VDE-Gesellschaft Mess-und Automa-
tisierungstechnik (2013), S. 9–10

[6] REINHEIMER, Stefan: Industrie 4.0: Herausforderungen, Konzepte und Praxisbeispiele.
Springer-Verlag, 2017

[7] FORSCHUNGSUNION WIRTSCHAFT-WISSENSCHAFT, Promotorengruppe K.: acatech–
Deutsche Akademie der Technikwissenschaften e. In: V.(Hrsg.) (2013)

[8] MÜLLER, Bernd ; HÄRTIG, Frank: Herausforderungen und Lösungsansätze zur ein-
heitlichen Kommunikation von Messdaten für Industrie 4.0 und das Internet of Things.
In: Industrie 4.0. Springer, 2017, S. 49–58

[9] VOGEL-HEUSER, B: Herausforderungen und Anforderungen aus Sicht der IT und der
Automatisierungstechnik [Challenges and requirements from the perspective of IT and
automation technology]. In: T Bauernhansl, M ten Hompel, B Vogel-Heuser (Edn.)
Industrie 4 (2014)

[10] MONOSTORI, László ; KÁDÁR, Botond ; BAUERNHANSL, T ; KONDOH, S ; KUMARA, S ;
REINHART, G ; SAUER, O ; SCHUH, G ; SIHN, W ; UEDA, K: Cyber-physical systems in
manufacturing. In: Cirp Annals 65 (2016), Nr. 2, S. 621–641

Bibliography 102

[11] VEICHTLBAUER, Armin ; ORTMAYER, Martin ; HEISTRACHER, Thomas: OPC UA in-
tegration for field devices. In: 2017 IEEE 15th International Conference on Industrial
Informatics (INDIN) IEEE, 2017, S. 419–424

[12] ANDELFINGER, Volker P. ; HÄNISCH, Till: Industrie 4.0: Wie cyber-physische Systeme
die Arbeitswelt verändern. Springer, 2017

[13] BECKHOFF AUTOMATION GMBH: From Sensor to IT Enterprise - Big Data & Analyt-
ics in the cloud. ftp://ftp.beckhoff.com/Software/embPC-Control/
Solution/Demo-IoT/Flyer-IoT-Sensor_to_Cloud.pdf. – Viewed on
20 June 2019

[14] HABER, Peter ; LAMPOLTSHAMMER, Thomas ; MAYR, Manfred: Data Science Ana-
lytics and Applications: Proceedings of the 1st International Data Science Conference
iDSC2017 (German and English Edition). Springer Vieweg, 2017. – ISBN 3658192860,
9783658192860

[15] LANGMANN, Reinhard ; ROJAS-PEÑA, Leandro F.: A PLC as an Industry 4.0 com-
ponent. In: 2016 13th International Conference on Remote Engineering and Virtual
Instrumentation (REV) IEEE, 2016, S. 10–15

[16] SEITZ, Matthias: Speicherprogrammierbare Steuerungen für die Fabrik-und Prozes-
sautomation: Strukturierte und objektorientierte SPS-Programmierung, Motion Control,
Sicherheit, vertikale Integration. Carl Hanser Verlag GmbH Co KG, 2015

[17] KARAALI, Cihat: Grundlagen der Steuerungstechnik: Einführung mit Übungen.
Springer-Verlag, 2018

[18] BATHELT, Jens: Entwicklungsmethodik für SPS-gesteuerte mechatronische Systeme.
Bd. 405. ETH Zurich, 2007

[19] HEINRICH, Berthold ; LINKE, Petra ; GLÖCKLER, Michael: Grundlagen Automatisierung:
Sensorik, Regelung, Steuerung. Springer-Verlag, 2017

[20] GOLDSTEIN, Sven: Beckhoff-Lösungen für Industrie 4.0 und IoT - Einfach, offen und
standardisiert. https://www.pc-control.net/pdf/022016/products/
pcc_0216_industrie-40_d.pdf. – Viewed on 19 June 2019

[21] HANNELIUS, Tom ; SALMENPERA, Mikko ; KUIKKA, Seppo: Roadmap to adopting OPC
UA. In: 2008 6th IEEE International Conference on Industrial Informatics IEEE, 2008,
S. 756–761

[22] HOPPE, Stefan ; SCHREIER, Jürgen: Industrie 4.0 in der Praxis - IoT-
Basics: Was ist OPC UA? https://www.industry-of-things.de/
iot-basics-was-ist-opc-ua-a-727188/. Version: 2019. – Viewed on 24
June 2019

ftp://ftp.beckhoff.com/Software/embPC-Control/Solution/Demo-IoT/Flyer-IoT-Sensor_to_Cloud.pdf
ftp://ftp.beckhoff.com/Software/embPC-Control/Solution/Demo-IoT/Flyer-IoT-Sensor_to_Cloud.pdf
https://www.pc-control.net/pdf/022016/products/pcc_0216_industrie-40_d.pdf
https://www.pc-control.net/pdf/022016/products/pcc_0216_industrie-40_d.pdf
https://www.industry-of-things.de/iot-basics-was-ist-opc-ua-a-727188/
https://www.industry-of-things.de/iot-basics-was-ist-opc-ua-a-727188/

Bibliography 103

[23] OPC UA-COMMUNITY: OPC Unified Architecture – Wegbereiter der vierten indus-
triellen (R)Evolution. OPC Foundation, 2013

[24] LEITNER, Stefan-Helmut ; MAHNKE, Wolfgang: OPC UA–service-oriented architecture
for industrial applications. In: ABB Corporate Research Center 48 (2006), S. 61–66

[25] ASCOLAB GMBH: OPC UA Concepts. http://www.ascolab.com/en/
technology-unified-architecture/technology-aconcepts.
html. – Viewed on 25 June 2019

[26] MAHNKE, Wolfgang ; LEITNER, Stefan-Helmut ; DAMM, Matthias: OPC unified architec-
ture. Springer Science & Business Media, 2009

[27] PIGAN, R. ; METTER, M.: Automatisieren mit PROFINET: Industrielle Kommunikation
auf Basis von Industrial Ethernet. Wiley, 2015. – ISBN 9783895789496

[28] HMS INDUSTRIAL NETWORKS AB: Profinet. https://www.feldbusse.de/
Profinet/profinet.shtml. – Viewed on 14 July 2019

[29] SIEMENS: Umsetzung des Kommunikationskonzepts von PROFINET CBA mit
PROFINET IO. https://cache.industry.siemens.com/dl/files/
355/60520355/att_117434/v1/60520355_dp_porting_profinet_
cba_de.pdf. – Viewed on 14 July 2019

[30] GOLDENBERG, Niv ; WOOL, Avishai: Accurate modeling of Modbus/TCP for intrusion
detection in SCADA systems. In: International Journal of Critical Infrastructure Protec-
tion 6 (2013), Nr. 2, S. 63–75

[31] VOYIATZIS, Artemios G. ; KATSIGIANNIS, Konstantinos ; KOUBIAS, Stavros: A Mod-
bus/TCP fuzzer for testing internetworked industrial systems. In: 2015 IEEE 20th Con-
ference on Emerging Technologies & Factory Automation (ETFA) IEEE, 2015, S. 1–6

[32] MURPHY, Kevin P.: Machine learning: a probabilistic perspective. MIT press, 2012

[33] KRUSE, Rudolf ; BORGELT, C ; KLAWONN, F ; MOEWES, C ; RUSS, G ; STEIN-
BRECHER, M: Computational Intelligence-Eine methodische Einführung in Künstliche
Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze. 1. In:
Auflage. Wiesbaden: Vieweg+ Teubner (2011)

[34] WILLEY, Richard: Choosing the Best Machine Learning Classification Model and Avoid-
ing Overfitting. https://de.mathworks.com. Version: Issued: 22 September
2011

http://www.ascolab.com/en/technology-unified-architecture/technology-aconcepts.html
http://www.ascolab.com/en/technology-unified-architecture/technology-aconcepts.html
http://www.ascolab.com/en/technology-unified-architecture/technology-aconcepts.html
https://www.feldbusse.de/Profinet/profinet.shtml
https://www.feldbusse.de/Profinet/profinet.shtml
https://cache.industry.siemens.com/dl/files/355/60520355/att_117434/v1/60520355_dp_porting_profinet_cba_de.pdf
https://cache.industry.siemens.com/dl/files/355/60520355/att_117434/v1/60520355_dp_porting_profinet_cba_de.pdf
https://cache.industry.siemens.com/dl/files/355/60520355/att_117434/v1/60520355_dp_porting_profinet_cba_de.pdf
https://de.mathworks.com

Bibliography 104

[35] SIEMENS: Totally Integrated Automation Portal. https://new.siemens.com/
global/de/produkte/automatisierung/industrie-software/
automatisierungs-software/tia-portal.html. – Viewed on 27 June
2019

[36] SIEMENS: Siemens OPC UA Modeling Editor - Functional description. https:
//support.industry.siemens.com/cs/ww/en/view/109755133. –
Viewed on 27 June 2019

[37] SCHNEIDER ELECTRIC: EcoStruxure Machine Advisor von Schneider Electric maximiert
den Wert von Daten für OEMs. https://www.se.com/de/de/about-us/
news/press-releases/2018/ecostruxure-machine-advisor.jsp.
– Viewed on 8 July 2019

[38] SCHNEIDER ELECTRIC: ComXBox product introduction and operation (Chinese lan-
guage). – PDF file can be viewed on the CD

[39] LUCAS-NÜLLE GMBH: INDUSTRIE 4.0 PRODUKTIONSSTRASSE - Ausstattung.
www.lucas-nuelle.de. – Viewed on 5 June 2019

[40] LUCAS-NÜLLE-AUTORENTEAM: ILA-Kurs CSF 4: ERP-Lab für Industrie 4.0. www.
lucas-nuelle.de. – Viewed on 9 June 2019

[41] NAGLIC, Marijan: ILA-Kurs Inbetriebnahme des KUKA Roboters. www.
lucas-nuelle.de. – Viewed on 11 June 2019

[42] KUKA DEUTSCHLAND GMBH: KR AGILUS sixx - Mit W- und C-Variante - Spezifikation.
Issued: 19 April 2018. – Version: Spez KR AGILUS sixx V13 - PDF file can be viewed
on the CD

[43] MATHWORKS: Pattern Recognition and Classification.
https://de.mathworks.com/help/deeplearning/
pattern-recognition-and-classification.html?s_tid=CRUX_
lftnav. – Viewed on 2 August 2019

[44] REINHART, Gunther: Handbuch Industrie 4.0: Geschäftsmodelle, Prozesse, Technik.
Carl Hanser Verlag GmbH Co KG, 2017

[45] BECKER, Norbert ; EGGELING, Manfred: ILA-Kurs CSF 1: Industrie 4.0. www.
lucas-nuelle.de. – Viewed on 6 May 2019

https://new.siemens.com/global/de/produkte/automatisierung/industrie-software/automatisierungs-software/tia-portal.html
https://new.siemens.com/global/de/produkte/automatisierung/industrie-software/automatisierungs-software/tia-portal.html
https://new.siemens.com/global/de/produkte/automatisierung/industrie-software/automatisierungs-software/tia-portal.html
https://support.industry.siemens.com/cs/ww/en/view/109755133
https://support.industry.siemens.com/cs/ww/en/view/109755133
https://www.se.com/de/de/about-us/news/press-releases/2018/ecostruxure-machine-advisor.jsp
https://www.se.com/de/de/about-us/news/press-releases/2018/ecostruxure-machine-advisor.jsp
www.lucas-nuelle.de
www.lucas-nuelle.de
www.lucas-nuelle.de
www.lucas-nuelle.de
www.lucas-nuelle.de
https://de.mathworks.com/help/deeplearning/pattern-recognition-and-classification.html?s_tid=CRUX_lftnav
https://de.mathworks.com/help/deeplearning/pattern-recognition-and-classification.html?s_tid=CRUX_lftnav
https://de.mathworks.com/help/deeplearning/pattern-recognition-and-classification.html?s_tid=CRUX_lftnav
www.lucas-nuelle.de
www.lucas-nuelle.de

A Appendix

The appendix to the thesis is on CD and can be viewed at Prof. Dr.-Ing. Florian Wenck or
Associate Prof. Dr.-Ing. Shen JianQiang.

数
据

名
称

参
数

类
别

图
标

类
型

报
警

级
别

脱
扣

曲
线

类
型

缩
略

名
ID

单
位

比
例

系
数

类
型

传
输

类
型

传
输

频
率

寄
存

器
地

址
寄

存
器

大
小

是
否

上
传

备
注

IM
S1

 C
ur

re
nt

 (I
)

实
时

数
据

C
U

R
pl

c_
m

ea
s0

1
1

A
Fl

oa
t

R
5

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S3

a
C

ur
re

nt
 (I

)
实

时
数

据
C

U
R

pl
c_

m
ea

s0
2

2
A

Fl
oa

t
R

5
2

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

b
C

ur
re

nt
 (I

)
实

时
数

据
C

U
R

pl
c_

m
ea

s0
3

3
A

Fl
oa

t
R

5
4

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

a
C

ur
re

nt
 (I

)
实

时
数

据
C

U
R

pl
c_

m
ea

s0
4

4
A

Fl
oa

t
R

5
6

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

b
C

ur
re

nt
 (I

)
实

时
数

据
C

U
R

pl
c_

m
ea

s0
5

5
A

Fl
oa

t
R

5
8

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

a
C

ur
re

nt
 (I

)
实

时
数

据
C

U
R

pl
c_

m
ea

s0
6

6
A

Fl
oa

t
R

5
10

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

b
C

ur
re

nt
 (I

)
实

时
数

据
C

U
R

pl
c_

m
ea

s0
7

7
A

Fl
oa

t
R

5
12

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S6

 C
ur

re
nt

 (I
)

实
时

数
据

C
U

R
pl

c_
m

ea
s0

8
8

A
Fl

oa
t

R
5

14
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

 C
ur

re
nt

 (I
)

实
时

数
据

C
U

R
pl

c_
m

ea
s0

9
9

A
Fl

oa
t

R
5

16
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S1

 V
ol

ta
ge

 (V
)

实
时

数
据

V
O

L
pl

c_
m

ea
s1

1
10

V
Fl

oa
t

R
5

18
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S3

a
V

ol
ta

ge
 (V

)
实

时
数

据
V

O
L

pl
c_

m
ea

s1
2

11
V

Fl
oa

t
R

5
20

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

b
V

ol
ta

ge
 (V

)
实

时
数

据
V

O
L

pl
c_

m
ea

s1
3

12
V

Fl
oa

t
R

5
22

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

a
V

ol
ta

ge
 (V

)
实

时
数

据
V

O
L

pl
c_

m
ea

s1
4

13
V

Fl
oa

t
R

5
24

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

b
V

ol
ta

ge
 (V

)
实

时
数

据
V

O
L

pl
c_

m
ea

s1
5

14
V

Fl
oa

t
R

5
26

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

a
V

ol
ta

ge
 (V

)
实

时
数

据
V

O
L

pl
c_

m
ea

s1
6

15
V

Fl
oa

t
R

5
28

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

b
V

ol
ta

ge
 (V

)
实

时
数

据
V

O
L

pl
c_

m
ea

s1
7

16
V

Fl
oa

t
R

5
30

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S6

 V
ol

ta
ge

 (V
)

实
时

数
据

V
O

L
pl

c_
m

ea
s1

8
17

V
Fl

oa
t

R
5

32
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

 V
ol

ta
ge

 (V
)

实
时

数
据

V
O

L
pl

c_
m

ea
s1

9
18

V
Fl

oa
t

R
5

34
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S1

 P
ow

er
 (W

)
实

时
数

据
PO

W
pl

c_
m

ea
s2

0
19

W
Fl

oa
t

R
5

36
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S3

a
Po

w
er

 (W
)

实
时

数
据

PO
W

pl
c_

m
ea

s2
1

20
W

Fl
oa

t
R

5
38

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

b
Po

w
er

 (W
)

实
时

数
据

PO
W

pl
c_

m
ea

s2
2

21
W

Fl
oa

t
R

5
40

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

a
Po

w
er

 (W
)

实
时

数
据

PO
W

pl
c_

m
ea

s2
3

22
W

Fl
oa

t
R

5
42

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

b
Po

w
er

 (W
)

实
时

数
据

PO
W

pl
c_

m
ea

s2
4

23
W

Fl
oa

t
R

5
44

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

a
Po

w
er

 (W
)

实
时

数
据

PO
W

pl
c_

m
ea

s2
5

24
W

Fl
oa

t
R

5
46

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

b
Po

w
er

 (W
)

实
时

数
据

PO
W

pl
c_

m
ea

s2
6

25
W

Fl
oa

t
R

5
48

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S6

 P
ow

er
 (W

)
实

时
数

据
PO

W
pl

c_
m

ea
s2

7
26

W
Fl

oa
t

R
5

50
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

 P
ow

er
 (W

)
实

时
数

据
PO

W
pl

c_
m

ea
s2

8
27

W
Fl

oa
t

R
5

52
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S1

_c
ou

nt
M

ot
or

Is
A

ct
iv

e
实

时
数

据
TI

S
pl

c_
m

ea
s2

9
28

In
t3

2
R

5
54

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S1

_c
ou

nt
Se

nB
el

tL
ef

t
实

时
数

据
TI

S
pl

c_
m

ea
s3

0
29

In
t3

2
R

5
56

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S1

_c
ou

nt
Se

nB
el

tR
ig

ht
实

时
数

据
TI

S
pl

c_
m

ea
s3

1
30

In
t3

2
R

5
58

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

a_
co

un
tM

ot
or

Is
A

ct
iv

e
实

时
数

据
TI

S
pl

c_
m

ea
s3

2
31

In
t3

2
R

5
60

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

a_
co

un
tC

yl
St

op
pe

r
实

时
数

据
TI

S
pl

c_
m

ea
s3

3
32

In
t3

2
R

5
62

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

a_
co

un
tC

yl
So

rt
实

时
数

据
TI

S
pl

c_
m

ea
s3

4
33

In
t3

2
R

5
64

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

a_
co

un
tS

en
Be

ltL
ef

t
实

时
数

据
TI

S
pl

c_
m

ea
s3

5
34

In
t3

2
R

5
66

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

a_
co

un
tS

en
Be

ltR
ig

ht
实

时
数

据
TI

S
pl

c_
m

ea
s3

6
35

In
t3

2
R

5
68

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

a_
co

un
tS

en
St

op
pe

rT
op

实
时

数
据

TI
S

pl
c_

m
ea

s3
7

36
In

t3
2

R
5

70
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

A Appendix 106

A.1 Parameter Template: USST_industrylab4_0

IM
S3

a_
co

un
tS

en
M

ag
az

in
e

实
时

数
据

TI
S

pl
c_

m
ea

s3
8

37
In

t3
2

R
5

72
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S3

b_
co

un
tM

ot
or

Is
A

ct
iv

e
实

时
数

据
TI

S
pl

c_
m

ea
s3

9
38

In
t3

2
R

5
74

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

b_
co

un
tC

yl
St

op
pe

r
实

时
数

据
TI

S
pl

c_
m

ea
s4

0
39

In
t3

2
R

5
76

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

b_
co

un
tC

yl
So

rt
实

时
数

据
TI

S
pl

c_
m

ea
s4

1
40

In
t3

2
R

5
78

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

b_
co

un
tS

en
Be

ltL
ef

t
实

时
数

据
TI

S
pl

c_
m

ea
s4

2
41

In
t3

2
R

5
80

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

b_
co

un
tS

en
Be

ltR
ig

ht
实

时
数

据
TI

S
pl

c_
m

ea
s4

3
42

In
t3

2
R

5
82

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

b_
co

un
tS

en
St

op
pe

rT
op

实
时

数
据

TI
S

pl
c_

m
ea

s4
4

43
In

t3
2

R
5

84
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S3

b_
co

un
tS

en
M

ag
az

in
e

实
时

数
据

TI
S

pl
c_

m
ea

s4
5

44
In

t3
2

R
5

86
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S4

a_
co

un
tM

ot
or

Is
A

ct
iv

e
实

时
数

据
TI

S
pl

c_
m

ea
s4

6
45

In
t3

2
R

5
88

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

a_
co

un
tC

yl
St

op
pe

r
实

时
数

据
TI

S
pl

c_
m

ea
s4

7
46

In
t3

2
R

5
90

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

a_
co

un
tC

yl
So

rt
实

时
数

据
TI

S
pl

c_
m

ea
s4

8
47

In
t3

2
R

5
92

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

a_
co

un
tS

en
Be

ltL
ef

t
实

时
数

据
TI

S
pl

c_
m

ea
s4

9
48

In
t3

2
R

5
94

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

a_
co

un
tS

en
Be

ltR
ig

ht
实

时
数

据
TI

S
pl

c_
m

ea
s5

0
49

In
t3

2
R

5
96

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

a_
co

un
tS

en
St

op
pe

rT
op

实
时

数
据

TI
S

pl
c_

m
ea

s5
1

50
In

t3
2

R
5

98
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S4

a_
co

un
tS

en
M

ag
az

in
e

实
时

数
据

TI
S

pl
c_

m
ea

s5
2

51
In

t3
2

R
5

10
0

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

b_
co

un
tM

ot
or

Is
A

ct
iv

e
实

时
数

据
TI

S
pl

c_
m

ea
s5

3
52

In
t3

2
R

5
10

2
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S4

b_
co

un
tC

yl
St

op
pe

r
实

时
数

据
TI

S
pl

c_
m

ea
s5

4
53

In
t3

2
R

5
10

4
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S4

b_
co

un
tC

yl
So

rt
实

时
数

据
TI

S
pl

c_
m

ea
s5

5
54

In
t3

2
R

5
10

6
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S4

b_
co

un
tS

en
Be

ltL
ef

t
实

时
数

据
TI

S
pl

c_
m

ea
s5

6
55

In
t3

2
R

5
10

8
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S4

b_
co

un
tS

en
Be

ltR
ig

ht
实

时
数

据
TI

S
pl

c_
m

ea
s5

7
56

In
t3

2
R

5
11

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S4

b_
co

un
tS

en
St

op
pe

rT
op

实
时

数
据

TI
S

pl
c_

m
ea

s5
8

57
In

t3
2

R
5

11
2

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S4

b_
co

un
tS

en
M

ag
az

in
e

实
时

数
据

TI
S

pl
c_

m
ea

s5
9

58
In

t3
2

R
5

11
4

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

a_
co

un
tM

ot
or

Is
A

ct
iv

e
实

时
数

据
TI

S
pl

c_
m

ea
s6

0
59

In
t3

2
R

5
11

6
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

a_
co

un
tC

yl
St

op
pe

r
实

时
数

据
TI

S
pl

c_
m

ea
s6

1
60

In
t3

2
R

5
11

8
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

a_
co

un
tC

yl
Pr

es
si

ng
实

时
数

据
TI

S
pl

c_
m

ea
s6

2
61

In
t3

2
R

5
12

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

a_
co

un
tS

en
Be

ltL
ef

t
实

时
数

据
TI

S
pl

c_
m

ea
s6

3
62

In
t3

2
R

5
12

2
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

a_
co

un
tS

en
Be

ltR
ig

ht
实

时
数

据
TI

S
pl

c_
m

ea
s6

4
63

In
t3

2
R

5
12

4
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

a_
co

un
tS

en
St

op
pe

rT
op

实
时

数
据

TI
S

pl
c_

m
ea

s6
5

64
In

t3
2

R
5

12
6

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

a_
co

un
tS

en
Pr

es
sC

yl
N

ot
A

ct
ua

te
d

实
时

数
据

TI
S

pl
c_

m
ea

s6
6

65
In

t3
2

R
5

12
8

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

a_
co

un
tS

en
Pr

es
sC

yl
A

ct
ua

te
d

实
时

数
据

TI
S

pl
c_

m
ea

s6
7

66
In

t3
2

R
5

13
0

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

a_
co

un
tS

en
M

ag
az

in
e

实
时

数
据

TI
S

pl
c_

m
ea

s6
8

67
In

t3
2

R
5

13
2

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

b_
co

un
tM

ot
or

Is
A

ct
iv

e
实

时
数

据
TI

S
pl

c_
m

ea
s6

9
68

In
t3

2
R

5
13

4
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

b_
co

un
tC

yl
St

op
pe

r
实

时
数

据
TI

S
pl

c_
m

ea
s7

0
69

In
t3

2
R

5
13

6
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

b_
co

un
tC

yl
Pr

es
si

ng
实

时
数

据
TI

S
pl

c_
m

ea
s7

1
70

In
t3

2
R

5
13

8
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

b_
co

un
tS

en
Be

ltL
ef

t
实

时
数

据
TI

S
pl

c_
m

ea
s7

2
71

In
t3

2
R

5
14

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

b_
co

un
tS

en
Be

ltR
ig

ht
实

时
数

据
TI

S
pl

c_
m

ea
s7

3
72

In
t3

2
R

5
14

2
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

b_
co

un
tS

en
St

op
pe

rT
op

实
时

数
据

TI
S

pl
c_

m
ea

s7
4

73
In

t3
2

R
5

14
4

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

A Appendix 107

IM
S5

b_
co

un
tS

en
Pr

es
sC

yl
N

ot
A

ct
ua

te
d

实
时

数
据

TI
S

pl
c_

m
ea

s7
5

74
In

t3
2

R
5

14
6

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

b_
co

un
tS

en
Pr

es
sC

yl
A

ct
ua

te
d

实
时

数
据

TI
S

pl
c_

m
ea

s7
6

75
In

t3
2

R
5

14
8

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S5

b_
co

un
tS

en
M

ag
az

in
e

实
时

数
据

TI
S

pl
c_

m
ea

s7
7

76
In

t3
2

R
5

15
0

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S6

_c
ou

nt
M

ot
or

Is
A

ct
iv

e
实

时
数

据
TI

S
pl

c_
m

ea
s7

8
77

In
t3

2
R

5
15

2
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S6

_c
ou

nt
C

yl
St

op
pe

r
实

时
数

据
TI

S
pl

c_
m

ea
s7

9
78

In
t3

2
R

5
15

4
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S6

_c
ou

nt
Se

nB
el

tL
ef

t
实

时
数

据
TI

S
pl

c_
m

ea
s8

0
79

In
t3

2
R

5
15

6
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S6

_c
ou

nt
Se

nB
el

tR
ig

ht
实

时
数

据
TI

S
pl

c_
m

ea
s8

1
80

In
t3

2
R

5
15

8
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S6

_c
ou

nt
Se

nS
to

pp
er

To
p

实
时

数
据

TI
S

pl
c_

m
ea

s8
2

81
In

t3
2

R
5

16
0

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S6

_c
ou

nt
Se

nO
pt

Bo
tt

om
实

时
数

据
TI

S
pl

c_
m

ea
s8

3
82

In
t3

2
R

5
16

2
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S6

_c
ou

nt
Se

nI
nd

实
时

数
据

TI
S

pl
c_

m
ea

s8
4

83
In

t3
2

R
5

16
4

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S6

_c
ou

nt
Se

nK
ap

实
时

数
据

TI
S

pl
c_

m
ea

s8
5

84
In

t3
2

R
5

16
6

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S6

_c
ou

nt
Se

nO
pt

To
p

实
时

数
据

TI
S

pl
c_

m
ea

s8
6

85
In

t3
2

R
5

16
8

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S7

_c
ou

nt
M

ot
or

Is
A

ct
iv

e
实

时
数

据
TI

S
pl

c_
m

ea
s8

7
86

In
t3

2
R

5
17

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

_c
ou

nt
C

yl
St

op
pe

r
实

时
数

据
TI

S
pl

c_
m

ea
s8

8
87

In
t3

2
R

5
17

2
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

_c
ou

nt
C

yl
Sw

iv
el

Ta
bl

e
实

时
数

据
TI

S
pl

c_
m

ea
s8

9
88

In
t3

2
R

5
17

4
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

_c
ou

nt
C

yl
Li

ft
实

时
数

据
TI

S
pl

c_
m

ea
s9

0
89

In
t3

2
R

5
17

6
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

_c
ou

nt
Se

nB
el

tL
ef

t
实

时
数

据
TI

S
pl

c_
m

ea
s9

1
90

In
t3

2
R

5
17

8
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

_c
ou

nt
Se

nB
el

tR
ig

ht
实

时
数

据
TI

S
pl

c_
m

ea
s9

2
91

In
t3

2
R

5
18

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

_c
ou

nt
V

ac
uu

m
V

al
ve

实
时

数
据

TI
S

pl
c_

m
ea

s9
3

92
In

t3
2

R
5

18
2

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S7

_c
ou

nt
Se

nS
to

pp
er

To
p

实
时

数
据

TI
S

pl
c_

m
ea

s9
4

93
In

t3
2

R
5

18
4

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S7

_c
ou

nt
Se

nS
w

iv
el

Ta
bl

e0
实

时
数

据
TI

S
pl

c_
m

ea
s9

5
94

In
t3

2
R

5
18

6
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

_c
ou

nt
Se

nS
w

iv
el

Ta
bl

e9
0

实
时

数
据

TI
S

pl
c_

m
ea

s9
6

95
In

t3
2

R
5

18
8

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S7

_c
ou

nt
Se

nV
ac

uu
m

M
on

ito
rin

g
实

时
数

据
TI

S
pl

c_
m

ea
s9

7
96

In
t3

2
R

5
19

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S7

_c
ou

nt
Sw

itc
hL

ift
To

p
实

时
数

据
TI

S
pl

c_
m

ea
s9

8
97

In
t3

2
R

5
19

2
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S1

_m
ot

or
O

pe
ra

tin
gH

ou
rs

实
时

数
据

TI
M

pl
c_

m
ea

s9
9

98
m

In
t6

4
R

5
19

4
4

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S3

a_
m

ot
or

O
pe

ra
tin

gH
ou

rs
实

时
数

据
TI

M
pl

c_
m

ea
s1

00
99

m
In

t6
4

R
5

19
8

4
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S3

b_
m

ot
or

O
pe

ra
tin

gH
ou

rs
实

时
数

据
TI

M
pl

c_
m

ea
s1

01
10

0
m

In
t6

4
R

5
20

2
4

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S4

a_
m

ot
or

O
pe

ra
tin

gH
ou

rs
实

时
数

据
TI

M
pl

c_
m

ea
s1

02
10

1
m

In
t6

4
R

5
20

6
4

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S4

b_
m

ot
or

O
pe

ra
tin

gH
ou

rs
实

时
数

据
TI

M
pl

c_
m

ea
s1

03
10

2
m

In
t6

4
R

5
21

0
4

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

a_
m

ot
or

O
pe

ra
tin

gH
ou

rs
实

时
数

据
TI

M
pl

c_
m

ea
s1

04
10

3
m

In
t6

4
R

5
21

4
4

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S5

b_
m

ot
or

O
pe

ra
tin

gH
ou

rs
实

时
数

据
TI

M
pl

c_
m

ea
s1

05
10

4
m

In
t6

4
R

5
21

8
4

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

IM
S6

_m
ot

or
O

pe
ra

tin
gH

ou
rs

实
时

数
据

TI
M

pl
c_

m
ea

s1
06

10
5

m
In

t6
4

R
5

22
2

4
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

IM
S7

_m
ot

or
O

pe
ra

tin
gH

ou
rs

实
时

数
据

TI
M

pl
c_

m
ea

s1
07

10
6

m
In

t6
4

R
5

22
6

4
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_C
U

RR
_A

C
T_

A
xi

s1
实

时
数

据
C

U
R

pl
c_

m
ea

s1
08

10
7

Fl
oa

t
R

5
23

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_C
U

RR
_A

C
T_

A
xi

s2
实

时
数

据
C

U
R

pl
c_

m
ea

s1
09

10
8

Fl
oa

t
R

5
23

2
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_C
U

RR
_A

C
T_

A
xi

s3
实

时
数

据
C

U
R

pl
c_

m
ea

s1
10

10
9

Fl
oa

t
R

5
23

4
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_C
U

RR
_A

C
T_

A
xi

s4
实

时
数

据
C

U
R

pl
c_

m
ea

s1
11

11
0

Fl
oa

t
R

5
23

6
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

A Appendix 108

KU
KA

_C
U

RR
_A

C
T_

A
xi

s5
实

时
数

据
C

U
R

pl
c_

m
ea

s1
12

11
1

Fl
oa

t
R

5
23

8
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_C
U

RR
_A

C
T_

A
xi

s6
实

时
数

据
C

U
R

pl
c_

m
ea

s1
13

11
2

Fl
oa

t
R

5
24

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_M
O

T_
TE

M
P_

A
xi

s1
实

时
数

据
TE

M
pl

c_
m

ea
s1

14
11

3
Fl

oa
t

R
5

24
2

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_M
O

T_
TE

M
P_

A
xi

s2
实

时
数

据
TE

M
pl

c_
m

ea
s1

15
11

4
Fl

oa
t

R
5

24
4

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_M
O

T_
TE

M
P_

A
xi

s3
实

时
数

据
TE

M
pl

c_
m

ea
s1

16
11

5
Fl

oa
t

R
5

24
6

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_M
O

T_
TE

M
P_

A
xi

s4
实

时
数

据
TE

M
pl

c_
m

ea
s1

17
11

6
Fl

oa
t

R
5

24
8

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_M
O

T_
TE

M
P_

A
xi

s5
实

时
数

据
TE

M
pl

c_
m

ea
s1

18
11

7
Fl

oa
t

R
5

25
0

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_M
O

T_
TE

M
P_

A
xi

s6
实

时
数

据
TE

M
pl

c_
m

ea
s1

19
11

8
Fl

oa
t

R
5

25
2

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_T
O

RQ
U

E_
A

C
T_

A
xi

s1
实

时
数

据
pl

c_
m

ea
s1

20
11

9
Fl

oa
t

R
5

25
4

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_T
O

RQ
U

E_
A

C
T_

A
xi

s2
实

时
数

据
pl

c_
m

ea
s1

21
12

0
Fl

oa
t

R
5

25
6

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_T
O

RQ
U

E_
A

C
T_

A
xi

s3
实

时
数

据
pl

c_
m

ea
s1

22
12

1
Fl

oa
t

R
5

25
8

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_T
O

RQ
U

E_
A

C
T_

A
xi

s4
实

时
数

据
pl

c_
m

ea
s1

23
12

2
Fl

oa
t

R
5

26
0

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_T
O

RQ
U

E_
A

C
T_

A
xi

s5
实

时
数

据
pl

c_
m

ea
s1

24
12

3
Fl

oa
t

R
5

26
2

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_T
O

RQ
U

E_
A

C
T_

A
xi

s6
实

时
数

据
pl

c_
m

ea
s1

25
12

4
Fl

oa
t

R
5

26
4

2
Y

Ra
ng

e:
;E

nu
m

:;o
th

er
:;

KU
KA

_V
EL

_A
C

T_
A

xi
s1

实
时

数
据

pl
c_

m
ea

s1
26

12
5

Fl
oa

t
R

5
26

6
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_V
EL

_A
C

T_
A

xi
s2

实
时

数
据

pl
c_

m
ea

s1
27

12
6

Fl
oa

t
R

5
26

8
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_V
EL

_A
C

T_
A

xi
s3

实
时

数
据

pl
c_

m
ea

s1
28

12
7

Fl
oa

t
R

5
27

0
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_V
EL

_A
C

T_
A

xi
s4

实
时

数
据

pl
c_

m
ea

s1
29

12
8

Fl
oa

t
R

5
27

2
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_V
EL

_A
C

T_
A

xi
s5

实
时

数
据

pl
c_

m
ea

s1
30

12
9

Fl
oa

t
R

5
27

4
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

KU
KA

_V
EL

_A
C

T_
A

xi
s6

实
时

数
据

pl
c_

m
ea

s1
31

13
0

Fl
oa

t
R

5
27

6
2

Y
Ra

ng
e:

;E
nu

m
:;o

th
er

:;

A Appendix 109

Totally Integrated
Automation Portal

DATA_TO_MASTER

DATA_TO_MASTER Properties

General
Name DATA_TO_MASTER Number 6 Type UDT
Language Numbering
Information
Title Author Comment
Family Version User-defined

ID

Name Data type Default value

Current Real 0.0

Voltage Real 0.0

Power Real 0.0

countSenBeltLeft DInt 0

countSenBeltRight DInt 0

motorIsActive Bool false

countMotorIsActive DInt 0

countCylStopper DInt 0

countCylSort DInt 0

countSenStopperTop DInt 0

countSenMagazine DInt 0

countCylPressing DInt 0

countSenPressCylNotActuated DInt 0

countSenPressCylActuated DInt 0

countSenOptBottom DInt 0

countSenOptTop DInt 0

countSenInd DInt 0

countSenKap DInt 0

countCylSwivelTable DInt 0

countCylLift DInt 0

countVacuumValve DInt 0

countSenSwivelTable0 DInt 0

countSenSwivelTable90 DInt 0

countSenVacuumMonitoring DInt 0

countSwitchLiftTop DInt 0

A Appendix 110

A.2 Data Type: DATA_TO_MASTER

Totally Integrated
Automation Portal

KUKADATA_TO_MASTER

KUKADATA_TO_MASTER Properties

General
Name KUKADATA_TO_MASTER Number 7 Type UDT
Language Numbering
Information
Title Author Comment
Family Version User-defined

ID

Name Data type Default value

CURR_ACT_Axis1 DInt 0

CURR_ACT_Axis2 DInt 0

CURR_ACT_Axis3 DInt 0

CURR_ACT_Axis4 DInt 0

CURR_ACT_Axis5 DInt 0

CURR_ACT_Axis6 DInt 0

MOT_TEMP_Axis1 DInt 0

MOT_TEMP_Axis2 DInt 0

MOT_TEMP_Axis3 DInt 0

MOT_TEMP_Axis4 DInt 0

MOT_TEMP_Axis5 DInt 0

MOT_TEMP_Axis6 DInt 0

TORQUE_ACT_Axis1 DInt 0

TORQUE_ACT_Axis2 DInt 0

TORQUE_ACT_Axis3 DInt 0

TORQUE_ACT_Axis4 DInt 0

TORQUE_ACT_Axis5 DInt 0

TORQUE_ACT_Axis6 DInt 0

VEL_ACT_Axis1 DInt 0

VEL_ACT_Axis2 DInt 0

VEL_ACT_Axis3 DInt 0

VEL_ACT_Axis4 DInt 0

VEL_ACT_Axis5 DInt 0

VEL_ACT_Axis6 DInt 0

A Appendix 111

A.3 Data Type: KUKADATA_TO_MASTER

Totally Integrated
Automation Portal

ModbusServerData [DB21]

ModbusServerData Properties

General
Name ModbusServerData Number 21 Type DB
Language DB Numbering Manual
Information
Title Author Comment
Family Version 0.1 User-defined

ID

Name Data type Start value Retain

Static

MotorCurrentIMS1 Real 0.0 False

MotorCurrentIMS3a Real 0.0 False

MotorCurrentIMS3b Real 0.0 False

MotorCurrentIMS4a Real 0.0 False

MotorCurrentIMS4b Real 0.0 False

MotorCurrentIMS5a Real 0.0 False

MotorCurrentIMS5b Real 0.0 False

MotorCurrentIMS6 Real 0.0 False

MotorCurrentIMS7 Real 0.0 False

MotorVoltageIMS1 Real 0.0 False

MotorVoltageIMS3a Real 0.0 False

MotorVoltageIMS3b Real 0.0 False

MotorVoltageIMS4a Real 0.0 False

MotorVoltageIMS4b Real 0.0 False

MotorVoltageIMS5a Real 0.0 False

MotorVoltageIMS5b Real 0.0 False

MotorVoltageIMS6 Real 0.0 False

MotorVoltageIMS7 Real 0.0 False

MotorPowerIMS1 Real 0.0 False

MotorPowerIMS3a Real 0.0 False

MotorPowerIMS3b Real 0.0 False

MotorPowerIMS4a Real 0.0 False

MotorPowerIMS4b Real 0.0 False

MotorPowerIMS5a Real 0.0 False

MotorPowerIMS5b Real 0.0 False

MotorPowerIMS6 Real 0.0 False

MotorPowerIMS7 Real 0.0 False

IMS1_countMotorIsActive DInt 0 False

IMS1_countSenBeltLeft DInt 0 False

IMS1_countSenBeltRight DInt 0 False

IMS3a_countMotorIsActive DInt 0 False

IMS3a_countCylStopper DInt 0 False

IMS3a_countCylSort DInt 0 False

IMS3a_countSenBeltLeft DInt 0 False

IMS3a_countSenBeltRight DInt 0 False

IMS3a_countSenStopperTop DInt 0 False

IMS3a_countSenMagazine DInt 0 False

IMS3b_countMotorIsActive DInt 0 False

IMS3b_countCylStopper DInt 0 False

IMS3b_countCylSort DInt 0 False

A Appendix 112

A.4 Data Block: ModbusServerData

Totally Integrated
Automation Portal

Name Data type Start value Retain

IMS3b_countSenBeltLeft DInt 0 False

IMS3b_countSenBeltRight DInt 0 False

IMS3b_countSenStopperTop DInt 0 False

IMS3b_countSenMagazine DInt 0 False

IMS4a_countMotorIsActive DInt 0 False

IMS4a_countCylStopper DInt 0 False

IMS4a_countCylSort DInt 0 False

IMS4a_countSenBeltLeft DInt 0 False

IMS4a_countSenBeltRight DInt 0 False

IMS4a_countSenStopperTop DInt 0 False

IMS4a_countSenMagazine DInt 0 False

IMS4b_countMotorIsActive DInt 0 False

IMS4b_countCylStopper DInt 0 False

IMS4b_countCylSort DInt 0 False

IMS4b_countSenBeltLeft DInt 0 False

IMS4b_countSenBeltRight DInt 0 False

IMS4b_countSenStopperTop DInt 0 False

IMS4b_countSenMagazine DInt 0 False

IMS5a_countMotorIsActive DInt 0 False

IMS5a_countCylStopper DInt 0 False

IMS5a_countCylPressing DInt 0 False

IMS5a_countSenBeltLeft DInt 0 False

IMS5a_countSenBeltRight DInt 0 False

IMS5a_countSenStopperTop DInt 0 False

IMS5a_countSenPressCylNotActuated DInt 0 False

IMS5a_countSenPressCylActuated DInt 0 False

IMS5a_countSenMagazine DInt 0 False

IMS5b_countMotorIsActive DInt 0 False

IMS5b_countCylStopper DInt 0 False

IMS5b_countCylPressing DInt 0 False

IMS5b_countSenBeltLeft DInt 0 False

IMS5b_countSenBeltRight DInt 0 False

IMS5b_countSenStopperTop DInt 0 False

IMS5b_countSenPressCylNotActuated DInt 0 False

IMS5b_countSenPressCylActuated DInt 0 False

IMS5b_countSenMagazine DInt 0 False

IMS6_countMotorIsActive DInt 0 False

IMS6_countCylStopper DInt 0 False

IMS6_countSenBeltLeft DInt 0 False

IMS6_countSenBeltRight DInt 0 False

IMS6_countSenStopperTop DInt 0 False

IMS6_countSenOptBottom DInt 0 False

IMS6_countSenInd DInt 0 False

IMS6_countSenKap DInt 0 False

IMS6_countSenOptTop DInt 0 False

IMS7_countMotorIsActive DInt 0 False

IMS7_countCylStopper DInt 0 False

IMS7_countCylSwivelTable DInt 0 False

IMS7_countCylLift DInt 0 False

IMS7_countSenBeltLeft DInt 0 False

IMS7_countSenBeltRight DInt 0 False

IMS7_countVacuumValve DInt 0 False

A Appendix 113

Totally Integrated
Automation Portal

Name Data type Start value Retain

IMS7_countSenStopperTop DInt 0 False

IMS7_countSenSwivelTable0 DInt 0 False

IMS7_countSenSwivelTable90 DInt 0 False

IMS7_countSenVacuumMonitoring DInt 0 False

IMS7_countSwitchLiftTop DInt 0 False

IMS1_motorOperatingHours LInt 0 False

IMS3a_motorOperatingHours LInt 0 False

IMS3b_motorOperatingHours LInt 0 False

IMS4a_motorOperatingHours LInt 0 False

IMS4b_motorOperatingHours LInt 0 False

IMS5a_motorOperatingHours LInt 0 False

IMS5b_motorOperatingHours LInt 0 False

IMS6_motorOperatingHours LInt 0 False

IMS7_motorOperatingHours LInt 0 False

KUKA_CURR_ACT_Axis1 Real 0.0 False

KUKA_CURR_ACT_Axis2 Real 0.0 False

KUKA_CURR_ACT_Axis3 Real 0.0 False

KUKA_CURR_ACT_Axis4 Real 0.0 False

KUKA_CURR_ACT_Axis5 Real 0.0 False

KUKA_CURR_ACT_Axis6 Real 0.0 False

KUKA_MOT_TEMP_Axis1 Real 0.0 False

KUKA_MOT_TEMP_Axis2 Real 0.0 False

KUKA_MOT_TEMP_Axis3 Real 0.0 False

KUKA_MOT_TEMP_Axis4 Real 0.0 False

KUKA_MOT_TEMP_Axis5 Real 0.0 False

KUKA_MOT_TEMP_Axis6 Real 0.0 False

KUKA_TORQUE_ACT_Axis1 Real 0.0 False

KUKA_TORQUE_ACT_Axis2 Real 0.0 False

KUKA_TORQUE_ACT_Axis3 Real 0.0 False

KUKA_TORQUE_ACT_Axis4 Real 0.0 False

KUKA_TORQUE_ACT_Axis5 Real 0.0 False

KUKA_TORQUE_ACT_Axis6 Real 0.0 False

KUKA_VEL_ACT_Axis1 Real 0.0 False

KUKA_VEL_ACT_Axis2 Real 0.0 False

KUKA_VEL_ACT_Axis3 Real 0.0 False

KUKA_VEL_ACT_Axis4 Real 0.0 False

KUKA_VEL_ACT_Axis5 Real 0.0 False

KUKA_VEL_ACT_Axis6 Real 0.0 False

A Appendix 114

Versicherung über die Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach
§16(5) APSO-TI-BM ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfs-
mittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen
habe ich unter Angabe der Quellen kenntlich gemacht.

Shanghai, 10. August 2019
Ort, Datum Unterschrift

	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Research Goals
	1.3 Structure of the Thesis

	2 Theoretical Foundations
	2.1 Industry 4.0
	2.1.1 Cyber-Physical Systems
	2.1.2 Internet of Things

	2.2 Predictive Maintenance
	2.3 Programmable Logic Controller
	2.3.1 Definition of a Control System
	2.3.2 Functioning of a PLC
	2.3.3 The PLC in Terms of Industry 4.0

	2.4 Open Platform Communications Unified Architecture
	2.4.1 Generic OPC UA Information Models
	2.4.2 Address Space Model

	2.5 Profinet
	2.5.1 Profinet IO Real-Time Behavior
	2.5.2 Profinet IO-System

	2.6 Modbus/TCP-Communication
	2.7 Machine Learning
	2.7.1 Classification
	2.7.2 Neural Network

	2.8 Development Tools
	2.8.1 Totally Integrated Automation Portal
	2.8.2 Siemens OPC UA Modeling Editor
	2.8.3 KUKA.WorkVisual
	2.8.4 Machine Advisor
	2.8.5 ComXBox
	2.8.6 MATLAB

	3 Industry 4.0 Production Line
	3.1 Technical Description
	3.1.1 Process Specification
	3.1.2 Components

	3.2 Application of Industry 4.0

	4 Requirements Analysis
	4.1 Functional Requirements
	4.2 Comparison between Machine Advisor and MATLAB

	5 Hardware Configuration
	5.1 Plant Networking
	5.2 Communication between Controllers
	5.3 Data Exchange with KUKA Robot
	5.3.1 Selection of Robot Transfer Data
	5.3.2 Configuration in KUKA.WorkVisual
	5.3.3 Configuration in TIA Portal

	5.4 Connection to Machine Advisor
	5.4.1 Setup of Modbus TCP/IP Server
	5.4.2 Configuration of ComX Box and Machine Advisor

	5.5 Establishment of OPC UA Communication
	5.5.1 Activation of OPC UA Server
	5.5.2 Creation of an OPC UA Client

	6 Program Design and Implementation
	6.1 Data Collection
	6.1.1 Selection of IMS Stations Data
	6.1.2 Introduction of User-Defined Data Types
	6.1.3 Program Extension of IMS Stations
	6.1.4 Program Extension of KUKA Robot
	6.1.5 Program Extension of PLC_1

	6.2 Data Analysis in Machine Advisor
	6.2.1 Interpretation of Data
	6.2.2 Alarm Management

	6.3 Data Analysis in MATLAB
	6.3.1 Creation of a server interface with SiOME
	6.3.2 Querying Data
	6.3.3 Pattern Recognition Network

	7 Functional Test
	7.1 Data Monitoring in Machine Advisor
	7.2 Evaluation in MATLAB

	8 Conclusion
	8.1 Summary
	8.2 Outlook

	Bibliography
	A Appendix
	A.1 Parameter Template: USST_industrylab4_0
	A.2 Data Type: DATA_TO_MASTER
	A.3 Data Type: KUKADATA_TO_MASTER
	A.4 Data Block: ModbusServerData

