
Bachelorarbeit
Nizami Zamanov

Applying Computer Vision Methods on Mobile Devices for Ball
Speed Measurements

Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

Faculty of Engineering and Computer Science
Department Information and Electrical Engineer-
ing

Nizami Zamanov

Applying Computer Vision Methods on Mobile Devices for Ball
Speed Measurements

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Bachelor of Science Information Engineering

am Department Informations- und Elektrotechnik

der Fakultet Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prfer: Prof. Dr. -Ing. Marc Hensel

Zweitgutachter: Prof. Dr. rer. nat. Henning Dierks

Eingereicht am: 23. September 2019

Nizami Zamanov

Thema der Arbeit
Anwenden von Computer Vision-Methoden auf Mobilgeräten zur Messung der Ballgeschwin-

digkeit

Stichworte
OpenCV, Android, Objektverfolgung

Kurzzusammenfassung
Analyse und Implementierung von Computer Vision Methoden

Nizami Zamanov

Title of the paper
Applying Computer Vision Methods on Mobile Devices for Ball Speed Measurements

Keywords

Abstract
OpenCV, Android, Object Tracking Analysis and implementation of Computer Vision methods.

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives . 2

1.3 Structure . 2

2 Background 3
2.1 De�nitions . 3

2.2 Soccer . 4

2.3 Digital Camera . 5

2.3.1 Digital Image . 5

2.3.2 Color Spaces . 5

2.3.3 Shutter Speed . 7

2.3.4 Frame Rate and Video . 7

2.4 Computer Vision . 8

2.4.1 Computer Vision vs Image Processing 8

2.4.2 Computer Vision vs Arti�cial Intelligence vs Machine Learning 9

2.4.3 Thresholding . 9

2.4.4 Smoothing . 9

2.4.5 Edge Detection . 10

2.5 Mathematical Background . 12

2.5.1 Speed . 12

2.5.2 Right Triangle . 12

2.5.3 Convolution . 13

2.5.4 Kernel . 13

3 Related Work 14
3.1 Literature Research . 14

3.2 State Of The Art and Related Products . 15

3.2.1 Doppler Radar . 15

3.2.2 Hawk-Eye . 16

3.2.3 Athla Velocity . 17

3.2.4 SpeedClock . 19

4 Requirements Analysis 20
4.1 Stakeholders . 20

4.2 Use Cases . 21

iv

Contents

4.3 Functional Requirements . 21

4.4 Non-Functional Requirements . 22

5 Conception 25
5.1 Assumptions . 25

5.2 Theoretical Solution and Failure Modes . 26

5.3 Hardware . 30

5.3.1 Device Selection . 30

5.3.2 Platform Selection . 31

5.4 Software . 32

5.4.1 Computer Vision Library Selection . 32

5.4.2 Tools and Methodologies . 33

6 Computer Vision and Image Processing Methods 36
6.1 Hough Tranforms . 36

6.1.1 Line Hough Transform . 36

6.1.2 Circle Hough Transform . 38

6.2 HSV Thresholding . 40

6.3 Object Tracking . 40

6.3.1 MIL . 41

6.3.2 KCF . 41

6.3.3 CSRT . 42

6.3.4 Object Tracking Summary . 42

6.4 Moving Object Detection . 43

6.4.1 Background Subtraction . 43

6.4.2 Optical Flow . 44

6.4.3 Temporal Di�erence . 44

6.5 Point Feature Matching . 44

6.6 Decision . 45

7 Design 48
7.1 Design Alternatives . 48

7.2 UML Diagrams . 49

7.2.1 Entity-relationship Model . 50

7.2.2 State Diagram . 50

7.2.3 Activity Diagram . 51

7.3 Graphical Design . 52

7.3.1 UI/UX . 52

7.3.2 Wireframe . 52

8 Implementation 56
8.1 Setup and Con�guration . 56

8.2 Coding . 56

v

Contents

9 Discussion and Conclusion 59
9.1 Results . 59

9.2 Future Work . 60

9.3 Conclusion . 61

vi

List of Tables

4.1 Stakeholders and their priority scores . 20

4.2 Use case table for "measure speed" . 23

4.3 Functional requirements . 23

4.4 Non-functional requirements . 24

5.1 Possible failure modes . 27

5.2 Errors caused by vertical or horizontal angles at di�erent distances and speeds 30

6.1 Summary of methods . 47

vii

List of Figures

2.1 The goal dimensions for di�erent age groups 5

2.2 RGB and HSV color spaces . 6

3.1 Doppler e�ect . 16

3.2 Hawk-Eye system overview . 17

3.3 Athla Velocity . 18

3.4 Screenshots of SpeedClock application . 19

4.1 Use case diagram of the system . 22

5.1 Camera lens direction with respect to ball trajectory 25

5.2 Ball and goal triangles . 28

5.3 Failure modes . 28

5.4 IOS and Android market share in the World and Germany 31

6.1 Linear Hough Transform spaces . 37

6.2 Hough Lines control panel . 38

6.3 Hough lines . 39

6.4 Hough Circle Transform . 39

6.5 HSV Thresholding . 40

6.6 MIL tracking . 41

6.7 KCF tracking . 41

6.8 CSRT tracking . 42

6.9 Background subtraction . 43

6.10 Optical �ow . 45

6.11 Temporal di�erence . 46

6.12 Ball tracking with HSV thresholding . 47

7.1 Entity-relationship model of the application 49

7.2 Hue color spectrum . 50

7.3 State diagram for speed measurement activity in HSV mode 51

7.4 Activity diagram . 54

7.5 Wireframe of the application . 55

9.1 Screenshots from Android application . 60

viii

Listings

5.1 Finding ball speed from time and distance . 26

7.1 Primary and secondary color codes . 52

8.1 Ball detection with HSV Thresholding . 57

8.2 Ball detection with three frame temporal di�erencing 57

ix

Acronyms

2D Two dimensional. 5, 8

3D Three dimensional. 4, 8, 15, 16

AI Arti�cial Intelligence. 8, 9

CHT Circular Hough Transform. 14, 36, 38

CV Computer Vision. 1, 2, 5, 8, 9, 14, 16, 17, 21, 24, 26, 30, 32–34, 36, 48, 61

FA The Football Association. 5, 27

fps frames per second. 2, 7, 27, 29, 41, 42, 44, 48, 49, 61

HSV hue, saturation and value. 6, 7, 9, 40, 56

HSVT HSV threshold. 9, 45, 46, 48, 50, 56, 59

HT Hough Transform. 36, 40

IDE Integrated development environment. 33, 56

IFAB The International Football Association Board. 4

IP Image processing. 2, 8–10, 13, 26, 34, 36

km/h kilometres per hour. 12, 17, 22, 24, 26, 29

LHT Linear Hough Transform. 36–38, 45, 48, 59

m/s metres per second. 12

ML Machine Learning. 9, 32

OOI Object of interest. 19, 36, 41, 57

RGB red, green and blue. 6, 7, 56

SW software. 1, 33

TD Temporal di�erence. 48, 56, 57, 59

x

1 Introduction

Computer Vision (CV) is being used in a wide variety of real-world applications including

medical imaging, autonomous driving, retail, manufacturing quality inspection, surveillance,

object recognition, etc. Most of us came across it in everyday life, be it face detection system in

cameras or image blending in applications like Instagram or Snapchat. With the advancements

of digital cameras and popularity in the adoption of augmented reality experiences, the next

decade is likely to see a considerable rise in the usage of CV techniques in software development.

Over recent years there has been an increasing demand for the use of analytics in sports

[15]. It is of great interest from spectator, sportsman and coaching perspectives. One such

application is a measurement of ball speed from a video recording. Such technology allows

scoring in a game with actual physical achievement, as opposed to traditional video games.

The core market for such applications, at least for now, are youth. But the potential market

itself is huge, due to the fact that a considerable percentage of the world’s population engages

in some kind of sport and this number is growing together with raising awareness of people

and trends towards a healthy lifestyle.

1.1 Motivation

Development in the mobile industry in the last decade has led to devices that are equally

capable of personal computers a few years ago. They are getting equipped with better cameras

and many sensors that are not usually found in their counterparts. On top of that, they o�er

mobility. All these factors make mobile devices very capable computers and feasible options

for the development of computationally heavy software (SW) programs, such as real-time

video analysis.

This project aims to develop software that measures the speed of the ball from a video

recording. The bene�ts this could bring to the life of people training in football is great. There

are already some devices commercially available for such tasks, but usually, they are not so

a�ordable. Motivation to work on this project is listed, but not limited to the following:

1

1 Introduction

• Mobility. Standard speed measuring devices do not �t into a pocket and people usually

do not carry those devices with them.

• A�ordability. Implementation of such an application on a mobile devices won’t require

additional resources, thus will cut the price practically to zero.

• Precision. As we are not targeting professional players, small errors in speed estimations

should not be a big issue, especially considering the cost of purchase.

• Features. Professional speed devices are usually designed for a single task, measuring

and displaying the speed. There is basically no infrastructure for diverse features. Mobile

devices, on the other hand, o�er internet connectivity, data storage and in general better

environment for software development that might result in useful extra functionalities

such as improvement tips, data storage, statistics, sharing, etc.

Last but not least, realizing the possibility that such an application could play some role in

making smartphones usable for something else than information digestion is very compelling.

1.2 Objectives

The objective of this thesis project is to create a mobile application that makes it possible to

measure the speed of a soccer ball from a video recording. The focus will be made mainly on

the usage of such products during training sessions of kids under ten years old.

Furthermore, this thesis will research the capability of mobile devices in combination with

CV methods for implementing such tasks. Some potential di�culties that need to be tackled in

solving this problem are the fastball speeds and relatively low fps rate of regular smartphone

cameras.

1.3 Structure

This paper is divided into nine chapters. Chapter 2 gives a brief overview of the terminology

and concepts used throughout the project. Chapter 3 researches the related work in a subject

topic and discovers existing solutions in the market. Next is Chapter 4, where requirements

and stakeholders are de�ned, followed by Chapter 5, where solution concepts analyzed and

selections on technology stack made. Chapter 6 examines di�erent CV and Image processing

(IP) algorithms for solving the problem. In Chapter 7 all previous �ndings put together into

a more detailed solution and then implemented in Chapter 8. The results are evaluated and

conclusions made in the last chapter.

2

2 Background

We start this chapter by de�ning the terminology used in this paper. We then provide all

necessary background for soccer, digital cameras and mathematical equations used in this

paper. The reader is also familiarized with the computer vision �eld and image processing

algorithms.

2.1 Definitions

Product In the context of this bachelor thesis, the product refers to a system that is being

developed throughout the paper.

Speed Gun Speed Gun (also Radar Gun or Speed Radar Gun) refers to a device used to

measure the speed of moving objects. In this paper these phrases used for referring to classical

devices exploiting the Doppler e�ect for measurements.

Soccer Since the word "football" refers to di�erent sports in di�erent countries, the word

"soccer" will be used throughout this paper to avoid ambiguity.

Pitch Soccer �eld or any other surface where the soccer is played.

Goal Goal comprises two vertical goalposts on the sides that are linked with each other with

a crossbar on the top and with a goal-line on the bottom.

Goalpost Vertical side poles of the goal. Usually made from steel or aluminum and colored

to white.

Crossbar Horizontal top post of the goal that connects left and right goalposts.

Goal line Horizontal line connecting goalposts from the bottom. It is usually a white painted

line on the ground.

3

2 Background

Start position Initial still position of a ball.

Target Any point on the surface created by the goal-line, goalposts and crossbar.

Distance The distance from the ball to the goal.

Ideal trajectory The shortest distance from the ball to the goal, which is a straight line

connecting the ball’s initial position to the goal line’s middle point.

Speed In this thesis, the speed is de�ned as the average speed which is the total distance

traveled by ball divided by the elapsed time.

Scene Scene is the 3D world that is captured by camera recording.

Player The person who shoots the ball.

Operator The person who uses the product to measure the speed.

Detection The task of �nding the position of a speci�c object in an image.

Tracking The task of �nding or estimating the position of a speci�c object in a sequence of

images.

2.2 Soccer

Ball According to The International Football Association Board (IFAB), soccer balls must

have a spherical shape with a circumference between 70 cm and 68 cm [8, p. 43]. This leads to

diameter values of 22.28 cm and 21.65 cm respectively, as per Equation 2.1, which describes

the relation between circumference C and diameter D of a circle.

C = π ·D (2.1)

Goal According to IFAB, the goal line must be 7.32 m long [8, p.35]. However, this is a

dimension used in professional football. Di�erent lengths are used for di�erent age groups as

illustrated in Figure 2.1. Since the focus of this thesis is to build a product for kids (Section

1.2), a mini soccer goal dimensions, 3.66 m long goal line and 1.83 m goal height, will be used

where necessary.

4

2 Background

Figure 2.1: The goal dimensions for di�erent age groups. Source: FA [7, p.6].

2.3 Digital Camera

2.3.1 Digital Image

Digital image is a representation of 2D image in numerical form and it may be a raster or

vector type. If the resolution of the image is not �xed it is of vector type. Otherwise, it is a

raster image. Vector images can be scaled to any size without losing quality. Since most of the

digital cameras make raster images, vector images are out of the scope of this paper.

Raster images made from �nite set of numerical values, which are called pixel elements or

shortly pixels. Pixel is the smallest individual element of an image. In essence, a raster image

is a matrix of pixels with a certain number of rows and columns. The center of the pixel

coordinate system is located on the top left corner. This corner is the �rst row and column

with the index number 0. The image with 1080 x 720 resolution is said to have a width of 1080

pixels and a height of 720 pixels.

2.3.2 Color Spaces

Color space is a mathematical model to represent color information in di�erent applications

such as computer graphics, image processing, TV broadcasting, and CV [24]. Di�erent color

spaces are useful for di�erent purposes. The next paragraphs introduce the ones that are

relevant to the development of this work.

Binary Each pixel in binary images has only two values (colors); one and zero. They are

also called black and white pictures.

5

2 Background

(a) RGB
(b) HSV

Figure 2.2: RGB and HSV color spaces

Grayscale In grayscale images, each pixel is represented with a single value corresponding

to the amount of intensity at that pixel. Hence, they are sometimes referred to as intensity

images[29]. Grayscale images should not be confused with binary images. They have many

shades of gray between black and white colors.

RGB An red, green and blue (RGB) image, also referred to as truecolor image, consists of

three values per pixel, each representing red, green or blue intensity values (Figure 2.2a), or

channels of an image. Red, green and blue are primary colors in RGB space. All other colors

are derived from primary colors. The color of each pixel is determined by the combination

of each three values at the pixel’s location [29]. RGB color system is well suited for use in

programming, as it is simple to manipulate and maps directly to the typical display hardware.

However, it does not correspond to the human perception of color (e.g. doubling the value of

blue color does not necessarily make the color twice as blue) [28, p.303]. Changing any color

component modi�es the color tone, saturation, and brightness at the same time. Therefore,

color selection in RGB space is non-intuitive.

HSV Another color schema that describe the way colors combine to create the spectrum we

see is hue, saturation and value (HSV) color space invented in 1970s
1
. The purpose of it is to

make color selection more intuitive by aligning the digital representation of colors with the

way human vision works.

In the HSV space colors are speci�ed by the components hue (H), saturation (S) and value

(V). It can be modeled as a cone as depicted in Figure 2.2b. Hue is the color portion of the

1

Wikipedia, HSL and HSV, https://en.wikipedia.org/wiki/HSL_and_HSV, accessed: 07.08.2019

6

https://en.wikipedia.org/wiki/HSL_and_HSV

2 Background

model, which can be de�ned as an angle in the range [0,2π] radians or [0,360] degrees [28,

p.306-309]. It is a pure spectrum of colors. Saturation is the depth of color and measured as a

distance from the central axis. In other words, it describes the amount of gray in each color. It

varies between 0 and 100 percent. For a given hue value, if the saturation is changed from 0 to

100 percent, the perceived color changes from a shade of gray to the purest form of the color

represented by its hue. The V component of HSV space describes the brightness of each color,

also varying between 0 and 100 percent where 0 is black and 100 is the brightest version of a

given color.

Contrary to extremely speci�c RGB values where it is hard to tell exactly how much of each

primary color exists in a given pixel, HSV space provides better information about the color.

In RGB space di�erent shades of a color result in di�erent values. In HSV space, however, the

hue component stays similar through di�erent shades of the same color. This aspect is helpful

when searching for a speci�c color in an image.

2.3.3 Shu�er Speed

Shutter speed is the length of time when the image sensor of the camera is exposed to light. It

has a great impact on the appearance of images, especially when the scene involves an object

in motion. Shutter speed controls the level of blur. High shutter speed can be used to freeze

fast-moving objects, such as when recording a soccer shot. This permits to capture the moving

object with less blur. Alternatively, low shutter speed makes the moving object, in our case the

ball, appear blurred and leaving a long tail behind it.

2.3.4 Frame Rate and Video

Video is a sequence of images (or frames). The frame rate of the video is the number of images

consecutively captured by camera per second. It is usually measured in frames per second

(fps). Similarly, it can be expressed in hertz. One fps is equal to one hertz. The theoretical

maximum fps is limited by the highest shutter speed of the camera.

This property of a camera is of great interest for the purposes of this thesis. Capturing a

fast-moving object with low fps will create a video where an object appears to be jumping

long distances between frames. Thus, very high fps values are bene�cial for object tracking

tasks. Although, high fps videos result in large video �les, which consequently occupy a lot of

storage and require lengthy processing.

Typical mobile device is expected to record a video at 25-30 fps. If we try to do real-time

processing this value might shrink even more.

7

2 Background

2.4 Computer Vision

CV tackles the problem of engineering arti�cial visual systems capable of somehow compre-

hending and interpreting our 3D world [28, p.3]. CV is an interdisciplinary scienti�c �eld, that

tries to mimic the human visual system, so to say. It aims to create useful information from

images or series of images. Di�erent de�nitions have been given to CV; “the construction of

explicit, meaningful descriptions of physical objects from images” [11], “computing properties

of the 3D world from one or more digital images” [13].

Despite a lot of improvements in terms of new CV methods and powerful devices, there

is still a long way to go for computers to interpret the images at the same level as humans.

But why is it so di�cult? In part because, as R.Szeliski describes in his book [27], CV is an

inverse problem, where we are trying to rebuild the full 3D picture of the rich visual world

from insu�cient 2D information (image) that includes noise and other unwanted artifacts. On

the other hand, it is di�cult due to the desire to carry out a vast amount of CV computations

in real-time.

The �eld is closely connected with other �elds such as IP and Arti�cial Intelligence (AI).

The next two sections explain the di�erence between them, followed by an introduction to

some of the commonly used IP concepts.

2.4.1 Computer Vision vs Image Processing

The di�erence between the can be better understood by comparing their inputs and outputs.

On both sides, we have some type of image �le as an input. It is their output that makes them

di�erent.

In image processing, the ultimate goal is usually to enhance or otherwise alter the appearance

of an image [28, p.2]. The output might be in di�erent formats than the input, it might have

resized, compressed, rotated or brightness, contrast, color space might have changed, edge

detection �lter might have applied. The key point is that in IP the main focus is not on

extracting meaningful information about the content of an image. While CV on the other

hand outputs some knowledge about the scene. Some of the popular topics in this �eld include

scene understanding, object recognition, and tracking, and autonomous navigation [28, p.3].

In a way, IP acts like a tool for CV, helping to tackle its tasks. It is usually applied on the

preliminary processing stage to prepare the input images for later use by CV algorithms.

8

2 Background

2.4.2 Computer Vision vs Artificial Intelligence vs Machine Learning

AI can be understood as a term for any computer program that does something smarter than

"basic" implementation of the lines of code. Some of the AI activities include speech recognition,

face recognition, and decision making. In essence, AI tries to incorporate human intelligence

into machines.

Machine Learning (ML) is a subset of AI and it is about incorporating computers with the

ability to learn without being explicitly taught. Similar to IP and CV, ML can be thought of as

a technique for realizing AI tasks. Usually, some data set is provided to ML algorithms to make

machines learn themselves and later make accurate predictions based on those data sets.

To summarize, CV is a subset of AI which might use image processing or ML techniques to

complete its tasks.

2.4.3 Thresholding

This technique is a simple and e�ective way of image segmentation. Thresholding can be

applied to grayscale and color images. The output in both options is a binary image. Although

there are di�erent thresholding methods and styles [12, Chapter 4], for our purposes we are

going to explore binary and HSV thresholding.

The idea behind binary thresholding is to check the intensity value of each pixel of a

grayscale image and assign it to one value if it is greater than the threshold value (usually to

one), otherwise to another value (usually to zero).

The idea behind HSV threshold (HSVT) is similar to binary thresholding. The di�erence is

that now there are two, upper and lower thresholds, each a set of H, S and V values of HSV

color space. Image pixels that fall in between the upper and lower bounds get the highest

intensity value, while the others get the lowest.

2.4.4 Smoothing

In IP, smoothing (or blurring) is an attempt to capture important, major patterns in an image

by reducing the details and in�uence of individual pixels. Thus, the output image is always a

blurry. This method is also commonly used in the preliminary processing phase to simplify

further image analysis.

Generally speaking, smoothing is equalizing the pixel values that are di�erent than their

neighboring pixels. It is usually done by the convolution of the original image with di�erent

�lter masks. There are di�erent types of blurring. The following are a selection of some of

them that have been considered in the development of this project.

9

2 Background

Normalized Box Filter This is the simplest blur �lter. A convolution mask consists N ×N
unit matrix (N usually an odd number) divided by

1

N2
. The result is the average o� all the

pixel values under the kernel area. The downside of this �lter is that all neighboring pixels

carry the same weight in the averaging. This might not be the best option in some cases, e.g.

when preservation of edges is desired.

Gaussian Filter The Gaussian �lter uses a Gaussian function (or Gaussian distribution in

statistics) for �lter coe�cient weights. Instead of using the same values for all mask elements

like in Normalized Box �lter, the Gaussian �lter puts a heavier weight on the center element

and incrementally smaller wights on elements further from the center[12, p. 40-42]. As the

name suggests, it is e�ective for removing Gaussian noise from the image. Although it performs

better than the Normalized Box �lter, edge preservation is still compromised.

Bilateral Filter Bilateral �lter is one of the edge-preserving smoothing techniques. It

smooths away noise while retaining sharp edges
2
. The bilateral �lter is a function of space

and intensity di�erence, while the Gaussian �lter is only a function of space. This means that

Bilateral �lter, apart from the distance to nearby pixels, also takes into account the intensity

di�erence between the pixel being processed and neighboring pixels. It ensures that only those

pixels with intensities similar to a central pixels are included for the blurring. As explained in

Section 2.4.5, neighboring pixels of an edge pixel, which do not represent an edge will exhibit

large intensity variations to the central pixel being processed. The bilateral �lter makes sure

that those neighbors are not included for the computation. Hence edges retain their sharp

intensity di�erences avoiding the averaging out by neighboring pixels’ values
3
.

2.4.5 Edge Detection

Edges play a dominant role in human vision system and detection of edges is one of the widely

used operations in IP [28, p.121]. It is mostly used for image segmentation
4
.

In digital images, edges are often signi�ed by a sharp intensity changes along a particular

orientation [28, p.122]. The simplest edge detection is based on �rst derivative and called

Gradient-Based edge detection [28, Sec.6.2]. Taking the �rst derivative of an image with an

2

OpenCV-Python Tutorials, Smoothing Images, https://opencv-python-tutroals.
readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_
filtering.html,accessed:31.08.2019

3

Wikipedia, Bilateral �lter, https://en.wikipedia.org/wiki/Bilateral_filter, accessed:

31.08.2019

4

MathWorks, Edge Detection, https://www.mathworks.com/discovery/edge-detection.
html, accessed: 31.08.2019

10

https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html, accessed:31.08.2019
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html, accessed:31.08.2019
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html, accessed:31.08.2019
https://en.wikipedia.org/wiki/Bilateral_filter
https://www.mathworks.com/discovery/edge-detection.html
https://www.mathworks.com/discovery/edge-detection.html

2 Background

edge in one direction results in a positive swing where the intensity rises and negative swing

where it drops. A derivative of a multi-dimensional function taken along one of its axes is

called partial derivative [28, Sec.6.2.1]. Taking the derivatives of an image in both horizontal (u)

and vertical (v) directions gives us the gradient function. Based on the gradient function of an

image the magnitude (strength) can be calculated at a given position (u, v). The local gradient

of the image function is the basis of many edge detection operators. Prewitt and Sobel are two

classic operators and practically, they only di�er with the type of �lter applied for estimating

the gradient components and the way these components are combined [28, Sec.6.3]. Some

edge detection operations are also interested in the edge direction angle and this information

is also contained in the gradient function.

Whatever the operator is used, the result of previous edge detection operators are usually

the values for edge strengths at each image position and possibly the orientation of the angle.

The next step, in many situations, is picking each edge point and deciding whether a particular

pixel is truly a part of an edge or not [28, Sec.6.4.3]. The simplest method is to apply a threshold.

Canny edge detector, published in 1986 by Australian computer scientist John Canny, is still

state-of-the-art edge detection method
5
. Instead of applying a single threshold, the Canny

operator applies two thresholds, a technique called "hysteresis thresholding". In its basic form,

Canny operation uses the output of the Sobel operation. Following are the list of all steps in

Canny operation[28, Sec.6.5]:

1. Smooth the image with �lter of width σ.

2. Calculate the gradient vector in horizontal and vertical directions.

3. Determine the local gradient magnitude and orientation.

4. Preserve only those pixels that represent local maximum in the direction of gradient,

that is perpendicular to the edge tangent. This is done with "non-maximum suppression"

method. The result is edge points with 1 pixel width, which is more useful and desired

information about edges.

5. Apply hysteresis thresholding. Two thresholds, th (high) and tl (low) are de�ned. Each

pixel of an image is scanned for an edge magnitude Em(u, v) ≥ th. Whenever such a

pixel found, edge trace is started and all connected edge pixels (u′, v′) are added as long

as Em ≥ tl.

5

Wikipedia, Edge detection, https://en.wikipedia.org/wiki/Edge_detection#cite_
note-11, accessed: 31.08.2019

11

https://en.wikipedia.org/wiki/Edge_detection#cite_note-11
https://en.wikipedia.org/wiki/Edge_detection#cite_note-11

2 Background

2.5 Mathematical Background

2.5.1 Speed

Italian physicist Galileo Galilei is usually credited with being the �rst to measure speed by

considering the distance covered and the time it takes. The average speed v of an object is the

distance d travelled divided by the time t taken [19]:

v =
d

t
(2.2)

One of the common SI unit of speed is kilometres per hour (km/h). Many people perceive it

better because in everyday usage they encounter it more than the other units. However, in

this paper metres per second (m/s) is used for the computations since ball to goal distance is

in meters and �ight time of a ball typically happens in milliseconds or few seconds at most.

Conversions between m/s and km/h can be carried out easily with the following equations:

km/h = 3.6 ·m/s (2.3)

m/s =
5

18
· km/h (2.4)

2.5.2 Right Triangle

The right triangle is a triangle in which one of the angles is 90°. The sides a and b are adjacent

to the right angle and are called legs (Figure 2.3). The side c opposite to the right angle is called

hypotenuse. During conception phase in Section 5.2 knowledge on right triangles is required.

A C

B

a

b

chyp
oten

us

leg

le
g

Figure 2.3: Right triangle

12

2 Background

Pythagorean Theorem One of the �rst theorems of geometry that people learn is Pythagorean

Theorem [26] which states that:

c2 = a2 + b2 (2.5)

Equation 2.5 will be used to �nd one of the missing sides when the other two sides are known.

Trigonometric functions Trigonometric functions relate an angle of a right-angled triangle

to ratios of two side lengths. We are going to need the angle A, which can be found solving

the equation sinA =
a

c
[3, p.6] to A:

A° = arcsin(
a

c
) (2.6)

Equation 2.6 will be used to �nd the angle between hypotenuse and leg b.

2.5.3 Convolution

Convolution is a widely used technique in various areas of science [12, p.32-33]. In general,

it combines two functions of the same dimensions to form a third function. It is extensively

applied in IP during �lter operations.

2.5.4 Kernel

Kernel (also mask, convolution matrix or �lter) is a small matrix used in IP for blurring,

sharpening, edge detection, and other tasks. It is essentially a �xed-size array of numerical

coe�cients along with an anchor point in that array, which is typically located at the center
6
.

A kernel is convolved with the original image to achieve the results.

6

OpenCV, Making your own linear �lters, https://docs.opencv.org/3.4/d4/dbd/tutorial_
filter_2d.html, accessed:31.08.2019

13

https://docs.opencv.org/3.4/d4/dbd/tutorial_filter_2d.html
https://docs.opencv.org/3.4/d4/dbd/tutorial_filter_2d.html

3 Related Work

There is several commercial and scienti�c work covering concepts on how a ball may be

tracked. The review of the literature details these areas. Exploration of commercial products

helps to identify existing CV techniques for soccer and other sports which would bene�t from

this research.

3.1 Literature Research

Several studies have been carried out for ball tracking using CV methods in soccer [4], basketball

[9], volleyball [18], tennis [30, 32] and other ball sports. Some of them use high-quality cameras,

some use multiple cameras, some use static cameras and others require the users to keep

cameras as stable as possible. Based on my research, I have not come across a work that lets

the user to shake the camera freely. Nevertheless, a review of the related literature should

provide insights into the ball tracking and speed estimation tasks.

Pallavi et al. (2008) describe a method of detecting a football from broadcast soccer videos

[4]. The key component in their video processing is a focus on ball trajectory. They employ

Circular Hough Transform (CHT) to �nd ball candidates and then remove false positives using

Optical Flow, motion and background subtraction methods. They successfully continue with

ball trajectory estimation using dynamic programming.

Chakraborty and Meher (2013), in their paper "A real-time trajectory-based ball detection-

and-tracking framework for basketball video", addressed the problem of ball detection-and-

tracking in a real-time basketball video [9]. They discuss the challenges introduced by high

speed and small size of the ball in relation to the video frame. They propose a solution based

on the trajectory-based technique through the use of three frame di�erencing. Their system

detects and tracks a ball using a two-fold method. First is feature-based and �nds ball candidates

based on shape and size. The second step veri�es the detection by trajectory information by

�tting ball candidates to a parabolic path, which is a typical ball path in a basketball game. This

way they also �ll in missing ball positions, due to occlusion and other reasons, using trajectory

interpolation technique. Reportedly, their system performed well also in videos downloaded

from the Internet.

14

3 Related Work

Takahashi et al. (2016) developed a real-time volleyball tracking system using four cameras

[18]. They draw attention to the di�culties in tracking fast-moving ball due to motion blur and

occlusion by players. Therefore they developed a system that uses four HD cameras as sensors

of ball position. The acquired data is processed in parallel, results integrated and 3D ball

position is calculated. Thanks to the multi-camera system, if ball detection fails in the certain

cameras, remaining cameras allow the system to continue normal work. This complementary

tracking scheme constitutes the main characteristic of their system. The system’s average

error distance in 3D coordinates was 21.8 cm, which was about the diameter of a volleyball.

Many attempts have been made in tracking tennis balls, including Yu et al. (2004) [30] and

Yan et al. (2005) [32]. They describe the problem of tracking the ball in a tennis video, which has

many similarities with the problem of this work. With a lack of full control over the recording

hardware and camera positioning, they are pointing out to di�culties including, abrupt ball

trajectory direction change and ball blurring due to high speeds. The authors suggest avoiding

object feature-based detection algorithms. Instead, they propose detecting all moving objects

and evaluating their trajectories for candidate objects.

3.2 State Of The Art and Related Products

There are several systems already available in the market that resemble the one we are devel-

oping in this work. Some are being used for many years for tra�c surveillance, others being

developed lately to assist an objective decision making in sports and to produce analysis and

statistics on match events. In the following sections, di�erent commercially available speed

measuring systems, including state-of-the-art and promising newcomers, are introduced. They

include Doppler guns, multi-camera systems, and mobile applications.

3.2.1 Doppler Radar

Doppler radars or guns are used in law-enforcement and professional sports for �xing the speed

of the vehicle, bowling speeds in cricket, tennis serves and etc.
1
. They exploit the Doppler

e�ect to measure the speed of moving objects at a distance.

The Doppler e�ect is proposed by Austrian physicist Christian Doppler in 1842 [22]. This

e�ect is based on the change in frequency of a wave in relation to an observer who is moving

relative to the wave source. Most of us encountered this phenomenon in life when ambulance

1

Wikipedia, Radar Gun, https://en.wikipedia.org/wiki/Radar_gun, accessed: 20.08.2019

15

https://en.wikipedia.org/wiki/Radar_gun

3 Related Work

Figure 3.1: Demonstration of Doppler e�ect with high speed ambulance example.

sounding a sirens approaches us and then recedes. The received frequency during approach is

higher than when it recedes (Figure 3.1).

Doppler radars consist of transmitter and receiver. The signal is sent out and then the

same signal is received after it bounced o� the target object. As mentioned above, due to the

Doppler e�ect, there will be a frequency di�erence between transmitted and received signals

as long as the target object is not stationary. Received signal will have a higher frequency

than transmitted signal if the target object is approaching and vice versa. From that di�erence,

Doppler gun calculates the speed of target object.

Doppler e�ect based speed measuring devices are so precise that they are also applied in

measurements of the speed of planets, spacecrafts and even for estimating expansion speed of

the universe
2
.

3.2.2 Hawk-Eye

Hawk-Eye is a CV based system consisting of six or more high-performance cameras �xed

around the scene that tries to create a 3D representation of the trajectory of the ball. Hawk-Eye

is trusted as a fair second opinion by twenty di�erent sports associations [2], that are using

this system with individually calibrated and validated installations. An overview of the system

is presented in Figure 3.2.

Hawk-Eye systems are based on the principles of triangulation, which refers to the process

of determining a point in 3D space given its projections onto two or more images and timing

data. It involves four major processing stages:

1. Detecting the center of a ball from each camera using CV.

2. Calculating 3D position of a ball using triangulation.

2

NASA, S-4A-2 The Frequency Shift and the Expanding Universe, https://www-spof.gsfc.nasa.
gov/stargaze/Sun4Adop2.htm, accessed 20.06.2019

16

https://www-spof.gsfc.nasa.gov/stargaze/Sun4Adop2.htm
https://www-spof.gsfc.nasa.gov/stargaze/Sun4Adop2.htm

3 Related Work

Figure 3.2: Hawk-Eye system overview

3. Repeating the second step for each frame to create a motion sequence.

4. Superimposing the trajectory over the court using virtual reality software to determine

the position of the ball.

Hawk-Eye is becoming a standard in the growing number of sports and is a perfect example of

what can be achieved by CV techniques. However, it is seemingly an expensive system requiring

individual installation, that can usually be a�orded by sport associations and established teams.

3.2.3 Athla Velocity

Velocity is an iOS-based speed camera application by Athla
3
. Athla claims that their application

is the most accurate iOS speed camera. They prove their statement with a video demonstration

on Youtube
4
. With this video they compare the Velocity to four di�erent systems in the price

range of 30-15,000 USD and interestingly, the application outperforms the most expensive

system (PlaySigth) while remaining accurate within 0.5 km/h range compared to 1200 USD

Doppler radar (Stalker), as shown in Figure 3.3.

3

Athla, Main Page, http://app.athla.com, accessed:29.06.2019

4

Youtube, Speed Radar "Battle�eld!" PlaySight vs Stalker vs Bushnell vs SKLZ vs Athla, https://www.
youtube.com/watch?v=Khvj6tC1NPA, accessed:29.06.2019

17

http://app.athla.com
https://www.youtube.com/watch?v=Khvj6tC1NPA
https://www.youtube.com/watch?v=Khvj6tC1NPA

3 Related Work

Figure 3.3: Comparison of Athla against other products. Setup (left) and measurement results

(right).

In another video
5

the setup process of the application is explained. Since this application

implements the speed measurement task similar to ours, it is of great interest and close

investigation of this video might be helpful in getting an insight into the details of how the

application with such a precision works. Setup process is as follows:

1. Choose the ball type (tennis, baseball, volleyball, soccer, cricket).

2. Set device 6 meters away and 6 meters to the side.

3. Place it on the ground

4. Place the device at 15-degree angle, front camera facing up.

5. Optionally, link to other devices (iWatch, iPad, iPhone) to see the results without having

to check the screen of recording device meters away.

6. Measure.

7. If there is a problem, try to point it to an area of sky that is clear and is not covered by a

lot of trees blowing in the wind.

Steps 4 and 7 suggest that their algorithms do not want to see anything else moving in the

background apart from the ball. From Step 3 it becomes obvious that the algorithm requires

static video shots which is probably one of the crucial points in this application’s accurate

estimations.

5

Youtube, Athla Velocity iOS Speed Camera BASEBALL SETUP, https://www.youtube.com/watch?
v=tJ08IHetnbU, accessed:29.06.2019

18

https://www.youtube.com/watch?v=tJ08IHetnbU
https://www.youtube.com/watch?v=tJ08IHetnbU

3 Related Work

3.2.4 SpeedClock

SpeedClock is yet another mobile application that lets the user to measure the speed of cars,

boats, animals, balls or practically any moving object whose dimensions are known
6
.

The system is based on motion detection and object tracking. It has three di�erent modes for

measuring the speed
7
. One of the modes uses distance to target and angle information of the

phone camera. In the next mode, the user enters the target object’s size, such as the diameter

of a ball, vehicle wheel or height of a person, and distance traveled by Object of interest (OOI)

is derived based on this information. In the third mode, the user helps to detect fast-moving

objects like a tennis balls by manually entering the target object’s position once entering and

leaving the scene.

Figure 3.4: Screenshots of SpeedClock application

It performs good enough according to customer reviews on AppStore and Youtube, although

no o�cial or convincing test results were found. The downside of this application can be the

fact that it requires a lot of pre-con�guration before it can actually be used. Nevertheless, it

is a promising tool when the user possesses the information about the surrounding object

dimensions.

6

App Store, SpeedClock Video Radar, https://apps.apple.com/us/app/
speedclock-video-radar/id400876654, accessed:29.08.2019

7

Appmaker, SpeedClock, https://appmaker.se/home/speedclock/, accessed:29.08.2019

19

https://apps.apple.com/us/app/speedclock-video-radar/id400876654
https://apps.apple.com/us/app/speedclock-video-radar/id400876654
https://appmaker.se/home/speedclock/

4 Requirements Analysis

With this chapter, we start the development of the product by de�ning use-cases and identifying

stakeholders. Afterward, we list the functional and non-functional requirements that de�ne

what a system is supposed to accomplish.

4.1 Stakeholders

Stakeholders of the product along with their priorities, rated from one to ten, are listed in

Table 4.1. They can be categorized into internal and external groups.

Table 4.1: Stakeholders and their priority scores

Stakeholder Priority

Supervisor 10

Secondary referee 9

Soccer coach 7

Soccer player 6

Individuals 5

Internal group represented by professors from the Hamburg University of Applied Sciences:

primary supervisor for this thesis work, who is also the owner of this project’s idea, and

secondary supervisor who is also interested in the results of this paper acting as a referee.

Intuitively, these stakeholders are getting �rst and second highest priority from my perspective,

because it is these two stakeholders who will judge and de�ne the success of this work. It is

worth mentioning here that, this thesis work was conducted internally at the university.

The external group includes soccer coaches, trainees and any other perspective users that

might use the product. Since this is not a commercial, client-driven product where customer

and sale numbers come �rst, external stakeholders group is rated below the internal group.

Individual users are getting the lowest score inside the group because one of the main focuses

20

4 Requirements Analysis

of this project is to build a product that will be used during soccer training by coaches and

players. In a similar way, the soccer player gets lower priority than a coach since the ultimate

end-user of the product, the operator, is a soccer coach.

4.2 Use Cases

In this section, the most important functionalities from the perspective of stakeholders, users

and external systems are described.

The product being developed is essentially a radar system that estimates the speed of the

ball from a video recording. Hence, �rst the foremost comes the functionality to measure the

speed. The product is intended for the usage of soccer training, suggesting that there should

be many trainees. It should be bene�cial for the coach to create and save pro�les of each

trainee. Therefore, this turns into another functionality. The pro�les can be stored in some

sort of database and later be presented as helpful statistical data, making it yet another useful

functionality.

When it comes to actors, we have the operator who is using the system. Analyzing the

external systems, we should have a camera for recording, a database to store the data and a CV

library that makes CV algorithms accessible
1
.

All above information is summarized and depicted in Figure 4.1. The details of functionality

"measure speed" is presented in Table 4.2.

4.3 Functional Requirements

Functional requirements derived from previous sections and received from stakeholders are

listed in Table 4.3. They are enumerated with pre�x "F" and will be referred throughout the

text.

The �rst and foremost is the requirement F1, received from Supervisor. It states that the

distance to be measured is 5-11 meters. Eleven meters match to the penalty distance in football

[8, p.35]. Fortunately the distance has this limit, otherwise, the greater distance would require

the operator to record a video further away from the ball trajectory, making a ball appear even

smaller on the recording and thus making the ball detection hard.

The requirement F2 imposes extra task by demanding the readiness for shoots against a

wall. As can be expected, a ball will rebound and change its initial direction after touching the

wall. If not handled with caution, the ball tracking mechanism might be fooled, resulting in

1

Depending on type of a device, camera and database might become an internal part of the system.

21

4 Requirements Analysis

Database

Operator

CV library

Camera

System

Add new player

Measure speed

See statistics

<<include>>

Process images

<<include>>

Record video

Save measurement
results

Figure 4.1: Use case diagram of the system

the ball-goal intersection moment to go unnoticed. Hence, this condition needs to be tackled

accurately.

Requirements F3 through F7 declare functions regarding usability and extra features of the

product. They impose extra data handling tasks. Among them, requirement F4 carries special

weight because it will reduce the barrier to use the system.

4.4 Non-Functional Requirements

Non-functional requirements usually carries quality attributes of the system. They are listed

in Table 4.4. Similar to functional requirements, they are enumerated with pre�x "NF".

NF1 indicates ±2.5 km/h error margin which is small enough to make the product usable.

Bigger errors would make the product worthless because kids’ shootings are not expected to

cover a wide speed spectrum and greater errors won’t give any sensible comparison of speed

between hard and normal shot. This value is the same as for Supidio speed radar [21], the

device which was used at the beginning of this work for supplying test data.

NF2 is a vital requirement about the performance due to its positive input to usability. In the

modern world, users are used to instant responses from the software. If the user is asked to

wait one minute before the result is available the product can be considered as a total failure.

22

4 Requirements Analysis

Table 4.2: Use case table for "measure speed"

Use case Measure speed

Description Estimates the speed of ball from the video recording

Actors Operator

Systems involved CV library, Camera

Trigger Operator presses the button

Preconditions Ball and goalpost detected

Success end condition Speed successfully calculated

Failure end condition

- ball has not reached the goal within speci�ed time interval

- calculation takes longer than speci�ed time interval

Typical �ow

1. Operator presses the button

2. Player shoots the ball

3. Ball reaches the goal

4. Speed is calculated based on available data

Table 4.3: Functional requirements

Id Statement

F1 The system must measure the speed of ball when ball to goal distance is 5-11 meters.

F2 The system must support the measurement of shots against a goal and a wall.

F3 The user must be able to create and save new players to the system.

F4 The user must be able to measure the speed without choosing a player.

F5 The user must be able to save the measurement results to the player’s history.

F6 The user must be able to sort statistics of all player by age, speed and date.

F7 The user must be able to �lter statistics of all players by name, distance and team.

NF2 demands e�cient algorithms and near real-time processing, yet giving enough room for

post-processing.

As can be expected, not all shoots will follow the ideal ball trajectory, which is the shortest

and prede�ned distance to the goal. After being shoot by the player, the actual ball trajectory

23

4 Requirements Analysis

can create horizontal and vertical (or both at the same time) angles with the ideal trajectory.

Any other trajectory will have a greater distance than the ideal trajectory and thus needs to

be considered. NF3 requires to increase the accuracy by eliminating the error caused by the

vertical shooting angle. Luckily, there is no requirement for a horizontal angle which would

put weight on performance, because it would probably require detection of changes in ball

radius which in turn would require additional sets of CV algorithms and highly expensive

computations.

NF4 and NF5 will also bene�t the user experience. This requirement set puts a limit to

the amount of external assistance, restricting the SpeedClock-like implementations (Page 19),

wherein some modes user is asked to pause the video at di�erent points and mark the position

of the ball.

Requirements NF6 through NF8 dictates a�ordability concerns. Meaning, the solution must

not require expensive, high-end devices. They will help in reaching out to the target user

segment, taking into account prospective users who will most likely be teenagers and coaches,

the segment with medium and low buying power. NF8 also increases the usability of the

system, since carrying extra pieces of hardware is not something that the users love.

Table 4.4: Non-functional requirements

Id Statement

NF1 The measurement error shall be within ±2.5 km/h range.

NF2 The measurement result shall be available within 10 seconds after recording.

NF3 The in�uence of a vertical shooting angle should be taken into account.

NF4 User help for ball detection shall be limited to the beginning of a measurement.

NF5 User help for ball tracking and calculation shall not be required.

NF6 If solution is based on an Android device, version 6 and up shall be supported.

NF7 If solution is based on an iOS device, version 9 and up shall be supported.

NF8 If solution is based on a mobile device, no external hardware shall be required.

24

5 Conception

In this chapter, we conceptualize a solution that meets the requirements of the previous chapter.

We make our assumptions and then continue developing theoretical, hardware and software

solutions.

5.1 Assumptions

Figure 5.1: Camera lens direction with respect to ball trajectory

Direction Non-functional requirements list (Table 4.4) does not contain any requirement

for considering horizontal angle. Thus, it is assumed that the camera will be positioned

perpendicular to the ideal ball trajectory as shown in Figure 5.1.

Orientation The camera must be positioned in such a way that the x axis of the resulting

frames from the video stays parallel to the ideal ball trajectory. This is necessary for identifying

25

5 Conception

the ideal trajectory, which after this assumption, is any point between ball and goal that has the

same height value as the ball’s height value at its initial position. Ideal trajectory is needed for

estimating vertical angle that appears between ideal and actual ball trajectories. Nevertheless,

this assumption is only valid for the initial solution. In later versions of the product, it should

be possible to derive the ideal trajectory by IP.

Stability The camera must be kept as stable as possible for accurate results. This assumption

is also applicable to the initial solution. Future work could eliminate this assumption by

applying image matching and registration techniques [28, p.565-587].

Lightening Videos can be recorded both indoors and outdoors as long as the ball’s color is

easily distinguishable from the background.

Background There should be as little motion as possible on the background of a ball trajec-

tory.

5.2 Theoretical Solution and Failure Modes

Theoretically, �nding the average speed is straightforward with the Equation 2.2 (Page 12).

The values for distance d and time t needs to be known before. The distance can be supplied

by a user or estimated using CV methods. The travel time of the ball from the start to the end

can also be determined by capturing the system time at each frame. Next, the speed can be

computed and later converted to km/h, due to better comprehension by humans. This approach

can be implemented programmatically like in Listing 5.1.

1 final long timeStart = System.currentTimeMillis();
2 // some code in between
3 final long timeEnd = System.currentTimeMillis();
4

5 final double travelSeconds = (timeEnd - timeStart) / (double) 1000;
6 final double speedInMps = distanceInMeter / travelSeconds;
7 final double speedInKph = speedInMps * 3.6;

Listing 5.1: Finding ball speed from time and distance

The solution described above is for best-case scenario when ball follows the ideal trajectory

and the system detects the ball exactly at start and end
1

points. In reality, however, the ball

1

the moment when 51% of the ball crosses the ball line

26

5 Conception

is expected to follow di�erent trajectories and inherently limited fps rate of cameras might

capture the ball a little after it crosses a goal line. Major failure modes have been found out,

summarized in Table 5.1, then analyzed and tackled in the next paragraphs.

Table 5.1: Possible failure modes

Id Description

FM1 Vertical angle

FM2 Horizontal angle

FM3 Vertical and Horizontal angle

FM4 Parabolic trajectory

FM5 Missed ball-goal intersection

FM6 Ball de�ection

FM7 No ball-goal intersection

Vertical Angle (FM1) This is an angle created between the lines AB and AC (Figure 5.2).

AB represents the ideal ball trajectory and its distance is known to vary between 5m and 11m,

according to the requirement F1 (Page 23). BC represents the height of the goal which is also

known to be 1.83m, according to FA speci�cations presented in Page 4. As can be seen from

the �gure, ABC creates a right triangle, allowing us to apply the Pythagorean Theorem (2.5).

Solving the equation for c we are getting:

c =
√
a2 + b2

Inserting the values for a and b, and then applying Equation 2.6 from Page 13, results to lengths

AC5m = 5.32m, AC11m = 11.15m, angles CAB5m = 20.1°, CAB11m = 9.45° and ratios

AC5m
AB5m

= 1.064, AC11m
AB11m

= 1.014, for AB values of 5 meters and 11 meters respectively.

Horizontal Angle (FM2) This is an angle created between the lines AB andAE. Although

it is not part of the requirements to take this angle into account, it is worth exploring what

kind of error this angle might introduce. Since BE is equal to BC and hence right triangle

ABE has the same dimensions as the ABC , the values for lengths AE, angles BAE, ratios

AE to AB will be identical to the ones found for vertical angle.

27

5 Conception

A B

E

D

C

1.
83

 m

1.83 m

5 m / 11 m

1.
83

 m

1.83 m

Figure 5.2: Ball and goal triangles

Vertical and Horizontal Angle (FM3) With the similar approach as for FM1 and FM2,

following values calculated for triangle ABD: BD =
√

(BE)2 + (ED)2 → BD = 2.59m,

lengths AD5m = 5.63m, AD11m = 11.3, angles DAB5m = 27.39°, DAB11m = 13.25° and

ratios
AD5m
AB5m

= 1.126, AC11m
AB11m

= 1.027.

Parabolic Trajectory (FM4) Actual shoots in soccer tend to give the ball a parabolic tra-

jectory in one or more directions. As a result, ball travels a longer distances than it would with

a straight trajectory. Luckily, the trajectory of a ball in soccer does not usually create a sharp

parabolic curve, which is typical to basketball and volleyball games. Thus, FM4 is not expected

to be a source of big errors. Moreover, it is not part of the requirements.

t1

t2

t0=?

d1

d2

d1

t1

t2

d2

t0=?

Figure 5.3: Failure modes FM6 (left) and FM5 (right)

28

5 Conception

Missed Intersection (FM5) FM5 stands for an event when a ball appears before the goalpost

in one frame and further behind it on the next one. There is no frame in between showing the

intersection moment of a ball with a goalpost. This caused by inherently slow camera fps rate.

This mode will pose a risk for future algorithm that relies on intersection frame. As illustrated

in Figure 5.3, time t0 is unknown. It can be approximated as following, assuming stable ball

speed and direction through all frames:

t0 = t1 +
d1

d1 + d2
· (t2 − t1) (5.1)

Ball deflection (FM6) This model originates from the requirement F2 (Figure 4.3), which

demands the measurement of shoots against a wall. Unsurprisingly, the ball should bounce

back after hitting a wall. It can also happen after a ball hits the crossbar of a goal. It can be

handled similar to FM5 and Equation 5.1, with some error caused by natural speed loss after

ball de�ection.

No Intersection (FM7) FM7 stands for an event when the ball gets shot but for some reason

never appears to be reaching the goal. This might result in memory leaks in the system. To

avoid that, the timeout should be set for the video recording phase. In general, the ball’s �ight

time tflight should not take more than two seconds, assuming fairly slow ball speed of 20 km/h

and distance of 11 meters:

v =
5

18
· 20km/h = 5.556m/s

tflight =
11m

5.556m/s
= 1.98sec

Adding six more seconds as an extra margin for the player’s preparation for shooting and

user’s delay in stopping the recording, a timeout can be safely set to eight seconds.

To obtain the speed errors caused by FM1 and FM2, test calculation was conducted for 5m

and 11m distances, and for ball speeds of 60, 45, 30 km/h. As can be observed from Table 5.2,

the error will be greater for shorter distances and higher ball speeds. The errors will be greater

for FM3, since the angle created between ideal and actual ball trajectory is bigger. Nonetheless,

as listed in the non-functional requirements table (Page 24), only the errors caused by the

vertical angle (FM1) should be tackled.

29

5 Conception

Table 5.2: Errors caused by vertical or horizontal angles at di�erent distances and speeds

Flight time (second) 0.3 0.4 0.6 0.66 0.88 1.32

Distance (meter) 5 11

Speed (km/h) 60.000 45.000 30.000 60.000 45.000 30.000

Actual distance (meter) 5.32 11.15

Actual speed (km/h) 63.840 47.880 31.920 60.818 45.614 30.409

Error (km/h) 3.840 2.880 1.920 0.818 0.614 0.409

5.3 Hardware

When it comes to hardware that is mobile and could potentially meet our requirements, two

major options emerge: single board computers and mobile devices. This concern is addressed

in the following sections.

5.3.1 Device Selection

A single board computer is a complete computer built on a single circuit board. Arduino Uno

and RaspberryPi are examples of such devices.

Arduino Uno Arduino is a microcontroller that can’t multitask activities and is best used

for simple repetitive tasks. On the one hand, it is easy to setup and start prototyping. On the

other hand, it is almost useless for expensive CV computations like in our case.

Raspberry Pi 3 Raspberry Pi is a single board, fully functional computer with its dedicated

processor, memory and can run operating systems like Linux, Windows 10, Firefox OS and

Android. It can run multiple programs at the same time and is faster than Arduino with 1.2

GHz CPU clock speed [23] compared to 16 MHz [6]. It can potentially use more than one

video camera leading to robust object tracking and more accurate speed measurements. On

the downside, users will have to buy an extra devices to use our product. Moreover, it will

require more time to setup the development environment: operating system, external cameras,

drivers, display and, etc.

Smartphones Android and iOS phones, two common mobile platforms, are very capable

nowadays. In general, smartphones o�er a great package: built-in cameras, multiple sensors,

30

5 Conception

powerful processors, a great development environment with good documentation and high

availability among people. All of these factors make smartphones a great �t for the purposes

of this project, considering that the alternatives, namely RaspberryPi and Arduino, have many

shortcomings.

To conclude, smartphones are just better candidates in terms of user-friendliness, a�ordabil-

ity, computing power and ease of development. Most importantly, this option won’t require

the users to buy an extra dedicated device which would signi�cantly reduce the chance of

product ending up on the user hands.

5.3.2 Platform Selection

It is no secret that there are two major players in the phone market and mobile developers shall

make a choice to go one way or the other. Fortunately, in recent years more and more tech

companies are trying to solve this issue by o�ering programming languages and frameworks

that eliminate this problem. Solutions are dozens of hybrid and native app frameworks
2

that

allow to create both Android and iOS native codes from the single code base. Most promising

hybrid frameworks from my perspective are ReactNative by Facebook and Flutter by Google.

The advantage of such development would be writing one code and running them natively

on both platforms. However, a hybrid approach might not go well with graphics-oriented,

performance-centric apps
3
. It might still worth testing, but due to the time constraints it is

not feasible. Therefore, the decision has to be made between Android and iOS.

Figure 5.4: IOS and Android market share in the World (left) and Germany (right)

2

Hackernoon, Top 10 Best Mobile App Development Frameworks in 2019–20, https://hackernoon.com/
top-10-best-mobile-app-development-frameworks-in-2019-612b95cf930f, ac-

cessed:29.08.2019

3

Medium, Choose the best — Native App vs Hybrid App, https://codeburst.io/native-app-or-hybrid-app-

ca08e460df9, accessed:10.07.2019

31

https://hackernoon.com/top-10-best-mobile-app-development-frameworks-in-2019-612b95cf930f
https://hackernoon.com/top-10-best-mobile-app-development-frameworks-in-2019-612b95cf930f

5 Conception

Instead of doing an exhaustive comparison of every single aspect of these platforms (inter-

ested reader is welcomed to do so
4
), the focus is made on their market share. As illustrated

in Figure 5.4, the coverage depends heavily on the country. People in countries like the USA,

Canada, New Zealand, Australia prefer iOS devices while almost the rest of the world prefers

Android devices. Developing a product primarily for German users, let’s take a closer look at

statistics in Germany. Figure 5.4 clearly indicates that about 70% of the German population

prefers Android devices. This is almost two times more than its counterpart. Therefore, the

product will be based on a mobile device that runs on the Android operating system.

5.4 So�ware

In this section we will try to �nd suitable CV library for further development. Apart from

that, selections on other aspects of the development will also be de�ned. and programmatic

approach for the development.

5.4.1 Computer Vision Library Selection

CV tools have evolved over the last years in such a rate that apart from software libraries,

computer vision is now also being o�ered as a service by major cloud service providers such

as Google, Microsoft, and Amazon. In this part, the most popular alternatives are evaluated.

TensorFlow TensorFlow by Google is an end-to-end open source ML platform
5

based on

deep learning neural networks
6

used across range of tasks: classi�cation, prediction, image

recognition, motion detection, etc.
7
. One of the main drawbacks of TensorFlow in that it is

extremely resource hungry. Moreover, to use it one needs to have experience with ML and

Deep Learning. Therefore this option was not feasible for me.

OpenCV OpenCV is an open-source CV and ML software library employed by many well-

established companies like Google, Yahoo, Microsoft, Intel, IBM, Sony, Honda, Toyota. It

is originally written in C++. It has Python, Java, Matlab interfaces and supports Windows,

Linux, Mac OS, and Android operating systems. The library has more than 2500 optimized

4

Di�en, Android vs. iOS, https://www.diffen.com/difference/Android_vs_iOS, accessed:

10.07.2019

5

Tensor�ow, About, https://www.tensorflow.org, accessed:31.07.2019

6

Wikipedia, TensorFlow, https://en.wikipedia.org/wiki/TensorFlow, accessed:31.07.2019

7

Exastax, Top �ve use cases of TensorFlow, https://www.exastax.com/deep-learning/
top-five-use-cases-of-tensorflow/, accessed:31.07.2019

32

https://www.diffen.com/difference/Android_vs_iOS
https://www.tensorflow.org
https://en.wikipedia.org/wiki/TensorFlow
https://www.exastax.com/deep-learning/top-five-use-cases-of-tensorflow/
https://www.exastax.com/deep-learning/top-five-use-cases-of-tensorflow/

5 Conception

algorithms
8
. These set of classic and state-of-the-art algorithms can be used for a full range of

CV tasks including but limited to face recognition, object identi�cation, camera movement

tracking, moving object tracking and 3D model extracting. All these factors make OpenCV a

promising candidate and a very compelling library to employ.

BoofCV BoofCV is relatively young CV library. While OpenCV claims that their open-source

library is the fastest because it is written in the native C language BoofCV claims with runtime

comparison that their library is faster than OpenCV when processing higher-level algorithms

[1]. However, this information is not o�cially tested or con�rmed. Furthermore, BoofCV does

not come with the amount of algorithm arsenal that OpenCV does. Poor documentation and

relatively weak community support are yet another disadvantages.

After considering all above, I decided to continue with OpenCV due to the following reasons:

a range of algorithms, documentation, support, and reputation.

5.4.2 Tools and Methodologies

In this part, all technology stack used for the development of the product is listed and shortly

described. It comprises of programming languages, Integrated development environment (IDE),

version control system and SW development methodologies.

Android Studio Android Studio is an o�cial
9

IDE for Android application development. It

is purpose-built for Android development by Google on the base of JetBrains’ IntelliJ IDEA
10

and intends to accelerate development and deliver high-quality applications for any Android

device.

Java Although Kotlin is Google’s current preferred programming language for Android
11

,

Java is going to be used due to my previous experience and the fact that OpenCV does not

have Kotlin interface.

8

OpenCV, About, https://opencv.org/about/, accessed:31.07.2019

9

Android website, Android Studio, https://developer.android.com/studio/index.html, ac-

cessed: 01.08.2019

10

JetBrains website, IntelliJ IDEA is the base for Android Studio, the new IDE for

Android developers,https://blog.jetbrains.com/blog/2013/05/15/
intellij-idea-is-the-base-for-android-studio-the-new-ide-for-android-developers/,

accessed: 01.08.2019

11

Android website, Develop Android apps with Kotlin, https://developer.android.com/kotlin,

accessed:01.08.2019

33

https://opencv.org/about/
https://developer.android.com/studio/index.html
https://blog.jetbrains.com/blog/2013/05/15/intellij-idea-is-the-base-for-android-studio-the-new-ide-for-android-developers/
https://blog.jetbrains.com/blog/2013/05/15/intellij-idea-is-the-base-for-android-studio-the-new-ide-for-android-developers/
https://developer.android.com/kotlin

5 Conception

Python Due to its simplicity and e�ciency, Python will be used in the concept phase for

quick testing of di�erent OpenCV algorithms and methods.

Git Although it is not a group project and source code is not needed to be shared with

anyone during the development period, the git version control system will be employed for

keeping a clean code history. Git Work�ow design
12

will be utilized in order to standardize the

development and make it easier for anyone to understand and continue working on the code.

Testing Test data is provided by the Supervisor. It contains a group of shooting videos from

�ve and ten-meter distances with di�erent camera angles. Speeds of all shoots were measured

with Supido personal sports radar and documented in an excel �le. This data set will be used as

reference data during the development. The �nal product shall be compared to more accurate

devices such as Doppler radar guns. Samsung Note 5 smartphone is going to be used during

application development.

Agile For the development of the application, a popular approach of modern software

development Agile will be utilized. As opposed to the Waterfall method, where the �nal

product is delivered at the end of a life cycle, with Agile product is delivered constantly with

small increments
13

. Although it is partly dealing with the way teams and team members

collaborate with each other, the idea of incremental small deliveries of working software

can be advantageous in projects like this, where a programmatic solution is not well de�ned

beforehand and adaption to changes is required. Therefore, keeping the �exibility of switching

between algorithms midway through the development when a certain approach performs

weekly, will be a great asset.

In the next chapter, a range of di�erent CV and IP methods will be tested with Python code

on the macOS device and later, the selected ones will be transferred to an Android device in

Java implementation. In the initial phase of development, the focus will be made on delivery of

those features that meet the requirements F1 and F2 (Page 21). This decision was made due to

the fact that the product may become somewhat usable by implementing just the requirements

F1 and F2, but not the other way around. We will refer to that state of a product as version one.

The remaining requirements will be ful�lled as time allows. As a result, increments in product

delivery should look like following:

1. Test di�erent methods.

12

Atlassian website, Git�ow Work�ow, https://www.atlassian.com/git/tutorials/
comparing-workflows/gitflow-workflow, accessed:03.08.2019

13

Atlassian, The Agile Coach, https://www.atlassian.com/agile, accessed:02.08.2019

34

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/agile

5 Conception

2. Build running Android application with two activities: Main and Camera activity.

3. Make camera activity to record a video.

4. Get user inputs in Main activity and pass them to Camera activity.

5. Implement ball detection and tracking.

6. Implement goal detection and tracking.

7. Calculate the speed.

8. Optimize the solution.

9. Create database infrastructure for storing shooting results.

35

6 Computer Vision and Image Processing
Methods

As found out from theoretical solution section (Page 26), �nding the positions of a goal and a

ball in video frames and possessing the information about timestamp is su�cient to calculate

the speed. In this chapter a range of di�erent CV and IP methods will be tested using OpenCV’s

Python interface in order to �nd optimum algorithms and methods. It is assumed that the

performance of the algorithms will be similar in Android environment with Java interface.

Main criterion used for comparison of methods is speed, since the product under development

is intended for mobile devices, which are known to be limited in resources. Moreover, non-

functional requirement NF2 does not allow more than ten seconds for post-processing, limiting

the option to process the recording as long as it takes. The other important criterion is accuracy.

6.1 Hough Tranforms

Hough Transform (HT) is a general approach for identifying any shape that can be de�ned

parametrically within a distribution of points [28, Sec.8.2]. Luckily, in our case the OOIs, a ball

and a goalpost, are parametric shapes, circle and straight line respectively. In the following

sections we are going to examine two variations of HT, Linear Hough Transform (LHT) for

detecting goalpost and Circular Hough Transform (CHT) for detecting ball.

6.1.1 Line Hough Transform

As mentioned above, HT provides a means for identifying straight lines in images. It can be

helpful for identifying the goal posts since in images they are vertical straight lines.

The concept behind it is point-line duality [12, p.285].The basis of HT is to �nd aligned points

that create lines. Based on point-line duality, it is known that any point P can be represented

in terms of their coordinates (x, y) or in terms of lines y = a · x+ b passing through this point

(Figure 6.1a). In the latter case, the parameters a and b are used to de�ne the angulation of the

line. In a given line there are in�nite number of (x, y) tuples with di�erent values but a and b

36

6 Computer Vision and Image Processing Methods

values of the line is �xed. Now, if we invert the plane (x, y) into a plane (a, b), each point will

match to a line in (a, b) plane (Figure 6.1a). The opposite is also true, so intersection point of

lines in (a, b) plane will match to the original line we depicted in (x, y) plane. LHT is based

exactly on this duality. The line representation is not used in practice because for vertical lines

the slope is in�nite. A more practical representation is the so called Hessian normal form for

representing the lines [28, p.165]:

x · cos θ + y · sin θ = r

x

y

y=ax+b

P1 = (x1, y1)

P2 = (x2, y2)

(a) Cartesian coordinate system.

a

b

P=(a, b)

b = -x2a + y2

b = -x1a + y1

(b) Feature space.

Figure 6.1: Linear Hough Transform spaces

Edge detection methods is usually applied as a preliminary processing step, outputting the

information about points that represent the edges. Consequently, if edge points are aligned

on the same line, the linear representation of these points on the a− b plane will intersect at

some point P . If there are many such edge points on the same line, there will be equally many

intersections at the point P in a− b plane. This point P in its turn, as mentioned above, can

be translated to a speci�c line in x− y plane.

To test LHT in work, two windows were created as shown in Figure 6.2: one displaying

the detected lines on original frame, the other one displaying the output of canny operation.

The panel also included a control panel with sliders to control di�erent parameters of canny,

bilateral �ltering and LHT. This allowed to try di�erent parameters in real-time and also posed

a possibility to have similar panel in end product for calibration purposes.

37

6 Computer Vision and Image Processing Methods

Figure 6.2: Hough Lines control panel

The LHT found to be performing well

in identifying the lines, depending how

well the edges located in the frame. But

as expected, LHT does not give the de-

sired result right away. As displayed in

Figure 6.3, it is detecting all straight lines

in a given image, including vertical, hor-

izontal, short and long lines. They were

later �ltered out by setting minimum

length and excluding lines that span a

large distance over x axis. However, this

approach is not su�cient in cases like

in Figure 6.2, when there are other ob-

jects on the background that produces

vertical edges.

6.1.2 Circle Hough Transform

CHT is analogues to LHT in detecting

circular shapes. A circle can be described

by: (x−a)2+(y−b)2 = r2. In this equa-

tion, x, y de�ne the center of a circle and

r is the radius. Compared to LHT, three

parameters (x, y, r) are needed to math-

ematically de�ne the circle. As a result it

requires lots of storage and computation.

This was proved during testings, where CHT algorithm was taking about an order of magnitude

times more processing time than LHT. Moreover, testings showed that choosing the right

parameters for CHT can be tricky. As can be seen from Figure 6.4, although it works normally

on sample image with ideal circles, CHT fails to detect a ball that appears the same way as in

expected working condition. All these aspects, especially the performance, makes CHT a weak

candidate for our application.

38

6 Computer Vision and Image Processing Methods

Figure 6.3: Hough Lines, before (top) vs after (bottom) �ltering

Figure 6.4: Hough Circle Transform

39

6 Computer Vision and Image Processing Methods

6.2 HSV Thresholding

Figure 6.5: HSV Thresholding

To test this method, a control panel and two

windows similar to the one for HT was cre-

ated (Figure 6.5). Control panel allowed to

manipulate low and high H, S and V values

in real-time. Test images were chosen in a

way that they include other objects with the

similar color as the ball. To make test condi-

tions more tricky, instead of bright ball col-

ors that create high contrast with the back-

ground, images of balls with some patterns

on them were analysed. Despite all of that,

the balls were successfully identi�ed in all

test images. Moreover, complete algorithm

for HSV was running faster than any other

algorithm tested during this project, due to

the fact that no complex preliminary or post

processing being required.

Although no signi�cant problem was en-

countered, this approach requires some cal-

ibration before usage, for setting proper high

and low HSV range values.

6.3 Object Tracking

It is common that tracking is faster than de-

tection. The reason is that when tracking an

object that was detected in previous frames,

the program possesses a lot of information

about the object’s actual appearance and past

positions. A good algorithm will use most of the available information to identify the object in

a new frame, instead of detecting it from scratch. It is also common that tracking methods may

accumulate errors with every new frame and slowly drift away from the object it is tracking.

To �x this problem some tracking algorithms run object tracking from time to time.

40

6 Computer Vision and Image Processing Methods

OpenCV library comes with eight di�erent tracking algorithms. Selection of this algorithms

is examined in the next sections. All algorithms require the user to manually draw a bounding

box over the OOI. After that algorithms try to keep the object on track.

Identical video recordings with 30 fps and 240 fps were used for comparison. Various sizes

and shapes of bounding boxes were drawn for each algorithm. Information about fps rate and

status of tracker indicating whether or not OOI is under tracking was printed to the screen.

Printed information is the primary indicator of how good each algorithm performs.

6.3.1 MIL

Figure 6.6: MIL tracking

This algorithm was found to be consistently failing to report the lost OOI, the condition also

know as false positive, as can be observed from the screenshots in Figure 6.6.

6.3.2 KCF

Figure 6.7: KCF tracking

Kernelized Correlation Filter tries to calculate the motion of given initial set of points by

looking at the direction of change in the next frame. Once the new positions of these points

are identi�ed, the bounding box moves over. There is mathematics involved in making the

search faster, which found to be true with average fps of 35, nearly 2.5 times faster than MIL at

14 fps. Moreover, it was doing better job in avoiding the false positives. As can be seen from

the rightmost picture in Figure 6.7, after losing track of the ball algorithm duly reports it by

not drawing a bounding box.

41

6 Computer Vision and Image Processing Methods

6.3.3 CSRT

Figure 6.8: CSRT tracking failure (top) and success (bottom)

Discriminative Correlation Filter Tracker with Channel and Spatial Reliability is yet another

tracking method included in OpenCV arsenal. Like MIL algorithm, CSRT was constantly

showing false positives in 30 fps video. However, it demonstrated higher tracking accuracy in

high fps video (Figure 6.8) compared to other two algorithms, successfully overcoming full and

partial occlusions. Regarding the performance, it was in between MIL and KCF at 20 fps.

6.3.4 Object Tracking Summary

To summarize, MIL was the weakest performer due to false positives and low fps. KCF

demonstrated the fastest fps throughput, but stand out with slightly lower tracking accuracy

compared to CSRT, which was more accurate but still slower than KCF. Testings showed

that none of these methods are good �t for tracking a fast moving object that travels a long

distance (longer than its own size) between the frames. They are slow in general and perform

inconsistently by heavily depending on the shape and size of a drawn bounding box.

42

6 Computer Vision and Image Processing Methods

6.4 Moving Object Detection

Moving object detection is a technique where multiple video frames are compared by various

methods to determine moving objects
1
. In the following sections three most common methods

will be tested, namely background subtraction, optical �ow and temporal di�erence.

6.4.1 Background Subtraction

Background subtraction is common method for motion segmentation, but it performs best with

static camera and scene. In this method a reference image is used to compare with incoming

frames in order to di�erentiate foreground objects from the background [16][17]. Foreground

objects are considered to have motion. Background objects are considered to be static and

depending on the method used internally, background image can be updated if foreground

object motion stops [25]. This method is easy to implement but sensitive to the changes on the

background. Extracted background image is easy to be disturbed by light, weather and other

environmental conditions [31]. It is better suited for use cases where background is static [5].

Figure 6.9: Background Subtraction implementations. Stationary (top) vs non-stationary (bot-

tom) camera recordings

1

Wikipedia, Moving object detection, https://en.wikipedia.org/wiki/Moving_object_
detection, accessed: 20.07.2019

43

https://en.wikipedia.org/wiki/Moving_object_detection
https://en.wikipedia.org/wiki/Moving_object_detection

6 Computer Vision and Image Processing Methods

To test this method, two di�erent video recordings were fed to the algorithm, �rst with

static camera and the second one with non-static camera. As can be seen from Figure 6.9,

the persons on the foreground were successfully detected and isolated. On the second case,

however, the method did not perform well due to extensive camera movements. The second

video �le was one of the test videos which simulate the expected working conditions of the

end product. Therefore this method is unsuitable for our purposes, unless some additional

processing are done for stabilizing the the recordings.

6.4.2 Optical Flow

Optical �ow method uses �ow diagrams created by moving objects to recover motion at each

pixel from spatio-temporal image brightness variations [14].

This method was also tested and screenshots obtained, as can be seen from Figure 6.10.

Extremely low fps rates during tests demonstrated that optical �ow algorithms are compu-

tationally expensive and might not be suitable for video analysis on mobile applications.

6.4.3 Temporal Di�erence

Temporal di�erence is yet another moving object detection method and is most commonly used

in scenes where the camera is non-stationary [10]. Motion is detected by taking a pixel-by-pixel

di�erence of two or three consecutive frames.

The temporal di�erence of three frames is implemented by �nding the absolute di�erence

between the frames (n, n+ 1) followed by applying the same on frames (n+ 1, n+ 2). Then

the resulting two frames are combined into single frame by logical and-operation. Three

frames version of temporal di�erence method helps to further reduce the e�ect of insigni�cant

motions in the �nal result.

Compared to the previous two methods it is many times faster as it does not involve complex

operations. However, this method alone does not complete the task of �nding a ball. Further

processing needs to be added to somehow stabilize the recording and select apart the ball from

the player shooting it, who is also appearing as a moving object (Figure 6.11). Despite that, its

performance makes it a promising candidate for mobile applications.

6.5 Point Feature Matching

The idea behind point feature matching is based on point correspondences between a reference

and target images. It detects features (points, edges and etc.) in reference image and then

44

6 Computer Vision and Image Processing Methods

Figure 6.10: Screenshots from optical �ow implementation

tries to �nd these points on target image. It can detect objects despite a scale change, rotation

and some occlusion
2
. However, it is not expected to work well for uniformly-colored objects,

which is the case with some ball types. Another problem could be the fact the fast moving ball

might appear blurry making it hard to detect the feature points in target image. This method

does not seem to be a good �t for our task.

6.6 Decision

After implementing and evaluating (Table 6.1) all aforementioned methods the decision was

made to continue with three promising methods: LHT, HSVT and three frame temporal

di�erencing. They are all fast and can be accurate when properly calibrated. LHT can be used

2

MathWorks, Object Detection in a Cluttered Scene Using Point Feature

Matching, https://www.mathworks.com/help/vision/examples/
object-detection-in-a-cluttered-scene-using-point-feature-matching.
html, accessed: 20.07.2019

45

https://www.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html
https://www.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html
https://www.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html

6 Computer Vision and Image Processing Methods

Figure 6.11: Screenshots from temporal di�erence implementation

for tracking the goalpost, while temporal di�erencing for ball tracking. HSVT can be used

for both tasks. Figure 6.12 contains the screenshots of HSVT in action. The advantage of this

method is that, given enough contrast of the ball with background, it is very fast, prone to

camera shakes and blurs.

Although these methods might perform detection and tracking task separately, their combi-

nation will be exploited to achieve a two-fold tracking, like in the works done by other authors

[9, 4], with the possibility to increase layers of tracking by even more methods, including

trajectory based tracking method. Care must be taken in �nding the balance between real-time

and post-processing for meeting the requirements.

46

6 Computer Vision and Image Processing Methods

Table 6.1: Summary of methods

Method Speed Accuracy Usage

Line Hough Transform fast normal goalpost tracking

Circle Hough Transform slow bad ball tracking

HSV Thresholding fast good ball and goalpost tracking

MIL, KCF, CSRT normal normal ball and goalpost tracking

Background subtraction slow bad ball tracking

Optical �ow slow good ball tracking

Temporal di�erence fast good ball tracking

Point feature matching N/A bad ball and goalpost tracking

Figure 6.12: Ball tracking with HSV thresholding

47

7 Design

Due to time constraints, detecting and tracking the position of goalposts will not be taken into

account during designs. To overcome this problem, user assistance will be required. Depending

on the direction of a shooting, a �xed vertical line will be drawn on the left or right side of

the screen. The operator will need to hold the camera in such a way that on the screen this

vertical line positions in between two goalposts and parallel to them.

7.1 Design Alternatives

Although most of the aspects of product design are speci�ed in the requirements and others

derived during the conception phase, there are still some design details that need to be clari�ed.

All these concerns summarized in the next paragraphs.

Measurement Modes It was decided to use a combination of di�erent methods for tracking

(Section 6.6). But for the beginning, the product will have two di�erent modes for speed

measurement: "HSV" mode and "Di�erence" mode. The former will exploit HSVT method and

the latter TD method. LHT will be applied wherever necessary.

Processing No matter which CV method is used, their complete implementation and inte-

gration into the overall process takes many di�erent steps like, image resizing, time stamp

capturing, smoothing, color space conversions, contour �nding, bounding boxes drawing,

speed estimation, etc. In general, we have two options for handling all these steps:

1. Real-time. Performing all steps as soon as a video frame is available.

2. Post-processing. Performing the steps after the recording stopped.

A balance needs to be found between the two. On the one hand, there is non-functional

requirement NF2 (Page 24) that limits the post-processing time at ten seconds. On the other

hand complex computations in real-time may severely harm the fps rate of recording. Thus, the

preference will be given to post-processing whenever there is a computationally expensive step.

48

7 Design

Frame resizing, time stamp capturing and other simple steps can be done in real-time. At this

stage of the development, every processing step and details are unknown. Therefore, the �nal

balance between real-time and post-processing will be adjusted during the implementation

phase based on actual performance. All in all, I will try to keep fps rate above 24, the rate

which provides adequate visual continuity [20].

Distance There are di�erent ways for estimating a distance between two objects directly

from a video recording (e.g. one of the modes in SpeedClock application (Section 3.2.4)). Despite

that decision was made to obtain the ball to goal distance from a user in the �rst version of the

product. This decision should not harm the user experience and must bring in considerable

amount of relief in terms of application development time.

Direction The information about the direction of a shoot was also decided to be gathered

from a user. Like in the previous paragraph, it is believed that this approach will not damage

the usability of the app. Instead, it will help to reduce the workload during development.

7.2 UML Diagrams

The Uni�ed Modeling Language (UML) is used in the next sections for modeling some parts of

the system. These diagrams will assist the development and increase e�ciency.

Player

idPK

name

age

team

result_idFK

Result

idPK

Timestamp

Speed

Distance

Ball

idPK

name

image

h-value

s-value

v-value

Figure 7.1: Entity-relationship model of the application

49

7 Design

7.2.1 Entity-relationship Model

To meet the concept goals, the system needs to store some information about ball and players

in the database. Android comes with built in SQL database implementation called SQLite and

it supports all the relational database features. Figure 7.1 shows the structure of the database.

To ful�ll the functional requirements F3, F5, F6 and F7 (Page 23) we need to save user’s name,

age and their shooting results at di�erent points in time from di�erent distances. In order

to reduce data redundancy, the database structure is normalized by creating a many-to-one

relationships between the tables Player and Result.

Figure 7.2: Hue color spectrum

The table Ball is necessary for "HSV" mea-

suring mode. As can be seen from Figure

7.1, the ball’s picture, along with user-de�ned

name and HSV color values are saved. This

table will be initialized with some prede�ned

data during the �rst start of the application.

This will be done in accordance with 24 di�er-

ent hue values shown in Figure 7.2. One little

detail here is that, for OpenCV hue range is

[0,179]
1
. To overcome this issue, the values

de�ned in the �gure will be divided into two.

In addition to these colors, entries for black

and white colors will also be included in the

table. This will result in 26 prede�ned ball

entries at the start. Moreover, the user will

get a chance to add even more colors to the

database.

7.2.2 State Diagram

As illustrated in Figure 7.3, there are �ve states during speed measurement activity in HSV

mode. The activity starts in the Idle state and tries to detect a ball using HSVT method. If it

succeeds, a bounding circle is drawn around the ball. Otherwise, user will need to calibrate

HSV settings or choose one of the prede�ned balls explained in Section 7.2.1.

After detecting the ball, the system is ready for measurement. At this point, the user can

start measuring by pressing the record (or measure) button. This takes the activity into Record

1

OpenCV, Changing Colorspaces,https://docs.opencv.org/master/df/d9d/tutorial_py_
colorspaces.html, accessed: 23.08.2019

50

https://docs.opencv.org/master/df/d9d/tutorial_py_colorspaces.html
https://docs.opencv.org/master/df/d9d/tutorial_py_colorspaces.html

7 Design

record button pressed
 [ball detected]

back button pressed

Idle

do/ detect ball

stop button pressed,
when (ball crossed goal line == true)

Record

do/ process frames

calculation finished

Calculate

any button pressed

Result

do/ display measurement
result

Timeout

do / prepare error message
with reason

after (8 seconds) after (10 seconds)

when (message ready)

Figure 7.3: State diagram for speed measurement activity in HSV mode

state and subsequently to Calculate state. If it takes more than a speci�ed time in any of these

states, activity switches to Timeout state, where the reason for the timeout gets appended to

the error message, which is later displayed during the Result state. The result state also prints

the measured speed if the calculation was successful. The user goes back to Idle state after

reading the message.

7.2.3 Activity Diagram

Activity diagram for use case "Measure" (Table 4.2) is shown in Figure 7.4. As illustrated,

activity starts with a press of a button, as long as the ball and the goalpost are in the detected

state. Otherwise, the operator cannot start the activity, because ball and goalpost positions are

necessary for conducting a speed calculation. This activity can be divided into two phases:

recording and calculating. Correspondingly, there are two conditions that can cause the activity

to fail: timeout during the recording phase and timeout during the calculation phase.

The shift from the recording phase to the calculation phase happens in two di�erent ways.

First, during a typical �ow, when the program detects that ball passed the goal line. Second,

when the operator manually stops the recording. The latter is necessary to avoid unwanted

failure of the activity when the ball bounces back from a goal preventing the program to detect

51

7 Design

the event. This might lead to a timeout of the recording phase which is de�ned as eight seconds

due to FM7 (Page 29).

The duration of the calculation phase is limited to ten seconds due to NF2 (Table 4.4). During

this time the result of calculations is made available to the system and activity ends.

7.3 Graphical Design

7.3.1 UI/UX

To create color schemes, Google’s Material Design Color Tool
2

is used. This tool automatically

derives light and dark versions of chosen primary and secondary colors. The resulting colors

is easily exported in XML format (Listing 7.1) for the usage in Android application.

1 <color name="primaryColor">#7e57c2</color>
2 <color name="primaryLightColor">#b085f5</color>
3 <color name="primaryDarkColor">#4d2c91</color>
4 <color name="secondaryColor">#fdd835</color>
5 <color name="secondaryLightColor">#ffff6b</color>
6 <color name="secondaryDarkColor">#c6a700</color>
7 <color name="primaryTextColor">#ffffff</color>
8 <color name="secondaryTextColor">#000000</color>

Listing 7.1: Primary and secondary color codes

Background image of the Home screen is taken from a stock photography sharing website

Unsplash. Their license gives a right to copy, modify, distribute and use the photos for free,

including commercial purposes, without asking permission from or providing attribution to

the photographer or Unsplash
3
.

To improve user experience, simple navigation is tried to be achieved by minimizing the

number of screens and exploiting pop-ups. Moreover, distance selection is implemented in a

slider fashion, which lays intuitively in between a goal and ball icons, indicating what value is

being changed, and removes the necessity of typing the numbers manually, which would have

resulted in more than three screen touches compared to a single touch with a slider.

7.3.2 Wireframe

Blueprint of the application layout is illustrated in Figure 7.5. There are three main screens:

Home, Statistics and Radar, in addition to pop-up screens.

2

Material Design, Color Tool, https://material.io/resources/color, accessed: 20.08.2019

3

Unsplash, License, https://unsplash.com/license, accessed: 23.08.2019

52

https://material.io/resources/color
https://unsplash.com/license

7 Design

The home screen is the starting point of the application. Users can press the Statistics button

for search and sort activities. User sets the ball to goal distance with a slider. Users can also

select the type of ball from the "carousel" component of this screen. The component will

contain prede�ned balls built-in in the application representing 26 di�erent colors as explained

in Page 50. The new ball can be added by pressing the Save button from the Settings pop-up

menu. Screenshot of the ball will be taken and saved as long as there is a single circular shape

on the screen after applying HSV thresholding. To measure the speed, a user has to go to the

Radar screen. After the successful auto-detection of the ball, a record button is enabled for

pressing. Once pressed, recording starts and stops after a speci�ed time or by user. As soon as

the recording is over, Processing pop-up appears and depending on result leads to Success or

Error pop-ups. Users can calibrate the tracking by manipulating threshold values via settings

icon on the Radar screen.

53

7 Design

System
Operator

press start
button

stop
recording

1

[YES]

press stop
button[NO]

CV library

process frame

frame

data

ball reached
the goal

[NO]

Camera

record

frame

OS

store data

data

wait 8 seconds

stop
recording

2

timeout

wait 10 seconds

stop
calculation

calculate

calculation
success

report speed

report error

[NO] [YES]

stop
calculation

stop
recording

2

stop
recording

1

[YES]

Figure 7.4: Activity diagram for the use case "Measure speed"

54

7 Design

10	m

Statistics

LOGO

Add player

10	m

who? (default. Anonymous)
First Name

Last Name

Birthday

save

player

distance

team

Statistics

5
10
15

20

25
30

35

June July Aug Sep Oct Nov Dec

Name
Anne1

Ratings
Age km/h

Alex2

John3

Grace4

Alex5

team
9

10

7

8

8

30.5

33.0

42.4

30.5

53.9

date
23.06.2019

23.06.2019

17.03.2019

01.12.2019

11.06.2018

team1

team2

team3

team4

team5

John6

Grace7

Alex8

10

7

8 33.0

42.4

30.5

23.06.2019

17.03.2019

01.12.2019 team3

team4

team5

Grace9

Alex10

7

8 33.0

42.4

23.06.2019

17.03.2019 team4

team5

Home

Add

Team

Ball Detected

Radar

Anonymous

select

Select

save

Success

... search
Anonymous
Fred
John
Max

back

Error
[FALSE][TRUE]

success

back

Error message

Processing

31.3 km/h

Anonymous

set

H - high S - high V - high

H - low S - low V - low

cancel save10	m

Settings

Figure 7.5: Wireframe of the application

55

8 Implementation

8.1 Setup and Configuration

Development of the application carried out in Android Studio IDE. To enable OpenCV, the

latest
1

OpenCV Android library was downloaded and imported into the project. Rearview

camera
2

permission is requested in the Android manifest �le.

There is also an option to use the OpenCV library in the original C++ language by exploit-

ing Android NDK (Native Development Kit) toolset. But many reviews from OpenCV and

Stackover�ow websites hint that calls from Java to NDK can be really expensive in terms of

performance.

8.2 Coding

Preliminary processing To start the measurements, information about the ball-to-goal

distance and direction of the shoot is required. These are provided by the user at the start.

When the user presses the record button, video frames start to be delivered to a Java function.

These frames are smoothed using Gaussian Blur function. After that, the frame is ready for

processing by HSVT and TD methods.

Ball detection algorithm

1. HSV Thresholding. The snapshot of the code can be seen in Listing 8.1. The image

supplied by the Android camera is available in grayscale and RGB space. The color space

is converted to HSV space and OpenCV’s inRange function is used to threshlold the

image with given upper and lower HSV values. This function returns a binary mask,

where white pixels represent pixels that fall into the upper and lower limit range and

black pixels do not. The mask might include some noise. We eliminate the unwanted

small white pixel areas by erosion followed with dilation, the operation also known as

1

At the time of writing, the latest available version was 3.4.3.

2

Necessary for letting the user to easily interact with phone display while recording.

56

8 Implementation

opening. Next, �ndContours method is used for �nding the image regions having the

same intensity. In the best case, the resulting contour is our OOI. Otherwise, if there are

other similarly colored objects in the image then further processing needs to be done to

�lter them out.

1 @Override
2 public Mat onCameraFrame(CameraBridgeViewBase.

↪→CvCameraViewFrame inputFrame) {
3 mOriginal = inputFrame.rgba();
4 Imgproc.GaussianBlur(mOriginal, mOriginal,new Size(15,15),

↪→0);
5 Imgproc.cvtColor(mOriginal, mHsv, Imgproc.COLOR_BGR2HSV);
6 Core.inRange(mHsv, scalarLow, scalarHigh, mMask);
7 Mat strcuturingElementErode = Imgproc.getStructuringElement(

↪→Imgproc.MORPH_RECT, new Size(2*erosion_size + 1, 2*
↪→erosion_size+1));

8 Mat strcuturingElementDilate = Imgproc.getStructuringElement
↪→(Imgproc.MORPH_RECT, new Size(2*dilation_size + 1, 2*
↪→dilation_size+1));

9 Imgproc.erode(mMask, mErode, strcuturingElementErode);
10 Imgproc.dilate(mErode, mDilate, strcuturingElementDilate);
11

12 List<MatOfPoint> contours = new ArrayList<>();
13 Imgproc.findContours(mDilate, contours, mat4, Imgproc.

↪→RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
14 //... code for drawing bounding box
15 return mOriginal;
16 }

Listing 8.1: Ball detection with HSV Thresholding

2. Temporal Di�erence. The Listing 8.2 demonstrates the implementation of this method.

The algorithm can be started after the �rst three frames of the recording. Once available,

TD for three frames is calculated by measuring the absolute di�erence between frames

n+1 and n+2, followed by applying the same method to frames n and n+1. The two

frames obtained from absolute di�erence operations are combined into a single frame

using logical and-operation. The result is a binary image, where white pixels indicate

objects that had motion between frames.

1 @Override

57

8 Implementation

2 public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame
↪→inputFrame) {

3 mOriginal = inputFrame.rgba();
4 Imgproc.cvtColor(mOriginal, mOriginal, Imgproc.

↪→COLOR_BGR2GRAY);
5 Imgproc.GaussianBlur(mOriginal, mOriginal, new Size(15, 15),

↪→ 0);
6 if (counter == 0) {
7 frame1 = mOriginal;
8 counter++;
9 return frame1;}

10 if (counter == 1) {
11 frame2 = mOriginal;
12 counter++;
13 return frame2;}
14 frame3 = mOriginal;
15 Core.absdiff(frame2, frame3, delta1);
16 Imgproc.threshold(delta1, delta1, 5, 255, Imgproc.

↪→THRESH_BINARY);
17 Core.absdiff(frame1, frame2, delta2);
18 Imgproc.threshold(delta2, delta2, 5, 255, Imgproc.

↪→THRESH_BINARY);
19 Core.bitwise_and(delta1, delta2, output);
20 final List<MatOfPoint> contours = new ArrayList<>();
21 Imgproc.findContours(output, contours, delta2, Imgproc.

↪→RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
22 //... code for drawing bounding box
23 return output;

Listing 8.2: Ball detection with three frame temporal di�erencing

Post processing Previous stages involved detection and tracking of the ball. This phase

would include actual calculations of the speed. Unfortunately, time constraints did not allow

to accomplish this task. Having the coordinate information of the ball from previous stages

and corresponding timestamp at each position, speed calculations can be done based on the

theoretical solution proposed in Section 5.2.

58

9 Discussion and Conclusion

In this chapter, the reader is presented a general overview of what is being achieved, which

problems occurred and how they tackled. It follows with a discussion of possible future work

that can be developed on our work.

9.1 Results

In current state, the application has two measurement modes in the form of HSVT and TD

implementations. The end result of development can be seen from the actual screenshots

presented in Figure 9.1. One of the screens shows how walking pedestrians were detected

and bounding boxes drawn around them in TD mode. On the other one, a green ball was

detected using HSVT. This screen lets the user to manipulate , erosion and dilation parameters.

Users can also switch between di�erent views to see the results of certain steps of the whole

algorithm. The last screenshot from the �gure presents the Main or Home screen of the

application.

Although a lot of work has been done on all areas of the development of this project, none of

the functional requirements were fully met. The main problems encountered were time factor

and unfamiliarity with any of the crucial development environments (Android, OpenCV). Since

another big portion of the project time was spent on its documentation in the form of this

paper, three months do not seem to be a su�cient period for complete development of such a

project with little previous knowledge.

To speed up the development of working software, some compromises have been made.

Instead of detecting a goalpost automatically, a vertical line is drawn on the left or right side

of the screen depending on the shooting direction. Thus, during the recordings, the camera

needs to be positioned in such a way that the vertical line appears in between and parallel to

two goalposts. In future work, the vertical line approach should be replaced with automatic

goalpost detection using LHT or other suitable methods.

Another compromise was made on a two-fold ball tracking approach that was described in

Page 45. Instead, HSVT and TD methods were implemented separately. However, it can be a

59

9 Discussion and Conclusion

good starting point for future work. The tracking results of both algorithms can be merged for

more accurate results.

Due to the fact that the �nal product is not in a working state, accuracy tests were not

conducted. After developing the �rst version of the product, it should be tested against

commercial Doppler guns, preferably from di�erent manufacturers. All devices should measure

the speed of the same shot and the results should then be compared. As many shots as possible

with di�erent speeds should be measured. Videos should be recorded from di�erent angles

at di�erent lightening conditions. After that, an objective conclusion can be made on the

accuracy of the solution.

Figure 9.1: Screenshots from Android application

9.2 Future Work

As mentioned in Section 9.1, future work can start with the implementation of two-fold tracking

by merging the results of existing tracking modes. Next, the focus should be made on speed

calculation, after which automatic goalpost detection and database features can be completed.

60

9 Discussion and Conclusion

Considering that the di�erent CV methods perform better at di�erent conditions, one can

go a step further and give a user the possibility to choose between di�erent modes. Another

improvement should be the exploitation of phone sensors, namely gyroscope, and accelerometer.

A gyroscope can be used for determining the orientation of the camera automatically, thus

removing the assumption we made back in Section 5.1 about orientation. An accelerometer,

on the other, can be employed to help eliminate the assumption about stability.

One of the most important considerations in such CV applications is the quality of the camera.

Because it is the major sensor or an "eye" of the system. High picture quality can drastically

improve object detection. High fps rates, on the other hand, may contribute to the accuracy of

the system. Modern smartphones come with a so-called "slow-motion" mode, which allows

capturing videos at a whopping rate of 240 fps
1
. These devices are also increasingly powerful

every year. My recommendation for future work is to remove the non-functional requirements

NF6 and NF7, that asks to support older devices. Taking these requirements out can bring

more possibilities in terms of freedom in the selection of a device. Continuing this work on

one of the latest smartphones one can develop a very advanced measuring products that can

also have huge commercial value.

The idea behind this product is very interesting and can be extended to include even more

features such as tips to improve the shooting speed, motivating daily videos, sharing the results

on online platforms, emailing the results to particular people (e.g. parents of the kids), etc.

9.3 Conclusion

Although the end product is incomplete, the �ndings of this paper show that speed measurement

tasks can be accomplished with mobile phones using a single camera. The existence of

commercial products such as Athla Velocity (Page 17) supports this statement. However,

as a user, one needs to be aware of possible inaccuracies. But, on the other hand, similar

inaccuracies are also found in other products in the market. Therefore, it can be concluded

that a smartphone application can replace at least some of the existing commercial equipment

for measuring the speed of a soccer ball.

1

Apple, iPhone X - Technical Speci�cations, https://support.apple.com/kb/sp770?locale=
en_US, accessed: 05.09.2019

61

https://support.apple.com/kb/sp770?locale=en_US
https://support.apple.com/kb/sp770?locale=en_US

Bibliography

[1] Peter Abeles. Performance of OpenCV vs BoofCV: March 2019. https://boofcv.
org/index.php?title=Performance:OpenCV:BoofCV. (accessed:

16.08.2019).

[2] About. Hawk-Eye. url: https://www.hawkeyeinnovations.com/about.

(accessed: 16.08.2019).

[3] Peggy Adamson and Jackie Nicholas. Introduction to Trigonometric Functions. University

of Sydney, 1998.

[4] Pallavi et al. “Ball detection from broadcast soccer videos using static and dynamic fea-

tures”. In: Journal of Visual Communication and Image Representation, 19(7), pp.426–436

(2008).

[5] Er. Monica Goyal Amandeep. “Review: Moving Object Detection Techniques”. In: IJC-

SMC, Vol. 4, Issue. 9 (2015).

[6] Arduino Uno technical speci�cations. Rev. 3. Arduino. url:https://store.arduino.
cc/arduino-uno-rev3. (accessed: 10.08.2019).

[7] The Football Association. The Football Association: The FA Guide To Pitch and Goal

Post Dimensions. Brochure. Wembley Stadium, PO Box 1966, London SW1P 9EQ, 2012.

url: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&
source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwiFrJLlqYfkAhWHyKQKHd37C_
UQFjACegQIABAC&url=http%3A%2F%2Fwww.thefa.com%2F-%2Fmedia%
2Fcfa%2Flancashirefa%2Ffiles%2Fleagues-and-clubs%2Frules-
and-regulations%2Fthe-fa-guide-to-pitch-and-goalpost-
dimensions.ashx%3Fla%3Den&usg=AOvVaw2b1yWVupOZafW79CmcSDod.

(accessed: 16.08.2019).

[8] The International Football Association Board. The International Football Association

Board: Laws of the game, 2018/2019. Brochure. Münstergasse 9, 8001 Zurich, Switzerland,

2017. url:https://img.fifa.com/image/upload/khhloe2xoigyna8juxw3.
pdf. (accessed: 16.08.2019).

62

https://boofcv.org/index.php?title=Performance:OpenCV:BoofCV
https://boofcv.org/index.php?title=Performance:OpenCV:BoofCV
https://www.hawkeyeinnovations.com/about
https://store.arduino.cc/arduino-uno-rev3
https://store.arduino.cc/arduino-uno-rev3
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwiFrJLlqYfkAhWHyKQKHd37C_UQFjACegQIABAC&url=http%3A%2F%2Fwww.thefa.com%2F-%2Fmedia%2Fcfa%2Flancashirefa%2Ffiles%2Fleagues-and-clubs%2Frules-and-regulations%2Fthe-fa-guide-to-pitch-and-goalpost-dimensions.ashx%3Fla%3Den&usg=AOvVaw2b1yWVupOZafW79CmcSDod
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwiFrJLlqYfkAhWHyKQKHd37C_UQFjACegQIABAC&url=http%3A%2F%2Fwww.thefa.com%2F-%2Fmedia%2Fcfa%2Flancashirefa%2Ffiles%2Fleagues-and-clubs%2Frules-and-regulations%2Fthe-fa-guide-to-pitch-and-goalpost-dimensions.ashx%3Fla%3Den&usg=AOvVaw2b1yWVupOZafW79CmcSDod
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwiFrJLlqYfkAhWHyKQKHd37C_UQFjACegQIABAC&url=http%3A%2F%2Fwww.thefa.com%2F-%2Fmedia%2Fcfa%2Flancashirefa%2Ffiles%2Fleagues-and-clubs%2Frules-and-regulations%2Fthe-fa-guide-to-pitch-and-goalpost-dimensions.ashx%3Fla%3Den&usg=AOvVaw2b1yWVupOZafW79CmcSDod
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwiFrJLlqYfkAhWHyKQKHd37C_UQFjACegQIABAC&url=http%3A%2F%2Fwww.thefa.com%2F-%2Fmedia%2Fcfa%2Flancashirefa%2Ffiles%2Fleagues-and-clubs%2Frules-and-regulations%2Fthe-fa-guide-to-pitch-and-goalpost-dimensions.ashx%3Fla%3Den&usg=AOvVaw2b1yWVupOZafW79CmcSDod
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwiFrJLlqYfkAhWHyKQKHd37C_UQFjACegQIABAC&url=http%3A%2F%2Fwww.thefa.com%2F-%2Fmedia%2Fcfa%2Flancashirefa%2Ffiles%2Fleagues-and-clubs%2Frules-and-regulations%2Fthe-fa-guide-to-pitch-and-goalpost-dimensions.ashx%3Fla%3Den&usg=AOvVaw2b1yWVupOZafW79CmcSDod
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwiFrJLlqYfkAhWHyKQKHd37C_UQFjACegQIABAC&url=http%3A%2F%2Fwww.thefa.com%2F-%2Fmedia%2Fcfa%2Flancashirefa%2Ffiles%2Fleagues-and-clubs%2Frules-and-regulations%2Fthe-fa-guide-to-pitch-and-goalpost-dimensions.ashx%3Fla%3Den&usg=AOvVaw2b1yWVupOZafW79CmcSDod
https://img.fifa.com/image/upload/khhloe2xoigyna8juxw3.pdf
https://img.fifa.com/image/upload/khhloe2xoigyna8juxw3.pdf

Bibliography

[9] Bodhisattwa Chakraborty and Sukadev Meher. “A real-time trajectory-based ball detection-

and-tracking framework for basketball video”. In: Journal of Optics 42.2, pp. 156–170.

(2013).

[10] Chun Yu Chen and Ming Yue Zhao. “Video segmentation algorithm based on improved

kirsch edge operator and three-frame di�erence”. In: Advanced Materials Research. Vol.

981. Trans Tech Publ. pp. 335–339 (2014).

[11] Christopher M. Brown Dana H. Ballard. Computer Vision. Prentice Hall, 1982.

[12] Roy Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities. Academic

Press, 2012.

[13] Alessandro Verri Emanuele Trucco. Introductory Techniques for 3-D Computer Vision.

Prentice Hall, 1998.

[14] Zizilia Zamudio Beltrán Eric Hernández Castillo and Juan Manuel Ibarra Zannatha.

“Soccer ball speed estimation using optical �ow for humanoid soc- cer player”. In:

Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 178–183 (2011).

[15] M.J. Fry and J.W. Ohlmann. “Introduction to the special issue on analytics in sports, Part

1: General Sports Applications”. In: Interfaces, 42, pp.105–108 (2012).

[16] R.P Patil Mahamuni P.D and H.S.Thakar. “Moving Object Detection Using Background

Subtraction Algorithm using simulink”. In: IJERT Volume 3, Issue 6 (2014).

[17] Othman O. Khalifa Mahmoud Abdulwahab Alawi. “Performance Comparison of Back-

ground Estimation Algorithms for Detecting Moving Vehicle”. In: World Applied Sciences

Journal 21 (Mathematical Applications in Engineering): pp. 109-114 (2013).

[18] Masanori Kano et al. Masaki Takahashi Kensuke Ikeya. “Robust Volleyball Tracking

System using Multi-View Camerasv”. In: 23rd International Conference on Pattern Recog-

nition (ICPR) (2016).

[19] David Murdock. Worked Examples from Introductory Physics Vol. I: Basic Mechanics. Ten-

nessee Tech University, 2005.

[20] Mark-Paul Meyer Paul Read. Restoration of motion picture �lm. Caleidoscope, 2000, p. 24.

[21] Personal Sports Radar InstructionManual. Supido. url:https://www.e-sportshop.
cz/data/navody/028462eng.pdf. (accessed: 16.07.2019).

[22] Florian Ion Petrescu. A new Doppler E�ect. Books on Demand GmbH, 2012.

[23] Raspberry Pi 3 technical speci�cations. Raspberry Pi. url:https://www.raspberrypi.
org/magpi/raspberry-pi-3-specs-benchmarks/. (accessed: 10.08.2019).

63

https://www.e-sportshop.cz/data/navody/028462eng.pdf
https://www.e-sportshop.cz/data/navody/028462eng.pdf
https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/
https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/

Bibliography

[24] P. Shimpi et al. S. Kolkur D. Kalbande. “Human Skin Detection Using RGB, HSV and

YCbCr Color Models”. In: Advances in Intelligent Systems Research. Vol. 137, pp. 324-332

(2017).

[25] Khalid Saeed Soharab Hossain Shaikh and Nabendu Chaki. “Moving Object Detection

Using Background Subtraction”. In: Springer (2014).

[26] John C. Sparks. The Pythagorean Theorem. Crown Jewel of Mathematics. AuthorHouse,

2008.

[27] Richard Szeliski. Computer Vision: Algorithms and Applications. 2010.

[28] Mark J. Burge Wilhelm Burger. Digital Image Processing. An Algorithmic Introduction

Using Java. Springer, 2016.

[29] Math Works. Image Types. url: https://www.mathworks.com/help/
matlab/creating_plots/image-types.html. (accessed: 17.08.2019).

[30] Chern-Horng Simh et al. Xinguo Yu Changsheng Xu. “A Trajectory-based ball detection

and tracking with applications to semantic analysis of broadcast soccer video”. In:

Processing, pp.1049–1052 (2004).

[31] Jiamin Zheng Xuegang Hu. An Improved Moving Object Detection Algorithm Based on

Gaussian Mixture Models. 2016.

[32] F. Yan, W. Christmas, and J. Kittler. “A Tennis Ball Tracking Algorithm for Automatic

Annotation of Tennis Match”. In: Proceedings of the British Machine Vision Conference,

pp.67.1-67.10 (2005).

64

https://www.mathworks.com/help/matlab/creating_plots/image-types.html
https://www.mathworks.com/help/matlab/creating_plots/image-types.html

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und

nur die angegebenen Hilfsmittel benutzt habe.

Hamburg, 23. September 2019 Nizami Zamanov

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure

	2 Background
	2.1 Definitions
	2.2 Soccer
	2.3 Digital Camera
	2.3.1 Digital Image
	2.3.2 Color Spaces
	2.3.3 Shutter Speed
	2.3.4 Frame Rate and Video

	2.4 Computer Vision
	2.4.1 Computer Vision vs Image Processing
	2.4.2 Computer Vision vs Artificial Intelligence vs Machine Learning
	2.4.3 Thresholding
	2.4.4 Smoothing
	2.4.5 Edge Detection

	2.5 Mathematical Background
	2.5.1 Speed
	2.5.2 Right Triangle
	2.5.3 Convolution
	2.5.4 Kernel

	3 Related Work
	3.1 Literature Research
	3.2 State Of The Art and Related Products
	3.2.1 Doppler Radar
	3.2.2 Hawk-Eye
	3.2.3 Athla Velocity
	3.2.4 SpeedClock

	4 Requirements Analysis
	4.1 Stakeholders
	4.2 Use Cases
	4.3 Functional Requirements
	4.4 Non-Functional Requirements

	5 Conception
	5.1 Assumptions
	5.2 Theoretical Solution and Failure Modes
	5.3 Hardware
	5.3.1 Device Selection
	5.3.2 Platform Selection

	5.4 Software
	5.4.1 Computer Vision Library Selection
	5.4.2 Tools and Methodologies

	6 Computer Vision and Image Processing Methods
	6.1 Hough Tranforms
	6.1.1 Line Hough Transform
	6.1.2 Circle Hough Transform

	6.2 HSV Thresholding
	6.3 Object Tracking
	6.3.1 MIL
	6.3.2 KCF
	6.3.3 CSRT
	6.3.4 Object Tracking Summary

	6.4 Moving Object Detection
	6.4.1 Background Subtraction
	6.4.2 Optical Flow
	6.4.3 Temporal Difference

	6.5 Point Feature Matching
	6.6 Decision

	7 Design
	7.1 Design Alternatives
	7.2 UML Diagrams
	7.2.1 Entity-relationship Model
	7.2.2 State Diagram
	7.2.3 Activity Diagram

	7.3 Graphical Design
	7.3.1 UI/UX
	7.3.2 Wireframe

	8 Implementation
	8.1 Setup and Configuration
	8.2 Coding

	9 Discussion and Conclusion
	9.1 Results
	9.2 Future Work
	9.3 Conclusion

