Hochschule fir Angewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences

Fakultét Technik und Informatik Faculty of Engineering and Computer Science
Department Informations- und Department of Information and
Elektrotechnik Electrical Engineering

Turan Elchuev

Implementation of a universal remote control device

Bachelor Thesis based on the examination and study
regulations for the Bachelor of Engineering degree programme
Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner : Prof. Dr.-Ing. Rainer Schoenen
Second examiner : Prof. Dr.-Ing. Marc Hensel

Day of delivery November 4, 2019

Turan Elchuev

Title of the Bachelor Thesis
Implementation of a universal remote control device

Keywords
Remote control, Wireless, Microcontroller

Abstract
Various communication channels and protocols for data transmission exist. Each

protocol serves its purpose and has its advantages, hence, it has the right to exist. On
the other hand, due to a high number of available protocols, people are sometimes
forced to use different devices for similar applications. This comes at the cost of
paying for multiple devices, which serve the single purpose - remote control. For
example, a TV remote cannot be used to manipulate a drone, an RC car manipulator
in the most of the cases cannot be used to play computer games, or, the more so, to
switch the lights in the room.

The goal of this thesis is to implement a universal remote controller. The product
should be able to communicate via various channels and using different protocols
such as Bluetooth, Wi-Fi, USB, wireless transceivers, and others. Furthermore, the
device should provide a variety of input methods such as keys and inertial values
(movement and orientation of the device in the 3D space). As a result, it is expected
to have a single gadget, that will provide a user with the possibility to manipulate
various types of remote devices, such as computers, PC games, home appliances,
smart-home devices, RC toys, etc. in an intuitive and user-friendly manner.

Turan Elchuev

Thema der Bachelorarbeit
Implementierung eines universellen Fernsteuerungsgerates

Stichworte
Fernsteuerung, Drahtlos, Mikrocontroller

Kurzzusammenfassung

Es gibt verschiedene Kommunikationskanale und Protokolle flir die Datenlbertra-
gung. Jedes Protokoll dient seinem Zweck und hat seine Vorteile, daher hat es das
Recht zu existieren. Andererseits sind die Menschen aufgrund einer hohen Anzahl
von verfligbaren Protokollen manchmal gezwungen, verschiedene Gerate fur ahnli-
che Anwendungen zu verwenden. Dies geht zu Lasten der Bezahlung mehrerer Ge-
rate, die dem einen Zweck dienen - der Fernbedienung. So kann beispielsweise eine
TV-Fernbedienung nicht verwendet werden, um eine Drohne zu manipulieren; ein RC-
Automanipulator kann in den meisten Fallen nicht zum Spielen von Computerspielen
oder, umso mehr, zum Schalten der Lichter im Raum verwendet werden.

Das Ziel dieser Arbeit ist die Implementierung eines universellen Fernsteuerungs-
gerates. Das Produkt sollte in der Lage sein, lber verschiedene Kanéle und unter
Verwendung verschiedener Protokolle wie Bluetooth, Wi-Fi, USB, drahtlose Transcei-
ver und andere zu kommunizieren. DarUber hinaus sollte die Vorrichtung eine Vielzahl
von Eingabemethoden wie Tasten und Inertialkrafte (Bewegung und Ausrichtung des
Geréates im 3D-Raum). Daher wird erwartet, dass es Uber ein einziges Gadget ver-
flgt, das es dem Benutzer ermdglicht, verschiedene Arten von Remote-Geraten wie
Computer, PC-Spiele, Haushaltsgerate, Smart-Home-Gerate, RC-Spielzeug usw. auf
intuitive und benutzerfreundliche Weise zu bedienen.

Contents

Listof Tables 7
Listof Figures 8
1. Introductiono 10
1.1. Motivation. 10
1.2. OQutline e 11

2. Background 12
2.1. Theoretical Fundamentals 0oL 12
2.2. Involved Resources L 16
22.1. Hardware L 16

2.2.2. Software 21

3. Task Definition 24
3.1. OverviewOf The Goal 24
3.2. Hardware Specification Lo 25
3.3. Functional Requirementso 26
3.4. Nonfunctional Requirements 28

4. Requirements Analysis And Design, 29
4.1. Hardware Design 29
411, Layout. 29

4.1.2. Modules Interconnection 30

4.2. Software Design 31
4.2.1. Analysis Of Libraries 32

422. ImpactOf Hardware 32

4.2.3. Architecture 33

5. Hardware Implementation 0oL, 36
5.1. Power And Programming Circuit 36
5.2. Mainboard Circuit. 38
5.3. Complete Device 39

Contents

6. Software Implementation 47
6.1. Communication Protocol o 47
6.2. ESP32 48

6.2.1. System Overview 48
6.2.2. MainRoutine 52
6.2.3. SystemHandler. 52
6.24. MainMenu 53
6.2.5. StorageHandler 55
6.2.6. Accelerometer, Gyroscope, Magnetometer 57
6.2.7. OLED Display 59
6.2.8. Keys,LEDs 60
6.2.9. Power 61
6.2.10.PC GamepadMode 63
6.2.11.Universal JoypadMode 65
6.2.12.KeyboardMode Lo 66
6.2.13.Mouse Mode 67
6.2.14.ServiceMode 69
6.2.15.USB Serial Helper 69
6.216.Wi-Fi 72
6.2.17.SensorsMode 73
6.2.18.Debug Output 73
6.3. Atmegal2ud L 73

7. Testing e 76
7. UnitTest o o 76
7.2. SystemTest 78
7.3. TIMING . . . L e e 81
7.4. UniversalJoypad Demo Lo 83

8. Summary e 87
8.1. ProjectStatus 87
8.2. Problems 87
8.3. Further Work Qutlook 88

9. Conclusion 90

Bibliography 91

A. Appendix 93
A1, Unit Testoutput (ESP32)o 93

List of Tables

5.1. Mainpinconnections 40
5.2. Port expander pin connections Lo 44
5.3. Debug interface pin connectionso 45
6.1. Keyboardkey mapping 67
6.2. Mouse functionmappingo 68
7.1. Demofunctions 86

List of Figures

2.1. Roll,pitch,yaw 14
2.2. SPInetwork 15
23. 12Cbus e 15
24. UART connection e 16
2.5. ODROID Universal MotiondJoypad 16
2.6. Initial state of thewheelo 17
2.7. ESP32pinout 18
2.8. Arduino Micro andits pinout Lo 18
2.9. BEETLEBadUSB Micro 19
3.1. Deviceconcept 24
4.1. Design approach: hardware oo 31
4.2. Design approach: software concept, 34
4.3. Design approach: dataflow 35
5.1. Power and programming circuito L 41
5.2. Mainboardcircuit 42
5.3. Buttonsand LEDscircuito oL 43
5.4. Debuginterfacecircuit 43
5.5. Finaldevice: outerlooko 45
5.6. Finaldevice:inside L 46
6.1. Communication protocol frame 47
6.2. ESP32 overview classdiagram Lo 51
6.3. Wheelkeylabels 55
6.4. Storage Handlerclassdiagram. 56
6.5. RPYfiltering 58
6.6. The battery managementtool 63
6.7. Gamepadframe 64
6.8. Joypadframe 65
6.9. Keyboardframe 66
6.10.Mouse frame e 67
6.11.USB Serial Helper class diagram 70

List of Figures

6.12.USB Serial Helperexample 71
6.13.WiFi managementtool Lo 72
6.14.The Beetle: classdiagram L. 75
7.1. Unittestmenus 77
7.2. Joypad frames: Wi-FiUDP L 78
7.3. PC Gamepad calibration 79
7.4. PC Gamepad RPY modetest 80
7.5. Datatransmissionintervals L. 82
7.6. Demodevices e 83

1. Introduction

1.1. Motivation

Communication technologies have developed tremendously over the past decades. Today,
they enable a vast amount of possibilities ranging from a simple remote control of the home
appliances, through the interconnection of the entire world into a global net, to the long-
distance data transmission through space. In telecommunications, a very important role is
given to the protocols as they facilitate the standardized, coordinated, and relatively reliable
ways of data transmission over the communication media. So far, there have been many pro-
tocols developed, that operate on various wireless and wired transmission channels. Some
basic examples of such protocols and communication technologies, which are widely used
in daily life, are the Internet, Wi-Fi, Bluetooth, USB, Infrared Remote Control, etc.

Some protocols and communication channels have found their application in certain domains
more than in the others. For example, the infrared communication is more used in the remote
controls of the home appliances; the Bluetooth technology is popular in the production of
wireless consumer electronics, such as audio headsets, mouses, keyboards, and similar;
the RC vehicle industry mainly employs the 2.4 GHz band for wireless data transmission
between the joystick and the vehicle, etc. The drawback of such diversity of technologies
and protocols is that people are sometimes forced to buy different devices, which serve a
single purpose - the remote control. The reason is clear - one usually cannot use an RC car
joystick to switch the lights in the room or the channel on the TV; an air-conditioning remote
control cannot be used to play computer games, and so on.

The motivation behind this thesis is to implement a concept of a universal remote control
device, which is meant to encapsulate the functionality of various manipulators, such as PC
gamepads, joysticks, remote controls of home appliances, PC mouses and keyboards, etc. in
a single body. A product, that could be equally intuitively and in a user-friendly manner used
to manipulate various devices, which are meant to be controlled by differing methods. A user,
for example, would be able to play PC games, control RC vehicles, manipulate a smart TV
or a stereo system, set air conditioning, or even toggle the lights in the house using a single
device. Such remote control would alleviate the need to buy for each application a separate
remote control, hence letting the user save money and improve overall user experience.

10

1. Introduction

1.2. Outline

Chapter 2 provides a short theoretical background on relevant technical topics and introduces
the hardware and software resources involved along the progression of the work. Chapter
3 defines the goals to be achieved. This includes a general overview of the concept as
well as the hardware and software specifications of the target product. Chapter 4 describes
the process of the requirements analysis and decision-making concerning the hardware and
software design to be followed. Chapters 5 and 6 are dedicated to the process of the imple-
mentation of the hardware and software of the device respectively. Here, detailed information
is provided about the implementation of each component of the system. Chapter 7 describes
the process of testing the developed device. This includes implementation of unit tests, sys-
tem tests as well as a demo to assess and showcase the performance of the device in the
intended scope of its application. Chapter 8 summarizes the performed work by evaluating
the compliance of the developed device with the requirements from chapter 3. Furthermore,
the chapter describes the major problems faced along the process of implementation as well
as suggest potential ways to further improve the device. Finally, the work is concluded by
chapter 9.

11

2. Background

This chapter provides a theoretical background and gives insight into the technical resources
involved in the development of the project. First, the reader will gain basic theoretical knowl-
edge about each relevant technology. Later, the hardware components used to build the final
product will be shortly introduced. The chapter will be finalized by the section dedicated to the
software packages - this includes a range of desktop applications, browser-based tools as
well as programming languages used for management, implementation, and documentation
of this project.

2.1. Theoretical Fundamentals

In this section, the theoretical background on the selected topics is provided, which will help
to gain a better understanding of the major components and technologies involved in this
project.

Microcontroller Unit (MCU)

Nowadays, most consumer electronics, industrial machines, vehicles, and other technolog-
ical devices, as well as their internal components, have got functionality that has to be au-
tomated and controlled. To facilitate this process, microcontrollers are used. Ajay V Desh-
mukh describes microcontrollers as follows: “Microcontrollers are single-chip microcomput-
ers, more suited for control automation of machines and processes. Microcontrollers have
central processing unit (CPU), memory, input/output (10) ports, timers and counters, Analog-
to-digital converter (ADC), digital-to-analog converter (DAC), serial ports, interrupt logic, os-
cillator circuitry and many more functional blocks on chip” [1].

Interrupt and Polling

Interrupts are used to distract the central processing unit (CPU) from the execution of the
current task to bring its attention to some event that has high priority and needs to be handled.

12

2. Background

Common examples of such events are input/output (I0) events such as key presses, timer
timeout events, data ready interrupts, failures of peripheral devices and others. Interrupts
remove the need to constantly check the status of a peripheral by the CPU, hence, the
processor can focus on the execution of the other tasks. Whenever a peripheral needs to be
served by the processor, it will send a signal to one of the processor’s interrupt inputs [2].

The opposite of the Interrupt is Polling. Polling is the process of busy waiting when the
processor continuously checks the status of the |10 device. Polling in most of the cases leads
to wasting of the processor’s time but is simpler to implement in a program [2].

Analog-to-digital converter (ADC)

An Analog-to-digital converter (ADC) is a system that converts a continuous signal into the
digital domain, where each sample of the continuous signal finds its corresponding digital
representation. This allows the signal to be processed by a computer. Common application
of the ADCs is measurement of voltages [3].

Moving Average Filter

The moving average is a popular filter in Digital Signal Processing (DSP), which is easy to
implement. The filter is used to reduce the random noise of a time-domain sampled signal,
or in other words, smooth it. The operational principle of the filter, as the name suggests, is
averaging some samples of the input signal to produce an output signal. The output signal
is calculated by the following equation:

1 M-1
yli] = v > xli+]

Jj=0

Here, x[] stores samples of the input signal, and each value in the y[] stores the arithmetic
mean of the previous M samples from the input [3]. For example, in a 3-point filter, the value
of the 10™ output point will be calculated as follows:

x[10] + x[11] 4+ x[12]
3

y[10] =

13

2. Background

Roll, Pitch, Yaw (RPY)

The terms Roll, Pitch and Yaw are used to describe the orientation of an object in the three
dimensional (3D) space. They are commonly applied to aerial vehicles, such as planes,
drones, etc. The orientation is expressed in terms of rotations of the object along its 3
principal axes, which are perpendicular to one another and intersect at the center of gravity
of the object.

Roll

Pitch

.,.‘

Figure 2.1.: The roll, pitch and yaw rotations of an object

Serial Peripheral Interface (SPI)

Serial Peripheral Interface is a synchronous serial communication protocol, that allows mi-
crocontrollers to communicate to peripheral modules or other microcontrollers. In a typical
SPI network, there is a single master node and one or more slave nodes (peripherals). Com-
munication is bidirectional and for each direction, there is a dedicated line:

e Master In Slave Out (MISO) line - transmission from the slaves to the master.
e Master Out Slave In (MOSI) line - transmission from the master to the slaves.

Besides, there is a Serial Clock (SCK) line, which is used to drive the clock signal from the
master to the slaves. This way the synchronization is achieved. Since communication with
SPI protocols is possible to only a single slave at a time, there are additional Slave Select
(SS) lines, one for each slave, that are used by the master to enable one slave at a time by

14

2. Background

pulling the line low. The main advantage of the SPI protocol is the possibility to transmit data
at high rates (usually more than 10 megabits per second). The Fig. 2.2 illustrates a typical
SPI network.

SCK SCK
MOSI MOSI Slave
Master MISO MISCO —

NSS1 NSS

NSS2 §

SCK

MOSI
MISO Slave

—| NSS

Figure 2.2.: A typical SPI network

Inter-integrated circuit (12C)

Inter-integrated circuit (12C) is another serial communication protocol. Similar to SPI, the
I2C network consists of a single master (usually a microcontroller) and multiple slave nodes
(peripherals or other microcontrollers). However, the major advantage of the I°C over the
SPI is the bus topology and slave selection method, reduces the amount of required lines
down to 2, namely the Serial Clock (SCL) and Serial Data (SDA). The former is used to
synchronize communication between the nodes, the latter is used to transmit actual data. In
the I°C protocol, each slave node has its 7-bit wide address, which implies that there can
be up to 128 slaves in an I1°C network. Selection of the slave is achieved by transmitting its
address over the SDA line. The fastest 1°C modules can transmit at a rate up to 3.2 mega
bits per second [4]. The Fig. 2.3 illustrates a simplified I2C network.

Slave

Master [Slave 1] [Slave 2] - 128
SCL
1 1 1 1 SDA

Figure 2.3.: A simplified representation of an 12C network

15

2. Background

Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous Receiver/Transmitter (UART) is yet another serial communica-
tion protocol widely used in embedded systems. It is asynchronous, which implies there is
no clock line. Besides, it allows only 2 devices to communicate with each other. There is no
master or slave in UART communication and data can be transmitted in both directions si-
multaneously. Each UART device has a Receive (Rx) and a Transmit (Tx) signal. Two UART
interfaces should be connected as illustrated in Fig. 2.4.

=45
K

_...

Figure 2.4.: UART signal connection (omitting the ground signal)

2.2. Involved Resources

2.2.1. Hardware
ODROID Universal Motion Joypad
The ODROID Universal Motion Joypad (hereinafter referred to as "the wheel") is a game

controller in the shape of a wheel, that comes with a USB input/output (I0) board, a BMA150
motion sensor and 10 push buttons mounted on a detachable PCB board [5].

Figure 2.5.: ODROID Universal Motion Joypad

The wheel was used as the base for the device since it has a user-friendly form factor and can
be effectively used in the target scope of the device in the motion-based operation modes.

16

2. Background

Besides, it provided a PCB with intuitively aligned buttons that further reduced the necessity
to make one.

Before the beginning of this project, the wheel had already been slightly modified. These
modifications included a mounted Arduino Micro board, an OLED display and an MPU-9250
motion sensor. The figure 2.6 illustrates the initial state of the wheel.

Figure 2.6.: Initial state of the wheel

DOIT ESP32 DEVKIT V1

The DOIT ESP32 DEVKIT V1 (hereinafter referred to as "the ESP32") is a development
board based on the ESP32-WROOM-32 module. The ESP32-WROOM-32 is a powerful
MCU module which along with 2 CPUs, GPIO pins, PWM and ADC capabilities as well as
communication interfaces such as SPI, UART and I12C offers built-in BLE and Wi-Fi function-
ality, which make the module a perfect choice for the connected applications such as IoT [6].
The ESP32 was intended to be one of the computational modules of the device responsi-
ble among other tasks for the Wi-Fi and Bluetooth connectivity. The figure 2.7 illustrates a
graphical representation as well as the pinout of the board.

Arduino Micro

The Arduino Micro is a development board based on the ATmega32U4 module. The AT-
mega32U4 is a high performance low-power 8-bit MCU with 32 KB of program memory,
GPIO pins, PWM, ADC capabilities, SPI, UART and 12C as well as a built-in USB controller
[7]. The latter enables USB features such as a keyboard, mouse, gamepad emulation and
others. The board, as was mentioned before, came mounted on the PCB of the wheel and
was intended to be used as another computational module of the device responsible among
other tasks for the USB-related functionality. The figure 2.8 shows the board and its pinout.

17

2. Background

o1 o] Grio3s | sensve s AV

M -\
louchs Javcr af cros [t Jf: AR
[Fovehe Jabc] cros [z AYECY

T L MR -\

1) A [\

[Touchy Jibcs 7] criozr e AV

T S (0 K [\~
[ouchs [o JAnca s [crorz s AV
wmmmm—f\w)
o s——

e

- Power - Control SN Arduine
Y oo S o Bl oo

[ESP32 Dev. Board

J\;—mm@
-m
—f\rm Yk [Grio [o]
OV o <tz [crios [Juo o]
—f\rm&a
(—’\Jﬂmmmm
oAV = < | oo [v s ik]
CAYg i Geros] vse Cso]
o\ AT (R
o\ £ IS I
Vgl P07 JAbG o] Hsei o [Toucho |
O\ 2] I K (7T N Y
u-—f\fmmm:
o— B8
o— EER

B woc EE e W e
pac M uvsr N\ pwm

Figure 2.7.: ESP32 pinout

BEETLE BadUSB Micro

The BEETLE BadUSB Micro (hereinafter referred to as "the Beetle") is another development
board based on the ATmega32U4 MCU. The main difference between this board and the
Arduino Micro is the smaller footprint of the former. This comes, however, with the cost of the
reduced amount of pins that can be accessed. As such, the BEETLE BadUSB Micro offers
a limited number of pins, yet offering all core features and communication interfaces of the
MCU, that were introduced before. Within this project, 2 such boards were used. The figure

2.9 illustrates the board.

MOSI
RX_LED / S8|
1/TX

0/RX

RESET)|

GND

2138DA

3 (PWM) / SCL
41A6

5 (PWM)

6 (PWM) | AT|
7

81 A8l

9 (PWM) / A9
10 (PWM) / A10)
11 (PWM)

12 1 A1

X
Im MISO
0 o)%

07070°0:010:00- 000" 0-0- LI}
-

a0
) |AREF
33V
13 (PWM)

020;

R

= el 9
10:0:070:020:0:0:0:0°0:0:0°0:0: 0
F e P
BEEH

Figure 2.8.: Arduino Micro and its pinout

18

2. Background

Figure 2.9.: BEETLE BadUSB Micro

10 peripherals

Port expander Port expanders are used in order to extend the number of GPIO pins when
a large number of components have to be interfaced by a MCU or simply to keep free as
many GPIO pins as possible. In this project, an MCP23017-E/SP port expander was used
to interface the keys and the LEDs of the device. The expander provides 16 GPIO pins
programmable to act as input or output, interrupt functionality as well as an 12C interface.
The disadvantage of this module is the lack of PWM support.

OLED display A 128x32 SSD1306 OLED display that provides an 12C communication in-
terface was used in the project to serve as the main output device.

Buzzer A buzzer is an audio signaling device. In this project, a piezoelectric buzzer was
used to serve the purpose of notifying the user.

LEDs In this project, 2 common anode RGB LEDs were used as an additional output de-
vice.

Communication modules

Wireless transceiver In order to implement additional means of wireless communication
and, correspondingly, enlarge the scope of application of the device, an 868MHz RFM69
transceiver module was used in the project. The module provides SPI for interfacing by a
MCU.

19

2. Background

Bluetooth module Few HC-05 and HC-06 BT modules were used in the project as an
alternative mean of wireless communication, e.g. to control remote devices that have on-
board classic BT modules. The modules can be interfaced via the built-in UART.

Sensors

MPU-9250 One of the core components of this project is the MPU-9250 module - a 9-
Degrees Of Freedom (DOF) motion tracking device. It consists of three main modules: a
Gyroscope, an Accelerometer and a Magnetometer, which make the device a powerful tool
for tracking the position and orientation in the 3D space. The module can be interfaced using
I12C and SPI communication protocols.

Power

Battery A 3.7V 1280 mAh Lithium-lon battery was used to power the device. This type of
rechargeable batteries is commonly used for portable electronics and hence is suitable for
this project.

Charger module In this project, an LTC4056-module based charger board was used. The
board encapsulates all the necessary safety circuitry as well as LEDs indicating the “charg-
ing” and “charged” states.

DC/DC converter This type of converters is used to convert DC from one voltage level
to another. Since some of the components (the ESP32 and all the peripherals) within this
project had to be supplied with a 3.3V source and the others (the Beetle) - with 5V, 2 con-
verters were used:

e a step-up converter to convert the battery’s output voltage of 3.7V to 5V for the 5V-
powered devices

e a step-down converter to convert 5v to 3.3v correspondingly for the 3.3V-powered
devices.

Level shifter is a module that converts one logical voltage level to another depending on
the specification and applied reference voltages. In this project, a level shifter was used to
interconnect the ESP32 with the Beetle in order to prevent the former from potential damages
as it has 3.3V logic level whereas the latter has a 5V level.

20

2. Background

Miscellaneous

In addition to the components mentioned above, there were used a number of switches,
sockets as well as passive electric components.

2.2.2. Software
The Arduino integrated development environment (IDE)

The Arduino IDE is a light-weight cross-platform open-source application, that is used for
writing and compiling code for the genuine Arduino boards, their compatible clones as well
as a range of development boards from other vendors. The IDE offers a wide range of fea-
tures such as serial monitor, serial plotter, sample sketches, and others. The main motivation
behind the application was to make microcontroller programming so easy that any inexpe-
rienced individual could do it. This strategy led to considerable growth in the popularity of
the platform. As a result, nowadays the Arduino Community consists of a huge network of
contributors who have produced an enormous amount of materials such as libraries, sample
projects, a tutorial for nearly any context in which a microcontroller can be applied. Within this
project, the Arduino IDE was selected as the main tool for the programming of the device.

C++

C++ is a general-purpose OOP language. Among other features that make it one of the most
popular programming languages of the modern world, it is worth emphasizing its low-level
memory manipulation capabilities. This feature combined with the advantages of the OOP
model makes the language particularly suitable for programming of the systems with limited
resources and performance [8]. Within this project, the entire system excluding minor utility
programs was developed in C++.

Java

Java is another popular general-purpose OOP language. What makes the language stand
out against the background of the others is the so-called Write Once, Run Anywhere (WORA)
concept, which means that the programs developed in Java could be run on any platform
(Windows, macOS, Linux, etc.) without being adapted for the specific one. Java is nowadays
widely used for the development of web-based, mobile and desktop applications. In contrast
to C++, it does not provide the low-level memory access features, which makes it hard to

21

2. Background

apply in the context of embedded systems. Within this project, Java was used for the purpose
of testing some of the device’s functions, such as UDP and TCP/IP.

MATLAB

MATLAB is a multi-paradigm programming language and a development environment used
mainly for numerical computations. The language is widely applied in the engineering con-
text. It provides a broad range of features such as matrix calculations, solving differential
equations, data visualization, system modeling and simulation, etc. [9] In this project, MAT-
LAB was used for visualization of the orientation of the device in the three dimensional (3D)
space.

Git

Git is the most popular version control system, an essential tool in the software development
process, yet applied in other contexts where change tracking is needed as well. It provides
a wide range of features such as branching, conflicts resolution, etc., and most importantly
- a collaboration of multiple developers [10]. There is a variety of console and graphical
user interface (GUI)-based applications as well as online tools for handling Git available. In
this project, the Git Bash - a Git console for Windows, and the GitLab - a web-based tool
providing among other features a Git repository manager and issue tracking were used.

Gantt chart

Gantt chart is a chart used for illustration of the tasks of a project and their duration on
a timeline. In a typical Gantt chart, the tasks are specified on the vertical axis, whereas
the horizontal axis represents the timeline. Each task has a start and end times and is
displayed on the chart by a horizontal bar with its left edge aligned with the start time and
the width corresponding to the duration. Modern project management tools are based on the
Gantt chart and offer a range of additional features such as dependencies between tasks,
resource allocation, and others, that ease the project management process. For this project,
the Agantty - a web-based project management tool was used.

22

2. Background

Autodesk® EAGLE™

EAGLE™ is a software package used for printed circuit board (PCB) and integrated circuit
(IC) design. The program contains a schematic editor tool that is used for designing circuit
diagrams, which then can be transformed to e.g. a corresponding PCB. Although the devel-
opment of a PCB was out of the scope of this project, the tool came in handy for designing
all the relevant circuit diagrams.

Lucidchart

Lucidchart is a web-based tool that is used for drawing many types of charts and diagrams
in the engineering, financial, project management, and other contexts. The platform allows
sharing, revising charts and diagrams as well as user collaboration. The tool was applied in
the scope of this project for drawing the UML class diagrams and other charts.

23

3. Task Definition

The purpose of this project, as the title suggests, is to implement a universal remote control
device. This chapter provides a general overview of what has to be achieved followed by the
more specific requirements applied to the hardware and software design.

3.1. Overview Of The Goal

The final product should provide a user with
the possibility to manipulate a variety of ap-
pliances using wireless and wired commu-
nication. Manipulation should be motion-
based as well as performed through press-
ing keys. Additionally, the device should
have feedback capabilities such as light,
sound, and vibration.

The potential scope of application of the
product is manipulation and interfacing of re-
mote devices such as a Personal Computer
(PC), a variety of Radio Control (RC) vehi-
cles (e.g. a drone, a car), PC games, home
appliances, media players, Smart Home
and Internet of Things (IoT) devices, etc.

The implementation should be based on the
Wheel, which was introduced earlier in the
chapter 2, by preserving all of its original
hardware except the MCU and complement-
ing it with the components listed in the same

Figure 3.1.: The concept

chapter. Programming should be performed in the Arduino IDE. Unit Tests should be devel-
oped to verify the functionality of the hardware. The overall system and its performance
should be tested by a System Test. The development process should be finalized by the

3. Task Definition

implementation of a demo to showcase the device in action in some of the cases of the
application scope mentioned before.

3.2. Hardware Specification

e 2 MCUs: the ESP32 and the Arduino.

e An accessible USB programming interface of the ESP32.
e An accessible USB programming interface of the Arduino.
e A chargeable battery as the power source.

e Charging is possible via the USB interfaces of both MCUs.

e The USB interfaces of the MCUs can be safely connected to different charging devices
or PCs simultaneously.

e A main switch to power the entire system. When the switch is open, charging is still
possible.

e Each MCU has a separate power switch.
e A separate voltage converter for 5V output.
e A separate voltage converter for 3.3V output.

e \oltage dividers connected to the ADCs of both MCUs to measure the 5V and 3.3V
outputs as well as the battery’s voltage.

e The 10 keys provided on the PCB can be accessed from both MCUs via a port ex-
pander.

e The inertial sensor BMA150 provided on the PCB can be accessed from both MCUs.
e An additional inertial sensor that can be accessed from both MCUs.
e A buzzer that can be accessed from both MCUs.

e 2 common anode RGB LEDs that can be accessed from both MCUs via a port ex-
pander.

e An OLED display that can be accessed from both MCUs.
e An 868 MHz transceiver that can be accessed from both MCUs.

e Serial communication between the 2 MCUs.

25

3. Task Definition

3.3.

All modules that provide the I2C interface are connected to the 12C bus.

All wireless antennas should have minimum obstacles on the path towards the receiv-
ing side.

An external debug interface that provides connection to both MCUs via their serial
interfaces, to all voltage sources as well as to the 12C bus.

It should be possible to unplug each major component to replace it without desoldering.
The PCB remains detachable from the wheel’'s body.

Wires should be as short as possible, yet allowing access to each component for the
maintenance purpose.

Functional Requirements

Modes of operation

Absolute mouse
Relative mouse
Keyboard

PC Gamepad

Universal Joypad

Detailed features

One MCU should act as the primary, the other as the secondary one. Each of the
MCUs should be able to act as the primary. When one MCU is switched off, the other
should automatically take control over the system.

Menu navigation using the OLED display and the keys.
LEDs should indicate the state of the device.

The inertial module (MPU-9250) should be used to obtain the Roll, Pitch, Yaw (RPY)
values.

The MPU-9250 should be calibrated on demand. The calibration values should be
stored in the EEPROM.

26

3. Task Definition

The RPY values should be used to implement the motion-based features of the Mouse,
Keyboard, PC Gamepad and Joypad modes.

Mouse, Keyboard and PC Gamepad commands should be transmitted via the USB
interface of the Arduino and via BT (e.g. to a remote Arduino).

Joypad commands should be sent via the USB serial, BT, Wi-Fi (TCP/IP, UDP),
868Mhz transceiver, and the debug interface. The way of transmission should be
selected from the menu.

The Keyboard mode should provide various configurations (mapping of the keyboard
keys to the keys on the device). The configuration should be selected from the menu.

The PC Gamepad mode should provide various configurations (mapping of the keys
and the RPY values of the device to the PC Gamepad commands). The configuration
should be selected from the menu.

Wi-Fi APs should be discovered, selected and stored in the EEPROM.

On system startup, the device should automatically try to connect to the first available
Wi-Fi AP.

Manual connection to a stored Wi-Fi AP through the menu.

TCP/IP, UDP client/server configurations should be managed and stored in the EEP-
ROM.

Received TCP/IP and UDP messages should be immediately displayed on the OLED
screen.

BT devices should be discovered, selected, paired and stored in the EEPROM.
A specific BT device should be selected for connection from the menu when necessary.

A standard communication protocol should be designed to transmit all the messages
and commands mentioned in this list.

Debug messages should be transmitted via the dedicated interface during normal op-
eration.

27

3. Task Definition

3.4. Nonfunctional Requirements

e The system should respond to a keypress within 10 ms.

e Keyboard press, mouse click, and gamepad click events should be delivered to the
remote PC within 30 ms.

e Motion commands (e.g. mouse cursor position or gamepad axis/rotation value) should
be delivered to the remote PC within 30 ms.

e Joypad frames should be delivered to the remote devices at a rate of 16 Hz.
e TCP/IP and UDP messages should be sent to the target within 100 ms.

e Keyboard configurations, Gamepad configurations, Wi-Fi Access Points as well as BT
devices should be managed (added, deleted, modified) using the Ul of the device.

e For the maintainability purpose, the system should be implemented using the official
libraries available in the Arduino IDE.

28

4. Requirements Analysis And Design

Before the implementation, a thorough analysis was performed to find out the optimal ways
to approach the goals specified in the previous chapter as close as possible within the time
constraints applied to this project. This chapter tells about the decisions, that were made
concerning the hardware as well as the software design, and provides the reasoning behind
them.

4.1. Hardware Design

4.1.1. Layout

Hardware design started from defining a layout of the components, that would comply with
the requirements. When deciding where to place each component, the following require-
ments were given the highest priority:

wireless antennas should have minimum obstacles;

all major components as well as the PCB should be detachable;

the USB sockets of both MCUs should be easily accessible from the outside;

wires should be short, but not prevent access to the components.

The remaining requirements were not supposed to affect the layout considerably.

Right from the beginning, one issue had become apparent, namely, the space in the recess
on the wheel intended for the PCB was insufficient to fit all the components together. A
decision was made to place the components related to powering the device (the battery,
the charger module, the voltage converters) inside the body of the wheel, where there was
enough free space. This decision would ease the problem of the lack of space as well as
introduce an additional feature - the wheel alone, with a detached mainboard, could act as a
power source with the outputs of 3.3V, 5V as well as the battery’s direct output.

29

4. Requirements Analysis And Design

As the next step, the location of the USB sockets for charging the battery as well as pro-
gramming the MCUs was determined. Since direct access to the on-board USB sockets of
the MCUs was limited due to their potential locations, a decision was made to use external
micro USB female sockets extended by wires and connected at the other end to other USB
connectors, which in turn would be plugged into the MCUs. The hole at the left side of the
wheel was considered as the appropriate place for the external USB sockets.

The keys provided with the wheel have their corresponding connection holes on the PCB,
and the holes, despite the keys being spread over the entire board, are concentrated at one
side of the board. The port expander was placed over the area where the holes are located.
This way the overall amount of wiring in the device would be considerably reduced.

Further, the remaining components were arranged on the PCB in various ways to determine
the layout that would place each component in an appropriate location according to the
high-priority requirements mentioned above as well as the decisions described so far. This,
unfortunately, did not lead to success, again due to the lack of space. To work this problem
around, the Arduino Micro board was replaced by its smaller analog - the Beetle, which is
based on the same MCU (ATmega32u4) and was shortly introduced in the chapter 2. This
way, however, the number of accessible pins on the ATmega32u4-based MCU was reduced,
further limiting its capabilities within this project.

Finally, the debug interface (a 14 pin ribbon cable socket) had found its place in the rectan-
gular hole with rounded corners at the backside of the wheel. Originally, there was a button
in that hole, which was removed leaving a perfectly suitable place for the debug interface
available.

Further, in chapter 5, there will be some figures provided that illustrate the layout described
in this chapter.

4.1.2. Modules Interconnection

After defining the final set of involved components, the task was to determine how they
connect on a high level of abstraction (without going into details about the exact pin mapping).
At this stage, the relevant documentation such as pinouts and datasheets of the involved
hardware components was analyzed, which led to the following set of conclusions:

e The ATmega32u4 turned out to have an insufficient number of interrupt-capable pins
on the Beetle board. This problem would not be fully solved using the Arduino Micro
either, because 4 out of 5 interrupt-capable pins of the board coincide with the 12C
(SCL, SDA) and the Hardware Serial (Rx, Tx) pins, which are assigned other important
functions. Thus, the Beetle could not be connected to all the interrupt pins of the
peripherals.

30

4. Requirements Analysis And Design

e The specificity of the SPI communication protocol made it hard to enable the master
role for both MCUs without additional circuitry. This way, the RFM69 transceiver, which
can be accessed only via SPI, could be connected to only one of the MCUs.

The aforementioned conclusions led to the following decisions:

Despite the requirements, the ATMega32u4-based MCU (the Beetle) was limited in its func-
tionality, namely, it would not be connected to the RFM69 transceiver, the buzzer as well
as to the interrupt pins of the other peripheral modules. Nevertheless, the Beetle would be
connected to the 12C bus enabling access to the vital modules of the system such as the port
expander, the inertial sensor and the OLED display as well as to the ESP32 via additional
Serial interface. This way the board would have the potential to perform most of the stipu-
lated tasks, although in the polling mode. The ESP32 was assigned the primary MCU role
because it could be fully connected to all the peripherals.

Based on the requirements from chapter 3 and the decisions mentioned in this chapter, the
design of the interconnections of the modules was concluded as shown in Fig. 4.1.

368 Mhz Accelerometer Port
. Gyroscope expander OLED
Transceiver Buzzer M B :
module agnetometer (Buttons, display
module LEDs)
u N\ ﬁ ﬁ H
ESP32 Atmega 32u4
Debug
interface
- USB
Wi-Fi Bluetooth emulator
< S~
-~
-——p SPIlconnection <——> Serial connection
H GPIO connection <}F———==> |2C connection

Figure 4.1.: Design approach diagram: hardware interconnection

4.2. Software Design

After the hardware design was determined, the software-related aspects of the yet to be
developed system were analyzed. This process included analysis of risks, assessment of

31

4. Requirements Analysis And Design

the workload and subsequent determination of the optimal design strategy as well as some
implementational decisions.

4.2.1. Analysis Of Libraries

Potential software libraries were examined that could be utilized within this project. The
following criteria ordered by priority were considered for the selection of the appropriate
ones:

1. Availability in the Library Manager of the Arduino IDE.
2. Coverage of necessary features.
3. The amount of the program memory occupied.

At this, stage the first potential risk arose - the 32KB of the program memory of the AT-
meage32u4 MCU turned out to be a tough space constraint. This fact proportionally in-
creased the estimated efforts (correspondingly time and workload) needed to meet all the
functional requirements. Besides of that, the standard libraries for handling of the Bluetooth
Low Energy (BLE) functionality of the ESP32 required around 70% of the program memory
of the ESP32, which made it impossible to use them as they are. For this reason, implemen-
tation of the BT-related requirements was postponed until there would be sufficient time left
for finding alternative ways of handling it.

The implemented libraries will be introduced in more detail later, in chapter 6.

4.2.2. Impact Of Hardware

The hardware-specific decisions mentioned in the previous section were taken into consider-
ation as they introduced new constraints applied to the software design. To be more specific,
the fact that the ATmega32u4-based MCU (the Beetle) would not be fully connected with
the rest of the peripherals, implied strong divergence of its potential source code from that
of the ESP32. This in turn further increased the estimated time of the implementation and,
consequently, the risk to not fit in the time constraints.

32

4. Requirements Analysis And Design

4.2.3. Architecture
The roles of the MCUs in the system
The observations mentioned above supported by those from the hardware design section

led to the following major architectural decision:

Despite being connected to some of the peripherals via 12C, the Beetle was assigned a
limited role. As such, the module would be responsible exclusively for the handling of the
USB emulation functionality, namely the Mouse, Keyboard, and PC Gamepad modes. This,
however, given enough time, could be improved in the future.

The overall architecture

Following the previous decision, the overall architecture was designed as monocentric, with
ESP32 as the primary MCU responsible for coordination of the system and the Beetle acting
only as a USB interface to the PC. The next requirements were taken into account:

e Responsiveness - the system should react to the user’s input fast enough for a positive
user experience.

e Maintainability - the code should be easy to read and modify, implementation of addi-
tional features should not lead to a major refactoring of the system.

e Sensors should be sampled with a sufficient rate.

e Other functional and to the extent possible nonfunctional requirements mentioned in
the chapter 3.

According to the aforementioned requirements, the following concept was developed:

Each major node in the system (e.g. mode of operation, a hardware module, menu, etc.)
has its dedicated handler class. Besides, there is a central node, e.g. a System Handler, that
coordinates operation of the system at a high level, namely:

e Initializes the system.
e Initializes and finalizes nodes (e.g. when the mode of operation changes).
e Updates the system:

— Regularly invokes update of the nodes, which handle the sensors.

— When needed, invokes update of other nodes depending on the mode of opera-
tion.

33

4. Requirements Analysis And Design

Furthermore, there is a User Input Handler (e.g. a menu), which changes the state of the
system by telling the System Handler what should be the next state (e.g. mode of operation).
Finally, the system is updated with a certain rate, triggered e.g. by a timer interrupt or in an
infinite loop with the maximum possible speed.

Considering the scale of the system, the OOP paradigm was given the preference as it would
ease further maintainability of the code. Since the nodes (correspondingly, the classes) of
the system would handle resources such as a sensor, a communication interface, or a mode
of operation, and since each resource was present only in one exemplar, the Singletone
Pattern was chosen as the appropriate one.

The figures 4.3 and 4.2 illustrate the software design concepts discussed in this section.

User Input
Handler

set mode

A4

Timer updnte} System Handler %r’lmple> Sensor Handler

|
update

Current Mode
Handler

Figure 4.2.: Design approach diagram: software concept at a high level of abstraction

34

4. Requirements Analysis And Design

User IO

OLED
display

Port expander
(Buttons, LEDs)

Buzzer

Accel, Gyro
Magnetometer
module

debug data,
joypad, gamepad,
keybhoard, mouse
frames

Debug

interface

gamepad,
mouse,
keyboard frames

- o
@ @
[=Rp=]
cEE
EEg g
T3 &
2T o § »
= o E w
2558 2
o 22 & £
T e m T E s E e E T m e 1
! 1
1 Wireless communication interfaces !
| |
! 868 Mhz !
! Bluetooth Wi-Fi Transceiver | !
! module !
1 1
) el

Figure 4.3.: Design approach diagram: data flow

debug
data

Atmega 32u4

keyboard frames

)
w
3
51
£
]
@
a
@
£
a
=)

usB
emulator

35

5. Hardware Implementation

This chapter guides the reader through the process of development of hardware, which was
based on the requirements listed in the chapter 3 and following the corresponding design
described in the chapter 4. This process can be split into two major stages:

1. Circuitry for powering the system, charging the battery and programming the MCUs;
2. Mainboard circuitry (interconnection of the MCUs and the peripheral modules);

The following sections will describe each stage in more detail accompanied by corresponding
illustrations. Finally, pictures of the final state of the device will be provided.

5.1. Power And Programming Circuit

Following the hardware specifications, a circuit diagram had to be developed, that would
allow the next features:

1. Supplying all the modules with their corresponding voltages (3.3V, 5V);
2. Switching the power of the entire system by a main switch;

3. Switching each MCU’s power by a separate switch;
4

. Measuring the voltages of the 3.3V and 5V outputs as well as the battery by ADCs of
the MCUs;

5. Programming the MCUs via their corresponding external micro USB sockets;
6. Charging the battery via both external micro USB sockets.

The first 2 features among those listed above did not require any particular efforts and were
solved straightforwardly:

e The 5V step-up DC-DC converter mentioned in the list of involved hardware (chapter
2) was fed directly from the battery supplying the system with a regulated 5V output;

e The 3.3V step-down converter took 5V as an input providing a regulated 3.3V output;

36

5. Hardware Implementation

e The main switch was placed right after the positive terminal of the battery hence being
able to switch power of the entire system;

The 3" feature required some investigation to identify which power input is suitable for each
MCU. According to the documentation of the ESP32 [11], the recommended way to power
the module is either via its USB socket by a regulated 5V input or, alternatively, via the
external power input pin by a voltage source with the output range of 7-12 Volts. The Beetle
board can be powered either via its USB input or the 5V pin, in both cases by a regulated
5V power source. Considering these specifications, both MCUs were powered via their USB
inputs by the regulated 5V supply, hence their corresponding switches were placed between
the supply and the USB sockets of the MCUs.

The feature number 4, namely measurement of the voltages, was initially approached simply
and intuitively: three voltage dividers consisting of two 100 Ohm resistors each were con-
nected to the power sources, and their measurement points were shared by both MCUs. As
a result, the ADC pins of the MCUs would be electrically connected, e.g. the three ADC pins
pin of the ESP32 were connected to their corresponding peers on the Beetle). This setup
was tested on a breadboard revealing a problem: when one of the MCU was switched off, its
ADC pins caused interference with the ADC pins of the other MCU leading to distortions in
voltage measurements. The problem was solved by decoupling the ADC pins of the MCUs
by simply implementing 2 sets of voltage dividers. Additionally, the measurement point of the
battery’s voltage was placed after the main switch, thus preventing potential current leakage
through its voltage divider when the main switch is off.

The 5™ was solved simply by forwarding the data signals of the external micro USB sockets
to their corresponding pins on the MCUs.

The last feature, namely charging the battery via both external micro USB sockets, implied
that the VBUS pins of the sockets were supposed to be in a way interconnected allowing
them to act as a power source for a single battery charger. This task introduced a potential
risk of reverse current when, e.g. 2 different PCs (ar any other devices, power sources) are
connected to the USB sockets of the wheel simultaneously. The problem had two potential
approaches:

e To use a mechanical switch allowing only a single USB socket to acts as a power
source for the battery charger;

e |Implementing a protection circuit at the level of electronics.

Despite its simplicity, the first approach would make the device less user-friendly, hence, the
second approach was given the preference. To keep the design as simple as possible with
minimum additional components involved, a classical reverse current protection approach
was considered - placing diodes after the VBUS pins of the USB sockets. This would intro-
duce a forward voltage drop across the diode further reducing the input voltage of the battery

37

5. Hardware Implementation

charger. However, the tests on a breadboard revealed that the resulting input voltage of the
charging circuit was within its allowed range and the battery was charging successfully.

The figure 5.1 illustrates the circuit diagram that was based on the description above and
was implemented in the device.

5.2. Mainboard Circuit

Following the design decisions, namely the roles of each component in the system as well
as their layout, the next step was to identify the actual pin connections. At this stage, the
following requirements ordered by priority were taken into account:

1. The peripheral devices should be connected to their corresponding MCUs in a way
that necessary functionality could be utilized (interrupt pins, communication pins, etc.).

2. The pins of the MCUs should be used optimally such that the functionality of each
involved pin is utilized in the best possible way.

3. The pins assigned predefined functions such as UART pins of programming interfaces
should be handled with particular care to avoid interference during programming of the
boards.

4. Wires should be as short as possible yet allowing access to all components for the
maintenance purpose.

ATmega32u4 pins

Since the Beetle (ATmega32u4) was limited in its functionality, its pin connections were
straight forward. The 12C-capable pins of the board served their dedicated purpose. The
hardware serial pins were assigned the role of the debug interface, which is described in
the next section. Two out of the three remaining digital 10 pins were used to communicate
with the ESP32 and hence were connected to the level converter between the two MCUs.
The two pins were selected based exclusively on their locations such that soldering becomes
easier. The three available analog input pins were used for voltage measurement, which was
described in the previous section.

38

5. Hardware Implementation

ESP32 pins

Assignment of functions to the pins of the ESP32 required more investigation to identify
capabilities, limitations and best possible ways to utilize the pins. For this purpose, the
documentation of the board was studied [11], which led to the following decisions:

e The pins GPIO1 and GPIO3 are connected to the programming UART interface and
hence, were left untouched.

e The pins GPIO21 and GP1022 were used to serve their dedicated purpose - 12C.

e The pins GPIO18, GPIO19, GPI023, and GPIO32 were used for the SPI according to
their intended purpose.

e Since the UART modules of the board can be logically mapped to any of the available
pins, the pins used for serial communication with the Beetle as well as for the debug
purpose were selected based on their locations to ease soldering.

e Since all other GPIO pins are ADC and interrupt-capable as well as can serve as 10,
their roles were assigned, again, based on their locations to make the wires short and
optimally aligned.

The circuit diagram of the main board implemented in the device is illustrated by the Fig.
5.2. For simplicity, some parts of the diagram such as powering, interfacing of the LEDs and
the keys as well as the debug interface are excluded from the diagram and are presented in
the figures 5.1, 5.3 and 5.4 respectively. The tables 5.1, 5.2 and 5.3 list corresponding pin
connections.

5.3. Complete Device

After designing the circuit diagrams, the process of assembly had begun. This involved fixing
the components in their corresponding places according to the design from the chapter 4
followed by wiring and soldering according to the circuit diagrams. The outer look of the final
device is illustrated in Fig. 5.5, whereas the overview of the inner components as well as a
closer look at the USB and debug interfaces are provided by the Fig. 5.6.

39

5. Hardware Implementation

Atmega 32u4 (5V) Periphery / function ESP32 (3.3V)
D9 (SW Serial Tx) <->Level shifter <-> Rx2 (D16)
D10 (SW Serial Rx) | <->Level shifter <-> Tx2 (D17)
SDA (3.3V) D21
SCL (3.3V) I2C SDA bus D22
5V step-up voltage divider 1 D34
3.3V step-down voltage divider 1 VN (D39)
Battery voltage divider 1 VP (D36)
AO 5V step-up voltage divider 2
A1 3.3V step-down voltage divider 2
A2 Battery voltage divider 2
Rx 32u4 Debug Rx
Tx 32u4 Debug Tx
RFM69 SPI MOSI D23
RFM69 SPI MISO D19
RFM69 SPI SCK D18
RFM69 SPI CS D32
RFMB69 Interrupt D33
Port expander Interrupt B D25
Port expander Interrupt A D26
MPU9250 Interrupt D14
BMA150 Interrupt D13
ESP32 Debug Rx D2
ESP32 Debug Tx D4
Buzzer (BJT Base through 10kOhm) | D15

Table 5.1.: Pin connections: microcontrollers’ perspective

40

5. Hardware Implementation

— MOSI SCK |——
— SS MISO |——
— TX N
—— RX GND |——
I s o
— GND 5V |—
— 2 NC |——
— 3 NC |——
— 4 As |— 100K 100K
— 5 2 A4 —
— 6 £ A3 |—
— 7 = A2
—1 8 AL 1651 100K
— 5w — A —— AW
— 10 AREF |—
— 11 3V
— 1213 |— 100K 100K
o 3
Z . +m
Q o>
VBUS J— \—f
o T STEP-DOWN3V3
D- 32U4_SW +VIN +VOUT
GND o
1 v ™~ VIN VouT)
™
' 1] Bk
LIPO CHARGER g
5 —
+VIN +VOUT = N
e e P MAINL__S\N STEP-UP5V
' +VIN +VOUT 5V
A
-VIN -VOouT
DC/ C CONVERTER
r
VBUS T
D+ —
o ESP32_SW
—1 L1
LR
g G}

VBAT]

ESP-WROMM-32

% CLK cMD %
22 | PO sbs Sx Sy X
sD1 sD2 S5 1] S
23 16 0 =) (=]
i o015 1013 [—= g S S
102 GND
25 1 100 o012 |14
26 13
104 1014 L
27 12 4 x x
1016 1027 S S S
28 11 3 IS) S
2o 1017 1026 |—+ =] = S
o] o5 1025 |—=
ER R ——_
er;g GND 1035 —g
o 1034 |2
= RXDO SENSOR_VN Z
26| TXDO SENSORVP |—
= 1022 EN |——
35 1023 3va |-
GND GND f——

Figure 5.1.: Circuit diagram: power and programming

41

5. Hardware Implementation

o™
SN >
o [Te]
— RESET NC ﬂ Q)
DIOO NSS sl =
— bio1 wosi
— bio2 wmiso
— bios SCK
— bio4 onNDL [ANT
DIOS ANT
V3 GND
RFM69
B N GND |38
21 avs 1023 |1
21 Een 022 |25 (S
-4 | SENSOR_VP TXDO |22
-5 1 SENSOR_VN RxDO 24
51 1034 021 [_(SDA
—Z 1 1035 GND |-EGND
8 1 lo32 019 [-3L - .
13 1033 1018 gg LEVEL-SHIFTER-4CH — 1 13 b—
1025 o5 |22 — eV —
L o017 |28 L1 1 v Hvi |22d 10 AREF |—
12 | 007 016 |-2L L2 1 v Hv2 222 9 A0 —
13 1 1014 04 |25 L8 f oy H 23 Gy — 8 ey —
14 1 o1 oo |25 J14 | cNpa eND2 224 — 7 5 A2 |—
IS 1 v Hva |25 — 6 5 A3 |—
% GND 102 % L6 va Hva [92:6 —1 5 = m —
1013 1015 — 4 iy —
11 sp2 soL 2= 3 NC —
=2 sD3 SDO == 2 NC |—
19 | cwp clk |22 scLy —| owp sV —
ESP-WROOM-32 oK 4 TIP120 — EX GNS
— ™x ev
— ss wmiso
— wmosisck |—
a3 o i
N
~ L~ N
el 5
S o
™ -
e
o)
é VDD sDI ; . SDA VPU-9250
vio spo —&—
3 5 1 24 /SSDA
INT SCK SCL 7| RESV SDAISDI [—22
. . 211 neo scuscik —22—CscL
GND Cs [O— = NC8 NCS ==
15 | ner AUX_ DA 2L
BMA180 14| e Resve |20
3— NC5 RESV1 %
MCP23017SP 5| AUECH GND =
1 . — vooio Nea 2
vss ope7 - 2 ADO/SDO NC3 |2
. opB6 - 19 RecouT nez (-
i w2 cpes [2- T Fsvie ner 2
B oa opBd o INT VDD 3V3
A0 GPB3 [— 2
L GPB2 > &
DA spa epBL |-
2 sc. cpeo - R’|
SCL
cpa7 28
crPas 2L
o P DISPLAY-OLED-128X32
Gpas |22
Py (22
cpaz |22 [SDA>—+- spa |HEE
GPAL == SCL scL [| OLED
121 2 [] 128x32
4 GPAO 3v3 vce
= J_ 11 enD

Figure 5.2.: Circuit diagram: main board (incomplete)

42

5. Hardware Implementation

3V3
(©
<
[s)
s

== RESET

INTA
INTB

== SsCL
== SDA

= A0
= Al
A2

GPAO
GPAL
GPA2
GPA3
GPA4
GPAS
GPAB
GPA7

GPBO
GPB1
GPB2
GPB3
GPB4
GPB5
GPB6
GPB7

VSS
fMCP23017SP

™
>
&
LED_RIGHT
HEE
x |0 |@
»
< < =
So0S50s0
SHSaso
nJHJ o [
o1 s < < <E <
SYSYSHYISNYDSHYDINYISINYINYSHYSY
22 >CS0S0S20S20S20S20S05505S0
23 THH‘—!HTH\—I‘—!HHH
o4 .
25 KEY9
o6 —
27 KEY4
o8 R A
KEY7
—_
— 0
KEY6
—
KEYS
—
KEYL
R
—e
KEY2
—_
— 0
KEYS
—
KEYO
—
KEY8

LED_LEFT

o™
7
™

Figure 5.3.: Circuit diagram: buttons and LEDs connection

|32U4 RX)

<3V3|

<{32V4 TXI

{BAT CHARGER +VIN |

1 2
[EsP3z_D2(RX)> 2 g <ESP32_D4(TX)]
7 8
SCL ! 2 —SDA
Y e R S
= Lo (VBAT &
L DEBUG

Figure 5.4.: Circuit diagram: 14-pin debug interface

43

5. Hardware Implementation

MCP23017 Port expander pin

Where connected

GPBO Key 1

GPB1 Key 2

GPB2 Key 3

GPB3 Key 0

GPB4 Key 8

GPB5 left LED R through 3300hm
GPB6 left LED G through 3300hm
GPB7 left LED B through 3300hm
GPAO right LED B through 3300hm
GPA1 right LED G through 3300hm
GPA2 right LED R through 3300hm
GPA3 Key 9

GPA4 Key 4

GPA5 Key 7

GPA6 Key 6

GPA7 Key 5

A0 GND

A1 GND

A2 GND

NReset 3.3V through 10kOhm

VDD 3.3V

VSS GND

SCK SCK bus

SDA SDA bus

INTA ESP32 D26

INTB ESP32 D25

Table 5.2.: Pin connections: port expander (keys, LEDs)

44

5. Hardware Implementation

Function Pin Pin Function
GND | 1 2 | 3.3V
ESP32 Debug Rx (D2) | 3 4 | ESP32 Debug Tx (D4)
32u4 Debug Rx (Rx) | 5 6 | 32u4 Debug Tx (Tx)
2CSCL | 7 8 | 12C SDA
Charger input voltage
GND | 9 10 (USB_Vbus - Vdiode)
GND | 11 12 | Battery
GND | 13 14 | 5V

Table 5.3.: Pin connections: debug interface perspective

Figure 5.5.: The outer look of the final device

45

5. Hardware Implementation

Figure 5.6.: The final device from the inside

46

6. Software Implementation

This chapter describes the major part of this project - the development of software. This
process can be split into three stages:

1. Definition of the protocol for communication with remote devices.
2. Development of the primary system on the ESP32.
3. Implementation of the USB emulation on the Beetle (ATmega32u4).

The following three sections provide details on the development of each stage.

6.1. Communication Protocol

The purpose of the protocol within this system was to provide a structured and standardized
way of communication between the wheel and the remote devices. Since there was no
specific requirement applied to the structure, a basic protocol with the following frame format
was defined and implemented in the Wheel:

Byte 1 Byte 2 Byte 3 Byte 4 Bytes[5:N]
start of the frame length primary secondary load
sequence (‘K’) | in bytes (N) command command payloa

Figure 6.1.: Communication protocol: frame format

As can be seen from Fig. 6.1, frames start with a byte with a fixed value ’K’, which stands
for “KLAB”. The second byte indicates the number of bytes in the frame or, in other words,
the length of the frame. The following two bytes are used for sending primary and secondary
commands. The primary command is mandatory and is used to indicate the purpose of the
message, e.g. a mouse command, a debug message, etc. The secondary command is
optional and can be used, e.g. to add some supplementary information about the primary
command or the payload. The bytes starting from 5 are optional and can be used for passing

47

6. Software Implementation

some payload, which has the size limit of 252 bytes such that the total size of the frame does
not exceed 256 bytes.

6.2. ESP32

This section described the development of the main part of the software system on the
Wheel, correspondingly - the system on the ESP32. First, an overview will introduce the
major nodes (classes) of the system and their relations as well as briefly explaining their
roles. Further, each node will be discussed individually in more detail providing information
about their structure and other technical aspects specific to its functionality.

6.2.1. System Overview
Polling vs. interrupt

Before developing the system, the two possible approaches for the system update were
considered: the polling and the interrupt based methods. The latter one was initially preferred
since it was supposed to guarantee timely reaction to the system update, e.g. when a key is
pressed or the inertial sensor has produced a new set of samples. To test this approach, a
set of experiments was performed leading to the following results:

1. The inertial sensor module (MPU-9250) was configured to be sampled at the rate of
60 Hz invoking interrupts when new samples were ready. The handling MCU was the
ESP32. The interrupts were correctly raised and the Interrupt Service Routine (ISR)
was invoked, however, the ISR could not be used for immediate reading of the sensor
via the 12C since such attempts were causing the ESP32 to malfunction and reboot.
The ISR could handle only setting a Boolean flag indicating that a new sample is ready
to be read. This way, the rate of reading the sensor did not depend on the rate of
the interrupts, and the sensor could be read only when the main thread reached the
corresponding instruction, which in practice did not make this approach considerably
different from polling in terms of performance.

2. The port expander (MCP23017) was set up in the interrupt mode similar to the iner-
tial sensor from the previous experiment. The interrupts were raised on keypresses
successfully, however, the process of cleaning the interrupt caused problems. Due to
the bouncing, the cleared interrupts were repeatedly invoked hence requiring some
time after which the interrupt could be finally cleared. During this “waiting” time, no
other key presses could be detected making the port expander unresponsive. This

48

6. Software Implementation

phenomenon made the interrupt-based keypress reading not only lose its advantages
in terms of response time but also made this process more error-prone.

The two experiments described above made the interrupt-based implementation of the sys-
tem too risky considering the complexity of the system and the time constraints.

Besides, due to the target application scope of the device and the inertial sensor being the
core of its manipulation method, the system was supposed to operate in the streaming mode
most of the time. In this context, streaming implies e.g. transmitting the position of the mouse
pointer, PC gamepad inertial commands, universal joypad inertial commands, etc. with a
fixed rate. This way, the polling of the sensors could be synchronized with the transmission
of the commands leading to the behavior similar to the interrupt-driven update at a certain
rate.

Based on the observations described above, a decision was made to follow the polling ap-
proach as it would in practice behave similarly to the interrupt-based one but being more
stable, less error-prone and straight forward to implement.

The system as it was developed

The system on the ESP32 was developed according to the design described in chapter 4.
Each node (peripheral module, mode of operation, communication interface, any other major
logical unit) of the system has got its dedicated handler class. All nodes are controlled by
the primary node - the System Handler. The system update is invoked at a certain rate. On
system update, all sensors are read via polling and the nodes responsible for the current
mode of operation are updated.

The system was developed using the OOP paradigm, and specifically, the Singleton pattern,
which means each node (class) has only a single static instance that can be accessed from
any other node without creating its instance or storing its reference.

Major nodes in the system

The following are the major nodes of the system and their roles in brief:

e Main is a symbolic name for the set of the global methods.
o SystemHandler is responsible for a high level coordination of the system.
e Menu handles navigation in menu and selection of modes.

¢ GamepadHandler handles the PC Gamepad mode of operation.

49

6. Software Implementation

MouseHandler handles the Mouse mode of operation.

KeyboardHandler handles the Keyboard mode of operation.

JoypadHandler handles the Universal Joypad mode of operation.
ServiceHandler is responsible for service features such as calibration and others.
SensorinfoHandler displays sensor values (inertial, voltages) on the screen.
StorageHandler provides functionality to read and write to the flash memory.
WiFiConnectionHandler handles selection of an AP to connect to.
WiFiHelper provides all functions related to Wi-Fi.

USBSerialHelper provides helper functions for the USB serial communication.
Power handles battery related functionality.

MPU handles the inertial sensor’s functionality.

Port handles key presses and LEDs.

OLED provides methods for manipulation of the display.

The Fig. 6.2 illustrates a high-level class diagram of the system. The dashed arrows sym-
bolize static singleton access.

50

6. Software Implementation

GamepadHandler |. j—
| <
™

e,
\ \ >
%
7/ ?& iy
“k
k 4

| SensorsinfoHandler
-
| JoypadHandler

—
%{g» _

\

3

N

\

X

\ \

\ jgik
\-\\“‘: _ Ny S
I< H
N
e EaAPEE

S |

~
-
P

\
\

il ~
~
Ve
-

Figure 6.2.: ESP32 class diagram: overview

51

6. Software Implementation

6.2.2. Main Routine

The main routine is performed by the Main node. “Main” is a symbolic name for the global
static methods, hence, it is not an actual class. The Main node contains methods for initial-
ization of the system and its regular update. On power-up, the method setup() is invoked,
which in turn initializes the SystemHandler node. Afterward, the method loop() is called in
an infinite loop. The later method invokes the update of the SystemHandler node, either with
a maximum rate of 100 Hz or with the maximum possible rate depending on the hard-coded
configuration. At the time of delivery of this paper, the 100 Hz configuration was selected.
Here, the rate of 100 Hz was chosen to fit the sampling rate of the inertial sensors with its
default configuration as well as to be able o respond to keypresses within 10 ms. Besides
that, such rate allows sufficient time for processing of the routines yet keeping the system re-
sponsive. The specified rate is not always the actual one, because depending on the mode of
operation some delays can be introduced, which will slightly reduce the rate of update. More
details on the timing characteristics of the system will be provided further in this paper.

6.2.3. System Handler

The system is handled at a high level by the SystemHandler class, which is the master
node of the system. It is initialized once at the system start and regularly updated by the
main routine as was described before. The node has a state machine, whose states are
represented by the enumeration class Mode.

On initialization, the SystemHandler initializes the nodes OLED, Port, MPU, Power and
WiFiHelper, displays an introductory animation on the OLED screen, attempts to connect to
the first available Wi-Fi AP among those stored in the memory, and finally enters the state
“MENU” by initializing the Menu node. Any further states are set by the Menu node based
on the user’s input (selection of modes from the menu).

On update, the SystemHandler first updates the Port, MPU, Power and WiFiHelper nodes,
and then the node, which corresponds to the current state (mode of operation).

On state change, it finalizes the node that corresponds to the previous state and initialized
the new one. The role of initialization, update, and finalization of the nodes will be explained
further, individually for each node.

The two additional roles of the SystemHandler are handling the commands quit and show
status, which are issued by the user via pressing the corresponding keys. The former com-
mand is used to quit the current mode of operation and the latter shows on the OLED screen
some information about the status of the system such as Wi-Fi connection, IP address and
other. When the “quit” is issued, the SystemHandler changes its state to the “MENU”.

52

6. Software Implementation

6.2.4. Main Menu

The menu functionality of the device is handled by the Menu class, which is responsible
for the navigation in the menu of the device and selection of the entries. Similar to the
SystemHandler, it has a state machine, whose states are represented by the items of the
enumeration class MenuEntry. The states are arranged in a two-level hierarchy, where the
upper level (the parent) states correspond to the modes of operation of the system, whereas
the lower level (the child) states correspond to the sub-modes of operation. For example,
in the context of this system, when a mode of operation is the Mouse, the sub-modes can
be the Relative or Absolute, which stand for the Relative Mouse and the Absoule Mouse
modes respectively.

The Structure

The structure of the entire menu with a short description of the items is provided below:

e CONNECT - connectivity functions
— WIFI - connect to a Wi-Fi AP

GAMEPAD - mode of operation: PC Gamepad
— X-Y MODE - sub-mode: keys and X,Y axes
— RPY MODE - sub-mode: keys and X,Y,Z rotations

MOUSE - mode of operation: Mouse
— ABSOLUTE - sub-mode: absolute
— RELATIVE - sub-mode: relative

KEYBOARD - mode of operatiot: Keyboard
— NAV. MODE - sub-mode: navigational key set
— GAME MODE - sub-mode: gaming key set

JOYPAD - mode of operation: Universal Joypad
— WI-FI - sub-mode: transmission via Wi-Fi

RADIO - sub-mode: transmission via the wireless transceiver

USB INT. - sub-mode: transmission via the USB interface

DEBUG INT. - sub-mode: transmission via the Debug interface

53

6. Software Implementation

e SERVICE - service functionality
— CALIBR. MPU - calibrate the inertial sensor
— WI-FI - manage the Wi-Fi related settings
— BATTERY - manage the power related settings
e SENSORS - sensors mode
— RPY - sub-mode: displaying RPY on the OLED screen

— VOLTAGES - sub-mode: displaying the voltages of the 3.3V, 5V output and the
battery on the OLED screen

Here, the items in bold match the texts that appear on the OLED screen when the corre-
sponding items are being displayed.

Navigation

Navigation in the menu is performed using the keys. The following list shows the commands
involved in menu navigation, their assigned keys as well as description.

e Next (key 7) - is used to switch to the next item within the same level of the menu’s
hierarchy (switching among the parent states, or among the child states of the same
parent).

e Previous (key 5) - is used to switch to the previous item within the same level of the
menu’s hierarchy.

e Return (key 4) - is used to navigate up the hierarchy (from a child state to its parent).

e Ok (key 6) - is used to navigate down the hierarchy (from a parent state to its first
child). If the current item does not have a child, then Selection of this item will be
issued, which is described further.

The mapping of the labels to the keys is illustrated by Fig. 6.3.

54

6. Software Implementation

@®® ®©©

® ® 6 @)

Figure 6.3.: The labels of the keys

Selection

As was mentioned before, when the command Ok is issued from a sub-state (child menu
item), this will lead to a selection of the mode of operation assigned to that item. For example,
if current menu entry is Absolute Mouse, then pressing the Ok key will lead to the following
behavior:

1. The Menu node will set the state of the Mouse node to the Absolute.

2. The Menu node will notify the SystemHandler node about the next mode being the
Mouse.

3. At the following system update, the SystemHandler will finalize the Menu mode and
initialize the Mouse mode.

4. The device will begin to operate in the Absolute Mouse mode.

6.2.5. Storage Handler

In the Wheel's system, the settings and configurations, such as Wi-Fi APs, sensor calibra-
tion values, and others are stored in the flash memory of the ESP32. This memory can
be accessed using the EEPROM library provided by the Arduino IDE. The library provides
functions for reading and writing bytes to specified addresses. The advantage of such ca-
pabilities is the low-level access to the flash memory, which gives freedom and flexibility to
the developer. However, such freedom requires special care when it comes to specifying the
correct addresses of the bytes to be read or written since wrong addresses may cause data
loss or reading wrong values which in turn may lead to incorrect operation of the system.
Besides, storing and reading multi-byte data types (e.g. float, int, etc.) byte by byte requires
additional care as well. This implies a higher risk of errors and more sophisticated software,
which increases the overall complexity and reduces the maintainability of the system.

55

6. Software Implementation

The StorageHandler class solves the problems stated above by providing methods for sim-
plified and structured access to the underlying flash memory without the need to care about
the correct addresses and data types. The StorageHandler stores a structure Storage, which
in turn consists of further structures called Segments. Each segment stores a set of values
that serve a certain purpose, e.g. calibration values of the inertial sensor. The data of a
segment of the Storage can be accessed directly. However, before reading the content of
the segment, it has to be loaded from the flash memory at least once. Loading, erasing and
saving changes in the segments are done through an instance of the Segment class that can
be obtained using the method getSegment() of the StorageHandler by passing the identity
of the required segment as an argument. The identities of the segments are represented by
the enumeration class StorageSegment.

The StorageHandler uses the aforementioned EEPROM library to access the flash memory.
The structure of the Storage is illustrated in Fig. 6.4.

Segment StorageHandler <<enum class>>
StorageSegment
copromOset ma2 R My
prom-iset. Intsz_t UDP_PARAMS
- sectorSize: uintl6_t TCP PARAMS
- storageSize: uint16_t + storage: Stor?ge BATTERY_EXTREMA
* L WIFI_ACCESS_POINTS
) + getStorage(): Storage*
+ Segment(byte*, byte*, uintl6_t, + getSegmeni(StorageSegment): Segment*
uintl6_t)
+ load(): void
+ save(): void
+ erase(): void
<<struct>> <<struct>>
Storage MPUCalibration
mpu_calibration: MPUCalibration ‘ hasvalue: byte
<S> _’ bat_extrema: BatteryExtrema a’\;_g ;:03:
TCPParams wifi_aps: WiFiAPs ay_b:lloa
udp: UPDParams aZ_br: float
serverPort: uintl6_t '—. tep: TCPParams ‘ﬁ gX_b: float
clientPort: uintl6_t g;__:: ;:ga:
clientRemotelPv4: uint32_t gz_p: float
mx_b: float
mY_b: float
<<struct>> mZ_b: float
WiFiAPs mX_s: float
mY_s: float
APs: WIFIAP[10] mZ_s: float
<<struct>> <<struct>> <<struct>>
UDPParams WiFiAP BatteryExtrema
serverPort: uintl6_t hasValue: byte hasValue: byte
clientPort: uint16_t ssid: char[32] min: uintl6_t
clientRemotelPv4: uint32_t passphrase: char[64] max: uintlé_t

Figure 6.4.: ESP32 class diagram: Storage Handler perspective

56

6. Software Implementation

6.2.6. Accelerometer, Gyroscope, Magnetometer
The sensor and the library

The inertial manipulation features of the device are based on the MPU-9250 module intro-
duced in the chapter 2, which has built-in Accelerometer, Gyroscope and Magnetometer
modules, each providing values in 3 axes. There are several libraries for interfacing the
module available in the Arduino IDE. After analyzing them for the provided functionality, pref-
erence was given to the one which is called “hideakitai MPU9250”. The library, along with
standard features such as configuring the module and obtaining sensor values, provides
functions for calibration and even out-of-the-box calculation of the RPY values. The pres-
ence of these features would save a considerable amount of time that could be directed to
the implementation of the other functionality of the Device.

The MPU class

In this project, the library was not used directly because an additional layer was required
that would provide missing functionality. The role of such a layer was assigned to the MPU
class. The class provides functions for handling the calibration process, saving calibration
data in memory, loading and applying calibration data to the sensor using the library. The
major role of the MPU class, however, is to implement additional filtering of the Roll, Pitch
and Yaw values obtained using the library. The class provides the functions to get the filtered
as well as non-filtered values both in floating-point and integer formats. The MPU node is
being initialized and regularly updated by the SystemHandler. On initialization, the node
configures the sensor. On update, it updates the sensor, reads the values of RPY and
updates the filters.

The encoded yaw

In addition to the basic RPY, there was a function developed that calculates the value of
the encoded Yaw. The difference between the normal Yaw and the encoded Yaw is that the
former one takes values in the range of —180 to 180 degrees, whereas the latter stores
the absolute degrees of rotation around the Z-axis starting from the initialization of the sys-
tem. This means the value range of the encoded Yaw is limited only by its data type, which
is float in this case. With this feature, the Wheel can be used as a rotary encoder. The
name “encoded Yaw” is symbolic and means that the value was obtained by tracking the Yaw
angle.

57

6. Software Implementation

void MPU: :encode ()

{
float Y_new = getY_f(); // read current yaw in float

// 1f overflow through -180 to positive
if (Y_prev < -90.0f && Y_new > 90.0f)
Y _encoder += (Y_new - Y_prev - 360.0f);
// else if overflow through +180 to negative
else if (Y_prev > 90.0f && Y_new < -90.0f)
Y_encoder += (Y_new — Y_prev + 360.0f);
// else no overflow

else
Y_encoder += (Y_new — Y_prev);
Y_prev = Y_new;
}
Listing 6.1: Calculation of the encoded Yaw value
Filtering

The filtering functionality is achieved using the Moving Average Filter with the widow size of
10 implemented on a circular buffer. Filtering helped to reduce the noise which was affecting
first of all the Absolute Mouse mode of operation. The window size of 10 was selected
as an optimal to reach sufficient noise reduction yet keeping the lag within the acceptable
limit, which was determined experimentally. The Fig. 6.5 illustrates the time response of the
implemented filter to the input of the values of the Roll in a steady state of the device.

15

Roll, degrees

= non-filtered

e filtered

0 100 200 300 400 500 600 700 800 900 1000
time, ms

Figure 6.5.: Time response: Moving Average Filter, window size 10
As can be seen from Fig. 6.5, the noise of the original signal has the amplitude range of

nearly 1.5 degrees, which in turn is translated to a large distance that, e.g. a mouse pointer
would move following those values. The filtering, in turn, reduces the noise considerably.

58

6. Software Implementation

6.2.7. OLED Display

The OLED display introduced in chapter 2 of this paper is the main output method of the
device. It is used for the menu navigation, displaying the status of the device (battery per-
centage, the current mode of operation, enabled wireless modules, etc.) as well as important
messages that arrive from the remote devices.

The library

There are various libraries provided in the Arduino IDE for interfacing such displays. In this
project, the library “Adafruit SSD1306” was selected. It provides all necessary functions
to manipulate the display such as printing texts of variable size in any location, drawing
bitmaps, pixel manipulation, etc. One of the handiest features is the local buffer which stores
each pixel's value. This way, the content of the entire screen can be first composed and then
sent in a single packet to the display improving the overall performance of the system.

The OLED class

The OLED class was implemented to act as an additional layer to access the functions of the
library. The class provides functions specific to the device, such as showing the introductory
animation as well as displaying menu entries, the current mode of operation, system status,
icons, etc. in their dedicated locations and size. Besides that, some functions simplify usage
of the standard functions provided by the library, such as clearing a region.

The locking mechanism

The OLED class offers an additional feature - it is possible to lock and unlock the display
by calling corresponding functions. If the display is locked, it means that the most recent
content is being displayed and cannot be overwritten until the display is unlocked. However,
the locked display does not imply the loss of the new content that was supposed to be
displayed. During the locked state, the new content is stored in the local buffer of the library
and is immediately displayed as soon as the display is unlocked.

Locking the display is used when an important message is displayed that necessarily has
to be acknowledged by the user. Within this project, the locking feature was used to show
the UDP and TCP/IP messages on the screen according to the corresponding functional
requirements as well as to show the system status (Wi-Fi AP, IP address, etc.) when the
user issues the show status command. In both use cases, the acknowledgment (unlocking)

59

6. Software Implementation

is performed by issuing the quit command. Both mentioned commands were described
earlier in the section 6.2.3.

6.2.8. Keys, LEDs
The library

The keys and LEDs of the device are accessed through the port expander module,
which was introduced in the chapter 2. The module was interfaced using the library
“Adafruit_ MCP23017”, which provides convenient methods to setup each pin either as an
input or as an output, to read and write values from/to the ports as well as to configure
interrupts.

The Port class

As in the cases of the previously described modules, there is an additional layer created to
access the library’s functionality, namely the class Port. The Port provides device-specific
functions that ease manipulation of the LEDs and access to the states of the keys. As
such, an LED can be switched providing only its number and desired color and the state
of a key can be checked by providing its number only. Additionally, the class provides the
debouncing feature with a configurable debounce period as well as the handling of some
predefined key combination clicks. The Port node is being initialized and regularly updated
by the SystemHandler. On initialization, the node configures the port expander’s pins. On
update, it reads the port expander’s registers, derives the state of each key and stores it in
the local variable for further quick access.

Debouncing

Debouncing is implemented simply - if the key is clicked, its next click can be registered
only after the debounce period expires. This way, the debouncing functionality works slightly
different from its definition, namely, it limits the rate of repeated clicks of the same key and
does not work as would be expected if the key has to be pressed and held. This is done
intentionally. Since the whole system is polling-based and is updated with sufficiently large
intervals, actual debouncing does not appear to be a problem. On the other hand, the polling
approach raises another problem - when a key is supposed to be pressed only once, it might
be polled several times until the user releases the key. This, in turn, will lead to several
registered clicks. The problem of pressing and holding a key is solved by allowing to set the

60

6. Software Implementation

debouncing duration to zero (or to any other value) by invoking the corresponding method of
the Port class. Examples of the use case of this feature:

e In menu navigation, when the user presses and holds a navigation button (e.g. next
item), the rate of switching the items should be limited (correspondingly the rate of re-
peated clicks). This can be achieved by setting a sufficiently large debouncing period.

e In the mouse mode, the user needs to be able to press and hold e.g. the left mouse
key to drag an item on the screen of the PC. This can be achieved by setting the
debouncing period to zero.

Each node of the system has its own suitable debounce period, which is set when the node
is initialized. Debouncing of each key and even some key combinations is tracked individu-
ally.

Quit and Status commands

The two commands mentioned in section 6.2.3 have their assigned key combinations. These
combinations were defined based on some analysis. Considering the application scope of
the device, assigning single keys to those functions was inappropriate since, in such modes
as Keyboard, each key would have been assigned some keyboard command. Hence, a
combination of 2 keys was needed for each command (3 and more would be less user-
friendly).

The decision was made to assign the combination key8 + key9 to the quit function since
these keys, due to the inconvenience of pressing them simultaneously, were unlikely to be
assigned any other function in the modes of operation. As such, in the system, this combi-
nation is used exclusively for the quitting purpose.

The combination key1 + key5 was assigned the show status command. However, due to
the location of the keys, they are likely to be used simultaneously in such modes as Keyboard,
PC Gamepad and Universal Joypad. For this reason, this combination works for showing the
system status only in modes of operation, in which pressing those keys simultaneously is not
needed for any other purpose, namely in the Menu, Sensors Info, and Service modes.

The location of each key is illustrated in Fig. 6.3.

6.2.9. Power

The class Power was developed to handle the power-related functionality of the system. This
includes:

61

6. Software Implementation

e Sampling and filtering the battery’s voltage as well as calculation of its charging level
in percents every 500 ms.

e Sampling and filtering of the 3.3V and 5V outputs on demand.
e The battery management tool.

The Power node is being initialized and regularly updated by the SystemHandler. On initial-
ization, the node configures corresponding pins of the ESP32 and performs initial sampling
of the ADCs until the filters are full. On update, it checks whether sufficient time has passed
since the previous sampling and if yes, it samples the battery’s ADC, updates the correspond-
ing filter and recalculates the battery’s charge in percents. In case the mode of operation of
the system is the Sensors and the sub-mode Voltages is selected, on system update, the
node additionally samples the 3.3V and 5V sources with further filtering and calculates the
voltages of all three sources.

Filtering

Filtering was implemented in the same manner as was described in section 6.2.6, but with
a different filter windows size of 30. Such windows size was considered appropriate due to
the high sensitivity of the ADCs on the ESP32 to noise. Admittedly, a larger window size
introduced the larger lag of the filtered value, however, this is not a problem when applied to
the slowly changing battery voltage.

Charge in percents

The battery percentage is implemented straightforwardly. There is an ADC measurement
level that corresponds to the minimum charge of the battery, which is called the min, and
there is an ADC measurement level that corresponds to a fully charged battery, which is
called max. Let the cur be the current measurement of the ADC, then the battery’s charge
in percents is calculated using the following equation:

percents = (cur — min)/(max — min) * 100 (6.1)

The min and max values were obtained through the time series of the ADC measurements
starting from the fully charged battery until the device was off. During that process, to prevent
the battery from being charged, the USB cables were not connected to the device. The
samples of the time series, therefore, were transmitted via Wi-Fi to the host PC, where they
were recorded. For this purpose, a simple UDP server was programmed in Java.

62

6. Software Implementation

The major disadvantage of using the equation 6.1 is the non-linear relationship between the
voltage and the state of the charge of the battery. This makes the percents change slowly
when the battery is nearly full and faster as long as the battery is discharged. This issue,
however, was considered of minor importance since it would not affect the performance of
the device and hence, postponed in case there was enough additional time for it or omitted
otherwise.

The battery management tool

The battery management tool is a utility that
provides service features such as showing
the status of the battery (voltage, percents,
the min and max values) and setting the
min and max values used in the equation Please select a cormand:
6.1 with further storage in the flash mem- 1 - Show status

ory. The reason behind allowing to set 2 - 5=t battery min
these values is the aging of the battery [12]. | - St battery max

As time passes and the number of charg- 1o Quic

ing/discharging cycles increases, the bat-
tery loses its capacity and hence, the max-
imum charge it can store (correspondingly,
its maximum voltage) decreases. Due to
this phenomenon, an earlier defined max
value may later become invalid (too high),
which means after some time the equation 6.1 would never be able to result in 100%. To
avoid the latter case, the max can be set using the battery management tool.

Welcome to battery managemsnt tool.

Figure 6.6.: The main menu of the battery
management tool

This tool operates via the USB interface of the ESP32 using a serial terminal on a PC. The
tool is initialized from the ServiceHandler node when the corresponding mode is selected in
the Menu node.

6.2.10. PC Gamepad Mode

The PC Gamepad Mode is the mode of operation in which the device can emulate the be-
havior of a generic USB Gamepad. In this mode, it is possible to use the Wheel, e.g. to
play PC games. This is achieved because of the USB emulation feature of the ATmega32u4
MCU (the Beetle board).

63

6. Software Implementation

The GamepadHandler class

At the ESP32 side of the system, the PC Gamepad mode is
handled by the GamepadHandler class. Its main function is to

convert the RPY values obtained from the inertial sensor as [P—
well as the key states to corresponding PC Gamepad com- gamepadFrame
mands depending on the selected configuration (sub-mode)
and to transmit them to the Beetle board for further processing. start: IUiﬂtB_l
The commands are transmitted using the protocol described len: uint8_t
in section 6.1 and the exact frame format is illustrated in Fig. cm u'".tB—t
o . . . cmd2: uintd_t
6.7. Transmission is performed with the minimum interval of 25 YAX: iNtl6 t
ms to allow sufficient time to transmit the entire frame with the yﬂx intls t
baud rate of 9600, which is set for the serial communication ¥Rot intlET_t
channel between the ESP32 and the Beetle. yRot: intl6_t
L ZAX: int8_t
The GamepadHandler node is initialized and regularly updated ZRot" int8 t
by the SystemHandler node in case the Gamepad mode of dPad_1:int8 t
operation is selected. On update, the node checks whether dPad_2:int6_t
sufficient time has passed since the last transmission and if keys: uint32_t

yes, it performs its main function described before. When
the user quits the Gamepad mode, the SystemHandler final-
izes the GamepadHandler. On finalization, the latter node Figure 6.7.: Gamepad
sends the corresponding message to the Beetle board (AT- frame
mega32u4). This is required to perform clean finalization of

the USB emulation at the Beetle’s side.

Sub-modes

As can be seen from Fig. 6.7, there are two sets of Gamepad values, to which the RPY
values of the inertial sensor could be mapped, namely X, Y and Z axes as well as X, Y and
Z rotations. For this reason, two corresponding sub-modes for the PC Gamepad mode are
implemented:

e X-Y - maps pitch and roll of the device to X and Y axes of the PC gamepad respectively,
living the Z-axis as well as X, Y and Z rotations zero.

e RPY - maps the RPY of the device to X, Y and Z rotations of the PC gamepad leaving
the X, Y and Z-axis values zero.

In both modes the 10 keys of the Wheel are mapped to the first 10 keys of the PC gamepad
out of possible 32. The commands dPad 1 and dPad_2, which stand for the directional pads,

64

6. Software Implementation

are left unused. However, they have their corresponding entries in the gamepad frame for

the future implementation of those functions.

6.2.11. Universal Joypad Mode

The Universal Joypad Mode is the mode in which the Wheel can be used to control a variety

of remote devices via multiple possible communication channels

The JoypadHandler class

The Universal Joypad mode is handled by the JoypadHandler
node. Its main role is to take the RPY values and the encoded
Yaw value introduced in section 6.2.6 as well as the key states
and to transmit them to a remote device. The commands are
transmitted using the protocol described in section 6.1 and the
exact frame format is illustrated in Fig. 6.8. Transmission is
performed with a minimum interval of 60 ms. This rate is se-
lected as sufficiently high to make the control responsive and
sufficiently low to allow successful delivery of the UDP mes-
sages.

The JoypadHandler node is initialized and regularly updated by
the SystemHandler node in case the Joypad mode of opera-
tion is selected. On update, the node checks whether sufficient
time has passed since the last transmission and if yes, it per-
forms its main function described before.

Sub-modes

<<struct>>
joypadFrame

start; uintg_t

len: uint8_t

cmd: uint8_t

cmd2: uint8_t
Roll: intl6_t

Pitch: int16_t

Yaw: intl6_t

Keys: uintl6_t

YawEncoded: int32_t

Figure 6.8.: Joypad frame

The sub-modes of the Universal Joypad mode do not change the behavior of the mode in
general. They rather define the communication channel, which is used for transmission of

the Joypad frames. The following modes can be selected:

e Wi-Fi - transmission is performed via the UDP protocol.

e Radio - transmission via the 868 Mhz wireless transceiver. This mode was not imple-
mented due to time constraints. However, it has all the infrastructure ready (e.g. menu
entry) up to the point where the frame has to be transmitted.

65

6. Software Implementation

e USB interface - transmission via the USB interface of the ESP32. Unlike the other
sub-modes, in this sub-mode the bytes of the frame are not written, instead, the mem-
bers of the frames structure are printed to the USB serial. This allows to see the actual
joypad values in the serial terminal in a human-readable form.

e Debug interface - transmission via the debug interface of the device.

6.2.12. Keyboard Mode

The PC Keyboard Mode is the mode of operation in which the Wheel can be used to emulate
the behavior of a USB Keyboard. Here, the role of actual emulations is played, again, by the
Beetle board. The ESP32, in turn, notifies the Beetle about the keys that have to be pressed
or released.

The KeyboardHandler class

Within the ESP32, this mode of operation is handled by the
KeyboardHandler class. Its main task is to map the key states

of the Wheel to keycodes and states of a PC Keyboard and to
transmit them to the Beetle board for further processing. Trans-
mission is performed in the same manner as was described
in the section 6.2.10 (GamepadHandler), with the same inter-
val of 25 ms, but with a payload containing the keyboard spe-
cific data. The used frame format is shown in Fig. 6.9. The
KeyboardHandler node is initialized, updated and finalized in
the same manner as was described in the section 6.2.10 (PC
Gamepad mode).

Sub-modes

The sub-modes of the Keyboard mode define the mapping of
the keys of the Wheel to the key codes of a PC Keyboard.
There are two sub-modes (correspondingly, key - key code
mappings) implemented in the system:

e Navigation - implements the keyboard keys, which can
be used for navigation in the OS, e.g. opening/closing
files, switching among the open windows, invoking the
start menu, selecting items, switching the PC off, etc.

<<siruct>==
keyboardFrame

start; uint8_t

len: uint8_t

cmd: uintd_t

cmd2: uint8_t

keys: keyboardKey[10]

*

<<union==
keyboardKey

c: char[2]
b: byte[2]

Figure 6.9.: Keyboard mes-
sages frame

66

6. Software Implementation

e Gaming - implements the keyboard keys which are com-
monly used in gaming.

The mapping of the keys of the Wheel to their corresponding keyboard keys for each sub-
mode is presented in the table 6.1. The location and the labels of the keys on the device are
illustrated in Fig. 6.3. The sub-modes were successfully tested on the Windows 10 OS.

Device Keyboard key, Keyboard key,
key navigation mode gaming mode
0 KEY_TAB KEY_A
1 KEY_ESC KEY_W
2 KEY_LEFT_CTRL KEY_D
3 KEY_LEFT_ALT KEY_S
4 KEY_LEFT_ARROW | KEY_LEFT_ARROW
5 KEY_UP_ARROW KEY_UP_ARROW
6 KEY_RIGHT_ARROW | KEY_RIGHT_ARROW
7 KEY_DOWN_ARROW | KEY_DOWN_ARROW
8 KEY_F4 KEY_SPACE
9 KEY_RETURN KEY_RETURN

Table 6.1.: Mapping of the device’s keys to keyboard keys

6.2.13. Mouse Mode

The Mouse Mode is the mode of operation in which the Device can
be used to emulate the behavior of a USB Mouse. This functionality,
as was mentioned earlier, is achieved due to the USB emulation

<<slruct>>

capability of the Beetle board. The role of the ESP32 in this mode, mouseFrame
as in the cases of the Gamepad and the Keyboard modes, is to start uint8 t
send mouse-related commands to the Beetle. len: uint8_t
cmd: uint8_t
ecmd2: uint8_t
xVal: int16_t
The MouseHandler class yVal int16_t
wheel: int16_t
The Mouse mode functionality is handled by the MouseHandler | Kev:uint6_t

class. The MouseHandler converts the Roll and Pitch of the Device

into the mouse pointer coordinates or velocities depending on the

selected sub-mode as well as maps the on-board keys to mouse Figure 6.10.: Mouse
key commands. This data is then packed into mouse frames (Fig. frame
6.10) and transmitted to the Beetle board in the same manner as it

67

6. Software Implementation

was described for the KeyboardHandler and the GamepadHandler
earlier. However, the transmission interval is shorter than that of
the Keyboard and Gamepad modes, and is set to 15 ms. This is
possible due to a smaller length of the transmitted frames.

Initialization, update, and finalization of the MouseHandler node are similar to those of the
KeyboardHandler and the GamepadHandler and were described in section 6.2.10.

Sub-modes

There are two sub-modes of the Mouse mode implemented:

e Absolute - the Pitch of the device is mapped to the X coordniate of the mouse pointer,
the Roll - to the Y coordinate.

e Relative - the Pitch and the Roll of the device are translated to the velocities of the
mouse pointer along the X and Y axes respectively.

In both sub-modes, the mapping of the keys of the device to mouse functions is identical and
is provided in the table 6.2.

Device key Mouse function
1 scroll 1 position up
scroll 1 position down
left key press
left key double click
right key press
middle key press

N[O o h~W

Table 6.2.: Mapping of the device’s keys to mouse functions

Usability

One of the main issues in the development of the Mouse mode was to ensure the stabilization
of the mouse pointer at the desired location on the screen.

For the Relative mode, this problem was solved simply by thresholding the values of Roll
and Pitch. For example, if the absolute value of the Roll is less than 1.5°, the corresponding
velocity along the Y-axis is 0, which means the pointer does not move vertically with respect
to its current location

68

6. Software Implementation

For the Absolute mode, the problem of instability was to a high extent reduced by filtering of
the inertial values as was described in section 6.2.6. The remaining instability did not cause
any usability problems except for the difficulty to perform a mouse double click, because,
for that, the pointer has to fully stop. The problem was solved by implementing the mouse
double click command, which is issued by a single click of the corresponding key on the
Wheel.

6.2.14. Service Mode

The purpose of the Service mode, as the name suggests, is to perform service operation
such as configuration, calibration of the Device, etc. This mode is handled by the Service-
Handler class. Currently, the ServiceHandler provides three functions (sub-modes):

e Calibration - initiates and coordinates the process of calibration of the inertial sensor.
The process is conducted interactively: before performing each calibration step, the
user is asked to place the device in a certain way and to initiate the step by pressing
a key. Corresponding messages are displayed on the OLED screen and completion is
indicated by the LEDs. This sub-mode is the only one, which is fully coordinated by
the ServiceHandler node.

e Wi-Fi management - calls the corresponding routine of the WiFiHelper node, which
in turn initializes the Wi-Fi management tool. The tool is used to perform a variety of
Wi-Fi related operations and configurations vie the USB serial interface of the ESP32.
Further details about the tool are provided in section 6.2.16.

e Battery management - initializes the Battery management tool, which was de-
scribed earlier, in the section 6.2.9.

6.2.15. USB Serial Helper

The USB Serial Helper functionality is nothing that the user can make use of. It is rather
a set of utility functions provided by the USBSerialHelper class, that are meant to ease
further development and maintenance of the system. The class offers functions that come
in handy in the implementation of serial communication based interactive tools, such as data
pickers, dialogs of the types “YesNo”, “YesNoCancel”, “Confirm”, etc. The main advantage
of these functions is the handling of invalid input from the user and ensuring that either the
system receives a valid input or the user cancels the operation. Besides, the functions offer
standardized messages for the dialogs yet allowing to set a custom message. The exact set
of functions implemented in the class is provided in Fig. 6.11.

69

6. Software Implementation

<<struct>> <<struct>> <<struct>>
ResponseData_Int ResponseData_|Pv4 ResponseData_String
response: ResponseType response: ResponseType response: ResponseType
value: int IPv4: IPAddress value: String
[
USBSerialHelper <<enum class>>
ResponseType
- inst_: USBSerialHelper* DEE
SW_QUIT
I HW_QUIT
- hardwareQuit(): bool SUE(?ESS
+ getinstance(): USBSerialHelper* FAILURE
+ initSession(): ResponseType YES
+ flushSerial(): void NO
+ waitForAnyResponse(): ResponseType oK
+ askYesNo(__FlashStringHelper*): ResponseType CANCEL
+ askYesNoCancel(__FlashStringHelper*): ResponseType
+ confirm(__ FlashStringHelper): ResponseType
+ pickNumber(__FlashStringHelper*, int, int): ResponseData_Int
+ readString(__FlashStringHelper*): ResponseData_String
+ readIPv4(__FlashStringHelper*): ResponseData_IPv4
T
—_— e
r R Q/
SystemHandler J [Port OLED

Figure 6.11.: ESP32 class diagram: USB Serial Helper perspective

70

6. Software Implementation

Here, the function initSession() is worth particular attention. It is used to initialize a serial
communication session by telling that the user has to connect the Device to a PC via the
USB interface, open a serial terminal and send any message to the Device. This is done by
showing the corresponding message on the OLED screen. Only after the user has performed
those steps, the function returns to the calling routine. This way, it is ensured that all further
messages sent via the USB serial interface will appear in the Serial terminal, hence, will not
be lost, because the terminal is already open and connected.

The Battery management tool and the Wi-Fi management tool mentioned in the section
6.2.14 were implemented using the USBSerialHelper class. A sample dialog from the Wi-
Fi management tool is illustrated by the Fig. 6.11. The example demonstrates handling of
wrong inputs.

Selected command: Set TCP Client IP and Port.

Please enter an IP V4 address in the format X.X.X.X using decimal numbers.
Entered value: abc

Please enter a valid IP V4 address in the format X.XK.XK.X
Entered value: 123

Please enter a valid IP V4 address in the format X.X.XK.X
Entered value: 256.256.256.256

Please enter a valid IP V4 address in the format X.X.XK.X
Entered value: 192.165.0.104

Please enter a port number between 1024 and 65535

Entered value: 1023

Please enter a valid integer number between 1024 and £35535.
Entered value: &5536

Please enter a valid integer number between 1024 and ©5535.
Entered value: 1024

Saved new ICP client IP:Port: 152.168.0.104:1024

Figure 6.12.: USB Serial Helper sample use case

71

6. Software Implementation

6.2.16. Wi-Fi

In the system of the Wheel, two classes share functionality related to communication over
Wi-Fi, namely the WiFiConnectHandler and the WiFiHelper. Details about the purpose

and functionality of each class are provided further.

The WiFiHelper node

The WiFiHelper node is responsible for handling the Wi-Fi related functionality. It provides
functions to connect/disconnect to/from a selected Wi-Fi AP, to start/stop TCP/IP and UDP
servers, to send messages as a TCP/IP or UDP client and others.

Furthermore, the WiFiHelper node implements the
Wi-Fi management tool, which was shortly intro-
duced in section 6.2.14. The tool operates via the
USB serial interface using a serial terminal on a PC. It
provides a wide range of commands to configure, ma-
nipulate and test Wi-Fi-related functionality of the De-
vice such as discovering and saving APs in the flash
memory, testing connection, setting IP addresses and
ports, etc. The full list of commands is illustrated in
Fig. 6.13, where the main menu of the tool can be
seen.

The node is being initialized on the system start and
updated at each system update by the SystemHan-
dler node. On initialization, the node performs an at-
tempt to connect to the first available AP from those
stored in the flash memory. A successful connec-
tion is followed by bringing up the TCP/IP and UDP
servers. From that moment on and as long as the
servers are running, the device can receive mes-
sages via the Wi-Fi network. On update, it checks
the connection status as well as incoming TCP/IP
and UDP messages. If any message is available,
the node shows it on the OLED screen and locks the
screen. Unlocking the screen requires the user to ac-

1
2
3
4
3
[
7

o

g

10
11
12
13
14
15
16
17
13
14

Welcome to Wi-Fi management tool.

Flease select a command:
- Show status

Scan for Access Points

List sawved Access Points

2dd or replace Rccess Point
Delete Access Point

Connect to a saved Access Point
Disconnect from Access Point
Start UDP Server

- S5top UDP Server

Set UDP Serwer Port

Start UDP Client

Stop UDP Client

Set UDP Client IP and Port
Send UDP message

Start ICP Server

Set TCP Serwver Port

Set TCP Client IP and Port
Send TCP message

Cuit

Figure 6.13.: Wi-Fi tool commands

knowledge the message by issuing the quit command as was described in section 6.2.7.

72

6. Software Implementation

The WiFiConnectHandler class

There is a special menu option implemented that is called CONNECT, was introduced in
section 6.2.4 and serves as a directory for connectivity-related functions. Currently, there is
only one entry in that directory, which is called WIFI. When the entry is selected, the system
initializes the WiFiConnectHandler node, which in turn coordinates the interactive process
of connecting to a Wi-Fi AP. In this process, the user manually navigates through the list of
the Wi-Fi APs stored in the flash memory and selects an AP to connect to. Navigation and
selection is performed using the same keys as for the menu navigation. The APs, as well as
connection success or failure messages, are displayed on the OLED screen. If the connec-
tion succeeds, the system brings up the TCP/IP and UDP servers. The WiFiConnectHandler
node uses the functions provided by the WiFiHelper class for connection and bringing the
servers up.

6.2.17. Sensors Mode

The simplest mode of operation of the Device is the Sensors mode, which is handled by
the SensorinfoHandler node. The purpose of this mode is to display sensor values on the
OLED screen. There are two sub-modes implemented: the RPY and the Voltages. The
former sub-mode displays live values of the RPY, whereas the latter one displays voltages
of the 3.3V, 5V outputs as well as the battery.

6.2.18. Debug Output

During operation, the system on the ESP32 produces debug output. This contains messages
about the functions being called, changes in the modes of operation, some important oper-
ations being performed and their results being produced, the data received and transmitted
via the communication interfaces, etc. The USB interface of the ESP32 is selected as the
debug output. This is done due to the simplicity of its connection to a PC and its baud rate
set to 115200. This, however, can be easily changed to the dedicated 14-pin debug output
of the Device by changing the corresponding definition in the code.

6.3. Atmega32u4

The role of the ATmega32u4-based MCU board (the Beetle) was limited to acting as the USB
interface from the ESP32 to a PC for emulation of the USB-based functionality. The behavior
of the software on the board is implemented in the following manner:

73

6. Software Implementation

There are 4 modes of operation: the Keyboard, the Gamepad, the Absolute Mouse and
the Relative Mouse. Each mode has its dedicated handler class. The main routine reads
the messages arriving from the ESP32 via the serial interface and validates them. When
a valid Keyboard, Absolute Mouse, Relative Mouse or Gamepad message is received, the
corresponding mode is initialized (if was not initialized before) and its dedicated handler is
notified about the new data to be processed. The handler, in turn, processes the data by
converting the arrived commands (e.g. mouse pointer coordinates) to the corresponding
format to be forwarded to the PC. The “conversion” is performed using dedicated libraries.
The Keyboard and Relative Mouse modes are implemented using the standard keyboard
and mouse libraries provided by Arduino, whereas for implementation of the Gamepad and
Absolute Mouse modes, the “Arduino HID Project” library was required.

If the newly arrived message corresponds to a mode that is different from the previous one,
the mode is changed by finalizing the previous mode and initializing the new one. Here,
finalization of a mode means, e.g. releasing all the keys of the keyboard and sending a clean
report to the PC. There is a special type of message - the default message. This message
has its dedicated command and does not correspond to any mode of operation. It is used by
the ESP32 to notify the Beetle when the user quits any USB emulation based mode. When
the Beetle receives a default message, it finalized the current mode of operation.

The Beetle is programmed to act only as a translator of the commands arriving from the
ESP32 to their appropriate USB messages and to forward them to the PC. This means the
Beetle is not aware of, e.g. which Keyboard mode configuration (sub-mode) is selected
(which mapping of the onboard keys to the keyboard keycodes is used). This, in turn, implies
that if a new sub-mode of e.g. the Keyboard or the Gamepad mode needs to be implemented,
the Beetle does not need any changes in the code to be able to handle it. Hence, the
implementation of new configurations of those modes needs to be performed on the ESP32’s
side only, which improves the overall maintainability of the system on the Wheel. Fig. 6.14
describes the overall structure of the system implemented on the Beetle board.

74

6. Software Implementation

<<union>>
keyboardTransmitPacket

<<struct>> <<union>>
keyboardFrame keyboardKey
start: uint8_t c: char[2]
len: uint8_t b: byte[2]
emd: uintg_t
emd2; uint8_t
keys: keyboardKey[10]
KeyboardHandler |

- packet: keyboardTransmitPacket
- keyStates: byte[10]

frame: keyboardFrame
data: uint8_t[sizeof(keyboardFrame)]

RelativeMouseHandler

- packet; mouseTransmitPacket
- lastDoubleClickTS: long =0

- forward ToPC(): void
+ begin(): void

+ end(): void

+ processData(): void

<<union>>
mouseTransmitPacket

- forwardToPC(): void
+ begin(): void
+end(): void

+ processData(): void

<<enum class>>
Mode

DEF
GAMEPAD
MOUSE_ABS
MOUSE_REL
KEYBOARD

!

AbsoluteMouseHandler

- packet: mouseTransmitPacket
- lastDoubleClickTS: long =0

frame: mouseFrame
data: uint8_t[sizeof(mouseFrame)]

?

- forwardToPC(): void
+ begin(): void
+end(): void

+ processData(): void

Main

. . i GamepadHandler
+mode: Mode = DEF

+ sint = - packet: gamepadTransmitPacket
+ setup(): void) - forwardToPC(): void

+loop(): void + begin(): void

+ rial(); voi + end(): void

+ processData(): void + processData(): void

+ setMode(Mode): void

+ print . VOil

<<union>>

gamepadTransmitPacket

frame: gamepadFrame
data: uint8_t[sizeof(gamepadFrame}]

<<struct>>

gamepadFrame

<<SUCt>>
mouseFrame

start: uint8_t
len: uint8_t
emd: uintg_t
cmd2; uintd_t
xVal: intl6_t
yVal: intl6_t
wheel: int16_t
key: uint16_t

start: uint8_t
len: uint8_t
cmd: uint8_t
cmd2: uint8_t
XAx: intl6_t
yAX: intl6_t
*Rot: intl6_t
yRot: intl6_t
zAx: int8_t
zRot: int8_t
dPad_1:int8_t
dPad_2:int8_t
keys: uint32_t

Figure 6.14.: The class diagram of the system on the Beetle board (ATmega32u4)

75

7. Testing

This chapter describes the process of testing of the Device. First, the implemented unit
tests will be introduced, followed by the description of the system and some of its timing
characteristics. The chapter will be finalized describing a demo that was developed to test
and showcase the Wheel’s capabilities of intuitive remote control.

7.1. Unit Test

The unit tests within this project served the purpose of testing the basic functionality of each
peripheral module as well as the state of electrical connections (wiring). There were 2 unit
tests developed: the primary and the secondary. The primary unit test covers a larger
amount of peripherals and is intended for being run on the ESP32 because the MCU is con-
nected to all hardware modules. The secondary test, correspondingly, covers a limited num-
ber of hardware modules, namely those which are interfaced with the Beetle (ATmega32u4),
and hence is designed for that MCU.

Source code

The source code of the unit tests is separated from the main system. As such, each unit test
has a dedicated project.

Although the primary test is performed by the ESP32, the Beetle is also involved as one of
the tested modules. For this reason, each of the two MCUs has its dedicated program, that
has to be loaded to perform the primary test. However, without the Beetle, the primary test
still can be partially performed.

For the secondary unit test, only the Beetle needs to be programmed since the ESP32 does
not take part in this test at all.

76

7. Testing

Running and the output

The unit tests can be performed by following the next steps:

1.

The programs have to be loaded onto the MCUs depending on which unit test is to be
run.

The Device has to be connected to a PC via the USB interface of either the ESP32 or
the Beetle depending on which unit test is to be run.

A serial terminal has to be opened on the PC and any message needs to be sent to
the Device to show the main menu of the unit test in the terminal.

The test can be started by selecting a corresponding command from the menu.

During the test, some commands may appear in the terminal, which need to be per-
formed by the user, such as pressing keys, moving the device, looking at it, etc.

After the selected unit test is completed, the main menu will appear again allowing us
to select another command. This behavior is repeated until the device is off.

Select unit test:

1 - Power

2 - OLED

3 - Software Serial

4 - USB Mouse Select unit test:
5 - RFM&% 1 - Power

& - MPUS250 2 - OLED

7 - BMR1Z0 3 - MEUS250

3 - Port exapander 4 - BMB1SO

5 - I2C scan 5 - Port sxapander
10 - I2C E3SP32 <-> 32ud § - I2C scan

11 - Scan Wi-Fi 7 - Mouse

12 - Buzzer g - All unit tests
13 - Rll unit tests

(a) Primary test (b) Secondary test

Figure 7.1.: Unit test main menus

The output of the primary unit test is listed in the appendix A.1. The output of the secondary
test is a subset of the output of the primary one containing entries corresponding to its
commands.

77

7. Testing

7.2. System Test

During the system test, functionality of the device was tested using various methods, software
tools as well as by practical application of each mode in its intended context.

Universal Joypad mode

Since the purpose of the Universal Joypad mode is to stream joypad frames (inertial values
and keys) via various transmission channels, testing of the mode was performed correspond-
ingly. The Wi-Fi sub-mode was tested using a UDP server programmed in Java and running
on the PC, where the Joypad frames were sent. The Fig. 7.2 illustrates the incoming mes-
sages at the server’s side. The Debug and USB sub-modes were tested in a similar manner,
but using a serial terminal on the PC.

i e m e m e et mmrmeea D e Do e e em o D e m e e amee e m e imm g m oo mmamp e mm ey
Bx4B @x10 8x6 Bx@ @x@ @x@ @xF3 BxFF BxE> @xFF ex@ 8x@ BxE> OxFF @xFF @xFF
Bx4B @x1@ 8wt Bx@ B8x2 @x@ ExDA BxFF BxE6 @xFF 8x@ 8x@ BxE6 @xFF @xFF @xFF
@x4B @x1@ 8x6 Bx@ @x18 @x@ 8x(9 8xFF @xEl @xFF @x@ @x@ @xEl @xFF @xFF @xFF
Bx4B Bx1@ @x6 Bx@ @x25 @x@ 8x(3 @xFF 8xD9 @xFF 8x@ 8x@ exD9 @xFF @xFF 8xFF
Bx4B @x1le 8w6 Bx@ B8x39 @x@ 8x(B BxFF 8xD4 @xFF ex8 @xe exD4 e@xFF e@xFF @xFF
Bx4B Bxl@ 8wt Bx@ @x43 Bx@ 8xD4 BxFF 8xD7 @xFF 8x@ 8x8 exD7 exFF @xFF 8xFF
@x4B @x1l@ @x6 Bx@ @x43 @x@ @xE6 @xFF @xDF @xFF @x@ @x@ exDF @xFF @xFF @xFF

Figure 7.2.: Universal Joypad mode: sub-mode Wi-Fi, frames

Mouse mode

The Mouse mode was tested without any specific software by direct application of the device
in the role of a mouse. The Absolute sub-mode displayed higher usability compared to
the Relative due to higher intuitiveness of navigation as well as rapidness of positioning of
the pointer at the desired point on the screen. Button clicks in both sub-modes behaved as
intended. The only notable problem was that the pointer does not move very smoothly due
to the interval of transmission of mouse frames.

Keyboard mode
The keyboard mode was tested similarly to the Mouse mode - by direct application. All keys

were functioning as intended and delays between key presses on the device and correspond-
ing actions at the PC’s side were barely noticeable.

78

7. Testing

PC Gamepad mode

The PC Gamepad mode of operation was tested using the calibration tool of Windows
10 as well as through practical application by playing browser-based games. The gaming
experience met the overall expectation.

The Fig. 7.3 illustrates the process of calibration of the Device. Here, the sub-mode X-Y is
selected, which was described in section 6.2.10. As can be seen from the picture, the X and
the Y-axis values are successfully recognized by the tool.

The Fig. 7.4 demonstrates operation of the Device in the RPY sub-mode of the PC Gamepad
mode. The horizontal bars represent the X, Y and Z rotations of the Device. Besides, the
are 9 button presses successfully recognized by the calibration tool. The 10™ button is not
pressed intentionally, because it would lead to quitting the PC Gamepad mode (the com-
bination key8 + key9 of the Device, which correspond to the buttons 9 and 10 of the PC
Gamepad, is reserved for quitting).

& Game Device Calibration >

Axis Calibration
Move the handle in complete circles, then press a button on the controller.

+
X Axiz 30
Y Axis -15
X Bz /Y Puis
Display raw data
< Back Meat > Cancel

Figure 7.3.: PC Gamepad mode: sub-mode X-Y, axis calibration

Other functions

All the remaining modes of operation as well as features of the device were tested and
appeared to be fully functional.

79

7. Testing

& Arduino Micro properties x

Test the game controller. | the contraller is not functioning propery, it may
need to be calibrated. To calibrate it, go to the Settings page.

Axes

[Z Axis
| * Rotation
4 [| ' Rotation
| Z Ratation
¥ Axis £ Axis
Buttans Pairt of View Hat

Cancel oply

Figure 7.4.: PC Gamepad mode: sub-mode RPY, testing

80

7. Testing

7.3. Timing

To test compliance of the system with the timing-related non-functional requirements spec-
ified in the chapter 3, timing characteristics of the system were measured. This includes
measurement of the rate of update of the system in time-critical modes of operation, as well
as rates of delivery of the commands via the transmission channels.

System update rate

The system update rate in the modes of operation PC Gamepad, Mouse, Keyboard and
Universal Joypad is stable at 100 Hz. In the mode Sensors, the rate drops to 50 Hz due
to regular update of the OLED screen involved in the process. The values were obtained
by printing the time intervals of calling the system update routine in the debug. The rate of
update of the system defines the sampling rate of the inertial sensor as well as the rate of
detecting key states because those operations are performed on each system update.

Data transmission rate

For the modes: PC Gamepad, Mouse and Keyboard, the values were obtained by printing
the time intervals of receiving corresponding commands at the ATmega32u4 side. Those
intervals match the intervals of further transmission of the commands to the PC. The values
for the Wi-Fi sub-mode of the Universal Joypad mode were obtained by measuring the in-
tervals of reception of the commands at the UDP server on the PC. For the USB and Debug
sub-mode of the Universal Joypad mode, the values were obtained by measuring transmis-
sion intervals of corresponding frames at the ESP32. The Fig. 7.5 presents the results of
the measurements. The X-axes show the numbers of the samples, which correspond to the
numbers of the transmitted data frames. The Y-axes show for each data frame the elapsed
time from the previous data frame.

From the measurements, it can be concluded that the timing behavior of the system to a
high extent meets the requirements. However, there are some overshoots in the intervals of
reception of frames at the Beetle’s side in the USB-emulation based modes (PC Gamepad,
Keyboard, Mouse). This phenomenon needs further investigation.

81

Testing

interval, ms

interval, ms

interval, ms

[=2]
=]

-
o

-
=]

[=2]
o

1]
@

1]
=1

Mouse mode

©o oo 0© © 0,5 00 00 90

PP PP %D RP B m
o 10 20 30 40 50
sample

PC Gamepad mode

0000%50600000000900

PP PooPP oL omep®

20 30 40 50

sample

Joypad mode: USB and Debug sub-modes

o000, O oo, 7 prnenonocnonng, aoooooooe pom

10 20 30 40 50
sample

=]

interval, ms
[a*] [E o [=2]
[=] o [=] o [=]

-
=]

100

90

80

70

interval, ms

60

50

Keyboard mode

cocP cooo Q0 Qo0 Qi S S P oo o

(=1

20 30 40 50

sample
Joypad mode: Wi-Fi sub-mode

o

0 00 000000 00 0O ©O ©O

© ©

(=]
O Coo® Cploo °2dRo4ro @
o

o

20
sample

30 40 50

Figure 7.5.: Data transmission intervals

82

7. Testing

7.4. Universal Joypad Demo

While testing of the USB emulation based functionality in action was straightforward and
required only a PC, testing of the Universal Joypad mode required additional resources,
namely some remote devices that could be controlled by the Wheel in that mode. This
would allow in addition to the testing of the general functionality of the mode (e.g. timely
transmission of correct Joypad data frames) also to asses usability of the Wheel in this role,
e.g. how responsive and intuitive is the process of controlling a remote device. Besides,
such a test would serve as a good demo showcase of the final product’s capabilities.

To test the Wheel in the Universal Joypad mode, an RC drone and an RC toy excavator were
programmed to act as the remote devices to be controlled. Each device has onboard an
MCU which is interfaced to its actuators as well as an external (detachable) HC-06 Bluetooth
module for wireless communication.

Figure 7.6.: The RC devices for the demo of the Universal Joypad mode

The general work to be performed included:
e Establishing Bluetooth communication between the Wheel and the remote devices.

e Transmission of Joypad frames from the Wheel and correct sampling of them by the
remote device.

e Applying the received Joypad data to control the remote devices in a way that would
make the overall experience intuitive and user-friendly.

Bluetooth communication
As was mentioned in section 4.2 (Software Design), the BT-related functionality of the Device

was not implemented due to the extremely large footprint of corresponding libraries. How-
ever, since one of the sub-modes of the Universal Joypad mode of the device is the Debug,

83

7. Testing

any external communication module having an on-board UART interface can be connected
to the debug interface of the Wheel to receive the Joypad frames and transmit them further to
the remote devices. Thus, the problem of BT communication was solved by using an external
BT module HC-05. The module provides a serial communication interface, and hence, can
be connected to the Wheel’s debug interface.

Due to the time constraints, no user interface was developed that would provide functionality
such as discovering BT devices and connecting to them. To keep the development process
simple, the HC-05 module was configured to automatically connect to a predefined remote
BT module - one of those provided with the drone and the excavator. Thus, in the context of
this test, only a single HC-06 BT module could be used by attaching it either to the drone or
to the excavator depending on which device is to be controlled.

Connection status

The drone and the excavator have each an on-board RGB LED. The LEDs are programmed
to act as the indicators of connection status. The behavior is as follows: when the remote
device receives Joypad frames, the LED is blinking with a blue color. After 500 ms of silence,
the LED turns red indicating connection loss. In this context, silence means that no valid
Joypad frames are received, e.g. no frames are received at all or the received frames are
incorrect. Both the drone and the excavator are programmed to stop their motors whenever
silence is detected. The excavator stops immediately, whereas the drone holds the current
state for 5 seconds.

The Drone

Due to lack of time, a decision was made to omit the development of sophisticated features
such as absolute positioning and orientation in the 3D space. Instead, the relative approach
was chosen. Thus, the joypad frames arriving at the drone are converted to raw Roll, Pitch,
Yaw and Thrust commands of its onboard flight controller and not to position and orienta-
tion.

Roll and Pitch The Roll and the Pich commands of the drone are linearly mapped to those
from the Joypad frame (Fig. 6.8). However, the values that are sent to the flight controller by
the drone’s MCU are limited such that the drone does not make highly dynamic maneuvers.
This way, it is easier to control the drone without special piloting skills.

84

7. Testing

Yaw In the case of the Yaw, since there is no tracking of absolute orientation on the drone,
mapping of the Yaw from the Joypad frame to the Yaw command of the flight controller would
lead to the drone rotating around its Z-axis whenever the Wheel’s Yaw is non-zero. Thus,
the Yaw command of the drone was mapped to the keys of the Wheel. As such, when a key
pressed, the Yaw commands with a predefined value will be issued to the flight controller and
the drone will rotate with a fixed rate until the key is released.

Thrust Since the Roll, Pitch and Yaw from the Joypad frame cannot be used for the
Thrust commands and there is no additional suitable variable-state input method (e.g. a
potentiometer-joystick) on the Wheel, again, the keys of the device were assigned this role.
As such, pressing one key will increase the Thrust by a predefined step, whereas the other
will decrease it. Relatively smooth behavior can be achieved by pressing and holding the
keys.

Other The Drone has an additional onboard LED that can be toggled by pressing a key.

The Excavator

Forward motors The forward motors are controlled by the Pitch and Roll from the Joypad
frame. The Pitch defines the target forward velocity of the left and the right motor. The value
of the Pitch is biased such that the 0-velocity corresponds to the angle of —55°. This is
done to improve the intuitiveness of manipulation. The Roll is used to proportionally reduce
the target velocity of either the left or the right motor depending on the sign of the Roll’s
value. Besides, there are commands to perform a rotation, e.g. left motor forward, right
motor reverse, or vice-versa. These commands are issued by pressing corresponding keys.
Finally, to initiate movement of the forward motors, the key7 has to be pressed and held. This
feature prevents the excavator from unintended movement caused by tilting the Wheel.

The tower and the claw motors The tower and the claw motors are controlled using the
keys. When the key is pressed, the corresponding motor gets a predefined fixed target
velocity.

Smooth movement To achieve smooth maneuvering, the target velocities mentioned so
far are not applied to the motors immediately. Instead, the actual velocities of the motors
approach their target velocities by predefined value steps (acceleration) at the rate of receiv-
ing the Joypad frames. There are individual acceleration and deceleration values as well as

85

7. Testing

minimum and maximum velocities defined in the program for each motor, which makes the

behavior highly tunable.

Other The Excavator has taillights that can be toggled by a keypress.

The table 7.1 summarizes the mapping of the inertial values as well as keys of the Wheel to
the functions of the Drone and the Excavator.

Device function | Drone function | Excavator function
keyO Yaw left Tower left
key1 Toggle LED Claw up
key2 Yaw right Tower right
key3 Claw down
key4 Rotate left
key5 Increase thrust Toggle tail lights
key6 Rotate right
key7 Decrease thrust Move
key8
key9
Roll Roll Turn left/right
Pitch Pitch Forward/reverse
Yaw

Table 7.1.: Mapping of functions for the demo

86

8. Summary

This chapter briefly summarizes the state of the project, what has been achieved and remains
unresolved as well as the problems faced along the progression of this project, which could
be addressed in the future. Additionally, there will be further ideas introduced on how to
improve the device.

8.1. Project Status

The final product has approached its intended state very closely. The developed hardware
to high extent complies with the specifications with one exception that the ATmega32u4-
based MCU board (the Beetle) is not connected to all the required peripherals, which was
a necessary measure. All functional requirements were met except for implementation of
the Bluetooth and 868 Mhz wireless transceiver related functionality as well as the possibility
to assign the Beetle the master role. The performance-related non-functional requirements
are mainly met with minor timing issues that need further investigation. The requirement
to implement the management of Wi-Fi APs and configurations using the Ul of the Device
(keys, OLED display), due to its complexity and strict time constraints, was implemented
alternatively - using serial terminal.

Overall, each major mode of operation is implemented and functions well, which was proven
by testing.

8.2. Problems

Program memory One of the main problems faced in this project was the lack of program
memory on both MCUs. This problem has not turned out to be critical in the case of the
Beetle (ATmega32u4), because the functionality of the system can mostly rely on the ESP32
assigning only limited tasks to the Beetle. Lack of memory on the ESP32, on the other hand,
made a strong impact on the overall functionality of the system - the Bluetooth Low Energy
(BLE) functionality, which was meant to considerably increase the scope of application of

87

8. Summary

the device, was not implemented. The problem can be potentially solved by avoiding using
libraries and accessing the BLE modules functionality at a lower level.

Interrupts Another major problem was caused by the interrupt-based approach on the
ESP32. If the Interrupt Service Routine (ISR) contains a certain unsupported set of instruc-
tions, this leads to a crash of the program and the MCU reboots. An example of such instruc-
tions is performing floating-point operations within an ISR. Such operations are performed
using the Floating-point unit (FPU) of the ESP32’s processor, whereas the FPU functionality
is not supported within the ISRs. This problem is specific to the ESP32 boards.

8.3. Further Work Outlook

Further work could potentially be focused on solving the problems mentioned earlier as well
as further development of the device to extend the scope of its application and improve
overall user experience. Here are some ideas about possible improvements:

e An Infrared transceiver would allow controlling a wide of home appliances such as
TV, stereo system, air conditioning, etc. The device could be programmed to sample
and duplicate the frames of existing remote controls as well as implement the existing
protocols of popular manufacturers.

e Two potentiometer joysticks would be very user-friendly when controlling RC toys,
scrolling through items with variable speed (e.g. menu items or alphanumeric char-
acters) or even as an alternative mouse manipulator.

e The Wheel could be integrated with smartphones to benefit from the flexibility of the
mobile Apps. The Apps could be used, e.g. to test or configure the device.

e Additional RC vehicles with different types of manipulation and degrees of freedom
could be implemented such as boats, cars, robots, etc. to find out the best ways to
achieve intuitive control of each type.

e A vibration motor would add more responsiveness to the device, e.g. when a message
is received or the remote device is connected/disconnected, etc.

e The 868 MHz radio transceiver could be complemented by a 2.4 GHz transceiver to
extend the range of potential remote devices. The 2.4GHz band is commonly used in
the RC toy industry.

88

8. Summary

e Common Bluetooth protocols could be implemented, such as the Advanced Audio
Distribution Protocol (A2DP) and the Audio/Video Remote Control Protocol. This would
allow us to control a wide range of multimedia devices that are already offered in the
market.

e |Implementing a custom PCB and design of a new body.

89

9. Conclusion

An extensive work has been performed within this thesis. This included the stages of prod-
uct development starting from the conception and design, through the implementation of the
hardware and software, to the testing and assessment of the performance of the device in
its intended scope of application. The final product has got capabilities to use the input from
a user, such as keypresses and inertia, to manipulate remote devices over various wired
and wireless communication channels. The device has to a high extent met the expectations
applied to the amount and quality of its functionality. As such, it can be comfortably used
to control a range of appliance which are meant to be controlled by differing methods. For
example, an aerial vehicle can be equally well manipulated as a tracked vehicle by the same
device, which can be used as a PC mouse, keyboard and gamepad as well as act as an in-
put/output node in a Smart Home system. These results have justified the motivation behind
this work and proved the overall concept to have good potential for further development and
production.

90

Bibliography

(1]

(2]

(3]

(4]

(3]

(6]

[7]

(8]

9]

A. Deshmukh, Microcontrollers: Theory and Applications, ser. Computer engineering
series. Tata McGraw-Hill, 2005, ISBN: 9780070585959. [Online]. Available: https :
//books.google.de/books?id=5PDx2Q9Ea%5C_YC.

J. Catsoulis, Designing Embedded Hardware, ser. O’Reilly Series. O’Reilly, 2002,
ISBN: 9780596003623. [Online]. Available: https : / / books . google . de /
books?id=KoR1FxOOmO8C.

S. Smith, Digital Signal Processing: A Practical Guide for Engineers and Scientists,
ser. Demystifying technology series : by engineers, for engineers. Elsevier Science,
2003, I1SBN: 9780750674447. [Online]. Available: https://books.google.de/
books?id=PCrcintuzAgC.

I12¢ info — i2c bus, interface and protocol, https://i2c.info/, Accessed: 2019-
06-25.

Odroid universal motion joypad documentation, https : / / wiki . odroid .
com/ accessory / add—-on_boards /universal _motion_ joypad/
universal_motion_joypad, Accessed: 2019-06-20.

Esp32-wroom-32 datasheet, https : / / www . espressif . com/ sites /
default / files /documentation/esp32—-wroom— 32 __datasheet _
en.pdf, Accessed: 2019-07-20.

Atmegail6ud/atmega32u4 8-bit microcontroller with 16/32k bytes of isp flash and
usb controller datasheet, http : / / wwl . microchip . com / downloads /
en / devicedoc / atmel - 7766 -8 —bit —avr — atmegal6ud — 32u4d _
datasheet .pdf, Accessed: 2019-07-20.

B. Stroustrup, The C++ Programming Language: The C++ Programm Lang_p4. Pear-
son Education, 2013, ISBN: 9780133522853. [Online]. Available: https://books.
google.de/books?id=PSUNAAAAQRAJ.

S. Chapman, Essentials of MATLAB Programming, ser. Essentials of MATLAB pro-
gramming v. 10. Cengage Learning, 2008, 1ISBN: 9780495295686. [Online]. Available:
https://books.google.de/books?id=63T7XpfMH38C.

91

https://books.google.de/books?id=5PDx2Q9Ea%5C_YC
https://books.google.de/books?id=5PDx2Q9Ea%5C_YC
https://books.google.de/books?id=KoR1FxOOmO8C
https://books.google.de/books?id=KoR1FxOOmO8C
https://books.google.de/books?id=PCrcintuzAgC
https://books.google.de/books?id=PCrcintuzAgC
https://i2c.info/
https://wiki.odroid.com/accessory/add-on_boards/universal_motion_joypad/universal_motion_joypad
https://wiki.odroid.com/accessory/add-on_boards/universal_motion_joypad/universal_motion_joypad
https://wiki.odroid.com/accessory/add-on_boards/universal_motion_joypad/universal_motion_joypad
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-32u4_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-32u4_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-32u4_datasheet.pdf
https://books.google.de/books?id=PSUNAAAAQBAJ
https://books.google.de/books?id=PSUNAAAAQBAJ
https://books.google.de/books?id=63T7XpfMH38C

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Loeliger and M. McCullough, Version Control with Git: Powerful tools and
techniques for collaborative software development. O'Reilly Media, 2012, 1SBN:
9781449345044. [Online]. Available: https: //books . google .de/books?
id=gIucpb6legAwC.

Esp32 documentation, https://docs.espressif.com/projects/esp—
idf/en/latest/get-started/, Accessed: 2019-07-23.

B. Kai, Modern Battery Engineering: A Comprehensive Introduction. World Scientific
Publishing Company, 2019, 1SBN: 9789813272170. [Online]. Available: https: //
books.google.de/books?id=heaWDwAAQBAJ.

R. Pecinovsky, OOP - Learn Object Oriented Thinking & Programming, ser. Academic
series. Tomas Bruckner, 2013, ISBN: 9788090466180. [Online]. Available: https :
//books.google.de/books?id=xb-sAQAAQBAJ.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, ser. Addison-Wesley Professional Computing Se-
ries. Pearson Education, 1994, 1ISBN: 9780321700698. [Online]. Available: https :
//books.google.de/books?id=60HuUKQe3TjQC.

K. Townsend, C. Cufi, and R. Davidson, Getting Started with Bluetooth Low Energy:
Tools and Techniques for Low-Power Networking, ser. EBSCOhost ebooks online.
O’Reilly Media, 2014, 1ISBN: 9781491900598. [Online]. Available: https://books.
google.de/books?1d=24N7AwAAQBRAJ.

A brief introduction to the serial peripheral interface (spi), https : / / www .
arduino.cc/en/reference/SPI, Accessed: 2019-06-25.

L. Frenzel, Handbook of Serial Communications Interfaces: A Comprehensive Com-
pendium of Serial Digital Input/Output (I/O) Standards. Elsevier Science, 2015, ISBN:
9780128006719. [Online]. Available: https : / /books . google . de/books?
1d=wnGDBAAAQBAJ.

Basics of uart communication, http://www.circuitbasics.com/basics—
uart—-communication/, Accessed: 2019-06-25.

E. Harold, Java Network Programming. O’Reilly Media, 2004, 1SBN: 9780596552589.
[Online]. Available: https : / / books . google . de / books ? id =
NyxObrhTv5o0C.

92

https://books.google.de/books?id=qIucp61eqAwC
https://books.google.de/books?id=qIucp61eqAwC
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/
https://books.google.de/books?id=heaWDwAAQBAJ
https://books.google.de/books?id=heaWDwAAQBAJ
https://books.google.de/books?id=xb-sAQAAQBAJ
https://books.google.de/books?id=xb-sAQAAQBAJ
https://books.google.de/books?id=6oHuKQe3TjQC
https://books.google.de/books?id=6oHuKQe3TjQC
https://books.google.de/books?id=24N7AwAAQBAJ
https://books.google.de/books?id=24N7AwAAQBAJ
https://www.arduino.cc/en/reference/SPI
https://www.arduino.cc/en/reference/SPI
https://books.google.de/books?id=wnGDBAAAQBAJ
https://books.google.de/books?id=wnGDBAAAQBAJ
http://www.circuitbasics.com/basics-uart-communication/
http://www.circuitbasics.com/basics-uart-communication/
https://books.google.de/books?id=NyxObrhTv5oC
https://books.google.de/books?id=NyxObrhTv5oC

A. Appendix

A.1. Unit Test output (ESP32)

Select unit test:
- Power

- OLED

- Software Serial
USB Mouse

- RFM69

- MPU9250

- BMA180

— Port exapander
- I2C scan

10 - I2C ESP32 <-> 32u4
11 - Scan Wi-Fi

12 - Buzzer

13 - All unit tests

O J o U b w N
|

NeJ

Selected command: 13

Scanning I2C...

I2C device found at address: 0x20
I2C device found at address: 0x38
I2C device found at address: 0x3C
I2C device found at address: 0x64
I2C device found at address: 0x68
done

START unit test: Power

Collecting 30 samples...done

u3v3: 3.33V ubv: 4.92V uBat: 4.14V (99%)
END unit test: Power

START unit test: OLED

Initializing display...done

Drawing lines (please look at the display)...done
END unit test: OLED

A. Appendix

START unit test: Software Serial
Initializing serial communication...done
Sending a command to Atmega32u4: 0xC8
Received response from Atmega32u4: 0xC8 - OK
END unit test: Software Serial

START unit test: ESP32 <-> 32u4 I2C communication
Initializing I2C...done

I2C address: 0x64

Register: 0x01

Sending the value: 0xC8

Sent successfully

Requesting the value: 0xC8

Received value: 0xC8 - OK

END unit test: ESP32 <-> 32u4 I2C communication

START unit test: USB Mouse

Initializing serial communication...done

Sending a "mouse" command to Atmega32u4

Received response from Atmega32u4

After 2 seconds the pointer of the muse should start moving (Atmega32u4
must be connected to the PC via a USB cable). Please do not touch the
mouse.

END unit test: USB Mouse

START unit test: RFM69
Initializing...done
Reading all registers:

reg 0x01: 0x04

reg 0x7F: 0x00
END unit test: RFM69

START unit test: MPU9250

Initializing MPU9250...MPU9250 WHO AM I = 71
MPU9250 is online...

AK8963 WHO AM I = 48

Calibration values:

X-Axis sensitivity adjustment value 1.17
Y-Axis sensitivity adjustment value 1.18
Z-Axis sensitivity adjustment value 1.13
X-Axis sensitivity offset value 0.00

Y-Axis sensitivity offset value 0.00

Z-Axis sensitivity offset value 0.00

done

Sampling the sensor (please move the device):

94

A. Appendix

aX: 0.01 g
ayY: -0.61 g
az: 0.80 g

gX: 3.66 deg/s
gY: 0.55 deg/s
gZ: -5.68 deg/s
mX: 332.74 mG
mY: 293.62 mG
mZ: 346.50 mG
Roll: -175.24
Pitch: 18.72
Yaw: 45.63

END unit test: MPU9250

START unit test: BMA180
Initializing BMA180...done

Sampling the sensor (please move the device):

aX: -0.26 g aY: 0.42 g az: 0.90 g
aXx: 0.22 g a¥: -0.09 g azZ: 1.02 g

aX: 0.06 g a¥: -0.34 g azZ: 1.02 g
aX: -0.50 g a¥: -0.22 g aZ: 0.75 g
END unit test: BMA180

START unit test: Port expander
Initializing...done

Detecting 10 key presses. Press each key only once.

Key pressed: 0
Key pressed:
Key pressed:
Key pressed:
Key pressed:
Key pressed:
Key pressed:
Key pressed:
Key pressed:
Key pressed:

OW 0O J o U W DN

Testing LEDs

LEFT: RED
LEFT: GREEN
LEFT: BLUE
LEFT: OFF

95

A. Appendix

RIGHT: RED
RIGHT: GREEN
RIGHT: BLUE
RIGHT: OFF
done

END unit test:

START unit test:

Initializing...done
scan start

scan done
15 networks found

Port expander

WiFi scan

72)

T7) *

(=85) *

1: FRITZ!Box 7590 UE (-
2: Tenda_F2BD78 (-74)*
3: TP-LINK_65E2 (-74)*
4: FRITZ!Box 7590 UE (-
5: Yanni (-78)*

6: TP-Link_FDAA (-84) x
7: joes apple time cap
8: link-1link (-86) *

9: TP-Link_37EC (-87) *
10: TP-LINK_8808 (-87)~*
11: FRITZ!Box Fon WLAN 7360 (-89) %
12: NETGEAR24 (-90) *
13: TP-Link_B78M (-91) %
14: Wavlink-N (-93) *

15: NETGEARS56 (-93) *

END unit test:

START unit test: Buzzer
Initializing...done
Duty cycle 50%

Frequency:
500Hz
Frequency:
1000Hz
Frequency:
1500Hz
Frequency:
2000Hz
Frequency:
2500Hz
Frequency:
3000Hz
Stop

END unit test: Buzzer

WiFi scan

96

Glossary

3D three dimensional. 14, 20, 22, 84

A2DP Advanced Audio Distribution Protocol. 89

ADC Analog-to-digital converter. 12, 13, 17, 25, 36, 37, 39, 62
AP Access Point. 27, 28, 50, 52, 53, 55, 59, 72, 73, 87
AVRCP Audio/Video Remote Control Protocol. 89

BLE Bluetooth Low Energy. 17, 32, 87, 88
BT Bluetooth. 20, 27, 28, 32, 83, 84, 87, 89

CPU central processing unit. 12, 13, 17

DAC digital-to-analog converter. 12
DC Direct Current. 20
DOF Degrees Of Freedom. 20

DSP Digital Signal Processing. 13
EEPROM Electrically Erasable Programmable Read-Only Memory. 26, 27
FPU Floating-point unit. 88

GPIO General-Purpose Input/Output. 17, 19, 39

GUI graphical user interface. 22

I2C Inter-integrated circuit. 15

IC integrated circuit. 23

97

Glossary

IDE integrated development environment. 21, 24, 28, 32, 55, 57, 59
10 input/output. 12, 13, 16, 19, 38, 39

loT Internet of Things. 17, 24

IP Internet Protocol. 52, 59, 72

ISR Interrupt Service Routine. 48, 88

LED Light-Emitting Diode. 19, 20, 25, 26, 39, 50, 60, 69, 84, 85

MCU Microcontroller Unit. 12, 17, 18, 19, 24, 25, 26, 29, 30, 31, 32, 33, 36, 37, 38, 48, 63,
73,76,77, 83, 84, 87, 88

MISO Master In Slave Out. 14

MOSI Master Out Slave In. 14

OLED Organic Light-Emitting Diode. 17, 19, 25, 26, 27, 31, 52, 54, 59, 69, 71, 72, 73, 81,
87

OOP Object-Oriented Programming. 21, 34, 49

OS Operating System. 66, 67

PC Personal Computer. 24, 25, 26, 27, 28, 33, 37, 49, 53, 61, 62, 63, 64, 66, 71, 72, 73, 74,
77,78,79, 81, 83

PCB printed circuit board. 16, 17, 23, 25, 26, 29, 30

PWM Pulse Width Modulation. 17, 19

RC Radio Control. 24, 83, 88
RGB Red Green Blue. 19, 25, 84
RPY Roll, Pitch, Yaw. 8, 14, 26, 27, 54, 57, 64, 65, 73

Rx Receive. 16

SCK Serial Clock. 14
SCL Serial Clock. 15
SDA Serial Data. 15

98

Glossary

SPI Serial Peripheral Interface. 14, 15,17, 19, 20, 31, 39
SS Slave Select. 14

TCP/IP Transmission Control Protocol/Internet Protocol. 22, 27, 28, 59, 72, 73

Tx Transmit. 16

UART Universal Asynchronous Receiver/Transmitter. 16, 17, 20, 38, 39, 84
UDP User Datagram Protocol. 22, 27, 28, 59, 62, 65, 72, 73, 78, 81

Ul User Interface. 28, 87

UML Unified Modeling Language. 23

USB Universal Serial Bus. 16, 17, 25, 27, 29, 30, 33, 36, 37, 39, 47, 50, 53, 62, 63, 64, 66,

67,69, 71,72,73,74,77, 81, 83

WORA Write Once, Run Anywhere. 21

99

Declaration

| declare within the meaning of part 16(5) of the General Examination and Study Regula-
tions for Bachelor and Master Study Degree Programmes at the Faculty of Engineering and
Computer Science and the Examination and Study Regulations of the International Degree
Course Information Engineering that: this Bachelor Thesis has been completed by myself
independently without outside help and only the defined sources and study aids were used.
Sections that reflect the thoughts or works of others are made known through the definition
of sources.

Hamburg, November 4, 2019
City, Date Signature

100

	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Background
	2.1 Theoretical Fundamentals
	2.2 Involved Resources
	2.2.1 Hardware
	2.2.2 Software

	3 Task Definition
	3.1 Overview Of The Goal
	3.2 Hardware Specification
	3.3 Functional Requirements
	3.4 Nonfunctional Requirements

	4 Requirements Analysis And Design
	4.1 Hardware Design
	4.1.1 Layout
	4.1.2 Modules Interconnection

	4.2 Software Design
	4.2.1 Analysis Of Libraries
	4.2.2 Impact Of Hardware
	4.2.3 Architecture

	5 Hardware Implementation
	5.1 Power And Programming Circuit
	5.2 Mainboard Circuit
	5.3 Complete Device

	6 Software Implementation
	6.1 Communication Protocol
	6.2 ESP32
	6.2.1 System Overview
	6.2.2 Main Routine
	6.2.3 System Handler
	6.2.4 Main Menu
	6.2.5 Storage Handler
	6.2.6 Accelerometer, Gyroscope, Magnetometer
	6.2.7 OLED Display
	6.2.8 Keys, LEDs
	6.2.9 Power
	6.2.10 PC Gamepad Mode
	6.2.11 Universal Joypad Mode
	6.2.12 Keyboard Mode
	6.2.13 Mouse Mode
	6.2.14 Service Mode
	6.2.15 USB Serial Helper
	6.2.16 Wi-Fi
	6.2.17 Sensors Mode
	6.2.18 Debug Output

	6.3 Atmega32u4

	7 Testing
	7.1 Unit Test
	7.2 System Test
	7.3 Timing
	7.4 Universal Joypad Demo

	8 Summary
	8.1 Project Status
	8.2 Problems
	8.3 Further Work Outlook

	9 Conclusion
	Bibliography
	A Appendix
	A.1 Unit Test output (ESP32)

