
Fakultät Technik und Informatik Faculty of Engineering and Computer Science
Department Informations- und Department of Information and
Elektrotechnik Electrical Engineering

 Master Thesis

Farid Naimi

Java Based Load Forecasting for a Small Number of

Public Properties

Farid Naimi

Java Based Load Forecasting for a Small Number of
Public Properties

Master thesis based on the examination and study regulations for the
Master of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner : Prof. Dr. –Ing. Gustav Vaupel
Second examiner : Prof. Dr. –Ing. Franz Schubert

Day of delivery March 20th 2008

Farid Naimi

Title of the Master Thesis

Java Based Load Forecasting of a Small Number of Public Properties

Keywords

Load Management, Load Forecasting, Load Forecasting Methods, Neural Network,

UML, Java

Abstract

This master thesis studies different approaches of load forecasting. The Method Neural

Network is used as Load forecasting method. A graphical user interface is designed

using Java to forecast the load shape. This program gets the historical data from the

database and makes use of the method Neural Network to calculate a typical day.

Testing is carried out on the real load data of a small number of public properties

placed in Germany. Furthermore, the real load data is compared with the program

generated values.

Farid Naimi

Thema der Masterarbeit

Java-basierte Lastprognose für eine geringe Anzahl von Liegenschaften

Stichworte

Lastmanagement, Lastprognose, Lastprognose Methoden, Neuronales Netz, UML,

Java

Kurzzusammenfassung

Diese Masterarbeit beschreibt verschiedene Ansätze der Lastprognose. Die Methode

Neuronales Netz wird zur Lastprognose benutzt. Eine grafische Benutzeroberfläche

wird mit Java entwickelt, um den Lastgang vorhersagen zu können. Dieses Programm

holt sich den historischen Daten aus der Datenbank und nutzt die Methode Neuronales

Netz zur Berechnung eines typischen Tages. Die Analyse befasst sich mit

tatsächlichen Lastgangdaten von einer kleinen Anzahl von Liegenschaften in

Deutschland. Darüber hinaus werden die tatsächlichen Daten mit den vom Program

generierten Werten verglichen.

Table of Content

List of Figures ... 6

List of Tables ... 8

1. Introduction ... 9

1.1 State of the Art .. 11

1.2 Purpose of this Master Thesis ... 14

1.3 Structure of the Thesis .. 15

2. Load Management ... 16

2.1 One-Way Load Management .. 16

2.2 Two-Way Load Management .. 17

3. Java .. 18

3.1 Features ... 19

3.2 The Java Virtual Machine (JVM) .. 20

3.3 Oracle Database .. 21

4. Load Forecasting.. 22

4.1 Introduction ... 22

4.2 Important Factors for Forecasts .. 23

4.3 Forecasting Methods ... 24

4.4 Forecasting Requirements ... 26

4.5 Neural networks in load forecasting ... 27

4.5.1 Multi-Layer Perceptron network (MLP) ... 28

4.5.2 Basic MLP-models .. 29

5. Forecasting the daily load profile ... 30

6. Using Unified Modeling Language for Load Forecasting ... 33

6.1 Use Case Diagram (functional requirements view) ... 33

6.2 Class Diagram (static structural view) ... 35

6.3 Interaction Diagram (dynamic behavior view) .. 36

7. Historical Data ... 37

8. Load Forecasting in Java ... 42

8.1 Implemented Classes and Methods .. 42

8.2 The class HAWCalc .. 43

8.2.1 Constructor ... 43

8.2.2 The method „public static void main (String args*+)” ... 43

8.2.3 The method “private static void createAndShowGUI()” .. 44

8.2.4 The method “public void actionPerformed(ActionEvent e)” ... 45

8.2.5 The method “private double*+ calcATypicalDay(ResultSet rset)“ ... 47

8.3 The class JDBCQuery ... 48

8.4 The class WorkdayCalendar ... 48

8.5 The class CreateFile .. 49

8.6 Program flow .. 49

9. Test Results ... 55

10. Conclusion .. 64

11. References ... 65

APPENDIX A ... 67

A.1 Config.txt ... 67

A2. JDBCQuery.java ... 68

A3. Fifteen2oneMin.java ... 70

A4. HAWCalc.java .. 74

A.5 WorkdayCalendar.java .. 88

A.6 CreateFile.java ... 90

A.7 userInput.csv ... 91

A.8 data.csv ... 91

List of Figures

Figure 1.1: GSM/GPRS Network of 35 load intensive public properties………………. 9

Figure 1.2: System Structure……………………………………………………………... 10

Figure 1.3: Number of properties per peak load……………………………………….... 10

Figure 1.4: Total accounted peak load per load range…………………………………… 11

Figure 1.5: Resulting load profile………………………………………………………… 12

Figure 1.6: Probable profile after erasure of load fluctuation……………………………..12

Figure 1.7 Blockdiagram of the three projects…………………………………………… 14

Figure 2.1: One-Way Load Management (ideally)………………………………………. 16

Figure 2.2: One-Way Load Management (reality)……………………………………….. 16

Figure 3.1: Java Program Hierarchy……………………………………………………… 17

Figure 3.2: Java Component Structure…………………………………………………… 19

Figure 3.3: Oracle Database Java Component Structure………………………………… 20

Figure 4.1: Typical load curve of the normal year of the HAW Berliner Tor………….. 22

Figure 4.2: A three-layer MLP network………………………………………………….. 27

Figure 5.1: Typical load curve of the normal year of the HAW Berliner Tor………….. 29

Figure 6.1: Use Case Diagram of Load Forecasting a typical day……………………….. 33

Figure 6.2: Class Diagram of Load Forecasting a typical day…………………………… 34

Figure 6.3: Sequence Diagram of Load Forecasting a typical day………………………. 35

List of Figures 7

Figure 7.1: Randomly Generated Values………………………………………………… 37

Figure 7.2: Randomly Generated Values (2 hours interval)…………………………….. 38

Figure 7.3: Randomly Generated Values (advanced)…………………………………….. 39

Figure 7.4: Flowchart of recalculation of historical data………………………………… 40

Figure 8.1: Graphical User Interface for forecasting a typical day……………………… 43

Figure 8.2: User Information Message: CSV file created……………………………….. 45

Figure 8.3: User Error Message: No Data found………………………………………… 49

Figure 8.4: User Error Message: Can‟t Access the file………………………………….. 49

Figure 8.5: User Error Message: Wrong database……………………………………….. 49

Figure 8.6: User Information Message: CSV file created……………………………….. 50

Figure 8.7: Flowchart of Load Forecasting a typical day………………………………… 51

Figure 9.1: Sum load of a typical Monday including holidays………………………….. 55

Figure 9.2: Error Rate of a typical Monday including holidays………………………….. 56

Figure 9.3: Sum load of a typical Monday excluding holidays………………………….. 57

Figure 9.4: Error Rate of a typical Monday excluding holidays…………………………. 57

Figure 9.5: Sum load of a typical Wednesday excluding holidays………………………. 58

Figure 9.6: Error Rate of a typical Wednesday excluding holidays……………………… 58

Figure 9.7: Load of a typical Wednesday of HAW Berliner Tor………………………… 59

Figure 9.8: Error Rate of a typical Wednesday of HAW Berliner Tor………………….. 60

Figure 9.9: Real Values VS Generated Values (HAW Bergedorf)………………………. 61

Figure 9.10: Real Values VS Generated Values (School Steilshoop)……………………. 62

List of Tables

Table 7.1: Database Table “DATA”………………………………………………………36

Table 7.2: Database Table “DATA_ROWS”…………………………………………….. 36

Table 8.1: Constant field values for days of week……………………………………….. 44

Table 8.2: Constant field values for Seasons of year……………………………………. 44

Table 8.3: Constant field values for Holiday conditions………………………………… 45

Chapter 1

Introduction

This master thesis is one part of the E-island R&D project. E-island stands for expandable

internet sustained load and demand side management for the integration into virtual power

plants and is a R&D project financed by the program aif/FH of the German ministry of

education and research BMBF. The project is carried out by a public private partnership

consortium led by the University of Applied Sciences Hamburg (HAW, Prof. Dr.-Ing. F.

Schubert and Prof. Dr.-Ing. G. Vaupel). Its other members are

 the department of urban development and environment of the city of Hamburg,

 Steag Saarenergie - a German electricity utility operating a virtual power plant

marketing reserve capacity

 SUmBi and Envidatec, two German engineering companies.

Aims of the project E-island

The project‟s central aim is to create a network (internet based) of 30 public properties

equipped with load management hard- and software at low and medium voltage level. This

network will be the basis for the examination of two research tasks:

 Find out how and to what degree 30 independent load management systems can be

synchronized with the aim of harmonizing the resulting load curve rather than shaping

the individual ones of the properties involved.

 Find out how much load can be cut off for how long with the aim of selling it as

reserve capacity to the virtual power plant (VPP) of Steag Saarenergie.

Figure 1.1 shows some of the important public properties which are involved in this project.

1. Introduction 10

Figure 1.1: GSM/GPRS Network of 35 load intensive public properties at medium voltage

level [1]

Modeling and day ahead simulation based on the real-time data of the public properties are

used to examine the reserve capacity and load curve smoothing. A equipment called Vida 84

communication modules is installed in the public properties to get accurate real time meter

readings and status data of the load management systems. The following figure shows the

intended system structure [1].

1. Introduction 11

Figure 1.2: System Structure [1]

1.1 State of the Art

In addition to the work (kWh) the city of Hamburg paid a prize for the highest consumed

power (kW) in a year for each of the its approximately 200 properties at medium-voltage

level.), also. For the majority of these properties, this peak lies below 400 kW. Figure 1.3

shows that in 2003 only 37 properties were responsible for higher peaks.

Figure 1.3: Number of properties per peak load [1]

1. Introduction 12

In 2003, for all 200 properties at medium voltage level the sum of all peak loads was 58.560

kW. As Figure 1.4 shows, approximately, 65% of this was caused by the 37 most load

intensive properties of the city.

The load curves of these properties were well above 400 kW in their annual peak. Therefore,

for the project all the properties were selected, whose peak exceeded the 400 kW limit

significantly in years 2003 to 2005. This applies to about 40 properties. The university has the

highest load profile with an annual peak of about 5.3 MW followed by the properties

„METHA III“ and „Großmarkt“ each with about 3 MW. The Campus Berliner Tor of HAW is

ranked at sixth place with an annual peak of about 1.75 MW.

Figure 1.4: Total accounted peak load per load range [1]

Further investigation of the daily load profiles of the 40 properties also showed that the

resulting sum load curve in 2005 does not have a value above 25,300 kW. However, due to

the current legal situation the network usage costs for each property is based on the full usage

hours (annual work divided by annual power peak). As a result in 2005 the city was billed for

power of over 35,000 kW for the 40 surveyed properties. Figure 1.5 below shows the

summarization of the daily load curves of the properties. Some unexpected load peaks occur

during the day so the profile is far from being a simple smooth bell curve (ideal case). It

shows the resulting stacked load profile of January 5

2005 of the 40 properties with a

resolution of one step every 15 minutes. The power consumed by all of the properties together

does not exceed 25000 kW. The curve shows about 15 single load peaks, each being about

two MW high.

1. Introduction 13

Figure 1.5: Resulting load profile [1]

However, it is expected that the existing possibilities for load management in the properties

would be enough to smooth those peaks. Applying a rough guess of these possibilities to the

sum curve in figure 1.5 results in a load profile shown in figure 1.6. Note that this figure does

not show the simulation results, but it is hand calculated. Nevertheless the figure illustrates

that without the influence of that load fluctuation, the load curve shows a quite harmonious

performance. This effect has been found for all studied daily profiles. Now, the resulting sum

load curve only shows a peak which is about 200 to 300 kW high. In addition, it has a

distinctive bell-curve shape with a high base-load share of about 10 MW. Such a curve should

be well predictable.

Figure 1.6: Probable profile after erasure of load fluctuation [1]

1. Introduction 14

1.2 Purpose of this Master Thesis

The task of the Master Thesis was to design a program which could calculate the load

consumption for a typical day of the individual buildings which are investigated in the R&D

“E-Island” , i.e. to make load forecasting for the selected properties and as output create

comma separated value file (CSV file) containing this information. To make the calculation of

the typical day as accurate as possible, the following specifications have to be entered by the

user using a graphical user interface (GUI):

 Public properties of which the load profiles should be calculated,

 Weekday,

 Season,

 Holiday restriction

Using this input, the program connects itself with a server placed at the Envidatec company

and gets the collected historical data from the database on that server. Historical data is taken

order to make an appropriate load forecasting. The database includes timestamps and for each

public property and the load consumed in one sample per minute.

This master thesis studies different approaches for load forecasting. As it may be seen from

literature, many methods have been developed for load forecasting. From the experimental

results the conclusion can be drawn that different methods might outperform others in

different situations, i.e. one method might gain the lowest prediction error for one time point,

and another might for another time point. The method Neural Network has been chosen which

is well suited for this thesis because this method has a very simple input structure and is most

used method in load forecasting The selected method was tested on the real load data of a

small number of public properties in Hamburg.

The forecasted values of the typical day load is then used as an input of the Load Estimation

Project (different master thesis in the E-Island project) which simulates the behavior of

building devices (ventilation, air conditioning etc.) which a load management system in these

buildings would make use of. The Load Estimation Project simulates a new (“managed”) load

chart via Matlab Simulink. The Load Estimation Project interfaces with yet another thesis

called “Load Control Management”. The Load Control Management Project simulates the

algorithmic behavior of a load management system. It decides which building devices at

which substations shall be switched off or on. After deciding this, it sends a matrix back

which informs the Load Estimation Project to switch off the respective devices. Figure 1.7

shows a block diagram how these three projects interact with each other.

1. Introduction 15

Figure 1.7 Blockdiagram of the three projects

Since, the Load Forecasting Project (this master thesis) contains different elements such as

GUI, Client-Server Connection and some specific calculation, it was decided to use the object

oriented programming language JAVA.

1.3 Structure of the Thesis

Chapter two describes the basics of Load Management. Chapter three discusses the properties

of the objected oriented programming language JAVA. Furthermore, it lists the main features

of this programming language and why it performs better as compared to other programming

languages.

Chapter four concentrates on the subject of load forecasting in general. First the different

factors affecting the load are discussed. Then the most popular conventional methods are

shortly introduced. Furthermore, it gives a short introduction to neural network. The most

popular network type, the Multi-Layer Perceptron network (MLP) is discussed. The basic idea

in applying MLP based methods to the problem is described. According to that, chapter five

describes the algorithm used to forecast the daily load profile.

From chapter six to chapter eight, the programming requirement and realization are described.

First, some Unified Modeling Language (UML) diagrams like Use Case diagram, Class

diagram and Sequence diagram are presented which graphically show the way of solutions.

Then the programming part is described. Chapter nine discusses all the different test results

achieved with the algorithm used for load forecasting. In addition, it also compares the really

measured values with the program generated values.

Saved Load (with

Load Management)

Typical day load

without load

management

Compare

Load

Forecasting

Project

Load

Estimation

Project

Load Control

Management

Project

Single value

 Matrix

 Matrix

Chapter 2

Load Management

Load Management is needed as the name states to manage load. Its task is to bring the load

down from a high load value to a predefined maximum load allowance. It may be understood

as follows: if a building tries to exceed the maximum load allowance, the load management

system switches off some of the devices inside that specific building. Thus, the task of the

load management system is to keep the load near the maximum load allowance value.

Furthermore, each device in a building has a priority telling the load management system

about its minimum and maximum shut down time. If the minimum shut down is over, the

device may want to be switched on, again. The purpose of load management systems is to

automate these procedures, and to run them as fast and efficiently as possible, depending on

the circumstances. Keeping the load below the maximum load allowance may not be difficult;

the only problem could be the flattering of the load around the maximum load allowance.

2.1 One-Way Load Management

“Load management is called one-way when devices used to control loads are unable to report

back to the controller whether the respective loads are running at the time of management”

[2].

In ideal case, if all devices are switched on, the sum load could be brought down to the

maximum load allowance in a single load management cycle between two polls for demand

data [2]. This is shown in figure 2.1 graphically. Vertical dashed lines are poll times, the red

line is the maximum load allowance and the blue line the real time measured load values.

2. Load Management 17

Figure 2.1: One-Way Load Management (ideally)

In reality, some devices are connected which are not consuming any power at that time. Since

in the one-way load management system, it is not possible of knowing that while switching

load, the situation shown in figure 2.2 is achieved. It may be seen that after the first load

management cycle that not enough loads was shed, thus, another cycle is executed. As a

result, the system gets very slow which means the load stays above the maximum load

allowance during that time.

Figure 2.2: One-Way Load Management (reality)

2.2 Two-Way Load Management

“Load management is called two-way when devices used to control loads are able to report

back to the controller whether the respective loads are running at the time of management”

[2].

When a two-way load management system enters into a shed cycle, every outgoing control

request is not only acknowledged, but also followed by the kW number of the target load at

the time of the disconnect. In this case, the system continues to turn devices off as long as it

takes to bring total load down to the desired level in one management cycle (situation

depicted in Figure 2.1).

Chapter 3

Java

Java is a programming language like C or C++. As compared to other programming language,

Java is a high level language. It has many features which are not part of the other languages.

Another feature of Java is the Java bytecode. Java bytecode is a compiler that transforms the

Java source code to bytecode that runs in the Java Virtual Machine (JVM). JVM is a program

that runs on any operating system and it takes the compile bytecode as input and interprets

them like if it were a physical processor executing machine code. Figure 3.1 visualizes this

situation. After a Java program is written, it is compiled to Java bytecode which is then

interpreted to machine code.

Figure 3.1: Java Program Hierarchy

3. Java 19

3.1 Features

Java has additional features as compared to other languages which make Java so powerful and

popular programming language. Java is platform independent and object oriented which does

not allowed coding outside of class definitions, including the main() method. As told before,

the code is compiled to bytecodes which are interpreted by JVM. The advantage of doing this

is that it provides portability to any machine for which a virtual machine has been written.

This compilation and interpretation steps allow for extensive code checking and improved

security.

Another additional feature of Java is being robust like it does exception handling, type

checking and assures that local variable are initialized. The programming languages like C

and C++ have some dangerous features which are removed in Java. Dangerous features

include memory pointers, preprocessor and the problem of defining array. Thus, in Java is no

memory pointers, no preprocessor and it does array index limit checking. Java also has the

ability of doing memory management automatically. The so called garbage collection is

responsible for that.

Java is a very secure programming language. As mentioned before, there are no memory

pointers, the program runs inside the virtual machine environment, it does array limit

checking. The security manager checks which resources a class can access such as reading or

writing to the hard disk. As compared to C++, Java does dynamic binding whereas C++ uses

static binding. Java makes use of dynamic binding like the linking of data and methods to

where they are located, is done at runtime. New classes can be loaded while the program is

running. Even if libraries are recompiled, it is not needed to recompile the code that uses

classes in those libraries. This differs from C++, which uses static binding. This can result that

the linked code is changed and memory pointers then point to the wrong addresses. The

performance of Java is very good. Java is up to 50% to 100% faster as compared to speed of

C++ programs.

Threading is also one of the important features of Java which is great for multimedia. Java

also supports networking. The built in networking allows developing internet communication

applications.

Features like eliminating memory pointers and checking array limits greatly help the

programmer to remove program errors. The garbage collector relieves programmers of the big

project of memory management. As a result, all of these features can lead to make the

program development fast compared to C/C++ programming.

There are two ways of executing Java programs. An applet runs under the control of a

browser and an application runs like other programs alone, with the support of a virtual

machine.

3. Java 20

3.2 The Java Virtual Machine (JVM)

Java source code is compiled to low-level machine instruction which is known as bytecode.

Java source code is compiled to standard and platform independent bytecodes which runs with

JVM. The JVM is a separate program that is optimized for the specific platform on which

Java code is executed. Figure 3.2 shows shows the Java Component Structue which may be

explained as follows: Java source is compiled into bytecodes, which are platform

independent. Each platform has installed a JVM that is specific to its operating system. The

Java bytecodes from the source get interpreted through the JVM into appropriate platform

dependent actions.

Figure 3.2: Java Component Structure

When a Java program is developed, predefined core class libraries written in the Java

language is used. The JVM and core class libraries together provide a platform on which Java

programmers can develop and be sure that any hardware and operating system that supports

Java will execute their program because as said before, Java is platform independent. This is

what makes Java so popular because once a program is implemented, it may run anywhere.

3. Java 21

3.3 Oracle Database

The oracle database prefers Java. The only reason that it is allowed to write and load Java

applications within the database is because it is a safe language. Languages like C can

introduce security problems within the database. Thus, Java is because of its powerful features

a safe language and therefore, it is used within the database.

Figure 3.3 shows that Oracle Java applications are on top of the Java core class libraries,

which is on top of the JVM. Because the Oracle Java support system is located within the

database, the JVM interacts with the Oracle database libraries, instead of directly with the

operating system.

Figure 3.3: Oracle Database Java Component Structure

Chapter 4

Load Forecasting

4.1 Introduction

Precise models for load forecasting are important for designing, operating and planning a

Load Management System. Load forecasting is needed in Load Management Systems to make

the decisions correctly, including decisions on switching on and off the devices. Load

forecasts are important for energy management projects like E-Island and other participants in

electric energy management. There are three parts of load forecasting, short-term forecasting

which are usually from one hour to one week, medium forecasting which are usually from a

week to a year, and long-term forecasting which are longer than a year. The features of these

forecasting types are different. For example, in some cases, it is possible to forecast the next

day load with an accuracy of approximately fewer than 5 percent. While in some other cases,

it is impossible to forecast the next year peak load with the similar accuracy, because precise

long-term weather forecasts are not available.

Almost all forecasting methods use statistical techniques or artificial intelligence algorithms

like regression, neural networks, fuzzy logic, and expert systems. Two of the methods, so-

called end-use and econometric approach are broadly used for medium- and long-term

forecasting. Lots of methods, like the so-called similar day approach, various regression

models, time series, neural networks, statistical learning algorithms, fuzzy logic, and expert

systems, have been developed for short-term forecasting.

None of these methods are said to be a general method because all forecasting methods have

been tested and proven successful in lots of literature. Therefore, choosing a method depends

on the project, circumstances and requirements of a particular situation.

4. Load Forecasting 23

4.2 Important Factors for Forecasts

For short-term load forecasting several factors must be taken into account, like time factors

and historical load data. As compared to short-term load forecasting, “the medium- and long-

term forecasts take into account the historical load and weather data, the number of

customers in different categories, the appliances in the area and their characteristics

including age, the economic and demographic data and their forecasts, the appliance sales

data, and other factors” [26]. Since, in this research project, a typical day has to be calculated,

this Master Thesis is based on the short-term load forecasting.

The time factors include the time of the year, the day of the week, and the hour of the day.

There are important differences in load between weekdays and weekends. The load on

different weekdays also can behave differently. For example, Mondays and Fridays could

have different load values as compared to Tuesdays or Thursdays because Mondays and

Fridays are adjacent to weekends. This case may be true during the summer time because of

the holidays. Holidays are more difficult to forecast than non-holidays because of their

relative infrequent occurrence.

The typical load curve of the normal year of the HAW Berliner Tor is shown in figure 4.1,

with the sample interval of 15 minutes. The weekend or holiday load curve is lower than the

weekday curve, due to the decrease of working load.

Figure 4.1: Typical load curve of the normal year of the HAW Berliner Tor

4. Load Forecasting 24

Factors influencing the load depend on the specific public property. For example, the

industrial load is based on the level of the production. The load value is almost steady during

the day and it is possible to forecast load curve of a public property being industrial. “The

issues which may disturb the forecasting, is the possibility of unexpected events, like machine

breakdowns or workers strikes, which affects the load level” [22]. In case of private people,

the factors influencing the load forecasting are more difficult to select. The reason is that each

person behaves in his own individual way. In case of forecasting the load curve of universities

or schools may also become difficult in some point in time because of the school and

university holidays. Thus, holidays also effect the load forecasting. The weather is also one of

the important factors because if in summer the temperature drops down, the heating systems

may be switched on.

Random factors are also one of the factors affecting the load forecasting. There is a way to

overcome this factor. Although it may be difficult to forecast how each public property

consumes the energy, the amount of the total sum loads of all public properties shows good

historical data and it leads to smooth load curves. This is the first step of the load forecasting.

But the startup and shutdown of the large loads, such as the wind tunnels in harbor in

Hamburg, always lead to an obvious impulse to the load curve. This is a random disturbance,

since for the dispatchers, the startup and shutdown time of these users is quite random, i.e.

there is no obvious rule of when and how they get power from the grid. When the data from

such a load curve are used in load forecasting, the curve of forecasted load may have some

unwanted peaks.

Special events like the world cup football are also random disturbance because their effect on

load is not quite certain. Lots of people may watch the match on a television, but that is not

for sure. Strikes in companies are also another source of random disturbance.

4.3 Forecasting Methods

In terms of lead time, load forecasting is divided into four categories:

 Long-term forecasting with the lead time of more than one year

 Mid-term forecasting with the lead time of one week to one year

 Short-term load forecasting (STLF) with the lead time of one day to one week

 Very short-term load forecasting with the lead time shorter than one day

Different categories of forecasting serve for different purposes. In this master thesis short-

term load forecasting is focused because in this project a calculation of a typical day is done.

The research approaches of short-term load forecasting can be mainly divided into two

categories: statistical methods and artificial intelligence methods. In statistical methods,

equations can be obtained showing the relationship between load and its relative factors after

training the historical data, while artificial intelligence methods try to imitate human beings‟

4. Load Forecasting 25

way of thinking and reasoning to get knowledge from the past experience and forecast the

future load.

Some main STLF methods are introduced as follows.

Regression Methods

Regression is one of most widely used statistical techniques. For load forecasting regression

methods are usually employed to model the relationship of load consumption and other

factors such as weather, day type and customer class.

Time Series

Time series methods are based on the assumption that the data have an internal structure, such

as autocorrelation, trend or seasonal variation. The methods detect and explore such a

structure. Time series have been used for decades in such fields as economics, digital signal

processing, as well as electric load forecasting. In particular, ARMA (autoregressive moving

average), ARIMA (autoregressive integrated moving average) and ARIMAX (autoregressive

integrated moving average with exogenous variables) are the most often used classical time

series methods. ARMA models are usually used for stationary processes while ARIMA is an

extension of ARMA to nonstationary processes. ARMA and ARIMA use the time and load as

the only input parameters. Since load generally depends on the weather and time of the day,

ARIMAX is the most natural tool for load forecasting among the classical time series models.

Similar Day Approach

This approach is based on searching historical data for days within one, two or three years

with similar characteristics to the forecast day. Similar characteristics include weather, day of

the week and the date. The load of a similar day is considered as a forecast. Instead of a single

similar day load, the forecast can be a linear combination or regression procedure that can

include several similar days. The trend coefficients can be used for similar days in the

previous years.

Expert systems

Expert systems are heuristic models, which are usually able to take both quantitative and

qualitative factors into account. A typical approach is to try to imitate the reasoning of a

human operator. The idea is then to reduce the analogical thinking behind the intuitive

forecasting to formal steps of logic. A possible method for a human expert to create the

forecast is to search in history database for a day that corresponds to the target day with

regard to the day type, social factors and weather factors. Then the load values of this similar

day are taken as the basis for the forecast.

Fuzzy Logic

Fuzzy logic is a generalization of the usual Boolean logic used for digital circuit design. An

input under Boolean logic takes on a value of “True” or “False”. Under fuzzy logic an input is

associated with certain qualitative ranges. For instance the temperature of a day may be

“low”, “medium” or “high”. Fuzzy logic allows one to logically deduce outputs from fuzzy

4. Load Forecasting 26

inputs. In this sense fuzzy logic is one of a number of techniques for mapping inputs to

outputs. Among the advantages of the use of fuzzy logic are the absence of a need for a

mathematical model mapping inputs to outputs and the absence of a need for precise inputs.

With such generic conditioning rules, properly designed fuzzy logic systems can be very

robust when used for forecasting.

Integration of Different Algorithms

As there are many presented methods for STLF, it is natural to combine the results of several

methods. One simple way is to get the average value of them, which can lower the risk of

individual unsatisfactory prediction. A more complicated and reasonable way is to get the

weight coefficient of every forecasting method by reviewing the historical prediction results.

The comprehensive result is deduced by weighted average method.

4.4 Forecasting Requirements

This subsection lists and describes the requirements to develop a user friendly and a good load

forecasting tool. A good load forecasting tool should fulfill the requirement of accuracy, fast

speed, friendly interface and automatic data access.

Accuracy

The most important requirement of designing a load forecasting tool is its prediction

accuracy. As mentioned before, good accuracy is the basis of economic dispatch, system

reliability and electricity markets. The main goal of this thesis is to make the forecasting

result as accurate as possible.

Fast Speed

Employment of the latest historical data helps to increase the accuracy. When the deadline of

the forecasted result is fixed, the longer the runtime of the forecasting program is, the earlier

historical data can be employed by the program. Therefore the speed of the forecasting is a

basic requirement of the forecasting program. Programs with too long training time should be

abandoned and new techniques shortening the training time should be employed.

Friendly Interface

The graphical user interface of the load forecasting tool should be easy, convenient and

practical. The users can easily define what they want to forecast, whether through graphics or

tables. The output should also be with the graphical and numerical format, in order that the

users can access it easily.

4. Load Forecasting 27

Automatic Data Access

The historical data are stored in the database. The load forecasting tool should be able to

access it automatically and get the needed data.

4.5 Neural networks in load forecasting

Several Load forecasting methods have been discussed. Next, one of the most popular

methods is discussed and used for load forecasting in this master thesis. Reason for using this

method is that the implemented program should calculate a typical day. The method discussed

up to now forecast the load curve of next day or next week and not the same weekday. The

neural networks give fulfills this requirement. This subsection and the algorithm to forecast a

typical day is taken from [21].

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired

by the way biological nervous systems, such as the brain, process information. The key

element of this paradigm is the novel structure of the information processing system. It is

composed of a large number of highly interconnected processing elements (neurons) working

in unison to solve specific problems. ANNs, like people, learn by example. An ANN is

configured for a specific application, such as pattern recognition or data classification,

through a learning process. Learning in biological systems involves adjustments to the

synaptic connections that exist between the neurons.

There are two ways of neural network, supervised or unsupervised learning. In supervised

learning, the network is provided with example cases and desired responses. The network

weights are then adapted in order to minimize the difference between network outputs and

desired outputs. In unsupervised learning the network is given only input signals, and the

network weights change through a predefined mechanism, which usually groups the data into

clusters of similar data.

The most used network type which uses supervised learning is a feed-forward network. The

network is given an input signal, which is transferred forward through the network. In the end,

an output signal is produced. The network can be understood as a mapping from the input

space to the output space. The most popular of all neural networks is the Multi-Layer

Perceptron network (MLP).

Most of the load forecasting approaches are based on the use of an MLP network.

4. Load Forecasting 28

4.5.1 Multi-Layer Perceptron network (MLP)

Multi-Layer Perceptron network is the frequently used neural network type and almost every

neural network load forecasting models are based on it. The basic unit (neuron) of the

network is a perceptron which is a computation unit, and which produces its output by taking

a linear combination of the input signals and by transforming this by a function called activity

function. The following function shows that the output of the perceptron as a function of the

input signals:

where

y is the output

xi are the input signals

wi are the neuron weights

θ is the bias term (another neuron weight)

σ is the activity function

The MLP network is made up of a number of layers of neurons. As the following figure

shows, every neuron in a specific layer is connected to every neuron of the next layer. There

are no feedback connections. The figure 4.2 shows an example of a three-layer MLP network.

Figure 4.2: A three-layer MLP network

Thus, in general case, the function looks as follows:

4. Load Forecasting 29

where

y is the output vector

x is the input vector

Wi is a matrix containing the neuron weights of the i:th hidden layer. The neuron weights are

considered as free parameters.

If the network is fed by an N-dimensional input vector, then the output has an M-dimensional

output vector. Thus, the network may be described as a function from the N-dimensional input

space to the M-dimensional output space.

Why the MLP models are used in load forecasting, may be explained as follows: The

forecasted values dependents on historical load data, and the MLP network is used to estimate

this dependency. The inputs to the network consist of those historical load values, and the

output is the forecasted load values for a typical day.

4.5.2 Basic MLP-models

Load forecasting with MLP neural network models may have three following types. These

different model types are intended for:

 forecasting daily peak-, valley- or total load

 forecasting the whole daily load curve at one time

 forecasting the load of the next hour

The first two types are static. The calculation is based on historical data. The third type is

dynamic because the forecast can be updated every time new data arrives. This master thesis

makes use of static models, i.e. it uses the first two models.

Chapter 5

Forecasting the daily load profile

The idea in using the MLP neural is to identify the assumed dependency of the daily peak-,

valley-, and average load on earlier load. In the figure below the seasonal trend on the load

can be easily seen. Also, the weekly load structure can be seen in the form of lower load

values on weekends than on working days.

Figure 5.1: Typical load curve of the normal year of the HAW Berliner Tor

5. Forecasting the daily load profile 31

To forecast the load curve of a certain day, at least the maximum loads, minimum loads and

average loads of the similar day should be considered as input variables. In addition,

informing the program about the day type is important, because Saturdays and Sundays have

much lower peak loads than working days.

Classifying the days

The load shape is predicted by averaging some load curves of similar days in the load history,

first. Therefore, days have to be grouped into classes of different day types, i.e. Mondays,

Tuesdays, Wednesdays, etc..

The load shape based on peak- and valley loads

Second step is to normalize the averaged (first step) load values which are used as factors for

the calculation of a typical day. The shape of the load curve for a certain day contains 1440

normalized load values (24 h * 60 min). When the load shape is combined with the averaged

maximum and minimum load values of similar days, the normalized load values are [21]:

5. Forecasting the daily load profile 32

When the load shape has been predicted, the minutely load forecast can be calculated as third

step [21]:

where the hats indicate that the load values are forecasts.

The load shape based on average load

When the load shape is combined with the average load, the normalized load values are [21]:

Different averaging models

The forecast for the load shape is obtained by averaging some load shapes of the

corresponding day type class in the load history. The number of these days has to be decided.

Four different models are considered for the classification given on the last page. These are:

Model 1: For all day types all similar days in spring are averaged.

Model 2: For all day types all similar days in summer are averaged.

Model 3: For all day types all similar days in autumn are averaged.

Model 4: For all day types all similar days in winter are averaged.

Chapter 6

Using Unified Modeling Language for

Load Forecasting

The Unified Modeling Language (UML) is a standard language for specifying, visualizing,

constructing, and documenting the artifacts of software systems, as well as for business

modeling and other non-software systems.[22] The UML represents a collection of best

engineering practices that have proven successful in the modeling of large and complex

systems. The UML is a very important part of developing objects oriented software and the

software development process itself. The UML uses mostly graphical notations to express the

design of software projects. Using the UML helps project teams communicate, explore

potential designs, and validate the architectural design of the software [22].

There are three types of UML Diagrams which are functional requirement view, static

structural view and dynamic behavior view. The functional requirement view shows the

interaction of the user and the system without taking the technical requirement into

consideration. This type of diagram is called the Use Case Diagram. The static structural view

represents the design part of a project. In object oriented programming, it is called the Class

Diagram. It shows which methods and attributes are implemented inside each of the classes

and how they are connected to each other. The dynamic behavior view shows the program

interaction in runtime. The so called sequence diagram illustrates the dynamic behavior of

each object taking place in runtime.

6.1 Use Case Diagram (functional requirements view)

The following figure shows the use case scenario of the load forecasting tool. It shows the

idea how to implement the code. The user selects some public properties, a weekday, a season

and a holiday restriction. Now, the user clicks on a start button which starts the program to

6. Using Unified Modeling Language for Load Forecasting 34

generate a typical day. For that the program gets the historical data and calculates the typical

day. Finally, it saves the load values of that day in a CSV file.

Figure 6.1: Use Case Diagram of Load Forecasting a typical day

6. Using Unified Modeling Language for Load Forecasting 35

6.2 Class Diagram (static structural view)

Following is the class diagram of this project, i.e. load forecasting of a typical day using

object oriented programming. It shows that four classes are needed to realize this project.

Each class has its own responsibility. JDBCQuery is responsible for database query.

HAWCalc is responsible for creating the GUI and doing the calculations. WorkdayCalendar is

responsible calculating the German national holidays. And CreateFile is responsible for

generating CSV files. The classes are discussed in more details in chapter 8.

Figure 6.2: Class Diagram of Load Forecasting a typical day

6. Using Unified Modeling Language for Load Forecasting 36

6.3 Interaction Diagram (dynamic behavior view)

The sequence diagram in figure 6.3 shows how the classes shown in figure 6.2 interact with

each other. First, a GUI is generated in HAWCalc. Second, the user‟s selection takes place.

Third, the HAWCalc interacts with JDBCQuery to get the historical data from the database

and it calculates the typical day where the holiday check is done first by interacting with

WorkdayCalendar. At last step, HAWCalc sends the data to CreateFile to generate a CSV file

containing the load values.

Figure 6.3: Sequence Diagram of Load Forecasting a typical day

Chapter 7

Historical Data

At this point in time, the load data of about 40 public properties exist on the database at the

company Envidatec. Each of the public properties has an ID, consumed load value and the

timestamp when the consumed load value was read. The database is built up as follows:

Table "DATA" contains data samples.

Field name Type Description

ID NUMBER Data entry ID

TIMESTAMP DATE Time this entry corresponds to. For logged data it is the

time when the value was received from the sensor.

VALUE NUMBER Load Value

DATA_ROW_ID NUMBER Identifier of the data row this entry belongs to (link into the

DATA_ROWS table)

Table 7.1: Database Table “DATA”

Table DATA_ROWS contains the names of the public properties with their ID's. It is linked

to the table "DATA"

Field name Type Description

ID NUMBER Data row ID

DESCRIPTION VARCHAR2(256) Textual descriptor of data row

Table 7.2: Database Table “DATA_ROWS”

7. Historical Data 38

In both tables, the field "ID" is the primary key for the respective table. A primary key should

have the following properties:

1. It must be constant over the lifetime of an object (row).

2. It must be unique for the lifetime of the application.

3. Its value must not be reused.

4. It must have sufficiently large value domain for the lifetime of the application.

5. Its domain of definition must be completely used.

6. It must be minimal to satisfy the other requirements.

7. It should be constructed by computer.

8. It may be secured by check digit (transparently for the user).

In the database historical data exists from year 2004 till date. From year 2008 onwards, the

consumed load values are going to be read at a rate of one sample per minute. Till the end of

the year 2007, the historical data was recorded at one sample per fifteen minutes. For the

project this data has to be changed into load profiles with a resolution of one sample per

minute since the load management system will always try to optimize the load of one polling

period which in the UTCE grid on quarter of an hour (15 minutes). First idea was to develop

Java program which gets all the load values of each building and then creates random noise

data for every minute between two polling periods values such that the average value of 15

random values equals the polling periods value fetched from the database. Figure 7.1 shows

graphically that the average value of 15 random values is the measured load value fetched

from the database.

Figure 7.1: Randomly Generated Values

450

460

470

480

490

500

510

520

0:00 0:01 0:02 0:03 0:04 0:05 0:06 0:07 0:08 0:09 0:10 0:11 0:12 0:13 0:14

Generated Random Values
15 Minutes interval

AVG

Random

7. Historical Data 39

With respect to figure 7.1, figure 7.2 shows the curve after being randomized for an interval

of two hours. If the figure is observed very carefully, it may be seen that in each next 15

Minute, there is a jump. Thus, this idea may not be acceptable.

Figure 7.2: Randomly Generated Values (2 hours interval)

To avoid these jumps, an advanced algorithm has been developed using Java. The algorithm

works as follows. First, it gets the load values from the database in one sample per fifteen

minute which means a day contains 96 load values. Second, the difference between all two

fifteen minute load values is calculated. Third, these differences are divided by 15 which will

give the difference between the minute values. Using these differences the each fifteen minute

value is converted to one minute values, respectively, which mean a day contains 1440 load

values now. At the end, these 1440 load values are randomized by multiplying those values

with a random factor (like the initial idea) being between plus minus ten percent. Figure 7.3

shows that this algorithm performs very well and there is no huge jump between the values.

Finally, the original 15 minutes values are deleted from the database and the database is

updated with the newly calculated values, i.e. one sample per minute. Figure 7.4 is a

flowchart which shows how this Java program works.

460

470

480

490

500

510

520

530

540

550

2
:0

1

2
:0

7

2
:1

3

2
:1

9

2
:2

5

2
:3

1

2
:3

7

2
:4

3

2
:4

9

2
:5

5

3
:0

1

3
:0

7

3
:1

3

3
:1

9

3
:2

5

3
:3

1

3
:3

7

3
:4

3

3
:4

9

3
:5

5

Generated Random Values
2 hours interval

AVG

Random

7. Historical Data 40

Figure 7.3: Randomly Generated Values (advanced)

0

50

100

150

200

250

300

350

400

8
:0

0

8
:0

6

8
:1

2

8
:1

8

8
:2

4

8
:3

0

8
:3

6

8
:4

2

8
:4

8

8
:5

4

9
:0

0

9
:0

6

9
:1

2

9
:1

8

9
:2

4

9
:3

0

9
:3

6

9
:4

2

9
:4

8

9
:5

4

1
0

:0
0

Generated Random Values
2 hours interval (advanced)

Random

AVG

7. Historical Data 41

Figure 7.4: Flowchart of recalculation of historical data

Get the building IDs

from database

START

Calculate the number of

Buildings

i = 0

Get all the load

values of

BuildingID[i]

Delete the original load values

recorded on the database

i < number of

buildings?

No

Yes

Generate random values, i.e.

convert 15 minute values to 1

minute values

Insert the newly

calculated values

into database

i = i + 1

END

Chapter 8

Load Forecasting in Java

This program forecasts a typical day (e.g. typical Wednesday) using the users given

specification through the user friendly graphical user interface (GUI). In order to forecast as

accurate as possible, it uses the historical data which is placed on the database. After

calculating a typical day for the given specification, the program stores the load values for

each public property to a CSV file (Comma Separated Value file). In addition to that, it also

creates an additional column where the load values of all the properties selected are summed

up for each minute (sum load profile).

8.1 Implemented Classes and Methods

In addition to the default libraries in Java which are needed for the graphical user interface,

the oracle library "import oracle.jdbc.*" has also been imported. For file reading and

writing the library "import java.io.*" is also needed.

Since in any Java program the file name has to be identical to the class name, it was decided

to call the program HAWCalc since the class name is also called HAWCalc (public class

HAWCalc extends JPanel implements ActionListener). This class extends "JPanel" because

the program creates a graphical user interface. This class also implements ActionListener.

ActionListener is the listener interface for receiving action events. The class that is interested

in processing an action event implements this interface. The object created with that class is

registered with a component, using the component's addActionListener method. When the

action event occurs, that object's actionPerformed method is invoked.

This class is the main class and all the objects, methods and constructors needed are called in

this class. In addition to HAWCalc, there are three other classes:

 JDBCQuery

 HolidayCheck

 CreateFile.

8. Load Forecasting in Java 43

8.2 The class HAWCalc

8.2.1 Constructor

The constructor is responsible for creating the graphical user interface. First, it sets the layout

of the graphical user interface. Second, it calls the following methods one by one and fits

them on the layout:

 getBuilding();

o It gets all the available public properties from the database and puts them in a

list. The list is added to the graphical user interface. To establish a connection

to the database and get the public properties by their names, an object of

JDBCQuery is created.

 getDaytimePanel();

o It creates 7 radio buttons which are initialized with the weekdays (Monday,

Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday). As default,

"Monday" is selected.

 getSeasonPanel();

o It creates 4 radio buttons which are initialized with the seasons (Spring,

Summer, Winter and Autumn). As default, "Spring" is selected.

 getHolidayPanel();

o It creates 3 radio buttons which are initialized with "Include Holidays",

"Exclude Holidays" and "Only Holidays". As default, "Exclude Holidays" is

selected.

 getTemperaturePanel();

o It creates a text field where the user may input a temperature. It also

implements an input verifier which checks whether the input is digit or not.

o This function will be used in future

 getGetPanel();

o It creates a "Start" button which is clicked after giving the specifications.

8.2.2 The method „public static void main (String args[])”

The “main()” method is needed in Java to run the application. The “main()” is responsible for

creating and showing the graphical user interface. Thus, a method called “private static void

createAndShowGUI()“ is called in “main()”. The method “createAndShowGUI()” creates the

GUI and shows it. For thread safety, this method should be invoked from the event-

dispatching thread. This program makes use of threads because the user does selections on a

GUI and these selections are handled from the code in parallel. In order to fulfill the safety

requirements the method “createAndShowGUI()” is called as follows:

8. Load Forecasting in Java 44

public static void main(String[] args) {

 //Schedule a job for the event-dispatching thread:

 //creating and showing this application's GUI.

 javax.swing.SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 createAndShowGUI();

 }

 });

 }

8.2.3 The method “private static void createAndShowGUI()”

As the name states, this method creates and shows the GUI. First, an object of type

“HAWCalc” is created and initialized. Since a graphical interface has to be presented to the

user, a “JFrame” Window was selected. An object of type JFrame is initialized and the object

of HAWCalc is set as content pane.

After this method is called in “main()” and code is executed as an application, the following

output is generated:

Figure 8.1: Graphical User Interface for forecasting a typical day

8. Load Forecasting in Java 45

8.2.4 The method “public void actionPerformed(ActionEvent e)”

This method defines what should happen if the user clicks on the GUI elements. The user may

choose one-to-many buildings, a weekday, a season and holiday restriction. As default

weekday, Monday is chosen. On click, this method changes the variable “day” as follows:

Day of week Constant field value

SUNDAY 1

MONDAY 2

TUESDAY 3

WEDNESDAY 4

THURSDAY 5

FRIDAY 6

SATURDAY 7

Table 8.1: Constant field values for days of week

By switching between the seasons, the following table shows how this method changes the

variables “season”, “startMonth” and “endMonth”. If the user does not click on anything,

spring is taken as default season. For each season, the start day is set to 21 and the end day is

set to 20, e.g. spring is between 21.03 and 20.06.

Season Constant field value startMonth endMonth

Spring 1 3 6

Summer 2 6 9

Autumn 3 9 12

Winter 4 12 3

Table 8.2: Constant field values for Seasons of year

8. Load Forecasting in Java 46

The variable “holiday” changes as follows, when the user switches between the holiday

conditions

Holiday condition Constant field value

Include Holidays 1

Exclude Holidays 2

Only Holidays 3

Table 8.3: Constant field values for Holiday conditions

The five variables “day”, “season”, “startMonth”, “endMonth” and “holiday” are needed to

query the database and get the needed values.

The most important event in this method is the implemented functionality behind the “Start”

button. For each selected building, it creates an object of “JDBCQuery” (see chapter 8.3)

which does a database query and gets only that data which had a database entry on the user

selected season. For that, it needs the variables “startMonth” and “endMonth”.

After the data is fetched from the database, it calculates a typical day for the user selected

weekday. For that, it calls the method “private double[] calcATypicalDay(ResultSet rset)“

(see chapter 8.2.5). The object rset is a type of ResultSet on which the fetched data is stored.

The method “calcATypicalDay(ResultSet rset)” returns the calculated values back. An object

of “CreateFile” (see chapter 8.5) is generated and the calculated load values are stored in a

CSV file. In addition to this CSV file, a second CSV file is generated which includes

information about the user‟s input, i.e. it includes the constant field values for the variables

“day”, “season” and “holiday”.

The user gets the following message if the program has calculated a typical day and

successfully generated the CSV files:

Figure 8.2: User Information Message: CSV files created

8. Load Forecasting in Java 47

8.2.5 The method “private double[] calcATypicalDay(ResultSet rset)“

This method gets as input the result set fetched from the database. From the result set it filters

out all the load data which are measured on the weekday given by the user, e.g. if the user

selects Monday, then all the Mondays in that specific season will be taken for further

calculation. Secondly, it checks the holiday restriction the user has selected. An object of the

type “WorkdayCalendar” (see chapter 8.4) is created which checks each given weekday (e.g.

Monday) if it is a holiday or a non holiday. According to user‟s input it filters the load data

again.

Now, the method begins to calculate a typical day for the given weekday using the following

algorithm (see chapter 5):

When the load shape has been predicted, the hourly load forecast can be calculated:

where the hats indicate that the load values are forecasts.

After the calculation has been finished, it returns an array of calculated load values.

8. Load Forecasting in Java 48

8.3 The class JDBCQuery

This class is responsible for establishing a connection to the database und doing some SQL

query. This class is developed such that, it may be used not only to connect to the server

placed at the company Envidatec, but to connect to any database if the user ID, the password

and the URL of the database is known.

The constructor reads a text file where the user ID, the password and the URL of the database

is written. Using this information a connection to the database is established and it waits for

the SQL query. The database is queried using the user‟s input and the fetched result is stored

on a result set.

8.4 The class WorkdayCalendar

This class checks if a date is a holiday. The calculation of holidays for all years is done as

follows. Since most of the German holidays depend on the calendar position of the Easter

holiday, first the Easter Sunday is calculated. There are a lot of algorithms for calculating the

Easter holidays. The most popular algorithm is from Carl Friedrich Gauß, Mallen and Oudin.

In this project, Oudin‟s algorithm is used.

public static GregorianCalendar easterSunday(int year)

 {

 int i = year % 19;

 int j = year / 100;

 int k = year % 100;

 int l = (19 * i + j - (j / 4) - ((j - ((j + 8) / 25) + 1) / 3) +

15) % 30;

 int m = (32 + 2 * (j % 4) + 2 * (k / 4) - l - (k % 4)) % 7;

 int n = l + m - 7 * ((i + 11 * l + 22 * m) / 451) + 114;

 int month = n / 31;

 int day = (n % 31) + 1;

 return new GregorianCalendar(year, month - 1, day);

 }

German holidays like New Year, 1. May, Christmas and New Year‟s Eve are obvious, i.e. the

date never changes.

A date is given to the method “public boolean isHolidayDay(int year, int month, int day)” of

this class and it makes a holiday check and returns a true for a holiday and false for a non

holiday.

8. Load Forecasting in Java 49

8.5 The class CreateFile

This class is a file writer class. It has two methods. Both are responsible for generating a CSV

file. One of the method of this class get the newly calculated load values as input and it

generates a CSV file and the one gets the user‟s selection on the GUI as input and writes it to

a file.

8.6 Program flow

The program starts by double clicking the JAR file. A JAR file (or Java ARchive) is used for

aggregating many files into one. It is generally used to distribute Java classes and associated

metadata. JAR files are not just simple archives of java classes‟ files or resources. They are

used as building blocks for applications and extensions. Since this program is a Java

application, the Java interpreter executes the “main(String args[])” method at first. Here, the

method “createAndShowGUI()” is called to popup the graphical user interface. In order to get

the building name and list them on the graphical user interface, at first, the file “Config.txt” is

called. This file includes the user ID, the password and the URL of the server. Afterwards, all

the other elements (weekdays, seasons and holiday restrictions) of the graphical user interface

are generated.

Now, the user is able to generate a typical day by selecting the elements from the graphical

user interface. The user may select one, more than one or all buildings. By clicking the

“Select all” button all the buildings will be selected. Respectively, if the user clicks the

“Reload” button, the buildings are unselected and graphical user interface is brought to its

initialized position. It is only possible to select one weekday, season and holiday restriction.

After the “Start” button is clicked, the program starts to generate a typical day. For that, it

reads the “Config.txt” file again to connect to the server and reads the historical data needed.

Using the algorithm given in chapter 5, it forecasts a typical load profile from all the historical

data for the selected type of day.

At the end, two CSV files are generated:

 data.csv

o predicted load values are stored in one sample per minute (1440 Values)

 userInput.csv

o Input elements of the users are stored

The program is able to give messages to the user such as error messages. If the user tries to

query a database and the database has no data for that selection, the following error message

pops up.

8. Load Forecasting in Java 50

Figure 8.3: User Error Message: No Data found

The file can only be overwritten if no other program is accessing the file, e.g. the data.csv has

been opened with MS Excel, but has not been closed yet. In that case, the Java application

cannot access that file to overwrite it and the following error message pops up.

Figure 8.4: User Error Message: Can‟t Access the file

This program was developed to run with databases which have the table entry given in chapter

7. As already discussed, the program gets the connection information from the file called

“Config.txt”. If the information inside that file is not correct, the following error message will

be displayed.

Figure 8.5: User Error Message: Wrong database

8. Load Forecasting in Java 51

If the program gets the data from the database, is able to do the calculation and writes the

result to the CSV files, the following information message is displayed.

Figure 8.6: User Information Message: CSV file created

The following flow chart graphically shows how the program works.

8. Load Forecasting in Java 52

Read the database

configuration file

START

Create a Java frame for the GUI

Put all the elements on the

Java frame

User’s input:

buildings, weekday,

season, holiday

restriction

Wait for “Start“

button click

Establish a connection to

database

Successful?

A

No

Yes

B

Error message:

Accessing wrong

database. Check the

Config file

8. Load Forecasting in Java 53

Get the load value

from the database for

the given buildings

and season

Filter the load values by the

given holiday restriction

Calculate a typical day for

the given weekday

Sort the load values by

building ID and timestamp

Create 2 CSV files

A

Successful?
No

Yes

B

C

Error message: No

load values for the

given specification.

Change your query

8. Load Forecasting in Java 54

Figure 8.7: Flowchart of Load Forecasting a typical day

C

Number

Write user’s

input to

userInput.csv

Write predicted

load values as

one sample per

minute to

data.csv

1 2

Successful?

Information message:

CSV files successfully

created

Error message:

Cannot write to the

file. Close the file and

try again

B

Yes

No

Chapter 9

Test Results

In comparing different results, the average percentage forecasting error is used as a measure

of the performance. This is defined as:

% error = | java generated value - measured value | x 100 %

 measured value

The reason for using the average percentage error is the fact, that its meaning can be easily

understood. It is also the most often used error measure in the load forecasting.

Another possibility as a performance measure would be the root-mean-square (RMS) percent

error. This penalizes the square of the error as opposed to the average forecasting error.

Therefore, the RMS takes the deviation of the errors into account more effectively. However,

when both measures were calculated on some test models with relatively small errors, the

orders of preference were in practice the same with both measures. Therefore, the average

forecasting error will be used throughout this chapter.

The results of forecasting the daily load profile using the algorithm given in chapter 5 are

given in this chapter. To test the performance of the load shape forecasting model, the

prediction was carried out with the historical data of forty public properties.

To get a good evaluation of the performance of the model, testing was carried out for two

weekdays, Monday and Wednesday, with two cases: including holidays and excluding

holidays. One case with including holidays was tested just to show how they disturb the

forecasting. Furthermore, two cases were tested: First, forecasting a typical day for only one

public property and second, forecasting the sum load for forty public properties.

Figure 9.1 shows the sum load of forty properties for a typical Monday in spring including the

holidays. As it may be seen, there is a huge difference between the forecasted curve and the

actual curve. The reason is the usage of all historical data which were measured on Mondays,

including the holidays. Holidays are more difficult to forecast than non-holidays because of

9. Test Results 56

their relative infrequent occurrence. With respect to figure 9.1, figure 9.2 shows the error rate

measured in 15 minute samples. Although the average error rate is 7.73 percent, it shows that

during the day, the errors of more than 15 percent occur frequently. Furthermore it can be

seen that the error rate is especially low during base load times (night).

Figure 9.1: Sum load of a typical Monday including holidays

0,00

5000,00

10000,00

15000,00

20000,00

25000,00

0
0

:1
5

0
1

:3
0

0
2

:4
5

0
4

:0
0

0
5

:1
5

0
6

:3
0

0
7

:4
5

0
9

:0
0

1
0

:1
5

1
1

:3
0

1
2

:4
5

1
4

:0
0

1
5

:1
5

1
6

:3
0

1
7

:4
5

1
9

:0
0

2
0

:1
5

2
1

:3
0

2
2

:4
5

2
4

:0
0

Sum load of a typical Monday
including holidays

13.06. Forecast

13.06. actually

9. Test Results 57

Figure 9.2: Error Rate of a typical Monday including holidays

A better solution would is to exclude the holidays. Again, the sum loads of forty properties for

a typical Monday in spring have been calculated, now excluding the holidays. From the

historical data only those Mondays have been taken which are non holidays. Figure 9.3 shows

a better performance compared to figure 9.1. The average error rate is reduced up to 3.4

percent and is now 4.34 percent. There are still some points in time where the error rate is

about 10 percent. The problem is the school holidays because the schools have lower

consumption during the spring holidays. Furthermore, the universities also have holidays.

Qualitatively the algorithm performs well. It produces all the ups and downs quite well. Most

of the time, the error rate is under 5-6 percent which is a good result.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

0
0

:1
5

0
1

:3
0

0
2

:4
5

0
4

:0
0

0
5

:1
5

0
6

:3
0

0
7

:4
5

0
9

:0
0

1
0

:1
5

1
1

:3
0

1
2

:4
5

1
4

:0
0

1
5

:1
5

1
6

:3
0

1
7

:4
5

1
9

:0
0

2
0

:1
5

2
1

:3
0

2
2

:4
5

2
4

:0
0

Error Rate of a typical Monday
including holidays

Error Rate in %

9. Test Results 58

Figure 9.3: Sum load of a typical Monday excluding holidays

Figure 9.4: Error Rate of a typical Monday excluding holidays

0,00

5000,00

10000,00

15000,00

20000,00

25000,00
0

0
:1

5

0
1

:3
0

0
2

:4
5

0
4

:0
0

0
5

:1
5

0
6

:3
0

0
7

:4
5

0
9

:0
0

1
0

:1
5

1
1

:3
0

1
2

:4
5

1
4

:0
0

1
5

:1
5

1
6

:3
0

1
7

:4
5

1
9

:0
0

2
0

:1
5

2
1

:3
0

2
2

:4
5

2
4

:0
0

Sum load of a typical Monday
excluding holidays

13.06. Forecast

13.06. actually

0,00

2,00

4,00

6,00

8,00

10,00

12,00

0
0

:1
5

0
1

:3
0

0
2

:4
5

0
4

:0
0

0
5

:1
5

0
6

:3
0

0
7

:4
5

0
9

:0
0

1
0

:1
5

1
1

:3
0

1
2

:4
5

1
4

:0
0

1
5

:1
5

1
6

:3
0

1
7

:4
5

1
9

:0
0

2
0

:1
5

2
1

:3
0

2
2

:4
5

2
4

:0
0

Error Rate of a typical Monday
excluding holidays

Error Rate in %

9. Test Results 59

The same test has been done for a Wednesday. As the following figure shows, it behaves

differently compared to load curve of a typical Monday. During the night and morning time

both curves behave similar, i.e. the error rate is low. In the evening time, the error rate rises. It

even reaches 10 percent. The average error rate being about 5 percent is acceptable.

Figure 9.5: Sum load of a typical Wednesday excluding holidays

Figure 9.6: Error Rate of a typical Wednesday excluding holidays

0,00

5000,00

10000,00

15000,00

20000,00

25000,00

0
0

:1
5

0
1

:3
0

0
2

:4
5

0
4

:0
0

0
5

:1
5

0
6

:3
0

0
7

:4
5

0
9

:0
0

1
0

:1
5

1
1

:3
0

1
2

:4
5

1
4

:0
0

1
5

:1
5

1
6

:3
0

1
7

:4
5

1
9

:0
0

2
0

:1
5

2
1

:3
0

2
2

:4
5

2
4

:0
0

Sum load of a typical Wednesday
excluding holidays

15.06. Forecast

15.06. actually

0,00

2,00

4,00

6,00

8,00

10,00

12,00

0
0

:1
5

0
1

:3
0

0
2

:4
5

0
4

:0
0

0
5

:1
5

0
6

:3
0

0
7

:4
5

0
9

:0
0

1
0

:1
5

1
1

:3
0

1
2

:4
5

1
4

:0
0

1
5

:1
5

1
6

:3
0

1
7

:4
5

1
9

:0
0

2
0

:1
5

2
1

:3
0

2
2

:4
5

2
4

:0
0

Error Rate of a typical Wednesday
excluding holidays

Error Rate in %

9. Test Results 60

Following is the figure of a typical Wednesday for only one property, the HAW Hamburg

Berliner Tor. The curves show that the predicted load curve is almost similar to the actual

load curve. As the figure shows, the error rate is flattering around the 5 percent rate. Although

at 19:45 the error rate goes up to 20 percent, the average error rate is still acceptable being

about 5 percent. This is due the fact that only one building is predicted here. In this case, the

algorithm performs quantitatively well but qualitatively, it shows a curve that is far too

smooth. For example, at night there is this highly characteristic zigzag of the compressor that

produces the pressurized air. It is flattened out in the calculation because the ups and downs

don‟t always occur at the same time. This very same effect grants a better prediction for a

higher a number of buildings (see figure 9.5). The load curves smooth each other when peaks

meet lows at the same point in time.

Figure 9.7: Load of a typical Wednesday of HAW Berliner Tor

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1600,00

0
0

:1
5

0
1

:3
0

0
2

:4
5

0
4

:0
0

0
5

:1
5

0
6

:3
0

0
7

:4
5

0
9

:0
0

1
0

:1
5

1
1

:3
0

1
2

:4
5

1
4

:0
0

1
5

:1
5

1
6

:3
0

1
7

:4
5

1
9

:0
0

2
0

:1
5

2
1

:3
0

2
2

:4
5

2
4

:0
0

Load of a typical Wednesday of HAW
Berliner Tor

15.06. Forecast

15.06. actually

9. Test Results 61

Figure 9.8: Error Rate of a typical Wednesday of HAW Berliner Tor

All the figures discussed up to now, represent the performance of the algorithm without

randomized historical load values. The next figure represents a predicted curve which has

been generated using the randomized historical load values (see chapter 7). The figure 9.9

shows the load curve of the campus Bergedorf on the 9
th

 May 2005. The blue curve is the real

measured load curve on that day and the red curve is the forecasted load curve for that day. As

it may be seen, using the load forecasting method Neural Networks, the java generated curve

performs very well as compared to the real world measured values.

0,00

5,00

10,00

15,00

20,00

25,00

0
0

:1
5

0
1

:3
0

0
2

:4
5

0
4

:0
0

0
5

:1
5

0
6

:3
0

0
7

:4
5

0
9

:0
0

1
0

:1
5

1
1

:3
0

1
2

:4
5

1
4

:0
0

1
5

:1
5

1
6

:3
0

1
7

:4
5

1
9

:0
0

2
0

:1
5

2
1

:3
0

2
2

:4
5

2
4

:0
0

Error Rate of a typical Wednesday for HAW
Berliner Tor

Error Rate in %

9. Test Results 62

Figure 9.9: Real Values VS Generated Values (HAW Bergedorf)

The following figure shows the measured values and Java generated values of a school. As it

may be seen from the graph, the Java generated values is smaller than the measured values,

especially, during the day. The reason for that is that by forecasting a typical day all the

similar day load values from the database being non holiday is taken into consideration which

is required for any public property but not for a school. Because in addition to national

holidays, the schools also have other holidays like summer holidays, for example. These days

are also included when forecasting a day which will not perform well when forecasting a

typical day for a school.

0

100

200

300

400

500

600

700

800

0
:0

5
0

:4
5

1
:2

5
2

:0
5

2
:4

5
3

:2
5

4
:0

5
4

:4
5

5
:2

5
6

:0
5

6
:4

5
7

:2
5

8
:0

5
8

:4
5

9
:2

5
1

0
:0

5
1

0
:4

5
1

1
:2

5
1

2
:0

5
1

2
:4

5
1

3
:2

5

Real Values VS Generated Values
HAW Bergedorf

Measured Values

Java generated Values

9. Test Results 63

Figure 9.10: Real Values VS Generated Values (School Steilshoop)

0,00
50,00

100,00
150,00
200,00
250,00
300,00
350,00
400,00
450,00
500,00

0
0

:1
5

0
1

:4
5

0
3

:1
5

0
4

:4
5

0
6

:1
5

0
7

:4
5

0
9

:1
5

1
0

:4
5

1
2

:1
5

1
3

:4
5

1
5

:1
5

1
6

:4
5

1
8

:1
5

1
9

:4
5

2
1

:1
5

2
2

:4
5

Real Values VS Generated Values
School Steilshoop

Java generated Values

Measured Values

Chapter 10

Conclusion

Forecasting the daily load profile was studied using the algorithm given in chapter 5 to

forecast the load profile of a typical day. The shape of the load curve was forecasted by using

the historical data. The performance of the model was tested on the historical load data of

some public properties placed in Hamburg. The best results were obtained with the simplest

input structure, which uses the peak value, valley value and the average value of the similar

days in historical data as the predictor. The results were better for excluding the holidays as

compared to including the holidays.

These error percentages are somewhat larger than many of those reported in the literature.

Some other sources have reported average forecasting errors of around 2 % for the total load

forecasts ([24] and [25]). The reason for the difference lies most likely in the nature of the test

data sets. The existence of bad data in historical load curve affects the precision of load

forecasting result. Bad data could be the use of school holidays or the effect of the weather.

A future refinement would be to modify the database by adding one additional column in

which a flag should be set if the date on that row is a school holiday. By doing this, the

problem of forecasting a typical day for a school will be avoided. As a result, the differences

shown in figure 9.9 and 9.10 will be less or even removed.

An additional future refinement would be to make use of the temperatures. It is not a must

that the summer is always hot and the winter is always cold. Like for the school holidays,

there should be an additional column indicating the temperature of a day.

The developed load forecasting tool performs well with respect to speed. To make the

program run even faster, the program might be modified. This program gets first the month

interval from the database and inside the code it filters out the selected day and the selected

holiday restriction using the specifications given by the user on the GUI. A modification

proposal would be to get the only the needed data from the database, i.e. selected month, day

and holiday restriction. In this version, it is not done in that way because the database still

need to be modified as stated above, i.e. additional columns for holidays and temperature.

Chapter 11

References

[1] http://users.etech.haw-hamburg.de/users/Schubert/forschung.html [06.12.2007]

[2] http://www.nertec.com/standards/ansic1222/JM0107-097-1.doc [09.12.2007]

[3] http://www.allbusiness.com/business-planning/101341-1.html [18.12.2007]

[4] http://www.peci.org/library/PECI_PracticalGuide1_0302.pdf [26.12.2007]

[5] http://www.gocsc.com/uploads/white_papers/FD06E0A2870042769EB8D66129456A95.pdf

[29.12.2007]

[6] http://www.sbt.siemens.com/hvp/staefa/press/pr5.asp [27.02.2008]

[7] http://java.sun.com [20.02.2008]

[8] http://ei.cs.vt.edu/book/chap1/java_hist.html [22.02.2008]

[9] http://www.faqs.org/docs/javap/c1/s3.html [21.02.2008]

[10] http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html [21.02.2008]

[11] http://download.oracle.com/docs/cd/B25329_01/doc/appdev.102/b25320/toc.htm [28.02.2008]

[12] R.F. Engle, C. Mustafa, J. Rice, „Modeling peak electricity demand‟, Journal of

Forecasting, 1992, 11, 241 - 251

[13] O. Hyde, P.F. Hodnett, „An Adaptable automated procedure for short-term electricity load

forecasting‟, IEEE Transactions on Power Systems, 1997,12, 84 - 93

[14] S. Ruzic, A. Vuckovic, N. Nikolic, „Weather sensitive method for short-term load

forecasting in electric power utility of Serbia‟, IEEE Transactions on Power Systems,

2003, 18, 1581 - 1586

[15] T. Haida, S. Muto, „Regression based peak load forecasting using a transformation

technique‟, IEEE Transactions on Power Systems, 1994, 9, 1788 - 1794

12. References 66

[16] W. Charytoniuk, M.S. Chen, P.Van Olinda, „Nonparametric regression based short-term

load forecasting‟, IEEE Transactions on Power Systems, 1998, 13, 725 - 730

[17] J.Y. Fan, J.D. McDonald, „A real-time implementation of short – term load forecasting for

distribution power systems‟, IEEE Transactions on Power Systems, 1994, 9, 988 - 994

[18] M.Y. Cho, J.C. Hwang, C.S. Chen, „Customer short-term load forecasting by using

ARIMA transfer function model‟, Proceedings of the International Conference on Energy

Management and Power Delivery, EMPD, 1995, 1, 317 - 322

[19] H.T.Yang, C.M. Huang, C.L. Huang, „Identification of ARMAX model for short-term

load forecasting, An evolutionary programming approach‟ IEEE Transactions on Power

Systems, 1996, 11, 403 - 408

[20] H.T. Yang, C.M. Huang, „A new short-term load forecasting approach using self-

organizing fuzzy ARMAX models‟, IEEE Transactions on Power Systems, 1998, 13, 217

- 225

[21] http://www.sal.hut.fi/Publications/pdf-files/tmur98.pdf [20.02.2008]

[22] http://en.wikipedia.org/wiki/Unified_Modeling_Language [05.01.2008]

[23] http://ieeexplore.ieee.org/iel5/10834/34152/01627164.pdf [24.02.2008]

[24] Park, D. C., M. A. El-Sharkawi, R. J. Marks II, L. E. Atlas, M. J. Damborg, 1991a,

"Electric load forecasting using an artificial neural network", IEEE Transactions on

Power Systems, Vol. 6, No. 2, May 1991, pp. 442-449.

[25] Peng, T. M., N. F. Hubele, G. G. Karady, 1992, "Advanvement in the application of

neural networks for short-term load forecasting", IEEE Transactions on Power

Systems, Vol. 7, No. 1, February 1992, pp. 250-256.

[26] www.ecse.rpi.edu/homepages/chowj/Feinberg.ppt [03.03.2008]

APPENDIX A

Java Source Code

A.1 Config.txt

jdbc:oracle:thin:@localhost

jevi

jevi

//////////////// Configfile //////////////////////////////

// //

// //

// row 01 : JDBC URL //

// row 02 : Username //

// row 03 : Password //

///

APPENDIX A. Java Source Code 68

A2. JDBCQuery.java

package loadmanagement;

import java.io.RandomAccessFile;

import java.sql.*;

import oracle.jdbc.pool.OracleDataSource;

/**

 * @author Farid

 *

 */

public class JDBCQuery {

 String jdbcUrl;

String userid;

 String password;

 Connection conn;

 Statement stmt;

 ResultSet rset;

 String sqlString;

 RandomAccessFile conf;

 /***

* Constructor; Reads from the file "Config.txt" the jdbcUrl;

*userid and password

 ***/

 public JDBCQuery(){

 try{

 conf = new RandomAccessFile("Config.txt", "r");

 conf.seek(0);

 jdbcUrl = conf.readLine();

 userid = conf.readLine();

 password = conf.readLine();

 }catch (Exception exception)

 {

System.out.println("config-file read error: " +

exception.toString());

 }

 }

 /**

 * connects to database using the specification given in Config.txt

 * @throws SQLException

 */

 public void getDBConnection() throws SQLException {

 try {

 OracleDataSource ds = new OracleDataSource();

 ds.setURL(jdbcUrl);

 conn = ds.getConnection(userid, password);

 }catch (SQLException ex){

 System.out.println(ex.toString());

 }

 }

 /**

 * gets data from database using the user's input on the GUI

 * @param query

 * @return result set

 * @throws SQLException

APPENDIX A. Java Source Code 69

 */

 public ResultSet getData(String query) throws SQLException{

 getDBConnection();

stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY);

 rset = stmt.executeQuery(query);

 return rset;

 }

 /**

 * updates the database, i.e. delete rows or insert new rows

 * @param query

 * @throws SQLException

 */

 public void updataDB(String query) throws SQLException{

 getDBConnection();

 Statement st = conn.createStatement();

 st.executeUpdate(query);

 st.close();

 }

}

APPENDIX A. Java Source Code 70

A3. Fifteen2oneMin.java

/**

 *

 */

package loadmanagement;

import java.io.BufferedReader;

import java.io.DataInputStream;

import java.io.FileInputStream;

import java.io.InputStreamReader;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.Random;

import java.util.Vector;

/**

 * @author Farid

 *

 */

public class Fifteen2oneMin {

 /**

 * @param args

 * @throws SQLException

 */

 public static void main(String[] args) throws SQLException {

 JDBCQuery data = new JDBCQuery();

 Vector <Long> usedIDs = new Vector<Long>();

 ResultSet data_row;

 ResultSet data_Value;

 long[] buildingID;

 //long id = 1191376;

 long id = 0;

String query = "SELECT DISTINCT DATA.DATA_ROW_ID FROM DATA

ORDER BY DATA.DATA_ROW_ID";

 data_row = data.getData(query);

 int i=0;

 data_row.last();

 int numOfBuildings = data_row.getRow();

 buildingID = new long[numOfBuildings];

 data_row.first();

 do{

 buildingID[i] = data_row.getLong("DATA_ROW_ID");

 i++;

 }while (data_row.next());

 i=0;

 //System.out.println(buildingID[1]);

 for(int l=0; l<buildingID.length; l++){

query = "SELECT DISTINCT DATA.ID, DATA.DATA_ROW_ID,

DATA.VALUE, DATA.TIMESTAMP " +

 "FROM DATA " +

 "WHERE DATA.DATA_ROW_ID =" + buildingID[l] +

 "ORDER BY DATA.DATA_ROW_ID,DATA.TIMESTAMP";

 data_Value = data.getData(query);

 Vector <Double> finalResult = randomize(data_Value);

APPENDIX A. Java Source Code 71

query = "DELETE FROM DATA WHERE DATA.DATA_ROW_ID =" +

buildingID[l];

 data.updataDB(query);

 query = "SELECT DISTINCT DATA.ID FROM DATA ORDER BY DATA.ID";

 data_Value = data.getData(query);

 usedIDs.clear();

 while(data_Value.next()){

 usedIDs.add(data_Value.getLong("ID"));

 }

 try{

 int j=0;

 // Open the file that is the first

 // command line parameter

FileInputStream fstream = new

FileInputStream("TimestampInOneMinSteps2005.txt");

 // Get the object of DataInputStream

 DataInputStream in = new DataInputStream(fstream);

BufferedReader br = new BufferedReader(new

InputStreamReader(in));

 String timestamp;

 //Read File Line By Line

 while ((timestamp = br.readLine()) != null) {

 id++;

 if(usedIDs.contains(id)){

 id = usedIDs.lastElement()+1;

 }

 query = "INSERT INTO DATA

 (ID,TIMESTAMP,VALUE,DATA_ROW_ID)" +

"VALUES(" + id+ ", to_date('"+ timestamp + "',

'dd.mm.yyyy hh24:mi:ss')," +

finalResult.elementAt(j)+ "," + buildingID[l] +

")";

 data.updataDB(query);

System.out.println (id + ", " + timestamp +", " +

finalResult.elementAt(j)+", " +buildingID[l]);

 j++;

 }

 //Close the input stream

 in.close();

 }catch (Exception e){//Catch exception if any

 System.err.println("Error: " + e.getMessage());

 }

 id = 0;

 }

 }

 /**

 * @param data_Value

 * @return randomized Values from 15 Min to 1 Min Samples

 * @throws SQLException

 */

public static Vector<Double> randomize(ResultSet data_Value)

throws SQLException{

 Vector <Double> fetchedValues = new Vector<Double>();

 Vector <Double> result = new Vector<Double>();

 Vector <Double> a = new Vector<Double>();

APPENDIX A. Java Source Code 72

 int i=0;

 int counter = 0;

 int position = 0;

 double[] randomValue = new double[15];

 Random generator = new Random();

 while(data_Value.next()){

 fetchedValues.add(data_Value.getDouble("VALUE"));

 //usedIDs.add(data_Value.getLong("ID"));

 //System.out.println(fetchedValues.elementAt(i));

 i++;

 }

 Vector <Double> dkW = new Vector<Double>();

 Vector <Double> dkWProMin = new Vector<Double>();

 Vector <Double> step = new Vector<Double>();

 //Preparing Linear function y= ax+b for randomizing

 //1. differnce between two 15 Min Values

//2. divide the difference by 15 to get the scope between

//minutes

 //3. mutiply the scope by 7 to get the 1. value

 //4. add the scope tp every minute value

 //5. randomize

 //System.out.println(fetchedValues.size());

 /* Makes out of 15 Minutes sampled Values

 * 1 minute sampled values

 * It generates random Values, so that the averaged

 * 15 Minutes Value is same the original 15 Minutes sampled

 * Value

 */

 for(int k=0; k<fetchedValues.size(); k++){

dkW.add(fetchedValues.elementAt(k+1) -

fetchedValues.elementAt(k));

 dkWProMin.add(dkW.elementAt(k)/15);

 step.add(dkWProMin.elementAt(k)*7);

 }

 for(int k=0; ; k+=15){

a.add(k,fetchedValues.elementAt(position) -

step.elementAt(position));

 position++;

 if(position >= fetchedValues.size())

 break;

 }

 position=0;

 int new15thMinValue = 1;

 for(int k=1; ; k++){

a.add(k, a.elementAt(k-1) +

dkWProMin.elementAt(position));

 if((k+1)%15 ==0){

 k=15*new15thMinValue;

 position++;

 new15thMinValue++;

 }

 if(position >= dkWProMin.size())

 break;

 }

APPENDIX A. Java Source Code 73

 /*for(int k=0; k<a.length; k++){

 System.out.println(a[k]);

 }*/

 position=0;

 new15thMinValue=0;

 for(int k=0; ; k++){

 if(counter == 0){

 for(int l=0; l<randomValue.length; l++){

randomValue[l] = generator.nextDouble()

* 10 + 95;

 //System.out.println(randomValue[l]);

 }

 /*for(int m=1; m<randomValue.length; m+=2){

 randomValue[m] = -randomValue[m-1];

 System.out.println(randomValue[m]);

 }*/

 }

result.add(HAWCalc.round(a.elementAt(position) *

randomValue[counter] /100));

 //System.out.println(result.elementAt(k));

 counter++;

 if(counter == 15)

 counter = 0;

 if(k!=0)

 if((k+1)%15 == 0)

 position++;

 if(position >= fetchedValues.size())

 break;

 }

 position=0;

 //System.out.println(fetchedValues.size());

 return result;

 }

}

APPENDIX A. Java Source Code 74

A4. HAWCalc.java

package loadmanagement;

import javax.swing.JPanel;

import java.awt.Color;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

import java.awt.Insets;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.IOException;

import java.math.BigDecimal;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.Calendar;

import java.util.GregorianCalendar;

import java.util.Random;

import java.util.Vector;

import javax.swing.BorderFactory;

import javax.swing.ButtonGroup;

import javax.swing.DefaultListModel;

import javax.swing.InputVerifier;

import javax.swing.JButton;

import javax.swing.JComboBox;

import javax.swing.JComponent;

import javax.swing.JLabel;

import javax.swing.JList;

import javax.swing.JOptionPane;

import javax.swing.JProgressBar;

import javax.swing.JRadioButton;

import javax.swing.JScrollPane;

import javax.swing.JTextField;

import javax.swing.ListSelectionModel;

import javax.swing.SwingUtilities;

import javax.swing.border.TitledBorder;

import javax.swing.JFrame;

/**

 * @author Farid

 *

 */

public class HAWCalc extends JPanel implements ActionListener{

 private static final long serialVersionUID = 1L;

 JComboBox dataComboBox = new JComboBox();

 JLabel seasonLabel = new JLabel();

 JPanel weekPanel = new JPanel();

 JPanel seasonPanel = new JPanel();

 JPanel holidayPanel = new JPanel();

 JPanel temperaturePanel = new JPanel();

 JPanel getPanel = new JPanel();

 JPanel buildingPanel = new JPanel();

 JPanel buttonPanel = new JPanel();

 JPanel progressBar = new JPanel();

APPENDIX A. Java Source Code 75

 Color valueIsOKColor = new Color(255,255,255);

 Color valueIsNotOKColor = new Color(255,67,54);

 static JFrame frame;

 private JList list;

 private DefaultListModel listModel;

String[] buildingName;

 int[] buildingID;

 JButton reloadButton;

 JButton selectAllButton;

 JButton getButton;

 JButton okayButton;

 JLabel tempLabel;

 JTextField tempValue;

 JProgressBar bar;

 int day = 2; //default day -> Monday

String season = "1"; //default season -> spring

 String holiday = "2"; //default restriction -> exclude Holidays

 String temperature = "";

 String startMonth = "04";

 String endMonth = "05";

static String MondayString = "Monday";

 static String TuesdayString = "Tuesday";

 static String WednesdayString = "Wednesday";

 static String ThursdayString = "Thursday";

 static String FridayString = "Friday";

 static String SaturdayString = "Saturday";

 static String SundayString = "Sunday";

 static String SpringString = "Spring";

 static String SummerString = "Summer";

 static String AutumnString = "Autumn";

 static String WinterString = "Winter";

 static String incHolidayString = "Include Holidays";

 static String exHolidayString = "Exclude Holidays";

 static String onlyHolidayString = "Only Holidays";

 /**

 * Constructor; sets the layout for the GUI

 *

 */

 public HAWCalc(){

setBorder(new

TitledBorder(BorderFactory.createEtchedBorder(Color.white,

 new Color(148,

 145,

 140)),

 "Typical Day for:"));

 this.setLayout(new GridBagLayout());

((GridBagLayout)this.getLayout()).columnWidths = new int[]

{160, 0, 0, 0, 0};

((GridBagLayout)this.getLayout()).rowHeights = new int[] {0, 0,

0};

((GridBagLayout)this.getLayout()).columnWeights = new double[]

{0.0, 0.0, 0.0, 0.0, 1.0E-4};

((GridBagLayout)this.getLayout()).rowWeights = new double[]

{0.0, 0.0, 1.0E-4};

 buildingPanel = getBuilding();

 weekPanel = getDaytimePanel();

 seasonPanel = getSeasonPanel();

APPENDIX A. Java Source Code 76

 holidayPanel = getHolidayPanel();

 temperaturePanel = getTemperaturePanel();

 getPanel = getGetPanel();

 progressBar = getProgressBar();

 add(buildingPanel, new GridBagConstraints(0, 0, 1, 1, 0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 add(weekPanel, new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 add(seasonPanel, new GridBagConstraints(0, 2, 1, 1, 0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 add(holidayPanel, new GridBagConstraints(0, 3, 1, 1, 0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

add(temperaturePanel, new GridBagConstraints(0, 4, 1, 1, 0.0,

0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 add(getPanel, new GridBagConstraints(0, 5, 1, 1, 0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 add(progressBar, new GridBagConstraints(0, 6, 1, 1, 0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 }

 /**

 * gets the building from the database and puts

 * on the GUI

 * @return Building Panel

 */

 private JPanel getBuilding(){

 JPanel building = new JPanel();

building.setBorder(new

TitledBorder(BorderFactory.createEtchedBorder(Color.white,

 new Color(148,

 145,

 140)),

 "Building"));

 building.setLayout(new GridBagLayout());

 listModel = new DefaultListModel();

String query = "SELECT DATA_ROWS.ID, DATA_ROWS.DESCRIPTION FROM

DATA_ROWS ORDER BY DATA_ROWS.ID";

 try {

 JDBCQuery comboBox = new JDBCQuery();

 ResultSet rset = comboBox.getData(query);

 String rowsDescription = "";

 int i=0;

 rset.last();

 int numOfBuildings = rset.getRow();

 buildingName = new String[numOfBuildings];

APPENDIX A. Java Source Code 77

 buildingID = new int[numOfBuildings];

 rset.first();

 do{

 rowsDescription = rset.getString("DESCRIPTION");

 listModel.addElement(rowsDescription);

 buildingName[i] = rset.getString("DESCRIPTION");

 buildingID[i] = rset.getInt("ID");

 i++;

 }while (rset.next());

 i=0;

 } catch (SQLException ex) {

 ex.printStackTrace();

 }

 //Create the list and put it in a scroll pane.

 list = new JList(listModel);

list.setSelectionMode(ListSelectionModel.MULTIPLE_INTERVAL_SELE

CTION);

 list.setSelectedIndex(0);

 list.setVisibleRowCount(5);

building.add(new JScrollPane(list), new GridBagConstraints(0,

0, 1, 1, 0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 buttonPanel = getButtonPanel();

building.add(buttonPanel, new GridBagConstraints(1, 0, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 return building;

 }

 /**

 * initializes the Reload and the Select all button

 * @return Button

 */

 private JPanel getButtonPanel(){

 JPanel button = new JPanel();

 button.setLayout(new GridBagLayout());

 reloadButton = new JButton("Reload");

 reloadButton.setToolTipText("Reload available Buildings");

 reloadButton.addActionListener(this);

 selectAllButton = new JButton("Select All");

 selectAllButton.setToolTipText("Select All Buildings");

 selectAllButton.addActionListener(this);

button.add(reloadButton, new GridBagConstraints(0, 0, 1, 1, 0.0,

0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

APPENDIX A. Java Source Code 78

button.add(selectAllButton, new GridBagConstraints(0, 1, 1, 1, 0.0,

0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 return button;

 }

 /**

 * creates Radio buttons initialized with weekdays

 * @return Weekdays Panel

 */

 private JPanel getDaytimePanel() {

 JPanel weekday = new JPanel();

 weekday.setBorder(new

 TitledBorder(BorderFactory.createEtchedBorder(Color.white,

 new Color(148,

 145,

 140)),

 "Weekday"));

 weekday.setLayout(new GridBagLayout());

 JRadioButton mondayButton = new JRadioButton(MondayString);

 mondayButton.setActionCommand(MondayString);

 mondayButton.setSelected(true);

 JRadioButton tuesdayButton = new JRadioButton(TuesdayString);

 tuesdayButton.setActionCommand(TuesdayString);

 JRadioButton wednesdayButton = new JRadioButton(WednesdayString);

 wednesdayButton.setActionCommand(WednesdayString);

 JRadioButton thursdayButton = new JRadioButton(ThursdayString);

 thursdayButton.setActionCommand(ThursdayString);

 JRadioButton fridayButton = new JRadioButton(FridayString);

 fridayButton.setActionCommand(FridayString);

 JRadioButton saturdayButton = new JRadioButton(SaturdayString);

 saturdayButton.setActionCommand(SaturdayString);

 JRadioButton sundayButton = new JRadioButton(SundayString);

 sundayButton.setActionCommand(SundayString);

 //Group the radio buttons.

 ButtonGroup groupDay = new ButtonGroup();

 groupDay.add(mondayButton);

 groupDay.add(tuesdayButton);

 groupDay.add(wednesdayButton);

 groupDay.add(thursdayButton);

 groupDay.add(fridayButton);

 groupDay.add(saturdayButton);

 groupDay.add(sundayButton);

 //Register a listener for the radio buttons.

 mondayButton.addActionListener(this);

 tuesdayButton.addActionListener(this);

 wednesdayButton.addActionListener(this);

 thursdayButton.addActionListener(this);

 fridayButton.addActionListener(this);

 saturdayButton.addActionListener(this);

 sundayButton.addActionListener(this);

APPENDIX A. Java Source Code 79

weekday.add(mondayButton, new GridBagConstraints(0, 0, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

weekday.add(tuesdayButton, new GridBagConstraints(0, 1, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

weekday.add(wednesdayButton, new GridBagConstraints(0, 2, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

weekday.add(thursdayButton, new GridBagConstraints(1, 0, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

weekday.add(fridayButton, new GridBagConstraints(1, 1, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

weekday.add(saturdayButton, new GridBagConstraints(1, 2, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

weekday.add(sundayButton, new GridBagConstraints(2, 0, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 return weekday;

 }

 /**

 * creates Radio buttons initialized with Seasons

 * @return Seasons Panel

 */

 private JPanel getSeasonPanel() {

 JPanel season = new JPanel();

season.setBorder(new

TitledBorder(BorderFactory.createEtchedBorder(Color.white,

 new Color(148,

 145,

 140)),

 "Season"));

 season.setLayout(new GridBagLayout());

 //Create the radio buttons.

 JRadioButton springButton = new JRadioButton(SpringString);

 springButton.setActionCommand(SpringString);

 springButton.setSelected(true);

 springButton.setToolTipText("April - June");

 JRadioButton summerButton = new JRadioButton(SummerString);

 summerButton.setActionCommand(SummerString);

 summerButton.setToolTipText("July - September");

 JRadioButton autumnButton = new JRadioButton(AutumnString);

 autumnButton.setActionCommand(AutumnString);

 autumnButton.setToolTipText("October - December");

 JRadioButton winterButton = new JRadioButton(WinterString);

 winterButton.setActionCommand(WinterString);

APPENDIX A. Java Source Code 80

 winterButton.setToolTipText("January - March");

 //Group the radio buttons.

 ButtonGroup groupSeason = new ButtonGroup();

 groupSeason.add(springButton);

 groupSeason.add(summerButton);

 groupSeason.add(autumnButton);

 groupSeason.add(winterButton);

 //Register a listener for the radio buttons.

 springButton.addActionListener(this);

 summerButton.addActionListener(this);

 autumnButton.addActionListener(this);

 winterButton.addActionListener(this);

 season.add(springButton, new GridBagConstraints(0, 0, 1, 1, 0.0,

0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

season.add(summerButton, new GridBagConstraints(0, 1, 1, 1, 0.0,

0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

season.add(autumnButton, new GridBagConstraints(1, 0, 1, 1, 0.0,

0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

season.add(winterButton, new GridBagConstraints(1, 1, 1, 1, 0.0,

0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 return season;

 }

 /**

 * creates Radio buttons initialized with Holiday restrictions

 * @return holiday Panel

 */

 private JPanel getHolidayPanel(){

 JPanel holiday = new JPanel();

holiday.setBorder(new

TitledBorder(BorderFactory.createEtchedBorder(Color.white,

 new Color(148,

 145,

 140)),

 "Holiday"));

 holiday.setLayout(new GridBagLayout());

 //Create the radio buttons.

 JRadioButton incholidayButton = new JRadioButton(incHolidayString);

 incholidayButton.setActionCommand(incHolidayString);

 incholidayButton.setToolTipText("Include Holidays");

 JRadioButton exholidayButton = new JRadioButton(exHolidayString);

 exholidayButton.setActionCommand(exHolidayString);

 exholidayButton.setSelected(true);

 exholidayButton.setToolTipText("Exclude Holidays");

JRadioButton onlyHolidayButton = new

JRadioButton(onlyHolidayString);

 onlyHolidayButton.setActionCommand(onlyHolidayString);

 onlyHolidayButton.setToolTipText("Only Holidays");

APPENDIX A. Java Source Code 81

 //Group the radio buttons.

 ButtonGroup groupHoliday = new ButtonGroup();

 groupHoliday.add(incholidayButton);

 groupHoliday.add(exholidayButton);

 groupHoliday.add(onlyHolidayButton);

 //Register a listener for the radio buttons.

 incholidayButton.addActionListener(this);

 exholidayButton.addActionListener(this);

 onlyHolidayButton.addActionListener(this);

 holiday.add(incholidayButton, new GridBagConstraints(0, 0, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

holiday.add(exholidayButton, new GridBagConstraints(0, 1, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

holiday.add(onlyHolidayButton, new GridBagConstraints(1, 0, 1, 1,

0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 return holiday;

 }

 /**

 * creates text fields for entering Temperature

 * @return Temperature Panel

 */

 private JPanel getTemperaturePanel(){

 JPanel temperature = new JPanel();

temperature.setBorder(new

TitledBorder(BorderFactory.createEtchedBorder(Color.white,

 new Color(148,

 145,

 140)),

 "Average Temperature"));

 temperature.setLayout(new GridBagLayout());

 tempLabel = new JLabel("Temperature: ");

 tempValue = new JTextField(6);

 tempValue.setToolTipText("Enter the average temperature");

 /**

 * Verifier that the user can only type float Numbers

 * in the Text Field

 */

 InputVerifier verifier = new InputVerifier() {

 public boolean verify(JComponent comp) {

 boolean returnValue;

 JTextField textField = (JTextField)comp;

 try {

 Float.valueOf(textField.getText()).floatValue();

 //white

 textField.setBackground(valueIsOKColor);

 returnValue = true;

 } catch (NumberFormatException e) {

 // soft red

 textField.setBackground(valueIsNotOKColor);

APPENDIX A. Java Source Code 82

 returnValue = false;

 }

 return returnValue;

 }

 };

 tempValue.setInputVerifier(verifier);

 temperature.add(tempLabel, new GridBagConstraints(0, 1, 1, 1, 0.0,

0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

temperature.add(tempValue, new GridBagConstraints(1, 1, 1, 1, 0.0,

0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 return temperature;

 }

 /**

 * Creates a button for getting data from database for given inputs

 * @return Start Button

 */

 private JPanel getGetPanel(){

 JPanel getB = new JPanel();

 getButton = new JButton("Start");

getButton.setToolTipText("Create a File for the given

Specifications");

 getButton.addActionListener(this);

 getB.add(getButton, new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 return getB;

 }

 private JPanel getProgressBar(){

 JPanel progress = new JPanel();

 bar = new JProgressBar(0,100);

 progress.add(bar, new GridBagConstraints(0, 1, 1, 1, 0.0, 0.0,

 GridBagConstraints.CENTER, GridBagConstraints.BOTH,

 new Insets(0, 0, 5, 5), 0, 0));

 return progress;

 }

 /**

 * reacts on user's input.

 *

* @see

*java.awt.event.ActionListener#actionPerformed(java.awt.event.Action

*Event)

 */

 public void actionPerformed(ActionEvent e) {

 if(e.getActionCommand() == MondayString)

 day = 2;

 if(e.getActionCommand() == TuesdayString)

 day = 3;

 if(e.getActionCommand() == WednesdayString)

 day = 4;

 if(e.getActionCommand() == ThursdayString)

 day = 5;

 if(e.getActionCommand() == FridayString)

APPENDIX A. Java Source Code 83

 day = 6;

 if(e.getActionCommand() == SaturdayString)

 day = 7;

 if(e.getActionCommand() == SundayString)

 day = 1;

 if(e.getActionCommand() == SpringString){

 season = "1";

 startMonth = "04";

 endMonth = "05";

 }

 if(e.getActionCommand() == SummerString){

 season = "2";

 startMonth = "07";

 endMonth = "08";

 }

 if(e.getActionCommand() == AutumnString){

 season = "3";

 startMonth = "10";

 endMonth = "11";

 }

 if(e.getActionCommand() == WinterString){

 season = "4";

 startMonth = "01";

 endMonth = "02";

 }

 if(e.getActionCommand() == incHolidayString)

 holiday = "1";

 if(e.getActionCommand() == exHolidayString)

 holiday = "2";

 if(e.getActionCommand() == onlyHolidayString)

 holiday = "3";

 if(e.getSource() == getButton){

 getButton.setEnabled(false);

 bar.setIndeterminate(true);

 new Thread() { //Thread for Progress bar

 public void run () { //do the following task

 temperature = tempValue.getText();

 CreateFile file = new CreateFile();

 int[] building = list.getSelectedIndices();

 double result[] = new double[1441];

 double[] finalResult = new double[1440];

 double[] sum = new double[1440];

String[][] data_row = new String[building.length+1][1441];

//+1 for adding up all buildings

double[][] data_value = new double[building.length][1441];

 int i=0;

 for(i=0; i<building.length+1;i++){

 for(int j=0; j<1441; j++){

 data_row[i][j] = ""; //empty the data rows

 }

 }

 for(i=0; i<building.length; i++){

String query = "SELECT DISTINCT DATA.DATA_ROW_ID, DATA.VALUE,

DATA.TIMESTAMP " + "FROM DATA " +

 "WHERE DATA.DATA_ROW_ID =" + buildingID[building[i]] +

APPENDIX A. Java Source Code 84

 "AND to_char(DATA.TIMESTAMP,'MM') >=" + startMonth +

 "AND to_char(DATA.TIMESTAMP,'MM') <=" + endMonth +

 "ORDER BY DATA.DATA_ROW_ID,DATA.TIMESTAMP";

 JDBCQuery data = new JDBCQuery();

 ResultSet rset;

 try {

 //query the DB using above String query

 rset = data.getData(query);

 result = calcATypicalDay(rset); //calculate a typical day

 for(int k=0; k<finalResult.length; k++){

 finalResult[k] = result[k];

 }

 //right the building IDs at first rows

 data_row[i][0] += buildingID[building[i]];

 for(int j=1; j<finalResult.length+1; j++){

//for each building, right the results on the following

//rows

 data_row[i][j] += finalResult[j-1];

//needed to calculate the sum load

 data_value[i][j] = finalResult[j-1];

 }

 } catch (SQLException e1) {

JOptionPane.showMessageDialog(frame, "Columnname mismatch." + "\n" +

"Accessing wrong database." + "\n" + "Check the Config.txt

file","Error",JOptionPane.ERROR_MESSAGE);

e1.printStackTrace();

 }

 }

//sum ID equals to 0, put it on last column

data_row[i][0] += "0";

 for(int m=1; m<finalResult.length+1; m++){

 //calculate the sum load for all

 //selected buildings

 for(int n=0; n<building.length; n++){

 sum[m-1] = sum[m-1] + data_value[n][m];

 }

 }

 for(int l=1; l<finalResult.length+1; l++){

 //put the sum load at the last column

 data_row[i][l] += round(sum[l-1]);

 }

 try {

file.writeToFile("data",data_row,finalResult.length,building.length+1

); //write the result to CSV file

file.writeMetadata(new

Integer(day).toString(),season,temperature,holiday);

//write users input to a file

 JOptionPane.showMessageDialog(frame,

 "data.csv & userInput.csv." + "\n" + "successfully created",

 "Message",JOptionPane.INFORMATION_MESSAGE);

 } catch (IOException e1) {

 JOptionPane.showMessageDialog(frame,

APPENDIX A. Java Source Code 85

 "Can't Access the file." + "\n" + "Close the file and try again.",

 "Error", JOptionPane.ERROR_MESSAGE);

 e1.printStackTrace();

 }

 getButton.setEnabled(true);

 SwingUtilities.invokeLater(new Runnable() { //task ended

 public void run () { //disable progress bar

 bar.setIndeterminate(false);

 }

 });

 }

 } .start();

}

if(e.getSource() == selectAllButton){ //select all buidlings

 int begin =0;

 int end = list.getModel().getSize()-1;

 if(end>=0)

 {

 list.setSelectionInterval(begin, end);

 }

}

if(e.getSource() == reloadButton){ //refresh the GUI window

 frame.dispose();

 createAndShowGUI();

}

} //close event handler

 /**

 * Calculates a typical day using user's input and historical data

 * @param rset

 * @return Results of typical day algorithm

 * @throws SQLException

 */

 private double[] calcATypicalDay(ResultSet rset) throws SQLException

 {

 //all Values being 96 has been changed to 1440 -> database has been

 //changed from 15 Min Samples to 1 Min samples

 double result[] = new double[1441];

 double average[] = new double[1441];

 double[] sum = new double[1441];

 double max = 0; // maximum load value of a day

 double min = 0; // minimum load value of a day

 Vector<Double> loadValues = new Vector<Double>(); //dynamic array

 int numOfDays = 0;

int newDay = 1440; // each hour has 4 samples -> A day contains

//24 h * 60 Values

 Calendar c = new GregorianCalendar();

 WorkdayCalendar w;

 boolean holidayCheck;

 while(rset.next()){

 c.setTime(rset.getDate("TIMESTAMP"));

 if(c.get(Calendar.DAY_OF_WEEK) == day){

 w = new WorkdayCalendar(); //make holiday check

holidayCheck = w.isHolidayDay(c.get(Calendar.YEAR),

c.get(Calendar.MONTH), c.get(Calendar.DATE));

APPENDIX A. Java Source Code 86

 if(!holidayCheck && holiday=="2"){

 numOfDays++;

 loadValues.add(rset.getDouble("VALUE"));

 }

 else if(holidayCheck && holiday=="3"){

 numOfDays++;

 loadValues.add(rset.getDouble("VALUE"));

 }

 else if(holiday == "1"){

 numOfDays++;

 loadValues.add(rset.getDouble("VALUE"));

 }

 }

 }

 if(numOfDays == 0){

JOptionPane.showMessageDialog(frame, "No Data found." + "\n" +

"Change your query", "Error", JOptionPane.ERROR_MESSAGE);

 return result;

 }

 for(int k=0; k<1440; k++){

 sum[k] = sum[k] + loadValues.elementAt(k);

 }

 for(int k=0; k<loadValues.size(); k++){

 if(loadValues.size() > 1440){

 sum[k] = sum[k] + loadValues.elementAt(k+newDay);

 if(k%1440 == 0){

 if(k!=0){

 k=-1;

 newDay+=1440;

 }

 }

 if((k+newDay) == (loadValues.size()-1)){

 break;

 }

 }

 }

 for(int j=0; j<sum.length; j++){

 average[j] = sum[j]/(numOfDays/1440);

 if(j==0){

 max = average[j];

 min = average[j];

 }

 else{

 if(average[j] > average[j-1])

 max = average[j];

 if(average[j] < average[j-1])

 min = average[j];

 }

 }

 for(int j=0; j<average.length; j++){

result[j] = ((max - min)* ((average[j] - min)/(max - min))) +

min;

 }

APPENDIX A. Java Source Code 87

 for(int n=0; n<result.length; n++){

 result[n] = round(result[n]);

 }

 return result;

} //close calcATypicalDay

 /**

 * Rounds double value to 2 decimal fractions

 * @param _input

 * @return rounded double Value

 */

 static double round(double _input)

 {

 BigDecimal bd = new BigDecimal(_input);

 BigDecimal bd_round = bd.setScale(2, BigDecimal.ROUND_HALF_UP);

 return bd_round.doubleValue();

 }

 /**

 * Create the GUI and show it. For thread safety,

 * this method should be invoked from the

 * event-dispatching thread.

 */

 private static void createAndShowGUI() {

 //Create and set up the window.

 frame = new JFrame("Load Management");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 //Create and set up the content pane.

 HAWCalc newContentPane = new HAWCalc();

 newContentPane.setOpaque(true); //content panes must be opaque

 frame.setContentPane(newContentPane);

 //Display the window.

 frame.pack();

 frame.setVisible(true);

 }

 /**

 * @param args

 */

 public static void main(String[] args) {

 //Schedule a job for the event-dispatching thread:

 //creating and showing this application's GUI.

 javax.swing.SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 createAndShowGUI();

 }

 });

 }

}

APPENDIX A. Java Source Code 88

A.5 WorkdayCalendar.java

package loadmanagement;

import java.util.Calendar;

import java.util.GregorianCalendar;

import java.util.Vector;

/**

 * @author Farid

 *

 */

 public class WorkdayCalendar {

 /**

 * Calculate the easter Holiday days for given year

 * @param year > 1583

 * @return Easter Sunday.

 */

 public static GregorianCalendar easterSunday(int year)

 {

 int i = year % 19;

 int j = year / 100;

 int k = year % 100;

 int l = (19 * i + j - (j / 4) - ((j - ((j + 8) / 25) + 1) / 3) +

1 5) % 30;

 int m = (32 + 2 * (j % 4) + 2 * (k / 4) - l - (k % 4)) % 7;

 int n = l + m - 7 * ((i + 11 * l + 22 * m) / 451) + 114;

 int month = n / 31;

 int day = (n % 31) + 1;

 return new GregorianCalendar(year, month - 1, day);

 }

 /**

 * Checks, if the given date is a Holiday.

 * @param year

 * @param month

 * @param day

 * @return true for Holiday; false for non Holiday

 */

 public boolean isHolidayDay(int year, int month, int day){

 boolean holiday = false;

Vector <GregorianCalendar> days = new

Vector<GregorianCalendar>(34);

 GregorianCalendar eastern = easterSunday(year);

 GregorianCalendar tmp;

 days.add(new GregorianCalendar(year,0,1)); //New Year

 tmp = (GregorianCalendar) eastern.clone(); //Karfreitag

 tmp.add(Calendar.DAY_OF_MONTH, -2);

days.add(new

GregorianCalendar(tmp.YEAR,tmp.MONTH,tmp.DATE));

days.add(new

GregorianCalendar(eastern.YEAR,eastern.MONTH,eastern.DATE));

APPENDIX A. Java Source Code 89

tmp = (GregorianCalendar) eastern.clone(); //Eastern

 tmp.add(Calendar.DAY_OF_MONTH, +1);

days.add(new

GregorianCalendar(tmp.YEAR,tmp.MONTH,tmp.DATE));

 days.add(new GregorianCalendar(year,4,1)); //1. May Holiday

 tmp = (GregorianCalendar) eastern.clone(); //Himmelfahrt

 tmp.add(Calendar.DAY_OF_MONTH, +39);

days.add(new

GregorianCalendar(tmp.YEAR,tmp.MONTH,tmp.DATE));

 tmp = (GregorianCalendar) eastern.clone(); //Pfingsten

 tmp.add(Calendar.DAY_OF_MONTH, +49);

days.add(new

GregorianCalendar(tmp.YEAR,tmp.MONTH,tmp.DATE));

 tmp.add(Calendar.DAY_OF_MONTH, +1);

days.add(new

GregorianCalendar(tmp.YEAR,tmp.MONTH,tmp.DATE));

//Tag der deutschen Einheit

days.add(new GregorianCalendar(year,9,3));

days.add(new GregorianCalendar(year,11,24)); //Heiligabend

 days.add(new GregorianCalendar(year,11,25)); //Christmas

 days.add(new GregorianCalendar(year,11,26));

 days.add(new GregorianCalendar(year,11,31)); //Silvester

holiday = days.contains(new

GregorianCalendar(year,month,day));

 return holiday;

 }

 }

APPENDIX A. Java Source Code 90

A.6 CreateFile.java

package loadmanagement;

import java.io.FileWriter;

import java.io.IOException;

/**

 * @author Farid

 *

 */

public class CreateFile {

 /**

 * Writes the typical Day load values to a *.csv file

 * @param temp_data

 * @param ResultLength

 * @param buildingLength

 * @throws IOException

 */

public void writeToFile(String fileName,String temp_data[][],int

ResultLength, int buildingLength) throws IOException{

 FileWriter fw;

 fw = new FileWriter(fileName + ".csv");

 String data_row = "";

 for(int n=0; n<ResultLength+1; n++){

 for(int i=0; i<buildingLength; i++){

 data_row += temp_data[i][n];

 data_row += ",";

 if(i+1 == buildingLength)

 data_row += "\n";

 }

 }

 fw.write(data_row);

 fw.close();

 }

 /**

 * Writes user's input to a *.csv file

 * @param day

 * @param season

 * @param temperature

 * @param holiday

 * @throws IOException

 */

public void writeMetadata(String day, String season, String

temperature , String holiday) throws IOException {

 String fileName = "userInput.csv";

 FileWriter fw = new FileWriter(fileName);

 String data_row = "";

 fw.write("DAY,SEASON,HOLIDAY");

 data_row = "\n";

 data_row += day;

 data_row += ",\"" + season + "\"";

 //data_row += ",\"" + temperature + "\"";

 data_row += ",\"" + holiday + "\"";

 fw.write(data_row);

 fw.close();

 }

}

APPENDIX A. Java Source Code 91

A.7 userInput.csv

DAY,SEASON,HOLIDAY

2,"1","1"

A.8 data.csv

9,0,

501.46,501.46,

480.66,480.66,

501.03,501.03,

481.08,481.08,

503.06,503.06,

479.05,479.05,

502.36,502.36,

479.75,479.75,

501.96,501.96,

480.16,480.16,

503.05,503.05,

479.06,479.06,

501.31,501.31,

480.8,480.8,

501.36,501.36,

699.63,699.63,

676.6,676.6,

698.54,698.54,

677.68,677.68,

700.64,700.64,

675.58,675.58,

697.41,697.41,

678.82,678.82,

695.85,695.85,

680.37,680.37,

695.78,695.78,

680.44,680.44,

697.76,697.76,

678.47,678.47,

699.11,699.11,

699.68,699.68,

678.03,678.03,

702.29,702.29,

675.42,675.42,

697.71,697.71,

….

Declaration

I, Farid Naimi, declare within the meaning of section

25(4) of the Examination and Study Regulations of the

International Degree Course Information Engineering

that: this Master report has been completed by myself

independently without outside help and only the

defined sources and study aids were used. Sections

that reflect the thoughts or works of others are made

known through the definition of sources.

Hamburg, 20th March 2008____________________

