

Aliaksei Khomchanka

Title of the Bachelor Thesis

Design and implementation of an electronic voting system for student elections

Keywords

Electronic voting, cloud technology, public cloud, Amazon Web Services

Abstract

As e-voting becomes more widespread in recent decades, there are multiple attempts to
implement e-voting in elections of various scales. One of such use cases is university
elections for student organizations. A good class of platforms for implementing such
voting systems is public clouds, such as Amazon Web Servers. This report shows the
motivation behind the implementation of such a system, its technical requirements and
methods of making such a system serverless.

Aliaksei Khomchanka

Thema der Bachelorarbeit

Design and implementation of an electronic voting system for student elections

Stichworte

Elektronische Abstimmung, Cloud-Technologie, öffentliche Cloud, Amazon Web
Services

Kurzzusammenfassung

Da E-Voting in den letzten Jahrzehnten immer weiter verbreitet ist, gibt es mehrere
Versuche, E-Voting bei Wahlen in verschiedenen Größenordnungen umzusetzen. Ein
solcher Anwendungsfall sind Hochschulwahlen für Studentenorganisationen. Eine gute
Plattform für die Implementierung solcher Abstimmungssysteme sind öffentliche Clouds
wie Amazon Web Server. Dieser Bericht zeigt die Motivation hinter der Implementierung
eines solchen Systems, seine technischen Anforderungen und Methoden, um ein
solches System serverlos zu machen.

1

Table of Contents

1. Introduction and motivation 5

2. Modern e-voting systems and possibilities 6

3. System requirements 8

3.1 A voting process 8

3.2 Requirements 9

4. Technology used 12

- 4.1 AWS Lambda 12

- 4.2 EC2 13

- 4.3 IAM 14

- 4.4 Amazon RDS 15

- 4.5 DynamoDB 16

- 4.6 SNS 16

- 4.7 SES 17

- 4.8 CloudWatch 18

- 4.9 CloudTrail 19

- 4.10 Amazon Managed Blockchain 20

- 4.11 API Gateway 20

5. System design 21

5.1 Code runners 21

5.2 Database storage 22

5.3 System isolation and breach detection considerations 23

5.3.1 Set CloudTrail to put logs into S3 buckets to trigger a Lambda
function

24

2

5.3.1 Using CloudWatch Alarms as triggers 24

5.3.1 The solution 24

6. Intended system structure 25

6.1 Services involved 25

6.2 Lambda function workflows 28

6.2.1 Voting Manager 28

6.2.2 Deadline Handler 37

6.2.3 Breach Handler 38

6.3 Interaction between Lambda and other AWS services 38

7. System setup and administrator actions 39

7.1 System components 39

7.2 Setup process 39

7.2.1 Setting up DynamoDB 39

7.2.2 Setting up an SNS topic 40

7.2.3 Setting up AWS Lambda functions 40

7.2.4 Setting up SES 42

7.2.5 Setting up API Gateway 43

7.2.6 Setting up a CloudWatch Event 43

7.2.7 Setting up CloudTrail 43

7.2.8 Setting up a trigger for BreachHandler 44

8. Voting lifecycle 45

8.1 Independent observers 45

8.2 Security of credentials 45

8.3 Observer registration 45

8.4 Database setup 45

8.5 Set the election deadline 46

3

8.6 Add candidates 46

8.7 Add voters 46

8.8 Lock the system 46

8.9 make sure no one else is logged into the Management Console 46

8.10 Start the voting process 46

8.11 Log out (or not) 46

9. Testing the system 47

9.1 Unit tests 47

9.2 Live testing 48

9.2.1 Prepare DynamoDB tables 48

9.2.2 Set the deadline 48

9.2.3 Add voters 49

9.2.4 Add candidates 50

9.2.5 locking and starting the system 51

9.2.6 Casting votes 52

9.2.7 Trying to add voters and candidates during the election 53

9.2.8 DeadlineHandler being triggered 53

9.2.9 Trying to log into a locked account (triggering BreachHandler) 54

10. Security analysis 55

11. Requirement analysis 57

12. Conclusions 60

12.1 Development results 60

12.2 Possible improvements 60

12.2.1 A default front-end application 60

12.2.2 A CloudFormation stack 60

References 61

4

1. Introduction and motivation

Voting has historically been the most convenient way to make a large-scale decision that could
take into account opinions and preferences of large groups of people. Voting can be applied in a
multitude of situations, from simple decision-making in a study group to electing government
officials. Despite advances in information technology in recent decades, voting worldwide, when
it comes to various types of elections, is still typically done in the same manner as before: via
voting booths. Such a method introduces lots of potential vulnerabilities due to the human
factor. Unauthorized votes may be added or legitimate votes may be removed by people on site
or people responsible for counting all the votes after the voting. The higher the scale of the
election - the higher the need for proper observability. While it is, to some extent, possible to
assign multiple independent observers to as many voting centers as possible (which is normally
done in presidential elections worldwide) so that they could make sure the data integrity is not
compromised, the amount of management and funding required grows together with the scale
of the voting process.

The motivation behind this thesis is to design a cloud-based voting platform which would allow
to significantly reduce the number of human actors (as in voting booth supervisors and
independent observers) involved in the process and as a result - the risk of voting fraud or
errors due to the human factor. Instead of having a system where observers need to constantly
monitor every step of the process for possible interventions, it is, perhaps, easier to provide an
online voting platform with an open design where the entire software environment can be
isolated (isolation itself can also be confirmed by observers) and not require further monitoring.
Modern cloud platforms provide all necessary tools to build such a system.

5

2. Modern e-voting systems and possibilities

As soon as Internet started getting more and more widespread, the matter of moving voting for
elections online started arising. Rapid development of cloud technologies only increased
interest to this matter. In recent decades, not only have such online voting platforms been
suggested, but were even implemented on several occasions for official government elections
on various scales, such as municipal elections in Estonia in 2005 (pioneers in state-wide 1 2

e-voting at the time) or city-wide elections in Geneva, Switzerland in 2004, performed for testing
e-voting mechanics on a smaller scale before integration country-wide (other cities followed 3

later).

Nowadays, such systems become more and more widespread, new technologies become
involved, such as cellphones that make the voting process even more convenient and
blockchains that aim to make the voting process more transparent and fraud-resistant.

Another interesting piece of technology that could prove useful for such systems is public
clouds, implemented by modern IT giants, such as:

- AWS by Amazon
- Azure by Microsoft
- Google Compute Cloud by Google
- IBM Cloud by IBM
- and a multitude of other offers from other companies

An important feature of such public cloud providers is that they allow users and companies to
delegate all the tedious infrastructure-related tasks (or at least most of them) to the provider and
concentrate on what they actually want to implement. A testament to that is the concept of
microservices that allows developers to implement cloud-based applications that don’t even
need explicit dedicated servers, while still providing all necessary functionality, flexibility and
security.

Usage of microservices and serverless concepts in may cases also allows for more simple and
easy-to-manage applications.

Considering usefulness and convenience of such systems, it seems to be a logical step to
investigate their possible use in the development of voting platforms for elections on different

1 E-Voting in Estonia 2005. The first practice of country-wide binding Internet voting in the world,
Madise, Martens, 2nd International Workshop, Bregenz, Austria, 2006
2 Security Analysis of the Estonian Internet Voting System, Springall, Finkenauer, Durumeric, Kitcat,
Hursti, MacAlpine, Halderman, University of Michigan, USA
3 Three Case Studies from Switzerland: E-Voting, Gerlach, Gasser, Berkman Center Research
Publication No. 2009-03.1

6

scales. Particularly, this thesis attempts to implement a platform for voting in elections for
various student organizations. This use case is chosen due to several reasons.

It is small-scale

Student elections are typically faculty or university-wide, giving us a reasonable amount of
voters to deal with. At the same time, all formal elements of an actual election are present, such
as a set of candidates, election programs, organized voting, the need for proper management of
personal data, ensuring confidentiality of votes and preventing vote fraud. Thus it is possible to
design all systems for real-life conditions and if they prove themselves usable and useful - one
can always scale up (which is also a convenient consequence of using public clouds and
microservices).

It is not as strict security-wise

While it is certainly necessary to maintain data security during student election, the price of a
mistake can be considered lower as the parties involved are far less influential than, for
example, at presidential elections. There is also the obvious question of delegating user data to
a public cloud provider for storage. Providers themselves claim that all data is stored in
encrypted state in remote heavily guarded locations (sometimes, according to Amazon, actual 4

underground bunkers) and no one can have unauthorized access to it, one can’t exactly check it
due to the exact fact of those locations being unavailable for public audit.

That being said, looking at the problem from a purely financial point of view, it can be assumed
that it would be disadvantageous for any public cloud provider to get involved with user data in
any unlawful way due to the amount of money at stake. They simply wouldn’t risk losing their
customer base (which they are already fighting for on a competitive market of public cloud
providers), especially to interfere in some unimportant student elections. Thus, one can assume
security of data as long as:

- It is contained within the public cloud provider datacenter
- Our access credentials are properly kept private

It is important to note that this project doesn’t concern itself with developing a front-end
application with a GUI for casting votes. The primary concern here is the backend, the actual
logic behind the voting process itself and ensuring data integrity.

4 https://aws.amazon.com/compliance/data-center/data-centers/

7

https://aws.amazon.com/compliance/data-center/data-centers/

3. System requirements

3.1 A voting process

A voting process, in general, would have the following actors on the technical side (meaning not
taking into account “social” elements like reporting on elections in media, election campaigns
etc.):

- Voters
- Candidates
- System administrators for the voting platform
- Independent observers

Voters have the intention of casting their vote for their intended candidate and are interested in
their vote not being altered. In certain cases, they may also be interested in abusing the system
in favor of certain candidates, therefore it is necessary to not only give them the required
functionality to cast a vote fairly, but also to prevent them from possible cheating.

Candidates are interested in having all votes intended for them to be, indeed, counted in their
favor. Some candidates may also be interested in cheating and exploiting the system to get
more votes than were actually intended for them, so precautions must be taken.

System administrators are tasked with maintaining the voting platform and ensuring that all its
elements are operational when needed. They are also tasked with ensuring that all internal logic
is set according to predefined rules of the fair voting process. Administrators, as other actors,
may also be interested in abusing the system and need to be held accountable for their actions.

Independent observers are interested in ensuring that all system components work as intended
and no fraud is taking place at any step of the process. Once again, seemingly “independent”
observers may be biased and potentially malicious, so there need to be countermeasures for
possible fraud attempts.

 As can be seen, the most challenging part is not ensuring that all “fair” actions can be
performed (that part is quite straightforward and easy to implement) but ensuring that potential
malicious actors have no power to perform unauthorized actions to alter voting results. Each
type of actor needs a set of countermeasures:

Voters

Ensuring that voters can only cast one vote for one candidate is ensured by the use of
single-use credentials for authenticating votes. Said credentials are generated automatically
inside the isolated system only once when the voter is registered in the database. To prevent
“fake” voters in the database, independent observers are involved.

8

Candidates

Candidates can’t directly influence the voting process, relying on accomplices among voters,
administrators and observers, so by taking care of these actor categories one would take care
of candidates as well.

Administrators

Administrators are by their nature the people with most power as they have all access to the
internal logic, databases and credentials. Taking that into account, all their actions must be
monitored by independent observers. When monitoring is not possible (such as during actual
voting to preserve confidentiality of voter-vote pairs), the entire system must be locked to
administrators as well. If administrators attempt to access system internals at unauthorized time
- observers must be automatically and immediately informed.

Observers

This is the “weakest link” in the entire system as here the human factor really comes into play.
However, resolving the potential issue with biased observers is more of a policy matter rather
than a technical one, so a general advice would be to have as many observers from as many
(preferably differently aligned) organizations to minimize possible bias.

3.2 Requirements

Intended system must have the following basic elements:

- An isolated remote environment for the infrastructure
- A control panel that can give us an overview of the entire infrastructure
- A way to interact with external users (for example, to cast votes via a web API)
- A way to securely lock the system from unauthorized access or inform us about it

All these elements in combination must be able to perform the following actions:

1. Add voters, candidates and other necessary data and offer long-term storage for it
2. Communicate with voters via emails and HTTPS requests
3. Allow users to remotely cast votes via HTTPS requests
4. Automatically count votes and compose an election summary
5. Be able to receive, register and count votes while being locked away from outside

access, meaning being reliable enough to operate without observation or maintenance
during the election itself

9

6. Track access to resources and be able to differentiate between its own legitimate usage
of said resources and unauthorized access from outside

These are the crucial elements that absolutely MUST be present. Some in-place improvements
for the sake of convenience would be good to have, but not crucial.

With that in mind, requirements can be stated as the following:

Requirement Functional of non-functional

A web API endpoint for receiving remote
commands

Functional

API commands for:
- Adding new voters/candidates
- Casting votes for candidates
- Fetching information about available

candidates
- Locking the system and starting voting

Functional

Autonomous internal program(s) for handling
incoming votes

Functional

Autonomous internal program(s) for handling
vote counting and informing voters about
results

Functional

Autonomous internal program(s) for handling
possible security breaches

Functional

Methods of authentication for incoming votes
and administrator commands

Functional

A database for storing voter data Functional

A database for storing candidate data Functional

A database for storing votes Functional

A database for storing internal system
parameters, such as:

- Lock state (locked/unlocked)
- Voting state (ongoing or not)
- Authentication credentials

Functional

All components are serverless Non-functional

A single control interface for the entire system Non-functional

10

Aside from functional requirements, two features would be very convenient. One of them is
making the whole system serverless, meaning that there is no need to manage internal routing
or firewalls. Aside from removing potential mismanagement (and as a result introducing
vulnerabilities into the system), it also allows for less components and as a result - easier
monitoring by independent observers.

A single control interface is also a useful feature when it comes to easier monitoring, ensuring
higher confidence in system’s integrity.

11

4. Technology used

The system is implemented using various services provided by AWS. AWS is a public cloud
platform provided by Amazon. It’s been chosen for this project due to it being the most
well-documented and generally more well-known to most developers (with AWS holding a much
larger share of the market compared to its direct competitors, Azure by microsoft and GCC by
Google), which would make post-deployment support and modification easier. Using AWS also
allows us to delegate various management responsibilities to Amazon’s backend (more on that
below). But most importantly, AWS allows us to use different technologies while managing all of
them from the same control panel and interact with them using the same API.

Out of various services provided by AWS, several are of particular interest for this project. The
detailed explanation of the reasoning behind choosing certain services over others is given in
Section 5.

4.1 AWS Lambda

Perhaps one of the most well-known and widely used AWS services, Lambda provides means 5

to run code in a serverless manner, meaning that you just need to upload your code, set various
parameters (maximum run time before forcibly terminating, allocated memory etc.), environment
variables, access control - and then trigger the resulting program on demand using one of the
long list of possible trigger types provided by AWS. There is no need to provision any servers or
take care of server replication and scaling, all this is done “behind the scenes” by AWS
backend. Lambda provides several managed runtimes for user code, such as:

- Node.js
- Python
- Ruby
- Java
- Go
- .NET

5 https://aws.amazon.com/lambda/

12

https://aws.amazon.com/lambda/

Each runtime category provides different possible versions (such as Python 2 and Python 3 and
their sub-version, for example). There is also a possibility to define own runtime to run functions
in any language of choice. For this particular project Python 3.6 was used as a runtime.

In the context of the intended system, Lambda can be used for handling all internal logic, such
as vote processing and counting or handling security breaches.

4.2 EC2

EC2 or Elastic Compute Cloud is a service that provides on-demand servers of various types. 6

Servers can be provisioned either manually via the AWS Management Console or
programmatically via AWS SDK. Possible instance types include:

- General Purpose
- Compute Optimized (used for media transcoding, machine learning inference etc.)
- Memory Optimized (for large in-memory data sets)
- Accelerated Computing (instances with several powerful GPUs)
- Storage Optimized (optimized for large amounts of I/O operations)

In addition to providing servers themselves, EC2 also offers tools for scaling, cross-region
replication and automatic management of server groups. After being configured, it can
automatically maintain the desired amount and type of servers and adjust it accordingly
depending on provided metrics, for example, launching more servers in an auto-scaling group
when existing servers are saturated with requests.

EC2 also provides various cost-optimization possibilities, such as reserved instances (for 1 to 3
years at a significant discount) or spot instances (instances bought in certain regions when the
demand for them in that region is low, resulting in discounts up to 90% of their original price).

6 https://aws.amazon.com/ec2/

13

https://aws.amazon.com/ec2/

In the context of the intended system, EC2 can be used, similarly to Lambda, for handling all
internal logic via processes running on provisioned servers.

4.3 IAM

This is, perhaps, the most fundamental service in AWS that manages all credentials . There are 7

two fundamental types of credentials in AWS:

- Management console login credentials
- API access keys

These two types cover different means of access to AWS resources. Ordinary login credentials
provide access to the AWS Management Console (the web GUI), but you can’t sign API
requests with those. API keys are the opposite, they are used to authenticate API requests, but
can’t be used to log into the Management Console.

Each set of credentials has its set of permissions that specify access to types of AWS resources
and are set to deny access to everything by default. You can specify access in detail, up to
allowing access to specified operations on some instances of a service and forbidding them (or
allowing different ones) on a different instance.

Credentials can be permanent or temporary. Regarding temporary credentials, the ones of
particular interest to us are so-called IAM Roles. IAM Roles are credential rules that are
assumed by services to perform some predefined actions. When you set up a service - you
assign a role that this service will have access to. A role has a permissions set like any normal
AWS credentials would. An example of using roles would be the following:

- An AWS Lambda function is invoked by an external API call.
- Lambda function assumes a role assigned to it.
- The role generates a pair of API keys for that particular run of that particular function so

that it can interact with other services via AWS SDK.

7 https://aws.amazon.com/iam/

14

https://aws.amazon.com/iam/

- Function finishes execution.
- Temporary credentials for that function are erased.

Thus, with roles, no unchecked credentials remain, improving security.

In the context of the intended system, IAM is used for storing credentials for administrator
access to the Management Console and providing credentials for all other AWS services. Using
it is not actually a choice but a necessity, as it is integrated with ALL services in AWS.

4.4 Amazon RDS

Amazon RDS provides means to quickly provision and manage relational database servers, 8

such as PostgreSQL, MySQL and others. Load balancing, data replication, updates, security
and other tedious tasks are managed by the AWS backend, leaving you free to divert your
attention to other important matters.

Database servers provided by this service are launched on EC2 instances and can be managed
as such.

In the context of the intended system, RDS can be used for storing voter data, candidate data,
vote records and global system parameters.

8 https://aws.amazon.com/rds/

15

https://aws.amazon.com/rds/

4.5 DynamoDB

DynamoDB is an AWS-specific non-SQL serverless database platform, allowing you to define 9

desired tables and interact with them via AWS SDK without worrying about managing actual
servers. As with other AWS services, load balancing, data replication and other such issues are
automatically managed by AWS backend. In many cases, using DynamoDB is easier than a
more classic RDS database server. Being a platform developed specifically for AWS as a
built-in service, it has more intuitive integration with AWS SDK compared to Amazon RDS,
which requires external SDKs to interact with specific types of database platforms.

In the context of the intended system, DynamoDB, like RDS, can be used for storing voter data,
candidate data, vote records and global system parameters.

4.6 SNS

Amazon Simple Notification Service (or SNS for short) is a service used to automatically send 10

notifications of various types to subscribers. You can define different topics and assign a list of
subscribers to each of them. After that, you trigger the topic via AWS SDK with a desired
payload, making it send your message to all recipients subscribed for the topic. Possible
notification methods include:

9 https://aws.amazon.com/dynamodb/
10 https://aws.amazon.com/sns/

16

https://aws.amazon.com/sns/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://aws.amazon.com/dynamodb/

- Email messages
- HTTP/HTTPS requests
- Amazon SQS messages
- AWS Lambda (this one can trigger Lambda functions with SNS messages)

SNS, in the context of the intended system, can be used to inform observers of security
breaches. This may also be done with EC2, but that requires additional setup, while SNS is
designed for this sole purpose.

4.7 SES

Amazon Simple Email Service allows you to send personalized emails to specified recipients. 11

This is useful when you can’t use SNS, for example, when you need to notify all users of your
system, but each of them must receive a different personal token or something of that nature.
A limitation of this service is that it is only available in some regions, so depending on your
primary region, an additional parameter in your API calls may be needed.

SES can be used for informing voters about election results. While this is also possible via email
servers provisioned with EC2, once again, similarly to SNS, SES is built for a specific purpose
and is easier to use in this context.

11 https://aws.amazon.com/ses/

17

https://aws.amazon.com/ses/

4.8 CloudWatch

CloudWatch is a set of tools for monitoring your AWS resources within your entire account. It 12

covers log streams for your services, various metrics (such as resource utilization for your
servers, usage of storage services etc.), scheduled events, metric alarms and offers many other
capabilities.

CloudWatch Logs.

CloudWatch Logs offer a structured storage for all AWS service logs. As an example, your AWS
Lambda functions will automatically post some of their execution logs to corresponding streams,
which will assist you in monitoring and troubleshooting. You can also define your own log
groups and streams manually or via the AWS SDK. it is also possible to post events from
external sources (as in outside your AWS account) to CloudWatch Log streams, provided that
proper API keys are present.

CloudWatch Metrics.

CloudWatch Metrics monitor various user-defined metrics within your AWS account, providing
means of visualizing them in the Management Console of exporting them via the SDK. These
metrics can also supply their data to CloudWatch Alarms.

CloudWatch Alarms.

CloudWatch Alarms allow you to define a set of rules that can trigger an internal alarm based on
the behavior of certain CloudWatch metrics. For example, you can set an alarm that will react to
the increased number of requests to a certain server and trigger a Lambda function when a
certain threshold is reached.

12 https://aws.amazon.com/cloudwatch/

18

https://aws.amazon.com/cloudwatch/

CloudWatch Events.
CloudWatch Events can trigger other AWS services on a user-defined schedule provided in
CRON format. A sample application of CloudWatch Events can be automated scheduled
maintenance of your infrastructure with Events launching some Lambda functions.

CloudWatch is, similarly to IAM, not exactly a choice but rather a necessity in this case as some
crucial other services, such as CloutTrail, route their logs through CloudWatch. Additionally,
CloudWatch events are the most reliable way to schedule events in AWS. EC2 servers may
crash and disrupt the timing, but CloudWatch Events are always available and consistent.

4.9 CloudTrail

CloudTrail is one of the internal monitoring tools that lets you see all account activities at a 13

glance. Every API request that happens within your AWS account is listed as an event in
CloudTrail, from logging in to editing resources to logging out. CloudTrail is on of the most
essential services for security audits and post-incident investigations.

CloudTrail is absolutely crucial for any AWS-based system that assumes any degree of security
as it is the service that monitors all internal activities and is the first to “know” about them.

13 https://aws.amazon.com/cloudtrail/

19

https://aws.amazon.com/cloudtrail/

4.10 Amazon Managed Blockchain

This service provides a managed platform for running distributed ledgers based on popular 14

blockchain runtimes such as Hyperledger Fabric and Ethereum. AWS backend takes care of
certificate storage, scaling the network and other tasks that in a classic setup would take a lot of
time to set up and would provide a lot of opportunities to mismanage some of its elements.

This service can be used to store all data related to voting (voters, candidates and vote records)
on a ledger, ensuring integrity, consistency and transparency to voters.

4.11 API Gateway

API Gateway is a service that allows users to define their own RESTful APIs with a detailed 15

resource and method tree-like structure, schema checks, custom endpoint names and pipelining
incoming requests to other AWS services, such as, for example, AWS Lambda.

In the context of the intended system, API Gateway allows to set up an easily managed API
endpoint with all necessary tools for integration with other services. Setting up a similar data
pipeline with other services (such as, for example, receiving API commands with EC2 servers
and launching Lambda functions) would take much more work and provide opportunities to
introduce vulnerabilities.

14 https://aws.amazon.com/managed-blockchain/
15 https://aws.amazon.com/api-gateway/

20

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/managed-blockchain/

5. System design

This section explains the general design decisions, particularly the choice of AWS services, as
for the purpose of this system some may provide more advantages than others.

In the course of designing the system, one fundamental design principle has been used to make
sure the system is optimized as much as possible:

Automate as much as possible, delegate backend management to the cloud provider
wherever possible.

One convenient way to ease end user’s responsibilities in managing the system is making as
many components as possible serverless to remove the need to manage (and possibly
MISmanage) components such as routing tables, internet gateways, firewalls, VPNs etc., all of
which one would need to set up when using servers. Another detail is taking advantage of
existing management tools inside AWS as much as possible, such as the AWS Management
Console. Implementing an inferior (and less polished) management interface wouldn’t be
rational when there is a superior solution already available.

Elements of the end system can be put into four categories:

- Code runners that govern the actual logic of the voting process and interact with other
resources

- Database storage for all voting-related data
- Triggers to launch code runners
- Notification services that send emails to voters with generated tokens, voting results,

registration confirmation etc.

5.1 Code runners

For code runners two most obvious choices would be either dedicated servers continuously
running applications that control the voting process (implemented using the EC2 service) or
Lambda functions that are completely serverless and are only running actual code when started
by some external triggers. After evaluation, considering functional requirements of the intended
system, it’s been concluded that there is no functionality offered by EC2 that couldn’t be
implemented using Lambda functions. Lambda functions also remove the need to set up
networking and can be managed from the default AWS graphic interface, so it adheres to our
design approach perfectly. It also allows to integrate other AWS services as triggers for
functions, again, via the standard GUI.

21

5.2 Database storage

At first, the possibility of using blockchains for this system has been considered. Ideas of
implementing blockchain-based voting applications are becoming more popular with each
passing year , so their usefulness for this project has been investigated. The purpose of using 16

blockchains in voting applications is to ensure that data about voting process, stored in the
distributed ledger, is consistent across all voters, meaning that no unauthorized changes are
possible. However, that would mean that one would need to run a node for each voter.
Considering that, there were two possibilities:

1. Make voters run nodes on their computers/phones

This idea doesn’t seem realistic, considering that most people either wouldn’t be keeping
their computers on all the time or wouldn’t be willing to waste their phones’ battery
charge on computations used in consensus algorithms to add new votes to the ledger.
With that in mind, a distributed ledger with a consensus algorithm wouldn’t really make
much sense in a network where an absolute majority of nodes is offline.

2. Run nodes in Amazon Managed Blockchain service

AWS provides a service for running blockchain networks based on popular platforms
such as Hyperledger Fabric or Ethereum. This, however, raises the question: if users
can’t access nodes inside the AWS account (and providing them such access would
compromise the entire security of the system) - how would they confirm that the entire
process is, indeed, consistent? In the end, to an outside observer, it makes no difference
to use a blockchain or not if everything is contained within a closed AWS infrastructure.

Taking all this into account, as well as the relatively low scale and importance of the intended
voting process (compared to elections of government officials, for which blockahais are often
suggested) - it is, perhaps, a wiser decision to concentrate more on making our AWS
infrastructure more secure to breaches.

Thus, the Amazon Managed Blockchain service was ultimately not used.

The second matter regarding database storage was whether to use the Amazon RDS service
which would allow me to use familiar relational SQL-compatible databases or use an
AWS-managed solution, such as DynamoDB. While the general design principle is to make as
much of the system serverless as possible, it still needs to be usable by an average person who
may not be familiar with AWS-specific database types (and DynamoDB is AWS-specific with a

16 A Conceptual Secure Blockchain-based Electronic Voting System, Ahmed Ben Ayed, International
Journal of Network Security & Its Applications, May 2017

22

proprietary API), so there may have been a need for a trade-off between managing the
infrastructure and using a familiar/unfamiliar API.

Initially, the idea was to use Amazon RDS to provide a PostgreSQL server to store data for
voters, candidates, votes and system parameters (some of the remaining code is available in
the VoteManager function code for comparison). While the database server was working
normally and it was absolutely possible to use it, the amount of work to set it up and the need to
use third-party libraries to connect to the database from Lambda functions (such as psycopg2
library for Python) meant that there were lots of opportunities to mismanage something in way
that would introduce vulnerabilities to my server, as there was a need to set all routing, firewalls
etc. manually. Another matter is making it easier to manage for the end user. Taking that into
consideration, it’s been decided to scrap everything there was at the time (which was most of
the code) and redesign it for use with DynamoDB instead. DynamoDB not only provided a
serverless platform for the database, but also allowed to interact with stored data using default
AWS SDK libraries. While DynamoDB required some additional study (considering no prior
experience with it) - it ultimately proved itself to be much easier to use when developing and
managing system components. Regarding the initial concern of making users work with an
unfamiliar AWS-specific API, the solution to that was just making a separate library in Lambda
functions that provided simple wrapper methods for all the API calls. Thus, in 99% of cases, the
end user would not ever need to interact with the API at all, except for cases when someone
wants to modify the system, but that assumes some level of knowledge of the API to begin with,
so that isn’t really a problem as well.

5.3 System isolation and breach detection considerations

A strong way to lock our AWS infrastructure to outside access during the election process would
be to temporarily delete login credentials and automatically re-create them at the election
deadline. However, that has not been actually attempted (and not event confirmed whether that
was technically possible) as the risk of mismanaging something and getting locked out of the
account permanently is not desirable (especially considering that some paid services may still
be running and wasting money).

In this case, one always has a set of admin credentials that can potentially be leaked (at the
very least due to the human factor), so it’s not possible to lock the account with a 100%
reliability. However, while one can’t lock the account, one can detect unauthorized login
attempts and inform administrators and observers about them. Thus some solutions were
considered.

The trickiest part was implementing a way to trigger the BreachHandler function quickly enough
to make it impossible to turn it off before it sends the notification. It’s been decided decided to
try online search first to see how others have solved similar problems before. Surprisingly, there
were no instances of implementing quick notifications for logging into the Management

23

Console. Online search, however, revealed two relatively similar problems dealing with login
events in general. They provided two approaches to the problem at hand.

5.3.1 Set CloudTrail to put logs into S3 buckets to trigger a Lambda function

S3, or Simple Storage Service is the most used AWS service for file storage. CloudTrail,
which tracks all login events, can be configured to put its logs to so-called “buckets” in S3.
When a new item is added to a bucket - it can trigger a Lambda function. Therefore, a design
have been implemented in which CloudTrail was tracking all account events and putting them
to S3, S3 was triggering the BreachHandler, which was filtering events to search for the ones
with the “ConsoleLogin” tag and acted accordingly when such an event was found.
While such a design was ultimately sending the alert notification, it could easily take up to a
minute or two to do so due to the large amount of log files being processed by S3 and Lambda.
Clearly, such a design was not acceptable as long waiting times completely defeated the
purpose.

5.3.2 Using CloudWatch Alarms as triggers

Another suggested idea was to use CloudTrail to, once again, put logs to CloudWatch, then
filter them and send them to CloudWatch Metrics, which would track the count of login event
records repeatedly and trigger the BreachHandler if the metric went above 0.
This design worked at first glance, however, further testing revealed that the waiting time was
very inconsistent, from near instantaneous to several minutes. Further investigation revealed
that metrics that were triggering the alarm were not exactly updating in real time. While
CloudTrail was immediately putting records for log events into CloudWatch Logs, metrics were
not immediately seeing them. Their behavior was nor based on interrupts, but on polling
instead. Thus, it was completely up to luck whether the alert notification would get sent
immediately or after a minute or two. Obviously, that was also not acceptable.

5.3.3 The solution

The problem was solved in a rather simple way by routing CloudWatch Logs directly to
Lambda with the filter for login events applied. Since CloudTrail puts login events into logs
immediately, they can also immediately trigger the Lambda function. Testing proved this
method to be consistent in terms of waiting time.

24

6. Intended system structure

6.1 Services involved

After careful consideration, a set of AWS services has been chosen. Said services and their
relationship is depicted in the following diagram:

Fig. 6.1 Used services and their relationship

The first service to deal with is API Gateway. When HTTPS requests reach the specified API
endpoint (which developers define themselves) - the API Gateway forwards the corresponding
JSON payload and triggers a Lambda function with the payload as an input parameter.
Lambda service contains all the functions that are needed, such as :

1. Voting Manager - the function that contains the logic for the voting process itself,
receives commands, checks all necessary credentials, voting eligibility and interacts with
the database, creating new vote records.

2. Deadline Handler - the function that is triggered at the specified time and finishes the
election process, also calculating results and distributing them among voters.

25

3. Breach Handler - the function that reacts to Management Console login attempts and if
someone tries to log in while the election is in progress - informs independent observers
that someone breached the account and voting results may be compromised.

Each Lambda function has its own assigned IAM Role that gives it permissions to certain AWS
services.

1. Voting Manager has access to:
- DynamoDB to work with database entries for voter and candidate data, vote

records and general system parameters
- SES, to distribute automatically generated voter tokens

2. Deadline Handler has access to:
- DynamoDB to get access to system parameters table and voting results
- SES to distribute voting results

3. Breach Handler has access to:
- DynamoDB to get access to system parameters table
- SNS to inform all observers about the breach

The only permanent set of credentials in the AWS account is the single login/password pair for
Management Console admin access. There are no permanent API key pairs so no one can
access AWS resources from outside the AWS environment itself. And if the admin
login/password pair is somehow leaked - the login attempt will be intercepted by the Breach
Handler and all observers will be alerted.

All Lambda functions interact with DynamoDB, which has four dedicated tables:

1. Voter Data - records for each voter, with the following fields:
- Student ID (supplied from the outside)
- E-Mail address (supplied from the outside)
- Personal token (generated automatically on registration)
- “Voted” flag (set to false automatically on registration)

2. Candidate Data - records for each candidate with the following fields:

- Candidate full name
- Candidate EMail address
- A link to Candidate’s web page with election program

3. Vote Records - records for each vote, with the following fields:

- Event ID (generated by AWS automatically)
- Candidate, for which the vote is cast

26

4. System Parameters - various internal parameters, such as:
- Admin token, needed for authentication of all setup commands passing through

API Gateway
- E-Mail address from which voting results will be distributed after the deadline
- Locked flag, turning on the Breach Handler
- Started flag, indicating that the voting process is in progress

When the Breach Handler function is triggered - it interacts with the System Parameters table
in DynamoDB to see whether the system is supposed to be locked and the Observer Topic in
SNS to send actual emails with a breach warning to observers.

When the Deadline handler is triggered - it interacts with the Candidate Data table in
DynamoDB to get the list of all candidate names and with the Vote Records table to get
records and count actual votes. It then uses SES to send the summary to all voters, whose
EMail addresses it retrieves from the Voter Data table.

CloudWatch Events have a single rule that is set to trigger Deadline Handler at a time
specified in the rule in CRON format.

CloudTrail keeps track of all API requests within the AWS account and writes their info to
CloudWatch Logs. Then, those log entries are filtered with a user-defined filter for
“ConsoleLogin” events. When such an event appears - it triggers the Breach Handler function
in Lambda.

27

6.2 Lambda function workflows

This section explains the internal logic of three Lambda functions that oversee the election
process.

6.2.1 Voting Manager

This function processes incoming API commands and launches a corresponding handler for that
particular command.

Fig. 6.2 HTTPS request processing in Voting Manager

This Lambda function is triggered by the API Gateway when it receives a request, forwarding
the JSON file as an input. The Voting Manager creates an Event Processor object and makes it
validate the JSON schema of the incoming payload to make sure it fits any of the defined
commands. This is a strict requirement, no other fields and/or data types aside from the ones
defined in the schema are accepted. If the payload is invalid, a 403 code is returned and the

28

command is rejected. If the payload is valid - it is forwarded to the handler method for that
command.

There are six possible commands in total:

Command Action Required
token

Requirements

add_voters Adds voters from the provided
list to the database Admin STARTED flag FALSE

add_candidates Adds candidates from the
provided list to the database Admin STARTED flag FALSE

cast_vote Adds the record for a vote to
the table Voter STARTED flag TRUE

get_candidates Gets a list of data for all
candidates None STARTED flag TRUE

lock Sets the LOCK flag to true Admin LOCKED flag FALSE

start Sets the STARTED flag to true Admin LOCK flag TRUE
START flag FALSE

Note that each command can be only used at certain system states. For example, you won’t be
able to add more voters or candidates if voting is already started.

JSON payload examples for commands:

(all numbers such as voter/administrator tokens shown are examples)

add_voters:

“command” : “add_voters”,
“administrator_token” : “123456”,
“voters_to_add”: [
 {“student_id”: “256”,
 “Student_email”: “email@address.com”},
 {“student_id”: “300”,
 “Student_email”: “another_email@address.com”}
]

29

add_candidates:

“command” : “add_candidates”,
“administrator_token” : “123456”,
“candidates_to_add”: [
 {“candidate_full_name”: “First Candidate”,
 “candidate_email”: “first@address.com”,
 “candidate_page_link”: “https://first.com”},
 {“candidate_full_name”: “Second Candidate”,
 “candidate_email”: “second@address.com”,
 “candidate_page_link”: “https://second.com”},
]

cast_vote:

“command” : “cast_vote”,
“voter_token” : “2346957614395861957645”,
“voter_id” : “256”,
“candidate_full_name”: “First Candidate”

get_candidates:

command” : “get_candidates”

lock:

“command” : “lock”,
“administrator_token” : “123456”

start:

“command” : “start”,
“administrator_token” : “123456”

30

Command handler workflows:

add_voters:

This is the handler for the command that attempts to add new voters to the database.

Fig. 6.3 Function flow

First, the system checks whether the voting is already going on. If yes, then one can’t allow to
add new candidates, so the function returns a 403 response. If voting hasn’t started yet, then it
is acceptable to add new voters at this stage. That being said, the system can only accept the
command payload from a valid admin token holder, so the function checks for that. If the token
is invalid - return a 403 response. If valid - proceed to add each voter from the list into the
database. The system also automatically generates a token for each voter and emails it to them.
When finished, return a 200 response.

31

Note that it is also possible to populate the voters table directly via the Management Console,
but as the number of voters is reasonably high, it is easier to add them in batches via the API
endpoint.

add_candidates:

This is the handler for the command that attempts to add new candidates to the database.

Fig. 6.4 Function flow

First, the system checks whether the voting is already going on. If yes, then it’s not acceptable
to allow to add new candidates, so the function returns a 403 response. If voting hasn’t started
yet, then it is acceptable to add new candidates at this stage. That being said, the system can
only accept the command payload from a valid admin token holder, so the function check for

32

that. If the token is invalid - return a 403 response. If valid - proceed to add each candidate from
the list into the database. When finished, return a 200 response.

Note that it is also possible to populate the candidates table directly via the Management
Console, the API command is there for consistency with adding voters, it is not necessary to
use it.

cast_vote:

This is the handler for the command that attempts to cast a vote for a candidate.

Fig. 6.5 Function flow

This command has the most checks of all. First, the function checks whether the voting process
has started. If not - reject the command and return a 403. Then it checks the voter token and
only proceed if it’s valid. After that, check whether this voter has already voted and if yes - do
not allow a second vote, returning a 403. Then, obviously, it is necessary to check whether they
are voting for an actual existing candidate and proceed if the candidate is valid.

33

Before adding a vote entry, the function sets the “voted” flag for this particular voter to “pending”
so that a possible parallel execution of Voting Manager with the same API payload couldn’t cast
several votes at the same time. This way, parallel calls will get rejected at one of the previous
checks.

Then, switch the “voted” flag to true, try to add a vote entry to the database and check whether it
actually succeeded, returning a 500 and reverting the “voted” flag back to false if not. This is an
important step as otherwise one could mark the voter as voted but not actually count their vote.
If succeeded - return a 200.

get_candidates:

This is the handler for the command that attempts to fetch all candidate data from the database.

Fig. 6.6 Function flow

First of all, check whether the voting process has already started. If not - don’t allow to fetch
candidates’ list, as it may not be final. If yes - fetch the list and return it with the 200 code.

34

lock:

This is the handler for the command that attempts to lock the system from further login attempts.

Fig. 6.7 Function flow

If the system is already locked - reject the command. Same if the admin token is invalid.
Otherwise set the lock flag to true.

Note that it can also be done directly via the Management Console.

35

start:

This is the handler for the command that attempts to start the voting process (enabling
voting-related commands).

Fig. 6.8 Function flow

If the system is not locked or already started - reject the command. Same if the admin token is
invalid. Otherwise set the start flag to true.

Note that it can also be done directly via the Management Console.

36

6.2.2 Deadline Handler

This function is responsible for all actions that need to be performed after the voting deadline,
such as vote counting and sending results to voters.

Fig. 6.9 Deadline Handler workflow

Deadline Handler is very straightforward. It fetches the candidate list, the vote list and the voter
list, then counts votes for each candidate and emails the summary to each voter via SES.

37

6.2.3 Breach Handler

This function is triggered on login attempts into the locked system. It is responsible for informing
observers about a security breach.

Fig. 6.10 Breach Handler workflow

Breach handler checks the LOCKED flag and if it is set to false - then it’s just a normal login,
which can be ignored as the system is still being set up. If the system is supposed to be locked -
the login is unauthorized and a breach is taking place, so the function informs all observers via
the corresponding SNS topic and unlock the system for further investigation.

6.3 Interaction between Lambda and other AWS services

All interaction with AWS services outside of the Management Console is done via AWS SDK. In
this particular case, the official boto3 library for Python is used that provides all AWS API
methods. By importing this library in our Lambda function code, it is now possible to interact with
any other service. All necessary credentials are automatically retrieved from environment
variables (which will be set by AWS when the lambda function assumes an IAM role).

38

7. System setup and administrator actions

This section describes how to set the entire system up and run an entire election lifecycle on it.

7.1 System components

To get a working system, the following is needed:

1. Four DynamoDB tables, for corresponding data:
- Voters’ data
- Candidates’ data
- Vote records
- System parameters

2. An SNS topic to inform observers about breaches
3. Three Lambda functions (code for which is provided with this paper):

- Voting Manager
- Deadline Handler
- Breach Handler

4. Three IAM roles for three Lambda functions with different access permissions:
- Voting Manager: access to DynamoDB and SES
- Deadline Handler: access to DynamoDB and SES
- Breach Handler: access to DynamoDB and SNS

5. An SES service to send information to voters
6. An API gateway and an API set as a trigger for the Voting Manager function
7. A CloudWatch Event rule that will trigger Deadline Handler at the specified time
8. A CloudTrail trail that will automatically send account events to CloudWatch Logs
9. A CloudWatch Logs subscription that will trigger the Breach Handler.

7.2 Setup process

7.2.1 Setting up DynamoDB

This part is straightforward as it is an AWS-managed service so it is much easier to set up than,
for example, Amazon RDS, which, while partially managed by AWS, still deals with third-party
software.

First, go to DynamoDB service, then to the “Tables” tab and press the “Create table” button.
There, it is necessary to set up the primary partition key for each table. In this particular setup,
tables and their keys are the following (case-sensitive):

39

Table Primary partition key

VotersTable student_id (string)

Candidates full_name (string)

Votes event_id (string)

VoteManagerParameters parameter (string)

Then, navigate to the VoteManagerParameters table and add the following items:

parameter value (data type)

admin_token %WHATEVER VALUE YOU USE% (string)

sender_email %WHATEVER EMAIL YOU WILL USE% (string)

locked false (string)

started false (string)

Here sender_email is the email address that will be used to send information to voters.
That is it for the DynamoDB setup.

7.2.2 Setting up an SNS topic

It is necessary to set up an SNS topic that will be used to inform observers about security
breaches. First, navigate to the SNS service page, then to the topics page. Create a topic, give
it the desired name and leave everything else at default values. After creating the topic, go into
its settings and take note of its ARN (Amazon Resource Number), it will be needed later.

This it it for SNS setup.

7.2.3 Setting up AWS Lambda functions

Most of the infrastructure work is setting up Lambda functions.
Firstly, navigate to AWS Lambda page and create three functions:

- VoteManager
- DeadlineHandler
- BreachHandler

40

The following must be repeated for each function:
In the parameters, it is necessary to set the runtime to Python 3.6. In the Permissions section,
check the “Create a new role with basic Lambda permissions” mark to automatically get an
individual IAM Role assigned to each function on creation.

Wait until functions are created, then navigate to each of them and set them up.

The following must be repeated for each function:
Find the Function code window, then the “Code entry type” menu, in which one must choose the
option to upload the .zip archive with the function code (archives for all functions are provided
with this paper).
Make sure that the “Runtime” field in the “Function code” window is set to Python 3.6 and the
“Handler” field is set to the “lambda_function.lambda_handler” value, this one defines the entry
point for the function.
Then, navigate to the “Environment variables” section and add necessary parameters. Those
are, for each function:

VoteManager

CANDIDATES_TABLE Name of the candidates table

PARAMETER_TABLE Name of the parameters table

VOTERS_TABLE Name of the voters table

VOTES_TABLE Name of the vote records table

DeadlineHandler

CANDIDATES_TABLE Name of the candidates table

PARAMETER_TABLE Name of the parameters table

VOTERS_TABLE Name of the voters table

VOTES_TABLE Name of the vote records table

BreachHandler

OBSERVER_ALERT_TOPIC ARN of the SNS topic for breach alerts

PARAMETER_TABLE_NAME Name of the parameters table

Now it is necessary to set resource permissions for each function. For that, one needs to edit
each function’s IAM Role.

41

In the “Execution role” window, find the link to the role for a given function. By clicking it, one is
transported to the page where the list of attached policies is displayed.

Now it’s necessary to attach additional policies to each of our functions’ roles:

VoteManager

- AmazonDynamoDBFullAccess
- AmazonSESFullAccess

DeadlineHandler

- AmazonDynamoDBFullAccess
- AmazonSESFullAccess

BreachHandler

- AmazonDynamoDBFullAccess
- AmazonSNSFullAccess

Side note: normally, according to the AWS Well-Architected Framework, one would give minimal
possible permissions to roles. However, considering that there is still room for improvement, it’s
easier for a developer to have full permissions to a resource.

Finally, navigate to the “Basic settings” back on the Lambda function’s page. There, set the
timeout to a higher value than the default one as testing showed that the default value is
sometimes too low. To be on the safer side set it to a minute or two.

This is it for AWS Lambda setup.

7.2.4 Setting up SES

SES is a little bit different from other services used in that it is only available in certain regions.
In this particular case, the EU (Ireland) region is used to set up our SES config.
On the SES page, find the “Email Addresses” tab and verify the email address from which the
system is going to send mails to voters.

Important note:
By default, AWS can only send emails from and to emails that were verified in SES. There are
two ways around this issue:

- One can implement a verification request via an API call from one of our Lambda
functions

- One can request a free-of-charge extension of SES functionality from Amazon by
sending them an email explaining why it is needed

This is it for SES setup.

42

7.2.5 Setting up API Gateway

API Gateway is the service that will actually receive our external HTTPS requests and forward
them to the VoteManager function.
First, go to the API Gateway page. There, create a new API via the corresponding button. Leave
all check marks at their default values (giving us a new REST API), only setting the name.

After our API is created, open its settings. There, via the “Actions” menu, click the “Create
method” button and add a POST method. In the settings of the newly created method choose
the Lambda integration, check the “Use Lambda Proxy Integration” mark and type the name of
our VoteManager function in the corresponding field. AWS will ask for a confirmation and upon
our agreement will automatically create a trigger linked from our newly created API to the
VoteManager function.

This is it for API Gateway setup.

7.2.6 Setting up a CloudWatch Event

CloudWatch Events will allow us to trigger DeadlineHandler function at a specified time.
First, navigate to the CloudWatch, then to the “Rules” tab. There, create a new rule, check the
“Schedule” mark and provide a CRON expression for when to trigger the DeadlineHandler
function. It is also necessary to add the DeadlineHandler to the trigger targets in the Targets
section. When confirming, do not enable this rule by default so that it doesn’t accidentally misfire
if something is mismanaged before the start of the voting process.

This is it for CloudWatch Events setup.

7.2.7 Setting up CloudTrail

CloudTrail is the most crucial element of security in this system. It allows us to track login
events and send them further for analysis and alerts.

First of all, go to the CloudTrail page and “Trails” tab. There, create a new trail (if there are
none so far). Leave all parameters except the trail name as is, they concern integration with the
S3 service, which is not used in this implementation. After the trail is created, a corresponding
log group will automatically be available in CloudWatch Logs.

This is it for CloudTrail setup.

43

7.2.8 Setting up a trigger for BreachHandler

First, navigate to the CloudWatch Logs page, find the log group that was created by
CloudTrail, select it and via the “Actions” menu add a metric filter to it. In the filter config, set
the following filter pattern:

{($.eventName = ConsoleLogin)}

Then, navigate to the BreachHandler Lambda function page and add a trigger to it, choosing
CloudWatch Logs from the list. There, choose the desired log group and the log filter (which
has been set up just now).

Now the BreachHandler function will be automatically triggered on new ConsoleLogin events.

This is it for the trigger setup.

At this point everything is ready for running an entire voting lifecycle.

44

8. Voting lifecycle

This section describes actions that need to be taken by administrators during the voting process
to run the process. The user guide assumes that users read through the setup page and can
navigate through the pages of different AWS services.

8.1 Independent observers

It is preferred that independent observers are present in person during the initial setup to
confirm every action taken by administrators (except for the setup of parameters table as that
will expose the administrator token, so you can set that table up in advance).

8.2 Security of credentials

Needless to say, it is crucially important to take care of Management Console login/password
pair to avoid a credentials leak. As this is not a technical matter but rather a matter of policy,
decision on exact methods of achieving security here is left to users. On the technical side, no
other permanent credentials exist, so as long as Management Console login/password pair is
confidential - there is no way to access resources in the AWS account, as there are no API keys
for that. All API keys are created inside of AWS itself and exposed only to AWS services. Thus,
there are only two ways to interact with the vote database during the election:

- Logging into the Management Console (which will fire an alert if the system is locked)
- Using API commands (which require proper admin/voter tokens)

8.3 Observer registration

First of all, admins need to register all independent observers so that they could receive
notification in case of a system breach. This is done via navigating to SNS page and adding
observer email addresses to the list of subscribers.

8.4 Database setup

Before the election process starts, the database needs to be set up properly.
Make sure that tables for voter data, candidate data and vote records are all empty or clear
them if they are not. As for the parameters table, parameters need to be set as following:

- admin_token must be set to the desired value. It is not generated automatically,
you need to come up with the value yourself.

- sender_email must be set to the email address from which the system will be
sending information to voters

- locked and started flags must be set to “false”

45

8.5 Set the election deadline

Admins need to navigate to the CloudWatch Event set up earlier for triggering the
DeadlineHandler function. There, set the execution timestamp in CRON format if it is not set
yet and mark the rule as active.

8.6 Add candidates

Admins must add candidate data to the corresponding table either manually or via the API
command, whichever preferred.

8.7 Add voters

At this stage, voters are added to the corresponding table. While it is possible to do that
manually, using the corresponding API command of the VoteManager function would be more
convenient due to a large number of voters.

8.8 Lock the system

At this stage, it is necessary to set the lock parameter to true to prevent further login attempts to
the Management Console. This parameter may be set either manually, or via the API command
through the VoteManager function.

8.9 Make sure no one else is logged into the Management Console

Admins need to navigate to CloudWatch Metrics and check the login statistics to see if there
are more than one active connection at the present time. If there are two or more connections -
credentials may be leaked (or admins are logged in on several machines) and the matter needs
to be investigated.

8.10 Start the voting process

Finally, admins need to set the started parameter to true and announce that the voting process
is now in progress. As with the lock parameter, it is possible both to set it manually and via the
API command.

8.11 Log out (or not)

At this stage, admins either log out if they’re running an actual election or stay logged in if they
are live-testing the system and want to monitor its resources and behavior. After the
DeadlineHandler or BreachHandler is triggered - the system unlocks automatically.

46

9. Testing the system

As any program, this system needs to be tested before being put into production. In this project,
individual components of the system are tested (unit tests) and live-tests are performed in an
actual cloud environment.

9.1 Unit tests

VoteManager function in AWS Lambda has two test suites - one for testing API request
validation, delegation to appropriate handlers and internal handler logic and the second one for
interacting with the DynamoDB service. Both test suites are implemented with the unittest
library included by default with all Python distributions. All tests contain in-code documentation
and are generally designed to be as clear as possible.

Fig. 9.1 Unit test example for event handler logic

DeadlineHandler and BreachHandler unit tests are deemed unnecessary due to the simplicity of
these single-module functions.

47

9.2 Live testing

To make sure the system works correctly, an election lifecycle has been run with prepared data
to see whether the system behaved as expected. In the course of testing, the following
operations have been performed:

9.2.1 Prepare DynamoDB tables

Manually reset all DynamoDB tables and set the following parameters:

- admin_token: “123456”
- sender_email: “khomchankaa@gmail.com”
- locked: “false”
- started: “false”

Result:

9.2.2 Set the deadline

Set the CloudWatch Event for DeadlineHandler to active state and set a deadline in CRON
format.

After the intended date and time is reached - it should run the DeadlineHandler.

48

9.2.3 Add voters

Next, a test payload for adding voters via the API command has been prepared:

{ "command": "add_voters",
 "administrator_token": "123456",
 "voters_to_add": [

 {"student_id": "1",
 "student_email": "kogotinazval@mail.ru"},
 {"student_id": "2",
 "student_email": "kogotinazval@mail.ru"},
 {"student_id": "3",
 "student_email": "kogotinazval@mail.ru"}
]

}

After feeding it into my API Gateway, obtain the result:

Voters were added successfully. Trying to add voters via a similar payload, but with a wrong
admin token returned a 403 FORBIDDEN response, as intended:

All “voters” also got an email with the personal token:

49

9.2.4 Add candidates

Payload:

add_candidates = { "command": "add_candidates",
 "administrator_token": "123456",
 "candidates_to_add":
 [
 {"candidate_full_name": "Marvelous Comrade",
 "candidate_email": "khomchankaa@gmail.com",
 "candidate_page_link": "www.somewhere.com"
 },
 {"candidate_full_name": "Also Marvelous Comrade",
 "candidate_email": "khomchankaa@gmail.com",
 "candidate_page_link": "www.somewhere.com"
 }
]
}

API call result:

Candidates added as intended.

Result from a similar payload, but with a wrong token:

50

9.2.5 Locking and starting the system

Payloads:

{ "command": "lock",
 "administrator_token": "123456"
}

{ "command": "start",
 "administrator_token": "123456"
}

Result for both:

Trying to run both commands again:

API returns a 403, as expected.

51

9.2.6 Casting votes

Three payloads for three voters (with added auto-generated tokens):

{ "command": "cast_vote",
 "voter_token": "3610726385366167149807783827069782360",
 "voter_id": "1",
 "candidate_full_name": "Marvelous Comrade"
}

{ "command": "cast_vote",
 "voter_token": "32857771287549537469826606913335736810",
 "voter_id": "2",
 "candidate_full_name": "Marvelous Comrade"
}

{ "command": "cast_vote",
 "voter_token": "302066180645471304022344990191567280979",
 "voter_id": "3",
 "candidate_full_name": "Also Marvelous Comrade"
}

Result:

Note that voters are now marked as voted.
Voters are also successfully informed about their vote going through:

52

Trying to vote again or vote before voting is started results in command rejection:

9.2.7 Trying to add voters and candidates during the election
Attempting to add new voters and candidates during the election results in a 403 FORBIDDEN,
as intended:

9.2.8 DeadlineHandler being triggered

After the DeadlineHandler is triggered, voters receive emails with voting results:

System is unlocked as well:

53

9.2.9 Trying to log into a locked account (triggering BreachHandler)

When the lock parameter is set to “true” - a login attempt results in the alert email:

This is intended behaviour and what is even more reassuring, this happens at a split second,
meaning there’s no way for someone to log in and “cut the line” before the message is sent.

54

10. Security analysis

Main points where security needs to be ensured, are:

- AWS credentials must only be available to administrators and have a single
login-password pair. No API access from outside AWS backend must be possible.

- Administrator tokens must be stored securely inside the AWS infrastructure and only be
available within said infrastructure.

- All voting-related actions must be properly authorized with corresponding access keys.
- All API commands (not AWS API, but voting platform API) must have a strictly defined

schema and be safe from code injections.
- The AWS account must be securely locked with an active alarm during the voting

process.

Credentials-wise, the only login-password pair explicitly present in IAM is administrator
credentials for the Management Console. This key pair can not be removed as there still needs
to be access to the account outside of the voting process timeline. This key pair can not be used
to authenticate API calls, so no one can alter system’s AWS resources in any way from outside
the infrastructure using this set of credentials. All services in the implemented platform use IAM
roles. As a result, no permanent API access key pairs exist, they are automatically created
inside AWS backend specifically for AWS services on-demand and are immediately deleted
after functions terminate. Thus, it can be concluded, that no external API access is possible
from outside the AWS infrastructure.

Administrator token is stored in a DynamoDB database, which, being a service inside the AWS
infrastructure, can only be accessed by other AWS resources via IAM roles and not outside
actors due to the aforementioned fact that no external API keys exist.

All voting API commands (aside from the get_candidates command, which can be allowed for
anyone) require authorization using either an administrator token (for adding voters/candidates
and locking/starting the system), or a voter token (for actual voting). If an incorrect token is used
- the command is immediately rejected before making any actual changes to AWS resources.

Each voting API command has a predefined JSON schema and is rejected if there are any
deviations from said schema. Code injections also are not possible due to the strict schema and
the way Python libraries processes data in JSON format. Since there are no attempts in the
code to directly execute some string variables as code (such as using eval() method) - there
exists no possibility to inject code via incoming JSON payloads. As there are no other incoming
messages aside from said payloads - no code injection is possible at all.

Using CloudTrail allows for immediate detection of login attempts in Management Console and
informing observers about security breaches. Live testing, described in Chapter 9.2.9, confirms

55

that the timing of the entire process is such that it would not be possible to log into the
Management Console and disable the BreachHandler function or the SES service before it
sends a notification to observers. By the time the Management Console even loads,
notifications would already be on their way. It would be possible to disable alarms from outside
using external API keys, but as mentioned before, none exist.

Other security measures, such as firewalls, which would normally be present in cloud-based
systems, don’t need to be taken care of in this case due to all utilized AWS components being
serverless. All network security-related work is done automatically by AWS backend.

56

11. Requirement analysis

This chapter describes requirement analysis of the implemented system and whether it adheres
by said requirements.

A web API endpoint for receiving remote commands

This requirement is fulfilled by the API gateway service, providing an endpoint for all commands.

Requirement fulfilled.

API commands for:

Adding new voters/candidates
Casting votes for candidates
Fetching information about available candidates
Locking the system and starting voting

Implemented commands:

- add_voters
- add_candidates
- get_candidates
- cast_vote
- lock
- start

provide all necessary functionality.

Requirement fulfilled.

Autonomous internal program(s) for handling incoming votes

Internal logic for incoming votes is handled by accepting API commands via the API Gateway,
then forwarding them to the VotingManager Lambda function, which, in turn, is integrated with
all necessary AWS services, such as DynamoDB, SNS and SES.

Requirement fulfilled.

57

Autonomous internal program(s) for handling vote counting and informing voters about
results

Internal logic for incoming votes is handled by accepting API commands via the API Gateway,
then forwarding them to the DeadlineHandler Lambda function, which, in turn, is integrated with
all necessary AWS services, such as DynamoDB and SES.

Requirement fulfilled.

Autonomous internal program(s) for handling possible security breaches

Security breaches are handled by CloudTrail that logs login attempts and invokes the
BreachHandler Lambda function that uses SNS to send actual notifications.

Requirement fulfilled.

Methods of authentication for incoming votes and administrator commands

Authentication of incoming votes and administrator command is done via administrator tokens
and auto-generated voter tokens, all of which are stored in DynamoDB tables. Authentication
logic itself is implemented in the VotingManager lambda function.

Requirement fulfilled.

A database for storing voter data
A database for storing candidate data
A database for storing votes
A database for storing internal system parameters

All data is stored in separate DynamoDB tables.

Requirement fulfilled.

All components are serverless

All components have indeed been made serverless by using specialized services like Lambda,
SNS, SES and others. Said services allow all necessary functionality without the need to
explicitly provision servers.

Requirement fulfilled.

58

A single control interface for the entire system

All system components can be managed via the default AWS Management Console, there is no
need to develop any additional tools as AWS already provides all instruments for editing and
monitoring resources.

Requirement fulfilled.

As can be seen, all requirements have been fulfilled, including non-functional, which, while not
extending functionality itself, allow for easier maintenance and monitoring of resources,
delegating some security responsibilities to the cloud provider and making the job of
independent observers during the voting process easier.

59

12. Conclusions

12.1 Development results

The result of the project is a functioning cloud-based voting platform capable of all necessary
actions that would be required of such a system. Setup instructions and operating notes have
also been written to explain the structure and help possible future users.

The implemented system is performing exactly as was intended by the initial functional
requirements and even simplifies various elements by using serverless approach and relying on
existing vendor-provided management tools for our cloud infrastructure. Several approaches
have been tried/considered and rejected with an explanation of why they may not be the best fit
for this system.

12.2 Possible improvements

While the system does perform all necessary basic functions of a voting platform, there are
several improvements that can be made in the future to make it more convenient and reliable:

12.2.1 A default front-end application

A simple application (perhaps even a mobile one) could be added to be able to demonstrate the
system to possible users in a more convenient manner.

12.2.2 A CloudFormation stack

The whole infrastructure can be packaged into a deployment package for AWS
CloudFormation. CloudFormation is a particularly useful service that allows to deploy entire
infrastructures with multiple microservices (including all credential relations) in very little time.
This was attempted with an automated CloudFormer tool provided by AWS, but there were
some difficulties with running it (possibly because of that tool still officially being in beta status).
Writing a CloudFormation stack, while producing an extremely useful end result, also requires a
more extensive study of CloudFormation and orchestration in AWS , which goes beyond the
scope of this thesis, although outside of it is definitely a wise idea to implement such a stack.

60

References

1. E-Voting in Estonia 2005. The first practice of country-wide binding Internet voting
in the world, Madise, Martens, 2nd International Workshop, Bregenz, Austria, 2006
https://subs.emis.de/LNI/Proceedings/Proceedings86/GI-Proceedings-86-1.pdf
DATE OF ACCESS: 20.10.2019

2. Security Analysis of the Estonian Internet Voting System, Springall, Finkenauer,
Durumeric, Kitcat, Hursti, MacAlpine, Halderman, University of Michigan, USA
https://jhalderm.com/pub/papers/ivoting-ccs14.pdf
DATE OF ACCESS: 20.10.2019

3. Three Case Studies from Switzerland: E-Voting, Gerlach, Gasser, Berkman Center
Research Publication No. 2009-03.1
https://cyber.harvard.edu/sites/cyber.law.harvard.edu/files/Gerlach-Gasser_SwissCases
_Evoting.pdf
DATE OF ACCESS: 20.10.2019

4. Amazon Data Centers page
https://aws.amazon.com/compliance/data-center/data-centers/
DATE OF ACCESS: 20.10.2019

5. AWS Lambda service page
 https://aws.amazon.com/lambda/

DATE OF ACCESS: 20.10.2019

6. EC2 service page
https://aws.amazon.com/ec2/
DATE OF ACCESS: 20.10.2019

7. IAM service page
https://aws.amazon.com/iam/
DATE OF ACCESS: 20.10.2019

8. Amazon RDS service page
https://aws.amazon.com/rds/
DATE OF ACCESS: 20.10.2019

9. DynamoDB service page
https://aws.amazon.com/dynamodb/
DATE OF ACCESS: 20.10.2019

10. SNS service page
https://aws.amazon.com/sns/
DATE OF ACCESS: 20.10.2019

61

https://jhalderm.com/pub/papers/ivoting-ccs14.pdf
https://aws.amazon.com/ec2/
https://aws.amazon.com/rds/
https://subs.emis.de/LNI/Proceedings/Proceedings86/GI-Proceedings-86-1.pdf
https://aws.amazon.com/lambda/
https://aws.amazon.com/iam/
https://cyber.harvard.edu/sites/cyber.law.harvard.edu/files/Gerlach-Gasser_SwissCases_Evoting.pdf
https://cyber.harvard.edu/sites/cyber.law.harvard.edu/files/Gerlach-Gasser_SwissCases_Evoting.pdf
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/compliance/data-center/data-centers/
https://aws.amazon.com/sns/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc

11. SES service page
https://aws.amazon.com/ses/
DATE OF ACCESS: 20.10.2019

12. CloudWatch service page
https://aws.amazon.com/cloudwatch/
DATE OF ACCESS: 20.10.2019

13. CloudTrail service page
https://aws.amazon.com/cloudtrail/
DATE OF ACCESS: 20.10.2019

14. Amazon Managed Blockchain service page
https://aws.amazon.com/managed-blockchain/
DATE OF ACCESS: 20.10.2019

15. API Gateway service page
https://aws.amazon.com/api-gateway/
DATE OF ACCESS: 20.10.2019

16. A Conceptual Secure Blockchain-based Electronic Voting System, Ahmed Ben
Ayed, International Journal of Network Security & Its Applications, May 2017
http://aircconline.com/ijnsa/V9N3/9317ijnsa01.pdf
DATE OF ACCESS: 20.10.2019

62

https://aws.amazon.com/ses/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/managed-blockchain/
http://aircconline.com/ijnsa/V9N3/9317ijnsa01.pdf
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/api-gateway/

Declaration

I declare within the meaning of part 16(5) of the General Examination and Study Regulations for
Bachelor and Master Study Degree Programmes at the Faculty of Engineering and Computer
Science and the Examination and Study Regulations of the International Degree Course
Information Engineering that: this Bachelor Thesis has been completed by myself independently
without outside help and only the dened sources and study aids were used. Sections that
reect the thoughts or works of others are made known through the denition of sources.

___________________ ____________________
City, Date Signature

63

