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Zusammenfassung	
Magnetische	Suszeptibilität	ist	eine	physikalische	Größe,	welche	die	Magnetisierbarkeit	von	Stoffen	

in	einem	externen	Magnetfeld	beschreibt.	Quantitative	Susceptibility	Mapping	(QSM)	ist	eine	MRT	

Methode	welche	diese	Eigenschaft	nutzt,	um	Bilder	zu	erstellen,	welche	Substanzen	wie	Kalzium	

oder	Eisen	hervorheben.	Diese	Substanzen	sammeln	sich	bei	Erkrankungen	wie	der	Alzheimer	De-

menz,	Multipler	Sklerose	oder	der	Parkinson-Krankheit	vermehrt	an.	QSM	nutzt	die	Phasenbilder	

von	MRT	Messungen	um	örtliche,	durch	Suszeptibilität	verursachte	Feldverzerrungen	zu	messen.	

Während	es	bekannt	ist,	wie	man	aus	einer	gegebenen	Suszeptibilitätsverteilung	das	resultierende	

magnetische	Feld	erhält	[1],	stellt	der	umgekehrte	Schritt	für	Aufnahmen	die	nur	in	einer	Richtung	

aufgenommen	wurden,	ein	inverses	Problem	dar	[2].	Dies	liegt	daran,	dass	eine	gegebene	Feldver-

teilung	unterschiedliche	zugrundeliegende	Verteilungen	der	Quellen	haben	kann.	Um	dieses	Prob-

lem	zu	lösen,	gibt	es	bereits	verschiedene	Methoden.	Diese	erfordern	jedoch	die	Einstellung	von	

selbstgewählten	Parametern	oder	die	Aufnahme	 in	verschiedenen	räumlichen	Ausrichtungen.	 In	

dieser	Arbeit	wurde	ähnlich	wie	bei	[3]	und	[4]	ein	fully	convolutional	neural	network	(zu	Deutsch	

etwa	„vollkommen	faltendes	neuronales	Netz“)	benutzt	um	das	inverse	Problem	der	Dipolinvertie-

rung	zu	lösen.	Das	Netzwerk	war	fähig	das	inverse	Problem	zu	lösen	und	dabei	vergleichbar	gute	

Resultate	gegenüber	etablierten	Methoden	zu	erzielen.	

Zusätzlich	zum	Problem	der	Dipolinversion	beinhaltet	QSM	das	Problem	der	Hintergrundfeldent-

fernung.	Hier	erzeugen	Suszeptibilitätsquellen	außerhalb	des	Untersuchungsgebiet	starke	Hinter-

grundfelder,	welche	die	 schwachen	Felder	der	 lokalen	Quellen	überlagern.	Diese	 starken	Felder	

müssen	erst	entfernt	werden,	bevor	eine	Dipolinversion	angewendet	werden	kann.	In	dieser	Arbeit	

wurde	ein	weiteres	CNN,	ähnlich	zum	obigen,	verwendet	um	die	Hintergrundfelder	zu	entfernen.	

Des	Weiteren	wurde	ein	baugleiches	drittes	Netzwerk	getestet,	um	die	Dipolinvertierung	und	die	

Hintergrundfeldentfernung	in	einem	Schritt	zu	durchzuführen.	Letzteres	wurde	mit	etablierten	Me-

thoden	und	den	zwei	aufeinander	folgenden	Netzwerken	für	Hintergrundfeldentfernung	und	Dipo-

linversion	verglichen.	Dabei	erzielten	die	aufeinander	folgenden	Netze	etwas	bessere	Ergebnisse	

als	die	Methode,	welche	beide	Schritte	in	einem	einzigen	Netz	durchführt.	Obwohl	verschiedene	

Datensätze	ausprobiert	wurden,	zeigten	alle	von	den	Netzen	erzeugten	Bilder	unterschiedlich	stark	

ausgeprägte	Hintergrundfeldartefakte,	wenn	sie	auf	in-vivo-Daten	angewendet	wurden.	Des	Wei-

teren	hatten	die	erzeugten	Bilder	im	Vergleich	zu	den	etablierten	Methoden	deutlich	breiter	ge-

streute	Werte.	Um	die	Leistungsfähigkeit	von	Netzten	welche	Hintergrundfeldentfernung	beinhal-

ten	zu	verbessern,	sollten	die	Trainingsdaten	zukünftig	besser	an	die	Bildeigenschaften	von	in-vivo-

Daten	angepasst	werden.	
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Abstract	
Magnetic	susceptibility	is	an	internal	tissue	property	that	describes	how	tissue	is	magnetized	by	an	

external	magnetic	field.	Quantitative	Susceptibility	Mapping	(QSM)	is	a	Magnetic	Resonance	Imag-

ing	(MRI)	technique	that	uses	this	property	to	create	images	that	highlight	tissue	containing	sub-

stances	such	as	calcium	and	iron.	These	substances	accumulate	with	diseases	as	Morbus	Alzheimer,	

Multiple	Sclerosis	or	Morbus	Parkinson.	QSM	uses	the	phase	information	of	MRI	to	measure	spatial	

field	perturbations	caused	by	magnetic	susceptibility.	While	it	is	known	[1]	how	to	obtain	the	field-

perturbation	caused	by	a	given	susceptibility	distribution,	the	step	in	reverse	order	represents	an	

ill-posed	inverse	problem	for	single-oriented	MRI	scans	because	a	certain	field	perturbation	can	be	

caused	by	several	distributions	of	susceptibility	sources	[2].	To	solve	this	problem	several	algorithms	

were	introduced	that	demand	manual	parameter	adjustment	or	the	image	acquisition	from	differ-

ent	angles.	The	regularization	techniques	are	mostly	generic	and	not	specific	to	QSM.	In	this	thesis,	

following	Rasmussen	et	al.	[3]	and	Yoon	et	al.	[4]	a	fully	convolutional	neural	network	(FCNN)	similar	

to	the	U-net	[5]	was	explored	to	solve	the	problem	of	dipole	inversion.	The	network	is	capable	of	

solving	the	dipole	inversion	on	in-vivo	MRI	phase	data	and	shows	similar	results	as	established	di-

pole	inversion	techniques.	

In	addition	to	dipole	inversion,	QSM	includes	the	problem	of	background	field	removal.	Strong	fields	

of	susceptibility	sources	outside	of	the	region	of	interest	(ROI)	or	outside	the	measurements	cover	

the	comparable	small	local	fields	of	the	ROI.	These	background	fields	have	to	be	removed	before	

dipole	inversion	can	be	applied.	In	this	thesis	a	CNN,	derived	from	the	CNN	for	dipole	inversion,	was	

developed	to	remove	the	background	field.	Furthermore,	a	third	model	to	solve	background	field	

removal	and	dipole	inversion	in	a	single	step	was	developed	and	evaluated	against	the	sequentially	

application	of	the	single	models	and	against	established	techniques.	Here	the	sequentially	applied	

networks	showed	slightly	better	results	in	total.	Although	datasets	with	total	fields	created	differ-

ently	were	used,	the	resulting	images	showed	background	field	artifacts	to	varying	degrees	if	tested	

with	 in-vivo	data.	 Furthermore,	 the	created	 images	had	a	 significantly	wider	 standard	deviation	

than	the	results	of	established	techniques.	To	improve	the	performance	of	models	for	background	

field	removal	the	corresponding	datasets	have	to	be	improved	to	reproduce	the	properties	of	in-

vivo	MR	images.	

	



	

	

8	Introduction	

1 Introduction	
Numerous	diseases	that	lead	to	long-term	need	of	care	alter	the	tissue	composition	in	the	brain.	

While	Alzheimer	disease	is	characterized	by	calcium	deposits	and	microbleeds	[6],	Multiple	sclerosis	

is	accompanied	by	a	loss	of	nerve-enveloping	myelin	fibers	and	iron	depositions	[7,8].	Both	charac-

teristics	of	Alzheimer’s	disease	[9 11],	Multiple	Sklerosis	[7,9,12,13],	Parkinson’s	disease	[14 18]	

and	iron	in	blood	[19]	can	be	well	detected	and	distinguished	by	Quantitative	Susceptibility	Map-

ping	(QSM).		

Quantitative	 Susceptibility	Mapping	 (QSM)	 reconstructs	 the	 local	 tissue	magnetic	 susceptibility	

from	gradient	echo	MRI	phase	[20].	When	placed	in	strong	external	magnetic	fields	of	MRI	scanners,	

the	 tissue	 is	magnetized	proportionally	 to	 its	magnetic	 susceptibility.	This	magnetization	 in	 turn	

perturbs	the	magnetic	field	leading	to	variations	of	the	Larmor	frequency,	i.e.	variations	of	the	off-

resonance	field	map.	The	resulting	magnetic	field	of	tissue	is	well-described	by	a	convolution	with	

the	so-called	dipole	kernel	[1].	However,	due	to	the	existence	of	a	conical	region	along	which	the	

dipole	vanishes,	the	inverse	problem	from	field	to	susceptibility	(so-called	dipole	inversion)	is	 ill-

conditioned	for	data	that	was	acquired	in	only	one	orientation.		

Next	to	the	problem	of	dipole	inversion,	QSM	includes	the	problem	of	background	field	removal	

[2].	Here,	strong	fields	with	sources	outside	of	the	region	of	interest	(ROI)	and	measured	field	of	

view	cover	the	images.	These	fields	are	called	background	fields	while	the	fields	created	by	the	ROI	

	are	called	local	fields	[2].	

Over	the	recent	years,	researchers	have	developed	a	variety	of	different	regularization	approaches	

for	both	background	field	removal	and	dipole	inversion,	enabling	the	use	of	single-oriented	data	

for	QSM.	These	include	MEDI	[21],	TKD	[22],	COSMOS	[23],	STAR-QSM	[24]	for	dipole	inversion	and	

LBV	 [25],	PDF	 [26],	SHARP	 [27]	 for	background	 field	 removal.	However,	 these	 regularization	ap-

proaches	are	not	specific	to	QSM	and	use	manual	chosen	parameters.	

Recently,	deep	learning	approaches	like	QSMnet	[4]	and	DeepQSM	[3]	have	been	used	to	overcome	

the	 ill-posed	problem	of	dipole	 inversion.	The	authors	of	QSMnet	used	brain	 images	of	60	brain	

scans	that	were	acquired	by	using	the	COSMOS	method	[23].	COSMOS	uses	different	orientations	

for	scanning	to	overcome	the	ill	posed	problem	of	dipole	inversion.	This	data	was	used	for	training	

and	 was	 able	 to	 improve	 the	 state-of-the-art	 methods	 for	 QSM.	 In	 contrast,	 the	 authors	 of	

DeepQSM	used	synthetically	generated	data	containing	simple	geometric	objects	as	cuboids	and	

spheres	to	train	the	network.		

Next	to	the	problem	of	dipole	inversion,	deep	learning	methods	were	recently	used	to	overcome	

the	 problem	of	 background	 field	 removal.	 SHARQnet	 [28]	 uses	 simulated	 background	 fields	 for	
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training.	In	this	thesis,	the	approaches	of	DeepQSM	and	SHARQnet	are	evolved	as	for	both	no	scans	

are	necessary	to	create	the	training	data.		

Finally,	yet	importantly,	QSM	cannot	only	be	used	for	the	detection	of	the	above-mentioned	dis-

eases.	Further	applications	are	imaging	of	cerebral	microbleeds	[19],	deep	brain	stimulation	[29],	

Chorea	Huntington	 [30],	 Amyotrophic	 Lateral	 Sclerosis	 [31,32],	 oxygen	metabolism	 [2]	 and	 iron	

depositions	like	Wilson’s	disease	[33].	Next	to	the	application	for	brain	imaging,	QSM	could	be	used	

in	other	organs	and	to	map	mineralization	for	measuring	bone	strength	[34].	
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2 Fundamentals	
To	understand	the	problem	of	QSM	and	the	methods	to	overcome	them,	this	chapter	explains	both	

the	physics	of	QSM	and	the	basics	of	artificial	neural	networks	(ANNs).	Chapter	2.1	introduces	the	

phase	image	acquisition	in	magnetic	resonance	imaging	(MRI)	that	is	important	to	understand	later	

post	processing	steps	like	phase-unwrapping.	Chapter	2.2	explains	the	tissue	property	of	magnetic	

susceptibility	and	how	it	can	be	used	to	obtain	images	with	enhanced	tissue	contrast.	The	different	

processing	steps	to	obtain	a	susceptibility	distribution	out	of	a	phase	image	are	explained	in	detail	

and	conventional	algorithms	and	their	limitations	are	presented.	Chapter	2.3	presents	the	basics	of	

artificial	neural	networks	(ANNs).	Here,	the	focus	 lies	on	convolutional	neural	networks	that	are	

well-suited	to	process	image	data.	The	U-net	network	architecture	(see	Section	2.3.8)	is	explained	

that	was	the	starting	point	for	the	architecture	of	DeepQSM	and	QSMnet.	

2.1 Magnetic	Resonance	Imaging	

Next	to	the	fundamental	insights	into	the	physics	behind	MRI,	this	section	describes	phase	images	

and	the	MRI	sequence	Gradient	Recalled	Echo	(GRE)	to	acquire	such	images.	

2.1.1 Physics	

MRI	is	a	noninvasive	imaging	method	that	creates	three	dimensional	images	with	high	soft	tissue	

contrast	[35].	It	makes	use	of	the	spin	property	of	hydrogen	nuclei	that	are	abundant	in	water,	fat	

and	amino	acids.	As	Hydrogen	has	an	odd	number	of	protons	and	no	neutrons	the	nucleus	has	a	

nuclear	spin.	A	spin	is	a	property	of	particles	that	is	similar	to	the	angular	momentum	in	classical	

physics;	however,	it	interacts	with	electro-magnetic	fields	because	of	its	magnetic	moment	which	

is	linked	to	spin	by	gyromagnetic	ratio.	This	way,	the	proton	strives	to	maintain	the	spatial	rotation	

of	its	rotational	axis	but	can	be	influenced	by	electro-magnetic	fields	[35].	

In	contrast	to	classical	physics,	atoms	can	only	assume	certain	energy	states.	In	the	case	of	H	pro-

tons,	the	spin	can	only	assume	two	states:	Parallel	or	antiparallel	to	the	external	magnetic	field.	

Due	to	the	thermal	energy,	without	a	strong	external	field	both	states	are	equally	likely.	No	own	

magnetic	field	is	measurable	as	both	states	equalize	each	other.	Only	in	the	presence	of	a	strong	

external	magnetic	field	𝐵"	(usual	range	of	1 3	Tesla)	does	a	slight	excess	of	the	parallel	alignment	

occur	and	their	net	magnetic	dipole	moments	𝑀"	sum	up	in	the	direction	of	𝐵"	(longitudinal).	The	

spins	precess	around	the	𝐵"	axis	with	different	phases	so	the	transversal	net	magnetization	is	zero.	

The	alignment	of	𝑀"	can	be	manipulated	by	further	external	magnetic	sources.	In	MRI	this	further	

source	is	a	short	radio	frequency	pulse	𝐵$	that	has	a	far	weaker	magnetic	field	(ca.	1	µTesla)	but	

can	tilt	𝑀"	by	a	defined	angle	(so-called	flip-angle)	as	it	uses	the	resonance	frequency	of	the	spin	to	
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excite	it.	After	the	𝐵$	RF	pulse	finishes	the	magnetic	dipole	will	return	in	its	original	alignment	pre-

ceding	like	a	gyro	due	to	its	angular	moment.		

The	energy	that	is	released	due	to	this	in	form	of	radio	waves,	is	measured	in	MRI	by	receiver	coils.	

The	frequency	of	the	precession	and	the	resonance	RF	pulse	is	called	Larmor	(angular)	frequency	𝜔	

and	depends	on	the	strength	of	the	magnetic	field	𝐵".	It	can	be	described	as:	

𝜔 2𝜋 ∙ 𝑓 𝛾 ∙ 𝐵"	 (2.1)	

Where	𝛾	is	the	gyromagnetic	ratio	 	a	nuclide	specific	constant	with	a	value	of	2.68 ∙ $"
0123
4

/𝑇		for	

a	H	proton	(and	𝛾/2π	is	42.6	MHz/T).	In	case	of	an	external	magnetic	field	of	3	Tesla	the	measured	

Larmor	frequencies	of	H	protons	are	around	128	MHz.	

2.1.2 Signal	Acquisition		

Inductive	coils	measure	the	signal	that	occurs	when	the	spin	precesses	from	the	flip-angle	deflec-

tion	by	the	𝐵$	RF	pulse	back	to	the	original	alignment	in	𝐵"	direction.	The	coils	are	arranged	per-

pendicular	to	the	direction	of	the	𝐵"-field	(that	is	conventional	the	z-direction)	as	can	be	seen	in	

Figure	1.	 In	z-direction	results	the	summed	up	 longitudinal	magnetic	moment	𝑀".	The	rotations	

around	the	z-axis	of	the	various	H	protons	are	not	coherent	so	no	transverse	magnetization	(in	𝑥	or	

𝑦	direction)	is	measurable	in	the	receiver	coils	(see	Figure	1).	

	
F gure	1:	Two	rece ver	co s	are	arranged	vert ca y	to	rece ve	the	s gna 	perpend cu ar.	Source:	[36]	

Only	if	the	𝐵$	RF	pulse	tilts	𝑀",	𝑀"	can	be	divided	into	a	vector	of	𝑀:;	and	𝑀<	and	the	receiver	

coils	acquire	a	signal	(see	Figure	2).	

The	rotation	of	the	transverse	magnetization	𝑀:;	can	be	expressed	as	complex	signal	(𝑥	stands	for	

the	real	part	and	𝑦	stands	for	the	imaginary	component).	The	resulting	magnitude	is	defined	as:	

𝑀:; 𝑀1=2>
? + 𝑀AB2CAD21;

? 	 (2.2)	

The	corresponding	phase	is	defined	as:	

𝜑 arctan
𝑀AB2CAD21;

𝑀1=2>
	 (2.3)	

s ne	

cos ne	
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As	the	signal	is	complex	the	phase	can	take	values	in	the	interval	of	[−𝜋, 𝜋].	

	
F gure	3:	The	magnet zat on	vector	M	can	be	sp t	 nto	a	 ong tud na 	component	Mz	and	a	 ong tud na 	component	Mxy.	

Source:	[36]	

When	the	𝐵$RF	pulse	finishes,	𝑀"	will	turn	back	in	𝐵"	direction	and	𝑀<	 increases	while	𝑀:;	de-

creases.	The	time	of	the	𝐵$	RF	pulse	and	the	back	precession	is	in	the	range	of	milliseconds	and	

seconds.	

In	MRI,	different	𝐵$	pulse	and	field	gradient	settings	(so-called	MRI	sequences)	can	be	distinguished	

to	acquire	 signals.	 The	most	 common	MRI	 sequence	 is	 the	 spin	echo	 that	 results	 in	𝑇1	 and	𝑇2	

weighted	images.	To	obtain	additional	information	about	susceptibility	effects	the	MRI	sequence	

Gradient	Recalled	Echo	is	used.	It	acquires	𝑇2∗ 	information	and	is	explained	in	the	following	sec-

tion.	

2.1.3 Gradient	Recalled	Echo	sequence		

Gradient	Recalled	Echo	(GRE)	is	an	MRI	sequence	that	can	acquire	phase	perturbations	caused	by	

magnetic	susceptibility.	Susceptibility	sources,	chemical	shift	and	inhomogeneities	of	the	𝐵"	field	

(imperfect	shimming)	cause	the	field	 inhomogeneities	∆𝐵.	 In	contrast	to	the	group	of	spin	echo	

sequences,	GRE	does	not	refocus	spins	dephased	by	magnetic	field	inhomogeneities	∆𝐵	[37].	Due	

to	this,	the	phase	of	the	inhomogeneities	accumulates	over	time.	

Interactions	 between	 adjacent	 protons	 cause	 the	 transverse	 relaxation	 (dephasing)	 that	 is	 de-

scribed	by	the	T2	constant.	This	relaxation	is	not	reversible	until	a	new	𝐵$	RF	pulse	occurs.	However,	

the	dephasing	effects	of	local	inhomogeneity	∆𝐵	are	reversible	and	characterized	by	T’.	Together,	

T2	and	T’	form	T2*.	GRE	measures	the	transverse	relaxation	(dephasing)	constant	𝑇2∗,	that	contains	

information	about	magnetic	field	inhomogeneity	∆𝐵"	[37]:	

1
𝑇2∗

1
T2

+
1
T′

	
1
T2

+ 	𝛾∆𝐵"	 (2.4)	

This	T2*	constant	is	measured	in	GRE	(see	Figure	4	for	explanation)	while	it	is	eliminated	in	spin-

echo	by	a	180°	RF	pulse	[37].	
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F gure	4:	The	negat ve	grad ent	acce erates	 the	dephas ng	of	 the	sp ns	so	 the	 rece ved	s gna 	 f rst	van shes.	Then	 the	
pos t ve	grad ent	rephases	the	sp ns	aga n	and	a	grad ent	reca ed	echo	(GRE)	becomes	measurab e	 n	the	rece ver	co s.	
The	t me	from	RF	pu se	to	GRE	 s	the	echo	t me	𝑇𝐸.	For	every	 ne	 n	k-space	the	grad ents	are	adjusted	d fferent	so	the	
phase	sequence	d ffers	(v sua zed	by	orange,	dotted	and	p nk	 nes).	Source:	[38]	

	
F gure	5:	By	repeat ng	the	dephas ng,	one	exc tat on	creates	severa 	echoes.	Late	echoes	are	used	to	acqu re	sma 	f e d	
perturbat ons.	The	s gna 	peak	of	the	echo	 s	 m ted	by	the	enve ope	of	T2*.	Source:	[39]	
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2.2 Quantitative	Susceptibility	Mapping	

This	section	focuses	on	the	physics	of	magnetic	susceptibility.	In	the	first	section,	magnetic	suscep-

tibility	and	its	role	in	MRI	imaging	is	explained.	The	following	sections	describe	the	steps	to	recon-

struct	a	susceptibility	map	out	of	a	phase	image	encompassing	phase	unwrapping,	background	field	

removal	and	dipole	inversion.	For	the	processing	steps	of	background	field	removal	and	dipole	in-

version,	conventional	methods	and	their	limitations	are	explained	(see	Section	2.2.5,	Section	2.2.6).	

These	methods	are	used	in	Chapter	4	for	comparison	with	results	of	the	deep	learning	models	de-

veloped	in	this	thesis	(see	Section	3.1).	

2.2.1 Magnetic	Susceptibility	

Magnetic	susceptibility	𝜒	is	a	measure	of	the	extent	a	material	gets	magnetized	in	a	magnetic	field.	

Materials	with	a	positive	susceptibility	are	called	paramagnetic	and	align	with	the	magnetic	field	

while	in	case	of	a	negative	susceptibility	they	align	against	it	and	are	called	diamagnetic	(see	Table	

1).	

	 Diamagnetic	 Paramagnetic	 Ferromagnetic	

Susceptibility	χ	 χ	<	0	 χ	>	0	 χ	>>	0	

Alignment	to	external	field	 anti-aligned	 aligned	 aligned	

Total	magnetic	field	 Decreases	/	disperse	 Increases	/	concentrate	 Increases	/	concentrate	

Material	examples	[2]	 𝐻?𝑂,	Myelin,	oxyHb	 𝑂?	[40],	Gadolinium,		

deoxyHb	

Fe,	Co,	Ni	

Tab e	1:	Overv ew	of	d amagnet c,	paramagnet c	and	ferromagnet c	propert es.	

The	material	 in	the	magnetic	field	creates	an	extern	magnetic	field	 in	 its	surrounding.	Due	to	its	

alignment	(that	depends	on	its	susceptibility	value;	see	Table	1)	the	resulting	total	magnetic	field	

will	increase	or	decrease.	Further	explanations	about	how	the	atomic	structure	of	tissue	determines	

its	susceptibility	can	be	found	in	[2].	

As	susceptibility	is	a	tissue	specific	property	it	can	be	used	to	enhance	the	contrast	between	tissues	

with	different	susceptibility	values	(see	Figure	6).	Especially	blood,	calcifications	and	the	deep	gray	

matter	nuclei	can	be	well	distinguished	[2].	

	
F gure	6:	Magn tude,	phase	and	QSM	 mage	of	a	bra n	:	The	magn tude	shows	 tt e	contrast,	the	f e d	map	shows	d rect on	
dependent	f e d	perturbat ons	caused	by	suscept b ty,	the	QSM	 mage	shows	the	spec f c	suscept b ty	of	the	d fferent	
bra n	t ssues.	Source:	[41]	
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Water	has	a	susceptibility	of	-9.04	ppm	[2]	and	is	used	as	reference	to	describe	relative	susceptibil-

ity	differences	in	the	body.	These	differences	(towards	water)	range	from	-0.1	ppm	for	myelin	to	

+0.3	ppm	for	iron-rich	tissue.	Brain	hemorrhages	can	have	values	up	to	1	ppm	but	are	pathological.	

Air	that	contains	paramagnetic	oxygen	has	a	susceptibility	of	0.36	ppm	[42].	Due	to	this,	the	highest	

susceptibility	changes	are	at	air-tissue	interfaces	(+0.36	vs.	-9.04	ppm)	while	the	differences	in	tis-

sue	are	comparatively	small.	

In	MRI,	these	changes	in	the	magnetic	field	result	in	susceptibility	artefacts:	e.g.	high	susceptibility	

differences	at	the	paranasal	sinuses	interfaces	lead	to	variations	of	the	magnetic	field	in	neighbor-

ing	areas.	In	these	cases,	the	fields	superimpose	and	falsify	the	susceptibility	value	of	the	tissue.	In	

the	case	of	the	sinuses,	the	Larmor	frequency	changes	in	the	nearby	brain	tissue.	Due	to	this,	trans-

verse	dephasing	is	accelerated	and	causes	signal	loss	[43]	(see	Figure	7).	This	loss	particularly	occurs	

in	gradient	echo	images	at	long	echo	times.	Using	certain	MRI	sequences,	these	field	perturbations	

can	create	new	types	of	MR	images	with	increased	contrast.	The	whole	process	to	obtain	a	suscep-

tibility	distribution	out	of	phase	images	is	called	Quantitative	Susceptibility	Mapping.	

	
F gure	7:	GRE	magn tude	 mage.	The	f e d	of	the	a r-t ssue	 nterface	causes	a	fa se	 ndentat on	 n	the	bra n.	Source:	[44]	

In	addition	to	the	susceptibility	distribution,	the	measured	field	perturbations	depend	on	the	orien-

tation	of	the	object	[35].	In	particular,	the	orientation	dependency	is	significant	for	objects	like	cyl-

inders	as	shown	in	Figure	8.	In	the	brain,	nerve	fibers	and	blood	vessels	form	cylindrical	objects.	
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F gure	8:	 Phantom	w th	 cy nders	 n	perpend cu ar	or entat ons.	 Left:	Magn tude	 mage	w th	no	 suscept b ty	effects.	
R ght:	Preprocessed	f e d	map	 mage	w th	d fferent	va ues	depend ng	on	the	or entat on	of	the	cy nders.	The	para e 	
cy nder	has	a	pos t ve	phase	sh ft	(wh te)	wh e	the	perpend cu ar	cy nder	has	a	negat ve	one	(b ack).	Source:	[44]	

2.2.2 Forward	Solution	

Due	to	susceptibility,	materials	that	are	exposed	to	a	strong	external	magnetic	field	form	an	addi-

tional	internal	magnetic	field.	The	internal	field	of	a	single	susceptibility	source	at	a	distance	𝑟	within	

an	external	field	𝐵"	that	points	into	z-direction	is	defined	as:	

∆𝑩 𝑟
𝜇"
4𝜋

𝑑]𝒓′
3𝑴 𝒓` ∙ 𝒓 𝒓`

𝒓 𝒓` a
𝒓 𝒓`

𝑴(𝒓`)
𝒓 𝒓′ ]

	 𝑖𝑓	𝒓 ≠ 𝒓′	
(2.5)	

where	𝜇"	is	the	permeability	of	vacuum	and	𝑀	is	the	induced	magnetization.	

The	field	induced	by	several	susceptibility	sources	at	a	certain	spot	can	be	expressed	as	a	sum	of	

these	several	fields	at	this	spot	(superposition).	For	susceptibility	values	<<1	and	isotropic	material	

the	equation	 can	be	 simplified,	 converted	 (among	others	by	 the	 Lorentz	 correction),	 and	 trans-

formed	into	Fourier	space	(also	called	k-space)	to	obtain	the	relative	induced	field	perturbation	𝛿h	

(see	Equation	(2.6))	of	a	susceptibility	source.	Details	about	the	transformation	of	the	equation	can	

be	found	in	[1,45].	 Interpreting	this	equation	as	a	convolution	of	the	susceptibility	distribution	χ	

with	a	kernel	D	in	k-space,	we	get:	

𝛿h 𝒌 𝐷(𝒌) ∙ 𝜒(𝒌)

𝑤ℎ𝑒𝑟𝑒, 𝐷 𝒌
1
3

𝒌<?

𝒌:? + 𝒌;? + 𝒌<?
	 (2.6)	

Where	𝑘	refers	to	the	three	directions	in	k	space.	The	image	has	to	be	transformed	by	an	inverse	

Fourier	Transform	into	image	space	to	obtain	a	field	map.	However,	the	anisotropic	characteristic	

of	susceptibility	(that	is	not	further	part	of	this	thesis)	is	not	included	in	this	formula.	

The	appearance	of	the	kernel	for	a	single	source	is	shown	in	Figure	12.	In	practice,	there	are	many	

sources	present	and	the	field	at	a	certain	location	is	the	sum	of	contributions	from	the	fields	of	all	

surrounding	magnetic	dipole	sources	[2].	With	equation	2.6	a	field	perturbation	can	be	calculated	

from	a	given	susceptibility	distribution,	also	called	‘forward-solution’	[1,45].	
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2.2.3 Overview	of	Processing	Steps	in	QSM	

Quantitative	Susceptibility	Mapping	(QSM)	is	the	process	to	transform	a	raw	phase	image	that	was	

acquired	by	a	GRE	MRI	scan	to	a	susceptibility	map	that	shows	tissue-specific	susceptibility	values.	

To	do	so,	several	steps	have	to	be	performed.	First,	the	raw	phase	image	is	‘unwrapped’	to	remove	

wrapping	artefacts	(see	Section	2.2.4).	The	unwrapped	phase	image	contains	field	perturbations	

from	outside	of	the	ROI	or	field	of	view	that	are	removed	by	‘background	field	removal’	(see	Section	

2.2.5).	The	field	map	shows	the	field	perturbations	caused	by	the	susceptibility	sources	in	the	ROI.	

The	last	step	is	called	‘dipole	inversion’	and	reverses	the	field	distribution	to	a	susceptibility	distri-

bution.	The	processing	chain	is	visualized	in	Figure	9.	

	
F gure	9:	Steps	to	perform	QSM:	The	raw	phase	 mage	has	to	be	unwrapped	f rst.	Afterwards,	a	background	f e d	remova 	
s	performed	to	obta n	a	 oca 	f e d	map.	D po e	 nvers on	descr bes	the	step	of	so v ng	the	 -posed	prob em	of	transform-
ng	the	 oca 	f e d	map	to	a	suscept b ty	map.	Source:	[46]	

2.2.4 Phase	Unwrapping	

In	addition	to	the	magnetic	field	𝐵"	and	gradient	fields,	eddy	currents	and	tissue	susceptibility	cause	

further	magnetic	fields	[47].	In	consequence,	the	occurring	field	perturbations	∆𝐵	change	the	pre-

cession	frequencies	and	∆𝐵	accumulate	phase	shifts.	In	addition	to	the	magnetic	field	𝐵"	and	gra-

dient	 fields,	eddy	currents	and	 tissue	 susceptibility	 cause	 further	magnetic	 fields	 [47].	 In	 conse-

quence,	the	occurring	field	perturbations	∆𝐵	change	the	precessing	frequencies	(so-called	varia-

tions	in	the	off-resonance	field	map)	and	accumulate	phase	shifts	over	the	time	of	signal	acquisition	

in	GRE.	A	larger	field	perturbation	causes	a	larger	change	in	the	frequency	and	accumulates	a	longer	

phase	shift.	The	phase	shift	Δ	𝜑	at	the	echo	time	TE	is	defined	as	follows:	

Δ	𝜑 γΔB ∙ TE	 (2.7)	
The	total	measured	phase	is	the	sum	of	the	original	phase	φ"	at	t=0	and	the	phase	shift	∆	𝜑	caused	

by	field	inhomogeneities:	

Δ	𝜑 γΔB ∙ TE +	𝜑"		 (2.8)	
In	MRI	the	phase	is	measured	as	an	angle	of	the	vector	𝑀:;	(see	Figure	10)	in	the	range	of	[-π,	π].		

	

Phase	Image	w th	Wrapp ng	
Art facts	

Unwrapped	Tota 	F e d	Map	 Loca 	F e d	Map	 Suscept b ty	Map	
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F gure	10:	The	transversa 	component	of	the	vector	M	has	a	phase	that	can	take	on	va ues	between[−𝜋, 𝜋].	If	the	vector	
exceed	these	va ues	they	start	aga n	at	−𝜋	or		𝜋	and	a	phase	wrap	appears	 n	the	 mage.	

Phase	values	greater	than	π	are	wrapped	and	start	again	at	−𝜋,	so	the	measured	phase	will	always	

be	in	the	range	of	[−𝜋, 𝜋].	

𝜑2uvw2> 𝜑B=24w1=3 + 𝑛 ∙ 2𝜋	 (2.9)	
Consequently,	in	phase	images	at	the	boundaries	of	𝜋	to	−𝜋	phase	jumps	of	2𝜋	occur	(see	Figure	

9,	raw	data).	The	process	to	obtain	the	smooth	actual	phase	is	called	phase	unwrapping	and	is	ill-

posed	[2]:	Due	to	noise	and	averaging	values	 	to	define	finite	voxel	volumes	 	the	jumps	are	not	

exactly	2𝜋.	Among	others,	path	finding	algorithms	and	global	error	minimization	can	be	used	to	

perform	phase	unwrapping	[2].	

2.2.5 Background	Field	Removal	

In	QSM	usually	the	brain	is	the	ROI	that	is	examined.	Susceptibility	sources	from	regions	where	no	

signal	is	available	(outside	of	the	field	of	view)	and	from	regions	outside	of	the	desired	ROI	create	

dominant	field	perturbations	in	the	area	of	the	brain	(within	the	ROI)	(see	Figure	9,	total	field).	In	

case	of	a	brain	examination,	MRI	measures	the	total	magnetic	field	(𝐵vzv2>)	in	the	ROI	consisting	of	

the	magnetic	field	(𝐵>zu2>)	caused	by	the	brain	tissue	and	the	magnetic	field	caused	by	skull,	eyes,	

neck	and	air-tissue	interfaces	(𝐵{2u|C1zwD3):	

𝐵vzv2> 𝐵>zu2> + 𝐵{2u|C1zwD3	 (2.10)	
Field	perturbations	are	created	only	by	spatial	changes	in	the	susceptibility	distribution	[48].	Most	

organic	 tissue	varies	around	 -9ppm	while	air	has	a	 susceptibility	 close	 to	 zero.	Hence,	air-tissue	

interfaces	form	the	strongest	field	perturbations	that	are	around	two	orders	of	magnitude	higher	

than	the	local	field.	In	addition	to	the	surface	of	the	skull,	the	paranasal	sinuses	form	an	air-tissue	

interface.	To	solve	the	problem	of	dipole	inversion	the	background	field	is	removed	first.	
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F gure	11:	The	Background	f e d	 s	the	dom nant	f e d	and	 s	removed	to	revea 	the	 oca 	f e d.	Source:	[47]	

Several	methods	exist	 to	perform	background	field	removal.	The	simplest	 is	 the	application	of	a	

high	pass	filter	[49]	as	the	background	field	consist	mainly	out	of	low	frequencies.	However,	in	the	

area	of	air-tissue	interfaces	the	background	field	changes	rapidly	and	is	not	removed.	Furthermore,	

low	 frequencies	of	 the	 local	 field	are	also	 removed.	 Techniques	 that	are	more	effective	are	 the	

optimization-based	Projection	onto	Dipole	Field	(PDF)	[26]	and	the	kernel-based	Sophisticated	Har-

monic	Artifact	Removal	for	Phase	data	(SHARP)	[27].	

2.2.5.1 Sophisticated	Harmonic	Artifact	Reduction	for	Phase	data	(SHARP)	

SHARP	uses	the	spherical	mean	value	(SMV)	property	and	the	division	into	harmonic	and	non-har-

monic	field	functions	to	remove	the	background	field.	A	static	field	 is	harmonic	 if	 it	satisfies	the	

Laplace	equation	(the	second	order	partial	derivative	is	equal	to	zero).	In	the	case	of	susceptibility,	

the	Laplace	equation	 is	valid	 for	background	 fields	 inside	 the	ROI	 [2].	Due	 to	 this,	 second	order	

derivatives	of	the	background	field	𝐵{2u|C1zwD3 	in	the	ROI	are	equal	to	zero	[50]:	

𝛁?𝐵{2u|C1zwD3 �
0	 (2.11)	

Background	fields	outside	the	ROI	or	internal	fields	inside	the	ROI	are	expressed	by	Poisson’s	equa-

tion	(second	order	partial	derivative	equals	another	function)	and	are	non-harmonic.	With	the	char-

acteristics	of	the	background	and	local	field	inside	the	ROI,	the	𝐵vzv2> 	is	calculated	as	follows	[50]:	

𝛁?𝐵vzv2> � (𝛁?𝐵>zu2> + 𝛁?𝐵{2u|C1zwD3) � 𝛁?𝐵>zu2> � + 0	 (2.12)	
The	spherical	mean	value	property	states	that	the	average	value	of	a	function	over	a	sphere	is	equal	

to	its	value	in	the	center	and	is	only	valid	for	harmonic	functions.	Due	to	this,	harmonic	functions	

are	preserved	when	convolved	with	non-negative,	radially	symmetric,	normalized	kernel	functions.	

The	SHARP	algorithm	convolves	the	total	field	with	a	spherical	kernel,	only	the	local	field	remains	

[48]:	

𝐵>zu2> (𝛿 𝜌) ∗ $ (𝛿 𝜌) ∗ 𝐵vzv2>	 (2.13)	
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Here,	(𝛿 − 𝜌)	is	the	SMV	kernel	that	consists	of	a	unit	impulse	𝛿	(Dirac	distribution)	at	the	center	

of	 a	 numerically	 rendered	 normalized	 sphere	 and	 the	 sphere	 function	 𝜌	 [51].	 The	 asterisks,	

∗ 		and	∗�$,	symbolize	a	3D	convolution	and	deconvolution.	A	binary	mask	defines	the	ROI	in	that	

the	kernel	is	applied.	In	practice	the	convolutions	are	performed	in	Fourier	Space	[52]	and	the	equa-

tion	can	be	solved	by	truncated	singular	value	decomposition	[27,47].	

At	the	boundary	of	the	ROI	the	SMV	kernel	incorporates	non-harmonic	parts	from	outside	of	the	

defined	ROI	and	violates	the	SMV	theorem	[2],	and	creates	artifacts	at	the	boundary.	An	eroded	

mask	can	help	to	overcome	this	problem	but	leaves	out	the	eroded	space.	VSHARP	varies	the	size	

of	the	SVM	kernel	to	alleviate	this	problem	[53].	Small	SMV	kernel	radius	allows	the	kernel	center	

to	approach	the	ROI	on	the	boundary	and	minimizes	eroded	spaces.		

2.2.5.2 Projection	onto	Dipole	Field	(PDF)	

According	 to	 Liu	 et	 al.	 [26]	magnetic	 fields	 of	 a	 dipole	 outside	 of	 the	 ROI	 is	 approximately	

orthogonal	to	the	local	field.	By	optimization,	the	PDF	method	seeks	the	susceptibility	distribution	

outside	of	the	ROI	that	fits	best	the	background	field	 inside	the	ROI	[47].	By	doing	so,	the	back-

ground	field	can	be	modelled	and	subtracted	from	the	total	field.	However,	PDF	may	not	remove	

field	perturbations	that	are	not	caused	by	susceptibility	(e.g.	eddy	currents)	and	tends	to	overfit-

ting.	Furthermore,	as	described	in	Section	2.2.6	a	single	field	perturbation	can	be	based	on	many	

different	distributions	(ill-posed	problem)	and	due	to	this	cannot	be	solved	unambiguously.	How-

ever,	an	advantage	towards	the	SHARP	and	VSHARP	algorithms	is	that	the	whole	ROI	is	processed	

without	any	erosion	at	the	borders.	

2.2.6 The	inverse	Problem	of	Dipole	Inversion	

The	inverse	step	of	calculating	a	susceptibility	distribution	χ	from	a	given	local	field	perturbation	𝛿h	

is	referred	to	as	dipole	inversion.	The	inverse	problem	can	be	solved	formally	by	rearranging	equa-

tion	(2.6)	to:	

𝜒 𝑘 𝛿h 𝑘 /𝐷(𝑘) 	 (2.14)	

However,	this	step	is	ill-posed	as:	

𝐷 𝑘 0, 𝑖𝑓	𝑘:? + 𝑘;? 2	𝑘<?	 (2.15)	

𝐷 𝑘
1
3

𝑘<?

3𝑘<?
	
1
3

	
1
3

0	 (2.16)	

In	these	cases,	a	division	𝛿h 𝑘 	/𝐷(𝑘)	is	not	possible.	These	cases	form	two	cone	surfaces	at	the	

so-called	magic	angle	of	54.7°	relative	to	𝐵"	(see	Figure	12,	iii).	On	the	cone	surface	the	kernel	is	

zero	and	cannot	be	applied.	The	inverse	problem	can	also	be	expressed	in	this	way:	As	a	certain	

field	distribution	can	have	various	susceptibility	distributions	 (which	differ	 in	 the	zero-cone)	 the	

problem	of	finding	the	sought	susceptibility	distribution	is	underdetermined.		
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F gure	12:	( )	d po e	f e d	of	a	spher ca 	suscept b ty	source	 n	spat a 	space	 n	2D	( )	un t	d po e	kerne 	surface	contour	 n	
spat a 	space	( )	 -posed	zero	cones	of	the	kerne 	 n	k-space.	Source:	[54]	

To	overcome	the	ill-conditioned	dipole	inversion	problem,	different	methods	are	available.	The	fol-

lowing	section	provides	a	brief	overview	of	methods	and	their	limitations.		

Calculation	of	Susceptibility	through	Multiple	Orientation	Sampling	(COSMOS)	[23]	uses	data	of	dif-

ferent	positions	of	the	patient’s	head	to	make	the	problem	over-determined.	However,	this	method	

requires	several	data	acquisitions	that	associate	with	movement	artifacts,	extended	scan	time	and	

practically	difficult	to	realize	head	positions.	

The	truncated	k-space	division	(TKD)	[22]	uses	data	from	only	one	orientation	during	data	acquisi-

tion.	To	calculate	the	susceptibility	distribution	𝜒 𝑘 ,	kernel	𝐷 𝑘 	is	set	to	𝑠𝑖𝑔𝑛 𝐷 𝑘 ∗ 𝑡	 if	the	

kernel	is	lower	than	a	certain	threshold	𝑡:	

𝐷(𝑘)
𝐷 𝑘 ,																											 𝐷(𝑘) > 𝑡
𝑠𝑖𝑔𝑛 𝐷 𝑘 ∗ 𝑡, 𝐷 𝑘 < 𝑡	 (2.17)	

𝜒 𝑘 𝛿h 𝑘 	/𝐷(𝑘) 	 (2.18)	
Through	TKD	the	dipole	inversion	is	solved	but	the	resulting	images	have	streaking	artifacts	(see	

Figure	13).	Further	methods	are	regularization-based	and	use	e.g.	the	magnitude	image	information	

to	reconstruct	a	susceptibility	distribution.	All	of	them	need	manual	chosen	parameters	to	yield	a	

trade	of	between	artifacts	and	regularization.	The	most	common	method	of	this	type	is	Morphology	

Enabled	Dipole	Inversion	(MEDI)	[21].	The	Streaking	Artifact	Reduction	for	QSM	(STAR-QSM)	uses	

two	steps	to	reconstruct	small	and	large	susceptibilities	separately	and	combine	them	afterwards	

[24].	STAR-QSM	avoids	streaking	artifacts	in	the	resulting	images	and	preserves	sharp	boundaries	

and	details.	In	Figure	13,	the	results	of	different	approaches	are	compared.	

Current	approaches	use	artificial	neural	networks	to	overcome	the	 inverse	problem	[3,4].	These	

learn	an	efficient	regularization	during	training	and	are	specific	for	QSM.	
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F gure	13:	Compar son	of	d fferent	methods	to	transfer	a	f e d	map	 nto	a	suscept b ty	d str but on.	Source:	QSMnet	[4].	
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2.3 	Artificial	Neural	Networks	and	Deep	Learning	

In	this	chapter,	the	structure	and	basic	functionality	of	feedforward	neural	networks.	In	particular	

fully-connected	(see	Section	2.3.3)	and	convolutional	neural	network	(CNNs)	(see	Section	2.3.6)	are	

described.	The	focus	lies	on	CNNs	as	they	are	widely	used	in	Deep	Learning	for	image	processing	

and	image	recognition,	following	recent	results	[55]	and	implementations	 in	this	 field	[3,56 58].	

Section	2.3.8	gives	an	outlook	on	the	network	structure	that	inspired	the	network	architecture	used	

in	this	thesis.	

2.3.1 Orientation	of	Deep	Learning	in	the	Field	of	Machine	Learning	

In	the	area	of	artificial	intelligence,	machine	learning	subsumes	a	collection	of	algorithms	catego-

rized	 into	unsupervised	 learning,	supervised	 learning	and	reinforcement	 learning	(see	Figure	14)	

[59].	In	supervised	learning	 that	is	used	in	this	thesis 	the	algorithm	trains	on	input	 	output	pairs	

and	learns	a	function	to	map	from	input	to	output	[59].	

	
F gure	14:	A	br ef	overv ew	of	Deep	Learn ng	a gor thms	 n	the	context	of	mach ne	 earn ng	and	art f c a 	 nte gence.	

Deep	Learn ng	a gor thms	are	 n	 ta c	font.	

Deep	Learning	uses	complex	artificial	neural	networks	(ANN).	It	reaches	success	in	areas	of	image	

or	speech	detection	[60,61].	

2.3.2 Artificial	Neurons	

The	term	artificial	neuron	is	derived	from	the	neurons	in	the	brain.	There,	cells	are	connected	by	

synapses	to	perform	complex	tasks	[59].	ANNs	consist	of	artificial	neurons	connected	with	neurons	

of	preceding	and	subsequent	layers	(see	Section	2.3.3).	Figure	15	shows	the	structure	of	an	artificial	

neuron.	The	neuron	is	connected	with	previous	neurons	which	each	deliver	the	input	information	

𝑥A 	multiplied	by	a	weight	𝑤𝑖𝑗.	The	weights	can	be	positive	or	negative	and	are	adjusted	for	every	

neuron	during	learning	(see	Section	2.3.4).	Each	neuron	calculates	the	sum	of	its	weighted	inputs	

𝑤A�𝑥A 	and	its	bias	𝑏� 	[59]	(see	Equation	(2.19)).The	activation	function	𝑓	is	applied	to	the	sum	and	

determines	the	output	𝑎𝑗.	
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𝑎� 𝑓 (𝑤A�𝑥A + 𝑏�
A

	 (2.19)	

The	output	𝑎𝑗	serves	as	input	𝑥𝑖	for	subsequent	artificial	neurons	[59].	

	
F gure	15:	Art f c a 	neuron	𝑗	w th	 ts	 nputs	and	output	𝑎�.	

With	the	non-linear	property	of	the	activation	functions,	ANNs	consisting	of	at	 least	one	hidden	

layer	are	able	to	handle	non-linearity	in	data	(see	Section	2.3.3)	[59,62].	Through	this,	ANNS	can	

approximate	any	 function.	The	ReLu	 function	 is	often	used	as	activation	 function	 in	 the	 field	of	

image	processing	as	 it	 enables	CNNs	 to	be	 trained	more	efficiently	 [63]	 compared	 to	activation	

functions	as	sigmoid	or	tanh.	The	ReLu	function	thresholds	the	output	of	a	neuron	at	zero	for	values	

below	0	and	is	linear	for	positive	values	[63]:	

𝑓(𝑥) 𝑚𝑎𝑥(0, 𝑥)	 (2.20)	

	
F gure	16:	Rect f ed	L near	Un t	(ReLu).	Source:	[64]	

2.3.3 Fully-Connected	Networks	

In	general,	ANNs	are	organized	in	layers	that	consist	of	several	artificial	neurons.	In	a	fully	connected	

layer,	each	neuron	of	the	layer	is	connected	with	all	neurons	of	the	previous	and	the	subsequent	

layer	(see	Figure	17).	

�𝑤A�𝑥A + 	𝑏�
A
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F gure	17:	A	fu y	connected	neura 	network	w th	two	 ayers.	Source:	[64]	

The	network	in	Figure	17	consists	of	two	fully	connected	layers	(hidden	layer	1	and	hidden	layer	2)	

next	to	input	and	output.	Each	circle	in	the	hidden	layers	and	the	output	layer	represents	a	neuron.	

The	 connecting	 arrows	 symbolize	 the	weighted	 connections	𝑤𝑖𝑗𝑥𝑖.	 In	 fully	 connected	 layers	 (so	

called	dense	layers),	each	neuron	is	connected	to	all	neurons	of	the	neighboring	layers	and	due	to	

this	has	multiple	learnable	weights.	All	neurons	have	next	to	the	weighted	connection	𝑤	a	learnable	

bias	𝑏.	In	total,	the	network	in	Figure	17	consists	of	32	weights	and	9	biases	that	form	together	41	

learnable	parameters.	

The	Cybenko	Theorem	gives	mathematical	proof	 that	a	network	with	only	one	hidden	 layer	can	

approximate	any	continuous	function	with	a	sufficient	number	of	neurons	[62].	In	practice,	numer-

ous	layers	are	organized	in	a	hierarchical	structure	to	achieve	a	more	efficient	learning	process	(see	

Section	2.3.6).	

2.3.4 Optimization		

Essential	parts	of	the	iterative	learning	process	are	the	calculation	of	a	loss	function	(see	Section	

2.3.5)	and	the	parameter	optimization.	Optimization	adjusts	the	parameters	(weights	and	biases)	

of	the	network	in	a	way	to	minimize	a	certain	loss	function.	For	ANNs	with	just	one	learnable	weight	

this	process	is	visualized	in	Figure	18.	

	
F gure	18:	Opt m zat on	for	a	one-d mens ona 	prob em:	Each	 terat on	the	we ghts	are	changed	by	a	def ned	step	s ze	to	
decrease	the	 oss.	If	the	step	s ze	 s	too	 arge,	the	opt ma 	we ght	can	be	m ssed	–	 f	the	step	s ze	 s	very	sma ,	the	t me	
for	tra n ng	w 	 ncrease.	The	a m	of	the	opt m zat on	 s	to	adjust	the	we ght	to	reach	the	g oba 	m n mum.	Source:	[65]	
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While	the	shift	on	the	x-axis	in	Figure	18	represents	the	learning	rate,	the	gradient	determines	the	

shift	of	the	error.	For	ANN	with	thousands	of	 learnable	parameters	the	process	 is	a	high-dimen-

sional	landscape.	Stochastic	Gradient	Descent	(SGD)	is	an	iterative	algorithm	for	solving	the	optimi-

zation	with	large-scale	datasets	[66,67].	As	it	uses	randomly	picked	training	samples	for	parameter	

estimation	in	each	iteration,	it	is	simplification	to	the	gradient	descent	algorithm	and	is	also	suitable	

for	online	learning	[66].	

For	 optimization	 problems	 with	 high-dimensional	 parameter	 spaces	 and/or	 large	 datasets,	 the	

Adam	algorithm	shows	to	be	robust	and	computationally	efficient	[68].	The	algorithm	considers	the	

exponentially	decaying	average	of	past	gradients	to	avoid	getting	stuck	in	local	minima	and	to	ob-

tain	a	fast	convergence	rate	[68].	

Apart	from	the	optimization	algorithm,	the	parameter	adjustment	is	influenced	by	the	amount	of	

data	used.	Instead	of	using	all	data	at	once	a	certain	(mini)	batch	size	determines	how	much	data	

out	of	the	available	data	is	used	to	calculate	the	loss	and	the	gradients	in	every	iteration.	To	use	

gradient	descent	the	derivatives	of	the	loss	(see	Section	2.3.5)	with	respect	to	the	current	parame-

ters	are	needed.	As	the	loss	function	is	calculated	at	the	output	of	the	network,	the	information	has	

to	be	transferred	from	the	output	back	through	the	whole	network.	This	happens	by	using	back-

propagation	that	uses	the	chain	rule	of	derivatives	[69].	

2.3.5 Loss	Function	

In	supervised	learning,	the	loss	function	compares	in	every	iteration	𝑖	the	created	output	(predic-

tion)	𝑦A 	with	the	expected	output	label	𝑦′A 	(also	called	ground	truth).	In	regression	networks	(as	in	

this	thesis),	a	common	loss	function	is	the	mean	squared	error	(MSE)	loss:	

𝑀𝑆𝐸	𝑙𝑜𝑠𝑠 𝑦, 𝑦`
(𝑦A 𝑦′A)²�

A�$

𝑁
	 (2.21)	

In	the	case	of	images	processing,	𝑁	is	the	number	of	pixels	of	the	image	while	𝑦A	and	𝑦′A 	are	the	

pixel	values	of	the	output	and	the	label	image.	The	closer	to	zero	the	MSE,	the	better	is	the	result.	

Classification	problems	use	logarithmic	algorithms	like	Cross-entropy	[65].	

2.3.6 Convolutional	Neural	Networks	in	Image	Processing	

Convolutional	neural	Networks	(CNNs)	can	deal	with	spatial	data	like	images	and	are	state	of	the	

art	for	image	recognition	and	processing	[55].	In	comparison	to	fully	connected	networks,	CNNs	can	

reduce	the	number	of	parameters	and	process	larger	images.	By	using	a	receptive	field,	the	neurons	

inside	a	layer	are	connected	only	to	a	small	amount	of	the	adjacent	layers,	so	they	are	arranged	in	

depth	(see	Figure	19)	[70].		
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F gure	19:	Neurons	a ong	the	depth	ax s	of	a	s ng e	convo ut ona 	 ayer	correspond	on y	to	a	sma 	excerpt	of	the	 nput	
mage.	

These	layers	are	convolutional	layers	and	together	with	ReLu	functions	(see	Section	2.3.2),	pooling	

layers	and	fully	connected	layers	form	the	base	for	a	convolutional	neural	network	(see	Figure	20).		

	

F gure	20:	Shows	the	h gh- eve 	arch tecture	of	a	CNN	for	 mage	c ass f cat on.	The	 nput	 s	an	RGB	 mage	w th	d men-
s ons	he ght	and	w dth	and	3	channe s	(red,	green	and	b ue).	The	 nput	passes	severa 	convo ut ona 	 ayers	w th	ReLu	
funct ons	and	Poo ng	 ayers.	The	 ast	 ayer	 s	a	fu y	connected	 ayer,	that	merges	the	data	to	a	1x1xn	vector	that	can	
d st ngu sh	n	c asses	and	determ nes	the	probab ty	for	each	c ass.	Source:	[64]	

A	convolutional	layer	consists	of	several	filters	that	form	filter	matrices.	The	filters	have	a	kernel	

size	(e.g.	3³).	Each	filter	slides	through	every	pixel	of	the	input	image	and	creates	a	filtered	output	

image	that	is	called	feature	channel,	activation	map	or	filter	map	(see	Figure	21).	The	filter	matrix	

consists	of	weights	 that	are	 learned	during	 training	with	 images	 (see	Section	2.3.4).	This	way,	a	

network	will	have	different	filters	depending	on	the	training	data.	
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F gure	21:	A	f ter	kerne 	of	s ze	3x3	s des	over	an	one-d mens ona 	grey-va ue	 mage	and	creates	a	feature	map.	The	
source	p xe s	and	the	convo ut ona 	kerne 	form	dot	products	for	each	p xe .	The	new	p xe 	va ue	 s	the	sum	of	these	dot	
products.	Source:	[71]	

As	a	single	filter	is	applied	on	the	whole	input,	so	the	parameters	are	shared.	Due	to	its	filters,	the	

network	processes	small	patches	of	the	image.	As	the	parameters	are	shared,	the	filters	are	not	

locally	fixed	and	can	recognize	features	if	they	are	translated	(see	Figure	22).	

	

F gure	22:	App y ng	the	shared	f ters,	a ows	to	recogn ze	a	cross	even	 f	not	a 	p xe s	match.	Source:	[72]	

A	layer	can	consist	of	several	filter	kernels	and	each	of	them	produces	a	feature	channel	as	output.	

They	are	stacked	along	the	depth	dimension.	In	the	subsequent	convolutional	layer,	again	the	same	

procedure	applies.	Thus,	the	number	of	feature	channel	outputs	increases.	To	keep	the	amount	of	

data	manageable,	the	images	are	subsampled:	pooling	layers	(see	Figure	23)	or	a	stride	value	of	2	

for	the	filter	decrease	the	size	of	the	resulting	feature	channels	(see	Figure	24).		

	
F gure	23:	A	poo ng	 ayer	that	 s	used	for	downsamp ng.	Source:	[64]	

The	stride	determines	the	sliding	step	of	the	filter	over	the	input	image.	
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F gure	24:	Max	Poo ng	funct on:	On y	the	max ma 	va ue	 n	the	area	of	2x2	 s	kept.	Through	th s,	the	 mage	 s	downsam-

p ed.	Source:	[64]	

As	shown	in	Figure	20	CNNs	for	classification	tasks	end	with	fully	connected	layers	to	output	a	cer-

tain	class.	Networks	for	segmentation	[73]	and	the	network	mentioned	in	this	thesis	(see	Section	

3.1)	to	solve	the	ill-posed	problem	in	QSM	use	transposed	convolutional	layers	to	create	images	as	

output.	

2.3.7 Transposed	Convolutional	Layer		

Max-pooling	layers,	stride	values	(>1)	and	omitting	zero-padding	decreases	the	size	of	the	output	

in	the	network	(downsampling).	To	increase	the	size	of	the	output,	in	terms	of	upsampling,	trans-

posed	convolutional	 layers	(also	called	deconvolutional	 layers)	are	used.	Referring	to	image	pro-

cessing,	an	input	pixel	(2-dimensional	space)	or	voxel	(3-dimensional	space)	is	dotwise	multiplied	

by	a	filter	matrix	to	create	an	output	(see	Figure	25).	Overlapping	outputs	of	adjacent	pixels	are	

summed	up.	

	
F gure	25:	The	 eft	 mage	shows	a	deconvo ut on	w th	f ter	s ze	3x3,	no	padd ng	and	no	str de.	The	r ght	s de	shows	a	

deconvo ut on	w th	f ter	s ze	3x3,	padd ng	and	str des.	Source:	[74].	

2.3.8 The	U-net	

The	U-net	is	the	base	architecture	for	the	network	used	in	this	thesis.	Originally,	it	was	invented	to	

perform	binary	segmentation	tasks	on	2-dimensional	image	data	[5].	The	left	side	of	the	network	

consists	of	convolutional	and	max-pooling	layers.	While	the	convolutional	layers	extract	features	of	

the	input,	the	max-pooling	layers	(red	arrows	in	Figure	26)	decrease	the	size	of	the	input	to	keep	

the	number	of	parameters	(induced	by	the	increasing	number	of	output	channels)	manageable.	The	

convolution	 layers	use	padding	to	keep	the	output	size	equal	to	the	 input	size	 in	every	network	

level.	The	right	part	uses	transposed	convolutional	layers	(green	arrows	in	Figure	26)	to	upsample	

Output	

Input	
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the	data.	Skip	connections	(grey	copy	and	crop	arrows	in	Figure	26)	help	to	preserve	the	position	

of	the	final	output	pixels	[5].		

	
F gure	26:	Arch tecture	of	the	U-net:	The	arrows	descr be	the	operat ons	 n	the	correspond ng	 ayers,	the	grey	numbers	
on	the	top	of	each	 ayer	descr be	the	number	of	channe s,	the	vert ca 	numbers	descr be	the	he ght	and	w dth	of	the	

data.	Source:	[5]	

Beyond	the	base	architecture,	several	enhancements	exist	that	solve	further	segmentation	tasks	

[73],	regression	tasks	[75]	or	can	handle	3-dimensional	data[76].		

2.3.9 Challenges	in	Deep	Learning		

In	deep	learning,	the	collection	of	training	data	and	the	choice	of	an	adequate	ANN	architecture	

and	its	hyperparameters	are	challenging	tasks.	A	major	problem	is	to	acquire	the	amount	and	qual-

ity	of	required	data.	The	data	might	be	not	suitable	for	the	purpose	to	be	solved	in	terms	of	noisi-

ness	or	erroneous	data	and	the	usage	of	irrelevant	data,	which	leads	to	inaccurate	predictions	[65].	

The	available	data	is	split	into	train	and	validation	data.	Both	are	evaluated	during	training.	How-

ever,	only	the	loss	of	the	train	data	(train	loss)	is	used	to	adjust	the	weights	of	the	ANN.	If	the	model	

predicts	with	high	accuracy	on	the	train	data	but	with	poor	accuracy	on	validation	data,	this	is	a	

sign	that	the	model	loses	its	ability	to	generalize,	which	is	called	overfitting	(see	Figure	27).		
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F gure	27:	The	accuracy	 s	a	 oss	funct on	that	 ncreases	wh e	 mprov ng.	In	overf tt ng,	the	va dat on	 oss	 s	worse	than	

the	tra n ng	 oss.	Strong	overf tt ng	even	shows	a	deter orat ng	va dat on	 oss.	Source:	[64]	

The	opposite	of	overfitting	 is	underfitting,	where	 the	model	of	 the	ANN	might	be	 too	simple	 to	

match	a	sought	complex	function.	A	possible	way	to	avoid	overfitting	is	to	increase	the	amount	of	

data	or	to	adjust	the	dropout	rate	[77].	Based	on	the	dropout	rate,	neurons	are	deactivated	with	a	

certain	probability.	

The	dropout	 rate	 is	a	 so-called	hyperparameter.	Hyperparameters	are	 in	contrast	 to	 the	weight	

parameters	fixed	during	training.	In	the	case	of	convolutional	layers	these	are	the	number	of	output	

channels	(number	of	filters	per	layer),	the	filter	size,	stride	size	and	the	use	of	zero-padding	to	keep	

the	original	 image	size	 (see	Section	2.3.6).	For	networks	 in	general,	 these	are	among	others	the	

learning	rate,	dropout	rate	and	depending	on	the	used	optimizer	further	parameters	as	momen-

tum.	
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3 Material	and	Methods	
The	problem	of	finding	the	susceptibility	distribution	out	of	a	given	field	map	is	an	image-to-image	

machine	learning	problem.	The	same	applies	for	the	task	of	removing	the	background	field	in	an	

image.	Section	3.1	describes	how	the	U-net	architecture	(see	Section	2.3.8)	was	adapted	to	process	

3D	data	and	solve	the	image-to-image	problems.	In	Section	3.3,	the	loss	functions	that	were	used	

for	training	and	validation	of	the	models	are	presented.	

Section	3.4	and	Section	3.5	describe	the	steps	of	creating	datasets	for	the	specific	problems	of	di-

pole	inversion,	background	field	removal	or	both	steps	in	one.	To	evaluate	the	ANNs	on	more	com-

plex	and	brain-like	structures	a	numerical	brain	phantom	was	used	(see	Section	3.7).	To	test	the	

model	on	real	in-vivo	data,	an	MRI	scan	of	a	healthy	volunteer	was	acquired.	All	details	to	this	scan	

can	be	found	in	Section	3.8.	Finally,	a	brief	overview	of	the	used	tools	and	libraries	is	given	in	Section	

3.9.	

3.1 DeepQSM	Baseline	Model	

Based	on	the	work	of	Rasmussen	et	al.	[3]	who	created	the	neural	network	DeepQSM,	the	same	

architecture	is	used	in	this	thesis	for	further	investigations	in	dipole	inversion	and	background	field	

removal.	The	implemented	neural	network	is	a	modification	of	the	neural	network	‘U-Net-Pytorch-

0.4’,	that	is	originally	used	for	semantic	segmentation	purposes	(see	Section	2.3.8)[78].	

According	to	Rasmussen	et	al.	[3],	the	feature	channels	are	reduced	to	accomplish	a	more	efficient	

processing	of	three-dimensional	data.	

	
F gure	28:	Arch tecture	of	the	DeepQSM	ANN	w th	the	used	 ayers,	act vat on	funct ons	and	number	of	f ters.	Source:	[3]	

While	the	‘U-Net-Pytorch-0.4’	is	a	network	for	semantic	segmentation,	the	DeepQSM	network	is	a	

regression	network	that	solves	the	ill-posed	field-to-source	inversion.	Semantic	segmentation	can	

be	seen	as	a	classification	problem	that	distinguishes	if	certain	pixels	in	an	image	belong	to	a	certain	

class	or	not.	Due	to	this,	it	uses	a	Softmax	function	[65]	at	the	end	of	its	model:	The	function	maps	

the	output	into	probabilities	for	the	different	label	classes	and	the	class	with	the	highest	probability	
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is	chosen	 for	 the	respective	pixel.	 In	case	of	 the	DeepQSM	network	 the	Softmax	 function	 is	not	

necessary	and	the	model	creates	an	image	self-contained.	Next	to	the	Softmax	function,	the	ReLu	

function	(see	Section	2.3.2)	in	the	last	layer	was	removed.	This	guarantees	that	ANN	can	also	output	

negative	values.		

As	DeepQSM	does	not	deal	with	classification	categories,	the	loss	function	Cross-entropy	was	re-

placed	by	the	Mean	Squared	Error	(MSE)	loss	function.	During	training,	the	function	measures	the	

average	of	all	squared	voxel	differences	between	created	network	output	image	𝑦A 	and	label	image	

𝑦A`.	

To	optimize	the	weights	during	training	the	Adam	optimizer	(see	Section	2.3.4)	with	default	config-

urations	 (learning	rate=0.001,	𝛽$=0.9,	𝛽?=0.99)	was	used.	To	avoid	overfitting	a	dropout	of	10%	

was	used.	The	trained	network	can	process	images	with	an	image	size	divisible	by	16,	greater/equal	

than	48³	and	creates	output	images	with	the	same	size	as	the	input.	This	neural	network	with	the	

described	 hyperparameter	 settings	 is	 used	 as	 benchmark	 for	 further	modified	 versions	 and	 hy-

perparameter	combinations	(Section	4.1.2).	

The	ANN	for	dipole	inversion	used	images	with	a	size	of	48³	during	training.	In	this	case,	a	batchsize	

of	32	and	a	number	of	20500	training	steps	was	chosen	according	to	Rasmussen	et	al.	[3].	For	the	

problem	of	background	field	removal	and	in	the	combination	with	dipole	inversion,	images	of	size	

128³	voxel	were	used.	As	the	computation	of	larger	images	requires	more	memory,	the	batch	size	

was	reduced	to	two	input	and	label	images.	Furthermore,	the	number	of	training	files	was	set	to	

1000	files.	The	difference	in	the	architecture	for	the	background	field	removal	model	and	the	model	

that	performs	both	QSM	steps,	was	an	additional	input	channel	for	mask	images	(see	Section	3.5,	

Section	3.6).	However,	next	to	the	DeepQSM	architecture	a	deeper	architecture	was	built	to	im-

prove	the	performance	of	dipole	inversion	(see	Section	3.2).		
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3.2 Deeper	Architecture	

A	tested	model	variation	in	Section	4.1.2	used	a	network	architecture	with	a	larger	receptive	field.	

By	a	larger	receptive	field	the	network	can	take	into	account	information	of	a	large	image	section.	

A	neuron	in	the	first	layer	is	connected	to	more	neurons	in	the	following	layers	and	the	ANN	can	

recognize	more	complex	visual	patters	in	the	image.	The	receptive	field	is	realized	by	a	further	level	

of	convolutions	with	max-pooling	and	deconvolution.	Figure	29:	Architecture	of	the	deeper	archi-

tecture	and	an	enlarged	receptive	field.	Adapted	from	[3]	shows	the	architecture	with	an	additional	

level	with	16	feature	maps.	

	

F gure	29:	Arch tecture	of	the	deeper	arch tecture	and	an	en arged	recept ve	f e d.	Adapted	from	[3]	

The	image	size	is	divided	by	two	in	each	of	the	five	layers.	Due	to	this,	the	input	image	has	to	be	

dividable	by	2a	instead	of	2�.	The	image	size	must	be	at	least	96	voxels,	so	the	image	in	the	lowest	

level	can	be	still	filtered	by	the	3³	kernel.	
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3.3 Evaluation	Criteria	and	Loss	Functions	

Inspired	by	QSMnet	[4],	for	different	trainings	the	MSE	training	loss	(described	in	Section	3.3.1)	was	

replaced	by	a	Mean	Absolute	Error	(MAE)	combined	with	an	image	gradient	loss	to	sharpen	object	

edges.	Furthermore,	several	validation	losses	were	used	to	evaluate	the	output	of	the	network	for	

non-training	data.	

In	case	of	masked	images	(see	Section	4.2,	Section	4.3)	the	sum	of	pixel	losses	was	divided	by	the	

number	of	pixels	where	the	mask	is	True	instead	of	the	number	of	all	pixels	in	the	image	(see	Section	

3.5.1).	

3.3.1 Weighted	Image	Gradient	Loss	

Similar	to	the	QSMnet	Mathieu	et	al.	[79],	an	additional	loss	that	measures	the	image	gradient	was	

added	to	sharpen	object	edges:	

𝐼𝑚𝑎𝑔𝑒	𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡	 𝑦`, 𝑦 ∇	y′ : 	 ∇	y : + +	 ∇	y′ ; 	 ∇	y ; + 	 ∇	y′ < 	 ∇	y < 	 (3.22)	
Here,	 the	 image	gradients	∇	of	the	output	𝑦	and	the	 label	 image	𝑦’	are	compared	 in	𝑥,	𝑦	and	𝑧	

direction.	In	combination	with	the	MAE	loss	and	a	constant	weight,	it	forms	the	total	loss	that	was	

used	by	different	trainings:	

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡	𝐿𝑜𝑠𝑠 𝑀𝐴𝐸 + 𝑤𝑒𝑖𝑔ℎ𝑡 ∙ 𝐼𝑚𝑎𝑔𝑒	𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡	𝐿𝑜𝑠𝑠	 (3.23)	
The	MAE	is	defined	as	follows,	where	𝑦A − 𝑦A`	is	the	difference	between	output	𝑦′	and	label	𝑦A:	

𝑀𝐴𝐸
1
𝑛

𝑌A 𝑌A`
D

A�$

	 (3.24)	

3.3.2 Linear	Regression	Intercept	and	Slope	

The	voxel	matrixes	of	output	and	label	images	were	flattened	to	obtain	two	one-dimensional	data	

series.	These	vectors	were	used	as	data	points	for	a	least-square	regression.	If	the	images	are	the	

same,	a	function	𝑦	with	a	slope	of	one	and	an	intercept	of	zero	is	fitted.		

The	slope	described	the	relation	between	output	and	label	and	if	the	values	of	the	reconstructed	

images	are	in	the	same	range	as	the	ones	of	the	label.	Both	slope	and	intercept	were	calculated	but	

only	the	slope	was	used	to	compare	the	results:	

𝑦 𝑦 𝑥 𝑏" + 𝑏$𝑥 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑠𝑙𝑜𝑝𝑒 ∙ 𝑥 (3.25)	

3.3.3 Structural	Similarity	(SSIM)	

The	structural	Similarity	Index	(SSIM)	[80]	uses	patches	of	two	digital	images	to	compare	their	sim-

ilarity.	SSIM	was	invented	to	create	a	measurement	that	is	rather	comparable	with	the	visual	per-

ception	of	humans	than	MSE	is.	In	order	to	do	so,	patches	of	image	𝑥	and	image	𝑦	are	examined	

for	their	luminance	(𝑙),	contrast	(𝐶)	and	structure	(𝑠).	



	

	

36	Material	and	Methods	

𝑙 𝑥, 𝑦
2𝜇:𝜇; + 𝐶$
𝜇:? + 𝜇;? + 𝐶$

	 (3.26)	

	

𝑐 𝑥, 𝑦
2𝜎:𝜎; + 𝐶?
𝜎:? + 𝜎;? + 𝐶?

	 (3.27)	

	

𝑠 𝑥, 𝑦
𝜎:; + 𝐶]
𝜎:𝜎; + 𝐶]

 (3.28)	

Here,	the	luminance	compares	the	means	𝜇:	and	𝜇;,	the	contrast	compares	the	standard	devia-

tions	𝜎:	and	𝜎;,	and	the	structure	measures	the	correlation	of	both	patches.	𝐶$,	𝐶?and	𝐶]	are	pos-

itive	constants	that	stabilize	the	terms	in	case	of	a	weak	denominator.	In	this	thesis	𝐶] =
¥¦
?
	and	

luminance,	contrast	and	structure	are	multiplied	equally	weighted,	which	yields	the	structural	sim-

ilarity	index:	

𝑆𝑆𝐼𝑀 𝑥, 𝑦
(2𝜇:𝜇; + 𝐶$)(2𝜎:; + 𝐶?)

(𝜇:? + 𝜇;? + 𝐶$)(𝜎:? + 𝜎;? + 𝐶?)
	 (3.29)	

The	size	of	the	patches	is	defined	by	the	window	size.	For	all	calculations	in	this	thesis,	a	window	

size	of	five	was	used.	For	𝐶$and	𝐶?	the	default	settings	were	chosen.	

3.3.4 Root-Mean-Squared	Error	

The	root-mean	squared	error	(RMSE)	that	is	also	called	root-mean	squared	deviation	is	the	root	of	

the	mean	squared	error.	

𝑅𝑀𝑆𝐸	𝑙𝑜𝑠𝑠 𝑦, 𝑦` =
(𝑦A − 𝑦′A)²�

A�$
𝑁

	

RMSE	is	a	measure	of	accuracy	that	is	always	non-negative	and	sensitive	to	outliers.	As	it	depends	

on	the	scale	of	the	measured	values,	results	can	only	be	compared	if	they	use	the	same	underlying	

dataset.	
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3.4 Data	Generation	for	the	Dipole	Inversion	Model	

This	section	describes	the	dataset	that	was	used	to	train	an	ANN	that	converts	an	input	image	of	a	

local	field	to	the	corresponding	image	of	its	susceptibility	map.	To	create	the	required	amount	of	

training	data,	a	data	generation	technique	for	virtual	data	inspired	by	the	paper	of	Rasmussen	et	

al.	[3]	was	used.	Voxel	images	with	a	size	of	48³	each	containing	100	three-dimensional	geometric	

forms	like	spheres,	cuboids,	ellipsoids	and	cylinders	were	generated.	Size,	voxel	intensity,	rotation	

angle	and	translation	in	space	were	chosen	randomly	for	each	object	in	the	images.	Table	2	gives	

an	overview	over	the	sizes	of	the	objects.	The	probability	of	generation	was	the	same	for	each	type	

of	geometric	object.	

Geometric	
Objects	

Radius	of	
Spheres	

Length	of	
Cuboids	

Radius	of	
Cylinders	

Length	of	
Cylinders	

Radius	of	
Ellipsoids	

Lower	limit	 0.1	 0.1	 1	 1	 0.1	

Upper	limit	 15	 20	 20	 40	 20	

Tab e	2:	S ze	of	the	geometr c	objects	 n	the	dataset	for	d po e	 nvers on	w th	s ze	48³	voxe .	

Affine	transformations	were	used	to	rotate	and	shift	the	objects	and	realize	different	orientations.	

All	objects	were	interpolated	(first	order	spline	interpolation	to	prevent	ringing	artifacts).	The	cre-

ated	images	constitute	the	set	of	virtual	data	for	training,	validation	and	evaluation	purposes.	They	

are	also	referred	to	as	ground	truth	 in	the	following	chapter	about	dipole	 inversion.	 In	terms	of	

MRI,	the	images	represent	the	susceptibility	map	(or	susceptibility	distribution)	that	was	used	as	

label	data	during	training.	A	susceptibility	map	shows	the	tissue	specific	values	for	magnetic	sus-

ceptibility	by	its	value.	The	objects	were	randomly	assigned	susceptibility	values	between	-0.5	and	

0.5.	In	case	of	superimposed	objects,	the	corresponding	values	cumulated.		

While	the	transformation	of	a	measured	field	perturbation	to	the	susceptibility	map	is	an	inverse	

problem,	the	susceptibility	map	to	local	field	perturbation	can	be	obtained	by	a	simple	convolution	

in	Fourier	space	(see	Section	2.2.2).	Due	to	this,	it	is	possible	to	create	training	data	to	overcome	

the	ill-posed	dipole	 inversion.	As	explained	in	Figure	30	each	ground	truth	image	was	convolved	

with	the	dipole	kernel	in	k-space	to	obtain	the	corresponding	forward	solution	image.	The	forward	

solution	symbolizes	the	corresponding	measured	local	field	of	the	susceptibility	map.	For	training	

and	validation,	 the	forward	solution	served	as	 input	while	the	ground	truth	served	as	 label	 (see	

Figure	30).		
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F gure	30:	Overv ew	of	data	creat on	and	tra n ng:	The	ground	truth	was	convo ved	w th	the	d po e	kerne 	to	obta n	the	
forward	so ut on.	The	ground	truth	–	represent ng	the	suscept b ty	map	–	served	as	 abe 	wh e	the	forward	so ut on	–	
represent ng	the	f e d	perturbat on	–served	as	 nput	wh e	tra n ng.	Through	th s,	the	ANN	 earns	to	overcome	the	 -
posed	d po e	 nvers on	and	maps	a	 oca 	f e d	to	 ts	correspond ng	suscept b ty	map.	

Finally,	the	image	values	of	the	images	were	standardized.	To	do	so	the	standard	deviation	of	the	

values	in	the	susceptibility	map	was	calculated	excluding	values	of	zero.	Zeros	were	excluded	be-

cause	they	form	the	background	of	the	image.	The	ground	truth	was	divided	by	its	standard	devia-

tion	and	multiplied	with	0.2.	The	corresponding	forward	solution	used	the	same	scaling	factor.	Fig-

ure	31	shows	an	example	of	the	final	distribution	of	both	a	ground	truth	and	a	forward	solution	

image.	Due	to	the	random	generation	of	the	data,	the	distribution	can	differ	from	image	to	image.	

However,	all	ground	truth	images	and	all	forward	solution	images	had	the	same	standard	deviation.	

To	show	optimal	performance	the	trained	ANN	should	only	be	applied	to	input	data	with	values	in	

the	range	of	the	forward	solution	images.	Due	to	this,	it	is	important	that	the	dataset	represents	

the	values	of	the	in-vivo	data	that	is	tested	later.	

	
F gure	31:	:	H stogram	of	an	exemp ary	ground	truth	and	 ts	correspond ng	forward	so ut on	 mage.	

In	total,	71,400	pairs	of	ground	truth	and	forward	solution	images	were	created	and	split	into	train	

data	(70,400	ground	truth	-	forward	solution	pairs)	and	validation	data	(1,000	ground	truth	 	for-

ward	solution	pairs).		 	
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3.5 Data	Generation	for	the	Background	Field	Removal	Model	

Background	field	removal	(BFR)	describes	the	process	of	removing	field	inhomogeneities	caused	by	

susceptibility	sources	outside	of	the	ROI	and	remaining	only	the	local	field	that	shows	field	pertur-

bations	of	susceptibilities	inside	the	ROI	(see	Section	2.2.5).	The	ANN	for	background	field	removal	

used	almost	the	same	DeepQSM	architecture	as	described	in	Section	3.1.	However,	the	ANN	for	

BFR	used	images	with	size	of	128³	instead	of	48³	voxel	and	uses	two	concatenated	input	images	as	

input	channel.	By	using	larger	images,	the	network	could	learn	to	remove	fields	of	sources	that	are	

not	in	the	receptive	field	of	the	ANN.	The	input	are	masked	images	containing	total	fields	concate-

nated	with	the	respective	images	of	the	applied	masks.	Using	masked	images,	the	ANN	learned	to	

determine	the	ROI	of	the	corresponding	input	image.	As	label	served	the	corresponding	local	field	

image.	The	functionality	is	shown	in	Figure	32.	

	
F gure	32:	Overv ew	of	ANN	for	BFR.	The	background	f e d	 s	removed	from	the	tota 	f e d.	Th s	way	on y	the	 oca 	f e d	
rema ns.	The	mask	determ nes	the	ROI.	A	d po e	 nvers on	 s	not	part	of	the	tra n ng.	

In	the	following	section,	the	creation	of	data	for	the	ANNs	trained	for	background	field	removal	is	

explained.	The	created	datasets	were	also	used	for	the	ANNs	that	perform	both	background	field	

removal	and	dipole	inversion.	To	optimize	the	results	three	different	datasets	were	tested	for	train-

ing:	

1. Dataset	Offset	(see	Section	3.5.2)	

2. Dataset	External	Susceptibilty	sources	χ (see	Section	3.5.3)	

3. Dataset	Stronger	External	χ (see	Section	3.5.4)	

The	datasets	differ	in	the	origin	of	their	background	field	and	due	to	this	in	their	standard	deviation	

of	values.	Especially	the	standard	deviation	of	the	total	field	differs	as	the	strength	of	the	corre-

sponding	background	field	varies.	The	creation	of	the	three	datasets	is	explained	in	the	following	

sections.	
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3.5.1 Mask,	Susceptibility	Map	and	Local	Field	

To	create	random	masks,	the	original	position	of	random	objects	was	limited	to	the	area	around	

the	image	center	and	the	value	set	to	only	positive	ones.	Due	to	the	number	of	objects,	the	area	in	

the	center	was	covered	completely	with	objects.	This	area	was	assigned	to	True	while	the	area	with	

no	objects	was	assigned	to	False	(see	Figure	33).	

	
F gure	33:	Exemp ary	mask:	 Left:	Var ous	objects	 cover	 the	 mage	center.	A	d fferent	 co ormap	was	chosen	 to	better	
d fferent ate	between	the	va ues.	R ght:	The	resu t ng	mask	w th	va ues	of	1	(True)	 n	the	center	and	0	(Fa se)	 n	the	area	
around.	

The	images	were	generated	in	the	same	manner	as	for	dipole	inversion	with	DeepQSM	(see	Section	

3.4)	but	with	a	size	of	128³.	In	comparison	to	the	images	used	for	dipole	inversion,	these	images	

contain	500	instead	of	100	objects	each	larger	in	size.		

Afterwards,	these	images	were	multiplied	with	random	mask	images	(shown	in	Figure	33).	The	re-

sulting	images	were	the	ground	truth	labels	for	the	ANN	that	should	perform	both	background	field	

removal	and	dipole	inversion	(see	Section	3.6).	In	the	case	of	the	dataset	created	solely	for	BFR,	

these	susceptibility	labels	were	convolved	with	the	dipole	kernel	to	obtain	the	local	field.	The	local	

field	appeared	in	the	ROI	and	outside	of	it.	Due	to	this,	the	field	map	was	again	masked	so	the	local	

field	outside	of	the	ROI	was	erased.	All	steps	are	visualized	in	Figure	34	below.	This	masked	local	

field	was	the	ground	truth	label	for	the	ANN	that	only	performs	background	field	removal.	

	
F gure	34:	Steps	to	create	a	masked	 oca 	f e d	map:	F rst	a	suscept b ty	map	was	created	and	masked.	By	a	convo ut on	
w th	the	d po e	kerne 	the	 oca 	f e d	was	created.	F na y,	the	 oca 	f e d	was	masked.	
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3.5.2 Total	Field	created	with	Offset	

In	this	case,	to	the	ROI	of	the	susceptibility	labels	an	offset	of	-9	was	added	to	create	the	total	fields.	

This	simulated	the	strong	susceptibility	difference	between	tissue	(susceptibilities	around	-9	ppm)	

and	air	 (susceptibility	of	 zero).	 The	masked	 susceptibility	 images	with	an	offset	of	 -9	 in	 the	ROI	

towards	the	area	outside	of	the	ROI	were	convolved	with	the	dipole	kernel	and	were	multiplied	by	

the	non-dilated	masks	afterwards.	The	created	images	serve	as	total	fields	with	strong	field	pertur-

bations	produced	by	the	high	susceptibility	interface	between	ROI	and	mask.	The	total	field	were	

the	 input	 for	 the	 training	of	 the	BFR	and	the	BFR	plus	dipole	 inversion	models	 (see	Section	4.2,	

Section	4.3).	

	
F gure	35:	Creat on	of	tota 	f e d	by	an	offset:	A	h gh	suscept b ty	change	at	the	boundary	of	the	ROI	was	s mu ated	by	
add ng	va ues	of	-9	to	the	area	to	the	ROI	 n	the	suscept b ty	map.	

In	total	2000	image	pairs	were	created.	1800	were	used	for	training	and	200	for	validation.	

3.5.3 Total	Field	created	with	external	Susceptibility	Sources	

While	the	skullcap	is	surrounded	by	air,	the	area	below	the	brain	is	predominantly	tissue	with	sim-

ilar	susceptibility.	However,	the	paranasal	sinuses	form	high	contrasts	of	air-tissue	interfaces.	To	

reflect	these,	no	offset	was	added	to	the	ROI.	Instead,	in	the	area	outside	of	the	ROI	strong	suscep-

tibility	sources	(susceptibility	values	of	1 5)	were	added	to	each	image.	For	this	dataset,	the	range	

of	the	strong	external	susceptibilities	was	between	4	ppm	and	6	ppm	and	a	radius	of	5 10	voxel.	

The	forward	solution	was	calculated	and	the	result	was	masked	to	keep	the	total	field	within	the	

ROI.	Furthermore,	in	the	ROI	area,	cylinders	with	a	slightly	higher	susceptibility	(0.1 0.3)	than	the	

other	objects	were	added.	The	cylinders	simulated	veins	 in	 the	brain.	 In	 total,	1200	 image	pairs	

were	created.	1000	were	used	for	training	and	200	for	validation.	

3.5.4 Total	Field	created	with	stronger	external	Susceptibility	Sources	

In	a	further	dataset	variation,	the	radius	of	the	strong	susceptibilities	was	enlarged	to	15 20	voxel	

while	the	ROI	was	reduced.	Furthermore,	the	susceptibility	range	was	set	to	the	range	3	ppm	to	

15	 ppm.	 Thus,	 the	 created	 images	 represent	 strong	 external	 susceptibility	 sources,	 that	 cause	

strong	fields	reaching	into	the	ROI.	As	they	are	masked	afterwards,	the	sources	are	not	visible	and	

simulate	a	signal	loss.	
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3.6 Data	Generation	for	the	Background	Field	Removal	and	Dipole	Inver-
sion	Model	

In	addition	to	the	ANN	for	BFR,	a	further	model	was	trained	that	used	the	same	architecture	and	

input	images.	In	contrast	to	the	BFR	model,	susceptibility	maps	were	used	as	labels.	This	way,	the	

ANN	should	learn	to	solve	BFR	and	dipole	inversion	in	a	single	step.	Figure	36	visualizes	the	func-

tionality	of	this	model.	

	
F gure	36:	The	ANN	used	the	correspond ng	suscept b ty	map	as	 abe .	The	neura 	network	 earned	background	f e d	
remova 	and	d po e	 nvers on	 n	one	run	Resu ts.	

Similar	to	the	BFR	model,	three	different	datasets	as	described	in	Section	3.5	were	used	for	training.	
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3.7 Numerical	Brain	Phantom	

To	evaluate	the	model’s	ability	to	apply	QSM	on	complex	brain-like	structures,	a	numerical	brain	

phantom	was	used	as	input.	For	this,	a	T1-weighted	MR	magnitude	image	of	a	brain	was	acquired.	

Different	brain	regions	like	grey	and	white	matter,	deep	matter	nuclei	or	the	corpus	callosum	were	

segmented	and	assigned	to	a	theoretic	susceptibility	value	for	this	region.	Afterwards,	 the	parts	

were	added	together	to	form	a	susceptibility	map	of	a	brain.	The	image	had	a	size	of	250x228x310	

voxel.	Due	to	the	restricted	memory,	the	image	was	down-sampled	to	a	size	of	128x144x176	voxel.	

The	susceptibility	map	was	convolved	with	the	dipole	kernel	to	obtain	a	corresponding	local	field	

map.	The	local	field	map	served	as	input	for	the	ANN	for	dipole	inversion	(see	Section	4.1.4).	To	

evaluate	the	ANN	for	BFR	or	the	ANN	that	performs	both	steps	in	a	single	step,	the	total	field	images	

was	created	in	a	similar	way	as	described	for	the	synthetic	data	in	Section	3.5.	Here,	the	total	field	

images	were	created	with	strong	external	 susceptibility	 sources.	The	dataset	with	offset	had	an	

additional	offset	of	0.4	ppm.	The	mask	that	was	needed	for	this	was	created	by	thresholding	and	

morphologic	erosion	similar	to	the	steps	described	in	Section	3.8.	

In	contrast	 to	 in-vivo	data,	 the	numerical	brain	phantom	has	 the	advantage	that	 the	results	are	

comparable	to	a	ground	truth.	A	disadvantage	is	that	fine	structures	as	vessels	are	missing	and	that	

the	creation	of	 the	 total	 field	may	not	be	comparable	 to	 the	 total	 fields	 in	 scan	data.	Figure	37	

shows	a	histogram	of	its	susceptibility	map	and	the	local	field	map.	In	contrast	to	the	train	dataset,	

the	values	of	the	numerical	brain	susceptibility	map	are	not	normally	distributed.	

	
F gure	37:	H stogram	of	suscept b ty	map	and	 oca 	f e d	map	of	the	numer ca 	bra n	phantom.	The	suscept b ty	map	
shows	no	norma 	d str but on.	
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3.8 In	vivo	Scan	Data	

A	healthy	volunteer	was	scanned	using	a	commercial	MRI	scanner	(Ingenia	3T,	Philips,	Best,	The	

Netherlands)	using	a	15-channel	head	coil.	An	RF-spoiled	gradient	echo	sequence	was	acquired	with	

TR=30.5	ms,	4	echos	at	3.8,	11.4,	19.0	and	26.6	ms,	voxel	size=1³	mm,	flip	angle	of	14°,	transverse	

field	direction,	Compressed	SENSE	acceleration	factor	of	2.5	and	scan	duration	of	6:25	minutes.	

The	acquired	data	consists	of	four	magnitude	and	phase	data	images	at	different	echo	times.		

	

As	GRE	uses	no	180°	RF	pulse,	 field	perturbations	cause	a	phase	shift	 that	changes	 linearly	with	

time.	As	shown	in	Figure	5	GRE	acquires	several	recalled	echoes	in	a	single	run.	Images	of	a	higher	

echo	time	𝑇𝐸	have	more	wrapping	artefacts	(as	the	phase	accumulates	over	time)	but	are	more	

precise	to	detect	small	field	perturbations.	The	four	phase	images	of	the	four	echo	times	are	used	

to	estimate	a	single	field	map.	Figure	38	shows	the	four	phase	images	and	the	resulting	field	map	

with	wrapping	artifacts.	

	
F gure	38:	Phase	 mages	and	the	correspond ng	f e d	map.	A 	 mages	show	wrapp ng	art facts.	

As	the	phase	image	values	were	in	millirad	the	images	were	scaled	to	be	in	the	range	of	[−𝜋, 𝜋]	and	

phase	unwrapping	(using	the	unwrap_phase	function	by	the	skimage.restoration	module)	was	per-

formed	afterwards	(see	Section	2.2.4).	

	
F gure	39:	F e d	map	w th	wrapp ng	art facts	on	the	 eft	and	after	unwrapp ng	on	the	r ght.	Both	 mages	show	the	tota 	
f e d.	

A	corresponding	mask	was	designed	using	the	magnitude	image.	To	do	so,	thresholding	and	four	

iterations	of	binary	closing	(from	the	scipy.ndimage	morphology	module)	were	applied.	
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F gure	40:	The	magn tude	 mage	on	the	 eft	was	used	to	create	the	mask	on	the	r ght	for	further	process ng	steps.	In	the	
area	c ose	to	the	s nuses	a	suscept b ty	art fact	was	propagated	to	the	mask.	

To	apply	both	mask	and	masked	field	map	(total	field)	to	the	ANN,	both	images	were	cropped	and	

the	axes	of	them	changed	(so	𝐵"	points	into	z-direction).	To	use	the	scan	image	as	an	input	for	the	

ANNs	it	had	to	be	converted	from	the	unit	Hz	to	the	unit	ppm	(parts	per	million)	because	the	ANN	

was	trained	with	data	in	ppm.	Equation	(3.30)	describes	the	conversion.	Parts	per	million	is	usually	

used	to	describe	the	field	homogeneity	of	MRI	scanners	[81].	It	is	independent	from	𝐵"	of	the	scan-

ner.	In	case	of	the	field	map,	it	describes	the	field	perturbation	caused	by	susceptibility	towards	the	

magnetic	field	𝐵"	and	can	be	written	as	10�¨	in	SI	units.	

𝐹𝑖𝑒𝑙𝑑	𝑚𝑎𝑝	𝐻𝑧 ∙
1

3	𝑇 ∙ 42.6	𝑀𝐻𝑧𝑇
𝐹𝑖𝑒𝑙𝑑	𝑚𝑎𝑝	10 ¨ 𝐹𝑖𝑒𝑙𝑑	𝑚𝑎𝑝	𝑝𝑝𝑚	 (3.30)	
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3.9 Libraries	and	Tools	

In	the	following,	the	technologies	used	in	this	thesis	are	briefly	described	to	give	an	insight	to	the	

technical	implementation.	It	focuses	on	the	main	technologies	und	its	purposes	and	is	not	a	com-

prehensive	list.	

Usage	of	Python	and	Python	Libraries	

The	source	code	for	data	generation,	data	transformation,	training	and	validation	is	written	in	the	

Python	programming	language	[82].	The	ANN	model	is	built	with	Pytorch	[78,83],	a	machine	learn-

ing	 library	for	Python.	 It	provides	components	to	accelerate	the	 implementation	of	 layers,	data-

loading	and	further	relevant	tasks	in	training	and	validation.	The	library	Nibabel	is	used	to	save	and	

load	3D	images	[84].	By	using	the	function	‘seed’	of	the	numpy	and	random	module,	the	training	

data	was	reproducible.		

Tools	for	Hyperparameter	Optimization	

To	compare	results	and	hyperparameters	the	software	tool	‘Sacred	Python’	was	used	[85].	In	com-

bination	with	‘Omniboard’	results	and	parameters	can	be	visualized	[86].	

Evaluation	of	different	Algorithms	for	BFR	and	Dipole	Inversion	

To	compare	the	results	with	established	methods,	that	do	not	use	deep	learning,	the	Matlab	Sepia	

tool	[87]	was	used.	Sepia	builds	on	the	Matlab	FANSI	[88],	MEDI	[89]	and	STI	suite	[90]	toolboxes	

and	facilitates	to	build	data	pipelines	for	phase	unwrapping,	background	field	removal	and	dipole	

inversion.	
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4 Results	
This	chapter	is	split	into	three	top-level	sections.	Section	4.1	describes	the	results	achieved	with	the	

DeepQSM	baseline	model	for	dipole	inversion.	All	ANNs	were	evaluated	with	synthetic	data	con-

sisting	of	geometric	objects,	a	numerical	brain	phantom	and	in-vivo	data.	The	outputs	of	the	ANN	

for	dipole	inversion	on	in-vivo	images	were	compared	to	the	outputs	of	the	STAR-QSM	algorithm.	

Furthermore,	the	limitations	of	the	ANN	were	investigated.	Section	4.2	describes	the	results	for	the	

ANN	that	performs	only	background	field	removal.	The	performance	on	in-vivo	images	was	com-

pared	to	the	VSHARP	algorithm.	Section	4.3	shows	the	results	of	an	ANN	that	combines	both	back-

ground	field	removal	and	dipole	inversion	in	one	step.	Again,	the	STAR-QSM	algorithm	was	chosen	

to	evaluate	the	model	performance.	The	output	of	the	one-step	solution	was	compared	to	the	out-

put	created	using	both	the	ANN	for	BFR	and	the	ANN	for	dipole	inversion.		

4.1 ANN	for	Dipole	Inversion	

In	this	section,	the	results	of	the	model	for	dipole	inversion	are	presented.	The	model	and	its	vari-

ations	were	tested	on	validation	data.	Furthermore,	experiments	were	conducted	to	evaluate	the	

ability	 to	 deal	with	 features	 that	were	not	 included	 in	 the	dataset	 for	 training.	Afterwards,	 the	

model	was	tested	on	a	numerical	brain	phantom	and	on	preprocessed	in-vivo	data	to	evaluate	its	

suitability	for	practical	applications	e.g.	in	clinics.	

4.1.1 DeepQSM	as	Baseline	for	Evaluation		

The	DeepQSM	architecture	and	its	hyperparameters	(see	Section	3.1)	served	as	baseline	to	evaluate	

the	changes	made.	Figure	41	and	Figure	42	show	the	learning	progress	during	training.	While	the	

outputs	of	the	model	show	fast	improvements	in	the	beginning,	the	improvements	in	later	itera-

tions	are	not	so	clearly	visible.	However,	the	logarithmic	plot	of	the	losses	Figure	42	shows	that	the	

model	still	improves	after	20000	steps.	Furthermore,	the	decrease	of	train	and	validation	loss	by	

the	same	amount	indicates	that	the	model	does	not	overfit	while	training.	

	

F gure	41:	Progress	 n	 mage	reconstruct on	dur ng	tra n ng.	
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F gure	42:	Learn ng	progress	dur ng	tra n ng.	Both	tra n	and	va dat on	 osses	 mprove.	

The	performance	is	demonstrated	in	Figure	43	where	the	output	image	of	the	ANN	was	compared	

with	the	corresponding	ground	truth	image.	The	ANN	attained	a	RMSE	of	0.218	ppm	and	a	SSIM	of	

0.948,	what	is	slightly	better	than	the	RMSE	attained	in	the	last	validation	during	training	(see	Table	

3).	Depending	on	the	images	used,	the	losses	differ	slightly.	

	

F gure	43:	A	48³	voxe 	 mage	of	the	va dat on	dataset	was	tested	w th	the	DeepQSM	base ne	mode .	

4.1.2 Improving	Model	Performance		

To	improve	the	performance	several	variations	referring	hyperparameters,	dataset	and	architec-

ture	were	investigated.	For	each	training,	only	a	single	modification	was	changed.		

Learning	Rate	

First,	the	learning	rate	was	increased	by	a	factor	of	10	to	0.01.	The	idea	behind	was	to	accelerate	

the	convergence	to	the	minimal	loss.	However,	the	outcome	showed	a	RMSE	of	0.1734	ppm	com-

pared	to	0.0236	ppm	to	the	baseline	model.	The	learning	rate	seems	to	be	too	high,	so	the	minimum	

is	 skipped	 (see	Figure	18).	 In	 the	 logarithmic	 training	plot	of	 the	DeepQSM	baseline	model	 (see	

Figure	43)	two	peaks	are	visible	around	14000	and	18000	steps.	To	avoid	such	peaks	the	learning	

rate	was	decreased.	Furthermore,	after	20500	training	steps	the	DeepQSM	baseline	model	had	a	

higher	RMSE	loss	of	0.0385.	
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Weighted	Image	Gradient	Loss	

Inspired	by	QSMnet	[4]	the	weighted	image	gradient	loss	(WGL)	described	in	Section	3.3.1	was	used	

for	optimization.	The	validation	loss	during	training	showed	improved	outcomes	(0.0217	ppm).	Fig-

ure	44	shows	the	comparison	between	output	and	ground	truth.	In	Section	4.1.5	the	model	is	also	

tested	with	in-vivo	data	input.		

Kernel	Size	

The	kernel	size	was	changed	from	3³	to	5³	to	increase	the	number	of	learnable	parameters	and	to	

increase	the	receptive	field.	However,	the	performance	did	not	improve.	

Number	of	Steps	

The	number	of	steps	was	increased	to	check	if	the	model	continues	to	converge.	The	model	reached	

an	improved	loss	of	0.0201.	Figure	44	shows	the	comparison	between	output	and	ground	truth.		

Dataset	with	larger	image	size	

The	images	for	training	were	increased	in	size	from	48³	voxel	to	128³	voxel.	This	allowed	the	ANN	

to	remove	fields	of	sources	from	a	greater	distance.	In	total,	1700	images	were	used	for	training	

and	100	for	validation.	In	contrast	to	the	previous	models,	no	white	veil	is	visible	in	the	128³	voxel	

image	in	Figure	44.	The	model	was	later	tested	with	in-vivo	data	in	Section	4.1.5.	

Deeper	ANN	

The	model	architecture	was	changed	to	be	able	to	down	sample	the	input	image	by	an	additional	

layer	level	(see	Section	3.2).	Through	this,	the	receptive	field	of	the	ANN	enlarges.	The	dataset	with	

128³	voxel	was	used	as	the	model	had	to	use	input	images	with	a	size	of	at	least	96³	voxels.	Due	to	

this,	it	cannot	be	evaluated	on	48³	voxel	images.	Like	the	previous	model	that	was	trained	with	128³	

voxel	 images	but	the	same	architecture	as	DeepQSM,	there	is	no	veil	visible.	 In	comparison,	the	

deeper	ANN	shows	slightly	worse	losses	than	the	one	using	the	DeepQSM	architecture	but	larger	

training	data.	

Dataset	with	small	strong	susceptibilities		

To	improve	the	ability	to	detect	vessels	in	in-vivo	data	a	new	dataset	with	cylinder	shaped	objects	

was	created.	These	objects	had	a	higher	susceptibility	then	the	surrounding	objects	(0.1-0.3	ppm).	

Afterwards,	the	images	were	scaled	as	described	in	Section	3.4.	The	images	of	this	dataset	had	a	

size	of	48³	voxel.	During	 training,	 the	ANN	had	a	higher	 loss	of	0.0328	ppm	than	 the	DeepQSM	

baseline	model.	

Table	3	shows	the	validation	losses	of	different	model	variations	during	their	last	training	iteration.	

The	values	are	averaged	over	multiple	images.	For	the	validation	of	the	models	that	used	48³	voxel	

data,	1000	validation	images	were	evaluated	towards	their	voxel	wise	loss	and	averaged.	For	the	

ANNs	that	used	128³	voxel	images	only	100	images	were	used	to	average	the	losses.	
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Model	 RMSE	in	ppm	 slope	 SSIM	
DeepQSM	baseline	 0.0236	±	0.0128	

	

0.985	

	

0.934	±	0.018	

	

Learning	rate=0.01	 0.1734	±	0.0752	

	

1.054	 0.229	±	0.041	

	

Learning	rate=0.0001	 0.0385	±	0.0268	

	

1.008	 0.837	±	0.052	

	

Weighted	gradient	loss	 0.0217	±	0.0116	

	

1.016	 0.946	±	0.015	

	

Kernel	size	5³	 0.0280	±	0.0173	

	

1.002	 0.904	±	0.028	

	

41000	steps	 0.0201	±	0.0120	

	

1.013	 0.952	±	0.015	

	

Dataset	 with	 cylinders	

(StD	scaled)	

0.0328	±	0.0221	

	

1.014	 0.885	±	0.040	

	

Deeper	 Model	 +128³	

voxel	Dataset	

0.0161	±	0.0103	 0.956	 0.970	±	0.0388	

Dataset	128³	voxel	 0.0177	±	0.0113	 0.959	 0.968	±	0.0387	

Tab e	3:	Overv ew	of	the	va dat on	 osses	ca cu ated	 n	the	 ast	tra n ng	step.	

Models	with	an	improved	performance	were	tested	on	two	images	of	size	48³	voxel	and	128³	voxel.	

A	 larger	 input	 image	makes	 it	possible	to	evaluate	various	objects	 (e.g.	spheres	and	cylinders	of	

different	size)	at	once	and	to	notice	artifacts	in	the	surrounding.	Figure	44	shows	image	results	of	

the	two	input	images	off	different	size	and	the	differences	towards	the	ground	truth.	Table	3	shows	

the	corresponding	losses.	
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F gure	44:	Eva uat on	of	d fferent	ANNs	us ng	an	 nput	 mage	of	s ze	48³	voxe 	and	one	of	128³	voxe 	

All	ANNs	perform	better	on	input	images	of	the	same	size	as	their	training	data	(see	Table	3	).	Im-

ages	that	were	trained	on	smaller	images	show	a	white	veil	in	the	output	image	that	is	not	visible	if	

they	were	trained	with	larger	images.	The	ANN	that	was	trained	with	41000	steps	shows	less	veil	

than	the	DeepQSM	Baseline	Model	and	the	WGL	Model.	
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	 48³	voxel	Input	Image	 128³	voxel	Input	Image	
Model	 RMSE	[ppm]	 slope	 SSIM	 RMSE	[ppm]	 slope	 SSIM	

Baseline	 0.0218	 1.021	 0.9480	 0.0392	 1.056	 0.765	

WGL	 0.0189	 1.014	 0.9542	 0.0412	 1.045	 0.715	

41000	Steps	 0.0176	 1.005	 0.958	 0.0309	 1.030	 0.770	

Larger	Data	 0.0464	 1.038	 0.831	 0.0135	 1.008	 0.977	

Deeper	 No	comparison	possible	as	 this	ANN	can	

only	process	images	of	size	>=	96³	

0.01761	 0.952	 0.967	

Tab e	4:	Eva uat on	of	d fferent	ANNs	us ng	an	 nput	 mage	of	s ze	48³	voxe 	and	one	of	128³	voxe .	

4.1.3 Stability	of	DeepQSM		

The	performance	of	a	trained	ANN	depends	on	the	features	presented	during	training.	This	section	

describes	the	ability	of	DeepQSM	to	deal	with	features	that	were	not	part	of	the	dataset.	This	in-

cludes	larger	shapes	and	susceptibility	values,	noise,	new	patterns	of	field	perturbations	and	a	dif-

ferent	scaling	of	the	input.	

4.1.3.1 Strong	Susceptibilities	

In	the	following	experiment,	the	model	was	tested	towards	its	ability	to	deal	with	strong	suscepti-

bility	sources	and	large	volumes	that	were	not	included	in	the	training	data	set.	As	the	strength	of	

the	internal	field	of	a	susceptibility	source	depends	on	its	susceptibility	value	and	its	volume	[35]	

this	experiment	demonstrates	 the	correction	of	strong	 fields	caused	by	susceptibility.	 In	case	of	

large	volumes,	 the	 field	decreases	 less	 rapidly	with	distance	and	 the	model	 can	be	 investigated	

towards	its	ability	to	correct	field	perturbations	that	are	far	away	from	its	origin.	

The	ANN	was	trained	with	susceptibility	values	with	a	standard	deviation	of	0.2	ppm	around	zero.	

Here,	it	was	confronted	with	a	much	stronger	susceptibility	of	1	ppm	(bottom	left	in	Figure	45)	in	

the	input.	In	the	input	image,	the	typical	dipole	field	(compare	to	Figure	45)	is	apparent.	The	strong	

field	of	the	source	causes	artifacts	in	the	close	surrounding	area.		

	
F gure	45:	Added	strong	suscept b ty	source	w th	χ=1ppm	r=10.	
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Figure	46	shows	the	results	of	an	experiment	with	an	added	susceptibility	of	0.3	ppm.	Here	the	

differences	are	comparable	to	the	other	objects	as	added	objects	like	the	one	of	0.3	ppm	were	part	

of	the	train	dataset.	

	
F gure	46:	Added	strong	suscept b ty	source	w th	χ=0.3	ppm	r=10.	

In	the	next	experiment,	 the	volume	was	enlarged	to	32	pixels	while	the	susceptibility	was	again	

0.3	ppm.	The	strong	field	with	wide	reach	was	not	removed.	Furthermore,	the	susceptibility	values	

inside	of	the	additional	source	were	not	reconstructed	correctly	(see	Figure	47).	

	
F gure	47:	Added	strong	suscept b ty	source	w th	χ=0.3	ppm	and	rad us=32p xe .	

To	separate	the	effect	of	the	strong	source	from	the	other	errors	the	difference	image	of	the	ANN	

output	without	and	with	additional	strong	susceptibility	were	subtracted	from	each	other	in	Figure	

48.	
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F gure	48:	D fference	 mage	of	the	d fference	 mage	w th	and	w thout	strong	suscept b ty	source.	The	resu t ng	 mage	

shows	on y	art facts	produced	by	the	add t ona 	source.	

The	experiment	of	the	additional	strong	susceptibility	with	radius=32	and	χ=0.3	was	repeated	with	

the	deeper	ANN	(see	Figure	48)	and	the	ANN	that	was	trained	with	larger	images	(see	Figure	49).	

Both	show	less	artifacts	in	the	surrounding	area.	The	Deeper	ANN	shows	no	problems	to	reconstruct	

the	susceptibility	values	of	the	additional	source.	According	to	the	losses	in	Table	5	it	is	not	possible	

to	say	that	one	is	better	than	the	other.	However,	both	perform	better	than	the	DeepQSM	Baseline	

Model.		

	
F gure	49:	Added	strong	suscept b ty	source	w th	χ=0.3	ppm	and	rad us=32	p xe 	eva uated	w th	the	ANN	that	was	

tra ned	w th	 mages	of	s ze	128³	voxe 	and	the	DeepQSM	arch tecture.	

	
F gure	50:	Added	strong	suscept b ty	source	w th	χ=0.3	ppm	and	rad us=32	p xe 	eva uated	w th	the	ANN	that	was	

tra ned	w th	 mages	of	s ze	128³	voxe 	and	deeper	arch tecture.	
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Table	5	summarizes	the	results	of	the	different	experiments.	The	experiments	show	that	the	ANN	

has	difficulties	to	process	data	that	is	not	similar	to	the	training	set	in	objects	size	and	susceptibility	

value.	Furthermore,	strong	fields	stretching	far	over	the	image	are	not	removed	completely.	Fur-

thermore,	in	the	ANN	output	the	susceptibility	value	of	the	new	object	is	displayed	incorrectly	if	it	

had	a	strong	susceptibility	(Figure	49	and	Figure	50).	However,	in	all	images	all	objects	are	clearly	

distinct.	

Architecture	 Image	size	of		
Training	Data	
(voxel)	

Additional	𝜒	 RMSE		
[ppm]	

slope	 SSIM	

DeepQSM	 48³	 Baseline	 0.0392	 1.056	 0.765	

DeepQSM	 48³	 Radius=10	χ	=1	 0.0400	 0.882	 0.757	

DeepQSM	 48³	 Radius=10	χ	=0.3	 0.0392	 0.879	 0.765	

DeepQSM	 48³	 Radius=20	χ	=0.3	 0.04118	 0.871	 0.750	

DeepQSM	 48³	 Radius=32	χ	=0.3	 0.1020	 0.961	 0.548	

DeepQSM	 128³	 Radius=20	χ	=0.3	 0.0185	 0.946	 0.966	

DeepQSM	 128³	 Radius=32	χ	=0.3	 0.0203	 0.962	 0.9616	

Deeper	ANN	 128³		 Radius=20	χ	=0.3	 0.0146	 0.997	 0.977	

Deeper	ANN	 128³	 Radius=32	χ	=0.3	 0.0231	 1.018	 0.969	

Tab e	5:	Added	strong	suscept b ty	sources.	The	resu ts	for	the	add t ona 	χ	w th	rad us=20	and	χ	=0.3	d sp ayed	 n	th s	
tab e	were	not	v sua zed	for	the	Deeper	ANN	and	the	ANN	tra ned	w th	 arger	 mages.	

4.1.3.2 Cylinders	

In	this	experiment,	 the	baseline	model	was	 investigated	towards	 its	ability	to	process	additional	

small	cylindrical	susceptibility	sources.	Such	objects	simulate	brain	vessels	in	in-vivo	data.	Further-

more,	the	outcome	was	compared	to	a	model	that	was	trained	with	cylindrical	sources.	

Even	if	the	validation	loss	of	the	baseline	model	was	better	than	the	validation	loss	of	the	cylinder-

model,	the	cylinder-model	was	superior	in	this	test:	

Model	tested	with	
cylinder	Data	

RMSE	
[ppm]	

slope	 SSIM	

DeepQSM	Baseline		 0.0402	 0.878	 0.761	

Cylinder	Dataset	 0.0340	 0.92044	 0.814	

Tab e	6:	Compar son	of	mode s	that	were	tra ned	w th	d fferent	datasets.	The	mode s	were	tested	w th	 nput	dta	con-
ta n ng	sma 	cy ndr ca 	objects	w th	s ght y	h gher	suscept b ty	than	the	other	objets.	The	mode 	that	was	tra ned	w th	

such	data	performed	better	

Figure	51	and	Figure	52	show	the	results	of	both	ANNs.	The	visual	analyzes	of	the	images	reveals	

only	little	differences.		
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F gure	51:	Resu ts	of	the	DeepQSM	Base ne	mode 	that	was	tra ned	w th	the	dataset	w thout	add t ona 	sma 	cy nders	

w th	strong	suscept b ty.	

	
F gure	52:	Resu ts	of	the	mode 	that	was	tra ned	w th	the	dataset	conta n ng	add t ona 	sma 	cy nders	w th	strong	sus-

cept b ty. 

4.1.3.3 Scaling	

In	 the	 following	 experiment,	 the	model	was	 investigated	 towards	 its	 stability	 towards	 different	

scaled	inputs.	Forward	solution	and	ground	truth	were	both	scaled	by	different	scaling	factors.	The	

forward	solution	served	as	input	for	the	DeepQSM	baseline	model	and	the	output	was	compared	

to	the	scaled	ground	truth.	

Scaling	Factor	 RMSE	/	S	in	ppm	 Slope	 SSIM	

S=1	 0.0392	 1.056	 0.765	

S=10	 0.0548	 1.181	 0.316	

S=100	 0.0578	 1.209	 0.240	

S=1000	 0.0581	 1.212	 0.237	

Tab e	7:	Compar son	of	Output	w th	d fferent	sca ed	Input.	The	 osses	of	the	outsputs	w th	sca ed	 nput	were	d v ded	by	
the	sca ng	factor	S.	The	outputs	were	compared	to	a	Ground	Truth	that	was	correspond ng y	sca ed.	

Table	7	shows	that	a	scaling	factor	greater	than	one	(>1)	increased	the	loss	of	the	output.	
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F gure	53:	Dependency	of	RMSE	 oss	on	the	sca ng	of	the	 nput	

However,	the	corresponding	outputs	of	the	scaled	inputs	show	no	strong	artifacts,	the	objects	are	

clearly	visible.	Figure	53	and	Figure	54.	The	model	shows	a	high	stability	towards	scaled	inputs.		

	
F gure	54:	Outputs	of	the	DeepQSM	Base ne	Mode 	that	was	fed	w th	sca ed	 nputs.	

4.1.3.4 Noise	

In	the	training	phase,	the	input	images	were	free	of	noise.	The	following	experiment	investigated	

the	capability	of	the	trained	ANN	to	cope	with	noisy	images.	The	test	input	image	was	intentionally	

distorted	with	Gaussian	noise,	while	the	ground	truth	remained	unchanged	for	assessment.	A	noise	

distribution	with	a	standard	deviation	of	0.01	around	zero	was	chosen	and	added	to	the	ANN	input.	

Figure	55	shows	the	distorted	input	image	and	the	results	with	distortions	left.	Table	8	compares	

the	loss	between	ground	truth	and	noisy	input	in	comparison	with	the	baseline.	
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F gure	55:	Gauss an	no se	w th	a	standard	dev at on	of	0.01	was	added	to	the	 nput.	The	output	was	compared	to	the	

ground	truth	w thout	no se.	

	 RMSE	 Slope	 SSIM	

No	Noise	 0.0392	 1.056	 0.765	

Noisy	Input	SD	0.01	 0.0875	 0.836	 0.335	

Tab e	8:	The	 osses	of	the	mode 	w thout	no sy	 nput	and	w th	no sy	 nput	were	compared.	

The	experiment	was	repeated	with	added	noise	and	the	difference	between	ground	truth	and	ANN	

output	was	evaluated.	The	plot	shows	that	the	noise	in	the	output	increased	linearly	to	the	noise	

in	the	input	Figure	56.	

	
F gure	56:	Dependency	of	the	RMSE	 oss	on	the	standard	dev at on	of	no se	

4.1.3.5 Propagation	of	non-Dipole-Kernel	Sources	

Field	maps	might	contain	non-dipole	contributions.	E.g.,	blood	flowing	along	the	readout	direction	

will	acquire	a	phase	shift	proportional	to	its	velocity.	This	leads	to	patterns	in	the	field	map	that	

cannot	be	well	described	as	a	superposition	of	elementary	dipoles,	leading	to	model	errors.	

The	following	experiment	investigated	the	propagation	of	field	perturbations	that	are	not	caused	

by	the	convolution	of	the	dipole	kernel	with	the	susceptibility	map	(the	convolution	is	described	in	
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Section	2.2.2).	In	order	to	do	so,	a	spherical	object	(emphasized	by	an	arrow	in	Figure	57:	Output	of	

the	DeepQSM	Baseline	Model	that	was	fed	with	an	added	volume	in	the	input	that	was	not	created	

by	the	convolution	with	the	dipole	kernel.	The	output	shows	strong	non-local	artifacts.)	was	added	

to	 the	 forward	 solution	 input	of	 the	ANN.	The	ANN	output	 in	Figure	57	 shows	 strong	non-local	

artifacts.	Furthermore,	the	losses	in	Table	9	deteriorate.	

	
F gure	57:	Output	of	the	DeepQSM	Base ne	Mode 	that	was	fed	w th	an	added	vo ume	 n	the	 nput	that	was	not	created	
by	the	convo ut on	w th	the	d po e	kerne .	The	output	shows	strong	non- oca 	art facts.	

	 RMSE		
[ppm]	

Slope	 SSIM	

No	 Additional		

Object		

0.0392	 1.056	 0.765	

Additional		

Object		

0.0875	 0.836	 0.334	

Tab e	9:	The	DeepQSM	Base ne	Mode 	was	tested	w th	an	add t ona 	object	 n	the	 nput	 oca 	f e d	map.	The	 osses	are	
s gn f cant y	h gher	than	w th	no	such	object.	

4.1.4 Numerical	Brain	Phantom	

The	experiments	in	the	previous	sections	used	input	and	label	images	consisting	of	simple	geomet-

ric	 objects	 for	 evaluation.	 For	 the	 following	 experiment,	 a	 numerical	 brain	 phantom	 served	 as	

ground	truth	and	its	forward	solution	as	input.	The	brain	phantom	is	not	as	detailed	as	in-vivo	im-

ages	and	has	no	vessels,	but	it	has	the	possibility	to	evaluate	the	model	with	a	complex	brain-like	

structure.	The	creation	of	the	brain	phantom	is	described	in	Section	3.7.	Figure	58	shows	that	all	

structures	were	reconstructed.	However,	some	areas	like	the	cerebellum	are	overestimated	while	

other	parts	were	underestimated.	
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F gure	58:	Compar son	of	the	DeepQSM	Base ne	Mode 	output	w th	the	ground	truth.	As	 nput	served	a	numer ca 	bra n	

phantom	that	was	convo ved	w th	the	d po e	kerne .	

Next	to	the	DeepQSM	Baseline	Model	the	ANN	trained	with	128³	voxel	train	images	was	evaluated	

on	the	numerical	phantom	Figure	59.	
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F gure	59:	Compar son	of	the	resu ts	from	DeepQSM	arch tecture	us ng	tra n ng	data	w th	a	s ze	of	128³	voxe 	per	 mage.	

Table	10	shows	that	the	resulting	RMSE	and	SSIM	are	better	compared	to	the	losses	of	the	model	

evaluated	with	geometric	objects.		

Model	 Data	Input	 RMSE		
[ppm]	

Slope	 SSIM	

DeepQSM		

Baseline	

Geometric		

objects	

0.0392	 1.056	 0.765	

DeepQSM		

Baseline	

Numerical	 Brain	

Phantom		

0.0101	 0.774	 0.899	

Larger	Data	 Numerical	 Brain	

Phantom	

0.0088	 0.787	 0.928	

Tab e	10:	Losses	severa 	ANNs	tested	w th	the	numer ca 	bra n	phantom	

4.1.5 In-vivo	Data	

To	assess	the	quality	of	the	ANN	to	process	in-vivo	data	of	real	MRI	scans,	a	scan	as	described	in	

Section	3.8	was	performed.	The	phase	data	was	field	mapped	and	unwrapped.	Afterwards,	the	se-

pia	toolbox	was	used	to	perform	a	background	field	removal.	In	order	to	do	so,	several	algorithms	

were	tested	(see	Section	4.2,	Figure	69)	for	background	field	removal.	The	local	field	of	the	VSHARP	

algorithm	served	as	input	for	different	algorithms	for	dipole	inversion.	The	results	are	visualized	in	

Figure	60.		
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F gure	60:	Compar son	of	the	ava ab e	a gor thms	for	d po e	 nvers on	 n	the	sep a	too box.	

In	contrast	to	the	experiments	with	synthetic	data	no	ground	truth	exists	to	compare	with.	Due	to	

the	visual	impression,	the	STAR-QSM	output	was	chosen	for	further	comparisons.	Figure	61	com-

pares	the	output	of	the	DeepQSM	Baseline	Model	with	the	output	of	STAR-QSM.	The	output	of	the	

ANN	seems	to	have	less	noise	than	the	STAR-QSM	output.	Furthermore,	the	susceptibility	values	

differ	slightly.	Figure	62	shows	a	scatter	plot	of	both	images.	
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F gure	61:	Compar son	between	the	STAR-QSM	output	and	the	output	of	the	DeepQSM	Base ne	Mode .	

	
F gure	62:	Scatter	p ot	of	the	STAR-QSM	output	and	the	output	of	the	DeepQSM	Base ne	Mode .	

Figure	63	shows	the	outputs	of	further	models	that	were	used	for	dipole	inversion.	The	left	column	

shows	the	output	of	the	model	that	used	the	weighted	image	gradient	loss	during	training.	In	the	

middle	is	the	output	of	the	model	trained	with	additional	small	cylinders	with	strong	susceptibility	

in	the	dataset.	Both	outputs	look	very	similar.	The	former	seems	to	create	slightly	stronger	values.	

The	right	column	shows	the	output	of	the	ANN	that	was	trained	with	 images	of	size	128³	voxel.	

Here,	the	tissue	looks	rather	spotty.	
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F gure	63:	Further	mode s	that	were	used	for	d po e	 nvers on.	The	 eft	co umn	shows	the	output	of	the	ANN	that	used	
the	we ghted	 mage	grad ent	 oss	dur ng	tra n ng.	In	the	m dd e	 s	the	output	of	the	ANN	tra ned	w th	add t ona 	sma 	
cy nders	w th	strong	suscept b ty	 n	the	dataset.	The	r ght	co umn	shows	the	output	of	the	ANN	that	was	tra ned	w th	

mages	of	s ze	128³	voxe .	

4.1.6 Discussion	

The	 DeepQSM	 ANN	 shows	 very	 good	 results	 in	 dipole	 inversion	 for	 synthetic	 data	

(RMSE=0.0236	 ppm,	 slope=0.985,	 SSIM=0.934),	 for	 the	 numerical	 brain	 phantom	

(RMSE=0.0101	ppm,	slope=0.774,	SSIM=0.899)	and	for	 in-vivo	data.	Due	to	the	 lack	of	a	ground	

truth	for	in-vivo	data,	the	ANN	output	was	compared	to	the	established	dipole	inversion	technique	

STAR-QSM	(see	Figure	61).	Here,	the	ANN	output	shows	superior	results	visually,	as	the	output	is	

less	noisy.	

Variations	in	the	dataset	or	architecture	led	to	an	improved	validation	loss	(see	Table	3).	The	ANN	

using	 the	weighted	 image	gradient	 loss	achieved	a	SSIM	of	0.946.	The	ANN	with	41000	training	

steps	achieved	a	SSIM	of	0.952.	The	ANN	that	was	trained	with	 larger	 images	of	size	128³	voxel	

instead	of	48³	voxel	achieved	a	SSIM	of	0.968	and	the	ANN	that	used	a	deeper	architecture	a	SSIM	
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of	0.970.	As	the	latter	two	ANNs	used	larger	images	for	training	and	validation,	the	losses	are	not	

fully	comparable	by	SSIM	or	RMSE	(see	Section	3.3.4).	ANNs	that	were	trained	with	images	of	size	

48³	voxel	performed	worse	when	tested	on	images	of	size	128³	voxel	and	the	other	way	around.	

The	ANN	trained	with	larger	data	and	the	DeepQSM	architecture	performed	better	in	case	of	the	

numerical	brain	phantom	(RSME=0.0088,	slope=0.787,	SSIM	0.928,	see	Table	10)	but	shows	spotty	

irregularities	if	tested	with	in-vivo	data	(see	Figure	63).	The	dataset	with	size	48³	voxel	consisted	of	

70400	image	pairs	for	training	while	the	one	with	images	of	size	128³	voxel	used	only	1700	image	

pairs	for	training.	Even	though	a	larger	image	contains	nineteen	(128/48)³	times	the	amount	fea-

tures	per	image,	the	amount	of	data	was	not	balanced	and	the	ANNs	using	larger	images	was	at	a	

disadvantage.		

Experiments	with	additional	strong	susceptibility	sources	and	the	evaluation	with	input	images	of	

size	128³	voxel	showed	the	ability	to	remove	dipole	fields	decaying	over	a	large	distance	(see	Sec-

tion	4.1.3.1,	Section	4.1.2).	Here,	ANNs	trained	with	larger	images	were	superior	to	ANNs	trained	

with	48³	voxel	data	that	left	a	veil	of	remaining	local	field	in	the	image.	As	the	receptive	field	of	

DeepQSM	is	of	size	48³	voxel,	the	ANN	only	learnt	to	remove	fields	within	this	area.	The	ANN	trained	

with	larger	images	seemed	to	also	remove	fields	that	were	caused	by	sources	outside	of	the	recep-

tive	field.	The	ANN	trained	with	weighted	image	gradient	loss	was	superior	to	the	DeepQSM	Base-

line	Model	if	tested	with	small	images	but	showed	worse	results	if	tested	with	larger	input	images	

(see	Table	4).	This	could	mean	that	the	network	learns	less	to	generalize.	

Next	to	the	experiment	with	additional	strong	susceptibility	sources	(Section	4.1.3.1),	the	evalua-

tion	with	 images	of	other	sizes	(see	Table	4)	or	scaling	(Section	4.1.3.3)	and	the	evaluation	with	

input	images	containing	additional	cylinders	with	strong	susceptibility	(see	Section	4.1.3.2)	showed	

that	small	changes	compared	to	the	used	dataset	deteriorate	the	performance	of	the	correspond-

ing	ANN.	However,	artifacts	were	not	strong,	so	all	objects	were	recognizable.	The	strongest	arti-

facts	were	created	in	the	experiment	Propagation	of	non-Dipole-Kernel	Sources:	Here	strong	non-

local	artifacts	appeared	if	the	input	image	contained	field	perturbations	that	were	not	caused	by	a	

convolution	with	the	dipole	kernel.	

The	experiment	about	noise	propagation	showed	that	noise	is	amplified	linearly.	By	adding	noise	

to	the	input	training	data,	the	ANNs	could	potentially	also	learn	to	remove	the	contained	noise	[91].		

Briefly,	the	DeepQSM	showed	promising	results	for	dipole	inversion	compared	to	the	established	

dipole	inversion	technique	STAR-QSM.	The	size	of	training	dataset	and	test	data,	as	well	as	distri-

bution	have	a	large	impact	on	performance.	However,	since	there	are	no	labels	available	for	in-vivo	

images,	it	can	not	be	concluded	with	certainty	that	the	improvements	can	be	transferred	from	syn-

thetic	data	to	in-vivo	data.	
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4.2 ANN	for	Background	Field	Removal	

As	described	in	Section	3.5	different	datasets	were	used	for	training.	These	datasets	differ	in	struc-

ture	and	standard	deviation	of	their	values.	Several	experiments	were	performed	to	investigate	the	

performance	of	the	models	trained	with	the	various	datasets.	For	evaluation,	synthetic	data	with	

geometric	objects,	a	numerical	brain	phantom	and	scan	data	served	as	model	input.	

4.2.1 Evaluation	on	Synthetic	Data	

The	trained	models	that	used	different	datasets	for	training	were	evaluated.	They	were	tested	with	

data	similar	to	their	training	data	and	with	data	that	corresponds	to	the	training	data	of	the	other	

models.	As	described	in	Section	3.5,	the	different	datasets	differed	in	their	standard	deviation	(es-

pecially	in	the	total	field)	and	in	the	(non-)presence	of	an	offset.	Due	to	this,	the	models	show	dif-

ferent	results	for	the	three	different	data	inputs	shown	in	Figure	64.		

	
F gure	64:	The	three	tota 	f e d	 nputs	that	were	used	for	eva uat on	of	the	ANNs.	The	 mage	on	the	 eft	used	an	offset	 n	
the	ROI	to	create	the	background	f e d	and	has	a	h gh	standard	dev at on.	The	 mage	 n	the	m dd e	and	on	the	one	on	
the	r ght	s de	were	created	w th	externa 	suscept b ty	sources	and	d d	not	use	an	offset.	The	standard	dev at on	of	the	

r ght	 mage	 s	h gher	than	the	one	 n	the	m dd e	but	sma er	than	the	one	of	the	 mage	on	the	 eft	s de.	

The	results	of	the	three	ANNs	are	displayed	in	Figure	65.	Here,	the	results	of	the	three	different	

inputs	for	one	ANN	are	displayed	in	one	column.	Table	11	contains	the	losses.	
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Output	ANN		
Offset	Dataset	

	
Output	ANN		
External	χ	Dataset	

Output	ANN	
Stronger	External	χ	
Dataset	

Input	Offset	Dataset	 RMSE:	0.0034	

slope:	1.187	

SSIM:	0.984	

RMSE:	0.0231	

slope:	0.164	

SSIM:	0.818	

RMSE:0.02958	

slope:	0.178	

SSIM:	0.834	

Input	External	χ	Dataset	 RMSE:	0.0121	

slope:	0.072	

SSIM:	0.867	

RMSE:	0.0012	

slope:	1.007	

SSIM:	0.998	

RMSE:	0.0030		

slope:	0.981	

SSIM:	0.986	

Input	Stronger	External	χ	Dataset	 RMSE:	0.0077	

slope:	-0.000	

SSIM:	0.937	

RMSE:	0.0076	

slope:	0.321	

SSIM:	0.940	

RMSE:	0.0018	

slope:	0.922	

SSIM:	0.995	

Tab e	11:	Losses	of	the	three	ANNs	compared	to	the	three	d fferent	ground	truth	 abe s.	Output	ANN	Offset	Dataset	shows	
a	s ope	of	zero	 n	case	of	the	Input	Stronger	Externa 	χ	Dataset	because	the	va ues	 n	the	output	are	a 	c ose	to	zero.	

	
F gure	65:	Compar son	of	performance	of	three	d fferent	ANNs	that	were	eva uated	w th	three	d fferent	mode 	 nputs.	

In	 the	 first	 row,	 the	model	 input	 is	a	validation	 image	of	 the	Dataset	Offset.	The	ANN	that	was	

trained	with	corresponding	training	data	performs	well	(SSIM	of	0.984)	and	shows	only	small	devi-

ations	at	the	boundaries.	ANN	External	χ	Dataset	and	Model	Stronger	External	χ	produce	outputs	

with	a	higher	standard	deviation.	Through	this,	the	values	differ	a	lot	from	the	ground	truth	label	

(SSIM	of	0.818	and	0.834).	For	the	input	images	of	the	External	χ	Dataset,	the	ANN	Offset	Dataset	

creates	images	with	too	low	values.	Except	from	variations	close	to	the	boundaries,	no	objects	are	
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visible.	The	performance	of	ANN	External	χ	 and	Stronger	External	𝜒	 are	 similar	but	each	Model	

performs	a	bit	better	on	the	corresponding	validation	data	(see	Table	11).	For	the	input	image	of	

the	Stronger	External	χ	image	the	corresponding	ANN	performs	better	than	the	ANN	External	χ.	The	

latter	leaves	parts	of	the	background	field	(visible	in	the	Difference	Figure	66).	

Summarized,	each	ANN	performs	best	on	the	corresponding	validation	data.	The	differences	be-

tween	Model	External	χ	and	Model	Stronger	External	χ	are	smaller	compared	to	the	Model	Offset	

Data.	ANN	Stronger	External	χ	performs	better	on	the	data	 input	of	Dataset	External	χ	 than	the	

other	way	around.	All	differences	to	the	local	field	ground	truth	are	visible	in	Figure	66.	

	
F gure	66:	The	ANNs	show	d fferences	toward	the	 oca 	f e d	ground	truth	for	the	three	d fferent	 nputs	 n	F gure	65.	

4.2.2 Evaluation	with	Numerical	Brain	Phantom	

In	this	section,	the	three	ANNs	were	tested	with	a	brain	phantom.	As	described	in	Section	3.7	the	

brain	phantom	was	covered	with	a	local	field	and	a	background	field.	In	one	case,	the	background	

field	was	created	by	an	offset	of	0.4	ppm	and	external	susceptibilities,	 in	 the	other	one	only	by	

external	susceptibility	sources.	Figure	67	visualizes	the	results	for	the	three	ANNs.	In	the	upper	row,	

the	results	for	the	input	without	offset	are	shown.	In	the	bottom	row	the	results	for	the	input	with-

out	offset.	As	the	offset	was	small	compared	to	the	one	for	synthetic	data	the	ANN	Offset	Dataset	

show	worse	results	for	the	input	with	offset.	This	ANN	did	not	remove	the	background	field	in	both	

cases.	ANN	External	χ	and	ANN	Stronger	External	χ	reveal	brain	structures	but	show	strong	back-

ground	field	artifacts	close	to	the	boundaries.	The	artifacts	are	more	pronounced	in	the	first	men-

tioned	ANN.	In	Figure	68	the	difference	between	ground	truths	and	ANN	outputs	are	shown.		
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F gure	67:	Output	of	the	three	d fferent	ANNs.	The	f rst	row	shows	the	resu ts	for	the	data	 nput	that	had	no	offset.	

Here,	the	background	f e d	was	created	on y	by	externa 	suscept b ty	sources.	The	second	row	shows	the	resu ts	of	the	
nput	where	the	background	f e d	was	created	by	both	a	sma 	offset	and	externa 	suscept b t es.	

		
	

	
F gure	68:	D fference	of	the	ANN	outputs	 n	F gure	67	towards	the r	correspond ng	ground	truths	

Table	12	summarizes	the	corresponding	losses.	Here,	Model	Dataset	Offset	and	Model	External	χ	

have	similar	losses	for	the	input	without	offset	although	Model	External	χ	reveals	more	brain	struc-

tures.	Figure	68	shows	that	Model	Dataset	Offset	did	not	remove	the	background	field	and	Model	

External	χ	removes	it	only	partially.	Model	Stronger	External	χ	shows	errors	at	the	boundary	and	in	

the	area	of	the	cerebellum.	The	errors	are	less	pronounced	in	case	of	the	input	without	offset.	



	

	

70	Results	

	

	 Model	 RMSE	 Slope	 SSIM	

No	Offset	 Dataset	Offset	 0.0118	 0.215	 0.888	

External	χ	 0.0114	 0.474	 0.882	

Stronger	External	χ	 0.0031	 0.962	 0.983	

With	 Off-

set	

Dataset	Offset	 0.0109	 0.2131	 0.895	

External	χ	 0.0167	 0.587	 0.782	

Stronger	External	χ	 0.0089	 1.061	 0.925	

Tab e	12:	Compar son	of	the	 osses	for	the	three	d fferent	ANNs	that	were	tested	w th	a	numer ca 	bra n	phantom	w th	
added	background	f e d	

ANN	Stronger	External	χ	shows	the	best	losses	referring	RMSE,	Slope	and	SSIM	for	both	inputs.	

4.2.3 In-vivo	Scan	Data	

To	compare	the	ANN	with	the	quality	of	other	methods	for	background	field	removal,	the	sepia	

toolbox	(see	Section	3.9)	was	used.	Figure	74	shows	the	results	of	various	algorithms	available	in	

sepia	that	perform	background	field	removal	on	a	given	total	field	input.	

	
F gure	69:	Compar son	of	d fferent	a gor thms	for	BFR	w th	the	sep a	too box.	

As	expected,	the	output	of	SHARP	is	a	bit	smaller	than	the	one	of	VSHARP	due	to	the	morphologic	

erosion	at	the	boundaries.	PDF	and	LBV	show	high	field	perturbations	in	the	inner	part	of	the	brain.	

Due	to	this,	the	VSHARP	algorithm	was	chosen	for	further	comparisons.	

The	three	models	with	the	same	architecture	but	different	datasets	for	training	were	compared	in	

Figure	70.	Model	Offset	Dataset	still	has	a	strong	background	field	that	covers	the	brain	structures.	

Model	External	χ	still	shows	background	field	artifacts	but	brain	structures	are	visible.	Due	to	this,	
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the	dynamic	range	differs	between	the	images.	Only	Model	Stronger	External	χ	seems	to	remove	

the	background	field	largely	and	was	compared	to	the	results	of	the	VSHARP	algorithm.		

	
F gure	70:	Compar son	of	the	three	mode s	tra ned	w th	d fferent	datasets	and	 n-v vo	tota 	f e d	 nput.	

Model	 RMSE		
[ppm]	

Slope	 SSIM	

Stroger	External	χ	
	

0.2142	 7.380	 0.735	

The	resulting	losses	are	high	compared	to	the	previous	ones.	The	histogram	Figure	71	shows	that	

ANN	input,	ANN	output	and	the	created	image	using	VSHARP	have	a	different	range	of	voxel	values.		

While	the	VSHARP	algorithm	maps	the	total	field	to	a	tight	range	around	zero,	the	ANN	seems	to	

shift	the	values,	so	its	mean	is	at	0.37	ppm.	

	
F gure	71:	H stogram	of	ANN	 nput,	ANN	output	and	the	output	us ng	VSHARP.	The	ANN	output	 s	sh fted	and	has	a	

w der	standard	dev at on	than	the	VSHARP	 mage.	

For	further	visual	comparisons	the	ANN	output	was	shifted	by	-0.37	and	scaled	with	1/6	while	the	

VSHARP	image	was	multiplied	with	10	(displayed	in	the	resulting	histogram	Figure	72)to	make	the	

images	comparable.	
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F gure	72:	H stogram	of	sca ed	and	sh fted	ANN	output,	sca ed	VSHARP	output	and	the	tota 	f e d	 nput.	

 
F gure	73:	Scatter	p ot	of	sca ed	VSHARP	and	sca d	and	sh fted	ANN	output.	

Figure	72	shows	the	results	of	the	scaled	and	shifted	ANN	output	compared	with	VSHARP.	In	the	

ANN	output,	brain	structures	are	visible,	but	parts	of	the	background	field	remained.		

	

	
F gure	74:	Compar son	between	VSHARP	and	ANN	output.	The	 mages	were	sca ed	and	sh fted	before	to	make	them	

v sua y	comparab e.	The	ANN	output	shows	dev at ons	espec a y	at	the	boundar es.	
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4.2.4 Discussion	

The	ANNs	trained	for	background	field	removal	were	not	able	to	remove	background	fields	in	in-

vivo	data.	The	dataset	that	used	stronger	external	susceptibility	sources	to	create	the	background	

field	showed	the	best	results	evaluated	with	the	numerical	brain	phantom	and	in-vivo	data.	How-

ever,	the	ANN	output	values	are	shifted	and	spread	compared	to	the	results	of	the	VSHARP	algo-

rithm.	All	 three	ANNs	 that	were	 trained	with	one	of	 the	 three	datasets	performed	very	good	 if	

tested	with	the	corresponding	validation	data.	ANN	Offset	Dataset	achieved	a	SSIM	of	0.984,	ANN	

External	χ	Dataset	a	SSIM	of	0.998	and	ANN	Stronger	External	χ	Dataset	a	SSIM	of	0.995	(see	Table	

11).	However,	the	datasets	seem	not	to	represent	images	of	in-vivo	images.	The	results	of	in-vivo	

inputs	show	remaining	background	field	artifacts	(see	Figure	74)	and	an	offset	(see	Figure	71).	

To	improve	the	model	performance	the	datasets	should	be	further	fitted	to	the	distributions	of	in-

vivo	total	fields	and	in-vivo	local	field	maps	(e.g.	calculated	with	VSHARP).	The	evaluation	with	input	

images	(see	Table	11)	showed	that	ANN	Stronger	External	χ	Dataset	achieves	a	SSIM	of	0.986	and	

a	RMSE	of	0.0030	ppm	if	tested	with	validation	data	of	Dataset	External	χ.	In	comparison	ANN	Ex-

ternal	χ	Dataset	achieves	only	a	SSIM	of	0.940	and	a	RMSE	of	0.0076	ppm	if	evaluated	with	Dataset	

Stronger	External	χ.	The	reason	could	be	that	the	range	of	external	susceptibilities	used	in	Dataset	

External	χ	is	included	in	the	Dataset	Stronger	External	χ.	From	this,	it	can	be	deduced	that	the	da-

taset	should	use	both	external	susceptibility	sources	and	an	offset	to	create	background	fields	with	

higher	variability.	Furthermore,	both	parameters	should	vary	in	a	wider	range.	

Another	approach	would	be	to	preprocess	the	total	field	and	decrease	the	dynamic	range	that	the	

ANN	has	 to	 learn.	This	 reduction	of	 the	background	field	could	be	achieved	by	subtraction	with	

spherical	harmonic	functions,	applying	one	or	two	iterations	of	PDF	[26]	or	by	simulating	and	sub-

tracting	it.	For	the	latter	case,	the	strongest	sources	for	background	fields	(the	air-tissue	interface	

of	the	head	and	the	sinuses)	could	be	reconstructed.	By	using	the	dipole	kernel,	a	strong	field	would	

be	created	which	could	then	be	subtracted	from	the	total	field.	
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4.3 Results	ANN	for	both	Background	Field	Removal	and	Dipole	Inversion	

The	previous	section	focused	on	BFR	with	three	ANNs	trained	on	different	datasets.	The	input	im-

ages	were	the	same	as	in	Section	4.2.	However,	the	ANNs	tried	to	map	the	input	total	field	to	a	

susceptibility	map	instead	of	to	a	local	field	map.	The	ANNs	were	tested	on	synthetic	data,	numer-

ical	brain	phantom	and	in-vivo	scan	data.	

4.3.1 Synthetic	Validation	Data	

The	three	ANNs	that	were	trained	with	the	three	different	datasets	were	each	tested	with	valida-

tion	images	of	the	datasets.	Figure	75	shows	the	results	while	Figure	76	shows	the	differences	to	

the	ground	truth	labels	and	Table	13	the	corresponding	losses.		

	
F gure	75:	Compar son	of	performance	toward	BFR	and	d po e	 nvers on	 n	one	step	of	three	d fferent	ANNs	that	were	

eva uated	w th	three	d fferent	mode 	 nputs.	

The	performance	between	the	ANN	that	was	trained	with	total	fields	created	by	an	offset	differs	

from	the	two	ANNs	that	were	trained	with	total	fields	created	by	external	susceptibilities.	The	ANN	

trained	with	the	Offset	Dataset	performs	well	on	this	validation	data.	It	seems	be	able	to	remove	

the	background	field	 in	the	case	of	the	 input	 images	that	used	external	susceptibility	sources	to	

create	the	total	field.	However,	the	values	in	the	output	are	smaller	than	in	the	ground	truth	and	

thereby	create	high	losses	(see	Table	13).	Both	ANNs	that	were	trained	with	(Stronger)	External	χ	
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data	perform	well	on	 the	corresponding	validation	data.	However,	 the	 losses	are	worse	 than	 in	

Chapter	4.2,	Table	11	and	Table	12	where	the	ANNs	had	to	learn	only	BFR.	Both	ANNs	show	prob-

lems	when	confronted	with	Offset	Dataset	inputs:	Here	the	resulting	images	has	a	higher	standard	

deviation	than	the	ground	truth.	The	output	of	ANN	External	χ	Dataset	shows	problems	confronted	

with	the	input	Offset	Dataset.	Here,	areas	where	the	total	field	is	very	negative	show	values	around	

zero	and	no	structure	is	visible.	

	
F gure	76:	Correspond ng	d fferences	between	 mages	 n	F gure	75	and	the r	suscept b ty	ground	truth.	

	 	
Output	ANN		
Offset	Dataset	

	
Output	ANN		
External	χ	Dataset	

Output	ANN	
Stronger	External	χ	
Dataset	

Input	Offset	Dataset	 RMSE:	0.0111	

slope:	1.137	

SSIM:	0.949	

RMSE:	0.0680	

Slope:	0.110	

SSIM:	0.702	

RMSE:	0.0872	

slope:	0.183	

SSIM:	0.675	

Input	External	χ	Dataset	 RMSE:	0.0299	

slope:	6.437	

SSIM:	0.794	

RMSE:	0.0098	

slope:	0.989	

SSIM:	0.956	

RMSE:	0.0135	

slope:	0.931	

SSIM:	0.924	

Input	Stronger	External	χ	Dataset	 RMSE:	0.0197	

slope:	7.083	

SSIM:	0.895	

RMSE:	0.0164	

slope:	0.700	

SSIM:	0.937	

RMSE:	0.0097	

Slope:	0.930	

SSIM:	0.953	

Tab e	13:	Compar son	of	 osses	for	the	var ous	ANNs	that	performed	both	BFR	and	d po e	 nvers on.	
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4.3.2 Numerical	Brain	Phantom	

The	total	field	of	the	numerical	brain	was	used	as	input	and	converted	by	the	ANNs	to	a	suscepti-

bility	distribution.	Two	total	field	variations	were	used	for	this.	

For	the	upper	 input	 in	Figure	77,	a	total	field	was	created	using	external	susceptibilities	without	

adding	an	offset	to	the	ROI.	Model	Stronger	External	χ	showed	the	lowest	errors.	The	other	two	

Models	were	both	a	bit	worse.	However,	Figure	78	shows	that	the	losses	of	both	differ	spatially.	

Model	 Offset	 Dataset	 shows	 very	 low	 voxel	 values	with	 little	 contrast	 between	 the	 structures.	

Model	External	χ	shows	a	higher	contrast	between	the	structures	but	on	the	other	hand	has	strong	

background	field	artifacts.	The	artifacts	of	Model	Stronger	External	χ	are	similar	to	Model	External	

χ	but	less	pronounced.	Both	show	background	artifacts	at	the	boundary	of	the	ROI.	None	of	the	

Models	was	able	to	reconstruct	the	cerebellum	correctly.	

In	case	of	the	input	that	used	an	additional	offset	to	create	the	total	field,	no	conclusion	can	be	

drawn	which	model	performed	best	because	all	three	losses	show	a	different	ranking	(see	Table	

14).	

Figure	77,	shows	the	created	ANN	outputs,	Figure	78	the	differences	towards	the	ground	truth	sus-

ceptibility	map	and	Table	14	the	corresponding	losses.	Due	to	the	low	values	of	the	ANN	Output	

Model	Offset	Dataset	the	difference	to	the	ground	truth	looks	like	the	ground	truth	itself.	

	

	
F gure	77:	Compar son	of	performance	toward	BFR	and	d po e	 nvers on	 n	one	step	of	three	d fferent	ANNs	that	were	

eva uated	w th	two	d fferent	numer ca 	bra n	phantoms.	
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F gure	78:	Correspond ng	d fferences	between	 mages	 n	F gure	77	and	the r	suscept b ty	ground	truth.	

	 Model	 RMSE	 Slope	 SSIM	
No	Offset	 Dataset	Offset	 0.0156	 0.068	 0.833	

External	χ	 0.0179	 0.656	 0.840	

Stronger	External	χ	 0.0116	 0.784	 0.895	

With	 Off-

set	

Dataset	Offset	 0.0156	 0.068	 0.833	

External	χ	 0.0232	 0.683	 0.744	

Stronger	External	χ	 0.0201	 0.725	 0.789	

Tab e	14:	Correspond ng	 osses	between	 mages	 n	F gure	77and	the r	suscept b ty	ground	truth.	In	case	of	the	 nput	
w th	offset	no	conc us on	can	be	drawn	wh ch	mode 	performed	best	because	a 	three	 osses	show	a	d fferent	rank ng.	

4.3.3 In-vivo	Scan	Data	

Three	ANNs	that	were	trained	with	the	different	datasets	were	tested	to	perform	background	field	

removal	and	dipole	in	one	step	on	in-vivo	data	(see	Figure	79).		

	
F gure	79:	Output	of	ANNS	that	map	a	g ven	tota 	f e d	to	a	suscept b ty	d str but on.	The	three	ANNS	were	tra ned	w th	

d fferent	datasets.	
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The	model	that	was	trained	with	the	background	field	created	by	an	offset	was	not	able	to	perform	

both	steps	of	background	field	removal	and	dipole	inversion.	As	described	in	Section	4.3	this	dataset	

was	also	not	suited	to	perform	only	background	field	removal.	The	two	models	that	used	data	with	

external	 susceptibility	 sources	 to	 create	 a	 background	 field	 show	 similar	 results.	 However,	 the	

Model	External	χ	shows	leftovers	of	background	field.	For	the	following	evaluations,	only	Model	

Stronger	External	χ	was	used.	The	output	was	compared	to	two	other	images:	One	the	one	hand,	

with	 the	 susceptibility	 map	 created	 with	 the	 VSHARP	 and	 STAR-QSM	 algorithms	 of	 the	 sepia	

toolbox.	One	the	other	hand,	with	the	output	of	the	DeepQSM	model	that	took	the	output	of	the	

model	for	background	field	removal	as	input.	The	model	that	was	trained	for	background	field	re-

moval	 also	 used	 the	 dataset	with	 strong	 external	 susceptibilities.	 As	 described	 in	 Section	 4.3	 it	

showed	the	best	results	for	background	field	removal.	

Figure	82	compares	the	results	of	the	VSHARP	and	STAR-QSM	algorithm,	the	result	that	used	both	

an	ANN	for	BFR	and	one	for	dipole	inversion	and	the	result	of	a	single	ANN	that	learn	both	BFR	and	

dipole.	For	the	two-step	solution,	the	output	of	the	ANN	for	BFR	was	used	as	input	for	the	ANN	for	

dipole	inversion.	The	both	output	images	that	used	ANNs	show	susceptibility	values	with	a	higher	

standard	deviation	than	the	STAR-QSM	algorithm	(Figure	80).	The	histogram	shows	that	the	values	

of	the	two-step	solution	are	shifted.	Due	to	the	shift,	the	output	of	the	two-step	solution	was	shifted	

by	 its	mean	and	evaluated	as	further	comparison	(Figure	81).	Table	15	shows	the	 losses	of	both	

ANN	solutions	compared	to	the	STAR-QSM	algorithm.	If	the	two-step	solution	was	shifted	the	per-

formance	is	superior	to	the	one	step	solution.	The	one-step	solution	shows	more	background	field	

artifacts.	However,	both	ANN	outputs	look	blurred.	

	
F gure	80:	H stogram	of	STAR-QSM	output,	output	of	ANN	that	performs	both	BFR	and	d po e	 nvers on	 n	one-step	and	

output	of	the	ANN	for	d po e	 nvers on	that	took	the	output	of	the	ANN	for	BFR	as	 nput.	
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F gure	81:	H stogram	of	STAR-QSM	output,	sh fted	output	of	ANN	that	performs	both	BFR	and	d po e	 nvers on	 n	one	

step	and	output	of	the	ANN	for	d po e	 nvers on	that	took	the	output	of	the	ANN	for	BFR	as	 nput.	

	 RMSE	 slope	 SSIM	
2	Step	Solution:	

Output	ANN	2	Steps	

0.4549	

	

0.007	

	

0.732	

	

2	Step	Solution	Shifted:	

Output	ANN	2	Steps	

0.3298	

	

0.012	

	

0.739	

	

1	Step	Solution:	

Output	ANN	1	Step	

0.5016	 0.007	 0.733	

Tab e	15:	Compar son	of	1	step	and	two	step	so ut on	of	the	ANN	outputs	compared	to	STAR-QSM.	The	two-step	so u-
t on	 s	eva uated	tw ce:	Once	w thout	sh ft ng,	once	w th	sh ft ng.	
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F gure	82:	Compar son	of	the	ANN	that	performs	both	BFR	and	d po e	 nvers on	towards	the	output	of	the	ANN	for	d -

po e	 nvers on	that	used	the	output	of	the	ANN	for	BFR	as	 nput.	The	Output	ANN	two-steps	was	sh fted	to	substract	the	
offset	 n	the	output.	

4.3.4 Discussion	

The	modified	DeepQSM	architecture	with	two	input	channels	was	evaluated	towards	its	ability	to	

map	a	given	total	field	to	the	corresponding	susceptibility	distribution.	Due	to	the	same	ANN	input,	

the	results	are	similarly	to	the	results	of	Section	4.2.	

All	three	ANNs	that	were	trained	with	one	of	the	three	datasets	described	in	Section	3.5	(data	cre-

ation	for	BFR)	performed	very	good	if	tested	with	the	corresponding	validation	data.	The	results	

were	worse	if	tested	with	validation	data	of	the	other	datasets	(Table	13).	The	ANN	that	used	Da-

taset	Stronger	External	χ	performed	best	if	tested	with	the	numerical	brain	phantom.	Testing	with	

in-vivo	data,	all	ANNs	showed	effects	of	incompletely	removed	background	fields	(Figure	79).	Here,	

the	 dataset	 that	 used	 stronger	 external	 susceptibility	 sources	 to	 create	 the	 background	 field	

showed	the	best	results	(Figure	75,	Figure	76,	Table	13).	Tested	with	in-vivo	data,	the	resulting	ANN	
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output	values	had	a	 larger	standard	deviation	compared	to	the	results	of	the	VSHARP	algorithm	

combined	with	STAR-QSM	(see	Figure	80).	As	described	in	the	discussion	of	Section	4.2,	the	dataset	

has	to	be	adjusted	to	better	reflect	the	distribution	of	in-vivo	data.	

Finally,	the	ANN	that	performs	both	BFR	and	dipole	inversion	in	one-step	was	compared	with	a	two-

step	solution	that	uses	two	separate	ANNs	for	BFR	and	dipole	inversion.	Here,	the	two-step	ANN	

created	an	offset	that	was	subtracted.	The	subtracted	image	version	showed	slightly	superior	re-

sults	 towards	 the	one-step	 solution	 referring	 the	RMSE	 (0.5016	ppm	vs.	0.4549	ppm)	and	SSIM	

(0.732	vs	0.733,	see	Table	15).	Furthermore,	less	background	field	artifacts	were	visible	than	in	the	

image	of	the	one-step	solution	(see	Figure	80).	In	the	two-step	solution,	the	ANN	for	dipole	inver-

sion	did	not	gain	the	remaining	artifacts.	Instead,	it	could	be	possible	that	the	ANN	for	dipole	inver-

sion	improved	the	result	by	removing	leftovers	of	the	background	field.	As	the	differences	between	

the	losses	were	small,	it	cannot	be	excluded	that	a	one-step	solution	might	be	better	if	trained	with	

other	data.	The	results	suggest	that	the	network	has	sufficient	parameters	to	internalize	both	steps;	

otherwise	the	differences	in	the	losses	between	one	and	two-step	solution	should	be	higher.	
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5 Conclusion	
In	this	thesis,	fully	convolutional	neural	networks	were	investigated	towards	their	ability	to	solve	

the	inverse	problems	of	dipole	inversion	and	background	field	removal.	The	excellent	performance	

in	dipole	inversion	of	the	DeepQSM	architecture	on	in-vivo	data	demonstrates	the	potential	of	con-

volutional	neural	networks	for	QSM.	The	ANN	seems	visually	comparable	to	established	algorithms	

for	dipole	inversion	like	QSM-STAR	(see	Section	4.1.5,	see	Figure	61).	However,	the	use	of	different	

datasets	for	training	has	influences	on	the	created	output	values	of	the	ANN.	Datasets	that	con-

sisted	of	geometric	objects	with	the	same	standard	deviation	but	of	different	sizes	and	in	presence	

of	additional	small	objects	led	to	slightly	different	susceptibility	values	in	the	ANN	output,	although	

the	same	input	images	were	used	(see	Figure	44).	Compared	to	the	investigated	changes	of	the	cost	

function,	the	dataset	had	more	influence	on	the	resulting	images	(see	Figure	44).	As	in	case	of	in-

vivo	data	no	ground	truth	label	exists,	further	investigations	are	necessary	to	determine	which	da-

taset	for	training	creates	the	most	realistic	susceptibility	values.		

In	case	of	the	ANNs	for	background	field	removal,	the	results	showed	distinct	leftovers	of	the	back-

ground	field	(see	Figure	74,	Figure	82).	The	 intensity	of	artifacts	depended	on	the	used	dataset.	

Thus,	one	can	conclude	 that	 the	dataset	 should	be	 further	 improved.	The	distribution	of	 image	

values	should	be	adjusted	to	the	values	 in	MR	images	of	total	fields,	 local	fields	or	susceptibility	

maps.	Furthermore,	it	is	important	to	include	images	showing	pathological	values.	Otherwise,	the	

trained	ANN	would	under 	or	overestimate	such	values	later	[92].	Furthermore,	more	variations	in	

creating	the	background	field	should	be	used.	Instead	of	using	a	fixed	offset	or	strong	external	sus-

ceptibilities	in	a	certain	range	to	create	an	external	field,	both	approaches	should	be	represented	

in	the	used	dataset.	Additionally,	the	values	of	both	offset	and	external	susceptibility	sources	should	

vary	in	a	wider	range.	

To	make	it	easier	for	the	ANN	to	learn	the	BFR,	a	pre-processing	of	the	total	field	image	would	be	

conceivable.	This	would	bring	the	order	of	magnitude	of	the	total	field	closer	to	those	of	the	local	

field.	Possible	methods	to	solve	this	problem	would	be	spherical	harmonic	function	[48],	projection	

into	dipole	field	[26]	or	the	reconstruction	and	subtraction	of	an	approximated	total	field	produced	

by	the	convolution	of	the	dipole	kernel	with	a	given	air-tissue	interfaces.		

Another	way	to	improve	the	performance	of	ANNs	for	BFR	and/or	dipole	inversion	could	be	the	use	

of	a	second	ANN	input	channel	for	the	magnitude	images.	Like	the	dipole	inversion	method	MEDI	

[21],	the	ANN	could	use	the	information	of	the	magnitude	image	to	regularize	the	corresponding	

phase	image.	

In	the	last	chapter,	the	performance	of	an	ANN	that	executes	BFR	and	dipole	inversion	in	one	step	

was	compared	 to	 the	performance	of	 two	separate	ANNs	 for	 this.	Here,	 the	 two-step	ANN	was	
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superior,	as	remaining	background	field	artifacts	were	not	intensified	in	the	following	ANN	but	ra-

ther	attenuated.	

The	dataset	in	this	thesis	was	adapted	to	susceptibility	values	in	the	brain,	an	isotropic	resolution	

and	a	direction	of	the	magnetic	field	𝐵"	in	z-direction.	The	trained	ANNs	cannot	process	phase	im-

ages	that	do	not	fulfill	these	properties.	However,	as	the	use	of	synthetic	data	enables	an	unlimited	

amount	of	training	data	these	restrictions	can	be	overcome	by	creating	corresponding	data.		

In	 summary,	 the	 reconstructed	DeepQSM	 for	 dipole	 inversion	 shows	promising	 results	 that	 are	

comparable	to	established	methods.	Further	experiments	should	compare	the	created	susceptibil-

ity	values	with	real	ones	that	are	known	by	experiments	or	theoretical	calculations.	The	dataset	

that	creates	images	that	comes	closest	to	these	values	should	be	chosen.	The	tested	ANNs	for	BFR	

or	BFR	and	dipole	inversion	showed	strong	remaining	background	field	artifacts.	To	improve	the	

performance,	the	dataset	should	be	adjusted	to	better	match	in-vivo	data.	If	the	ANN	for	BFR	shows	

good	results,	the	ANN	can	be	extended	to	perform	both	BFR	and	dipole	inversion	in	a	single	step.	
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