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Thema der Arbeit

Anwendung von Multi-Fusion Network zur Erkennung von Mensch-Objekt-Interaktion

Stichworte

Deep learning, Multi-Fusion Network, Human-Object Interaction Detection, Handlungserken-
nung, Objektklassifizierung

Kurzzusammenfassung

Diese Abschlussarbeit stellt Multi-Fusion Network Architektur für Erkennung von
Mensch-Objekt-Interaktion mit mehreren Kameras vor und implementiert eine Anwen-
dung für einen spezifischen Anwendungsfall eines Getränkekühlschranks. Die Abschlus-
sarbeit präsentiert einfache jedoch effektive Vorgehensweisen zur Reduzierung der er-
forderten Trainingsdatenmenge und des Risikos von Overfitting, insbesondere im Um-
gang mit kleinem Datensatz, der üblich von individueller Person oder kleiner Organisa-
tion aufgenommen wurde. Das Modell erreichte eine Testgenauigkeit von 91.235% und
ein vergleichbares Ergebnis im praktischen Test an der Veranstaltung Solutions Hamburg
2019. Multi-Fusion Network ist leicht zu skalieren durch gemeinsame lernbare Parameter
und auch so leichtgewichtig, dass es auf kleine Geräte mit durchschnittlicher Rechenleis-
tung laufen kann. Multi-Fusion Network könnte für Indoor-Aktivitäten Erkennung für
Smarthome Anwendungen oder Gaming-Erlebnis angewendet werden.
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Abstract

This thesis proposes Multi-Fusion Network architecture for human-object interaction
detection with multiple cameras and implements an application for a specific use case
of a drink refrigerator. The thesis also introduces simple but effective approaches for
minimizing the required amount of training data and the risk of overfitting, especially
when dealing with a small dataset that is commonly recorded by a person or small
organization. The model achieved 91.235% test accuracy and comparable result in the
real-world test at the event Solutions Hamburg 2019. Multi-Fusion Network is easy
to scale thanks to shared learnable parameters. It is also lightweight to run on small
devices with average computation capability and, therefore, can be used for smart home
applications, gaming experiences, or augmented reality.
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1 Introduction

1.1 Human-object interaction detection

Computers were invented to help people complete their tasks more comfortably, faster,
and better. In the early ‘90s, the first smartphone appeared in the market. It worked as
a pocket computer to help people do their everyday tasks everywhere without having to
sit in front of a computer. One must only take his phone out, and perform some swipes
and some touches on the screen. Nowadays, in the era of Internet-of-Things, people want
to put computers in everything, where limitations start to become apparent. Computers
cannot anticipate or recognize human activities without the user having to give them a
clue or somehow telling them about his intent. This problem can be solved in different
ways, either improving user experiences for more convenience, which forms the research
field Human-Computer Interaction or letting computers understand what is happening
in the surroundings and automatically know what to do.

Human-object interaction detection is a computer vision research field that tries to make
computers understand the visual world by learning how humans and objects in the real-
world are interacting with each other. There is no common approach to tackle this prob-
lem yet, though almost all state-of-the-art methods are deep learning models trained in
supervised manners. There has been much hype around deep learning in the last decade,
especially in computer vision fields since they are drastically shifting from statistical ap-
proaches to neural networks because of the enormous advantages of convolutional neural
networks.

State-of-the-art methods for human-object-interaction detection such as HAKE [13] and
InteractNet [5] are also convolutional neural networks with special architecture. Besides,
HAKE and InteractNet involve human action embedding and region proposal networks.
Such complex approaches require high computational capability; therefore, it would be
overkill for real-world use cases. For instance, when there can be only one person inter-
acting with the system at once and only some human body parts are to be seen.
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1 Introduction

Figure 1.1: Region proposal network [5]

1.2 Cooperation of multiple cameras

A monitoring system that uses a single camera could struggle to work reliably caused
by dead zones, blind spots of the camera setup, or occlusions that occur when an object
hides another object.

For that reason, many systems use multiple cameras to cover the monitoring area fully.
However, an autonomous monitoring system using multiple cameras from different view
angles and positions encounters other difficulties, namely additional computational bur-
den and constructing an algorithm to merge observed information from all cameras into a
final one. Physical and mathematical approaches to solve this problem may strongly de-
pend on cameras’ relative positions and hence require camera calibration or strict camera
installation procedures, which can lead to further problems.

A human can understand actions regardless of view angles because he/she has been
seeing and learning them since he/she was born. If one can not tell which action is being
performed, one tries to move around and look at the action from different view angles
before one can undoubtedly answer. In consideration of this intuition, deep learning is
well-suited for solving this kind of problem without requiring any calibration or having
to follow any installation rules.

2



1 Introduction

Figure 1.2: The occlusion problem: Only the camera 1 can see the object

1.3 Objectives

The thesis proposes a neural network architecture and some novel techniques to solve the
problem. A practical use case is also implemented for testing and evaluating purpose: a
refrigerator with multiple cameras and a computer inside that can recognize fundamental
interactions (taking, putting, or nothing) between users and objects (drinks, fruits). The
objectives of the thesis are:

• To create a small dataset with multiple cameras for training and evaluation.

• To construct a system that produces reasonable results or at least better than
random and to evaluate its potential.

• To research new techniques to enhance the overall performance further. The major
aim here is not only high accuracy but also the real-time capability of the system
so that the system can work continuously and give instant feedback back to users.

1.4 Structure

The thesis is split into six chapters. The first chapter gives a brief introduction to
the problem of human-object interaction detection and why the author constructs a new

3



1 Introduction

architecture instead of using state-of-the-art methods. This chapter also explains the
reason for using multiple cameras and difficulties when dealing with multiple cameras.

The second chapter aims to introduce common concepts and best practices in com-
puter vision and propose the architecture. The core building blocks, their inspiration,
and motivation are explained. This chapter also discusses some considerations during
architecture construction.

The third chapter covers the process of recording a dataset, difficulties, and considera-
tions during the process. This chapter also discusses some data augmentation techniques
that can be applied in this work and define a new term of “consistency” and different
levels of consistency when augmenting data.

The fourth chapter presents pre-processing techniques, attention mechanisms, training
techniques, and considerations to speed up the training process. Experiment results and
practical test results are reported at the end of the chapter.

The fifth chapter analyzes difficulties and discusses different approaches to make the
system capable of working with continuous video streams and working fast enough to
perform all calculations in real-time.

The last chapter summarizes all the work done, discusses the potential of the proposed
architecture and techniques and future work that can be done on top of this thesis.

4



2 Model architecture

The core concept of Multi-Fusion Network is to split tasks, solve, and then combine them
again to get the final result in a divide-and-conquer manner. However, splitting tasks
into small ones that can easily be solved, and combining information from outputs in
deep learning requires some considerations.

2.1 Input

Input in this project is a sequence of frames captured by all the cameras mounted in
the refrigerator. Each input is assumed to contain only one action and one object. The
model needs to recognize both for each input. There are three options to consider:

1. Each possible pair of action-object is encoded as one class.

2. Actions and objects are separately encoded as individual classes; a single model
predicts for each input an action-object pair.

3. Actions and objects are separately encoded as individual classes; two separate
models predict action and object.

The first option theoretically can be used, but then the problem is not well modeled.
The model should learn the actual movement patterns of actions and visual features of
objects to be robust against variations. Should a new action be added, this action must
also be recorded with all existing object classes in the dataset and vice versa, leading to
extraordinarily high but unnecessary costs.

The second option divides the problem into two small ones, meaning there are two clas-
sification heads, one for action classification and the other one for object classification.
This option seemed to be the right choice at first since each part of the model has its

5



2 Model architecture

Figure 2.1: Second approach

particular job. It was, therefore, implemented and experimented. Actions were relatively
well recognized, but objects were often misclassified.

It turns out, the fact that only one object can be put (or taken) in each input can be
exploited to enhance the model while keeping the same data usage. The third approach
divides the model into two parts. The action classification model receives video as input,
while the object classification model receives video frames instead. In doing so, the object
classification model now has much more training data.

Figure 2.2: Third approach

This approach still encounters another issue with video frames. Not all video frames of
"taking apple" can be used for class "apple" because there are also moments, at which
the hand is not holding anything when it even moves or is visible. Some pre-processing
techniques can solve this problem, which will be discussed in chapter 4.

6



2 Model architecture

2.2 Feature extractor and Transfer learning

2.2.1 Feature extraction

Deep learning models make a prediction based on features. In computer vision tasks,
a feature is a unique piece of information that describes observed characteristics in the
image, such as line, curve, color, or more intricate detail. Despite visual information it
contains, features are encoded as numbers, forming a multi-dimensional feature space.

Feature extractor is responsible for finding and extracting informative visual features in
input images into their corresponding numeric forms, allowing classifiers (or regressors) to
use this information more effectively rather than just looking at pixels matrices. Feature
extractor is, therefore, a crucial building block in deep learning for computer vision.

Convolutional neural network

A feature extractor usually is a convolutional neural network. It consists of multiple 2D
convolutional layers for recognizing patterns, and pooling layers (max pooling or average
pooling) for reducing input sizes or smoothing input. A convolutional layer contains a
set of rectangular parallelepiped filters. These filters are small in terms of width and
height, commonly ranging from 1 to 7, and have the same depth as that of input (depth
is 3 if the input is an RGB image).

Figure 2.3: How convolutional layer works

Instead of connecting an input to all neurons at once during the forward pass, convolu-
tional filters slide across the input and compute dot products as usual. In other words,
neurons will be connected to a small region of input at each step, resulting in a so-called

7



2 Model architecture

receptive field that tries to find patterns in local regions. Each filter is responsible for
finding a specific visual pattern.

Pooling layers

A pooling layer is often inserted between successive convolutional layers. Pooling layers
can help to reduce the width and height of input passing to the next convolutional layer
and, therefore, reduce the number of learnable parameters, computational costs, and risks
of overfitting. Two common types of pooling are max pooling and average pooling.

Figure 2.4: How max pooling works

Max pooling uses a filter that slides across the input and returns the max value (the
brightest pixel) in the window at each step, while average pooling’s filter returns the
average value of that window instead. Max pooling is useful when one wants to reduce
image size while keeping significant visual patterns. Average pooling is often used to
smooth out input images.

Residual neural network architecture

Constructing an efficient convolutional neural network is not simply stacking one convo-
lutional layer on top of another. Researchers have published various architectures in the
last few years such as AlexNet [11], Inception [22], VGG [17] and ResNet [7] with a wide
range of accuracy and computational complexity.

The ResNet architecture is used in this work as a feature extractor because of its simplic-
ity and efficiency. The core of ResNet architecture is the residual block, which contains

8



2 Model architecture

a skip connection (or identity mapping). Accuracy of a neural network will get saturated
and begins to degrade at some point when one tries to keep increasing its depth and.
Skip connections help to construct a deeper model without suffering from performance
degradation. Besides, stacking too many layers will cause the problem of vanishing gra-

Figure 2.5: A building block in ResNet architecture with skip connection [7]

dient. Larger gradients can be backpropagated through skip connections to the initial
layers; this not only helps to avoid vanishing gradient but also maintains the learning
speed of initial layers as high as that of final layers.

2.2.2 Transfer learning

The intuition behind transfer learning is that humans can transfer knowledge across tasks;
in other words, humans can utilize the acquired knowledge to solve related tasks. Based
on that idea, transfer learning is a method that reuses a pre-trained model developed for
a task as a basis for developing a model for another task. People rarely train a model
from scratch, especially in computer vision fields, because it is hard to have sufficient
data, and it costs too much time to do so. Also, researches have proved that using a
pre-trained base model can help to converge faster than training from scratch. When a
model should be trained with a small dataset for object detection, it is a best practice
to utilize a pre-trained model. A base model pre-trained with ImageNet Dataset [4] not
only can help to converge faster but also to achieve better accuracy because ImageNet is
one of the largest datasets and contains many visual features that exist in real life.

There are two common application scenarios of transfer learning:

1. Fixed feature extractor: Freeze the model’s weights and remove the last layer
(classifier). The extracted features can be used to classify other objects or for

9



2 Model architecture

further processing.

2. Fine-tuning: Freeze nothing or only parts of the model and remove the classifier.
Weights of those layers will also be updated after backpropagation.

(a) Fixed feature extractor (b) Fine-tuning

Figure 2.6: Common approaches to transfer learning

An experiment is performed to find out which strategy is best for this specific use case.
The base model was completely frozen at the beginning. However, it turns out that video
frames differ from normal images a lot since they also contain blurry visual features of
moving objects; as a result, the model could only achieve very low accuracy. Therefore,
two last convolutional blocks of the base model are unfrozen for the model to learn those
blurry features. As a result, accuracy significantly increased.

2.3 Concepts

2.3.1 Temporal fusion

Many research papers have proposed various approaches for video understanding such
as 3D Convolutional Network, Inflated 3D Convolutional Network [2], CNN-RNN and
especially Temporal Relation Network (TRN) [24].

This project applies the idea of TRN for temporal fusion block. Based on Temporal
Segment Network (TSN) [23], TRN can learn to reason relations between changes of
entities along the time axis. Rather than using optical flow to learn movement patterns,
TRN only sees state changes in time and anticipates what is happening or reasons what
happened.

Spatial information can contribute a lot to many action recognition tasks. However,
actions in this project can only be distinguished primarily using temporal information,

10



2 Model architecture

namely, hand movements and changes in the presence of an object. Therefore, this use
case can evoke the potential of TRN, helping to achieve good performance with low
computational cost.

Figure 2.7: How Temporal Relation Network works [24]

Although TRN can be implemented with multi-scale time relations, single scale time
relation is used in this work. The reason for that is the fact that multi-scale time
relations bring no significant gain for this use case after some experiments.

Instead of random sampling, as in the original paper, frames are sampled so that they
are equally distributed across the time axis. This type of sampling ensures representative
positions of movement are completely captured because every hand position is crucial to
understand actions, in this case, a skipped snippet can also lead to change in the meaning
of the action.

After extracting information from sampled frames, the model needs to perform temporal
fusion to connect information from many positions in time. The temporal fusion block
can be a fully connected layer as in the original paper or a more complex block. In
this project, the acquired information is fed into a Gated Recurrent Unit (GRU) [3],
which works as an encoder, the final hidden state of the GRU is then passed for further
processing. This approach is introduced in the paper "Temporal Reasoning in Videos
using Convolutional Gated Recurrent Units."

Gated recurrent unit and sequence understanding

Gated recurrent unit is a mechanism in recurrent neural networks – a common type
of neural network for processing sequences thanks to its natural architecture. Recurrent

11



2 Model architecture

neural networks are neural networks with a loop in themselves. They can store the output
of previous calculation (or hidden state), which will contribute to successive calculations.
In other words, recurrent networks receive two inputs: actual input and hidden state.
The hidden state is updated after each calculation, forming a kind of short-term memory.
Recurrent neural networks can be applied for understanding sequences because the final

Figure 2.8: Loop in recurrent neural networks

hidden state‚ contains information of every time step so that it can ideally encode the
meaning of the whole input sequence.

2.3.2 View fusion

Due to the limitations of camera perspectives, a camera may not be able to see the
object, leading to wrong classifications. Multiple cameras can co-operate with each other
to produce the best result. The main idea of multi-view fusion is to find a consensus
among all the cameras. The ideal mapping of temporal fusion block (before view fusion)

Figure 2.9: The illustration of how view fusion works

12
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is signal strength of informative movement patterns that each individual camera can
observe despite their different view angles so that combining that information from all
cameras can help to make the best decision. Therefore, instead of using another fully
connected layer to merge all into one, the mean values of these signals from all cameras
are calculated.

2.4 Architecture overview

Process view

The pre-processing blocks contain pre-processing operations such as inactivity removal,
background subtraction, and density-based cropping, which clean the input and prepare
them for further processing. Those operations will be described further in Chapter 4 and
Chapter 5.

Figure 2.10: Architecture overview

Video frames from the pre-processed input are then sampled and fed into the feature
extractor. The extracted visual features are fused together by an encoder in the temporal
fusion step. The encoded information from different cameras is aggregated into one, which
is then finally passed to the classifier.

Simultaneously with action recognition, all pre-processed frames are also passed to the
object classifier. The object classifier performs prediction on every frame that it receives
from the pre-processing block. All object predictions, therefore, also need to reach a

13
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consensus. Different policies can be applied to find consensus. The most frequently
classified object (with a high confidence score) will be chosen in this project.

Shared weights

Despite multiple input sources, a single feature extractor with shared weights is used
for extracting visual features in each frame, so that it can learn to see an object from
different points of view and also keep the number of parameters as low as possible.

The extracted features are then passed to corresponding temporal fusion blocks to recog-
nize movement patterns. The GRU cell in temporal fusion block is shared since it should
also learn to see actions from different angles. The hidden state of the GRU cell is reset
after completing a computation task for a single camera.

All learnable parameters in feature extraction and temporal fusion stage are shared; only
a mean calculation is performed in view fusion stage. One can conclude that Multi-
Fusion Network architecture is scalable because an increasing number of cameras does
not involve an increasing amount of parameters.

2.5 Discussion

Multi-Fusion Network follows the divide-and-conquer principle. It firstly divides the task
of recognizing human-object interaction into two smaller ones: action recognition and
object classification. This approach helps to use the dataset more effectively and make
the models more intuitive and trivial to construct. Action recognition with multiple
cameras is broken down into movement recognition with single-camera subtasks, the
recognized movements from all cameras are then aggregated, forming a final action. The
same approach is applied for object classification.

Feature extractor in this project is a pre-trained convolutional network model – ResNet.
ResNet architecture has skip connections, which allows constructing a deeper model with-
out suffering from vanishing gradients and performance degradation. Transfer learning
helps to reduce the amount of work and data needed to achieve good performance. The
feature extractor is pre-trained on the ImageNet dataset, which contains a lot of common
visual features in real life; this helps the model to learn faster and better. Due to blurry
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2 Model architecture

features of movements that only exist in videos, the last two convolutional blocks of the
pre-trained feature extractor are not frozen for them to adopt new features.

The temporal fusion block looks at every frame from a single camera and learns to under-
stand movement patterns by using a gated recurrent unit. The ideal mapping function
of temporal fusion should give a vector containing informative movement information
without respect to the camera angle so that those vectors from multiple cameras can be
easily aggregated into one final movement describing vector in the view fusion stage.

Despite having multiple input sources, all learnable parameters in Multi-Fusion network
architecture are shared. The fact that all weights are shared brings good scaling potential
because adding more cameras will not increase the number of parameters.
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3.1 Objects, actions and camera placements

This dataset contains 7 object classes and 3 actions, shot by MQ013CG-E2 cameras (1.3
Megapixel) with wide-angle lenses at 20 FPS.

Figure 3.1: The camera and lens used to record the dataset

Some of the chosen objects possess different shapes and colors, which helps the model
to distinguish between them easily. However, some pairs have the same shape or color
in order to find out how well the model performs. For instance, Lemonaid+ Blutorange
and Lemonaid+ Limette share the same shape, but different colors (pink-red and green);
Granini Orange and Apple have different shapes but have quite the same color.

An object will be taken, put, or nothing happens at all in each video. Four cameras are
used to capture actions from different angles, preventing objects from being fully covered
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Objects Actions
Apple
Banana

Lemonaid+ Blutorange (Bottle)
Lemonaid+ Limette (Bottle)

Club-Mate (Bottle)
Granini Orange (Bottle)

Veltins beer (Can)

Nothing
Take
Put

Table 3.1: Objects and actions in the dataset

by hands or other objects. Two cameras are mounted at the front top left and right
corners, pointing inwards. If an object is being taken by the left hand, the left camera
may not be able to see that object, but the other front camera will. The third camera
is mounted at the rear top left corner, pointing outwards, and the fourth is mounted on
top of the refrigerator in order to provide more information. No camera is mounted at
the top center position (pointing downwards) because it would only be able to see bottle
caps, and the model may have no chance to classify when working with low-resolution
images correctly.

Figure 3.2: Camera positions

In the beginning, all four cameras are used to record 4 × 1818 videos. However, the model
trained with those videos was strongly overfitted regardless of how hyperparameters are
configured. The model performed very well during training; accuracy increased up to
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99% but made random guess during the validation phase.

After some investigations, it turned out to be caused by the lack of diversity in the
dataset. Only four persons participated in the recording phase. Although there was
an effort of changing clothes as well as shuffling object positions frequently, it was still
insufficient for the model to generalize. Besides, the background in the third and fourth
cameras rarely changes.

Figure 3.3: Images captured by camera 1 and 2

Figure 3.4: Images captured by camera 3 and 4

Due to the overfitting problem, the third and fourth cameras are removed. The model did
show significant improvement by making reasonable classifications, accuracy increased
slowly epoch-by-epoch and stopped at about 50% and about 30% for action classifier
and object classifier, respectively. The evaluation was performed on a model with base
architecture – i.e., without additional blocks, which will be introduced in Chapter 4 and
helped a lot to boost performance significantly.
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New dataset, new recording process

A new dataset must be recorded with only two cameras. Now dataset is split into two
parts: action dataset and object dataset. The action dataset will be recorded as usual:
each video contains one action on an object (or nothing). The object dataset takes
much less time to record: A person holds an object in front of the cameras and tries to
interact with that object by performing actions such as turning, rotating, holding, and
so forth. The main benefit of this splitting is that it will be easier to add a new object
to the dataset, and the teaching process makes a lot more sense. Should the refrigerator
learn a new object, all one must do are just holding that object in front of the cameras
and moving it around for some minutes. Furthermore, teaching the model to learn a
new action is also more comfortable. One does not need to interact with every object
available in the dataset but on an arbitrary object.

3.2 Data augmentation

Data augmentation is an essential technique in machine learning, helps to train the model
to be robust against variations, and to be able to generalize better. The key idea is to
transform input in different ways in order to enrich the dataset. The model can then
learn various variations of a single input and recognize its pattern later with ease. For
example, a cat detection model with data augmentation will recognize real cats much
better than one without data augmentation, because cat images in real life can have
numerous positions as well as camera angles.

Figure 3.5: Examples of image augmentation
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Data augmentation is especially popular when working with images. The same augmen-
tation techniques can also be applied to video datasets since videos are just stacks of
images. Depending on use cases, some constraints must be considered instead of blindly
applying all transformations.

3.2.1 Consistency

The aim of augmenting is to generate more samples based on existing data. Those
generated data must, however, be as realistic as possible. It would make no sense and
bring no benefit if generated data are too unrealistic, or such data that the model will
never work on. Consistency means, in this work, constancy or slow changes of some
properties in a data sample. For example, applying random flip on an image dataset
would be fine, but will cause adverse effects on a video dataset, when video frames are
suddenly flipped back and forth. Two levels of consistency are defined as follows:

Consistency within a single camera

This type of consistency ensures that the augmented video still looks realistic and reason-
able. In other words, if a transformation is applied on a frame, the same or a comparable
transformation must also be applied to the remaining frames, so that the augmented
video can maintain continuity.

Figure 3.6: Consistency within a single camera

Figure 3.7: Inconsistency within a single camera
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Consistency across multiple cameras

Consistency across multiple cameras requires the videos to be already consistent within
a single camera. Furthermore, the videos must be consistent concerning both space and
time, so that augmented videos still can maintain the effect all cameras were filming at
the same time at the same place. Is a video reversed or flipped, the others must also be
reversed or flipped.

Figure 3.8: An example of not fulfilling multi-camera consistency

Correctly determining the consistency level for transformations will help to gain more
benefit from data augmentation. The lower the consistency level is required, the more
data can be generated. Choosing the wrong consistency level for just one transformation
can even lead to big problems in model performance. The next sections will discuss the
possible transformations and their required consistency level.

3.2.2 Brightness

Brightness affects the color intensity and, therefore, also object classification perfor-
mance. Changing brightness helps the model to be robust against dynamic lighting
conditions. The cameras in this work are configured with Auto-Exposure/Auto-Gain
(AEAG), which means exposure and gain values are automatically modified if lighting
conditions change. AEAG does help to achieve good and stable brightness. However,
there is still a crossing phase when lighting conditions change, where some darker (or
lighter) images are captured and evaluated before new exposure, and gain values are
calculated.

Each individual camera has its own exposure and gain values, which not necessarily
need to be equal to or proportional to that of other cameras. In addition, lighting
conditions can suddenly change, and two consecutive frames can then have two brightness

21



3 Dataset

values with a large distance. It can be concluded that brightness augmenting requires no
consistency.

The brightness value varies randomly from 0.9 to 1.1 in this project because this interval
reflects all lighting changes that can be performed during the experiment.

3.2.3 Horizontal flipping

Horizontal flipping is one of the most popular techniques in image augmentation. Hor-
izontal flipping helps to vary the position and posture of objects. It is obvious that
horizontal flipping requires consistency within a single camera. It is important to notice
that the model should learn to understand and to recognize actions and objects from dif-
ferent points of view. Once something changes in a camera, it may also change in some
other cameras in the very same way. Depending on the relative position between the
cameras, horizontal flipping may also require consistency across some or all cameras.

Understanding physical changes across all cameras plays an important role; synchronizing
posture of objects and human hands across all cameras is therefore also relevant. In this
project, horizontal flipping subjects to require multi-camera consistency.

3.2.4 Zooming

Zooming in or out helps mainly to generate objects in different sizes so that the model
can recognize them better. Keeping the size of objects in sync across all cameras is
overkill for this project. Therefore, single-camera consistency’s constraints are applied.
Each camera can have different but constant zoom ratios because the cameras have fixed
focal length and statically mounted.

3.2.5 Reversing and label mapping

Reversing video is the most trivial option to augment when it comes to the time axis.
Multi-camera consistency is obviously required since the same sequence of action must
be observed by all cameras. One should notice that reordering frames can also lead to
changes in video meaning. However, that consequence is the most meaningful advantage
of this technique: hand positions and postures can be reused to generate other actions.
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The target label of actions must be re-mapped after reversing, as shown in Figure 3.9.

Figure 3.9: Action mapping schema

Short snippets can also be individually repeated and reversed. In this case, labels do
not have to be re-mapped. However, this is not experimented in this project due to its
complexity, and the cameras are not exactly synchronized in time with each other. This
type of augmentation should be experimented and evaluated in future works.

3.3 Discussion

One of the biggest concerns when solving problems using supervised learning is determin-
ing which kind of data should be used for training and how to obtain them. A dataset
must be recorded in this work because no such data for this problem are published. The
dataset for this project is though small, but required much effort to obtain.

Data augmentation is essential, especially when working with a small dataset. Data
augmentation helps to generate more variations based on existing data, helps the model
to be more robust against transformations, and achieve better ability to generalize.

The term "consistency" defines some constraints to follow when applying a transforma-
tion in order to keep the augmented video as realistic as possible and not to tamper their
information. Single-camera consistency requires the augmented video to contain a frame
sequence that appears to be actually captured by a camera. Multi-camera consistency
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means the videos from all cameras must be in sync with each other in respect of time,
position, and posture of objects.

Brightness can vary continuously or suddenly, and each camera can have a different
brightness value depending on exposure and gain values of each camera. Therefore,
changing brightness requires no consistency.

Horizontal flipping changes the posture and position of objects. Multi-camera consistency
is needed because all cameras should perceive the same change so that the model can
learn the relation between changes in all cameras.

Zoom helps to generate objects in different scales and requires single-camera consistency
because the cameras are statically mounted, and it is not necessary to keep object sizes
in sync across all cameras.

Reversing video can lead to changes in the meaning of the video, which means labels
must also be re-mapped. Multi-camera consistency is required since the same sequence
of movements must be perceived by all cameras.

Understanding different levels of consistency in data augmentation will help to gain
maximum benefit. Blindly applying transformation could lead to low performance of the
model.
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The datasets were recorded several times, each time with minor changes in the camera’s
field of view. At first, various models were trained with different numbers of segments.
The fact that the datasets are small and were recorded by four persons on the same day at
the same location led to overfitting of all models, despite many regularization techniques
such as reducing the number of hidden units, dropout, and adding regularization terms.
The root cause of this overfitting problem is highly likely to be the lack of variance among
samples in the dataset. Background, surrounding objects, and clothing were infrequently
changed. Since it is vastly labor-intensive to record such a dataset that has many different
backgrounds and users, some techniques should be applied in order not only to overcome
overfitting by ignoring irrelevant information in video frames but also to keep the amount
of training data needed as small as possible.

4.1 Finding region of interest

The fundamental idea of attention in video action recognition is that humans only need
to look at parts of a video at each instance of time in order to understand which action
is being taken. The ability to know where and when to pay attention to grasp the
happening has been acquired since humans were born. Therefore, attention is nowadays
widely applied in many machine learning fields in general and in action recognition tasks
in particular. This work only makes use of spatial attention (where to look); temporal
attention is neglected to let the action classifier learn to understand the video by reasoning
action sequences.

4.1.1 Spatial attention

A soft attention mechanism [15] was inserted before the feature extraction model and
responsible for blacking-out irrelevant parts of input to minimize their impacts on predic-
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Figure 4.1: Spatial attention block [15]

tion. The spatial attention block consists of a convolutional network with ’same’ padding
in all layers that learns to produce an importance mask for each input image, which is
then multiplied element-wise with the original input image. Same padding means the
width and height of output will be the same as those of input image. This block is
designed to be plugged-in in any existing network with ease. The input image will be
feed to the spatial attention block, whose output will be then passed to the classifier.

However, the spatial attention block failed to produce reasonable importance masks in
practice, and the training loss did not converge. Insufficient variation in images could be
again the main reason.

4.1.2 Background subtraction as an attention mechanism

Background subtraction is a technique used to segment the foreground objects from
the background. In other words, background subtraction detects moving objects and is
mostly used for traffic monitoring tasks such as detecting and tracking vehicles, pedes-
trians. The traditional methods, eg., Frame Differencing, give good results when the
camera is stationary. Otherwise, every pixel in the image would change, and the back-
ground estimation algorithm fails. Many deep learning approaches are developed in the
last few years. They are, however, too computationally expensive for being used in a
real-time application due to their convolutional encoder-decoder architecture.

Fortunately, all cameras are stationarily mounted to the refrigerator in this specified use
case. Thus, traditional algorithms could be applied to generate foreground masks, which
effectively works as a spatial attention mechanism.

Andrews Sobral implemented various algorithms and introduced BGSLibrary for fore-
ground detection and background estimation in his work [19]. Though the library was
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Figure 4.2: Encoder-decoder architecture for foreground detection [14]

written in C++, BGSLibrary can also be used in Python, Java, and MATLAB by means
of its wrappers.

BGSLibrary supports different OpenCV [1] versions, but the number of available algo-
rithms does differ at the time of this experiment. BGSLibrary compiled with OpenCV
3, OpenCV 4 has 41 and 15 algorithms, respectively. Therefore BGSLibrary in this work
was compiled with OpenCV 3.4.1 on Ubuntu 16.04 LTS.

41 available algorithms were benchmarked to find which is the best-suited candidate for
this problem. Benchmarking criteria are computational complexity, noise level in the
mask, intersection over union (Jaccard-index) of the detected moving object and ground
truth.

According to the criteria mentioned above, the algorithms fall into three main groups:

1. Fast, low mask quality

2. Slow, high mask quality

3. Average speed, average mask quality

Frame Differencing, SuBSENSE [20], and Local Binary Pattern with Markov Random
Field (LBP-MRF) [10] are the representative algorithm for group 1, 2, and 3, respec-
tively..

This is a trade-off between speed and quality. Slow algorithms are not suitable due
to the real-time capability requirement of this project. Fast algorithms produce low-
quality masks with a high noise level, which makes the relevant features in images barely
recognizable. To that end, LBP-MRF is selected on the grounds that its speed is just
right to fulfill the real-time requirement, and its mask quality is more than acceptable.
More precisely, the density of positive pixels in the area of the moving object is much
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(a) Input image (b) Low quality (c) Average quality (d) High quality

Figure 4.3: Different mask qualities with a wide range of noise level and coverness

higher than that in the background area. The density difference between those two areas
plays an important role in enhancing input quality, which will be further discussed right
in the next section.

4.2 Zooming to the region of interest

Input video frames will contain black regions after multiplication with their masks. The
average percentage of area that contains moving object in the recorded dataset is only
about 10% – i.e., 90% of data the neural network processes contains no information.
Furthermore, most convolutional neural networks for extracting features are built in
such a way that small, simple patterns in small areas are detected by the first filters;
dimension of the input is step-wise reduced, complex patterns formed by simple ones
are then detected by the last filters. Consequently, complex patterns in small areas are
hardly detectable. Zooming to the area of the moving object helps to reduce wasted
computation, to make patterns in images easier to detect by enlarging them, though it
is also challenging to do so without affecting the real-time capability of the project.

4.2.1 Spatial Transformer

Spatial Transformer [9] was introduced by Google DeepMind and became popular by
its ability of learning rotation, translation, scale, etc. to help simplify classification
tasks. The principle of Spatial Transformer Network (STN) is to use convolutional layers
(or fully-connected layers) followed by a last fully-connected layer with 6 perceptrons
to look at input image and produce an appropriate affine transformation matrix θ =
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Figure 4.4: Spatial Transformer Network [9]

[
θ11 θ12 θ13

θ21 θ22 θ23

]
. The weights of the last layer are zero-initialized and its biases are

initialized so that its output is an identity transformation matrix

[
1 0 0

0 1 0

]
. The affine

transformation is then applied to a sampling grid G.

The reason affine transformation is applied to a sampling grid instead of directly to
the input image is differentiability. One problem is also known as forward-mapping and
backward-mapping in image processing tasks. Affine transformation is a mapping process
that doesn’t necessarily need to be surjective or injective. Therefore, if transformation
is applied directly to the input image, some pixels in the transformed image wouldn’t
even have been assigned a value. In addition, target coordinates could be fractional
while they must be integers, a bilinear sampler is used to solve this by taking account of
all pixels lying around those fractional coordinates. Since bilinear interpolation is fully
differentiable, the original paper suggested bilinear sampler for this stage, but it can also
be replaced by other samplers.

Only translation and scale are needed in this case, the number of parameters for affine

transformation can be reduced from 6 to 4, meaning θ =

[
θsx 0 θtx

0 θsy θty

]
Spatial Transformer did work as a plugin to many classification tasks on datasets such as
MNIST [12], Street View House Numbers [16], German Traffic Signs [21], etc. However,
the zooming effect of STN in this specific dataset is not remarkable and reliable. Although
it did zoom into moving objects successfully, sometimes, input images were squeezed or
translated until they disappeared.
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4.2.2 Density-based cropping

To utilize the fact that there is nothing other than the moving object is visible in every
frame, density-based cropping is introduced based on the assumption: Density of positive
pixels in an area that contains the moving object is significantly higher than that in an
area solely containing background.

Image thresholding

Image thresholding is the simplest method to generate binary images from grayscale
images. Each pixel in the input image will be marked black if its intensity is less than a
defined threshold.

Mean filtering

Mean filtering is a technique in image processing, commonly used for eliminating noise
or smoothing images. Mean filtering uses a sliding window that replaces the center value
with the mean of all other pixels (its neighbors) in the window.

Principle

Firstly, a mean filter is utilized to reduce noise by computing the percentage of positive
pixels in fixed-size areas, resulting in a blurry grayscale version of the input image. The
area containing the moving object will still be white thanks to its high pixel density,
while noise areas will fade to gray. Image thresholding is then applied to remove noise
pixels completely. The cropping procedure is trivial; all it needs to do is to slice the
image so that every row/column contains at least one white pixel. Hence, choosing the
right threshold value plays a crucial role in producing reasonable results.

The image size in this project is 96x96, the averaging kernel size is 5x5, and the threshold
value is 0.7. Density-based cropping has proved its ability in practice by producing desired
results in most cases. Sometimes input image is not well cropped because noises were
not eliminated; even one tiny noise in a corner that passed the thresholding stage could
affect the result severely.
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(a) Input image (b) After mean filtering (c) After thresholding

Figure 4.5: Illustration of how density-based cropping works

Unlike spatial transformer, although density-based cropping may also fail to output good
results as expected due to incorrect parameters (kernel size, threshold value). Moving
objects are still visible in failure cases.

(a) Input image (b) Good result (c) Bad result

Figure 4.6: Success and failure of density-based cropping

4.3 Evaluation

4.3.1 Trade-off between speed and memory

It’s common to see many implementations reading videos directly in *.webm. Sometimes,
video frames were extracted into separate JPEG images in order to reduce loading time
during training. Seeing that the amount of data in this project is relatively small, the
videos were converted into *.npy to improve loading speed further The videos were first
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background-subtracted, resized to 96x96, and then converted to *.npy format to reduce
loading time during training.

4.3.2 Cyclical learning rate

One can imagine the value of the loss function as a man finding a way down the hill,
optimizer as a guide telling the man which direction to go, and learning rate as his
step length. The learning rate determines to what extent new information affects the
knowledge base of the mode. Too low learning rate leads to training inefficiency, i.e.,
the model will unnecessarily require many updates before it can reach the minimum. Or
even worse, too high learning rate causes divergence behaviors of the loss function.

Annealing learning rate

If the learning rate is constant, it will be too large to converge at some point and will
cause the value of loss function to fluctuate around the (local) minimum. Commonly, the
learning rate is set relatively high at first to find the minimum area quickly. The learning
rate will be decreased step by step during training to explore that area deeper.

Figure 4.7: Decreasing learning rate helps to explore deeper

One should notice that minima are not necessarily global, and the model will be stuck
at a random local minimum as long as it does not take any step out of that area, which
is often the case.
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Cyclical learning rate

The paper "Cyclical Learning Rates for Training Neural Networks" [18] discussed a new
idea of cyclical learning rates as a variant of annealing learning rate that helps to eliminate
the need of lots of experiments to find the best learning rate. The learning rate is set
high at the initial stage, decreases from time to time, and the process is then reset (or
gradually increased ) after the learning rate reached a defined minimum value. Resetting
the learning rate allows getting rid of the local minimum and find another if it is not
robust.

Figure 4.8: The model is converging to and escaping from several minima when applying
cyclical learning rate [8]

This project implements a triangular learning rate policy, which is also introduced in the
original paper – e.g., the learning rate increases and then decreases linearly.

Figure 4.9: Triangular learning rate policy [18]
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4.3.3 Learning rate range test

The paper "Cyclical Learning Rates for Training Neural Networks" also introduced the
concept of the learning rate range test. The learning rate is set to a lower bound and
gradually increased, and losses will be recorded after each increment. In this experiment,
the learning rate grows from 10−7 to 0.1 exponentially.

Figure 4.10: Learning rate increases exponentially

When entering the area of the optimal learning rate, a drastic drop in the loss can easily
be observed. One can identify three different phases with different behaviors of the loss
function in Figure 4.11. Loss value does not change much in the first phase because the
learning rate is too low, then comes a steep decrease when entering the optimal area.
Exiting the optimal area as the learning rate keeps increasing, it starts to fluctuate and
slowly increase.

Good lower bound and upper bound according to the measured loss in this experiment
are 1.6× 10−5 and 5× 10−4, respectively.

4.3.4 Weight initialization

Choosing the right optimizer and learning rate is crucial. Weight initialization also
plays the same important role while training a model. If parameters are not correctly
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Figure 4.11: Behavior of loss function as the learning rate grows

initialized, vanishing/exploding gradient problems may occur, or even worse, converging
to a minimum could even be impossible.

Xavier initialization

Xavier Glorot and Yoshua Bengio introduced a better concept of initializing random
weights in the paper "Understanding the difficulty of training deep feedforward neural
networks" [6]. Weights are initialized from a uniform distribution in interval [−1, 1] and
scaled by gain×

√
6

fan_in+fan_out , where fan_in, fan_out are respectively the number of
input and output units and gain is an optional scaling factor and depends on activation
function applied on this layer. This project uses ReLU as activation function at all places,
the recommended gain value for ReLU is

√
2.

4.3.5 Training results and model performance

The models are trained on a single GTX 1080Ti for maximal 50 epochs with SGD op-
timizer. If the model achieves better accuracy than the previous one, a checkpoint is
saved. The early-stopping mechanism is applied in the training progress; the training is
stopped if accuracy does not improve in 5 epochs. The batch size for the action model
and object model is 16 and 64, respectively. Both action and object classifiers have a
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pre-trained ImageNet ResNet-18 (without classification layer) as the base feature extrac-
tor. All layers of the base model ResNet except the last convolutional block are frozen,
allowing them to learn blurry features that come into existence due to hand and object
motion. If this last block is frozen, the model can never achieve high accuracy.

Bottleneck features Temporal units Accuracy (%)
256 64 88.048
128 64 90.438
128 32 91.235
128 16 86.065
64 16 89.243

Table 4.1: The result table of the action model

The number of features in this work is much smaller than that of the ImageNet dataset.
Shapes and colors of hands, bottles, cans, etc. are the most important features for
this specific use case. Logically, a 512-dimensional output of ResNet is superabundant.
A dropout layer with a rate of 0.7 is applied, followed by a bottleneck layer for honing
common visual features into specific ones for this project. 16 frames are sparsely sampled
from every video in the same manner. The action classification model achieved 91.235 %
accuracy with 128 bottleneck features and 32 temporal units. The object classification
model is trained for 41 epochs and achieved 98.954% accuracy.

A practical test is performed to ensure the accuracy of the trained models. The accuracy
of both models in practice is just slightly smaller than that in the validation step. The
actions (put, take, nothing) are correctly classified in most cases, except some special
cases where the object couldn’t be seen or fully detected in the background subtraction
stage. The action classifier worked well in the test, but it still can make false decisions,
especially when unseen things appear (e.g., different sleeve colors) or when other objects
are also to be seen in the foreground (bad background subtraction).

The refrigerator is equipped with an external display for showing recognition results. It
is then placed at the event Solutions Hamburg 2019 and Sommerfest 2019 for letting
people try. The models did also work even at the party, where many other light sources
could have a negative impact on the results.

The experiments serve as Proof-of-Concept, and they have confirmed the feasibility and
efficiency of the proposed architecture. The model performed its tasks correctly in prac-
tice, although it was trained on a tiny dataset. However, more quantitative and quali-
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Figure 4.12: A photo of the beverage refrigerator

tative data, numerous classes recorded in various domains, are needed in order to fully
and fairly evaluate the Multi-Fusion Network architecture’s effectiveness.

4.4 Discussion

Supervised learning tasks are data-consuming giants. Training a model in a supervised
way requires a lot of data, and it is extremely labor-intensive to make a large dataset
with a diversity of features. Nevertheless, it may be possible to minimize the amount
of required data by analyzing project requirements, dataset, and then applying some
techniques to reduce dimensionality. One can notice in this project that decisions strongly
depend on the presence/absence of an object currently in motion. Attention mechanism
will, therefore, bring remarkable contribution to reducing the amount of data if it can
focus on the moving object.

Background subtraction is used in this project as an attention mechanism. The main
advantage of using background subtraction is its simplicity with respect to computational
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cost and effort required for implementation since a public background subtraction frame-
work is provided by Andrews Sobral. Local Binary Pattern with Markov Random Field
is selected in this project, and the algorithm successfully helped to reduce the amount
of required data and to increase accuracy. However, classification result thus strongly
depends on background subtraction algorithm and on its foreground mask quality. Aside
from that, dimensionality reduction also means information loss, which may have a neg-
ative impact on the result if project requirements, data, and important features were not
carefully analyzed. There is a trade-off between speed and mask quality while choosing
an algorithm. Choosing a well-suited algorithm to generate an adequate mask with an
acceptable speed for a specific use case is, therefore, crucial and also not a trivial task.

Zooming into attended regions help to reduce waste of computation, and more impor-
tantly, to help convolutional layers to recognize features better. Spatial Transformer is
designed to be plugged into any existed model with ease, consists of a localization net-
work that learns to generate parameters for affine transformation and a sampler. Spatial
Transformer worked well in many popular datasets such as MNIST and German Traffic
Sign but struggled to work reliably in this project. The reason is very likely to be the
lack of data for it to identify relevant clues for generating proper transformation.

Density-based cropping is introduced in this project, provides a simpler way to zoom into
a region of interest on the assumption nothing but the object of interest is to be seen in
the input image. This method can zoom correctly in most cases, and it fails when there is
more noise in the input image than usual. In other words, density-based cropping relies
strongly on noise eliminating, and choosing a good threshold for noise eliminating is not
trivial.

Noise in foreground masks is formed in the background subtraction stage, which means
there is a risk of the domino effect. Bad choice of background subtraction algorithm also
leads to the inability of density-based cropping as well as adverse influence on classifica-
tion results.

The proposed Multi-Fusion Network achieved good performance in this project despite
a very small amount of training data, ∼ 100 videos for each action, and ∼ 1000 images
for each class of object. However, more data from different domains is needed in order
to evaluate its performance further.
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5 Real-time recognition

Working with a training dataset and test dataset is easier because it is the only job the
model is designed to complete. The model receives input, performs calculations, and
returns corresponding output. However, a few more things need to be done to allow the
model to work in real-life applications.

This section aims to make the refrigerator capable of working in real-time with contin-
uous video streams from multiple cameras. To work in real-time and real-life scenarios,
not only the pre-processing procedure and the models must be fast enough to process
every frame from all cameras, but also there must be a mechanism being capable of
sensing when an action begins and ends so that videos can be trimmed and forwarded to
processing units.

5.1 Working with continuous video streams

In practice, videos are streamed from all cameras continuously. Hence the system will
have no clue about when an action starts and ends. Therefore, it will be not capable of
working properly without an additional mechanism since it is designed to receive video
clips that contain a single action and an object.

Solutions discussion

Many researchers are attempting to detect those moments by using deep learning ap-
proaches. The most common and also state-of-the-art approach is to use a model parallel
with the existing model that predicts whether an action is starting or ending in the cur-
rent frame. However, the project boundaries may explode when applying this method,
and extra computational costs could shut the real-time ability of the model down.
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Figure 5.1: Illustration of the approach using extra classifier for detecting start and end
of actions

Another approach is to use a fixed-size buffer to store video frames. The buffer will be
used as input for the model, and the prediction will be performed after every n frames.
This requires no additional model or complex mechanism. The contra of this approach is
low reliability because inputs may contain one, two, or even three actions, or only parts
of them, depending on buffer size. Actions can be overlooked by using this approach.

Figure 5.2: Illustration of the approach using a fixed size buffer for continuous detection

In addition, one may think a high confidence score can be used as a signal for good input
and classification results. However, it is no longer the case in the modern deep neural
networks, especially when working with too small datasets. Most neural networks suffer
from overconfidence, meaning the confidence score is often too high and no longer reflects
the true correctness likelihood. There are calibration techniques to solve the problem of
overconfidence, such as Temperature scaling. However, this approach does not show its
effectiveness when working with a tiny dataset.
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The simplest but most effective approach

This project makes use of the fact that users must open the door before doing anything.
An assumption is made that only at most one action is performed after opening the
refrigerator’s door for the sake of simplicity. An external reed switch is installed in the
refrigerator, and a triggering magnet is installed in the door to detect the door state. The
cameras only start recording when the door is open and stop after the door is closed.

This physical mechanism is simple but effective and well suited for the refrigerator.
The model can now receive videos that contain only one single action without extra
computational cost.

5.2 Real-time capability

As mentioned in chapter 3 and chapter 4, Multi-Fusion Network architecture is designed
to work as fast by keeping the number of learnable parameters small. The choice of
pre-processing algorithms, especially the background subtraction algorithm, also aims to
achieve fast computation as well. The tiny spatial size of input frames (96x96) helps to
significantly increase the model’s speed up to hundreds of frames per second.

Utilizing time

Rather than starting to compute after the door is closed, the system computes right away
after receiving frames from the cameras. Every frame is pre-processed and forwarded to
the object classifier immediately to minimize the idle time of the GPU. After the door
is closed, every frame in the video is already pre-processed and ready to be used for
recognizing action, allowing the action recognition task to be completed in an instance
of time. The whole process is fast enough for users to try the refrigerator and instantly
receive the result.

Speed bottleneck

Unfortunately, the BGSLibrary does not support GPU at the moment. Hence the whole
pre-processing step must be performed on the CPU. The deep learning model works
entirely on GPU. Because the model works extremely fast with 96x96 inputs, the only
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bottleneck is in the pre-processing step. The negative effect of this bottleneck will become
more significant when the number of cameras increases since it has to complete compu-
tation for many more frames within a second. Depending on accuracy requirements, one
could keep reducing input size, choose another more lightweight background subtraction
algorithm to work faster, or use another implementation that has GPU support. Input
size of 96x96 and Local Binary Pattern with Markov Random Field are chosen in this
project because only two cameras are actually used, and LBP-MRF can work fast enough
on CPU to process from these two cameras in real-time.

5.3 Discussion

Action recognition models are designed to process video clips and assign a single label
to each of them. Working fast is not enough for a model to be able to work in real-time
because most of real-time action recognition tasks also involve dealing with continuous
video streams, which is still a problem that many researchers attempted to solve at the
moment. An additional mechanism is needed to determine when an action starts and
ends in the stream.

Using another state-of-the-art deep learning model to solve the problem of continuous
video streams may overstep the project boundaries as well as negatively affect the real-
time capability of the entire system since much more extra work is required. Using a
fixed-size buffer could solve the problem but with low reliability, and not every action fits
in the buffer size. This project solves this problem by installing a reed switch to detect
door state changes, so that input videos can be trimmed correctly without adding any
extra computation.

Multi-fusion Network architecture is designed to work fast and be easy to scale. All
learnable parameters in this architecture are shared, hence adding more cameras will
only increase workload but not the size of the network.

However, the bottleneck in this project resides in the pre-processing step, namely the
background subtraction. The implementation of background subtraction algorithms in
this project does not have GPU support, such a heavy computation on CPU will sig-
nificantly affect the overall performance. Local Binary Pattern with Markov Random
Field is chosen in this project because it is still fast enough to work in real-time with two
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cameras. Another lightweight algorithm, such as Adaptive Background Learning, can be
applied for increasing the computational speed with the cost of accuracy degradation.
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6.1 Summary

The primary target of this work is to construct a deep learning solution for human-object
interaction detection with multiple cameras and apply it on a refrigerator that tries to
recognize human action and object that is the human is interacting with.

This project introduced an architecture called Multi-Fusion Network for understanding
videos from multiple sources by linking observations from each video. Frame sampler is
used to deal with varied video length and minimize redundant information. The temporal
fusion block tries to understand movements from a single video and encode it into a
uniform format. View fusion block combines outputs from the temporal fusion block and
returns a final vector representing all observed movements. A standard softmax layer
then uses this vector for action classification. Parallel to this process, all frames from
the sampler are forwarded to a conventional object classifier to recognize the object.
Outputs from the object classifier are combined into a final one by following a defined
policy. Similar to the concept of divide-and-conquer and separation of concerns approach,
Multi-Fusion Network breaks the problem into small ones, solves them, and tries to
combine the results.

A dataset must be recorded to train and evaluate the model. Four cameras mounted
in the refrigerator records thousands of videos. Although, the model struggled with the
overfitting problem because the background (both inside and outside of the refrigerator)
rarely changes. This problem is eliminated by using background subtraction as an atten-
tion mechanism and removing two cameras that are looking outwards to ensure that only
actions being taken inside of the refrigerator are recorded. Besides, using background
subtraction helps to significantly reduce the amount of required training data to achieve
good performance, from thousands to merely hundreds of videos.
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This project also introduced simple but effective density-based cropping that can zoom
into the object of interest as an alternative to Spatial Transformer with the assumption
that input frames contain nothing but the object of interest. Although, density-based
cropping requires a well-configured threshold parameter to work as desired. Otherwise,
density-based cropping will be negatively affected by noises in input frames.

All learnable parameters in Multi-Fusion Network are shared, which makes this archi-
tecture easy to scale up without sacrificing much computational speed. However, the
pre-processing step causes a speed bottleneck in this project because the background
subtraction algorithm runs on CPU since BGSLibrary does not have GPU support at
the moment. The model in this project is still able to work in real-time without noticeable
delay with an input size of 96x96 from two cameras.

In conclusion, applying deep learning to solving unpopular problems is not trivial because
of the limitation of available data. Making a new dataset is extraordinarily labor-intensive
and requires much effort. Data recorded just by a person or small organization could
contain not enough variations for the model to be able to recognize and extract relevant
features, which leads to the problem of overfitting. Multi-Fusion Network reduces the
amount of training data and therefore also reduces the required effort and the risk of
overfitting. Using background subtraction as a strong attention mechanism can also
help to reduce overfitting. However, which background subtraction algorithm to use
depends on specific characteristics of the use case. Bad choice of background subtraction
can lead to loss of relevant information and, therefore, to performance degradation. A
lot of unexpected cases in real-life experiments are inevitable. Input standardization
and noise removal are much more crucial in practice. This project utilizes density-
based cropping and inactivity trimming in the pre-processing step for achieving the best
results. Multi-Fusion Network has proved its potential by achieving 90.438% accuracy
on the test dataset with only hundreds of training samples. The refrigerator was in the
event Solutions Hamburg 2019 for testing under real-world conditions and did achieve
comparable accuracy to the test result.

6.2 Future work

This project implements a small use case to demonstrate the effectiveness of Multi-Fusion
Network as well as some approaches to overcome overfitting problems in practice, such as
background subtraction as attention mechanism, density-based cropping, and inactivity
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trimming. Due to the limited time and resources of this project, only a small dataset
could be recorded. A larger dataset is required for proper evaluation, or Multi-Fusion
Network must be implemented for a different use case that already has a large public
dataset so that one can see how well it performs in comparison with others. Another
potential of Multi-Fusion Network could be indoor activity recognition for gaming expe-
riences, smart home applications, or augmented reality devices. This architecture could
be used in embedded systems with average computational capability or small toolkits
such as Google Coral or NVIDIA Jetson, thanks to its lightweight.
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A Technical specifications

Model: Dell Precision T3600 Workstation

Processor: Intel R© Xeon(R) CPU E5-1620 0 @ 3.60GHz × 8

Graphics: EVGA GeForce GTX 1080 Ti/PCIe/SSE2

Memory: 32 GiB

Disk: SSD 256 GiB

Power supply: 650W

OS: Ubuntu 16.04 LTS
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