Perioperativer Vitamin-D-Status im Kontext des Omega-Loop-Magenbypasses als chirurgische Therapie der Adipositas

Bachelorarbeit

vorgelegt von: Nina Schmidt
Matrikelnummer:
Tag der Abgabe: 04. September 2019

Erste Gutachterin: Prof. Dr. Sibylle Adam HAW Hamburg
Zweiter Gutachter: Dr. med. Steffen Krause WKK Heide
Zusammenfassung

Methoden: In der vorliegenden Studie wurden die Daten von 61 bariatrischen Patienten retrospektiv ausgewertet, die zwischen Februar 2017 und Juli 2018 im Westküstenklinikum Heide einen MGB erhalten haben. Hierbei wurden die präoperativen Werte sowie Verlaufswerte nach 3, 6 und 12 Monaten berücksichtigt.

Resümee: Die Ergebnisse dieser Studie unterstreichen die Relevanz engmaschiger Kontrollen des perioperativen Vitamin-D-Status sowie individuell angepasster Therapien von Vitamin-D-Mängeln im Kontext des MGB. Weiterführende Untersuchungen zur Supplementierung, ggf. mit höheren Initialdosen, sowie eine Betrachtung des Langzeitverlaufs sollten Gegenstand zukünftiger Forschung sein.
Abstract

Background: The majority of bariatric patients suffer preoperatively from vitamin D deficiency. This deficiency is defined by a $25(\text{OH})\text{D}_3$ concentration in serum of less than 30 nmol/l. Vitamin D deficiency is one of the most common micronutrient deficiencies after bariatric surgery. There is currently only little data available on the effects of the omega-loop gastric bypass (MGB). The aim of this bachelor thesis was to investigate the perioperative vitamin D status of patients who received an MGB. Furthermore, the influence of the variables age, body mass index (BMI), sex, season, and biliopancreatic limb length on the vitamin D status of patients was examined.

Methods: In this study, the data of 61 bariatric patients who received an MGB between February 2017 and July 2018 at the Westküstenklinikum Heide was retrospectively evaluated. Preoperative and follow-up values after 3, 6 and 12 months were taken into account.

Results: The mean age of the patients was 43 years; 71% of the patients were female. Preoperatively, 60% of the patients ($n = 61$) presented with vitamin D deficiency ($M = 26.90, SD = 13.99$). There was a significant influence of the time variable on the $25(\text{OH})\text{D}_3$ value ($p < .001$). The postoperative $25(\text{OH})\text{D}_3$ value increased by 39 nmol/l (95%-CI[51.50, 26.87]) after 12 months compared to baseline. The prevalence of vitamin D deficiency decreased from 60% to 3% after 12 months. However, after 12 months, only about 42% of the patients had sufficient vitamin D levels (> 75 nmol/l). Furthermore, a significant difference ($p = .005$) was found between the preoperative $25(\text{OH})\text{D}_3$ values in summer ($Mdn = 29.7$) and winter ($Mdn = 20.0$). In contrast, there was no significant influence of the variables age, BMI, sex, and biliopancreatic limb length.

Conclusions: The results of this study underline the relevance of close monitoring of perioperative vitamin D status as well as individually adapted therapies for vitamin D deficiency in the context of MGB. Further investigations on supplementation, possibly with higher initial doses, as well as an examination of the long-term progression should be the subject of future research.
Inhaltsverzeichnis

Zusammenfassung ... 1
Abstract .. 2
Abkürzungsverzeichnis .. 5
Abbildungsverzeichnis .. 7
Tabellenverzeichnis ... 8
1 Einleitung .. 10
2 Adipositas .. 12
 2.1 Definition und Klassifikation .. 12
 2.2 Epidemiologie ... 15
 2.3 Ätiologie .. 16
 2.4 Komorbiditäten ... 18
 2.5 Therapie ... 20
3 Bariatrische Eingriffe ... 22
 3.1 Indikationen und Kontraindikationen ... 22
 3.2 Operationsverfahren .. 23
 3.2.1 Magenband ... 26
 3.2.2 Schlauchmagen ... 27
 3.2.3 Magenbypass ... 28
 3.3 Wirkmechanismen ... 32
 3.3.1 Restriktion ... 32
 3.3.2 Malabsorption ... 33
 3.3.3 Gastrointestinale Hormone und Zytokine ... 34
 3.3.4 Gallensäuren ... 36
 3.3.5 Mikrobiom ... 36
 3.3.6 Geschmackspräferenzen ... 37
 3.4 Postoperativer Nährstoffmangel ... 38
 3.4.1 Veränderungen am Gastrointestinaltrakt ... 39
 3.4.2 Makronährstoffe ... 40
 3.4.3 Mikronährstoffe ... 42
 3.4.4 Supplementierung .. 47
 3.4.5 Laborkontrollen ... 50
4 Vitamin D ... 51
 4.1 Nomenklatur .. 51
 4.2 Metabolismus .. 52
 4.3 Funktionen .. 54
 4.4 Bedarf und Mangel ... 56
 4.5 Vitamin-D-Status ... 59
 4.6 Bedeutung für die bariatrische Chirurgie .. 60
5 Fragestellung ..65
6 Methodik ..66
 6.1 Studienpopulation ...66
 6.1.1 Auswahlkriterien ..66
 6.1.2 Präoperative Patientencharakteristika ..67
 6.2 Datenmanagement ..67
 6.2.1 Datenerhebung ...67
 6.2.2 Laborparameter ...69
 6.2.3 Datenschutz ..69
 6.3 Statistische Auswertungsmethoden ..70
 6.3.1 Vitamin D im zeitlichen Verlauf ...72
 6.3.2 Einfluss der Jahreszeit ..72
 6.3.3 Einfluss des Geschlechts ...73
 6.3.4 Korrelationsanalyse für SL, BMI und Alter ...73
 6.3.5 Einfluss der biliopankreatischen Schenkellänge ...73
 6.3.6 Einfluss des BMI ..74
 6.3.7 Einfluss des Alters ...75
7 Ergebnisse ...76
 7.1 Vitamin D im zeitlichen Verlauf ...76
 7.2 Einfluss der Jahreszeit ...78
 7.3 Einfluss des Geschlechts ...80
 7.4 Korrelationsanalyse für SL, BMI und Alter ...82
 7.5 Einfluss der biliopankreatischen Schenkellänge ...84
 7.6 Einfluss des BMI ..85
 7.7 Einfluss des Alters ...88
8 Diskussion ...91
9 Fazit ..96
Literaturverzeichnis ...97
Anhang ..110
 I. Datenschutzeschreiben WKK Heide ...110
 II. SPSS Ergebnisse Anova mit Messwiederholung ..111
 III. SPSS Ergebnisse T- und U-Test Jahreszeitstatistik115
 IV. SPSS Ergebnisse T- und U-Test Geschlechtsstatistik120
 V. SPSS Ergebnisse univariate Anova – Schenkellänge125
 VI. SPSS Ergebnisse T- und U-Test BMI-Statistik ...128
 VII. SPSS Ergebnisse H-Test und univariate Anova Altersstatistik133
Eidesstattliche Erklärung ..141
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anova</td>
<td>Varianzanalyse (analysis of variance)</td>
</tr>
<tr>
<td>ASMBS</td>
<td>American Society for Metabolic and Bariatric Surgery</td>
</tr>
<tr>
<td>BES</td>
<td>Binge-Eating-Störung</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index</td>
</tr>
<tr>
<td>BPD(-DS)</td>
<td>Biliopankreatische Diversion (mit Duodenal Switch)</td>
</tr>
<tr>
<td>DAG</td>
<td>Deutsche Adipositas-Gesellschaft e. V.</td>
</tr>
<tr>
<td>DGAV</td>
<td>Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie e. V.</td>
</tr>
<tr>
<td>DGE</td>
<td>Deutsche Gesellschaft für Ernährung e. V.</td>
</tr>
<tr>
<td>DGES1</td>
<td>Studie zur Gesundheit Erwachsener in Deutschland</td>
</tr>
<tr>
<td>EWL</td>
<td>Excess Weight Loss</td>
</tr>
<tr>
<td>FGF-19/21</td>
<td>Fibroblast Growth Factor 19/21</td>
</tr>
<tr>
<td>FXR</td>
<td>Farnesoid X Rezeptor</td>
</tr>
<tr>
<td>GEDA</td>
<td>Studie Gesundheit in Deutschland aktuell</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinaltrakt</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon-Like Peptide 1</td>
</tr>
<tr>
<td>IOM</td>
<td>Institute of Medicine</td>
</tr>
<tr>
<td>LAGB</td>
<td>Laparoskopisches Magenband (laparoscopic adjustable gastric banding)</td>
</tr>
<tr>
<td>MC4R</td>
<td>Melanokortin-4-Rezeptorgen</td>
</tr>
<tr>
<td>MGB</td>
<td>Omega-Loop-Magenbypass (mini gastric bypass)</td>
</tr>
<tr>
<td>MMP</td>
<td>Multimodale Programme</td>
</tr>
<tr>
<td>NAFLD</td>
<td>Nicht-alkoholische Fettlebererkrankung (non-alcoholic fatty liver disease)</td>
</tr>
<tr>
<td>NES</td>
<td>Night-Eating-Störung</td>
</tr>
<tr>
<td>NVSII</td>
<td>Nationale Verzehrstudie II</td>
</tr>
<tr>
<td>OAGB</td>
<td>Ein-Anastomosen-Bypass (one anastomosis gastric bypass)</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>OP</td>
<td>Operation</td>
</tr>
<tr>
<td>PEM</td>
<td>Protein-Energie-Mangelernährung</td>
</tr>
<tr>
<td>PET-CT</td>
<td>Positronen-Emissions-Tomographie Computertomographie</td>
</tr>
<tr>
<td>PM</td>
<td>Proteinmangelernährung</td>
</tr>
<tr>
<td>pRYGB</td>
<td>Proximaler Roux-en-Y Magen- (Gastric) Bypass</td>
</tr>
<tr>
<td>RDA</td>
<td>empfohlene Tagesdosis (recommended daily allowences)</td>
</tr>
<tr>
<td>SES</td>
<td>Sozioökonomischer Status (socio economic status)</td>
</tr>
<tr>
<td>SL</td>
<td>Schenkellänge</td>
</tr>
<tr>
<td>StuDoQ</td>
<td>MBE</td>
</tr>
<tr>
<td>T2DM</td>
<td>Typ-2-Diabetes mellitus</td>
</tr>
<tr>
<td>TRG5</td>
<td>G protein-coupled bile acid receptor 1</td>
</tr>
<tr>
<td>TWL</td>
<td>Total Weight Loss</td>
</tr>
<tr>
<td>VDR</td>
<td>Vitamin-D-Rezeptor</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WKK Heide</td>
<td>Westküstenklinikum Heide</td>
</tr>
</tbody>
</table>
Abbildung 1 Das Edmonton Obesity Staging System nach Sharma und Kushner (2009) ... 14
Abbildung 2 Ursachen der Adipositas ... 16
Abbildung 3 Fallzahlentwicklung bariatrischer Verfahren in Deutschland (2006 - 2014) .. 25
Abbildung 4 Laparoskopisches Magenband (LAGB) .. 26
Abbildung 5 Laparoskopischer Schlauchmagen (SG) ... 28
Abbildung 6 Proximaler Roux-en-Y Magenbypass (pRYGB) ... 29
Abbildung 7 Omega-Loop-Magenbypass (MGB) .. 31
Abbildung 8 Resorptionsorte von Vitaminen und Mineralstoffen im GIT ... 40
Abbildung 9 Chemische Struktur von Vitamin D2 und D3 ... 51
Abbildung 10 Endogene Synthese von Vitamin D3 und Calcitriol ... 53
Abbildung 11 Vitamin-D-Spiegel im zeitlichen Verlauf 78
Abbildung 12 Einfluss der Jahreszeit zum Zeitpunkt t₀ ... 80
Abbildung 13 Einfluss der Jahreszeit zum Zeitpunkt t₁ .. 80
Abbildung 14 Einfluss der Jahreszeit zum Zeitpunkt t₂ ... 80
Abbildung 15 Einfluss der Jahreszeit zum Zeitpunkt t₃ .. 80
Abbildung 16 Einfluss des Geschlechts zum Zeitpunkt t₀ ... 82
Abbildung 17 Einfluss des Geschlechts zum Zeitpunkt t₁ ... 82
Abbildung 18 Einfluss des Geschlechts zum Zeitpunkt t₂ ... 82
Abbildung 19 Einfluss des Geschlechts zum Zeitpunkt t₃ ... 82
Abbildung 20 Einfluss der SL zum Zeitpunkt t₃ ... 84
Abbildung 21 Einfluss des präoperativen BMI zum Zeitpunkt t₀ 87
Abbildung 22 Einfluss des präoperativen BMI zum Zeitpunkt t₁ .. 88
Abbildung 23 Einfluss des präoperativen BMI zum Zeitpunkt t₂ .. 88
Abbildung 24 Einfluss des präoperativen BMI zum Zeitpunkt t₃ .. 88
Abbildung 25 Einfluss des Alters zum Zeitpunkt t₀ ... 90
Abbildung 26 Einfluss des Alters zum Zeitpunkt t₁ ... 90
Abbildung 27 Einfluss des Alters zum Zeitpunkt t₂ ... 90
Abbildung 28 Einfluss des Alters zum Zeitpunkt t₃ ... 90
Tabellenverzeichnis

Tabelle 1 Klassifikation der Adipositas bei Erwachsenen nach BMI ... 13
Tabelle 2 Prophylaktische Supplementierung nach bariatrischen Operationen .. 49
Tabelle 3 Vitamin-D-Gehalt in verschiedenen Lebensmitteln ... 54
Tabelle 4 Empfehlung der DGE zur Vitamin-D-Zufuhr bei fehlender endogener Synthese 56
Tabelle 5 Vitamin-D-Serumwerte und entsprechender Status ... 57
Tabelle 6 Ein- und Ausschlusskriterien der Studie ... 67
Tabelle 7 Einteilung der Messzeiträume .. 71
Tabelle 8 Shapiro-Wilk-Test für Vitamin D im Zeitlichen Verlauf ... 77
Tabelle 9 Shapiro-Wilk-Test – Jahreszeitenstatistik .. 78
Tabelle 10 Einfluss der Jahreszeit – Ergebnisse des T- und U-Tests ... 79
Tabelle 11 Shapiro-Wilk-Test – Geschlechtsstatistik ... 81
Tabelle 12 Einfluss des Geschlechts - Ergebnisse des T- und U-Tests .. 81
Tabelle 13 Ergebnisse Korrelationsanalyse der Variablen BMI, Alter u. SL .. 83
Tabelle 14 Shapiro-Wilk-Test - Einfluss der SL zum Zeitpunkt t3 ... 84
Tabelle 15 Ergebnisse deskriptive Statistik - Einfluss der SL zum Zeitpunkt t3 .. 85
Tabelle 16 Deskriptive Statistik BMI zum Zeitpunkt t0–3 ... 86
Tabelle 17 Shapiro-Wilk-Test - Einfluss des BMI zum Zeitpunkt t0 ... 86
Tabelle 18 Ergebnisse deskriptive Statistik - Einfluss des BMI-Gruppen zum Zeitpunkt t0 86
Tabelle 19 Einfluss des präoperativen BMI auf Vitamin D (t1–3) - Ergebnisse des T- und U-Tests 87
Tabelle 20 Altersverteilung der Studienpopulation ... 89
Tabelle 21 Shapiro-Wilk-Test - Einfluss des Alters ... 89
In der vorliegenden Arbeit wird aus Gründen der besseren Lesbarkeit das generische Maskulinum verwendet. Diese Personenbezeichnungen gelten für sämtliche Geschlechter gleichermaßen.
1 Einleitung

keine oder nur wenige hochwertige Daten zu Nährstoffdefiziten im Rahmen dieses Eingriffs vor, sodass hier ein dringender Nachholbedarf besteht.

2 Adipositas

Adipositas, auch Fettleibigkeit genannt, ist eine chronische Erkrankung die mit einer Reihe von Folge- und Begleiterkrankungen vergesellschaftet ist. Die Therapie der Adipositas erfolgt in Deutschland gemäß der S3 Leitlinie der Deutschen Adipositas-Gesellschaft e. V. (DAG) zur „Prävention und Therapie der Adipositas“. Im folgenden Kapitel sollen zunächst die Klassifikation, Ätiologie und Komorbiditäten der Adipositas behandelt werden. Anschließend werden die konservative und die chirurgische Therapie-Schiene dargestellt.

2.1 Definition und Klassifikation

Die Deutsche Adipositas-Gesellschaft (DAG) definiert Adipositas als eine über das Normalmaß hinausgehende Vermehrung des Körperfetts. Gemäß der WHO erfolgt bei Erwachsenen eine Klassifikation der Adipositas anhand des Body-Mass-Index (BMI). Der BMI wird zur Beurteilung der Gewichtsklasse herangezogen und errechnet sich als Quotient aus dem Körpergewicht in Kilogramm (kg) und der Körpergröße in Meter zum Quadrat (m²):

\[BMI = \frac{\text{Körpergewicht (kg)}}{\text{Körpergröße (m}^2)} \]

In Tabelle 1 wird die Einteilung der Adipositas in verschiedene Schweregrade dargestellt. So wird ab einem BMI von 25,0–29,9 kg/m² von Präadipositas gesprochen und ab einem BMI > 30,0 kg/m² von Adipositas Grad I, wobei das Risiko für Folgeerkrankungen mit zunehmendem Adipositasgrad ansteigt (Deutsche Adipositas-Gesellschaft (DAG) e. V., 2014). Bei einem Adipositas Grad III spricht man zudem häufig von „morbider Adipositas“, bei einem BMI von 50–60 kg/m² von „super adipös“ und ≥ 60 kg/m² von „super, super adipös“ (Stephens et al., 2008).

Abbildung 1 Das Edmonton Obesity Staging System nach Sharma und Kushner (2009)

(Ordemann & E bet, 2017)

2.2 Epidemiologie

2.3 Ätiologie

Abbildung 2 Ursachen der Adipositas

- familiäre Disposition, genetische Ursachen
- Lebensstil (z. B. Bewegungsmangel, Fehlernährung)
- ständige Verfügbarkeit von Nahrung
- Schlafmangel
- Stress
- depressive Erkrankungen
- niedriger Sozialstatus
- Essstörungen (z. B. Binge-Eating-Disorder, Night-Eating-Disorder)
- endokrine Erkrankungen (z. B. Hypothyreose, Cushing-Syndrom)
- Medikamente (z. B. Antidepressiva, Neuroleptika, Phasenprophylaktika, Antiepileptika, Antidiabetika, Glukokortikoide, einige Kontrazeptiva, Betablocker)
- andere Ursachen (z. B. Immobilisierung, Schwangerschaft, Nikotinverzicht)

(S3 Leitlinie Prävention und Therapie der Adipositas, 2014)

2.4 Komorbiditäten

Neben den Stoffwechselerkrankungen zählen auch eine Reihe von Herzkreislaufkrankungen zu den Komorbiditäten von Adipositas. Hierzu gehören unter anderem die Koronare Herzkrankheit (KHK), Schlaganfall, arterielle Hypertonie, Herzinsuffizienz oder Vorhofflimmern (Deutsche Adipositas-Gesellschaft (DAG) e. V., 2014). Die KHK wird mit einer Lebenszeitprävalenz von 8 % assoziiert und gehört laut dem Statistischen Bundesamt in Deutschland zu den häufigsten Todesursachen (Hellbardt,

Für die Beurteilung der Komorbiditäten ist neben der Einzelbetrachtung der jeweiligen Erkrankungen insbesondere das metabolische Syndrom von großer Bedeutung. Es fasst einige der wichtigsten Komorbiditäten zusammen, um eine Einstufung des Patienten als kardiovaskulärer Hochrisikopatient zu erleichtern. Hierbei übersteigt es jedoch nicht die Vorhersagewahrscheinlichkeit für atherosklerotische Folgeerkrankungen bei Betrachtung der einzelnen

2.5 Therapie

Konservative Therapie

Chirurgische Therapie

3 Bariatrische Eingriffe

In diesem Kapitel werden zunächst die Indikationen und Kontraindikationen bariatrischer Eingriffe erläutert. Es folgt ein Überblick über die gängigen chirurgischen Verfahren unter besonderer Berücksichtigung des Magenbands, des Schlauchmagent und des Magenbypasses. Abschließend werden die Wirkmechanismen der bariatrischen Chirurgie dargestellt und die postoperative Nährstoffversorgung sowie die sich daraus ergebende Notwendigkeit einer Supplementierung beleuchtet.

3.1 Indikationen und Kontraindikationen

Die Indikationsstellung vor einem chirurgischen Eingriff ist abhängig davon, ob ein metabolischer oder ein adipositaschirurgischer Eingriff erfolgen soll. Für die Adipositaschirurgie muss als Indikation eine der folgenden Voraussetzungen zutreffen:
Der Patient hat einen BMI ≥ 35 kg/m², eine oder mehrere Adipositas-assoziierte Begleiterkrankungen und hat die konservative Therapieschiene erfolglos ausgeschöpft.

Der Patient hat einen BMI ≥ 40 kg/m² und hat die konservative Therapieschiene erfolglos ausgeschöpft.

- instabile psychopathologische Zustände oder Substanzabhängigkeit
- unbehandelte Essstörungen
- schwere maligne, endokrine oder chronische Grunderkrankungen
- fehlende Compliance des Patienten
- bestehende oder unmittelbar geplante Schwangerschaft
- fehlende langfristige medizinische Betreuung

3.2 Operationsverfahren

BMI > 50 kg/m² oder erheblichen Komorbiditäten ein Stufenkonzept zum Einsatz kommen. Bei dieser Vorgehensweise wird zunächst ein Eingriff mit kürzerer Operationszeit und geringeren perioperativen Risiken gewählt wie z. B. der Magenballon oder Schlauchmagen. In einem zweiten Schritt wird dann eine Folgeoperation durchgeführt, wie etwa der Magenbypass. Auf diese Weise können die perioperativen Risiken insgesamt gesenkt werden.

Die Zahl der bariatrischen Eingriffe ist in den Jahren 1997 bis 2013 von 40.000 Eingriffen auf ca. 468.609 Eingriffe pro Jahr angestiegen (Lee & Almalki, 2017). Im internationalen Vergleich ist Deutschland bezüglich der Häufigkeit bariatrischer Eingriffe jedoch unterversorgt. 2018 wurden in Deutschland ca. 15.000 Eingriffe durchgeführt, sodass bezogen auf die Einwohnerzahl im Durchschnitt 8,8 Operationen pro 100.000 Einwohner erfolgt sind (Luck-Sikorski, Jung, Dietrich, Stroh & Riedel-Heller, 2019). Im starken Kontrast hierzu stehen Länder wie Belgien mit 107,2, Schweden mit 77,9, die USA mit 74, Frankreich mit 56,5 und die Schweiz mit 42,4 Operationen pro 100.000 Einwohnern im Jahr (Lenzen-Schulte, 2018). Die Ursachen für die niedrigen Zahlen in Deutschland sind vielfältig und lassen sich zum einen im Gesundheitssystem und der Genehmigungspolitik der Krankenkassen, zum anderen aber auch in der Haltung von Ärzten und der Öffentlichkeit verorten (Luck-Sikorski et al., 2019).

Abbildung 3 Fallzahlenentwicklung bariatritischer Verfahren in Deutschland (2006 - 2014)

Schwerpunkt liegt dabei auf dem Omega-Loop-Magenbypass, da er Gegenstand der im Rahmen dieser Arbeit durchgeführten Studie ist.

3.2.1 Magenband

Abbildung 4 Laparoskopisches Magenband (LAGB)

 Zu den peri- und postoperativen Komplikationen des Magenbandes gehören u. a. das Verrutschen des Magenbandes (Slipping), Portprobleme, Pouchdilatation, Bandmigration und Banderosionen. Die Morbidität und Mortalität sind im Vergleich zu anderen bariatrischen Verfahren am geringsten. Allerdings fallen auch die Langzeiterfolge
vergleichsweise gering aus. Der durchschnittliche Gewichtsverlust liegt bei 35–57 % TWL\(^1\) nach fünf Jahren und bei 14 % TWL bzw. 40–45 % EWL\(^2\) nach zehn Jahren. Zudem benötigt etwa die Hälfte aller Patienten mit einem Magenband eine Revisionsoperation oder einen Verfahrenswechsel, um den angestrebten Gewichtsverlust auch langfristig umsetzen zu können. Aus diesen Gründen wird das Verfahren nur noch selten durchgeführt (Hellbardt, 2015; Lee & Almalki, 2017). Laut Leitlinie sollte die Anlage eines Magenbands nur nach besonderer Abwägung und einem BMI < 50 kg/m\(^2\) sowie auf ausdrücklichen Patientenwunsch erfolgen.

3.2.2 Schlauchmagen

Der Schlauchmagen ist im Gegensatz zum Magenband oder Magenbypass ein irreversibles Verfahren. Sein Wirkmechanismus beruht nicht nur auf einer restriktiven Komponente, sondern auch auf der Beeinflussung der Magen- und Darmmotilität, hormonellen Mechanismen und Einflüssen auf den Gallensäurezyklus sowie das Darm mikrobiom (Benaiges et al., 2015).

\(^1\) TWL = total weght oss. Berechnung: \(
\frac{\text{Gewicht(OF)} - \text{Gewicht(FollowUp)}}{\text{Gewicht(OF)}} \times 100
\)

\(^2\) EWL = excess weght oss. Berechnung: \(
\frac{\text{Gewicht(OF)} - \text{Gewicht(FollowUp)}}{\text{Übergewicht}} \times 100
\) (Corc es et a ., 2016).

3.2.3 Magenbypass

Proximaler Roux-en-Y-Magenbypass (pRYGB)

Abbildung 6 Proximaler Roux-en-Y Magenbypass (pRYGB)

(Ordemann, 2017)

Omega-Loop-Magenbypass

und Komorbiditäten des Patienten zwischen 150 und 300 cm. In der Regel beträgt sie jedoch ca. 200 cm. Der biliopankreatische Schenkel ist somit wesentlich länger als beim pRYGB. Zudem ist nur eine Anastomose nötig, was die Operationszeit und die damit verbundenen Risiken verringert (Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV), 2018; Hellbardt, 2015). Der MGB ist, wie auch der pRYGB, ein potentiell reversibles Verfahren. Zu den Wirkmechanismen gehören, wie beim pRYGB, neben Restriktion und Malabsorption u. a. die Modifikation der gastrointestinalen Hormone, Mikrobiota und Gallensäuresekretion (s. Kapitel 3.3).

Abbildung 7 Omega-Loop-Magenbypass (MGB)

3.3 Wirkmechanismen

Eine Ausnahme bildet das Magenband, bei dem tatsächlich nur eine restriktive Wirkkomponente vorliegt (Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV), 2018).

3.3.1 Restriktion

Die restriktive Wirkkomponente beruht auf einer meist funktionellen Verkleinerung des Magens sowie einem engen Übergang vom Magen in den Dünndarm (gastro-jejunale Anastomose). Infolge dieser operativ herbeigeführten Veränderungen staut sich der Chymus bereits in kleinen Mengen im Magen und bewirkt frühzeitig ein Sättigungsgefühl. Die Kalorienzufuhr wird somit bei Einhaltung der Empfehlungen für die postoperative

3.3.2 Malabsorption

3.3.3 Gastrointestinale Hormone und Zytokine

Glucagon-Like Peptide 1 (GLP-1)

Ghrelin

Das Neuropeptid Ghrelin (Growth Hormone Release Inducing) wird vor allem in Zellen des Magenfundus produziert. Es stimuliert die Nahrungsaufnahme und reguliert den

Fibroblast Growth Factors (FGF)

3.3.4 Gallensäuren

3.3.5 Mikrobiom

3.3.6 Geschmackspräferenzen

3.4 Postoperativer Nährstoffmangel

Im Folgenden werden zunächst die Veränderungen des GIT im Hinblick auf die Nährstoffabsorption im Darm dargestellt. Anschließend werden die betroffenen Stoffgruppen beleuchtet, mit besonderem Schwerpunkt auf dem Protein- und Mikronährstoffmangel. Im Anschluss werden die Empfehlungen für die postoperative Supplementierung und die Laborkontrollen erläutert. Im Fokus dieser Betrachtungen steht primär der Magenbypass und insbesondere der MGB, da dieser Gegenstand der im Rahmen dieser Arbeit durchgeführten retrospektiven Studie ist.
3.4.1 Veränderungen am Gastrointestinaltrakt

Die Ausprägung der anatomischen und physiologischen Veränderungen des GIT variiert je nach bariatrischem Eingriff. Der MGB hat – wie auch der pRYGB und die BPD – durch seine Kombination aus einer Magenverkleinerung mit einer Ausschaltung von Teilen des Dünndarms aus der Nahrungspassage erhebliche Auswirkungen auf die Nährstoffabsorption (s. Kapitel 3.2.3). Im neu gebildeten Magenpouch wird zum einen weniger Magensäure produziert und zum anderen werden geringere Mengen des intrinsischen Faktors freigesetzt, der jedoch für eine Resorption des Vitamin B\textsubscript{12} unerlässlich ist.

Abbildung 8 Resorptionsorte von Vitaminen und Mineralstoffen im GIT

(E gene Abb dung n An ehnung an He bardt, 2015 – modifiziert nach B esa sk,2016; DGAV, 2018; Le tzmann, 2009 und Schm dt et a ., 2011) Anmerkungen. Absorpt ionsorte m t untergeordneter Ro e s nd n K ammern gesetzt.

3.4.2 Makronährstoffe

Vor allem die Proteinverdauung kann durch eine Magenbypass-OP wie den MGB beeinträchtigt werden. Doch auch die Fett- und Kohlenhydratverdauung sind durch die Veränderungen des GIT betroffen, wenn auch nicht in Form einer Malnutrition.

Proteine

Fette

Kohlenhydrate

3.4.3 Mikronährstoffe

Die meisten Mikronährstoffe sind für den menschlichen Organismus essentiell und müssen über die Nahrung zugeführt werden. Sie spielen eine wichtige Rolle bei zahlreichen biologischen Prozessen wie der Hunger- und Sättigungsregulation, der Nährstoffresorption, der Stoffwechselrate, der Energiespeicherung, dem Immunsystem oder der neuronalen Aktivität (Biesalski, 2016). Ein Mikronährstoffmangel kann bedingt durch eine

Mineralstoffe

Vitamine

Vitamin D (Cholecalciferol u. Ergocalciferol) gehört zu den fettlöschlichen Vitaminen. Es wird im gesamten Dünndarm absorbiert, vor allem jedoch im Jejunum und Ileum (Reboul, 2015). Es übernimmt unter anderem wichtige Funktionen bei der Knochenmineralisierung, Kalziumhomöostase und im Immunsystem (Biesalski, 2016). Da das Vitamin D im Fokus der vorliegenden Arbeit liegt, folgt eine detaillierte Betrachtung der Funktionen, des Metabolismus und Bedarfs sowie der Bedeutung für die bariatrische Chirurgie im folgenden Kapitel.

3.4.4 Supplementierung

Tabelle 2 zeigt einen Überblick über die Empfehlungen zur Supplementierung der DGAV (ergänzt nach Hellbardt et al., 2015; Parrot et al., 2017; Mechanick et al. 2009). Bezüglich der Makronährstoffe wird allgemein auf eine ausreichende Zufuhr von Proteinen hingewiesen. Wie in Kapitel 3.4.2 beschrieben, tritt insbesondere nach einem Magenbypass häufig ein Proteinmangel auf. Es empfiehlt sich daher eine Makronährstoff-Verteilung zugunsten der Proteine, wobei insbesondere auf eine Kombination biologisch hochwertiger Proteine geachtet werden sollte. Fette und Kohlenhydrate sollten hingegen möglichst reduziert werden. Bei vielen bariatrischen Verfahren ist jedoch eine Protein- Supplementierung obligatorisch, nach einem MGB auch lebenslänglich. Die Leitlinie der DGAV empfiehlt für alle Verfahren eine Proteinzufuhr von mindestens 60 g pro Tag (Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV), 2018). Die ASMBS Leitlinie von 2008 wiederum empfiehlt nach einem Magenbypass eine Zufuhr von 1–1,5 g pro kg Körpergewicht.

Zur Prophylaxe eines Mikronährstoffmangels wird bei Magenband, Schlauchmagen und Magenbypass die Einnahme eines Multivitamin- und Mineralstoffpräparates (MVM-Präparat) empfohlen. Hierbei sollte auf eine ausreichende Qualität des Präparates geachtet werden und eine Nährstoff-Konzentration von mindestens 100 % RDA (Recommended Daily Allowence) vorliegen. Beim Magenband reicht i. d. R. eine Supplementierung während der Gewichtsreduktionsphase aus (Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV), 2018), während nach Eingriffen mit malabsorptiver Komponente eine lebenslange Supplementierung empfohlen wird (Stroh, Meyer & Manger, 2016). Tabelle 2 zeigt die empfohlene Supplementierung, wobei einzelne Mikronährstoffe wie dargestellt ggf. zusätzlich zu den 100 bzw. 200 % RDA supplementiert werden müssen. Dies betrifft in erster Linie Vitamin D, Kalzium, Eisen und Vitamin B_{12}.

48
<table>
<thead>
<tr>
<th></th>
<th>Magenband*</th>
<th>Schlauchmagen*</th>
<th>Magenbypass**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>60 (–90) g/d</td>
<td>60–90 g/d</td>
<td>60–90 g/d bzw. 1–1,5 g/kg KG</td>
</tr>
<tr>
<td>Multivitamin- und Mineralstoffpräparat</td>
<td>100 % RDA, 1x/d</td>
<td>200 % RDA</td>
<td>200 % RDA</td>
</tr>
<tr>
<td>Folsäure¹</td>
<td>MVM-Präparat 1x/d mit 400–800 μg/d</td>
<td>MVM-Präparat 2x/d</td>
<td>600 μg/d</td>
</tr>
<tr>
<td>Vitamin B₁</td>
<td>MVM-Präparat 1x/d mit > 12 mg/d</td>
<td>MVM-Präparat 2x/d</td>
<td>MVM-Präparat 2x/d</td>
</tr>
<tr>
<td>Vitamin B₁₂</td>
<td>oral: 350–500 μg/d i.m.: 1000 μg/d alle 4 Wochen</td>
<td>oral: 1000 μg/d i.m.: 1000–3000 μg/d alle 3–6 Monate</td>
<td>oral: 1000 μg/d i.m.: 1000–3000 μg/d alle 3–6 Monate</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>5000 IU/d</td>
<td>MVM-Präparat 2x/d</td>
<td>MVM-Präparat 2x/d</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>3000 IU/d</td>
<td>Mind. 3000 IU/d, Konzentration im Serum >30ng/ml</td>
<td>Mind. 3000 IU/d, Konzentration im Serum >30ng/ml</td>
</tr>
<tr>
<td>Vitamin E, K</td>
<td>MVM-Präparat 1x/d, Vit. K 90–120 μg/d</td>
<td>MVM-Präparat 2x/d</td>
<td>MVM-Präparat 2x/d</td>
</tr>
<tr>
<td>Kalzium als Zitrat</td>
<td>1200–1500 mg/d</td>
<td>1200–1500 mg/d</td>
<td>1200–1500 mg/d</td>
</tr>
<tr>
<td>Eisen als Sulfat, Fumarat, Glukonat</td>
<td>MVM-Präparat 1x/d</td>
<td>MVM-Präparat 2x/d</td>
<td>50 mg/d</td>
</tr>
<tr>
<td>Magnesium als Zitrat</td>
<td>MVM-Präparat 1x/d</td>
<td>MVM-Präparat 2x/d</td>
<td>200 mg/d</td>
</tr>
<tr>
<td>Zink als Glukonat, Sulfat, Azetat</td>
<td>MVM-Präparat 1x/d</td>
<td>MVM-Präparat 2x/d</td>
<td>MVM-Präparat 2x/d</td>
</tr>
<tr>
<td>Kupfer als Glukonat, Oxid, Sulfat, Selen als Natriumselenit</td>
<td>MVM-Präparat 1x/d</td>
<td>MVM-Präparat 1–2x/d mit 1–2 mg/d Kupfer</td>
<td>MVM-Präparat 2x/d mit 2 mg/d Kupfer</td>
</tr>
</tbody>
</table>

(gemäß Le t n e der DGAV, 2018; ergänzt nach He bardt et. a., 2015; Parrot et a., 2017; Mechan ck et a., 2009)

Anmerkungen. Unter Magenbypass werden der pRYGB und MGB verstanden.
* Supp ernt er rung ohne Angabe e ner M ndestdauer ** Supp ernt er rung so te ebens ang erfo gen (Deutsche Gesellschaft für Allgemein- und V szera ch rurg e (DGAV), 2018).
¹ Schwangere Frauen so ten m t 800–1000 μg/d supp ernt er en (Parrott et a., 2017).
3.4.5 Laborkontrollen

- Kleines Blutbild und Elektrolyte, Leber- und Nierenwerte, Blutzucker und HbA1c (nur bei Diabetikern), Vitamine B₁, B₁₂, Albumin, Kalzium, Folsäure, Ferritin
- Bei allen Bypassverfahren: Vitamin D₃, Parathormon, Vitamin A
- Bei distalen Bypassen: Zink, Kupfer, Selen, Magnesium

4 Vitamin D

In diesem Kapitel werden zunächst die Nomenklatur, der Metabolismus und die Funktionen des Vitamin D thematisiert. Im Anschluss folgt eine Betrachtung des Vitamin-D-Bedarfs und der Ursachen eines Vitamin-D-Mangels sowie seiner Folgen. In diesem Zusammenhang werden auch der Vitamin-D-Status in Deutschland und diesbezügliche Einflussfaktoren dargestellt. Abschließend wird die Bedeutung des Vitamin D für die bariatrische Chirurgie und insbesondere für den MGB erläutert.

4.1 Nomenklatur

Unter Vitamin D versteht man eine Reihe unterschiedlicher Calciferol-Derivate, zu deren bekanntesten Vertretern das Vitamin D₂ (Ergocalciferol) sowie das Vitamin D₃ (Cholecalciferol oder Calciol) gehören. Ebenso wie Steroide weisen auch sie die typische Ringstruktur des Cholesterins auf (Abbildung 9) (Biesalski et al., 2010). Da Vitamin D teilweise vom menschlichen Organismus selbst synthetisiert wird und als Vorstufe des eigentlichen wirksamen D₃-Hormons (Calcitriol) fungiert, kommt ihm ein Sonderstatus unter den Vitaminen zu (Schunack, 2006). Dem Wirkmechanismus nach ist es daher vielmehr ein Steroidhormon als ein Vitamin (Rehner & Daniel, 2010). Die Bezeichnung „Vitamin“ wird durch den Umstand gerechtfertigt, dass bei unzureichender endogener Synthese – etwa bei zu geringer Sonnenlichtexposition oder im höheren Alter – der Vitamin-D-Bedarf auch über die Nahrung bzw. vornehmlich über Supplemente gedeckt werden kann (Rehner & Daniel, 2010).

Abbildung 9 Chemische Struktur von Vitamin D₂ und D₃

(Rehner & Daniel, 2010)
4.2 Metabolismus

Endogene Synthese

Nach seiner Synthese gelangt das Calcitriol über die Blutbahn zu seinen Zielorganen und übernimmt zahlreiche Funktionen in Darm, Knochen, Nieren, Nebenschilddrüse und weiteren Geweben (Funktionen des Vitamin D s. Kapitel 4.3) (Biesalski et al., 2010; Jomaa, 2019; Rehner & Daniel, 2010). Neben der 25(OH)D-1α-Hydroxylase der Niere hat noch ein weiteres Enzym – die 24-Hydroxylase – eine wichtige Funktion im Vitamin-D-Stoffwechsel. Sie hydroxyliert sowohl Calcidiol als auch Calcitriol, sodass letztlich Calcitronsäure entsteht, die wiederum mit der Galle ausgeschieden wird (Jomaa, 2019).

Die Umwandlung des Calciol in Calcidiol unterliegt keiner nennenswerten Regulation, sodass der Calcidiol-Wert im Serum als Marker für den Vitamin-D-Status verwendet werden kann (s. Kapitel 4.4). Im Gegensatz hierzu wird die Bildung des Calcitriols in der Niere durch mehrere Faktoren reguliert: Zum einen reguliert sich das Calcitriol durch einen negativen Feedbackmechanismus selbst und zum anderen wird seine Bildung durch niedriges Phosphat und Parathormon angeregt. Weitere Einflussgrößen sind Kalzium, Calcitonin und eine Reihe weiterer Hormone (Biesalski et al., 2010; Schunack, 2006).
Zufuhr über die Nahrung

Das Vorkommen von Vitamin D in Nahrungsmitteln ist sehr begrenzt. Tabelle 3 gibt einen Überblick über einige tierische und pflanzliche Vitamin-D-Quellen. Vitamin D₃ findet sich insbesondere in Lebertran und fettem Seefisch (z. B. Hering, Lachs, Heilbutt oder Kabeljau). In weitaus geringeren Mengen ist es beispielsweise auch in Hühnereiigelb, Milch, Butter oder Käse enthalten. Vitamin D₂ aus tierischen Nahrungsmitteln wird auf dieselbe Weise metabolisiert wie auch das Vitamin D₃ aus der endogenen Synthese in der Haut. Vitamin D₂ aus pflanzlichen Nahrungsmitteln findet sich u. a. in verschiedenen Pilzen –
insbesondere nach Trocknung unter UV-B-Einstrahlung – aber auch in Avocado oder Margarine (mit Vitamin D angereichert). Es müssten jedoch zum Teil unphysiologisch große Mengen dieser pflanzlichen Nahrungsmittel verzehrt werden, um ausreichende Mengen an Vitamin D aufzunehmen. Beispielsweise decken erst 2,5–5 kg Champignons oder 1–2 kg Avocado den täglichen Vitamin-D-Bedarf. Das pflanzliche Vitamin D₂ wird analog zum Vitamin D₃ in seine stoffwechselaktive Form überführt (Biesalski et al., 2010; Gröber & Holick, 2012; Schunack, 2006).

Tabelle 3 Vitamin-D-Gehalt in verschiedenen Lebensmitteln

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>Vitamin-D-Gehalt in 100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lebertran (D₃)</td>
<td>300 μg = 12.000 I. E.</td>
</tr>
<tr>
<td>Hering (D₃)</td>
<td>27 μg = 1.080 I. E.</td>
</tr>
<tr>
<td>Aal (D₃)</td>
<td>22 μg = 880 I. E.</td>
</tr>
<tr>
<td>Lachs (D₃)</td>
<td>17 μg = 680 I. E.</td>
</tr>
<tr>
<td>Sardinen (D₃)</td>
<td>10 μg = 400 I. E.</td>
</tr>
<tr>
<td>Avocado (D₂)</td>
<td>5 μg = 200 I. E.</td>
</tr>
<tr>
<td>Steinpilze (D₂)</td>
<td>3 μg = 120 I. E.</td>
</tr>
<tr>
<td>Schmelzkäse (D₃)</td>
<td>3 μg = 120 I. E.</td>
</tr>
<tr>
<td>Champignons (D₂)</td>
<td>2 μg = 80 I. E.</td>
</tr>
<tr>
<td>Hühnerei (D₃)</td>
<td>2 μg = 80 I. E.</td>
</tr>
<tr>
<td>Butter (D₃)</td>
<td>1 μg = 140 I. E.</td>
</tr>
</tbody>
</table>

(Nach Gröber & Holick, 2012; Schunack, 2006)

Anmerkungen. 1 μg = 40 I.E.

4.3 Funktionen

Vitamin D – oder vielmehr seine stoffwechselaktive Form Calcitriol – ist durch seine Bindung an den nukleären Vitamin-D-Rezeptor (VDR) an der Regulation von über 6000 Genen beteiligt und übernimmt somit zahlreiche Funktionen. Zu den wichtigsten gehört insbesondere die Regulation der Kalzium- und Phosphat-Homöostase sowie des Knochenstoffwechsels (Linseisen et al., 2011; Schlereth & Badenhoop, 2016). In diesem Zusammenhang wirkt Vitamin D an vier Zielorganen: Darm, Knochen, Niere und Nebenschilddrüse.

In Darm und Niere stimuliert Calcitriol die Absorption bzw. Reabsorption von Kalzium und Phosphat und begünstigt somit die Knochenmineralisierung. Die Regulation des Calcitriols ist komplex und erfolgt in erster Linie durch die Hormone Calcitonin und Parathormon.
Calcitonin wird in den C-Zellen der Schilddrüse bei einem Anstieg des Plasmakalziumspiegels synthetisiert und fungiert als Gegenspieler des PTH. Es fördert den Knochenaufbau über Stimulation der Osteoblasten und hemmt gleichzeitig die Kalziumabsorption im Darm. PTH wird dagegen in den Epithelkörperchen der Nebenschilddrüse synthetisiert und bei einem Abfall des Blutkalziumspiegels freigesetzt. Es fördert im Gegensatz zum Calcitonin den Knochenabbau über eine Stimulation der Osteoklasten. Somit bewirkt PTH eine Mobilisation von Kalziumphosphat aus den Knochen ins Blut. Gleichzeitig stimuliert es die Calcitriol-Synthese in der Niere, was wiederum die Kalziumabsorption im Darm erhöht. Zuletzt erhöht das PTH auch die Phosphatausscheidung in der Niere, sodass das mobilisierte Kalzium nicht in Form von unlöslichen Salzen ausfällt. Das durch das PTH vermehrt freigesetzte Calcitriol hat zudem einen negativen Feedbackmechanismus auf die eigene Synthese. Insgesamt trägt Calcitriol somit zur Knochengesundheit und Aufrechterhaltung der Kalzium-Phosphat-Homöostase bei (Biesalski et al., 2010; Schmidt et al., 2011).

Weitere Funktionen des Vitamin D finden sich u. a. im Glukose- und Fettstoffwechsel und auch eine positive Auswirkung auf die kardiovaskuläre Gesundheit wird diskutiert. Verschiedene Studien zeigen eine inverse Korrelation des Vitamin D und dem BMI,
insbesondere bei T2DM-Patienten. Vor allem in höheren BMI-Bereichen (> 30 kg/m²) zeigt sich dieses Phänomen. Ein kausaler Zusammenhang zwischen dem Serum-Vitamin-D-Status und Adipositas sowie T2DM ist daher naheliegend (Rafiq & Jeppesen, 2018). In Bezug auf die kardiovaskuläre Gesundheit ist vor allem bei Hypertonikern ein blutdrucksenkender Effekt des Vitamin D zu beobachten. Insgesamt zeigt sich mit steigenden Vitamin-D-Serumwerten eine signifikante Risikoreduktion für kardiovaskuläre Ereignisse (Linseisen et al., 2011). Mögliche Funktionen des Vitamin D bei malignen Erkrankungen stehen ebenfalls im Interesse der Forschung, beispielsweise beim Prostatakarzinom oder Hautmelanomen. Allerdings ist auch hier die Studienlage sehr heterogen, sodass weitere Untersuchungen erforderlich sind (Kechichian & Ezzedine, 2018; Linseisen et al., 2011; Schunack, 2006).

4.4 Bedarf und Mangel

Tabelle 4 Empfehlung der DGE zur Vitamin-D-Zufuhr bei fehlender endogener Synthese

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>Vitamin D bei fehlender endogener Synthese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säuglinge (0–12 Monate)</td>
<td>10 (µg/d)</td>
</tr>
<tr>
<td>Kinder (1–15 Jahre)</td>
<td>20 (µg/d)</td>
</tr>
<tr>
<td>Jugendliche und Erwachsene (15–65 Jahre)</td>
<td>20 (µg/d)</td>
</tr>
<tr>
<td>Erwachsene (>65 Jahre)</td>
<td>20 (µg/d)</td>
</tr>
<tr>
<td>Schwangere</td>
<td>20 (µg/d)</td>
</tr>
<tr>
<td>Stillende</td>
<td>20 (µg/d)</td>
</tr>
</tbody>
</table>

(Biesalski, 2016)
Anmerkungen. 1 µg = 40 Internationale Einheiten (IE); 1 IE = 0,025 µg

¹ Der Begriff „D-A-CH“ steht für die drei Länder Deutschland (D), Österreich (A) und Schweiz (CH), deren Fachgesellschaften diese Referenzwerte gemeinsam herausgeben.
Bei den Angaben zur Bedarfsdeckung richtet sich die DGE nach einem Mindest-Serumwert von 50 nmol/l, da hier der Vitamin-D-Bedarf in Bezug auf die Knochengesundheit bei 97,5 % der Bevölkerung gedeckt ist (Deutsche Gesellschaft für Ernährung e. V. (DGE), 2012). Die Bestimmung des Vitamin-D-Status wird standardmäßig über die Messung des 25-Hydroxyvitamin D bzw. Calcidiol durchgeführt (Linseisen et al., 2011). Da jedoch bekannt ist, dass Calcidiol im Blut größtenteils an ein Vitamin-D-bindendes Protein (DBP) und Albumin gebunden ist, beschäftigen sich aktuelle Studien mit der Aussagekraft dieser Messmethode gegenüber der Messung der frei vorliegenden Form. Es gibt Hinweise, dass in bestimmten Situationen (z. B. Schwangerschaft, Nieren- u. Lebererkrankungen) eine differenzierte Betrachtung sinnvoll wäre (Bikle & Schwartz, 2019; Tsuprykov et al., 2018).

Tabelle 5 Vitamin-D-Serumwerte und entsprechender Status

<table>
<thead>
<tr>
<th>25(OH)D₃-Serumwert</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 nmol/l</td>
<td>Mangel</td>
</tr>
<tr>
<td>30–50 nmol/l</td>
<td>unzureichend</td>
</tr>
<tr>
<td>> 50 nmol/l</td>
<td>wahrscheinlich ausreichend</td>
</tr>
<tr>
<td>> 75 nmol/l</td>
<td>ausreichend</td>
</tr>
</tbody>
</table>

(Biesalski, 2016; Deutsche Gesellschaft für Ernährung e. V. (DGE), 2012; Institute of Medicine (IOM), 2011; Rabenberg et al., 2015)

Anmerkungen. Umrechnungsfaktor ng/ml : 2,5.

Der Dachverband der Deutschsprachigen und Wissenschaftlichen Osteologischen Gesellschaften e. V. (DOV) empfiehlt daher in seiner S3-Leitlinie zur Prophylaxe einer Osteoporose eine kombinierte Zufuhr von 800 I. E. Vitamin D und 1000 mg Kalzium pro Tag (DOV, 2017). Insgesamt ist ein Vitamin-D-Mangel ein Risikofaktor für eine erhöhte Mortalität. In mehreren Metaanalysen zeigte sich für die Studienteilnehmer mit den niedrigsten Serumwerten eine um 40 bis 90 % höhere Mortalität als bei den Referenzgruppen mit den höchsten Werten (Pilz et al., 2016).

Zu den Ursachen eines Vitamin-D-Mangels zählt in erster Linie eine fehlende endogene Synthese durch eine zu geringe Sonnenexposition. Dies trifft vor allem auf Personen zu, die sich bedingt durch ihren Lebensstil vermehrt in geschlossenen Räumen aufhalten, aufgrund von Krankheiten oder Schamgefühl den Aufenthalt im Freien meiden oder nur mit bedeckter Haut in die Sonne gehen. Weitere Einflüsse sind die Hautpigmentierung und Hautdicke. Letztere nimmt insbesondere im zunehmenden Alter ab (Deutsche Gesellschaft für Ernährung e. V. (DGE), 2012). So ist die endogene Synthese in der Haut bei Personen ab 65 Jahren im Vergleich zu einer 30-jährigen Person um ca. 70 % verringert (Biesalski, 2016). Insbesondere ab einem Alter von 75 Jahren zeigt sich in mehreren Studien eine deutliche Zunahme der Prävalenz eines Vitamin-D-Mangels (Hagenau et al., 2009; Ringe

4.5 Vitamin-D-Status

4.6 Bedeutung für die bariatrische Chirurgie

Vitamin-D-Mangel bei Adipositas

Postoperativer Vitamin-D-Mangel

Ursächlich für einen postoperativen Vitamin-D-Mangel ist unter anderem das Vorliegen niedriger präoperativer Serumwerte aufgrund der oben genannten Faktoren. Hinzu kommt die Auswirkung der Malabsorption, insbesondere nach einem Magenbypass. Wie in Kapitel 4.2 erläutert, ist für eine Absorption des Vitamin D ein Einbau in die Mizellen unter Beteiligung der Gallensalze notwendig. Durch die duodenale Exklusion wird die Fettverdauung beeinträchtigt (Kapitel 3.4.2) und somit sekundär auch die Absorption von
5 Fragestellung

Ziel dieser Bachelorarbeit ist es, den Vitamin-D-Status bei Patienten zu untersuchen, die sich einem Omega-Loop-Magenbypass unterzogen haben. In diesem Zusammenhang sollen folgende Fragen beantwortet werden:

1. Ist der 25-Hydroxycholecalciferol-Wert vor der OP in Bezug auf den Referenzwert erniedrigt?
2. Wie verändert sich der 25-Hydroxycholecalciferol-Wert im postoperativen Beobachtungszeitraum und im Vergleich zur Ausgangssituation?
3. Haben folgende Variablen einen Einfluss auf den 25-Hydroxycholecalciferol-Wert?
 a. Jahreszeit
 b. Geschlecht
 c. Länge des bilipankreatischen Schenkels
 d. Body-Mass-Index
 e. Alter
6 Methodik

6.1 Studienpopulation

6.1.1 Auswahlkriterien

Tabelle 6 gibt einen Überblick über die Ein- und Ausschlusskriterien der Studie.
Tabelle 6 Ein- und Ausschlusskriterien der Studie

<table>
<thead>
<tr>
<th>Einschlusskriterien</th>
<th>Ausschlusskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen und Männer</td>
<td></td>
</tr>
<tr>
<td>Alter: 18–100 Jahre</td>
<td>Alternative OP-Verfahren oder Umwandlungs-OP</td>
</tr>
<tr>
<td>OP-Verfahren: Omega-Loop-Magenbypass (MGB)</td>
<td>Keine Einwilligung für das StuDoQ-Datenregister</td>
</tr>
<tr>
<td>OP im Zeitraum 01.02.2017 bis 26.07.2018</td>
<td>Keine postoperativen Vitamin-D-Werte / fehlendes Follow-up</td>
</tr>
<tr>
<td>Einwilligung für das StuDoQ-Datenregister</td>
<td>Vitamin-D-Wert liegt lediglich als 1,25(OH)\textsubscript{2}D\textsubscript{3} vor</td>
</tr>
<tr>
<td></td>
<td>Zeit zwischen OP u. präoperativer Blutentnahme > 2 Jahre</td>
</tr>
<tr>
<td></td>
<td>Präoperative Thyreoidektomie</td>
</tr>
<tr>
<td></td>
<td>Präoperativer Vitamin-D-Wert fehlt</td>
</tr>
</tbody>
</table>

Anmerkungen. Näheres zum StuDoQ-Datenregister in Kapitel 6.2.3

6.1.2 Präoperative Patientencharakteristika

6.2 Datenmanagement

6.2.1 Datenerhebung

Die vorliegende Studie umfasst Patientendaten, die im Rahmen der Adipositas-Sprechstunde im WKK Heide in den Jahren 2016 bis 2018 erhoben und von Mitarbeitern des Adipositas-Zentrums sowohl in das StuDoQ-Register als auch in die Patientenakte eingepflegt worden sind. Alle Patienten wurden präoperativ durch das multidisziplinäre Team, bestehend aus Chirurgen, Physiotherapeuten, Ökotrophologen und Psychologen, evaluiert. Bei gegebener Indikation für eine bariatrische Operation und erschöpfter
konservativer Therapie (s. Kapitel 2.5) gemäß der aktuellen S3-Leitlinie „Chirurgie der Adipositas und metabolischer Erkrankungen“ der DGAV wurde gemeinsam mit dem Patienten ein chirurgisches Verfahren festgelegt. Sofern vor der Operation nicht bereits Laborwerte externer Labore vorlagen (etwa vom Hausarzt oder von anderen Adipositas-Zentren), wurden diese beim letzten Anamnesegespräch vor dem Eingriff im Rahmen der Sprechstunde überprüft. Diese Werte entsprechen im Folgenden den Laborwerten zum Zeitpunkt t0. Nach dem Eingriff erfolgte dann eine weitere Laborkontrolle am Tag der Operation und anschließend gemäß der Nachsorgeempfehlung der DGAV nach 1, 3, 6, 12, 18 und 24 Monaten. Danach erfolgte eine Laborkontrolle im jährlichen Turnus. Für die vorliegende Studie wurden insgesamt vier Messzeitpunkte berücksichtigt: ein präoperativer Messzeitpunkt (t0) und drei postoperative Messzeitpunkte (t1, t3, t6); d. h. im Falle vollständiger Labordaten sind jeweils vier Vitamin-D-Messwerte pro Patient ausgewertet worden. Eine detaillierte Erläuterung der Einteilung der Messzeiträume findet sich im Kapitel 6.3. Folgende Variablen wurden im Rahmen der vorliegenden Studie erfasst:

- Geschlecht (m/w)
- Alter zum Zeitpunkt der OP (Jahre)
- Jahreszeit zum Zeitpunkt der Laborkontrolle
- Länge des biliopankreatischen Schenkels (cm)
- Body-Mass-Index* (kg/m²)
- Vitamin D (25-Hydroxycholecalciferol)* (nmol/l)
- Gesamtkalzium* (mmol/l)
- Parathormon intakt* (ng/l, pg/ml oder pmol/l)

*jeweils pra- und postoperativ

6.2.2 Laborparameter

Von den 61 Patienten, die in dieser Studie eingeschlossen wurden, lagen aus diesem Grund bei nur 30 Patienten alle drei postoperativen Vitamin-D-Messwerte vor, was sich in der statistischen Auswertung widerspiegelt (Kapitel 6.3). Für eine vergleichende Betrachtung der Vitamin-D-Werte war zudem eine Umrechnung der verschiedenen Einheiten in eine standardisierte Einheit notwendig. Der 25-Hydroxycholecalciferol-Wert wird daher in dieser Arbeit ausschließlich in nmol/l angegeben und anhand der in Tabelle 5 dargestellten Referenzbereiche bewertet.

6.2.3 Datenschutz

Die in dieser Arbeit analysierten Daten wurden im WKK Heide im Rahmen der Adipositas-Sprechstunde erhoben und in die klinikinternen Patientenakten eingepflegt. Zudem wurden die Daten in anonymisierter Form an das Studien- Dokumentations- und Qualitätszentrum (StuDoQ) der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie (DGAV) weitergeleitet. An dieser Registerstudie zur Qualitätssicherung nehmen chirurgische Kliniken aus Deutschland, Österreich und der Schweiz teil. Das Adipositas-Zentrum des WKK Heide übermittelt in anonymisierter Form Patientendaten an das sogenannte „StuDoQ|MBE“ für die Erfassung von Patientendaten zu chirurgisch-metabolischen

6.3 Statistische Auswertungsmethoden

Zur statistischen Analyse der anonymisierten und selektierten Patientendaten wurde das Programm *IBM SPSS Statistics* (Version 24) verwendet. In diesem Kapitel werden die untersuchten Variablen, ihre Skalenniveaus, das jeweilige statistische Analyseverfahren sowie ggf. die Gruppeneinteilungen erläutert. Nachfolgend wird der Ablauf der Signifikanztests für folgende Einflüsse auf den Vitamin-D-Wert (Calcidiol) dargestellt:

- Vitamin D im zeitlichen Verlauf
- Einfluss der Jahreszeit
- Einfluss des Geschlechts
- Korrelationsanalyse für Schenkellänge, BMI und Alter
- Einfluss der bilopankreatischen Schenkellänge
- Einfluss des BMI
- Einfluss des Alters

Normverteilung oder bei fehlender Normalverteilung eine univariate, einfaktorielle Varianzanalyse durchgeführt.

Bei normalverteilten und nicht-normalverteilten Daten wurden die Mittelwerte bzw. die Medianwerte berechnet. Anhand der oben genannten Testverfahren wurde auf Signifikanz geprüft, wobei für die hier vorliegende Studie ein Signifikanzniveau von \(\alpha = .05 \) festgelegt wurde. Effektstärken wurden nach Cohen (1988) berechnet.

Um den Einfluss der Variablen auf die Vitamin-D-Werte zu überprüfen mussten zunächst der präoperative sowie die drei postoperativen Vitamin-D-Werte einem festgelegten Messzeitraum zugeordnet werden (Tabelle 7). Für den Messzeitpunkt \(t_0 \) wurde ein Messzeitraum von maximal 2 Jahren prä OP definiert. Die erste postoperative Laborkontrolle erfolgt einen Monat nach der OP. Da hier jedoch noch keine nennenswerten Veränderungen des Vitamin-D-Spiegels zu erwarten sind, wurde dem Messzeitpunkt \(t_1 \) die sich anschließende Laborkontrolle nach 3 Monaten zugewiesen. Die Messzeitpunkte \(t_2 \) und \(t_3 \) entsprechen folglich den Laborkontrollen nach 6 und 12 Monaten. Die Patienten kommen jedoch selten zu den exakten Kontrollterminen, sodass häufig zwei Messwerte in ein und denselben Zeitraum fielen. Da eine Mittelung der Messwerte zu einer Verzerrung der Ergebnisse geführt hätte, wurde daher jeweils jener Messwert ausgewählt, welcher am nächsten an der Mitte des Messzeitraumes lag. Der zweite Messwert wurde entweder seinem zugehörigen Messzeitraum zugeordnet oder er entfiel, wenn in diesem Messzeitraum bereits ein weiterer Wert vorlag.

<table>
<thead>
<tr>
<th>Tabelle 7 Einteilung der Messzeiträume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präoperativer Vitamin-D-Wert</td>
</tr>
<tr>
<td>Messzeitpunkt</td>
</tr>
<tr>
<td>Messzeitraum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Anmerkungen. Vitamin-D-Werte = Ca \(\text{c d o n nm o/} \)

* Von der DGAV empfohlen: Nachsorgeuntersuchungen nach Omega-Loop-Magenbypass: 3, 6, 12, 18, 24 Monate post OP, anschließend jährlich. Drei Laborkontrollen erfordern WKK Heidelberg nach 1, 3, 6, 12, 18 und 24 Monate post OP, anschließend jährlich. Turnus.
6.3.1 Vitamin D im zeitlichen Verlauf

\[f = \frac{\eta^2}{1 - \eta^2} \]

Dabei gelten f-Werte von .10 als kleiner Effekt, f-Werte von .25 als mittlerer Effekt und f-Werte von .40 als großer Effekt (Ellis, 2010).

6.3.2 Einfluss der Jahreszeit

6.3.3 Einfluss des Geschlechts

6.3.4 Korrelationsanalyse für SL, BMI und Alter

\[
\begin{align*}
\text{r} = .10 & \quad \text{schwacher Effekt} \\
\text{r} = .30 & \quad \text{mittlerer Effekt} \\
\text{r} = .50 & \quad \text{starker Effekt}.
\end{align*}
\]

Im Anschluss an die Korrelationsanalyse erfolgte zudem eine Einzelbetrachtung der jeweiligen Variablen anhand weiterer Testverfahren (s. u.).

6.3.5 Einfluss der biliopankreatischen Schenkellänge

Ein möglicher Einfluss der biliopankreatischen Schenkellänge ist zum Zeitpunkt \(t_3 \), verglichen mit den ersten beiden postoperativen Zeitpunkten, am ehesten zu erwarten. Es wurden für alle 61 Patienten insgesamt fünf verschiedene SL protokolliert: 150 cm, 160 cm, 180 cm, 200 cm und 220 cm. Eine Vorüberlegung war es, durch einen Mediansplit bei 180 cm die SL in zwei Gruppen aufzuteilen. Diese zeigten jedoch eine ungleichmäßige Aufteilung (Ergebnis der Verteilungskurve s. Kapitel 7.5). Dementsprechend wurde die metrische Variable SL in eine ordinarie Variable transformiert. Dies ist darin begründet, dass
der Chirurg die Schenkellänge je nach Anatomie und BMI des Patienten in 20er Schritten festlegt (ausgenommen SL 150 cm). Ein Mediansplit hätte demnach an dieser Stelle keine Aussagekraft gehabt. Daher wurden folgende drei Gruppenvariablen mit den höchsten Ausprägungen hinsichtlich ihres Vitamin-D-Wertes miteinander verglichen:

Gruppe 1: 160 cm SL (n = 13)
Gruppe 2: 180 cm SL (n = 10)
Gruppe 3: 200 cm SL (n = 13).

Anschließend wurde eine univariate, einfaktorielle Varianzanalyse mit post-hoc-Test und Bonferroni- Korrektur durchgeführt. Die Stichprobengrößen der drei Gruppen sind sehr homogen aber liegen bei \(n < 25 \). Jedoch wurde in allen drei Gruppen eine Normalverteilung anhand des Shapiro-Wilk-Test nachgewiesen. Der Levene-Test zeigte zudem Varianzhomogenität an, sodass die Voraussetzungen für eine Anova wiederum erfüllt sind (Backhaus et al., 2013). Die Effektstärke wurde analog zur Anova mit Messwiederholung berechnet (s. o.).

6.3.6 Einfluss des BMI

Der jeweils zeitgleich zum Vitamin-D-Wert erfasste BMI wurde in zwei Gruppenvariablen aufgeteilt: Gruppe 1 mit einem BMI \(\leq 50 \text{ kg/m}^2 \) und Gruppe 2 mit einem BMI \(> 50 \text{ kg/m}^2 \). Bei Sichtung der deskriptiven Statistik zeigte sich allerdings, dass ab dem Messzeitpunkt \(t_1 \) bereits sehr heterogene Stichprobengrößen vorliegen, sodass schließlich nur der präoperative Messwert \(t_0 \) betrachtet wurde. Da sich im Shapiro-Wilk-Test keine Normalverteilung zeigte, wurde der Mann-Whitney-U-Test anstelle des T-Tests durchgeführt.

Weiterhin wurde untersucht, ob der präoperative Ausgangs-BMI auf die Vitamin-D-Werte aller vier Messzeitpunkte Einfluss nimmt. Hierzu wurden wiederum zwei Gruppenvariablen für den präoperativen Ausgangs-BMI erstellt: Gruppe 1 mit einem BMI \(\leq 50 \text{ kg/m}^2 \) und Gruppe 2 mit einem BMI \(> 50 \text{ kg/m}^2 \). Im Unterschied zur oben genannten Analyse wurden jedoch additiv die Zusammenhänge dieser Gruppenvariablen mit den postoperativen Vitamin-D-Werten zu den Messzeitpunkten \(t_1, t_2 \) und \(t_3 \) untersucht. Die Analyse erfolgte wie bei der Jahreszeit- und Geschlechtsanalyse für alle Messzeitpunkte über den Mann-Whitney-U-Test sowie den T-Test.
Die Effektstärke wurde nach Cohen durch folgende Formel berechnet (Cohen, 1988):

\[r = \frac{t^2}{\sqrt{t^2 + df}} \]

Dabei gelten r-Werte von .10 als kleiner Effekt, r-Werte von .30 als mittlerer Effekt und r-Werte von .50 als großer Effekt (Ellis, 2010).

6.3.7 Einfluss des Alters

Die deskriptive Statistik zeigte beim Test auf Normalverteilung, dass für die Messzeitpunkte \(t_0 \) und \(t_1 \) nicht alle Altersgruppen normalverteilt sind. Daher wurde für diese Messzeitpunkte jeweils der Kruskal-Wallis-Test mit post-hoc-Test durchgeführt. Für die Messzeitpunkte \(t_2 \) und \(t_3 \) wurde – wie bereits bei der SL – eine univariate, einfaktorielle Varianzanalyse mit post-hoc-Test und Bonferroni-Korrektur durchgeführt. Die Effektstärke wurde hier analog zur Anova mit Messwiederholung berechnet (s. o.).
7 Ergebnisse

Im folgenden Kapitel werden die Ergebnisse der statistischen Analysen dargestellt. Zunächst erfolgt ein kurzer Überblick über die Randbetrachtung der Kalzium- und Parathormon-Werte. Im Anschluss werden die Ergebnisse der Signifikanztests in der gleichen Reihenfolge dargelegt, wie sie in der Methodik erfolgt ist:

- Vitamin D im zeitlichen Verlauf
- Einfluss der Jahreszeit
- Einfluss des Geschlechts
- Korrelationsanalyse für SL, BMI und Alter
- Einfluss der biliopankreatischen Schenkelänge
- Einfluss des BMI
- Einfluss des Alters

In den einzelnen Kapiteln erfolgt jeweils die Darstellung der deskriptiven Statistik und im Anschluss die Ergebnisdarstellung der analytischen Auswertungen.

Wie bereits in Kapitel 7.2.2 erwähnt, wurden in einer Randbetrachtung neben den Vitamin-D-Werten der Patienten zusätzlich das Gesamtkalzium im Serum und das intakte Parathormon dokumentiert, um zum Beispiel einen primären Hyperparathyreoidismus weitestgehend ausschließen zu können. Ein erhöhter PTH-Wert lag bei keinem der 61 Patienten zu den vier Messzeitpunkten vor.

7.1 Vitamin D im zeitlichen Verlauf

Ziel war es, den präoperativen Vitamin-D-Wert \(25(\text{OH})D_3 \) zum Zeitpunkt \(t_0 \) sowie mögliche Unterschiede zwischen den Vitamin D-Werten zum Zeitpunkt \(t_0 \) zu überprüfen (Einteilung der Zeiträume s. Kp. 6.3). Von den insgesamt 61 Patienten liegen bei 30 Patienten Vitamin D-Werte zu jedem der vier Messzeitpunkte vor, sodass die Stichprobengröße der deskriptiven Statistik und des Signifikanztests hier \(n = 30 \) beträgt.
Deskriptive Statistik mit Normalverteilungstest
Im Shapiro-Wilk-Test zeigen sich die in Tabelle 8 dargestellten Ergebnisse. Zum Messzeitpunkt t_0 liegt keine Normalverteilung vor. Wie in Kapitel 6.3.1 erläutert, sind die Voraussetzungen für eine Anova jedoch aufgrund der bestehenden Varianzhomogenität im Mauchly-Test und der Stichprobengröße von $n > 25$ erfüllt (s. Mauchly-Testergebnisse im Anhang).

Tabelle 8 Shapiro-Wilk-Test für Vitamin D im Zeitlichen Verlauf

<table>
<thead>
<tr>
<th>Statistik</th>
<th>df</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D$_0$</td>
<td>30</td>
<td>.001</td>
</tr>
<tr>
<td>Vitamin D$_1$</td>
<td>30</td>
<td>.952</td>
</tr>
<tr>
<td>Vitamin D$_2$</td>
<td>30</td>
<td>.085</td>
</tr>
<tr>
<td>Vitamin D$_3$</td>
<td>30</td>
<td>.456</td>
</tr>
</tbody>
</table>

Der Vitamin-D-Wert ist zum Zeitpunkt t_0 am niedrigsten ($M = 26.90, SD = 13.99$) und steigt postoperativ deutlich an, wobei zu den Zeitpunkten t_1 ($M = 64.84, SD = 23.97$), t_2 ($M = 65.35, SD = 19.66$) und t_3 ($M = 66.09, SD = 20.15$) jeweils ähnliche Vitamin D Spiegel vorliegen.

Signifikanztest
In der durchgeführten Anova mit Messwiederholung zeigt sich ein Einfluss der Zeitvariable auf den Vitamin-D-Wert, $F(3,27) = 37.560, p < .001, \eta^2 = .807$. Ein Bonferroni-korrigierter post-hoc Test zeigt einen signifikanten Unterschied ($p < .001$) des Vitamin-D-Wertes zwischen Zeitpunkt t_0 und t_1 ($\Delta = -37.94, 95\%-\text{CI}[-50.30, -25.58]$), t_0 und t_2 ($\Delta = -38.45, 95\%-\text{CI}[-49.76, -27.15]$), sowie t_0 und t_3 ($\Delta = -39.19, 95\%-\text{CI}[-51.50, -26.87]$).

Die Vitamin-D-Werte zum Zeitpunkt t_1–t_3 weisen keine signifikanten Unterschiede auf. Die Abbildung 11 zeigt die durchschnittlichen Vitamin-D-Spiegel im zeitlichen Verlauf. Hierbei ist der signifikante Unterschied zwischen Messzeitpunkt t_0 sowie den restlichen Messzeitpunkten deutlich zu sehen. Der Vitamin-D-Spiegel der Messzeitpunkte t_1–t_3 ist mehr als doppelt so hoch als vor der Magenbypass-Operation. Die Effektstärke nach Cohen beträgt $f = 1.97$. Es liegt in diesem Fall ein starker Effekt vor.
Anmerkungen. n=30

7.2 Einfluss der Jahreszeit

Es wurde ein Einfluss der Jahreszeiten Sommer und Winter auf den Vitamin D-Spiegel untersucht (Gruppenbildung s. Kapitel 6.3.2).

Deskriptive Statistik und Normalverteilungstest

Im Shapiro-Wilk-Test zeigen sich die in Tabelle 9 dargestellten Ergebnisse. Zum Messzeitpunkt t_0 liegt keine Normalverteilung vor ($p = .012$ und $< .001$). Die übrigen Messzeitpunkte sind normalverteilt.

| Tabelle 9 Shapiro-Wilk-Test - Jahreszeitenstatistik |
|-----------------------------------|----------|-----------------|-----------------|
| Vitamin D$_0$ | Statistik| df | Signifikanz |
| Sommer | .871 | 20 | .012 |
| Winter | .823 | 41 | .000 |
| Vitamin D$_1$ | Statistik| df | Signifikanz |
| Sommer | .977 | 34 | .686 |
| Winter | .880 | 12 | .088 |
| Vitamin D$_2$ | Statistik| df | Signifikanz |
| Sommer | .932 | 29 | .060 |
| Winter | .943 | 27 | .143 |
| Vitamin D$_3$ | Statistik| df | Signifikanz |
| Sommer | .977 | 13 | .959 |
| Winter | .953 | 24 | .307 |
Signifikanztest

Tabelle 10 Einfluss der Jahreszeit – Ergebnisse des T- und U-Tests

<table>
<thead>
<tr>
<th>Jahreszeit</th>
<th>t_0^{**} n = 61</th>
<th>t_1 n = 46</th>
<th>t_2 n = 56</th>
<th>t_3 n = 38</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD) $</td>
<td>Mdn$</td>
<td>M (SD)</td>
<td>Mdn</td>
</tr>
<tr>
<td>Sommer</td>
<td>35.99 (17.05) 29.7 0</td>
<td>62.99 (24.82) 63.50</td>
<td>65.82 (21.53) 63.25</td>
<td>68.46 (24.84) 70.2 5</td>
</tr>
<tr>
<td>Winter</td>
<td>25.78 (14.48) 20.0 0</td>
<td>70.96 (34.94) 64.25</td>
<td>74.56 (25.03) 77.00</td>
<td>73.13 (23.24) 70.6 2</td>
</tr>
</tbody>
</table>

Anmerkungen. Mittelwert (M) und Median (Mdn) jeweils in nmol/l

* $p \leq .05$ ** $p \leq .01$ *** $p \leq .001$

7.3 Einfluss des Geschlechts

Es sollten mögliche Einflüsse des Geschlechts auf den Vitamin-D-Spiegel untersucht werden.

Deskriptive Statistik und Normalverteilungstest

Im Shapiro-Wilk-Test zeigen sich die in Tabelle 11 dargestellten Ergebnisse. Zum Messzeitpunkt \(t_0 \) liegt bei der weiblichen Gruppe keine Normalverteilung vor (\(p < .001 \)). Alle anderen Messzeitpunkte sind normalverteilt.
Tabelle 11 Shapiro-Wilk-Test – Geschlechtsstatistik

<table>
<thead>
<tr>
<th>Vitamin D</th>
<th>Statistik</th>
<th>df</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D₀</td>
<td>Männlich</td>
<td>.957</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>.852</td>
<td>43</td>
</tr>
<tr>
<td>Vitamin D₁</td>
<td>Männlich</td>
<td>.915</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>.949</td>
<td>32</td>
</tr>
<tr>
<td>Vitamin D₂</td>
<td>Männlich</td>
<td>.926</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>.952</td>
<td>38</td>
</tr>
<tr>
<td>Vitamin D₃</td>
<td>Männlich</td>
<td>.955</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Weiblich</td>
<td>.965</td>
<td>25</td>
</tr>
</tbody>
</table>

Signifikanztest

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>t₀</th>
<th>t₁</th>
<th>t₂</th>
<th>t₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD)</td>
<td>Mdn</td>
<td>M (SD)</td>
<td>Mdn</td>
</tr>
<tr>
<td>Weiblich</td>
<td>30.62 (17.92)</td>
<td>24.00</td>
<td>67.98 (28.54)</td>
<td>69.38</td>
</tr>
<tr>
<td>Männlich</td>
<td>25.58 (9.45)</td>
<td>25.75</td>
<td>58.41 (25.08)</td>
<td>51.38</td>
</tr>
</tbody>
</table>

*Anmerkungen. Mittelwert (M) und Median (Mdn) jeweils in nmol/l
* p ≤ .05 ** p ≤ .01 *** p ≤ .001*
Zu den postoperativen Messzeitpunkten t₁₃ zeigte sich bei beiden Testverfahren zwischen den Gruppen ebenfalls keine Signifikanz bzgl. des Vitamin-D-Wertes (s. Abb. 17–19).

7.4 Korrelationsanalyse für SL, BMI und Alter

Die Beschreibung der deskriptiven Statistik der einzelnen Variablen erfolgt in den zugehörigen Kapiteln (7.5 – 7.7).
Signifikanztest

<table>
<thead>
<tr>
<th>Vitamin D t₀</th>
<th>BMI t₀</th>
<th>BMI t₁</th>
<th>BMI t₂</th>
<th>BMI t₃</th>
<th>Alter</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>-0,181</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,051</td>
<td>–</td>
</tr>
<tr>
<td>(n)</td>
<td>61</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>61</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vitamin D t₁</th>
<th>BMI t₀</th>
<th>BMI t₁</th>
<th>BMI t₂</th>
<th>BMI t₃</th>
<th>Alter</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>-0,256</td>
<td>-0,302*</td>
<td>–</td>
<td>–</td>
<td>0,063</td>
<td>-0,055</td>
</tr>
<tr>
<td>(n)</td>
<td>46</td>
<td>46</td>
<td>–</td>
<td>–</td>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vitamin D t₂</th>
<th>BMI t₀</th>
<th>BMI t₁</th>
<th>BMI t₂</th>
<th>BMI t₃</th>
<th>Alter</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>-0,237</td>
<td>–</td>
<td>-0,156</td>
<td>–</td>
<td>0,176</td>
<td>-0,11</td>
</tr>
<tr>
<td>(n)</td>
<td>56</td>
<td>–</td>
<td>56</td>
<td>–</td>
<td>56</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vitamin D t₃</th>
<th>BMI t₀</th>
<th>BMI t₁</th>
<th>BMI t₂</th>
<th>BMI t₃</th>
<th>Alter</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>-0,32</td>
<td>–</td>
<td>–</td>
<td>-0,298</td>
<td>0,105</td>
<td>-0,246</td>
</tr>
<tr>
<td>(n)</td>
<td>38</td>
<td>–</td>
<td>–</td>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

Anmerkungen. \(r \) = Korrelationskoeffizient, \(n \) = Stichprobengröße. SL = Länge des biliopankreatischen Schenkels. BMI = Body-Mass-Index.

**. Der Korrelationskoeffizient ist auf dem 0,01 Niveau signifikant (zweistellig).

*. Der Korrelationskoeffizient ist auf dem 0,05 Niveau signifikant (zweistellig).

In den folgenden drei Kapiteln erfolgt nun eine gesonderte Betrachtung der oben genannten Variablen.
7.5 Einfluss der biliopankreatischen Schenkellänge

Deskriptive Statistik und Normalverteilungstest

In der Studienpopulation (n = 61) liegt die mittlere SL bei 177.70 cm. Der Modus beträgt 160 cm. Bei 2 Patienten beträgt die SL 150 cm und bei einem Patienten beträgt die SL 220 cm.

Zeitpunkt \(t_3\): Im Shapiro-Wilk-Test zeigen sich die in Tabelle 14 dargestellten Ergebnisse. Für alle Gruppen liegt zum Messzeitpunkt \(t_3\) Normalverteilung vor (\(p > .05\)). Wie in Kapitel 7.3. erläutert, sind die Voraussetzungen für eine Anova trotz der kleinen Stichprobengrößen von \(n < 25\) somit erfüllt.

<table>
<thead>
<tr>
<th>SL</th>
<th>Statistik</th>
<th>df</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 cm</td>
<td>.932</td>
<td>13</td>
<td>.365</td>
</tr>
<tr>
<td>180 cm</td>
<td>.924</td>
<td>10</td>
<td>.390</td>
</tr>
<tr>
<td>190 cm</td>
<td>.926</td>
<td>13</td>
<td>.301</td>
</tr>
</tbody>
</table>

Abbildung 20 veranschaulicht die durchschnittlichen Vitamin-D-Spiegel der drei SL-Gruppen. Die deskriptive Statistik zeigt den höchsten mittleren Vitamin-D-Wert bei einer SL von 160 cm (\(M = 80.65, SD = 21.97\)), gefolgt von der SL von 180 cm (\(M = 73.53, SD = 25.11\)) und der SL von 200 cm (\(M = 63.81, SD = 25.02\)) (s. Tabelle 15).
Signifikanztest

7.6 Einfluss des BMI

In der bivariaten Korrelationsanalyse nach Spearman zeigte sich ein signifikanter Zusammenhang zwischen den BMI-Werten und den dazugehörigen Vitamin-D-Werten nur beim postoperativen Messzeitpunkt t_1 (s. Korrelationsmatrix). Wie in der Methodik erläutert, wurden in einer weiteren Analyse die BMI-Gruppen $> 50\, \text{kg/m}^2$ und $\leq 50\, \text{kg/m}^2$ auf Signifikanz hinsichtlich des Vitamin D-Wertes zum Zeitpunkt t_0 getestet. Hierzu wurde ein Mann-Whitney-U-Test durchgeführt.

Deskriptive Statistik und Normalverteilungstest
Der mittlere präoperative BMI zum Zeitpunkt t_0 beträgt $51.25\, \text{kg/m}^2$ (Tabelle 16). Der Shapiro-Wilk-Test zeigt für beide BMI-Gruppen zum Zeitpunkt t_0 keine Normalverteilung an (s. Tabelle 17). Demnach wurde ein Mann-Whitney-U-Test durchgeführt.
Tabelle 16 Deskriptive Statistik BMI zum Zeitpunkt t0–3

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>M</th>
<th>SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI t0</td>
<td>36</td>
<td>76</td>
<td>51.25</td>
<td>7.62</td>
<td>61</td>
</tr>
<tr>
<td>BMI t1</td>
<td>31</td>
<td>69</td>
<td>43.61</td>
<td>7.70</td>
<td>46</td>
</tr>
<tr>
<td>BMI t2</td>
<td>28</td>
<td>54</td>
<td>37.73</td>
<td>5.25</td>
<td>56</td>
</tr>
<tr>
<td>BMI t3</td>
<td>25</td>
<td>47</td>
<td>33.68</td>
<td>5.22</td>
<td>38</td>
</tr>
</tbody>
</table>

Anmerkungen. N = 61. BMI n kg/m²

Tabelle 17 Shapiro-Wilk-Test - Einfluss des BMI zum Zeitpunkt t0

<table>
<thead>
<tr>
<th></th>
<th>Statistik</th>
<th>df</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI ≤ 50</td>
<td>.887</td>
<td>29</td>
<td>.005</td>
</tr>
<tr>
<td>BMI > 50</td>
<td>.820</td>
<td>32</td>
<td>< .001</td>
</tr>
</tbody>
</table>

Anmerkungen. BMI n kg/m².

Es zeigt sich für die BMI-Gruppe ≤ 50 kg/m² bei einer mittleren Differenz von 4.28 nmol/l ein geringfügig höherer Vitamin D-Wert (M = 31.38, SD = 17.50, Mdn = 27.00) als bei der BMI-Gruppe > 50 kg/m² (M = 27.10, SD = 14.44, Mdn = 23.98) (Tabelle 18).

Tabelle 18 Ergebnisse deskriptive Statistik - Einfluss des BMI-Gruppen zum Zeitpunkt t0

<table>
<thead>
<tr>
<th>BMI (kg/m²)</th>
<th>n</th>
<th>M (nmol/l) (SD)</th>
<th>Minimum</th>
<th>Maximum</th>
<th>95 % CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 50</td>
<td>29</td>
<td>31.38 (17.50)</td>
<td>11.00</td>
<td>76.00</td>
<td>(24.72–38.03)</td>
</tr>
<tr>
<td>> 50</td>
<td>32</td>
<td>27.10 (14.44)</td>
<td>11.75</td>
<td>70.00</td>
<td>(21.89–32.30)</td>
</tr>
</tbody>
</table>

Signifikanztest

Bezüglich des Vitamin D-Wertes zum Zeitpunkt t0 zeigt sich im Mann-Whitney-U-Test kein signifikanter Unterschied zwischen den BMI-Gruppen (U = 402.50, Z = -.888, p = .374). In Hinblick auf die Signifikanz stimmt das Ergebnis demnach mit dem der Korrelationsanalyse (s. o.) überein. Das Balkendiagramm (Abbildung 21) zeigt die durchschnittlichen BMI-Gruppen zum Zeitpunkt t0 und veranschaulicht nochmals die fehlende Signifikanz.
In einer weiteren Betrachtung sollte untersucht werden inwiefern ein Zusammenhang zwischen dem präoperativen BMI zum Zeitpunkt t_0 und den postoperativen Vitamin-D-Werten besteht. Der BMI wurde auch hier in die oben genannten Gruppen aufgeteilt. Die Korrelationsanalyse (s. o.) zeigte keine Signifikanz und auch im U- und T-Test zeigten sich keine signifikanten Zusammenhänge. Die Ergebnisse beider Testverfahren werden, wie schon bei der Jahreszeit- und Geschlechts-Analyse in Form einer Tabelle dargestellt (Tabelle 19). Signifikanz ist mit einem Sternchen gekennzeichnet. Die Effektstärke r nach Cohen (1988) zeigt einen schwachen Effekt für alle drei Messzeitpunkte: $r_1 = 0.19$; $r_2 = 0.26$; $r_3 = 0.21$. (s. auch Abb. 22–24)

| Tabelle 19 Einfluss des präoperativen BMI auf Vitamin D (t_{1-3}) - Ergebnisse des T- und U-Tests |
|---|---|---|
| BMI t_0 | Vitamin D (t_1) $n = 61$ | Vitamin D (t_2) $n = 46$ | Vitamin D (t_3) $n = 56$ |
| $\leq 50 \text{ kg/m}^2$ | M (SD) | Mdn | M (SD) | Mdn | M (SD) | Mdn |
| 70.29 (30.14) | 69.00 | 76.52 (24.62) | 75.00 | 77.79 (24.02) | 78.00 |
| $> 50 \text{ kg/m}^2$ | 59.85 (24.39) | 56.00 | 64.42 (21.29) | 61.75 | 67.86 (23.24) | 64.00 |

*Anmerkungen. Mittelwert (M) und Median (Mdn) jeweils in nmol/l
$p \leq .05$ ** $p \leq .01$ *** $p \leq .001$
Abbildung 22 Einfluss des präoperativen BMI zum Zeitpunkt t_1

Abbildung 23 Einfluss des präoperativen BMI zum Zeitpunkt t_2

Abbildung 24 Einfluss des präoperativen BMI zum Zeitpunkt t_3

7.7 Einfluss des Alters

Deskriptive Statistik und Normalverteilungstest

Tabelle 20 zeigt die Altersverteilung der Studienpopulation. Es wurden drei Altersgruppen gebildet und anschließend auf Signifikanz getestet. Im Shapiro-Wilk-Test zeigte sich ein heterogenes Ergebnis bezüglich der Normalverteilung zu den verschiedenen Messzeitpunkten (s. Tabelle 21). Messzeitpunkt t_0 und t_1 sind nicht normalverteilit. Messzeitpunkt t_2 und t_3 sind normalverteilt.
Tabelle 20 Altersverteilung der Studienpopulation

<table>
<thead>
<tr>
<th>Alter</th>
<th>Min.</th>
<th>Max.</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>22</td>
<td>68</td>
<td>42.92</td>
<td>11.30</td>
</tr>
</tbody>
</table>

Anmerkungen. N = 61

Tabelle 21 Shapiro-Wilk-Test - Einfluss des Alters

<table>
<thead>
<tr>
<th>Alter</th>
<th>Statistik</th>
<th>df</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D (t₀)</td>
<td>18 - 29 Jahre</td>
<td>.66</td>
<td>9</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>.832</td>
<td>28</td>
<td>.000</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>.929</td>
<td>23</td>
<td>.105</td>
</tr>
<tr>
<td>Vitamin D (t₁)</td>
<td>18 - 29 Jahre</td>
<td>.689</td>
<td>6</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>.941</td>
<td>20</td>
<td>.250</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>.941</td>
<td>19</td>
<td>.272</td>
</tr>
<tr>
<td>Vitamin D (t₂)</td>
<td>18 - 29 Jahre</td>
<td>.904</td>
<td>7</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>.949</td>
<td>26</td>
<td>.218</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>.935</td>
<td>22</td>
<td>.157</td>
</tr>
<tr>
<td>Vitamin D (t₃)</td>
<td>18 - 29 Jahre</td>
<td>.921</td>
<td>4</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>.966</td>
<td>17</td>
<td>.747</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>.966</td>
<td>16</td>
<td>.655</td>
</tr>
</tbody>
</table>

Signifikanztest

Für die Messzeitpunkte t₀ und t₁ wurde ein Kruskal-Wallis-Test durchgeführt. Es zeigte sich, dass sich die zentralen Tendenzen der Altersgruppen bzgl. des Vitamin-D-Wertes zum Zeitpunkt t₀ ($\chi^2 (2) = .667, p = .716$) und Zeitpunkt t₁ ($\chi^2 (2) = .161, p = .923$) nicht unterscheiden. Wie in Abbildung 25 und 26 zu sehen ist, liegen zum Zeitpunkt t₀ die durchschnittlichen Vitamin-D-Werte der Altersgruppen 18–29 Jahre ($M = 26.69, SD = 16.95, Mdn = 20.00$), 30–44 Jahre ($M = 31.29, SD = 18.13, Mdn = 26.75$) und 45–64 Jahre ($M = 27.89, SD = 13.19, Mdn = 26.75$) sehr nahe beieinander. Das gleiche zeigt sich beim Zeitpunkt t₁ und den Altersgruppen 18–29 Jahre ($M = 69.46, SD = 43.01, Mdn = 50.50$), 30–44 Jahre ($M = 62.38, SD = 22.99, Mdn = 67.25$) und 45–64 Jahre ($M = 66.28, SD = 28.61, Mdn = 58.00$).
Für die Messzeitpunkte t_2 und t_3 wurde eine Anova mit post-hoc-Test und Bonferroni-Korrektur durchgeführt. Es zeigte sich hinsichtlich der Vitamin-D-Werte kein signifikanter Unterschied zwischen den Altersgruppen zum Zeitpunkt t_2, $F(2,52) = .351$, $p = .705$, $\eta^2 = .013$. Zum Zeitpunkt t_3 zeigte sich hinsichtlich der Signifikanz das gleiche Ergebnis, $F(2,34) = 1.387$, $p = .264$, $\eta^2 = .075$. Wie in Abbildung 27 und 28 zu sehen ist, liegen zum Zeitpunkt t_2 die durchschnittlichen Vitamin-D-Werte der Altersgruppen 18–29 Jahre ($M = 62.64$, $SD = 19.78$), 30–44 Jahre ($M = 70.17$, $SD = 24.61$) und 45–64 Jahre ($M = 71.09$, $SD = 23.73$) sehr nahe beieinander. Das gleiche zeigt sich beim Zeitpunkt t_3 und der Altersgruppen 18–29 Jahre ($M = 83.06$, $SD = 21.84$), 30–44 Jahre ($M = 65.54$, $SD = 24.13$) und 45–64 Jahre ($M = 76.92$, $SD = 24.00$).
8 Diskussion

Vitamin D im zeitlichen Verlauf

Präoperativ weisen 60 % der insgesamt 61 Studienteilnehmer einen Vitamin-D-Mangel auf (< 30 nmol/l). 60 Patienten hatten defizitäre oder insuffiziente Vitamin-D-Spiegel und nur ein Patient war ausreichend mit Vitamin D versorgt (> 75 nmol/l). Im Vergleich zu den Durchschnittswerten erwachserer Personen in Deutschland (30,2 %) ist die Prävalenz eines Vitamin-D-Mangels in der Studienpopulation somit doppelt so groß (Rabenberg et al., 2015). Sie entspricht dabei zahlreichen Studienergebnissen zum Thema Vitamin D und Adipositas. Wie in Kapitel 4.6 beschrieben, sind bis zu 90 % der adipösen Personen von einem Vitamin-D-Mangel betroffen. Auch andere Studien unterstützen diese Annahme (Mohapatra et al., 2019; Walsh et al., 2017). Wie bereits erläutert, führt bei adipösen Personen eine verminderte endogene Synthese durch eine verringerte Sonnenlichtexposition zu einer insuffizienten Vitamin-D-Versorgung. Ein weiterer Grund ist vermutlich die volumetrische Verdünnung von Vitamin D im vermehrten Fettgewebe. Die hier vorliegende Studie am WKK Heide bestätigt diese Erkenntnisse.

Eine weitere Fragestellung im Rahmen dieser Arbeit war, inwiefern sich der Vitamin-D-Status der Patienten im postoperativen Beobachtungszeitraum verändert und wie er sich im Vergleich zur Ausgangssituation verhält. Hierzu wurden Daten von 30 Patienten ausgewertet, von denen zu jedem der vier Messzeitpunkte Calcidiol-Werte vorlagen. Es zeigt sich, dass der Calcidiol-Wert bereits 3 Monate nach dem MGB um durchschnittlich 38 nmol/l ansteigt und somit signifikant höher ist als praoperativ. Für die Messzeitpunkte nach 6 und 12 Monaten zeigt sich ebenfalls ein signifikanter Anstieg von durchschnittlich 38 und 39 nmol/l im Vergleich zur praoperativen Ausgangssituation. Die postoperativen Calcidiol-Werte unterscheiden sich untereinander jedoch nicht signifikant. Insgesamt ist die
Häufigkeit eines Vitamin-D-Mangels im Vergleich zum präoperativen Messzeitpunkt (n = 61) nach 12 Monaten (n = 38) von 60 % auf 3 % gesunken. Zugleich besteht nach 12 Monaten bei nur etwa 42 % der Patienten eine ausreichende Versorgung mit Vitamin D.

Einfluss der Jahreszeit

Ein Einfluss der Jahreszeiten Sommer (April–Sept.) und Winter (Okt.–März) auf den Vitamin-D-Status zeigte sich nur zum präoperativen Messzeitpunkt. Der mittlere Calcidiol-Serumwert liegt im Sommer signifikant höher als im Winter. Der niedrigste Wert (11 nmol/l) wurde im Winter und der höchste Wert (76 nmol/l) im Sommer gemessen. Davon ausgehend, dass die bariatrischen Patienten vor einer Operation in der Regel noch nicht

Einfluss des Geschlechts

Einfluss der biliopankreatischen Schenkellänge
dass ein Vergleich des Vitamin-D-Status bei Schenkellängen von 160 cm mit jenen über 200 cm einen deutlicheren Zusammenhang aufzeigen würden. Diese These wird dadurch gestützt, dass auch in der Literatur die Prävalenz eines Vitamin-D-Mangels nach Magenbypass vor allem mit biliopankreatischen Schenkellängen > 200 cm korreliert (Hellbardt, 2015; Johnson et al., 2006; Nergaard et al., 2014). Da Schenkellängen über 200 cm im betrachteten Zeitraum jedoch nur bei einem der Patienten zum Einsatz kamen (220 cm), konnte dieser Zusammenhang nicht betrachtet werden. Insgesamt verdeutlichen die Ergebnisse der vorliegenden Studie, dass in Bezug auf die Länge des biliopankreatischen Schenkels beim MGB eine Balance zwischen dem Effekt der Gewichtsreduktion und möglicher nutritiver Komplikationen – wie einem Vitamin-D-Mangel – gefunden werden sollte.

Einfluss des BMI

Der mittlere präoperative BMI der Patienten reduzierte sich innerhalb von 12 Monaten von 51,25 kg/m² auf 33,68 kg/m². Ein möglicher Einfluss des BMI auf den Vitamin-D-Status wurde anhand von zwei Gruppen (≤ 50 kg/m² und > 50 kg/m²) für den präoperativen Messzeitpunkt überprüft. Es zeigt sich, dass kein signifikanter Unterschied hinsichtlich des Calcidiol-Wertes zwischen den Gruppen besteht. Bei Sichtung der Literatur wird deutlich, dass eine Korrelation von BMI und Vitamin-D-Status in zahlreichen Studien nachgewiesen wurde, wobei allerdings in der Regel die BMI-Quartile untergewichtiger, normalgewichtiger und übergewichtiger Personen miteinander verglichen wurden. Eine deutliche Verschlechterung des Vitamin-D-Status bei zunehmendem BMI zeigt sich in diesen Studien insbesondere bei Personen mit einem BMI ≥ 30 kg/m² (De Paula & Rosen, 2011; Rabenberg et al., 2015; Rafiq & Jeppesen, 2018). Ein möglicher Einfluss des präoperativen BMI auf die Calcidiol-Werte der postoperativen Follow-up-Kontrollen wurde ebenfalls anhand der beiden BMI-Gruppen ≤ 50 kg/m² und > 50 kg/m² überprüft. Zu keinem der drei postoperativen Messzeitpunkte zeigte sich ein signifikanter Unterschied zwischen den Gruppen. Es zeichnet sich jedoch eine Tendenz ab, bei der die mittleren Calcidiol-Werte der BMI-Gruppe > 50 kg/m² stets niedriger sind als jene der BMI-Gruppe ≤ 50 kg/m². Bei der Betrachtung der Effektstärke r nach Cohen zeigt sich hier zudem ein schwacher Effekt für alle postoperativen Messzeitpunkte.

Einfluss des Alters

Diskussion der Methodik

9 Fazit

Literaturverzeichnis

102

Anhang

I. Datenschutzschreiben WKK Heide

Erlaubnis zur Nutzung von anonymisierten Patientendaten im Rahmen einer Bachelorarbeit und nachfolgender Publikationen

Für die Datenerhebung im Rahmen der Bachelorarbeit hat Frau Schmidt seitens unserer Klinik die Erlaubnis erhalten, Patientenakten sowie das StuDoQ Studienregister einzusehen und die darin enthaltenen Daten in anonymisierter Form für ihre Bachelorarbeit und auch für eventuell nachfolgende Publikationen (z. B. Veröffentlichung der Bachelorarbeit, Postervorstellung) zu nutzen, auch über den Zeitraum des Praktikums hinaus.

Die Schlüsseldatei mit den von Frau Schmidt erfassten Daten verbleibt im Klinikum Heide und Frau Schmidt erhält lediglich eine anonymisierte Kopie dieser Datei. Zudem verwendet Frau Schmidt für ihre Bachelorarbeit ausschließlich Daten jener Patienten, die ihr Einverständnis für die bundesweite Registerstudie StuDoQ gegeben haben.

\[\text{Westküstenklinikum Heide}\]
\[\text{LKH Universitätsklinik Schleswig-Holstein}\]
\[\text{Campus Lübeck - Klinik für Viszeral- und Thoraxchirurgie}\]

\[\text{Esmarchstraße 50, 25746 Heide}\]

\[\text{Tel.: 0481/ 785-1301}\]
\[\text{E-Mail: klinik.heide@ldh.de}\]

\[\text{1 Studien-, Dokumentations- und Qualitätszentrum der Deutschen Gesellschaft für Allgemein- und Viszeralchirurgie}\]
II. SPSS Ergebnisse Anova mit Messwiederholung

Anmerkung: die Bezeichnung der Messzeitpunkte in SPSS (1–4) ist synonym mit der Bezeichnung t₀–t₃ in der Arbeit.

Innersubjektfaktoren

Maß: MEASURE_1

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Abhängige Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VitDWert_1</td>
</tr>
<tr>
<td>2</td>
<td>VitDWert_2</td>
</tr>
<tr>
<td>3</td>
<td>VitDWert_3</td>
</tr>
<tr>
<td>4</td>
<td>VitDWert_4</td>
</tr>
</tbody>
</table>

Deskriptive Statistiken

<table>
<thead>
<tr>
<th></th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_1</td>
<td>26,9000</td>
<td>13,99270</td>
<td>30</td>
</tr>
<tr>
<td>VitDWert_2</td>
<td>64,8417</td>
<td>23,97821</td>
<td>30</td>
</tr>
<tr>
<td>VitDWert_3</td>
<td>65,3583</td>
<td>19,66231</td>
<td>30</td>
</tr>
<tr>
<td>VitDWert_4</td>
<td>66,0917</td>
<td>20,15131</td>
<td>30</td>
</tr>
</tbody>
</table>

Multivariate Tests^a^

<table>
<thead>
<tr>
<th>Effekt</th>
<th>Wert</th>
<th>F (df)</th>
<th>Hypothese df</th>
<th>Fehler df</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit Pillai-Spur</td>
<td>,807</td>
<td>37,560</td>
<td>3,000</td>
<td>27,000</td>
<td>,000</td>
<td>,807</td>
</tr>
<tr>
<td>Wilks-Lambda</td>
<td>,193</td>
<td>37,560</td>
<td>3,000</td>
<td>27,000</td>
<td>,000</td>
<td>,807</td>
</tr>
<tr>
<td>Hotelling-Spur</td>
<td>4,173</td>
<td>37,560</td>
<td>3,000</td>
<td>27,000</td>
<td>,000</td>
<td>,807</td>
</tr>
<tr>
<td>Größte charakteristische Wurzel nach Roy</td>
<td>4,173</td>
<td>37,560</td>
<td>3,000</td>
<td>27,000</td>
<td>,000</td>
<td>,807</td>
</tr>
</tbody>
</table>
a. Design: Konstanter Term
Innersubjektdesign: Zeit
b. Exakte Statistik

Mauchly-Test auf Sphärizität

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Mauchly-W</th>
<th>Approx. Chi-Quadrat</th>
<th>df</th>
<th>Sig.</th>
<th>Epsilon b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit</td>
<td>.895</td>
<td>3,082</td>
<td>5</td>
<td>.688</td>
<td>.938</td>
</tr>
</tbody>
</table>

Prüft die Nullhypothese, daß sich die Fehlerkovarianz-Matrix der orthonormalisierten transformierten abhängigen Variablen proportional zur Einheitsmatrix verhält. a

Tests der Innersubjekteffekte

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Quadrat-Summe vom Typ III</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Sig.</th>
<th>Partialles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit Sphärizität angenommen</td>
<td>33427,256</td>
<td>3</td>
<td>11142,419</td>
<td>42,628</td>
<td>.000</td>
<td>.595</td>
</tr>
<tr>
<td>Zeit Greenhouse-Geisser</td>
<td>33427,256</td>
<td>2,813</td>
<td>11883,221</td>
<td>42,628</td>
<td>.000</td>
<td>.595</td>
</tr>
<tr>
<td>Zeit Huynh-Feldt</td>
<td>33427,256</td>
<td>3,000</td>
<td>11142,419</td>
<td>42,628</td>
<td>.000</td>
<td>.595</td>
</tr>
<tr>
<td>Zeit Untergrenze</td>
<td>33427,256</td>
<td>1,000</td>
<td>33427,256</td>
<td>42,628</td>
<td>.000</td>
<td>.595</td>
</tr>
<tr>
<td>Fehler (Zeit) Sphärizität angenommen</td>
<td>22740,791</td>
<td>87</td>
<td>261,388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehler (Zeit) Greenhouse-Geisser</td>
<td>22740,791</td>
<td>81,57 6</td>
<td>278,767</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehler (Zeit) Huynh-Feldt</td>
<td>22740,791</td>
<td>87,00 0</td>
<td>261,388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehler (Zeit) Untergrenze</td>
<td>22740,791</td>
<td>29,00 0</td>
<td>784,165</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tests der Innersubjektkontraste

Maß: MEASURE_1

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Zeit</th>
<th>Quadratsumme vom Typ III</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit</td>
<td>Linear</td>
<td>20918,463</td>
<td>1</td>
<td>20918,463</td>
<td>73,683</td>
<td>0,000</td>
<td>0,718</td>
</tr>
<tr>
<td></td>
<td>Quadratisch</td>
<td>10383,451</td>
<td>1</td>
<td>10383,451</td>
<td>33,206</td>
<td>0,000</td>
<td>0,534</td>
</tr>
<tr>
<td></td>
<td>Kubisch</td>
<td>2125,343</td>
<td>1</td>
<td>2125,343</td>
<td>11,331</td>
<td>0,002</td>
<td>0,281</td>
</tr>
<tr>
<td>Fehler (Zeit)</td>
<td>Linear</td>
<td>8233,053</td>
<td>29</td>
<td>283,898</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quadratisch</td>
<td>9068,315</td>
<td>29</td>
<td>312,701</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kubisch</td>
<td>5439,423</td>
<td>29</td>
<td>187,566</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests der Zwischensubjekteffekte

Maß: MEASURE_1
Transformierte Variable: Mittel

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Quadratsumme vom Typ III</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanter Term</td>
<td>373608,901</td>
<td>1</td>
<td>373608,901</td>
<td>479,436</td>
<td>0,000</td>
<td>0,943</td>
</tr>
<tr>
<td>Fehler</td>
<td>22598,740</td>
<td>29</td>
<td>779,267</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geschätzte Randmittel
Zeit

Schätzer

Maß: MEASURE_1

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Mittelwert</th>
<th>Standardfehler</th>
<th>95%-Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Untergrenze</td>
</tr>
<tr>
<td>1</td>
<td>26,900</td>
<td>2,555</td>
<td>21,675</td>
</tr>
<tr>
<td>2</td>
<td>64,842</td>
<td>4,378</td>
<td>55,888</td>
</tr>
<tr>
<td>3</td>
<td>65,358</td>
<td>3,590</td>
<td>58,016</td>
</tr>
<tr>
<td>4</td>
<td>66,092</td>
<td>3,679</td>
<td>58,567</td>
</tr>
</tbody>
</table>
Paarweise Vergleiche

Maß: MEASURE_1

<table>
<thead>
<tr>
<th>(I)Zeit</th>
<th>(J)Zeit</th>
<th>Mittlere Differenz (I-J)</th>
<th>Standardfehler</th>
<th>Sig. (^b)</th>
<th>Untergrenze</th>
<th>Obergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-37,942^*</td>
<td>4,365</td>
<td>,000</td>
<td>-50,303</td>
<td>-25,581</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>-38,458^*</td>
<td>3,992</td>
<td>,000</td>
<td>-49,761</td>
<td>-27,155</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-39,192^*</td>
<td>4,349</td>
<td>,000</td>
<td>-51,507</td>
<td>-26,877</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>37,942^*</td>
<td>4,365</td>
<td>,000</td>
<td>25,581</td>
<td>50,303</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>.517</td>
<td>3,538</td>
<td>1,000</td>
<td>-10,534</td>
<td>9,501</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-1,250</td>
<td>4,660</td>
<td>1,000</td>
<td>-14,444</td>
<td>11,944</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>38,458^*</td>
<td>3,992</td>
<td>,000</td>
<td>27,155</td>
<td>49,761</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>.733</td>
<td>4,052</td>
<td>1,000</td>
<td>-12,207</td>
<td>10,740</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>39,192^*</td>
<td>4,349</td>
<td>,000</td>
<td>26,877</td>
<td>51,507</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1,250</td>
<td>4,660</td>
<td>1,000</td>
<td>-11,944</td>
<td>14,444</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>.733</td>
<td>4,052</td>
<td>1,000</td>
<td>-10,740</td>
<td>12,207</td>
</tr>
</tbody>
</table>

Basiert auf den geschätzten Randmitteln
* Die mittlere Differenz ist auf dem ,05-Niveau signifikant.
b. Anpassung für Mehrfachvergleiche: Bonferroni.

Multivariate Tests

<table>
<thead>
<tr>
<th></th>
<th>Wert</th>
<th>F</th>
<th>Hypothese df</th>
<th>Fehler df</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pillai-Spur</td>
<td>.807</td>
<td>37,560^a</td>
<td>3,000</td>
<td>27,000</td>
<td>,000</td>
<td>.807</td>
</tr>
<tr>
<td>Wilks-Lambda</td>
<td>.193</td>
<td>37,560^a</td>
<td>3,000</td>
<td>27,000</td>
<td>,000</td>
<td>.807</td>
</tr>
<tr>
<td>Hotelling-Spur</td>
<td>4,173</td>
<td>37,560^a</td>
<td>3,000</td>
<td>27,000</td>
<td>,000</td>
<td>.807</td>
</tr>
<tr>
<td>Größte charakteristische Wurzel nach Roy</td>
<td>4,173</td>
<td>37,560^a</td>
<td>3,000</td>
<td>27,000</td>
<td>,000</td>
<td>.807</td>
</tr>
</tbody>
</table>

a. Exakte Statistik
III. SPSS Ergebnisse T- und U-Test Jahreszeitstatistik

Mann-Whitney-Test (t₀)

<table>
<thead>
<tr>
<th>Jahreszeit_1</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommer</td>
<td>20</td>
<td>40,18</td>
<td>803,50</td>
</tr>
<tr>
<td>Winter</td>
<td>41</td>
<td>26,52</td>
<td>1087,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>VitDWert_1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>226,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>1087,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-2,820</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Gruppenvariable: Jahreszeit_1

T-Test (t₀)

<table>
<thead>
<tr>
<th>Jahreszeit_1</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommer</td>
<td>20</td>
<td>35,9900</td>
<td>17,05798</td>
<td>3,81428</td>
</tr>
<tr>
<td>Winter</td>
<td>41</td>
<td>25,7817</td>
<td>14,48235</td>
<td>2,26176</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>VitDWert_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td>.981</td>
<td>.326</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>2,302</td>
<td>32,785</td>
</tr>
</tbody>
</table>

115
Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Mittlere Differenz</th>
<th>Standardfehler der Differenz</th>
<th>95% Konfidenzintervall der Differenz</th>
<th>Untere</th>
<th>Obere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianzen sind gleich</td>
<td>10,20829</td>
<td>4,18910</td>
<td>1,82591</td>
<td>18,59067</td>
<td></td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>10,20829</td>
<td>4,43444</td>
<td>1,18410</td>
<td>19,23249</td>
<td></td>
</tr>
</tbody>
</table>

T-Test (t_1)

Gruppenstatistiken

<table>
<thead>
<tr>
<th>Jahreszeit_2</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommer</td>
<td>34</td>
<td>62,9926</td>
<td>24,82328</td>
<td>4,25716</td>
</tr>
<tr>
<td>Winter</td>
<td>12</td>
<td>70,9583</td>
<td>34,94246</td>
<td>10,08702</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>VitDWert_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td>,425</td>
<td>,518</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td></td>
<td>-728</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Mittlere Differenz</th>
<th>Standardfehler der Differenz</th>
<th>95% Konfidenzintervall der Differenz</th>
<th>Untere</th>
<th>Obere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianzen sind gleich</td>
<td>-7,96569</td>
<td>9,30158</td>
<td>-26,71180</td>
<td>10,78043</td>
<td></td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>-7,96569</td>
<td>10,94858</td>
<td>-31,28752</td>
<td>15,35615</td>
<td></td>
</tr>
</tbody>
</table>
Mann-Whitney-Test (t_1)

<table>
<thead>
<tr>
<th>Jahreszeit_2</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommer</td>
<td>34</td>
<td>23,01</td>
<td>782,50</td>
</tr>
<tr>
<td>Winter</td>
<td>12</td>
<td>24,88</td>
<td>298,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>VitDWert_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>187,500</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>782,500</td>
</tr>
<tr>
<td>Z</td>
<td>-.413</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.680</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: Jahreszeit_2

T-Test (t_2)

<table>
<thead>
<tr>
<th>Jahreszeit_3</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommer</td>
<td>29</td>
<td>65,8190</td>
<td>21,53173</td>
<td>3,99834</td>
</tr>
<tr>
<td>Winter</td>
<td>27</td>
<td>74,5648</td>
<td>25,03110</td>
<td>4,81724</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>VitDWert_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td>.838</td>
<td>.364</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test bei unabhängigen Stichproben

T-Test für die Mittelwertgleichheit

<table>
<thead>
<tr>
<th></th>
<th>Mittlere Differenz</th>
<th>Standardfehler der Differenz</th>
<th>95% Konfidenzintervall der Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td>-8,74585</td>
<td>6,22644</td>
<td>-21,22912 3,73742</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>-8,74585</td>
<td>6,26039</td>
<td>-21,31128 3,81959</td>
</tr>
</tbody>
</table>

Mann-Whitney-Test (t_2)

<table>
<thead>
<tr>
<th>Jahreszeit_3</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommer</td>
<td>29</td>
<td>25,43</td>
<td>737,50</td>
</tr>
<tr>
<td>Winter</td>
<td>27</td>
<td>31,80</td>
<td>858,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Testa

<table>
<thead>
<tr>
<th></th>
<th>VitDWert_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>302,500</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>737,500</td>
</tr>
<tr>
<td>Z</td>
<td>-1,459</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>,144</td>
</tr>
</tbody>
</table>

a a. Gruppenvariable: Jahreszeit_3

T-Test (t_3)

<table>
<thead>
<tr>
<th>Jahreszeit_4</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sommer</td>
<td>13</td>
<td>68,4615</td>
<td>24,84847</td>
<td>6,89172</td>
</tr>
<tr>
<td>Winter</td>
<td>24</td>
<td>73,1250</td>
<td>23,24760</td>
<td>4,74540</td>
</tr>
</tbody>
</table>
Test bei unabhängigen Stichproben

Levene-Test der Varianzgleichheit

<table>
<thead>
<tr>
<th>Varianzen sind gleich</th>
<th>F</th>
<th>Signifikanz</th>
<th>T</th>
<th>df</th>
<th>Sig. (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_4</td>
<td>.155</td>
<td>,696</td>
<td>-.569</td>
<td>35</td>
<td>,573</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Varianzen sind nicht gleich</th>
<th>F</th>
<th>Signifikanz</th>
<th>T</th>
<th>df</th>
<th>Sig. (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-.557</td>
<td></td>
<td>23,339</td>
<td></td>
<td>,583</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

T-Test für die Mittelwertgleichheit

<table>
<thead>
<tr>
<th>Mittlere Differenz</th>
<th>Standardfehler der Differenz</th>
<th>95% Konfidenzintervall der Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varianzen sind gleich</td>
<td>-4,66346</td>
<td>8,19893</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>-4,66346</td>
<td>8,36748</td>
</tr>
</tbody>
</table>

Mann-Whitney-Test (t3)

<table>
<thead>
<tr>
<th>Jahreszeit_4</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommer</td>
<td>13</td>
<td>18,00</td>
<td>234,00</td>
</tr>
<tr>
<td>Winter</td>
<td>24</td>
<td>19,54</td>
<td>469,00</td>
</tr>
<tr>
<td>Gesamt</td>
<td>37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test

<table>
<thead>
<tr>
<th>VitDWert_4</th>
<th>Mann-Whitney-U</th>
<th>Wilcoxon-W</th>
<th>Z</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
<th>Exakte Signifikanz [2*(1-seitige Sig.)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommer</td>
<td>143,000</td>
<td>234,000</td>
<td>-0,414</td>
<td>,679</td>
<td>,695b</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: Jahreszeit_4

b. Nicht für Bindungen korrigiert.
IV. SPSS Ergebnisse T- und U-Test Geschlechtsstatistik

Mann-Whitney-Test (t₀)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_1 männlich</td>
<td>18</td>
<td>30,03</td>
<td>540,50</td>
</tr>
<tr>
<td>weiblich</td>
<td>43</td>
<td>31,41</td>
<td>1350,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>VitDWert 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>369,500</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>540,500</td>
</tr>
<tr>
<td>Z</td>
<td>-0,277</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>,782</td>
</tr>
</tbody>
</table>

T-Test (t₀)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_1 männlich</td>
<td>18</td>
<td>25,5778</td>
<td>9,44551</td>
<td>2,22633</td>
</tr>
<tr>
<td>weiblich</td>
<td>43</td>
<td>30,6151</td>
<td>17,91530</td>
<td>2,73206</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>VitDWert_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td>7,005</td>
<td>0,010</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th>Mittlere Differenz</th>
<th>Standardfehler der Differenz</th>
<th>95% Konfidenzintervall der Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert _1</td>
<td>Varianzen sind gleich</td>
<td>-5,03734 4,47579</td>
</tr>
<tr>
<td></td>
<td>Varianzen sind nicht gleich</td>
<td>-5,03734 3,52430</td>
</tr>
</tbody>
</table>

Mann-Whitney-Test (t₁)

<table>
<thead>
<tr>
<th>Ränge</th>
<th>Geschlecht</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VitDWert_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>männlich</td>
<td>14</td>
<td>19,93</td>
<td>279,00</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>32</td>
<td>25,06</td>
<td>802,00</td>
</tr>
<tr>
<td></td>
<td>Gesamt</td>
<td>46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test¹

VitDWert_2	Mann-Whitney-U	174,000
	Wilcoxon-W	279,000
	Z	-1,194
	Asymptotische Signifikanz (2-seitig)	,233

¹ a. Gruppenvariable: Geschlecht

T-Test (t₁)

<table>
<thead>
<tr>
<th>Gruppenstatistiken</th>
<th>Geschlecht</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VitDWert_2</td>
<td>männlich</td>
<td>14</td>
<td>58,4107</td>
<td>25,08076</td>
</tr>
<tr>
<td></td>
<td></td>
<td>weiblich</td>
<td>32</td>
<td>67,9844</td>
<td>28,54410</td>
</tr>
</tbody>
</table>
Test bei unabhängigen Stichproben

Levene-Test der Varianzgleichheit

<table>
<thead>
<tr>
<th>VitDWert _2</th>
<th>Varianzen sind gleich</th>
<th>F</th>
<th>Signifikanz</th>
<th>T</th>
<th>df</th>
<th>Sig. (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>.233</td>
<td>.631</td>
<td>-1,084</td>
<td>44</td>
<td>.284</td>
</tr>
<tr>
<td></td>
<td>Varianzen sind nicht gleich</td>
<td></td>
<td></td>
<td>-1,141</td>
<td>28,121</td>
<td>.263</td>
</tr>
</tbody>
</table>

T-Test für die Mittelwertgleichheit

<table>
<thead>
<tr>
<th>RitDWert _3</th>
<th>Varianzen sind gleich</th>
<th>Mittlere Differenz</th>
<th>Standardfehler der Differenz</th>
<th>95% Konfidenzintervall der Differenz</th>
<th>Untere</th>
<th>Obere</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-9,57366</td>
<td>8,8316</td>
<td>-27,37573</td>
<td>8,22841</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Varianzen sind nicht gleich</td>
<td></td>
<td></td>
<td>-9,57366</td>
<td>8,39006</td>
<td>-26,75659</td>
</tr>
</tbody>
</table>

Mann-Whitney-Test (t²)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Ränge</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>18</td>
<td>22,42</td>
<td>403,50</td>
</tr>
<tr>
<td>weiblich</td>
<td>38</td>
<td>31,38</td>
<td>1192,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test

<table>
<thead>
<tr>
<th>RitDWert _3</th>
<th>Mann-Whitney-U</th>
<th>Wilcoxon-W</th>
<th>Z</th>
<th>Asymptotische Signifikanz (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>232,500</td>
<td>403,500</td>
<td>-1,921</td>
<td>.055</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: Geschlecht
T-Test (t_2)

Gruppenstatistiken

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_3</td>
<td>männlich</td>
<td>18</td>
<td>61,1250</td>
<td>19,31858</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>38</td>
<td>74,2566</td>
<td>24,32352</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>VitDWert_3</td>
<td>Varianzen sind gleich</td>
<td>2,063</td>
</tr>
<tr>
<td></td>
<td>Varianzen sind nicht gleich</td>
<td></td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittlere Differenz</td>
</tr>
<tr>
<td></td>
<td>Untere</td>
</tr>
<tr>
<td>VitDWert_3</td>
<td>Varianzen sind gleich</td>
</tr>
<tr>
<td></td>
<td>Varianzen sind nicht gleich</td>
</tr>
</tbody>
</table>

Mann-Whitney-Test (t_3)

Ränge

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_4</td>
<td>männlich</td>
<td>13</td>
<td>21,69</td>
</tr>
<tr>
<td></td>
<td>weiblich</td>
<td>25</td>
<td>18,36</td>
</tr>
<tr>
<td></td>
<td>Gesamt</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>
| Ergebnisse für Test

<table>
<thead>
<tr>
<th>Statistik für Test(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_4</td>
</tr>
<tr>
<td>Mann-Whitney-U</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
</tr>
<tr>
<td>Exakte Signifikanz ([2\times(1-seitige Sig.)])</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: Geschlecht
b. Nicht für Bindungen korrigiert.

T-Test (t\(b\))

<table>
<thead>
<tr>
<th>Gruppenstatistiken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>VitDWert_4</td>
</tr>
<tr>
<td>VitDWert_4</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>VitDWert_4</td>
<td>Varianzen sind gleich</td>
</tr>
<tr>
<td>VitDWert_4</td>
<td>Varianzen sind nicht gleich</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittlere Differenz</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>VitDWert_4</td>
</tr>
<tr>
<td>VitDWert_4</td>
</tr>
</tbody>
</table>
V. SPSS Ergebnisse univariate Anova – Schenkellänge

Univariate Varianzanalyse (t_3)

Zwischensubjektfaktoren

<table>
<thead>
<tr>
<th>Wertelabel</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL_Gruppe</td>
<td></td>
</tr>
<tr>
<td>1,00</td>
<td>160 cm</td>
</tr>
<tr>
<td>2,00</td>
<td>180 cm</td>
</tr>
<tr>
<td>3,00</td>
<td>200 cm</td>
</tr>
</tbody>
</table>

Deskriptive Statistiken

Abhängige Variable: VitDWert_4

<table>
<thead>
<tr>
<th>SL_Gruppe</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 cm</td>
<td>80,6538</td>
<td>21,96933</td>
<td>13</td>
</tr>
<tr>
<td>180 cm</td>
<td>73,5250</td>
<td>25,10795</td>
<td>10</td>
</tr>
<tr>
<td>200 cm</td>
<td>63,8077</td>
<td>25,01961</td>
<td>13</td>
</tr>
<tr>
<td>Gesamt</td>
<td>72,5903</td>
<td>24,39790</td>
<td>36</td>
</tr>
</tbody>
</table>

Levene-Test auf Gleichheit der Fehlervarianzen

Abhängige Variable: VitDWert_4

<table>
<thead>
<tr>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.111</td>
<td>2</td>
<td>33</td>
<td>.895</td>
</tr>
</tbody>
</table>

Prüft die Nullhypothese, daß die Fehlervarianz der abhängigen Variablen über Gruppen hinweg gleich ist.\(^a\)

a. Design: Konstanter Term + SL_Gruppe

Tests der Zwischensubjekteffekte

Abhängige Variable: VitDWert_4

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Quadratsumme vom Typ III</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korrigiertes Modell</td>
<td>1856,751(^a)</td>
<td>2</td>
<td>928,376</td>
<td>1,614</td>
<td>.214</td>
<td>.089</td>
</tr>
<tr>
<td>Konstanter Term</td>
<td>187192,637</td>
<td>1</td>
<td>187192,63</td>
<td>325,51</td>
<td>.000</td>
<td>.908</td>
</tr>
<tr>
<td>SL_Gruppe</td>
<td>1856,751</td>
<td>2</td>
<td>928,376</td>
<td>1,614</td>
<td>.214</td>
<td>.089</td>
</tr>
<tr>
<td>Fehler</td>
<td>18977,268</td>
<td>33</td>
<td>575,069</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>210530,563</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korrigierte Gesamtvariation</td>
<td>20834,019</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R-Quadrat = .089 (korrigiertes R-Quadrat = .034)
<table>
<thead>
<tr>
<th>SL_Gruppe</th>
<th>Mittelwert</th>
<th>Standardfehler</th>
<th>Untergrenze</th>
<th>Obergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 cm</td>
<td>80,654</td>
<td>6,651</td>
<td>67,122</td>
<td>94,185</td>
</tr>
<tr>
<td>180 cm</td>
<td>73,525</td>
<td>7,583</td>
<td>58,097</td>
<td>88,953</td>
</tr>
<tr>
<td>200 cm</td>
<td>63,808</td>
<td>6,651</td>
<td>50,276</td>
<td>77,339</td>
</tr>
</tbody>
</table>

Paarweise Vergleiche

<table>
<thead>
<tr>
<th>(I)SL_Gruppe</th>
<th>(J)SL_Gruppe</th>
<th>Mittlere Differenz (I-J)</th>
<th>Standardfehler</th>
<th>95% Konfidenzintervall für die Differenz²</th>
<th>Untergrenze</th>
<th>Obergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 cm</td>
<td>180 cm</td>
<td>7,129</td>
<td>10,087</td>
<td>1,000</td>
<td>-18,312</td>
<td>32,570</td>
</tr>
<tr>
<td>160 cm</td>
<td>200 cm</td>
<td>16,846</td>
<td>9,406</td>
<td>,247</td>
<td>-6,878</td>
<td>40,570</td>
</tr>
<tr>
<td>180 cm</td>
<td>160 cm</td>
<td>-7,129</td>
<td>10,087</td>
<td>1,000</td>
<td>-32,570</td>
<td>18,312</td>
</tr>
<tr>
<td>180 cm</td>
<td>200 cm</td>
<td>9,717</td>
<td>10,087</td>
<td>1,000</td>
<td>-15,724</td>
<td>35,158</td>
</tr>
<tr>
<td>200 cm</td>
<td>160 cm</td>
<td>-16,846</td>
<td>9,406</td>
<td>,247</td>
<td>-40,570</td>
<td>6,878</td>
</tr>
<tr>
<td>200 cm</td>
<td>180 cm</td>
<td>-9,717</td>
<td>10,087</td>
<td>1,000</td>
<td>-35,158</td>
<td>15,724</td>
</tr>
</tbody>
</table>

Basiert auf den geschätzten Randmitteln
a. Anpassung für Mehrfachvergleiche: Bonferroni.

Tests auf Univariate

<table>
<thead>
<tr>
<th>Kontrast</th>
<th>Quadratsumme</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1856,751</td>
<td>2</td>
<td>928,376</td>
<td>1,614</td>
<td>,214</td>
<td>.089</td>
<td></td>
</tr>
</tbody>
</table>

\[F \text{ prüft den Effekt von SL_Gruppe. Dieser Test basiert auf den linear unabhängigen paarweisen Vergleichen zwischen den geschätzten Randmitteln.} \]
Multiple Comparisons

Abhängige Variable: VitDWert_4
Bonferroni

<table>
<thead>
<tr>
<th>(I)SL Gruppe</th>
<th>(J)SL Gruppe</th>
<th>Mittlere Differenz (I-J)</th>
<th>Standardfehler</th>
<th>Sig.</th>
<th>95%-Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 cm</td>
<td>180 cm</td>
<td>7,1288</td>
<td>10,08677</td>
<td>1,000</td>
<td>-18,3121 - 32,5698</td>
</tr>
<tr>
<td>160 cm</td>
<td>200 cm</td>
<td>16,8462</td>
<td>9,40596</td>
<td>0,247</td>
<td>-6,8777 - 40,5700</td>
</tr>
<tr>
<td>180 cm</td>
<td>160 cm</td>
<td>-7,1288</td>
<td>10,08677</td>
<td>1,000</td>
<td>-32,5698 - 18,3121</td>
</tr>
<tr>
<td>180 cm</td>
<td>200 cm</td>
<td>9,7173</td>
<td>10,08677</td>
<td>1,000</td>
<td>-15,7237 - 35,1583</td>
</tr>
<tr>
<td>200 cm</td>
<td>160 cm</td>
<td>-16,8462</td>
<td>9,40596</td>
<td>0,247</td>
<td>-40,5700 - 6,8777</td>
</tr>
<tr>
<td>200 cm</td>
<td>180 cm</td>
<td>-9,7173</td>
<td>10,08677</td>
<td>1,000</td>
<td>-35,1583 - 15,7237</td>
</tr>
</tbody>
</table>

Grundlage: beobachtete Mittelwerte.
Der Fehlerterm ist Mittel der Quadrate(Fehler) = 575,069.
VI. SPSS Ergebnisse T- und U-Test BMI-Statistik

BMI (t₀) und Vit D (t₀)

Mann-Whitney-Test

<table>
<thead>
<tr>
<th>BMI_Gruppe_1</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitD Wert_1</td>
<td>< 50</td>
<td>29</td>
<td>33,12</td>
</tr>
<tr>
<td></td>
<td>> 50</td>
<td>32</td>
<td>29,08</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>VitD Wert_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>402,500</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>930,500</td>
</tr>
<tr>
<td>Z</td>
<td>-.888</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.374</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: BMI_Gruppe_1

Einfluss BMI (t₀) auf Vit. D (t₁ ³)

Mann-Whitney-Test (t₁)

<table>
<thead>
<tr>
<th>BMI_Gruppe_Prä</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitD Wert_2</td>
<td>BMI < 50 kg/m²</td>
<td>23</td>
<td>25,57</td>
</tr>
<tr>
<td></td>
<td>BMI > 50 kg/m²</td>
<td>23</td>
<td>21,43</td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>VitD Wert_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>217,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>493,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,044</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.297</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: BMI_Gruppe_Prä
T-Test (t₁)

Gruppenstatistiken

<table>
<thead>
<tr>
<th>BMI_Gruppe_Prä</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_2 BMI < 50 kg/m²</td>
<td>23</td>
<td>70,2935</td>
<td>30,14347</td>
<td>6,28535</td>
</tr>
<tr>
<td>BMI > 50 kg/m²</td>
<td>23</td>
<td>59,8478</td>
<td>24,38642</td>
<td>5,08492</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

Levene-Test der Varianzgleichheit
Varianzen sind gleich
\[F = 0,245, \quad \text{Signifikanz} = 0,623 \]

Varianzen sind nicht gleich
\[T = 1,292, \quad \text{df} = 42,161, \quad \text{Sig. (2-seitig)} = 0,203 \]

Test bei unabhängigen Stichproben
T-Test für die Mittelwertgleichheit

<table>
<thead>
<tr>
<th>BMI_Gruppe_Prä</th>
<th>Mittlere Differenz</th>
<th>Standardfehler der Differenz</th>
<th>95% Konfidenzintervall der Differenz</th>
<th>Untere</th>
<th>Obere</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_2 BMI < 50 kg/m²</td>
<td>10,44565</td>
<td>8,08468</td>
<td>-5,84794</td>
<td>26,73925</td>
<td></td>
</tr>
<tr>
<td>BMI > 50 kg/m²</td>
<td>10,44565</td>
<td>8,08468</td>
<td>-5,86804</td>
<td>26,75934</td>
<td></td>
</tr>
</tbody>
</table>

Mann-Whitney-Test (t₂)

Ränge

<table>
<thead>
<tr>
<th>BMI_Gruppe_Prä</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_3 BMI < 50 kg/m²</td>
<td>26</td>
<td>32,63</td>
<td>848,50</td>
</tr>
<tr>
<td>BMI > 50 kg/m²</td>
<td>30</td>
<td>24,92</td>
<td>747,50</td>
</tr>
<tr>
<td>Gesamt</td>
<td>56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>VitDWert _3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>282,500</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>747,500</td>
</tr>
<tr>
<td>Z</td>
<td>-1,766</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>.077</td>
</tr>
</tbody>
</table>

a. Gruppenvariable: BMI_Gruppe_Prä

T-Test (t2)

Gruppenstatistiken

<table>
<thead>
<tr>
<th></th>
<th>BMI_Gruppe_ Prä</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI < 50 kg/m²</td>
<td>26</td>
<td>76,5192</td>
<td>24,61940</td>
<td>4,82826</td>
<td></td>
</tr>
<tr>
<td>BMI > 50 kg/m²</td>
<td>30</td>
<td>64,4167</td>
<td>21,29284</td>
<td>3,88752</td>
<td></td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>VitDWert_3 BMI < 50 kg/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td>1,134</td>
<td>.292</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>1,952</td>
<td>49,85</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittlere Differenz</td>
</tr>
<tr>
<td></td>
<td>Untere</td>
</tr>
<tr>
<td>VitDWert_3 BMI < 50 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td>12,10256</td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>12,10256</td>
</tr>
</tbody>
</table>
Mann-Whitney-Test (t₃)

<table>
<thead>
<tr>
<th>BMI_Gruppe_Prä</th>
<th>N</th>
<th>Mittlerer Rang</th>
<th>Rangsumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_4 BMI < 50 kg/m²</td>
<td>17</td>
<td>22,41</td>
<td>381,00</td>
</tr>
<tr>
<td>BMI > 50 kg/m²</td>
<td>21</td>
<td>17,14</td>
<td>360,00</td>
</tr>
<tr>
<td>Gesamt</td>
<td>38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>VitDWert_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney-U</td>
<td>129,000</td>
</tr>
<tr>
<td>Wilcoxon-W</td>
<td>360,000</td>
</tr>
<tr>
<td>Z</td>
<td>-1,453</td>
</tr>
<tr>
<td>Asymptotische Signifikanz (2-seitig)</td>
<td>0,146</td>
</tr>
<tr>
<td>Exakte Signifikanz [2*(1-seitige Sig.)]</td>
<td>0,152b</td>
</tr>
</tbody>
</table>

*a. Gruppenvariable: BMI_Gruppe_Prä
b. Nicht für Bindungen korrigiert.

T-Test (t₃)

<table>
<thead>
<tr>
<th>BMI_Gruppe_Prä</th>
<th>N</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_4 BMI < 50 kg/m²</td>
<td>17</td>
<td>77,7941</td>
<td>24,02054</td>
<td>5,82584</td>
</tr>
<tr>
<td>BMI > 50 kg/m²</td>
<td>21</td>
<td>67,8571</td>
<td>23,23811</td>
<td>5,07097</td>
</tr>
</tbody>
</table>

Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Levene-Test der Varianzgleichheit</th>
<th>T-Test für die Mittelwertgleichheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Signifikanz</td>
</tr>
<tr>
<td>VitDWert_4</td>
<td>.035</td>
<td>.852</td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test bei unabhängigen Stichproben

<table>
<thead>
<tr>
<th></th>
<th>Mittlere Differenz</th>
<th>Standardfehler der Differenz</th>
<th>95% Konfidenzintervall der Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitD Wert _4</td>
<td>9,93697</td>
<td>7,69606</td>
<td>Untere: -5,67135 Obere: 25,54530</td>
</tr>
<tr>
<td>Varianzen sind gleich</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianzen sind nicht gleich</td>
<td>9,93697</td>
<td>7,72367</td>
<td>Untere: -5,76157 Obere: 25,63552</td>
</tr>
</tbody>
</table>
VII. SPSS Ergebnisse H-Test und univariate Anova Altersstatistik

Kruskal-Wallis-Test (t₀⁻¹)

<table>
<thead>
<tr>
<th>Ränge</th>
<th>Alter_Gruppe</th>
<th>N</th>
<th>Mittlerer Rang</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitDWert_1</td>
<td>18 - 29 Jahre</td>
<td>9</td>
<td>26,67</td>
</tr>
<tr>
<td></td>
<td>30 - 44 Jahre</td>
<td>28</td>
<td>32,05</td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>23</td>
<td>30,11</td>
</tr>
<tr>
<td></td>
<td>Gesamt</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>VitDWert_2</td>
<td>18 - 29 Jahre</td>
<td>6</td>
<td>21,33</td>
</tr>
<tr>
<td></td>
<td>30 - 44 Jahre</td>
<td>20</td>
<td>22,80</td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>19</td>
<td>23,74</td>
</tr>
<tr>
<td></td>
<td>Gesamt</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Statistik für Test

<table>
<thead>
<tr>
<th></th>
<th>VitDWert_1</th>
<th>VitDWert_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Quadrat</td>
<td>.667</td>
<td>.161</td>
</tr>
<tr>
<td>df</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Asymptotische Signifikanz</td>
<td>.716</td>
<td>.923</td>
</tr>
</tbody>
</table>

a. Kruskal-Wallis-Test
b. Gruppenvariable: Alter_Gruppe

Hypothesentestübersicht

<table>
<thead>
<tr>
<th>Nullhypothese</th>
<th>Test</th>
<th>Sig.</th>
<th>Entscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Die Verteilung von VitDWert_1 ist über die Kategorien von Alter_Gruppe identisch.</td>
<td>Kruskal-Wallis-Test bei unabhängigen Stichproben</td>
<td>.716</td>
</tr>
<tr>
<td>2</td>
<td>Die Verteilung von VitDWert_2 ist über die Kategorien von Alter_Gruppe identisch.</td>
<td>Kruskal-Wallis-Test bei unabhängigen Stichproben</td>
<td>.923</td>
</tr>
</tbody>
</table>

Asymptotische Signifikanzen werden angezeigt. Das Signifikanzniveau ist .05.
Univariate Varianzanalyse (t_2)

Zwischensubjektfaktoren

<table>
<thead>
<tr>
<th>Wertelabel</th>
<th>Alter_Gruppe</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00</td>
<td>18 - 29 Jahre</td>
<td>7</td>
</tr>
<tr>
<td>2,00</td>
<td>30 - 44 Jahre</td>
<td>26</td>
</tr>
<tr>
<td>3,00</td>
<td>45 - 64 Jahre</td>
<td>22</td>
</tr>
</tbody>
</table>

Deskriptive Statistiken

Abhängige Variable: VitDWert_3

<table>
<thead>
<tr>
<th>Alter_Gruppe</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 29 Jahre</td>
<td>62,6429</td>
<td>19,77891</td>
<td>7</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>70,1731</td>
<td>24,60922</td>
<td>26</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>71,0909</td>
<td>23,72744</td>
<td>22</td>
</tr>
<tr>
<td>Gesamt</td>
<td>69,5818</td>
<td>23,45470</td>
<td>55</td>
</tr>
</tbody>
</table>

Levene-Test auf Gleichheit der Fehlervarianzena

Abhängige Variable: VitDWert_3

<table>
<thead>
<tr>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>,188</td>
<td>2</td>
<td>52</td>
<td>,829</td>
</tr>
</tbody>
</table>

Prüft die Nullhypothese, daß die Fehlervarianz der abhängigen Variablen über Gruppen hinweg gleich ist.a

a. Design: Konstanter Term + Alter_Gruppe
Tests der Zwischensubjekteffekte

Abhängige Variable: Vitamin-D-Wert (VitDWert_3)

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Quadrat- summe vom Typ III</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korrigiertes Modell</td>
<td>396,235(^a)</td>
<td>2</td>
<td>198,118</td>
<td>,351</td>
<td>,705</td>
<td>,013</td>
</tr>
<tr>
<td>Konstanter Term</td>
<td>183346,16</td>
<td>2</td>
<td>183346,16</td>
<td>325,27</td>
<td>,000</td>
<td>,862</td>
</tr>
<tr>
<td>Alter_Gruppe</td>
<td>396,235</td>
<td>2</td>
<td>198,118</td>
<td>,351</td>
<td>,705</td>
<td>,013</td>
</tr>
<tr>
<td>Fehler</td>
<td>29310,396</td>
<td>52</td>
<td>563,661</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>295996,25</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korrigierte Gesamtvariation</td>
<td>29706,632</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) R-Quadrat = \,013 (korrigiertes R-Quadrat = \,-025)

Geschätzte Randmittel

Alter_Gruppe

<table>
<thead>
<tr>
<th>Schätzer</th>
<th>Abhängige Variable: Vitamin-D-Wert (VitDWert_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter_Gruppe</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>18 - 29 Jahre</td>
<td>62,643</td>
</tr>
<tr>
<td></td>
<td>44,636</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>70,173</td>
</tr>
<tr>
<td></td>
<td>60,934</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>71,091</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Paarweise Vergleiche

<table>
<thead>
<tr>
<th>(I) Alter_Gruppe</th>
<th>(J) Alter_Gruppe</th>
<th>Mittlere Differenz (I-J)</th>
<th>Standardfehler</th>
<th>Sig. (a)</th>
<th>95% Konfidenzintervall für die Differenz (a)</th>
<th>Untergrenze</th>
<th>Obergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 29 Jahre</td>
<td>30 - 44 Jahre</td>
<td>-7,530</td>
<td>10,110</td>
<td>1,000</td>
<td>-32,540, 17,480</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>-8,448</td>
<td>10,303</td>
<td>1,000</td>
<td>-33,936, 17,040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>18 - 29 Jahre</td>
<td>7,530</td>
<td>10,110</td>
<td>1,000</td>
<td>-17,480, 32,540</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>-.918</td>
<td>6,878</td>
<td>1,000</td>
<td>-17,932, 16,096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>18 - 29 Jahre</td>
<td>8,448</td>
<td>10,303</td>
<td>1,000</td>
<td>-17,040, 33,936</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 - 44 Jahre</td>
<td>.918</td>
<td>6,878</td>
<td>1,000</td>
<td>-16,096, 17,932</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basiert auf den geschätzten Randmitteln

a. Anpassung für Mehrfachvergleiche: Bonferroni.

Tests auf Univariate

<table>
<thead>
<tr>
<th></th>
<th>Quadratsumme</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrast</td>
<td>396,235</td>
<td>2</td>
<td>198,118</td>
<td>.351</td>
<td>.705</td>
<td>.013</td>
</tr>
<tr>
<td>Fehler</td>
<td>29310,396</td>
<td>52</td>
<td>563,661</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post-Hoc-Tests
Alter_Gruppe

Multiple Comparisons

Abhängige Variable: VitDWert 3

Bonferroni

<table>
<thead>
<tr>
<th>(I)Alter_Gruppe</th>
<th>(J)Alter_Gruppe</th>
<th>Mittlere Differenz (I-J)</th>
<th>Standardfehler</th>
<th>Sig.</th>
<th>95%-Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 29 Jahre</td>
<td>30 - 44 Jahre</td>
<td>-7,5302</td>
<td>10,10952</td>
<td>1,00</td>
<td>-32,5401 17,4797</td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>-8,4481</td>
<td>10,30262</td>
<td>1,00</td>
<td>-33,9357 17,0396</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>18 - 29 Jahre</td>
<td>7,5302</td>
<td>10,10952</td>
<td>1,00</td>
<td>-17,4797 32,5401</td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>-.9178</td>
<td>6,87752</td>
<td>1,00</td>
<td>-17,9321 16,0964</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>18 - 29 Jahre</td>
<td>8,4481</td>
<td>10,30262</td>
<td>1,00</td>
<td>-17,0396 33,9357</td>
</tr>
<tr>
<td></td>
<td>30 - 44 Jahre</td>
<td>.9178</td>
<td>6,87752</td>
<td>1,00</td>
<td>-16,0964 17,9321</td>
</tr>
</tbody>
</table>

Grundlage: beobachtete Mittelwerte.
Der Fehlerterm ist Mittel der Quadrate(Fehler) = 563,661.

Univariate Varianzanalyse (t3)

Zwischensubjektfaktoren

<table>
<thead>
<tr>
<th>Wertelabel</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter_Gruppe</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>18 - 29 Jahre</td>
</tr>
<tr>
<td></td>
<td>30 - 44 Jahre</td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
</tr>
</tbody>
</table>

Deskriptive Statistiken

Abhängige Variable: VitDWert_4

<table>
<thead>
<tr>
<th>Alter_Gruppe</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 29 Jahre</td>
<td>83,0625</td>
<td>21,82542</td>
<td>4</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>65,5441</td>
<td>24,12520</td>
<td>17</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>76,9219</td>
<td>23,99023</td>
<td>16</td>
</tr>
<tr>
<td>Gesamt</td>
<td>72,3581</td>
<td>24,12659</td>
<td>37</td>
</tr>
</tbody>
</table>
Levene-Test auf Gleichheit der Fehlervarianzen

Abhängige Variable: VitDWert_4

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.026</td>
<td>2</td>
<td>34</td>
<td>.974</td>
</tr>
</tbody>
</table>

Prüft die Nullhypothese, daß die Fehlervarianz der abhängigen Variablen über Gruppen hinweg gleich ist.

a. Design: Konstanter Term + Alter_Gruppe

Tests der Zwischensubjekteffekte

Abhängige Variable: VitDWert_4

<table>
<thead>
<tr>
<th>Quelle</th>
<th>Quadratsumme vom Typ III</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korrigiertes Modell</td>
<td>1580,901</td>
<td>2</td>
<td>790,451</td>
<td>1,387</td>
<td>.264</td>
<td>.075</td>
</tr>
<tr>
<td>Konstanter Term</td>
<td>136977,85</td>
<td>1</td>
<td>136977,856</td>
<td>240,381</td>
<td>.000</td>
<td>.876</td>
</tr>
<tr>
<td>Alter_Gruppe</td>
<td>1580,901</td>
<td>2</td>
<td>790,451</td>
<td>1,387</td>
<td>.264</td>
<td>.075</td>
</tr>
<tr>
<td>Fehler</td>
<td>19374,416</td>
<td>34</td>
<td>569,836</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>214676,06</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korrigierte Gesamtvariation</td>
<td>20955,318</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R-Quadrat = .075 (korrigiertes R-Quadrat = .021)

Geschätzte Randmittel

Altgruppe

<table>
<thead>
<tr>
<th>Alter_Gruppe</th>
<th>Mittelwert</th>
<th>Standardfehler</th>
<th>95%-Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Untergrenze</td>
<td>Obergrenze</td>
</tr>
<tr>
<td>18 - 29 Jahre</td>
<td>83,062</td>
<td>58,806</td>
<td>107,319</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>65,544</td>
<td>53,778</td>
<td>77,310</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>76,922</td>
<td>64,794</td>
<td>89,050</td>
</tr>
</tbody>
</table>
Paarweise Vergleiche

<table>
<thead>
<tr>
<th>(I) Alter_Gruppe</th>
<th>(J) Alter_Gruppe</th>
<th>Mittlere Differenz (I-J)</th>
<th>Standardfehler</th>
<th>Sig.</th>
<th>Untergrenze</th>
<th>Obergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 29 Jahre</td>
<td>30 - 44 Jahre</td>
<td>17,518</td>
<td>13,266</td>
<td>.586</td>
<td>-15,888</td>
<td>50,925</td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>6,141</td>
<td>13,344</td>
<td>1,000</td>
<td>-27,464</td>
<td>39,745</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>18 - 29 Jahre</td>
<td>17,518</td>
<td>13,266</td>
<td>.586</td>
<td>-50,925</td>
<td>15,888</td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>-11,378</td>
<td>8,315</td>
<td>.540</td>
<td>-32,316</td>
<td>9,561</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>18 - 29 Jahre</td>
<td>-6,141</td>
<td>13,344</td>
<td>1,000</td>
<td>-39,745</td>
<td>27,464</td>
</tr>
<tr>
<td></td>
<td>30 - 44 Jahre</td>
<td>11,378</td>
<td>8,315</td>
<td>.540</td>
<td>-9,561</td>
<td>32,316</td>
</tr>
</tbody>
</table>

Basiert auf den geschätzten Randmitteln
a. Anpassung für Mehrfachvergleiche: Bonferroni.

Tests auf Univariate

<table>
<thead>
<tr>
<th>Quadratsumme</th>
<th>df</th>
<th>Mittel der Quadrate</th>
<th>F</th>
<th>Sig.</th>
<th>Partielles Eta-Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrast</td>
<td>1580,901</td>
<td>2</td>
<td>790,451</td>
<td>1,387</td>
<td>.264</td>
</tr>
<tr>
<td>Fehler</td>
<td>19374,416</td>
<td>34</td>
<td>569,836</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post-Hoc-Tests

Alter_Gruppe

Multiple Comparisons

Abhängige Variable: VitDWert_4
Bonferroni

<table>
<thead>
<tr>
<th>(I)Alter_Gruppe</th>
<th>(J)Alter_Gruppe</th>
<th>Mittlere Differenz (I-J)</th>
<th>Standardfehler</th>
<th>Sig.</th>
<th>95%-Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 - 29 Jahren</td>
<td>30 - 44 Jahre</td>
<td>17,5184</td>
<td>13,26570</td>
<td>586</td>
<td>-15,881 - 50,9248</td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>6,1406</td>
<td>13,34442</td>
<td>1,000</td>
<td>-27,4641 - 39,7453</td>
</tr>
<tr>
<td>30 - 44 Jahre</td>
<td>18 - 29 Jahre</td>
<td>-17,5184</td>
<td>13,26570</td>
<td>586</td>
<td>-50,9248 - 15,8881</td>
</tr>
<tr>
<td></td>
<td>45 - 64 Jahre</td>
<td>-11,3778</td>
<td>8,31472</td>
<td>540</td>
<td>-32,3164 - 9,5609</td>
</tr>
<tr>
<td>45 - 64 Jahre</td>
<td>18 - 29 Jahre</td>
<td>-6,1406</td>
<td>13,34442</td>
<td>1,000</td>
<td>-39,7453 - 27,4641</td>
</tr>
<tr>
<td></td>
<td>30 - 44 Jahre</td>
<td>11,3778</td>
<td>8,31472</td>
<td>540</td>
<td>-9,5609 - 32,3164</td>
</tr>
</tbody>
</table>

Grundlage: beobachtete Mittelwerte.
Der Fehlerterm ist Mittel der Quadrate(Fehler) = 569,836.
Eidesstattliche Erklärung

Ich versichere, dass ich vorliegende Arbeit ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quelle kenntlich gemacht.

Hamburg, den ___________________ ____________________

(Nina Schmidt)