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Abstract 

This master thesis constructs a ―Sampling Rate Converter‖ which can deal 

with arbitrary sampling rate conversion between input and output. This ratio 

can be rational, irrational or even be slowly time varying. 

Linear interpolator is used to do the interpolation. FIR filters are used to 

remove the distortion introduced by SRD or SRI. These FIR filters are 

implemented by window function. Polyphase structure of a FIR filter is used 

to derive an efficient structure. All the real-time implementations are proved 

by the Matlab simulation results. A TI DSK C6713 board is used as the 

hardware to realize the real system. At last an alternative interpolation method 

Lagrange interpolation is explained in a theoretical level. A large number of 

figures which help the reader understand the complex theories involved in 

this thesis are the specialty of this thesis. 
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Thema der Masterarbeit  

Eine sich selbst einstellender flexibler Abtastratenumsetzer unter Verwendung 
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Kurzzusammenfassung 

Diese Masterarbeit behandelt (dis Konstruktion) eines ―Sampling Rate 

Converters‖, welcher willk ü rliche Verhätnisse zwischen Ein- und 

Asugansabtastrate verarbeiten kann. Diese Verältnisse können rational, 

irrational order zeitlich veränderbar sein. 

Zum Zwecke der Interpolation wird ein Linearer Interpolator verwendet. 

Störungen, hervorgerufen durch den SRD order SRI, werden durch FIR Filter 

entfernt. Die Implementierung der Filter basiert dabei auf einer 

Fensterfunction. Polyphase-Strukturen werder genutzt, um eine effiziente 

Struktur zu erreichen. Die gesamte Echtzeit-Implementierung wurde 

verifiziert mit den Matlab Simulationsergebnissen. Ein TI DSK C6713 

(Entwicklungs-) Board wird benutzt um das System zu realisieren. 

Abschließend wird die Lagrange interpolationsmethode theoretisch als 

alternative erläutert. Eine Vielzahl von Abbildungen, die dem Leser helfen 

sollen, die komplexe Theorie zu verstehen, sind die Besonderheit dieser 
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Glossary 

A/D—Analog to Digital 

ALU—Arithmetic Logic Units  

CD—Compact Disc 

CCS —Code Composer Studio 

D/A—Digital to Analog 

DSP—Digital Signal processor 

FIR—Finite Impulse Response 

HiFi —HIgh-FIdelity  

IDE—Integrated Development Environment 

LI—Linear Interpolator 

LPF—Lowpass Filter 

LTD—Linear Time-Invariant 

McBsp—Multi-channel Buffer serial port 

SRC —Sampling Rate Converter 

SRD—Sampling Rate Decreaser 

SRI—Sampling Rate Increaser 

SDRAM—Synchronous Dynamic Random Access Memory  

THD—Total Harmonic Distortion  

VOIP—Voice Over Internet Protocol 

WLIW—Very Long Instruction Word   
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1 Introduction 

1.1 Motivation  

Compare to an analog system, a digital system has a lot of advantages. They are 

small, cheap, programmable, reusable and capable of complicated processing. Since 

the last three decades, digital signal processing has been well established and 

developed. This can be proved by thousands of literatures concerning on that subject 

in both international organizations EURASIP and IEEE. Accompany with these 

theories, a large number of real products come to world such as PC, DVD, Digital 

TV and so on. These things make our world digital.  

In the beginning 21th century, a lot of new applications based on digital signal 

processing in the range of audio and video are emerged. People can watch IPTV, 

listen to the Radio and make a VOIP call to a normal fixed user in one computer. One 

common problem of such applications is that the system components of different 

sampling frequencies have to communicate with each other. A real example may be 

helpful to understand this concept. Compact Disk (CD) is an audio signal digitally 

stored on a small optical disc. The stereo is sampled at a sampling frequency of 44.1 

kHz. In a modern HiFi audio system, a sampling frequency of 48 kHz is required. If 

one wants to play CD in a HiFi system, a conversion of sampling frequency from 

44.1 kHz to 48 kHz is needed. For this reason, a sample rate converter (SRC) will be 

used in a HiFi system. A SRC can change the sampling frequency of input signal and 

make it suitable for the system. It makes possible those digital systems which have 

different sampling rate to communicate. Interpolating technology and digital filters 

are the key points of it. Interpolating means use mathematical ways to predict 

unknown samples between the original samples. Filters are used to remove the image 

created by interpolating in frequency domain.  

 𝑌1 𝑓 𝑜𝑟 𝑌2(𝑓) 

Fig 1.1 An ideal SRC with input spectrum X(f) and output spectrum 

−Fs1/2 
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The SRCs proposed in this thesis are all flexible SRCs. They are also needed in 

many other applications, for instance in the digital transmission systems. An ideal 

SRC is shown in Fig 1.1(a). Fig 1.1(b) shows the spectrum X(f) of the input signal 

with sampling frequency Fs1 . The ideal output spectrum Y1 (f) with sampling 

frequency Fs2  is shown in Fig.1.1(c) where Fs2 > Fs1 .This process is called 

interpolation. In Fig 1.1(d) the ideal output spectrum Y2(f) with sampling frequency 

Fs3 is shown for Fs3 < Fs1. This process is called decimation.  

A digital signal processor (DSP) is a specialized microprocessor designed 

specifically for digital signal processing, generally in real-time computing. Today a 

DSP has usually a Floating-point unit integrated directly into the data-path and uses a 

pipelined architecture. This ensures the complex computation used in digital signal 

processing algorithms.   

A few companies have developed perfect software to operate a DSP. Code Composer 

Studio (CCS) offered by Pacificxu TI is powerful software among them. It has an 

integrated development environment (IDE). It provides tools for code generation, 

such as a C compiler, an assembler and a linker. A few debugging features are 

available, including setting breakpoints, watching variables, viewing memory and 

registers, mixing C and assembly code, graphing results and so on.  

1.2 Objectives 

The goal of this master thesis is to develop a flexible self-tuning sampling rate 

converter with linear interpolator. A TI C6713 board will be used as the hardware. 

The develop platform is based on CCS Version 3.1. From its title a few main 

difficulties have been claimed.  

Firstly, ―flexible‖ means it can deal with arbitrary ratio between input and output 

sampling frequency. So the ratio can be either integer, rational or irrational. ―Flexible‖ 

also means that the SRC should always work even if the given ratio is changed. So 

the ratio can be a function of time.  

Secondly, it is a self-tuning SRC. The input and output sample frequency is unknown. 

The SRC should detect them automatically. It should also detect the new ratio, when 

the ratio changes. The on board clock in the DSP will be used to achieve this 

function.  

Thirdly, the SRC uses the linear interpolating technology to predict the unknown 

samples. Normally in order to get high frequency bandwidth efficiency, a linear 

interpolator (LI) can‘t work alone. A lowpass filter will be added to remove the 

distortion in the fundamental interval. The attenuation of the filter determines the 

quality of the SRC. As is known to all, the larger the stop band attenuation is, the 

narrower the transition 

http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Pipeline_%28computer%29
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bandwidth will be(the passban and stopband frequency are supposed to be fixed). But 

narrow transition bandwidth means more filter coefficients are needed. More 

coefficients will take more time in computation. Hence an efficient structure should 

be implemented here to avoid time consumption cost by filter calculation.   

1.3 Structure of the thesis 

The remainder of the thesis is organized as follows: 

Chapter 2 ―State of Art‖ gives some basic background acknowledges in dealing with 

a multirate system. After this chapter one can know what a digital signal is, what are 

the elements used to increase or decrease the sampling rate of a system, how a 

lowpass filter looks like in frequency domain and how some system components in a 

multirate system are interchanged. 

Chapter 3 ―Interpolator and Decimator‖ tells how to increase or decrease the 

sampling frequency of a system by an integer number without effecting the original 

spectrum. The problems concerning in such processes will be listed and the solution 

to these problems will be discussed.  

Chapter 4 ―Rational SRC‖ shows the way to construct a rational SRC. The design of 

a rational interpolator in an efficient way will be explained first. The concept of an 

interleaver will be introduced. Followed by is the design of a rational decimator.  

Chapter 5 ―Flexible SRC‖ is based on the design of the previous chapter. A new 

concept linear interpolator will be given. The efficient implementation of an SRC is 

the combination of linear interpolator and the structure shown in Chapter 4. A 

software Matlab will be used to simulate the results.  

Chapter 6 ―Real-time Implementation‖ specifies the realization of flexible SRC in a 

DSP board. Some information about the hardware DSK C6713 board will be given 

first. Then the realization will be discussed through several parts. Finally the code 

structure will be explained.  

Chapter 7 ―Testing‘ analyzes the behavior of the system through different testing 

methods. The results will be analyzed both in time and frequency domain. A new 

concept called Total Harmonic Distortion (THD) will be introduced here. It is a 

common standard used in audio analysis.   

Chapter 8 ―Lagrange Interpolator‖ describes an alternate way to implement a flexible 

SRC. It will use Lagrange polynomial to do the approximations which gives a better 

result than a linear interpolator.  

Chapter 9 ―Conclusion‖ makes the summary of the whole work. It describes whether 

the goal of this thesis is achieved based on the testing results shown in chapter 8. It 

also includes perspectives which tells how this thesis can be further developed. 
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2 State of the Art 

2.1 Discrete-Time Signals 

In digital signal processing, signals are always represented as sequences of numbers 

called samples. A sample value of a typical discrete-time signal or sequence is 

denoted as x[n] with argument n being an integer between -∞ and + ∞. It is clear 

that n is only for integer and not for the non-integer.  

There are two ways to get a discrete-time signal. The first is to sample the continuous 

signal. That means taking a value of the continuous signal every T seconds. This T 

can be any number greater than zero. The sampling frequency fs = 1/T. This is 

illustrated in Fig 2.1(a). 

     

        Fig 2.1 Methods to get discrete-time signal   

(a) Sampling continuous signal (b) Sampling discrete signal 

 

The second way is to sample a discrete-time signal. Suppose the original signal is 

x[n]. This is done through taking every M
th

 value of x[n] and setting other values to 

be zero. Fig 2.1(b) shows the situation where M=4. The original signals are shown on 

the upper position. A signal called y[n] take every 4
th
 value of it. Note the original 

sampling frequency has not been changed by the discrete sampling. This process can 

be represented by the following equation:  

                          y[n]=x[n]*w[n]  

      where         w[n] =
1

M
 e

−j2πni

MM−1
i=0 =  

1, 𝑛 = 𝑚𝑀  𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
0,   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

y[n] has non-zero values only if n is a multiple of M. 

(a) (b) 
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2.2 Increase and Decrease Sampling Frequency 

Sampling-Rate Decreaser (SRD) and Sampling-Rate Increaser (SRI) are the two 

basic building blocks for changing the sampling frequency of a digital system. Fig 

2.2 shows the example of SRD with factor L and SRI with factor K. The factor L and 

K here are integers. They give the direct information of relationship between input 

and output signal in time domain. Note they are periodical time-varying system, 

which means they can not be described by an impulse response or a system function. 

In this section, the input signal will be denoted by x[n𝑇1] and the output signal will 

be denoted by y[n𝑇2], where 𝑇1 and 𝑇2 are the sampling interval of them.  

 

Fig2.2 Building blocks of Sampling-Rate Decreaser (SRD) and  

Sampling-Rate Increaser (SRI) 

 

The sampling interval 𝑇2 for the SRD is equal to L𝑇1. Taking out every 𝐿𝑡𝑕  values 

of x[n𝑇1] will form the output y[n𝑇2] of SRD. This can be described as follows: 

 

    y[nT2] =  x[nLT1]                                           (2.2) 

 

The sampling interval  𝑇2 for the SRI is equal to 𝑇1/K. The SRI insert (K-1) zeros 

between every two input samples. The SRI will have none-zero value only when n is 

a multiple of K. This relationship can be described as follows: 

 

       y[nT2] =  
x[nT1/K], 𝑛 = 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝐾

0,   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
           (2.3) 

 

The integer factor L and K that are used in Fig.2.2 are called decimation factor and 

interpolation factor respectively. An SRD and SRI can also be described in frequency 

domain.  

The discrete-time Fourier transform of SRD can be found from equation (1.47) of [1] 

 

        Y ejωT2 =
1

L
 X(ejwωT2/Le−j2πk/L)

L−1

𝑘=0
                  (2.4) 

Replace 𝑒𝑗𝜔 𝑇2  with z and obtain the following equation 
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         Y z =
1

L
 X(e−j2πk/Lz

1

L )
L−1

𝑘=0
                            (2.5) 

 

The 𝑘𝑡𝑕  term in this summation corresponds to a shift version of the input spectrum 

with a frequency shift of 2𝜋k/L. That means it will repeat the spectrum of the 

original signal at frequency 2𝜋k/L. The terms for k≠ 0 are the aliasing terms, which 

are unwanted in most cases. 

The relation of input and output signal of an SRI can also be described as in 

frequency domain.  

 

       Y ejωT2 = X ejωKT 2                               (2.6) 

Replace 𝑒𝑗𝜔 𝑇2  with z and obtain the following equation 

          Y z = X zK                                         (2.7) 

 

From equation (2.6) it is obviously that the spectrum of output signal can be found 

from the DFT transform of the input signal, by replacing 𝑇1 to 𝐾𝑇2. So inserting 

zeros to the original signal will not change the spectrum. The only thing it has done 

is rescaling the frequency axis by a factor 1/K  (The scaling factor of the magnitude 

is neglected here).  

Fig 2.3 gives a clear idea of how SRD and SRI work in frequency domain. Both 

decimating and interpolating factor are 2. Fig 2.3(a) is the spectrum of the input 

signal. Fig 2.3(b) is the spectrum of output signal of SRD. The spectrum of the 

original signal is shifted to n*Fs/2, n∈ 𝑁. The solid part in Fig 2.3(b) shows the 

aliasing effect. The spectrum of the output signal of SRI is shown in Fig 2.3(c). It is 

clear that frequency axis is scaled by a factor of 1/2.This cause one image which is 

represented as a solid triangular in the fundamental interval.   

 

           Fig 2.3 Spectrum of signals passing through SRD and SRI 
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2.3 Lowpass Filters 

Filters are the most popular applications implemented in DSP. This introduction 

gives a clear idea on a theoretical level. A filter can be seen as a black box. It has the 

following functions: 

 Accepting the input signal  

 Blocking the pre-specified frequency components 

 Passing the original signal minus the blocked frequency components specified 

above to the output   

For example, the sampling rate of a telephone is 8KHz. So a typical phone line acts 

as a filter that limits frequencies to a range smaller than 8KHz. But the frequency 

range of the human ear is much larger. So audio quality of listening to 

CD-quality(sampling rate is 44.1KHz) music over the phone is not as good as 

directly listening to it. The reason is a lot of high frequency components have been 

removed by the filter. 

A digital filter takes a digital input sample and gives a digital output. In a typical 

digital filtering application, software running on a DSP, which reads input samples 

from an A/D converter, performs the mathematical manipulations dictated by theory 

for the required filter type, and outputs the result via a D/A converter.  

An analog filter, by contrast, operates directly on the analog inputs and is built 

entirely with analog components, such as resistors, capacitors, and inductors.  

Lowpass, highpass, bandpass, and bandstop are the most common filter types. In this 

thesis, the lowpass filter will be used to implement a SRC. Hence it will be discussed 

in detail. A lowpass filter passes only low frequency signals (below some specified 

cutoff frequency) to its output. Therefore it can be used to eliminate high 

frequencies.  

Filters are usually defined by their responses to the individual frequency components 

that constitute the input signal. A filter's response to different frequencies is 

characterized as passband, transition band, or stopband.  

The word ―Pass‖ means pass them through. Frequency components in the passband 

are almost unchanged. Why ―almost‖ is due to the ripple in the passband. Ripple is 

usually specified as a peak-to-peak level in decibels. It describes how large the 

filter's amplitude varies within a band. Smaller amounts of ripple represent more 

consistent response and are generally preferable.  

Frequencies within a filter's stopband are, by contrast, highly attenuated.  

The transition band represents frequencies in the middle, which may receive some 

attenuation but are not removed completely from the output signal. Bandwidth of 

transition band describes how quickly a filter transitions from the passband to the 

http://www.netrino.com/Publications/Glossary/A.php#AD_converter
http://www.netrino.com/Publications/Glossary/D.php#DA_converter
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stopband, or vice versa. The faster this transition transits, the smaller the transition 

bandwidth is. But this will make the design more difficult.  

 

Fig 2.4 Frequency response of a lowpass filter 

Fig 2.4 shows these three responses of a lowpass filter. ωp represents the passband 

edge frequency, ωs represents the stopband edge frequency, and As is the amount of 

attenuation in the stopband. Frequencies between ωp and ωs fall within the transition 

band and are attenuated to some lower extends. Both ripple exists within passband 

and stopband.  

A finite impulse response (FIR) filter is a filter structure that can be used to 

implement almost any sort of frequency response digitally. An FIR filter is usually 

implemented by using a series of delays, multipliers, and adders to create the filter's 

output. An FIR filter simply produces a weighted average of its N most recent input 

samples. All of the magic is in the coefficients, which dictate the actual output for a 

given pattern of input samples. The real design of an FIR filter will be described later 

in chapter 6. 

2.4 Polyphase decomposition 

A straightforward way of implementation a multirate system is usually inefficient. 

For example, a Finite Impulse Response (FIR) filter with a large rang of coefficients 

takes a huge amount of time to calculate the filter output. The polyphase 

decomposition is often used. Assuming such a FIR filter of length N, the system 

function H(z) is given by: 

 

        H z =  aiz
−iN−1

i=0  

     = a0 + a1z−1 + a2z−2 + a3z−3 + ⋯+ aN−1z−(N−1) 
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This equation can be rewritten after ployphase decomposition into M different 

polyphase components HM,j z : 

 

  H z      =        a0 + aM z−M + a2M z−2M + a3M z−3M + ⋯  

         +z−1 a1 + aM+1z−M + a2M +1z−2M + a3M+1z−3M + ⋯  

         +⋯ 

         +z−(M−1) aM−1 + a2M−1z−M + a3M−1z−2M + a4M−1z−3M + ⋯  

      = HM,0 zM + z−1HM,1 zM + ⋯+ z− M−1 HM,M−1 zM  

      =  z−jHM,j zM   with  HM,j zM =   aMj +jz
−i

j
M−1
j=0               (2.8) 

The last summation in equation (2.8) contains at most (1+N/M) terms. The M 

functions 𝐻𝑀,𝑗  𝑧
𝑀  are called the polyphase components of 𝐻 𝑧 . The example 

below shows how a system function 𝐻 𝑧   which has a length N=16 is written into 

4 polyphase components: 

 

    H z     =       a0 + a4z−4 + a8z−8 + a12 z−12  

          +z−1 a1 + a5z−4 + a9z8 + a13z−12  

          +z−2 a2 + a6z−4 + a10 z8 + a14 z−12 + 

          +z−3 a3 + a7z−4 + a11 z8 + a15 z−12    

        = H4,0 z4 + z−1H4,1 z4 + z−2H4,2 z4 + z−3H4,3 z4  

        =  z−jH4,j z4   3
j=0  

 

In the example above, the system function 𝐻 𝑧  has been rewritten as the sum of 

four polynomials in 𝑧4. These polynomials 𝐻4,𝑗  𝑧
4  represent so called comb 

filters, which have a fourfold periodic frequency response in their fundamental 

interval. In order to uniquely characterize them, one can replace 𝑧4 by z. Then the 

so called polyphase components 𝐻4,𝑗  𝑧  are obtained. 

 

       H4,0 z =  b4iz
−i3

i=0           H4,2 z =  b4i+2z−i3
i=0  

 H4,1 z =  b4i+1z−i3
i=0          H4,3 z =  b4i+3z−i3

i=0  
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The polyphase description of 𝐻 𝑧  as given in the example with M = 4 corresponds 

to the polyphase structure shown in Fig 2.5. 

 

            Fig 2.5 The first polyphase structure with M equal to 4 

 

This circuit is called the first polyphase structure. How this structure can be used to 

derive efficient implementations of decimating filters will be discussed later. The 

polyphase description as given in the example for M=4 also corresponds to an 

alternative structure, called the second polyphase structure. This structure is shown 

in Fig 2.5. How this structure can be used to derive efficient implementations of 

interpolating filter will also be discussed later.  

 

Fig 2.6 The second polyphase structure with M = 4 

 

In fact, the second polyphase structure of Fig 2.6 is the transposed form of the first 

polyphase structure of Fig 2.5. This can be done by the following two steps.  

 Reverse the signal flow,  

 Interchange nodes and adders 

H4,3(z4) 

H4,3(z4) 
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2.5 Noble Identities   

Identities are often used to analyze a complex system in a different view. The direct 

way of interchanging components of a system makes the whole system more 

readable. In this thesis two main identities called the noble identities will be used. 

They have been published in the literature [2]. These identities make the analysis of 

the multirate systems in a simple way. The noble identities describe the combination 

of a Linear Time-invariant Discrete (LTD) system and an SRD or a SDI.  

The Noble identity for decimation can be depicted as in Fig 2.7. It reverses the order 

of SRD and filter. A SRD with decimation factor L, followed by a digital filter with 

system function 𝐻 𝑧  is identical to a digital filter with system function 𝐻 𝑧𝐿  that 

is preceded by the same SRD.  

 

Fig 2.7 Nobel identity for decimation 

 

This idenity can be proved through a mathematical way. For the upper part of Fig 2.7, 

V(z) can be obtained from equation (2.5),  

 

 V z =
1

L
 X(e−j2πk/Lz

1

L )
L−1

𝑘=0
             

   Y z = H z V z = H z  
1

L
 X(e−j2πk/Lz

1

L )
L−1

𝑘=0
  

For the lower part of Fig 2.7,  

   U z = X z H(zL)          

   Y z =
1

L
 U e−j2πk/Lz

1

L 
L−1

𝑘=0
 

          =
1

L
 X(e−j2πk/Lz

1

L )H(e−j2πkL /Lz
L

L )
L−1

𝑘=0
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       =
1

L
 X(e−j2πk/Lz

1

L )H(e−j2πk z)
L−1

𝑘=0
          

Because  𝑒−𝑗2𝜋𝑘 = 1,                

 Y(z) =
1

L
 X e−

j2πk

L z
1

L H(z)
L−1

𝑘=0
 

 = H z  
1

L
 X(e−j2πk/Lz

1

L )
L−1

𝑘=0
  

 

So the both block give the same output. 

In the filter with system function 𝐻 𝑧𝐿 , each delay element of the original filter 

𝐻 𝑧  with delay 𝐿𝑇1 is replaced by a cascade of L delay elements, each with delay 

𝑇1. The frequency response of such a filter is periodically repeated L times in the 

fundamental interval (−𝜋 ≤ 𝜃 ≤ 𝜋). 

The noble identity for interpolation is shown in Fig 2.8. An SRI with interpolation 

factor K, preceded by a digital filter with system function 𝐻 𝑧  is identical to a 

digital filter with system function 𝐻 𝑧𝐾  that is followed by the same SRI.  

 

Fig 2.8 Nobel identity for interpolation 

 

This identity can also be proved by mathematical calculation. 

For the upper part in Fig 2.8, accoring to equation (2.7) 

  Y z = V(zk)            

  V z = X z H(z) 

  So Y z = X(zk)H(zk ) 

For the lower part in Fig 2.8, 

 

  U z = X(zk) 

  Y z = U z H zk = X(zk)H zk  
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3 Interpolator and decimator  

After learning the theoretical concepts of multirate system in the previous chapter, 

the real implementation of the interpolator and decimator will be described in this 

chapter. Section 3.1 deals with the interpolator which has a fixed interpolation factor 

and the efficient way of design such an interpolator. Section 3.2 deals with the 

decimator which has a fixed decimation factor. Like in section 3.1, an efficient 

design of decimator will also be explained.  

3.1 Interpolator 

As is described in section 2.2, an SRI will introduce image in the fundamental 

interval (see Fig 2.3(c)). These images will cause distortion in time domain. For an 

interpolator, a low pass filter will usually be used to remove the image. A straight 

forward way to implementing an interpolator is shown in Fig 3.1. In this figure, the 

interpolation factor is a fixed number equal to 6.  

 

 

   Fig 3.1 Straight forward way of design for Interpolator with interpolation factor 6 

 

The SRI introduces 5 zeros between every two input signals x[n𝑇1]. The interpolated 

signal v[n𝑇2] is filtered by a lowpass filter H(z). In Figure 3.2, the spectrums 

occurring in this interpolating process are drawn schematically.  

 

       Figure 3.2 The spectrum of ideal interpolator with interpolation factor 4 



 

3.1 Interpolator                            3. Interpolator and decimator 

20 

The spectrum of the input signal is depicted in Fig 3.2(a). Here only the pecturm in 

fundamental interval is drawn. The magnitude of the spectrum is equal to 1. Fig 3.2(b) 

plots the spectrum of V(𝑒
𝑗2𝜋

𝜔

𝜔2 ) with 𝜔2 = 4𝜔1(𝜔1 =
2𝜋

𝑇1
). The 5 spectral images of 

the input spectrum that are created by the SRI in the fundamental interval −
𝜔2

2
≤

𝜔 ≤
𝜔2

2
 can clearly be seen. Because of the SRI, the magnitude here is scaled by 1/6. 

For a perfect interpolator, the filter H(z) should be an ideal lowpass filter with 

cut-off frequency equal to 
𝜔1

2
. This is shown in Fig 3.2(c). Note the passband gain 

should not be 1. It should be equal to the interpolation factor. (More explanation on 

this point can be found in section 9.4 of [3]). Hence the gain here is equal to 6. This 

gain will ensure the same magnitude for the input signal x[n𝑇1] and the output signal 

y[n𝑇2]. The output spectrum of a perfect interpolator is shown in Fig 3.2(d). All the 

five images in the fundamental interval have been removed.  

In practice an ideal lowpass filter can not be realized. As described in session 2.3, a 

filter‘s frequency response has been divided into three parts, passband, transitionband 

and stopband. The bandwidth of the input signal should not exceed the passband of 

the filter. This will insure almost no distortion. A stopband should have a large 

attenuation. The attenuation will only suppress the spectral of the images to some 

certain extent, but will not remove them. Depends on the purpose of each application, 

different attenuation in the stop band will be chosen. For example, a HiFi system 

needs a stopband attenuation larger than 90dB.     

The straight forward way of design a SRI is not sufficient in reality for the following 

two reasons, 

 If the interpolation factor is K, then the sampling frequency of the filter is K 
times larger than the input signal. 

 A large attenuation in stopband and a rapid transition band need a huge amount 

of filter coefficients which will take longer time in the calculation of filter 

output. 

 

Fig 3.3 Second polyphase structure for interpolator by a factor 4 

H4,3(z4) 
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Assuming the interpolation factor is 4 and the interpolation filter is an FIR filter. An 

efficient structure will be introduced here by using the acknowledgments of 

polyphase decomposition in section (2.4). The filter has been decomposed into four 

ployphase components 𝐻4,𝑖(𝑧
4). Note that each component has a delay 𝑧4 instead 

of delay z.  

This is howed in Fig 3.3. 

Noble identity for interpolation shown in Fig 2.8 will be used now to find a more 

efficient structure. The cascade connection of an SRI and polyphase components 

𝐻4,𝑖(𝑧
4) can be interchanged. A resulting circuit is depicted in Fig 3.4 by slightly 

modifying the representation of delay and adder.   

 

 

Fig 3.4 Resultig structure for interpolator by a factor 4; T1 = 4T2 

 

Suppose the polyphase decompositions have the following outputs, 

 

             v0[nT1]={0,4,8}   v1[nT1]={1,5,9} 

           v2[nT1]={2,6,10}  v3[nT1]={3,7,11} 

 

Then the output samples will be obtained by the following way. The red zeros are 

introduced by the delay elements and the green zeros are introduced by the SRI. 

 

 

 

 

 

 

 

 

 

0  1  2  3  4  5  6  7  8  9  10  11 

0  0  0  3  0  0  0  7  0  0  0   11 

H4,3(z) 

 

0  0  2  0  0  0  6  0  0  0  10  0 

0  1  0  0  0  5  0  0  0  9  0   0 

0  0  0  0  4  0  0  0  8  0  0   0 
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So the output 𝑦[𝑛𝑇2]={0,1,2,3,4,5,6,7,8,9,10,11} 

 The samples 𝑦[4𝑛𝑇2]      are equal to 𝑣0[𝑛𝑇1] 

 The samples 𝑦[(4𝑛 + 1)𝑇2] are equal to 𝑣1[𝑛𝑇1] 

 The samples 𝑦[(4𝑛 + 2)𝑇2] are equal to 𝑣2 𝑛𝑇1  

 The samples 𝑦[(4𝑛 + 3)𝑇2] are equal to 𝑣3[𝑛𝑇1]    

 

It can be easily seen that the four SRIs, together with the adder and delay elsments, 

simply interleave the outputs of four polyphase filters. Now a new symbol 

interleaver, is shown in Fig 3.5.   

 

Fig 3.5 Realization of fixed interpolator using interleaver 

 

This interleaver doesn‘t show its individual components. The switch repeatedly 

rotates itself with a time interval equal to 𝑇2 and the arrow in the picture shows the 

direction. The position it will jump to is the corresponding signal path without extra 

delay. The interleaver for a general K is shown in Fig 3.6 

 

 

Fig 3.6 General interleaver with 𝑇2 = 𝑇1/𝐾 

H4,3(z) 
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For every input sample 𝑥[𝑛𝑇1], K output samples ,which are indicated by 𝑣0[𝑛𝑇1] 

up to 𝑣𝐾−1[𝑛𝑇1] will be determined by the K polyphase filters. These samples are 

interleaved by the circuit shown in the left side of Fig 3.6. This circuit is symbolized 

by the switch in the ‗interleaver‘ shown in the right part of this figure. This switch 

makes K steps in one sampling interval 𝑇1of the input signal.  

One interesting question may be asked here. What are the advantages of such an 

efficient structure?  To answer this question it is better to make a real example. 

Supposing H(z) is the system function of an FIR filter that has a length 8, then the 

direct structure can be realized as shown in Fig 3.7. The sampling frequency of the 

filter is1
𝑇2
 . At each time interval 4𝑛𝑇2, 8 multiplications and 7 additions should be 

used to calculate the filter output. Altogether 8 delays are needed to store the 

previous samples.  

 

 

               Fig 3.7 Realization of interpolator with direct structure 

 

   

(a)                                       (b) 

Fig 3.8 Realization of interpolator with efficient structure 

 

Fig 3.8(a) shows the realization of the efficient structure. 4 polyphase filters are 
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implemented by the transversal structure. An interleaver determined the output 

sample. Slightly change position of the delay in Fig 3.8(a), a final implementation is 

shown in Fig 3.8(b). Every 𝑇2 seconds, an output of one polyphase filter will be 

calculated and will be choosen as the final output of the system. This needs 2 

multipulations and 1 addition. Comparing to the direct structure, 6 multiplications 

and 6 additions are saved. Also this structure only needs 1 delay instead of 7. So the 

benefits are obviously through this example. In fact the computational consumption 

of final structure is a factor K less compare to the direct structure. 

3.2 Decimator 

As described in section 2.2, an SRD will cause aliasing effect in the fundamental 

interval (see Fig 2.3(d)). For an decimator, a lowpass filter also called anti-aliasing 

filter will usually be used to remove the aliasing effect. A straight forward way to 

implementing an decimator is shown in Fig 3.9. In this figure, the decimation factor 

is a fixed number equal to 4.  

 

 

Fig 3.9 Decimator with decimation factor L=4 

 

The forward lowpass filter limits the input signal to a small band. This insure no 

aliasing after decimating. The spectrum concerning in this process are drawn in Fig 

3.10. Fig 3.10(a) is the spectrum of input signal. It has sampling frequency 𝜔1=4𝜔2. 

Then the spectrum of an ideal lowpass filter is shown in Fig 3.10(b). The spectrum of 

the band limited signal v[n𝑇1] is shown in Fig 3.10(c). The bandwidth of this signal 

is −
𝜔2

2
≤ 𝜔 ≤

𝜔2

2
. All the frequency components with frequency 𝜔 ≥

𝜔2

2
 or 

𝜔 ≤ −
𝜔2

2
 will be removed. Fig 3.10(d) gives the spectrum of the output signal 

which has no aliasing at all. The spectrum of filtered signal v[n𝑇1] is repeated at 
frequency 𝑛𝜔2. Of course, this process destroys the original spectrum. If the 

original signal has a lot of frequency components larger than
𝜔2

2
 , then the decimator 

will give a bad result. Since decimating will also get a scaling factor equal to 1/L, the 

filter should have an amplitude equal to L to compensate the scaling factor. This is 

not drawn in the figure.   

V(z) 
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Fig 3.10 Spectrum of ideal decimator with factor L=4 

 

The same method as described in Section 3.1will be applied here to derive an 

efficient structure for decimator. At first, the first polyphase structure shown in Fig 

2.5 will be used. Four polyphase decompositions of H(z) will be created. The new 

structure is shown in Fig 3.11. Decimating the output signal of H(z) is equivalent to 

decimating the 4 polyphase outputs. The SRD is allowed to be shifted from the 

output of the system to the outputs of the four polyphase filters.  

 

Fig 3.11 Decimator with factor 4 using first polyphase structure 

H4,3(z4) 
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Again use the noble identity for decimation, as shown in Fig 2.8, to find a more 

efficient structure which is drawn in Fig 3.12. The four SRDs have been shifted to 

the left side of the polyphase filters. In this figure, the delays have also been redrawn 

at the input side.  

 

 

             Fig 3.12 Efficient structure for decimator by a factor 4 

 

Suppose the input sequences are x[n]={0,1,2,3,4,5,6,7,8,9,10,11}. Then the signals 

after delays and SRDs will have the following sequences 

 

            𝑣0[𝑛𝑇1]={0,4,8}   𝑣1[𝑛𝑇1]={1,5,9} 
           𝑣2[𝑛𝑇1]={2,6,10}  𝑣3[𝑛𝑇1]={3,7,11} 

 

The result verifies the following conclusion in a straightforward way. 

 

 The samples 𝑥[4𝑛𝑇1]      are equal to 𝑣0[𝑛𝑇2] 

 The samples 𝑥[(4𝑛 + 1)𝑇1] are equal to 𝑣1[𝑛𝑇2] 

 The samples 𝑥[(4𝑛 + 2)𝑇1  are equal to 𝑣2 𝑛𝑇2  

 The samples 𝑥[ 4𝑛 + 3 𝑇1  are equal to 𝑣3[𝑛𝑇2]   

 

The input stage (the delay elements and the SRDs) acts as a switch. Again like the 

previous section, we now introduce a new special symbol for the de-interleaver, as 

depicted in Fig 3.13.  

 

H4,3(z) 
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Fig 3.13 Representation of decimator with factor by de-interleaver  

 

Each time a new input sample comes, the de-interleaver will pass it to the 

corresponding polyphase filter.  After four input sampling intervals in Fig3.13, the 

switch return to the upper position and a new output sample 𝑦[𝑛𝑇2] is obtained by 

adding the outputs of the four polyphase filters together.  

The de-interleaver is the transposed structure of the interleaver. Like the interleaver, 

the de-interlever acts as a black box without showing its individual components. The 

switch repeatedly rotates itself with a time interval equal to 𝑇1 and the arrow in the 

picture shows the direction. The position it will jump to is the corresponding signal 

path without extra delay. The de-interleaver for a general L is shown in Fig 3.14. 

 

                  Fig 3.14 General de-interleaver with T2 = LT1 

 

Now assuming the H(z) is the frequency response of an FIR filter with length N=8. 

The realization of the system can be shown in Fig 3.15.  

 

H4,3(z) 
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Fig 3.15 Realization of Decimator by a factor 4 using a standard transversal filter 

 

From Fig 3.15 it is clear that the number of delay elements is 4. Compared with the 

direct structure, 3 delay are reduced. Each time interval 4𝑇1, an output of a 

polyphase should be calculated. This means the sampling frequency of the polyphase 

filters is 1/4𝑇1. The sampling frequency of each polyphase filter is reduced by 4 

times. The calculation for each filter needs only two multiplications and one addition. 

Generally, the calculation efforts can be reduced L times less, too.   
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4 Rational SRC 

In chapter 3, decimation and interpolation by an integer factor, has been introduced. 

However, in a large range of applications sampling-rate conversion by a rational 

factor K/L, with K and L integers, has to be performed. In this chapter, such a 

sampling-rate converter will be explained in detail. The basic system block is shown 

in Fig 4.1. 

 

 

Fig 4.1 Rational sampling–rate conversion by a factor K/L 

 

In this circuit, it is a cascade connection of an interpolator followed by a decimator. 

𝐻1 𝑧  is an anti-image filter and 𝐻2 𝑧  is an anti-aliasing filter. In most cases, the 

position of SRI and SRD can not be interchanged. The reason is that this reduces the 

risk of introducing aliasing by the SRD. The two filters can be reduced to one with 

frequency response equal to 𝐻(𝑧). If the interpolation factor K and the decimation 

factor L are fixed integers, the passband of the filter 𝐻(𝑧) is determined by the 

lowest sampling frequency either Fs1 = 1/𝑇1 at the input side or Fs3 = 1/𝑇3 at the 

output side. The even interesting solution is that for more than one ration K/L the 

digital filter 𝐻(𝑧) needs not to be changed.  

In the following section, a SRC which has a constant K and a variable decimation 

factor L is explained first. The structure used to implement it is called the original 

structure. After that another SRC which has the variable interpolation factor K and a 

constant L will be designed using a transposed structure.  

 

4.1 SRC with variable decimation factor 

At first, assuming the K and L in the system shown in Fig 4.1 are fixed integer. The 

signal 𝑣[𝑛𝑇2] is obtained by inserting (K-1) zeros between every pair of the input 

samples. So the sampling frequency of 𝑣[𝑛𝑇2] is K times larger than the input 

sampling frequency. Then this signal is passing through the digital filter 𝐻(𝑧). 

Finally the sampling frequency is decreased by selecting only every 𝐿𝑡𝑕  samples of 

𝑤[𝑛𝑇2].  
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Now take K=4 and L=3 for example. Fig 4.2 shows the spectra of the signals 𝑥[𝑛𝑇1], 

𝑣[𝑛𝑇2] 𝑤[𝑛𝑇2], 𝑦[𝑛𝑇3] and the frequency response of the filter. As said before, this 

is the original structure, the filter acts as an anti-image filter. Hence the cut-off 

frequency is equal to 𝜔1/2. The spectrum of 𝑤[𝑛𝑇2] is equal to the spectrum of 

𝑣[𝑛𝑇2] , with the spectral image between −
𝜔2

2
≤ 𝜔 ≤

𝜔1

2
  and 

𝜔1

2
≤ 𝜔 ≤

𝜔2

2
  

suppressed. For a fixed integer interpolation factor K, the value of the decimation 

factor L in Fig 4.1 can be changed without changing the filter 𝐻(𝑧) as long as 

𝐿 ≤ 𝐾. Hence it actually acts as an interpolator with a rational factor. 

 

 

Fig 4.2 The spectra for ideal rational interpolator that increase 

                the sampling frequency by a factor 4/3 

     

Fig 4.3 shows the output spectrum of the system for an input sampling frequency of 

9kHz, K=4 and for the integer L ranging from L=1 up to 4. The sampling frequency 

of the H(z) is 36kHz. It is clear that there are no unwanted aliasing for these 4 cases. 

The scaling factor of the lowpass filter is equal to K. This is not drawn in the figure. 

For some certain kind of applications, however, the factor L has to be larger than K. 

In this case, the system acts as a decimator with a rational factor instead. If the 

cut-off frequency of thefilter has not been adapted, the system will give an output 
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with unwanted aliasing. This is shown in Fig 4.4 for K=4 and L=5 with an input 

frequency equal to 9kHz.  

 
                Fig 4.3 The output spectra Y(f) for interpolation by 4/L,  

with L=1 up to 4 

 

The spectrum of the signal 𝑤[𝑛𝑇2] is shown in Fig 4.4(a). The fundamental interval 

of the output signal y[n𝑇3] is represented by FI in that figure. Fig 4.4(b) gives the 

output spectrum. It can be seen from this figure that y[n𝑇3] is corrupted by aliasing 

(hatched region) form frequency 2.7kHz to 3.6kHz.  

 

 

    Fig 4.4 The output spectrum of fixed SRC with interpolation factor K=4 and 

decimation factor L=5 which has an input sampling frequency 

Fsin = 9kHz 

 

This problem can be solved by adapting the bandwidth of filter H(z). The cut-off 

(a) 

(b) 
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frequency of the ideal lowpass filter should be equal to 
9kHz ×4÷5

2
= 3.6kHz.  

Now the scaling problem will be discussed here. If the decimation factor L has to be 

larger than K and if L has to be a variable factor, the gain of the lowpass filter still 

has to be fixed and equal to K.  

 

From these examples it is clear that the system of Fig 4.1 is a sampling rate converter 

with the following features: 

 

 A fixed integer interpolator K and a fixed filter H(z) which has a cut-off 

frequency equal to half of the input sampling frequency 

 A variable integer decimation factor L where 𝐿 ≤ 𝐾 

 

This means the system is an interpolator with a variable interpolation factor. This 

factor is equal to K/L where 𝐿 ≤ 𝐾. 

 

4.2 SRC with variable interpolation factor 

In order to derive a rational SRC with variable interpolation factor, the decimation 

factor L in Fig 4.1 will be assumed to be a fixed number. This time the variable 

interpolation factor K has a range 𝐾 ≤ 𝐿. In this section it will also proved that the 

resulting system does not introduce any unwanted phenomena as long as 𝐾 ≤ 𝐿, 

despite the fixed filter H(z). Assuming the interpolation factor K is equal to 3 and 

the decimation factor L is equal to 4. Fig 4.5 shows the spectra of the signals 

𝑥[𝑛𝑇1], 𝑣[𝑛𝑇2] 𝑤[𝑛𝑇2], 𝑦[𝑛𝑇3] and the frequency response of the filter (only the 

spectrums in the fundamental intervals are drawn ). In this figure 𝜔2 = 3𝜔1 , 

𝜔2 = 4𝜔3 . Now the filter acts as a anti-aliasing filter. Hence the cut-off frequency 

is now equal to 𝜔3/2. The spectrum of 𝑤[𝑛𝑇2] is equal to the spectrum of 𝑣[𝑛𝑇2], 

with the spectral image between −
𝜔2

2
≤ 𝜔 ≤

𝜔3

2
  and 

𝜔3

2
≤ 𝜔 ≤

𝜔2

2
  suppressed. 

Be careful, the interpolator factor is equal to 3 to ensure that the magnitude of 

𝑤 𝑛𝑇2  is not changed. In the general situation, the filter gain is equal to the 

interpolation factor K. The output signal should be scaled by an additional factor 

K/L. These scaling factors are not displayed in the figure. In the same way as shown 

in Fig 4.3, it can be proved that there are no unwanted distortions if 𝐾 ≤ 𝐿. 

For K=5 and L=4, the spectral of 𝑣 𝑛𝑇2 , 𝑦[𝑛𝑇3] are shown in Fig 4.6. In Fig 4.6(a) 

the dotted line is the frequency response of the filter. The frequency components of 

𝑣 𝑛𝑇2  which are inside the window of the filter are the spectrum of 𝑤 𝑛𝑇2 . Fig 

4.6(b) is the output of the total system. This figure tells that if K is larger than L, the 

spectral images created in the interpolation process are not completely suppressed 
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by the filter. Unwanted spectral images will be introduced at the system output. 

These images are the hatched area in Fig 4.5(b). 

 

 Fig 4.5 The spectra for ideal rational decimator that decreases 

                the sampling frequency by a factor 4/3 

 

 

         Fig 4.6 The spectra for ‗transposed‘ interpolator with factor 4/5 

 

From these examples it is clear that the system of Fig 4.1 is a sampling rate converter 

with the following features: 
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 A fixed integer decimator L and a fixed filter H(z) which has a cut-off frequency 

equal to have of the output sampling frequency 

 A variable integer decimation factor K where 𝐾 ≤ 𝐿 

This means the system is a decimator with a variable decimation factor. This factor is 

equal to L/K , where 𝐾 ≤ 𝐿. 

4.3 Efficient structure for SRC with variable decimation factor 

A practical implementation of the system specified in section 4.1 will be described 

here. The same example as used in section 4.1 will also be used here. The rational 

interpolator system with fixed K=4 and variable L within range 𝐿 ≤ 𝐾. In Fig 4.7, 

the polyphase decomposition for the interpolating part of the system is drawn. The 

system with interleaver , which is shown in Fig 3.5, is used here. In this circuit, the 

interpolating part has already been realized in an efficient way by exploiting the 

zero-valued input samples. The calculation time has been reduced by a factor of 4.  

 

 

Fig 4.7 First step in the efficient realization of a rational interpolator 

by a factor 4/L; T2 = T3/L = T1/4 

 

It is clear that the system calculates all samples of 𝑤[𝑛𝑇2]. But only 1/L sample sof 

them are used as an output sample. The selection of the final output samples is 

performed by the SRD. In order to get a more efficient structure, the interleaver 

should be modified properly. This is done by setting the rotating interval to be 

𝑇3 and the distance it rotates to be L instead of 1. Therefore the final implementation 

of the system is shown in Fig 4.8 for L=3. An alternative circuit realization, using the 

polyphase decomposition and the identities, can be found in Appendix C of [4]. 

Computational efforts for both systems are the same.  

In this example, the switch in the interleaver rotates anti-clockwise. Each time 

interval 𝑇3 it rotates for 3 positions. In a general system with a fixed interpolation K 

and a decimation factor 𝐿 ≤ 𝐾, there are K different polyphase filters. The switch at 

output rotates anti-clockwise and step over L positions between every two output 

H4,3(z) 
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samples. The polyphase filter which determines the output signal 𝑦[𝑛𝑇3]  is 

represented by 𝐻𝐾,𝑖 𝑧 , where i is calculated by : 

 

i=(Ln)mod K                                              (4.1) 

 

 
Figure 4.8 Final efficient structure for interpolation by 4/3 

  

4.4 Efficient structure for SRC with variable interpolation factor 

In this section, the system described in section 4.2 will be realized in an efficient 

structure. The system has a fixed decimation factor L and a variable interpolation 

factor K. The system works as long as 𝐾 ≤ 𝐿. As said before, it acts as a rational 

decimator. The filter H(z) works as a anti-aliasing filter. The first step is to realize 

the efficient structure for a filter combined with a decimator. This can be done 

through the circuit described in Fig 3.13. The resulting circuit is shown in Fig 4.9 for 

L=4.  

 

 

             Fig 4.9 First step of realizing a decimator by 4/K 

H4,3(z) 
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The switch rotates anti-clockwise and distributes the samples of 𝑣[𝑛𝑇2] over the 

polyphase filters. Howerver, every 𝑇1 seconds the SRI introduces (K-1) zeros in 

𝑣[𝑛𝑇2]. These do not have to be distributed. For K=3, this leads to the structure of   

Fig 4.10.  

 

 

              Fig 4.10 Final Efficient structure for decimator by a factor 4/3 

 

For variable K and 𝐾 ≤ 𝐿, the SRC can be generalized easily. There are altogether L 

polyphase filters and switch steps over K positions in an anti-clockwise direction.  

 

For small K and L, the two structures described in this chapter lead to an efficient 

solution. But if K and L are larger, then these two circuits become very complicated. 

It has a large number of coefficients and a lot of delays which will take more 

memory space. The implementation shown in the next chapter will solve the problem 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y[nT3] 
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5 Flexible SRC  

Efficient flexible sampling-rate converters will be described in this chapter. As 

already mentioned in the requirements of this project, the actual ratio between input 

and output frequency doesn‘t have to be known in advance. The two sampling 

frequencies might even vary as a function of time. In order to design a suitable filter 

to remove the spectral disturbances caused by SRI and SRD, the relative bandwidth, 

the maximum passband ripple and the required attenuation should be known. The 

flexible interpolator will be described first. After that a flexible decimator will be 

implemented using the transposed theory.  

In order to avoid misinterpreting the symbols in the following sections, it is 

necessary to redefine them first. Digital filters used in the flexible converters are 

generally denoted by 𝐺(𝑧) and the polyphase filters are denoted by 𝐺𝑖(𝑧). The 

system function of a linear interpolator (LI) which will be used in this chapter is 

represented by 𝐻 𝑧 .  The sampling frequencies from the input side to the output 

side are represented by 𝐹𝑠1, 𝐹𝑠2, 𝐹𝑠3... and the corresponding sampling intervals are 

given by 𝑇1, 𝑇2, 𝑇3 …. 

5.1 Flexible interpolator using linear interpolator 

An impractical way to design a system used for conversion between two arbitrary 

sampling frequencies is to use an analog way. This is shown in Fig 5.1. The D/A 

converter converts the digital signal into an analog signal. An analog LowPass Filter 

(LPF) is used to remove the unwanted spectral images. Finally, re-sample the analog 

signal with a new sampling frequency equal to Fs2 by an A/D converter. The cut-off 

frequency is equal to Fs1/2 for interpolation and Fs2/2 for decimation.  

 

 

               Fig 5.1 SRC using analog signal processing 

 

The circuit shown in Fig 5.1 is expensive analog block. The bandwidth of the LPF is 

fixed. Once it is build, it is impossible to change. Furthermore, the frequency of Fs1 

and Fs2 is unknown. This makes difficult to build such a LPF. Usually a flexible all 

digital solution shown in Fig 5.2 will be used here. Unfortunately this structure has a 

main disadvantage. It can deal with the ratio only for small integer division.  
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     Fig 5.2 All-digital solution structure for a flexible SRC (not practical) 

 

Supposing the K is equal to 128 and L is equal to 2. The timing diagram for the 

whole process is shown in Fig 5.3. 𝑇1 is the input sampling interval, 𝑇2 is 128 

times smaller than 𝑇1. 𝑇3 is the time interval of output. Fig 5.3 (a) and (b) show the 

signals of x[n𝑇1], w[n𝑇2] and y[n𝑇3].  It is clear that 𝑇3 equals to 2𝑇2 and the 

output sample at that time is equal to sample C indicated in the figure. Fig 5.3 (c) 

shows the situation when L is equal to 2.13.  The time interval ∆𝑇 indicated in Fig 

5.3 (c) is equal to 0.13𝑇2.  Because there is no actual sample at that time, the 

nearest sample will be used to approximate the output sample. In this case, sample C 
will be used. Generally if ∆𝑇 ≤ 𝑇2/2, the output is determined by the sample at time 

interval ∆𝑇 before.  If  ∆𝑇 ≥ 𝑇2/2, the sample at time interval 𝑇2 − ∆𝑇 later 

will be used as the output sample. This introduces am amplitude error when ∆𝑇 ≠ 0. 

Because ∆𝑇 is not fixed, the amplitude deviation is a function of time. This makes it 

almost impossible to adjust the error later.  

 

 

Fig 5.3 Timing diagram for flexible interpolation 

 

One possible way to solve this problem is to make the time interval of 𝑇2 extremely 

samll. This can be done through increasing the interpolation factor K. for example, if 

the value of K is increased to 1024, then the ∆𝑇 will be 8 times smaller. But this 

(c) 

(a) 

(b) 
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method causes the extension of filter coefficients and it is almost impossible to 

design such a large filter.  

 

 

Fig 5.4 Structure of a linear interpolator 

 

Before introducing a much more practical approach, a new building block called 

linear interpolator will be explained first. A linear interpolator with interpolation 

factor K is shown in Fig 5.4. It is a cascade connection of a SRI followed by a filter 

H(z). The function of a linear interpolator is to linearly interpolate K-1 values 

between every pair of the input samples. The impulse response of the filter is a 

triangular impulse response with a length equal to 2K-1. Fig 5.5 shows how a linear 

interpolator with an interpolator factor K=4 works in time domain. x[n𝑇1] is shown 

as the solid circles in Fig 5.5 (a). The open circles in Fig 5.5(a) are the zeros 

introduced by the SDI. For simplicity, the filter is assumed to be a non-causal filter.  

For causality, an additional delay of at least 3 samples is needed. The corresponding 

output can be calculated by the following equation.  

y[n] =  v n h[t − n]dt 

These output samples are shown in Fig 5.5(c). In this figure, the six open circles are 

the interpolated samples. 

 

 

    Fig 5.5 Linear interpolator in time domain 

For a general linear interpolation factor K, it can easily be proved that the amplitude 

response for filter H(z) is equal to equation (5.1). 
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          A e
j2πw

w 2  = K(
sin ⁡(K

πω

ω2
)

Ksin (
πω

ω2
)
)2                             (5.1) 

 

From this equation, it is clear that the DC gain of linear interpolator is equal to K. If 

A e
j2πw

w 2   wants to have zero values, 
Kω

ω2
=

ω

ω1
 (ω2 = Kω1) should be an integer. 

That means the frequency components equal to a multiple of ω1 will be strongly 

attenuated. As shown in section 2.2 tell that the spectrum of v[nT2] is just repeating 

the spectra components of x[nT1] in the fundamental interval with a period equal to 

ω1. The position of image created by SRI coincides with the zeros in the amplitude 

response A e
j2πw

w 2   of the linear interpolator. Hence the image will be strongly 

attenuated.  

Fig 5.6 shows how a linear interpolator works. The repeating triangles with a period 

of ω2 are the spectrum of v[nT2]. Because K is equal to 4, there are only three 

images in the fundamental interval. The bandwidth of the input signal is equal to 

2ωa . The behavior of the linear interpolator is shown by the dotted curve in this 

figure. The three images created by the SRI are strongly attenuated. The largest 

passband attenuation can be found at frequency ωa  and the smallest stopband 

attenuation can be found at frequency ωb = ω1 −ωa . 

 

 

Fig 5.6 Spectra diagram of linear interpolator by a factor 4  

 

Now a new structure for a rational interpolator which uses a linear interpolator is 

shown in Fig 5.7. It divides the original interpolator into two different parts. The first 

part is a normal interpolator with fixed factor 𝐾0 . The transition band of the 

anti-image filter is narrow. This leads to a high order digital filter G(z). The second 

part is a linear interpolator with a factor 𝐾1. The transition band of the filter H(z) is 

wide. This leads to a low order filter. Actually the linear interpolator combined with 

the SRD acts as an ―Analog Resampler‖. It re-samples the signal from the output of 

the filter G(z) at an arbitrary sampling frequency. The linear interpolator is the easiest 

type of analog resampler. Another one called Lagrange interpolator will be discussed 
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later in chapter 8.  The value of L here should be smaller than 𝐾0𝐾1.  

 

 
            Fig 5.7 Practical two stage flexible interpolator 

 

After the linear interpolator there is an SRD with a factor of L. That means among L 

output samples of the linear interpolator, only one will be used. This is not an 

efficient structure. The solution to this problem will be shown in Fig 5.8.  

 

 

        Fig 5.8 Timing diagram for interpolator by 8 followed by a linear  

interpolator with factor 4 

 

The values of 𝐾0 and 𝐾1 are supposed to be 8 and 4 for simplicity. Two successive 

samples x[iT1] and x[(i+1)T1] of the input signal x[nT1] are shown by the 

rectangular first, together with the new sampling grid after interpolation by a factor 8. 

Three adjacent samples, v[jT2] v[(j+1) T2] and v[(j+2) T2] of v[nT2] are shown by 

solid circles in Fig 5.8. y[kT3] and y[(k+1)T3] are the two output samples. They are 

shown by open circles in the figure. The triangulars in the figure are the samples 

interpolated by the linear interpolator. There are two ways to get the value of y[kT3].  

 

1) Using the output samples of the linear interpolator to calculate the output 

samples. In this figure, y[kT3] is equal to first output value of the linear 

interpolator.  

2) Using the output samples of the normal interpolator. Supposing the time distance 

from v[jT2] to y[kT3] is δT2, where 0 ≤ δ < 1. δ is called the 

linear-interpolation coefficient. Then the output can be calculated by the 

following equations, 

        y[kT3]=(1-δ) v[jT2]+ δv[(j+1) T2].      (5.2) 
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From Fig 5.8, the value of δ for y[kT3] is equal to 0.25. It can be proved that the two 

methods give the same result. 

Compare with the two methods, the second has two main advantages. 

 It avoids the computation of output samples from the linear interpolator. It uses 

directly the output samples of filter G(z) to derive an output.  

 When the final output samples y[nT3] are at the middle of the two output 

samples of linear interpolator, for example y[(k+1)T3] shown in the figure, the 

first method can‘t give a correct result. But for the second method, just the value 

of δ is changed.  

The two equivalent circuits of calculation the output of the whole system are shown 

in Fig 5.9. The left-hand circuit performs two multiplications and one addition per 

output sample while the right-hand circuit requires only one multiplication, but two 

additions.  

 

 
Fig 5.9 Two equivalent circuits for efficient realization of a linear interpolator 

followed by an SRD 

 

A new symbol for the two circuits in Fig 5.9 will be introduced here to make further 

analysis simple. This is shown in Fig 5.10, where A = v[jT2] and B= v[(j+1) T2] and  

y[kT3] =C.  

 

 

  Fig 5.10 The symbol for calculation of C=(1-δ)A+δB The distance between upper  

position and the switch is δ, and the distance between switch and lower  

position is 1-δ. 

 

Now a complete practical realization of the total flexible interpolation system can be 

derived by using the following steps:  
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1. Using figure 5.7 as the starting point. The input signal x[nT1] first passes 

through a normal interpolator with factor K0=8. The output signal is v[nT2] 

2. One output sample has to calculated from a corresponding pair of adjacent 

samples of v[jT2] and v[(j+1)T2] (see equation (5.2) ) 

3. Supposing the whole system gives an output sampling frequency 

Fs3 = 3.3Fs1 

4. The implementation of G(z) uses the circuits shown in Fig 3.5. The 8 

polyphase filters create 8 output samples vj[nT1] with j in a range from 0 to 

7. The interleaver rotates anti-clockwise with a particular distance to find 

the correct pair of v[nT2]. 

 

Fig 5.11 shows the efficient implementation. The interleaver of Fig 5.11 has been 

extended to a linear-interpolator interleaver. Compare to the interleaver in Fig 4.8, 

the switch can take a position at a distance δ in between two particular polyphase 

filters. In this efficient structure, the output samples of polyphase filters which do not 

contribute to the final output are neglected. Therefore, calculation efforts for those 

polyphase phase filters are saved. Also the value of K1 and L are not used in this 

structure. Only the ratio of them is used here.  

 

 

Fig 5.11 Implementation of the flexible interpolating system 

 

The remaining problems are how to determine the positions p and q of the switch, the 

value of δ and the actual times at which the polyphase outputs of Fig 5.11 have to be 

calculated. The solution will be shown in Fig 5.12.  
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             Fig 5.12 Time diagram for flexible interpolator 

 

In Fig 5.12(a), the input signal are shown for n=0 to 2. Fig. 5.12(b) shows all the 

interpolated samples calculated by the 8 polyphase filters. The output samples are 

shown in Fig 5.12(c) for k between 0 and 6. The output sampling interval T3 is 

equal to XT2 

      

     T3 = XT2 =
XT1

K0
. 

 

Gernally in this equation, X is a non-integer number. In this example, X≈ 2.42. The 

value of X can be calculated from the ratio of the two sampling frequency. From 

previous equation: 

      

     X =
K0T3

T1
=

K0Fs1

Fs3
                                          (5.3) 

 

The factor X is equal to the non-integer number of the step size that the switch of    

Fig 5.11 has to rotate between two output samples. The 𝑘𝑡𝑕  output y[kT3] can be 

calculated by using the outputs of the polypohase filter p and q=(p+1) at time instant 
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nT1. Note there is a special case, when the value of p is equal to K0-1. In this 

situation, the output should be calculated by the output of filter p=(K0-1) at 𝑛 = 𝑛1 

and the output of the filter q=0 at time  𝑛 = 𝑛1 + 1. Also the value of δ is needed to 

calculate the output. This value is equal to the non-integer part of kX. So the 

variables of 𝑝, 𝑞, 𝑛, 𝛿 are function of time index 𝑘. The linear interpolation can be 

represented by the following equation, 

    

    y kT3  =  1 − δ vp  nT1 +  δvq nT1                       (5.3) 

or in the special case 

 

   y kT3  =  1 − δ vK0−1 nT1 +  δv0 nT1        (5.4) 

 

In Fig 5.12(c), we have  

    

 for k=1: p=2; q=3; and n=0 

 for k=2: p=4; q=5; and n=0 

 for k=3: p=7 at n=0; q=0 at n=1 (special case). 

More calculation are shown in table 5.1. 

 

Output index 

k 

kX p q δ n Special case 

0 0 0 1 0.000 0 no 

1 2.424 2 3 0.424 0 no 

2 4.848 4 5 0.848 0 no 

3 7.273 7 0 0.273 1 yes 

4 9.697 1 2 0.697 1 no 

5 12.121 4 5 0.121 1 no 

6 14.545 6 7 0.545 1 no 

7 16.970 0 1 0.970 2 no 

  

Table5.1: The control of the switch for the flexible interpolator with an interpolation 

         factor equal to 3.3; (8 polyphase filters are used here for the first 

 interpolation stage)  
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The control variables 𝑝, 𝑞, 𝑛 𝑎𝑛𝑑 𝛿 can formally be calculated from kX , with k 

increase from 0 to infinite, 

 

     X = K0Fs1/Fs3 

 

    p = (integer part of kX) mod K0 

 

     q = (p + 1) mod K0 

          

     δ = non-integer part of kX 

 

     n = (kX) div K0  n is the index of input samples 

         (i.e. largest integer smaller or equal to kX/K0) 

 

5.2 Matlab simulation for Flexible interpolator 

In this section the implementation of a flexible interpolator specified in the previous 

section will be done in Matlab. The implementation has the following steps: 

1) Set the input and output sampling frequency. 

2) Set the value of K0, the default value is 8. 

3) Use Matlab command ―remezord ‖ to get coefficients of the filter G(z) according 

the input and output sampling frequency. The cut-off frequency is equal to half 

of the input sampling frequency. The sampling frequency of the filter is equal to 

K0 times the input sampling frequency. In order to make the future calculation 

simple, the number of the filter coefficients should be a multiple of K0. 

4) Create a sine wave with a frequency smaller than the passband frequency of the 

filter. 

5) Create an array called ―delay‖ to store the delayed value of the input samples. 

The length of this array is equal to (
the  number  of  filter  coefficients  

K0
+1). Because the 

existence of the special case, the length should be increased by 1 here. Note 

because all the polyphase filters have the same input samples, only one array 

will be used here instead of K0.  

6) Calculate the control variable 𝑝, 𝑞, 𝑛 𝑎𝑛𝑑 𝛿.  

7) If n increase by 1, one new input sample should be added to the array ―delay‖ 

and the earliest value in delay should be removed.  

8) Calculate the output of the polyphase filter specified by p and q.  

9) Calculate the system output by using equation (5.3) and (5.4). If the value of p is 

not equal to K0 − 1, use the equation (5.3). Otherwise, use equation (5.4).  
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The Matlab file ―flexible_interpolator_li.m‖ is stored in CD .  

Figure 5.13 shows the simulation result for K0 = 8 and the interpolation factor is 

3.3. The input signal is a sine wave with frequency f=50Hz. The input sampling 

frequency Fs1 is 1000 Hz.   

              

 

         

 

                       

Fig 5.13 Matlab simulation result for flexible interpolator with factor 3.3, 

       (K0 = 8)  

 

Fig 513(a) is the amplitude response of the interpolation filter G(z). The cutoff 

frequency is equal to half of the input sampling frequency. The attenuation in the 

stopband is set to be 60dB. So all the images created by the flexible interpolator 

should have attenuation at least more than 60dB. Fig 5.13(b) is the spectrum of the 

input signal plus a hamming widow. From this figure it is clear that the signal 

frequency is 50Hz and the sampling frequency is 1000Hz. Fig 5.13(c) and (d) are the 

spectrum of the output signal. Maximum values occur at 50Hz and 3250Hz tells that 

(a) (b) 

(c) (d) 
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new sampling frequency is 50Hz+3250Hz=3300Hz which is 3.3 times larger than the 

original non. All the images in between have been attenuated by 60dB. This accords 

with what has been set in the filter before.  

Vary the input and output sampling frequency, the system still works. Hence the 

simulation result in matlab proved that the structure described in Fig 5.11 can be 

realized. The real-time implementation will be discussed in the next chapter.  

5.3 Flexible decimator using transposed linear interpolator 

As described in the previous chapter, a flexible decimator can be derived from a 

flexible interpolator using the transposition theorem. The transposed system 

corresponding to the circuit of Fig 5.7 is shown in Fig 5.14. The factors K0  and  

K1  are fixed integers and L is arbitrary integer in the range of L ≤  K0K1 .  

 

 

      Fig 5.14 Flexible decimator using transposed structure 

 

The transposed linear interpolator consists of a filter H(z) and an SRD with factor 

K1 . As described before, H(z) has a triangular impulse response with a length related 

to the factor K1. Note the length here has no relationship with the interpolation factor 

L. The length is 2K1 − 1. 

 

 

Fig 5.15 Efficient implementation of the input part of flexible decimator 
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To derive an efficient implementation of such a transposed system, it is necessary to 

separate the whole system into two parts. The SRI combined with a transpose linear 

interpolator will be called the input part. The rest will be called the output part. The 

analysis will start at the first part.  

According to Fig 4.10, an efficient implementation of the input part is drawn in Fig 

5.15. There are altogether K1  polyphase filters. The de-interleaver rotate 

anti-clockwise with a time interval equal to T1 = LT2. The step size it rotates is 

equal to L. Filter H(z) is a causal linear-phase interpolating filter with a triangular 

impulse response of length(2K1-1). The ith  polyphase filter HK1,i z  has only two 

coefficients and can be represented as: 

 

            HK1 ,i z =
i

K1
+  1 −

i

K1
 z−1 

       = δ + (1 − δ) z−1   

where  δ =
i

K1
.  

 

From the equation above it is clear that the first polyphase filter HK1,0(z) has fixed 

coefficients equal to [0,1]. The condition shown in figure 4.10 is that L ≤ K1 − 1. If 

L ≥ 2K1, each non-zero sample is determined by only one input sample: 

 

            w[kT3]    =  δx[nT1] 

            w[(k+1)T3]= (1 − δ)x[nT1]                       (5.5) 

 

An example will be given here to illustrate the conclusion above. Suppose the 

following situation, L=7, K1 = 3, The input sample x[nT1]=[1,3,6] and the start 

point of the switch is at polyphase filter HK1 ,0 z . So the step size of the switch is 

equal to L=7. Each time when the switch steps over the first polyphase filter HK1 ,0 z , 

a zero value should be distributed to the polyphase filters which do not have an input. 

Therefore each polyphase filter will get the following input samples: 

 

              [1,0,0,0,0,0]    for the first polyphase filter 

              [0,0,0,0,0,6]    for the second polyphase filter 

     [0,0,0,3,0,0,]    for the third polyphase filter 

 

   

The impulse response of the three filters are 0+z−1, 1/3+2/3z−1, 2/3+1/3z−1, 

So the outputs of the three filters are 

 

   [0,1,0,0,0,0,0]    for the first polyphase filter 

       [0,0,0,0,0,2,4]    for the second polyphase filter 

   [0,0,0,2,1,0,0]    for the third polyphase filter 
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The final output is the summation of the outputs of three polyphase filters, 

w[kT3]=[0,1,0,2,1,2,4]    

 

It is clear that    w[0]=  0*x[0],  w[1]=  (1-0)*x[0]  

w[3]=2/3 *x[1],  w[4]=(1-2/3) *x[1] 

w[5]= 1/3*x[2],  w[6]=(1-1/3) *x[2] 

 

The three δ values here are 0 ,2/3 and 1/3.  

  

        Fig 5.16 Time diagram for the input part of flexible decimator 

The time diagram for L=7 and K1 = 3 is shown Fig 5.16. x[n] is supposed to be the 

input samples. v[n] is the signal after the SRI. From Fig 5.16(b) it can be seen that 6 

(a) (b) 

(c) (d) 

(e) 
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zeros have been added between each pair of the input samples. The impulse response 

of linear interpolator h[n]is shown in Fig 5.16(c). Now a new signal a[n] has been 

introduced in Fig 5.16(d). It is the signal after the linear interpolator H(z). It is equal 

to the convolution of v[n] and h[n]. Between every image of filter h[n], there are two 

zeros. Actually the number of the zeros can be calculated by the following equation: 

         number_of_zeros = L − 2K1 + 1 

The equation above proved that if L ≥ 2K1, non-zeros values of w[kT3] will be 

determined only by one input sample. However a larger L will lead to a better 

performance of the whole system. 

The relation between the time index k of w[kT3] and the time index n of x[nT1] in 

equation (5.5) will be derived later in this section. A simple circuit shown in Fig 

5.17(a) implements equation (5.5). ―A‖ in the figure represents x[nT1], ―B‖ and ―C‖ 

represent w[kT3] and w[(k+1) T3]. In a similar way used in the previous section, a 

new symbol shown in Fig 5.17(b) is introduced.  

 

 

      Fig 5.17 Symbolic representation of the input part of a flexible decimator 

 

Until now the input part of the flexible decimator has been analyzed. The next step is 

to describe the efficient implementation of the output part of the system. The 

polyphase decomposition is used again to implement the combination of filter G(z) 

and the SRD with factor K0 . This is shown in Fig 5.18.  

 

 

Fig 5.18 Output part of flexible decimator 

(a) (b) 
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An efficient implementation of the flexible decimator should combine the input part 

(shown in Fig 5.17) and output part (shown in Fig 5.18) together. This is can be done 

through the structure shown in Fig 5.19. The main issue still to be determined is the 

relation between n,k in equation (5.5) and the position of the switch in the 

‗linear-interpolation de-interleaver‘. This position determine the exact values of p,q 

and δ.   

 

   Fig 5.19 Final structure for flexible decimator using transposed structure 

 

This can be solved in a similar way as what have been done in the flexible 

interpolator in the previous section. The switch rotates anti-clockwise and the step 

size X is a non-integer number: 

       X =
K0T1

T4
=

K0Fs 4

Fs 1
                             (5.6) 

Every time that the switch has passed filter GK0 ,0 z , the output index k, which 

indicates the time instance of the output sample, should be increased by one. At that 

time an output sample should be calculated by adding the outputs of all the 

polyphase filters, even they may have zero input. The two non-zero values can be 

obtained by a similar equation as given for the original interpolator structure. These 

equations describe the two interpolated signals wp[kT3] and wq [kT3] as a function 

of the input sample x[nT1].  

    wp[kT3]   =  δx[nT1] 

              wq kT3        = (1 − δ)x[nT1]          
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It is clear that both samples are determined by δ. In normal situation, q=(p-1). The 

same time instance k for wp[kT3] and wq kT3  will be used. Like the situation 

happens in flexible interpolator, there is also a special case. But this time the special 

case happens when p=0 .The corresponding value of q is equal to K0 − 1. The 

equation changes to: 

                               w0[kT3]      =  δx[nT1] 

              wK0−1 kT3        = (1 − δ)x[(n+1)T1] 

For K0 = 8 and a total decimation factor is equal to 3.3, the step size X as given in 

equation (5.6) is equal to 2.424. That means during each output sampling interval, 

the switch steps over 2.424 positions in an anti-clockwise direction. The calculation 

results for the example above are shown in table 5.2.  

 

Input index 

n 

nX p q δ Output index 

k 

Special 

case 

0 0 0 - 0.000 0 no 

1 2.424 6 5 0.576 1 no 

2 4.848 4 3 0.152 1 no 

3 7.273 1 0 0.727 1 no 

4 9.697 7 6 0.303 2 no 

5 12.121 4 3 0.879 2 no 

6 14.545 2 1 0.455 2 no 

7 16.970 0 7 0.030 2 yes 

 

Table5.2: The control of the switch for the flexible decimator with a decimation 

         factor equal to 3.3; (The value of K0 = 8) 

 

The control variables 𝑝, 𝑞, 𝑘 𝑎𝑛𝑑 𝛿 can formally be calculated from nX , with n 

increase from 0 to infinite, 

 

     X = K0Fs4/Fs1 

 

    p = {-(integer part of nX)} mod K0                             (5.7) 

           

     q = (p − 1) mod K0 (special case occurs if p=0)
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  δ = 1-(non-integer part of nX) 

 

     k = (nX + K0 − 1) div K0 

          

One point must be mentioned here is that how to apply equation (5.7) in C 

environment. Suppose X=4.4 and K0 = 8 

                                           correct p value 

   For n=1,  -nX=-4.4  p=(-4)%8=-4      4 

   For n=2,  -nX=-8.8   p=(-8)%8=0     0 

   For n=3,  -nX=-13.2  p=(-13)%8=-5   3 

 

By direct using equation (5.7), a wrong value of p will be got. The correct p values 

are shown on the right side. A few modifications should be added to correct this 

error.  

 

     p=(-floor(nX))% K0; 

     p=p+K0; 

     p=p%K0 

 

Now the correct p values will be got. 

 

5.4 Matlab simulation for flexible decimator 

In this section the implementation of the flexible decimator specified in section 5.3 

will be done in Matlab. The implementation has the following steps: 

1. Set the input and output sampling frequency. 

2. Set the value of K0, the default value is 8. 

3. Use Matlab command ―remezord ‖ to get coefficients of the filter G(z) according 

the input and output sampling frequency. The cut-off frequency is equal to half 

of the output sampling frequency. The sampling frequency of the filter is equal 

to K0 times the output sampling frequency. In order to make the calculation 

simple in the future, the number of the filter coefficients should be a multiple of 

K0. 

4. Create a sine wave with a frequency smaller than the passband frequency of the 

filter. 

5. Create an array called ―delay‖ to store the delayed input samples for each 

polyphase filter. The length of this array is equal to the number of filter 

coefficients. Supposing the number of filter coefficients is equal to N, then the 

first N/K0  elements in this array are the delayed input value for the first 



 

5.4 Matlab Simulation for flexible decimator               5 Flexible SRC 

55 

polyphase filter HK0 ,0, the second N/K0 elements are for the second polyphase 

filter HK0 ,1 and so on.  

6. Create an array called ―buf‖ with a length equal to K0 + 1.  

7. Calculate the control variable 𝑝, 𝑞, 𝑘 𝑎𝑛𝑑 𝛿.  

8. If k increase by 1, one output value should be calculated. First right shift one 

value in array ―delay‖. Then give the ith  value of array ―buf‖ to jth  value array 

―delay‖, where j is calculated by the equation  

 

               j =  i − 1 
N

K0
+ 1 

 

   Calculate the output of each polyphase filter and add them together to be the final 

output sample. Set buf(1: K0) to be zero. Pass the value of buf(K0 + 1) to buf(K0) 

and set buf(K0 + 1) to be 0.  

9. Pass δx n  to buf(p+1) and (1-δ)x[n] to buf(p). If p=0, then pass δx n  to buf(1) 

and (1-δ)x[n] to buf(K0 + 1). This is the special case described in section 5.3. 

 

The Matlab file ―flexible_decimator_li.m‖ is stored in CD.  

Figure 5.20 shows the simulation result for K0 = 8 and the decimator factor is 3.3. 

The input signal is a sine wave with frequency f=50Hz. The input sampling 

frequency Fs1 is 1000 Hz.  

Fig 5.20(a) is the amplitude response of the interpolation filter G(z). The cutoff 

frequency is equal to half of the output sampling frequency around 150Hz. The 

attenuation in the stopband is set to be 60dB. So all the aliasing effects created by the 

flexible decimator should have attenuations at least more than 60dB. Fig 5.20(b) is 

the spectrum of the input signal. A hamming window is applied here. From this 

figure it is clear that the signal frequency is 50Hz and the sampling frequency is 

1000Hz. Fig 5.20(c) and (d) are the spectrum of the output signal. The maximum 

values occur at frequency 50Hz and 260Hz. This tells that the new sampling 

frequency is equal to 50Hz+260Hz which is nearly 3.3 times smaller than the 

original one. All the images in between have been attenuated by 60dB. This accords 

with what has been set in the filter before. 
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Fig 5.20 Matlab simulation result for flexible decimator with factor 3.3, 

       (K0 = 8)  

 

  

Vary the input and output sampling frequency, the system still works. Hence the 

simulation result in Matlab proved that the structure described in Fig 5.19 can be 

realized. The real-time implementation will be discussed in the next chapter. 

(a) 
(b) 

(c) (d) 
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6 Real-time Implementation 

A TI C6713 DSK board will be used in this chapter to make the real-time 

implementation of the flexible interpolator and flexible decimator specified in the 

last chapter. At first an introduction about this DSP board will be given. Through this 

interdiction, one can get a clear idea about the hardware circuit which will be used 

for the whole system. Then a few key points covered in the real-time implementation 

will be discussed. After that the final implementation will be explained in detail. At 

the final section of this chapter, some optimization policies will be found. 

6.1 Introduction to TI C6713 DSK board     

Digital signal processors such as the TMS320C6x (C6x) family of processors are like 

fast special-purpose microprocessors with a specialized type of the architecture and 

an instruction set appropriate for signal processing. 

The C6713 is based on the very-long-instruction-word (WLIW) architecture, which 

is very well suited for numerically intensive algorithms. The internal program 

memory is structured so that a total of eight instructions can be fetched every cycle. 

For example, with a clock rate of 225MHz, the C6713 is capable of fetching eight 

32-bit instructions every 1/225MHz seconds. Features of the C6713 include 264 kB 

of internal memory , eight functional or execution units composed of six 

arithmetic-logic units (ALUs) and two multiplier units, a 32-bit address bus to 

address 4GB (gigabytes), and two set of 32-bit general-purpose registers. 

The DSK package is powerful, yet relatively inexpensive ($395), with the necessary 

hardware and software support tools for real-time signal processing. It is a complete 

DSP system. The DSK board includes the C6713 floating-point digital signal 

processor and a 32-bit stereo codec TLV320AIC23 (AIC23) for input and output. It 

has 16MB of synchronous dynamic random access memory (SDRAM) and 258kB of 

flash memory. Four connectors on the board provide input and output. The voltage 

regulators on the DSK board provide 1.26V for the C6713 core and 3.3V for its 

memory and peripherals.  

Fig 6.1 shows the DUETT board which is used to implement sample rate converters 

with arbitrary ratios in this thesis. Two PCM 3003 CODEC boards are connected to 

the TI DSK c6713 board. As is shown in the figure, both PCM3003 boards are 

mastered with respect to two unknown clocks (clock0 and clock1). The ADC part of 

PCM3003 #1 is used to sample the continuous input signal. Then the digital signal is 

passed to Multi-channel Buffer serial port 0(McBsp1) on the TI 6713 DSP. Then the 

interpolation or decimation policies mentioned in chapter 5 will be used to process 
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the input samples and calculate the output samples. At last McBsp1 pass the output 

samples to the DAC part of the PCM3003 #1 and get the final analog output signal.  

 

 

             Fig 6.1 Hardware used for sample rate converter 

 

6.2 Covering titles 

6.2.1 Ratio Detection  

The ratio of input and output sampling frequency is the base to derive an efficient 

implementation of interpolator or decimator. The step size of the switch shown in Fig 

5.11 and Fig 5.19 depends on it. So the first task is to determine the ratio. As is 

already discussed in the section 1.2, the input and output sampling frequency is 

unknown. They can even be a function of time. The direct way to get the actual ratio 

is impossible. A fixed parameter should be found as a reference frequency. For 

example, suppose the reference frequency is equal to fref . Then two ratios 

ratio1 = fin /fref  and ratio2 = fout /fref  can be obtained. Finally the ration between 

fin  and fout  can be calculated by ratio1/ratio2. 

In most DSP applications, interrupts have the control of starting a DAC or ADC. For 

a C6713 DSP, there are 16 interrupts. They can be issued internally or externally. In 

this implementation, three interrupts will be used. They are ―Timer0 interrupt‖, 

―McBsp0 interrupt‖ and ―McBscp1 interrupt‖.  McBsp0 interrupt is used to start 

ADC of PCM3003#1 shown in Fig 6.1.It is issued externally by the clock0 shown in 

Fig 6.1. McBsp1 interrupt is used to start DAC of PCM3003#2 shown in Fig 6.1. It is 

also an external interrupt and initiated by the clock 1 shown in Fig 6.1. Timer0 

interrupt is an internal interrupt. It is initiated by the onboard clock. For the 

implementation in this thesis, the onboard clock frequency is equal to 225MHz/4. 

Because a high frequency of Timer0 interrupt may affect the other two interrupts, this 
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frequency should be much smaller than either of other two. In this project, the 

frequency of Time0 interrupt is ftimer _0 = 1098Hz.   

Three counters are set in each interrupt to count how many times each interrupt has 

been entered. When the counter of Time0 reaches 3 × ftimer _0, the calculation for 

fsin  and fsout  will be started. That means the program uses 3 seconds to calculate a 

new ratio. In other words, this system has a delay for 3 seconds. Each time when the 

ratio changes, there will be a three-seconds waiting time during which no output will 

be given. The calculations can be obtained by the following equations:  

 

        fsin =
cnt _McBSP 0

cnt _timer 0
× ftimer _0 

        fsout =
cnt _McBSP 1

cnt _timer 0
× ftimer _0 

        ratio =
fs in

fsout
                                                                                                          

 

6.2.2 FIR filter design 

Lowpass filter is used to remove the image created by SRI or the aliasing effect 

caused by the SRD. In this thesis, the lowpass filter will be a FIR filter implemented 

by window method. 

This window method is shown in Fig 6.2. The ideal frequency response of a lowpass 

filter with cutoff frequency equal to ω0 is shown in Fig 6.2(a). It is a rectangular 

with length equal to 2ω0. The corresponding impulse response is shown in Fig 

6.2(b). The inverse fourier transform of a rectangular function is a si-function. It is 

symmetrical around t=0 and has an infinite duration. FIR states for finite impulse 

response, so the impulse response shown in Fig 6.2(b) should be truncated at some 

point. This can be done through sampling and multiplying by a rectangular window 

shown in Fig 6.2(c). The resulting finite unit sample of the FIR filter is shown in Fig 

6.2(d). The frequency response of this FIR filter is shown in Fig 6.2(e). From this 

figure it is clear that it has overshooting and ripples. This is called Gibbs 

Phenomenon. In order to reduce this effect, a window that tapers smoothly to zero 

should be used to replace the rectangular window.  
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Fig 6.2 FIR filter design using a window method  

 

Here a Hamming window will be used. The window function of a Hamming window 

is shown below: 

 

              w k = 0.54 − 0.46cos
2πk

N
 

 

N is the number of filter coefficients. The transition bandwidth is 6.6π N + 1 . The 

main lobe to the first side lobe is 41dB. Comparison of the rectangular window and 

hamming window are shown in Fig 6.3. It is clear that the overshot is reduced. But 

the transition bandwidth is increased due to the increasing of the main lobe width of 

the window function. 

(a) 

(b) 

(c) 

(e) 

(d) 
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Fig 6.3 Comparison of the rectangular window and Hamming window  

 

Suppose the sampling frequency is fs. The passband frequency is f_pass and the 

stopband frequency is f_stop. A lowpass FIR filter implemented by a Hhamming 

window can be obtained the following steps: 

1. Calculate N by the following equation  

N=3.3*fs /(f_stop-f_pass); 

2.  Calculate the normalized passband frequency ωg 

       ωg = 2 ∗ π ∗ f_pass/f_out; 

3. Calculate hd(n) 

hd n =
1

2π
 HD ω ejωndω =

π

−π

ωg

π
sinc(

ωg n

π
) 

4. Calculate h(n) 

h n = hd n w(n)   

where w n = 0.54 − 0.46cos
2πn

N
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Until now, the function used to create FIR filter coefficients and delays still can‘t be 

written. The reason will be explained in the next section. 

6.2.3 Memory Allocation 

If one wants to define an array in C program, a certain length of this array should be 

given. For example,    

short int h[10] 

The length of this array is equal to 10. When you compile this command, the C 

complier will allocate 10*16bit memory space for it. These memory spaces are on 

stack. The following commands doesn‘t equal to the command above. 

short int N=10 

short int h[N] 

This is because the C compiler doesn‘t accept a variable as the length of an array. It 

will report error when compile it. 

But in our implementation, the second situation is actually needed. As is described in 

chapter 5, the character of the filter depends on the ration of the input and output 

sampling frequency. If fsin > fsout , the system should acts as a flexible decimator. In 

this situation, the sampling frequency of the filter should be equal to K0 × fsout  and 

the cutoff frequency should be fsout /2. If fsin < fsout , the system should acts as a 

flexible interpolator. In this situation, the sampling frequency of the filter should be 

equal to K0 × fsin  and the cutoff frequency should be fsin /2. Moreover the two 

sampling frequency fsin  and fsout  could be a function of time. It is no doubt that 

the length of the filter N is a function of time. The array h[N] used to store the filter 

coefficients can not be created through the normal way. This is why the function used 

to generate the filter coefficients and delays can‘t be achieved. 

The command ―void *malloc(size_t size)‖ in standard library can solve this problem. 

This command dynamically allocates size byte memory spaces on heap. Parameter 

―size_t‖ can be any standard data type in C. The return value of this command is a 

pointer points to the starting address of this memory spaces. To allocate the same 

array dynamically, the following codes can be used  

 

short int N=10; 

short *h; 

h=malloc(sizeof(int)*N); 
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The main advantage of the this dynamic method is that when these memory spaces 

are not deeded, they can be simply reclaimed. The simple command below can 

achieve this function, 

           free(h); 

After this command, all the memory space allocated by ―malloc‖ before will be 

released.  

This pair of commands is very important for our implementation. Each time when a 

new ratio is detected, the program will first release the memory space used to store 

the old filter coefficients and delays. Then it will allocate new memory space for the 

new filter coefficients and delays.  

Now a function called ―fir_design‖ can be programmed to create the filter 

coefficients and the delays. This function is part of the final code flexible_SRC.c 

stored in CD. It first calculates the number of filter coefficients N according to the 

specified frequency. In order to make the filter coefficients for all the polyphase 

filters same, N should be a multiple of K0 (in the program LL= K0). Then it will uses 

the method specified in section 6.2.2 to get the filter coefficients and stores them in 

array ―b_float‖. A new array ―h[N]‖ will be created. This array is used to store the 

filter coefficients in an integer type. That means h[i]=b_float[i]*32768, i=0,1,2…N-1. 

The next step is to create an array ―b_filter‖to store the filter coefficients for each 

polyphase filters. The first N/LL elements in this array are the filter coefficients for 

the first polyphase, the second N/LL elements are for the second polyphase filter and 

so on. At last create an array called ―delay‖ to store the delayed input value for each 

polyphase filter.  

6.2.4 Fixed-point Optimization 

From the acknowledgement in chapter 5, the calculations for the control variables 

p, q and δ are based on the step size of the switch X. It is clear that X is a 

non-integer number. Although the C6713 DSP supports the floating –point 

calculation, the time consumption of the floating-point is much larger than that of a 

fixed-point calculation. If a fixed-point calculation can be applied, the sampling 

frequency of the whole system can be increased obviously.  

That means the date type of X in the code should be an ―int‖ or ―short int‖ instead of 

a ―float‖. This can be simply realized by the following example. 

Suppose X=5.4823, then the representation of X with a type ―short int‖ is  

 

      short int X_integer=floor(X); 

      short int X_non_integer=(X-X_integer)*32768; 
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In this two-lines codes, command ―floor(X)‖ returns the integer value of X. So 

the integer part of X will be stored in variable ―X_integer‖ and the non-integer part 

of X will be stored in variable ―X_non_integer‖. Because the maximum value of a 

variable with data type ―short int‖ is 32768, the non-integer part of X will be 

amplified by a factor 32768. This means the non-integer part of X will have accuracy 

equal to 15bit.   

For the decimation situation, the values of p, q and δ will be obtained by the 

following codes: 

       dis_integer+=X_integer;  

  dis_non_integer+=X_non_integer; 

  dis_integer+=(dis_non_integer>>15); 

  dis_non_integer=dis_non_integer  & 32767; 

p_pointer=-dis_integer; 

  p_pointer=p_pointer%LL; 

       // the following two lines correct the error caused by 

       //C development environment, the reason can be found  

// in the last part of section 5.3 

  p_pointer+=LL;           //LL is equal to K0 

  p_pointer=p_pointer & SRD_mask; // SRD_mask=LL-1 

  delta=dis_non_integer; 

 ―dis_integer‖ and ―dis_non_integer‖ have a data type ―int‖. Variable ―dis_integer‖ 

is the integer part of the total distance the switch has rotated and variable 

―dis_non_integer‖ is the non-integer part of the total distance the switch has rotated. 

The step size of the switch is X_integer+X_non_integer. The variable ―p-pointer‖ 

means the value of p. Variable ―delta‖ is equal to the non-integer part of the total 

rotated distance. All variables can be obtained by a fixed-point calculation.  

For interpolation, the method to calculate the total distance the switch has rotated has 

not been changed. Only the methods to get the values of p and δ are different. Form 

the code below it is clear that the calculation complexity is easier than the 

decimation. 

p_pointer=dis_integer & (LL-1);   //LL is equal to K0 

delta=dis_non_integer; 
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The value of p is equal to the dis_integer mod LL. Like the decimation case, all the 

calculations are calculated by fixed-point calculation.  

One thing must be mentioned here is how to calculate the value of 1-δ. Because the 

largest value for the non-integer part is 32767, that means 32768 will be seen as 1. 

So ―1-δ" will be equal to ―32768-delta‖ in the code.  

Fig 6.1 shows that the new sample form the PCM3003#0 will be transmitted to 

McBsp0. McBsp0 has 32 bits. So each channel has 16 bits. That means each new 

input sample will be represented by 16bits. 16 bits is actually a data type ―short int‖. 

Fig 6.1 also shows that McBsp1 passes the output sample to PCM 3003#1. So the 

output sample will also have a data type ―short int‖.  

Until now it can be concluded that all the variable x[n],y[n],h[n] and δ  are 

represented by a data type ―short int‖. No floating-point calculations exists. 

 

 

6.3 Code structure explanation  

6.3.1 Interpolation Part 

The program uses the structure shown in Fig 6.4 to implement a flexible interpolator. 

In this figure, the interpolating filter G(z) has been decomposed into four polyphase 

filters for simplicity. For general case, the number of polyphase filter will be K0. A 

buffer called ―input_buf‖ with length 64 added before these polyphase filters. This 

buffer is important for synchronization which will be discussed later. Two indexes 

―buf_in‖ and ―buf_out‖ are used to control the input and output of this buffer. 

―buf_in‖ indicates the position where a new sample should be stored. When a new 

sample x[n] is obtained, it will be stored in buffer at position ―buf_in‖. ―buf_out‖ 

indicates the sample which should be taken out, when the switch of the interleaver 

cross G(3). The initial values of them are 0 and 32. Theoretically the increasing 

speed of these two should be the same. That means the difference of the two indexes 

should be a constant value 32. But in real, this difference varied. An error will occur, 

when the difference of the two indexes is zero. It is obviously that a large buffer 

leads to a small possibility of error. But a larger buffer causes more time in address 

allocation and more space in memory. This leads to an inefficient structure. Hence 

the length of this buffer ―input_buf‖ is chosen to be 64 as a compromise of the two 

factors above. 

 



 

6.3 Code Structure Explanation               6 Real-time Implementation 

66 

 

     Fig 6.4 Structure for the real-time implementation of a flexible interpolator 

 

As what has been explained in section 6.2.1, three interrupts have been used in the 

implementation of a flexible interpolator. 

The function of Timer0 interrupt  

1. Disable the input and output calculation in other two interrupts.  

There is a control variable ―stable‖.  

 stable=0, stop the calculation of interpolator 

 stable=1, start the calculation of interpolator     

2. Using three seconds to calculate the input and output sampling frequency and 

the ratio of them. The calculation time has been tried from 1up to 5 seconds. 

The results show that when larger than 2 seconds, the results are almost the 

same. That is the reason why three-second calculation time is used here. 

3. Call the function FIR_Design to design an FIR filter. The filter coefficients are 

calculated by equation sinx/x.  

4. Initialization. This is done through giving the initial value to all control 

variables in other two interrupts. 

5. Disable Timer 0 interrupt. After the ratio has been calculated, Timer0 interrupt 

is no longer needed.  

 

The function of McBsp0 interrupt  

1. Get the new input sample and store it in buffer ―input_buf[64]‖.  

2. Shift the value in array ―delay‖. This array is used to store the delayed input 

v[j] 
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values for each polyphase filter. The length of it is the order of polyphase filter 

plus 3. Why additional 3 delays are added will be explained by a real example 

later in this section.  

The number of values which should be shifted in array ―delay‖ is determined 

by a control variable ―shift_times‖. The value of it is controlled by another 

interrupt ―McBsp1‖. When the value of variable ―shift_times‖ is larger or equal 

than 1, we shift the value in array ―delay‖.  The new values are taken from 

buffer ―input_buf‖.  

      shift_times=1, take one value from ―input_buf‖ and shift for one times 

      shift_times=2, take two values from ―input_buf‖ and shift for two times  

      shift_times=n, take n values from ―input_buf‖ and shift for n times   

   After that the value of ―shift_times‖ is set to be 0. 

3. Calculate the new ration of input and output sample frequencies. If the 

difference of new ratio and old ratio larger than 0.01, enable Timer0 interrupt. 

This ensures the automatic ratio detection 

 

The function of McBsp1 interrupt 

1. Calculate the p and delta value used for linear interpolation calculation. 

2. Calculate the output of polyphase filter specified by p and p+1. 

3. Calculate the final output using linear interpolation algorithm. 

4. Calculate the value of ―shift_times‖. The value of this variable is very 

important for synchronization. To get this value, we should first know how 

many rounds the interleaver has rotated, this can be achieved by the following 

equation  

            rotate_round=dis_integer/LL 

where   LL is the number of polyphase filters 

                dis_integer is the integer part of the total distance which the  

switch has rotated 

 

When ―rotate_round‖ is increased by 1, ―shift_times‖ will be set to 1. If  

―rotate_round‖ is increase by n, then ―shift_times‖ will also be set to n.  

The explanation of why the length of array ―delay‖ should be added by 3 will be 

given here. Suppose v[j]={1,2,3,4,5,6,7,8,9,10} and the length of the filter is equal 

to 6. When the interleaver rotates to the red position shown in Fig 6.4, a special case 

will be got. The output is equal to (1-delta) w3(k) +delta× w0(k+1). Assuming 

j=6 in that time, then w3(k) and w0(k+1) will be obtained by the following 

equations: 
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      w0 k + 1 = {2,3,4,5,6,7}*g0(n) 

      w3 k = {1,2,3,4,5,6, }* g3(n) 

      where ―*‖ means convolution and 𝑔𝑘(𝑛) is the impulse response of the kth   

polyphase filter 

                   

It is clear that if the length of delay is 6 (the order of the polyphase filter),     

w0 k + 1  cannot be calculated. The length of array ―delay‖ should be added by one 

to overcome such problem.  

Now the second reason for increasing the length will be given. Suppose the time 

consumption of the CPU for interrupt ―McBsp0‖ is 0.5μs and for interrupt ―McBsp1‖ 

is 0.2μs. The following situation shown in Fig 6.5 may happen. The beginning of the 

solid rectangular indicates ―McBsp0‖ occurs and the ending of solid rectangular 

indicates ―McBsp0‖ stops. The beginning of the hollow rectangular indicates 

―McBsp1‖ starts and the ending of hollow rectangular indicates ―McBsp1‖ stops.  

 

 

          Fig 6.5  Time consumption of two interrupts    

 

It is clear that everything is in order before time t1. At time t1 the program goes to 

―McBsp1‖interrupt. At time t2, ―McBsp0‖ interrupt is initiated. Because ―McBsp0‖ 

has a higher priority than ―McBsp1‖, the program will jump to ―McBsp0‖. But at this 

time the value of ―change_times‖ will be zero. Therefore no shifting occurs for the 

array ―delay‖. 0.5μs later, the program jumps to interrupt ―McBsp1‖ again. Now the 

value of ―shift_times‖ has increased one. That means the value in array ―delay‖ 

should be shifted by one. At time t3 and t4, the program will jump to ―McBsp1‖. 

The value stored in array ―delay‖ will be used to calculate the filter output. As 

discussed before, the value in array ―delay‖ has not been changed. It is no doubt that 

an error will be introduced in this case. Increase the length of array ―delay‖ by one 

can solve the problem. Suppose the value in array ―delay‖ is {1,2,3,4,5,6,7} and the 

length of polyphase filter is 6. At time t1, the first six values in array ―delay‖ are 

used to calculate the output of the filter. At time t3 and t4, {2,3,4,5,6,7} will be 
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used to calculate the filter output.  

The worst situation may occur, when the two situations above happens together. In 

this case, the length should be increased by 2. For safety reason, the length of array 

―delay‖ is increased by 3.   

6.3.2 Decimation Part 

The program uses such a structure to implement a flexible decimator. Here assuming 

there are altogether 8 polyphase filters.   

 

 
    Fig 6.6   Structure for the real-time implementation of a flexible decimator 

 

Firstly the input part of a flexible decimator will be explained. The de-interleaver 

rotates anti-clock wise with a fixed frequency equal to the input sample frequency.  

The rotate distance for each time is X = LL ∗ Fsou t/Fsin , where LL is the number of 

polyphase filters. When it rotates to the corresponding position, it will store two 

values in the red column. These two values are calculated by equation (5.5). This red 

column is specified by index ―buf_in” .   

If the de-interleaver exceeds 0, which means one round has rotated, ―buf_in‖ will be 

increased by one. There is a special case, it occurs when the de-interleaver rotates 

between 0 and 7. In this case, one value will be stored in row 0 column (―buf_in”+1) 

and the another value will be stored in row 7 column ―buf_in‖.  

In this program, ―McBSP0‖ interrupt corresponds to the input part. Now the code 

will be separated into several parts. 
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if (dis_integer>=1073741824){  //”40000000”hex 

   buf_initial=buf_in-1 & mask; 

   dis_integer=(dis_integer & mask ); 

   } 

 

The code above deals with the situation when dis_integer has an overflow. From 

section 6.2.4, it is clear that dis_integer has a data type ―int‖. The largest value it can 

get is 231 . In order to avoid overflow, the largest value will be set to 230 . The value 

of mask here is equal to LL-1. buf_initial is the initial position of the de-interleaver 

when dis_integer is larger than 230 .  

After that, the value of control variable will be calculated. The code shown in   

section 6.2.4 will be used here. 

The last part is to put the input value in the proper position in the buffer. This 

achieved by the following codes  

 

if(!p_pointer){  //special case    

  interleaver_buffer[0][buf_in]=((32768-delta)*inL)>>15; 

//buf_len is the length of buffer and equal to LL 

if(buf_in==buf_len-1)  

    interleaver_buffer[LL-1][0]=(delta*inL)>>15; 

 else 

    interleaver_buffer[LL-1][buf_in+1]=(delta*inL)>>15; 

 }   

else{      //normal case 

 interleaver_buffer[p_pointer]  [buf_in]= ((32768-delta)*inL)>>15; 

 interleaver_buffer[p_pointer-1][buf_in]= (delta*inL)>>15; 

 } 

Three situations will be found in the code above instead of 2. The new added 

situation is that p_pointer=0 and buf_in=LL-1. In this case, one value will be stored 

in row LL-1 column LL-1 another will be stored in row 0 column 0.  

The output part will be explained now. Every 1/fs_out seconds, a column from the 
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interleaver_buffer will be taken out and sent as input to eight poly-phase filters. 

These values are represented by the green column. Another index ―buf_out‖ points to 

that column. After eight values in that column have been taken, clean the green 

column (making all values in that column to be 0) and increase ―buf_out‖ by one.  

Theoretically, like in interpolation situation, the distance between ―buf_in‖ and 

―buf_out‖ is also fixed and equal to 4(assuming 8 polyphase filters are used as shown 

in Fig 6.6). But due to some unknown errors, the distance may be 0. In this case, an 

error will be created. Synchronization should be applied here. The final output of the 

flexible decimator is the sum of all the outputs of the polyphase filters. 

Interrupt McBSP1 corresponds to the output part.  In this interrupt, a new array 

―delay‖, which has a length subfilter_order*LL, is introduced. The first 

―subfilter_order‖ elements store the delayed values of the first poly-phase filter, the 

second ―subfilter_order‖ elements store the delayed values of the second poly-phase 

filter and so on.  Each time the program jumps to this interrupt, it will first shift the 

values in ―delay‖ by one. Then copy the value of green column from ―interleaver_buf‖ 

and give them to ―delay” at position 

 

i*subfilter_order-1, where ―i‖ is integer between 1 and LL-1. 

 

After that, all values of that green column will be set to zero. And then ―buf_out‖ will 

be increased by one.  

At last calculate the output of each poly-phase filter and add them together. The 

summation is the final output value.  

 

6.3.3 Flexible SRC 

After successful implementation of flexible interpolator and flexible decimator, a 

flexible SRC can be implemented simply. A state variable ―stable‖ will be used to 

indicate the status. At first stable will be set to zero. The program will detect the ratio 

of the input and output sampling frequency. If ratio is larger than 1, the variable 

stable will be set to 2. If the ratio is smaller than 1, the variable stable will be set to 1. 

In the interrupts McBsp0 and McBsp1, there will be an ―if‖ statement which depends 

on the value of variable ―stable‖. Therefore the program will choose either flexible 

interpolator or flexible decimator according the value of variable stable.  
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7 Testing  

7.1 Testing by Sine Waves 

Until now the whole implementation has been finished. The current step is to test the 

result. The first testing method will be passing a sine wave to it and looking at the 

output signal.  

In this test, the input sampling frequency is controlled by fixed quartz with frequency 

6.144MHz. So the input sampling frequency will be 6.144MHz/256=24KHz. The 

output sampling frequency is controlled by a function generator. This function 

generator will generates a square wave with frequency up to 10MHz. So when this 

frequency is larger than 6.144MHz, the system will act as a flexible interpolator. 

When the frequency is smaller than 6.144MHz, the system will act as a flexible 

decimator. Note there is a limitation of the DSK board. If the output sampling 

frequency is smaller than 8 KHz, the output signal will have a distortion. Hence the 

minimum frequency of the square wave generated by the function generator is 

8KHz*256=2.048MHz.  

 

 

Fig 7.1 Testing results flexible interpolator:Fs_in=24KHz, Fs_out=32.07KHz 
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Fig 7.1 shows the testing results for a flexible interpolator. The input sampling 

frequency is 24 KHz and the output sampling frequency is 32.07 KHz. The upper 

figure is the frequency response of the whole system. As what has been expected, it 

is actually a lowpass filter with cutoff frequency equal to 12 KHz. From the C-code it 

is known that the cut-off frequency of the FIR filter is Fs_in/2=24KHz/2=12KHz. 

The measurement proved that the filter is set correctly. The left figure of the lower 

part in Fig 7.1 shows the spectrum of the output signal. A hamming widow is applied 

in the calculation of FFT. The input signal is a sine wave with frequency 5 KHz. 

From this spectrum it is clear that all the images introduced by SRI have attenuations 

more than 60dB. The right figure of the lower part in Fig 7.1 gives the situation that 

the input sine wave has a frequency equal to 10KHz. From the frequency response of 

this system it can be seen that 9.5 KHz is in the transition bands. Therefore the 

attenuation of the maximum value in this images is around 10dB down.   

 

 

 

 

  Fig 7.2 Testing results for flexible decimator: Fs_in=24KHz, Fs_out=13.59KHz 

 

Fig 7.2 shows the testing results for a flexible decimator. The input sampling 

frequency is 24 KHz and the output sampling frequency is 13.59 KHz. Fig 7.2(a) is 

(b) 

(a) 

(c) 
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the frequency response of the whole system. It is also a lowpass filter with cutoff 

frequency round 7 KHz which is exactly Fs_out/2. Fig 7.2 (b) shows the spectrum of 

the output signal. The input signal is a sine wave with frequency 2 KHz. From this 

spectrum it is clear that all the images introduced by SRD have attenuations more 

than 60dB.  Fig 7.2 (c) gives the situation that the input sine wave has a frequency 

equal to 6KHz. From the frequency response of this system it can be seen that 6 KHz 

is in the transition bands. Therefore signal power is about 20dB compare to that in 

Fig 7.2(b).   

Varying the input and output sampling frequencies, the system still works.  

Another test is passing an audio signal to the system and connecting the output signal 

to a speaker. Different input and output sampling frequency are used here. The 

results are acceptable. There are no unwanted noise coming from the speaker and the 

content of the music can be heard clearly.  

7.2 System Performance 

This section gives the information that how much time the two interrupts (McBsp0 

and McBsp1) need. It is clear that the order of FIR filter is the key factor to 

determine the time consumption. It is clear that the time consumption for a flexible 

interpolator or a flexible decimator is also different.  

The software CCS offers the function to look at the time consumption of an interrupt. 

Table 7.1 shows the time consumption of the two interrupts with different filter order 

for a flexible decimator. File o-3 optimization are used here. The time here are 

represented by the CPU cycles. Each cycle is equal to 
1

225MHz
× 4 = 0.018μs. 

 

Order of FIR filter      McBsp0      McBsp1 

      89       435       2313 

      105       433       2587 

133       435       3036 

177       434       3772 

      Table 7.1 Time consumption for a flexible decimator 

 

From Table 7.1 it can be seen that the time consumption of interrupt McBsp0 is 

unchanged when the order of FIR increases. The time consumption of interrupt 

McBsp1 increased linearly when the order of FIR filter increases. The relation can be 

described by the following equation:  
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    ∆𝑇 ≈ 17∆𝑁 

where ∆𝑇 is the time increment and ∆𝑁 is the increment of the order of FIR filter. 

In this thesis, the  Table 7.1 also shows that interrupt McBsp1 needs much more 

time than interrupt McBsp0. This result is no surprising. In interrupt McBsp1, all the 

outputs of polyphase filters should be calculated. Huge amount of time is needed to 

calculate these outputs. This is one drawback of this implementation. The usage of 

CPU may be around 30% for a long time and suddenly go to 100% in a short time. 

Such drawback limits the maximum output sampling frequency for a flexible 

decimator.     

The same method is used to calculate the time consumption of the two interrupts for 

a flexible interpolator. Unfortunately this method doesn‘t work. The clock cycles 

used for these two interrupts are varied in time.  

Thanks for the onboard LEDs, another testing method can be applied here by using 

these LEDs. The C6713 DSK board has 4 on board LEDs. When the program goes to 

interrupt McBsp0, LED_0 will be turned on. When the program leaves interrupt 

McBsp0, LED_0 will be turned off. Same scheme is applied for LED_1 and interrupt 

McBsp1. Now the time can be tested by connecting the LED to a scope. The results 

on the screen show that the time consumption is varied in time. This proved why the 

first method doesn‘t work. The only thing can be done here is to get an average value. 

For the order N=133, the average time consumption for interrupt McBsp0 is 47.8μs 

and for interrupt McBsp1 is 24.5μs. Vary the order of FIR filter, the results are 

almost the same. Note the result above is only valid when Fs_in=19.2KHz and 

Fs_out=38.8KHz. When the input and output sampling frequency are changed, the 

result for McBsp1 will also change accordingly.  

 

7.3 THD 

The total harmonic distortion (THD), of a signal is a measurement of the harmonic 

distortion and is defined as the ratio of the sum of the powers of all harmonic 

components to the power of the fundamental.  

In most cases, the transfer function of a system is linear and time-invariant. When a 

signal passes through a non-linear device, additional content is added at the 

harmonics of the original frequencies. THD is a measurement of the extent of that 

distortion. 

The measurement is most commonly the ratio of the sum of the powers of all 

harmonic frequencies above the fundamental frequency to the power of the 

fundamental: 

 

http://en.wikipedia.org/wiki/Signal_%28information_theory%29
http://en.wikipedia.org/wiki/Harmonic_distortion
http://en.wikipedia.org/wiki/Harmonic_distortion
http://en.wikipedia.org/wiki/Harmonic_distortion
http://en.wikipedia.org/wiki/Transfer_Function
http://en.wikipedia.org/wiki/LTI_system_theory
http://en.wikipedia.org/wiki/Power_%28physics%29
http://en.wikipedia.org/wiki/Harmonic
http://en.wikipedia.org/wiki/Fundamental_frequency
http://en.wikipedia.org/wiki/Frequency
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THD =
 All harmonic power

fundamental power
=

P2 + P3 + P4 + ⋯ +Pn

P1
 

Table 7.2 shows the theoretical simulation results of the THD values for a Linear 

Interpolator. The Matlab file ―thd_LI.m‖, which is used to calculate the THD values, 

can be found in CD. The results tells that the THD value is a function of K0. A 

larger K0 leads to a higher THD. Looking at the data in Table 7.2 , the following 

relation can be found, 

 

THD ≈ −12 × (log2 K0 − 1) − 20.2 

 

This means if K0 is increased by two times, the THD value will be 12dB better.  

 

K0 THD 

2 −20.2dB 

4 -32.1dB 

8 -44.7dB 

16 -56.8dB 

32 -68.9dB 

64 -80.9dB 

128 -93.0dB 

256 -117.0dB 

                    Table 7.2 THD linear interpolator 

 

These THD values are calculated at the worst case. That means the bandwidth of the 

input signal is near the half of the input sampling frequency. In a practical flexible 

sampling rate-converter, the useful input bandwidth is always somewhat much 

smaller than half of the input sampling frequency. Therefore the corresponding THD 

should also somewhat better than listed in Table 7.2.  

In this thesis, K0 is set to be 8.  From Table 7.2 it can be seen that the THD value 

should be smaller than -44dB. As said before, the THD value is also a function of 

input sampling frequency. Fig 7.3 shows THD measurement of a flexible 

interpolator.  
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       Fig 7.3 THD of flexible interpolator as function of input frequency  

The input and output sampling frequency are 24KHz and 32.07KHz. From Fig 7.1 it 

can be seen that the transition band starts at 9KHz. So the measurement stops at 

9KHz. Fig 7.3 shows that the THD value is a function of time. The best THD values 

are found in frequency range 4K and 8K. They are more than 60dB down. As 

explained before, it is better than the value shown in Table 7.2. For frequency range 

between 7.5KHz and 9KHz, the harmonics are in the stopband of the FIR filter. 

(Frequency response of the system can be found in Fig 7.1) So the THD values in 

that range are a little better.   

The flexible decimator is implemented by using a transposed structure. Therefore it 

should have the same behavior as the flexible interpolator. Fig 7.4 shows the THD 

measurement results. The input and output sampling frequency are 24KHz and 

13.59KHz. In most cases, the attenuation is under 70dB.  

 

 

Fig 7.4 THD of flexible decimator as function of input frequency     



8.1 Lagrange Polynomial                         8 Lagrange Interpolation 

78 

8. Lagrange Interpolation 

8.1 Lagrange Polynomial  

In numerical analysis, a Lagrange polynomial, named after Joseph Louis Lagrange, 

is the interpolation polynomial for a given set of data points in the Lagrange form. It 

was first discovered by Edward Waring in 1779 and later rediscovered by Leonhard 

Euler in 1783. As there is only one interpolation polynomial for a given set of data 

points it is a bit misleading to call the polynomial the Lagrange interpolation 

polynomial. The more precise name is interpolation polynomial in the Lagrange 

form. 

In this approach, polynomial approximation x (t) to x(t) is defined as 

 

 𝑥  𝑡 =  𝑃𝑘 𝑡 x[t + k],
𝑁2
𝑘=−𝑁1

                          (8.1) 

 where Pk t  are the Lagrange polynomials given by  

     

 𝑃𝑘 𝑡 =  (
𝑡−𝑡𝑖

𝑡𝑘−𝑡𝑖
)

𝑁2
𝑖=−𝑁1,𝑖≠𝑘 ,   −𝑁1 ≤ 𝑘 ≤ 𝑁2              (8.2) 

 

Since     

    𝑃𝑘 𝑡𝑟 =  
1,         𝑘 = 𝑟 
0,          𝑘 ≠ 𝑟 

 ,     − 𝑁1 ≤ 𝑘 ≤ 𝑁2  ,               (8.3) 

 

it can be obtained from equations (8.1) to (8.3) that  

 

    𝑥  𝑡𝑘 = 𝑥𝑎(𝑡𝑘), −𝑁1 ≤ 𝑘 ≤ 𝑁2   

 

From equation 8.1, the value of x(t) at an arbitrary value 𝑡 ′ = 𝑡0 + 𝛿𝑇 (T is the 

input sample interval) is given by 

 

    𝑥  𝑡′ = 𝑥𝑎 𝑡0 + 𝛿𝑇 = 𝑦 𝑛 =  𝑃𝑘 𝛿 x[n + k],
𝑁2
𝑘=−𝑁1

        (8.4) 

 

where  

 

    𝑃𝑘 𝛿 = 𝑃𝑘 𝑡0 + 𝛿𝑇 =  (
𝛿−𝑖

𝑘−𝑖
)

𝑁2
𝑖=−𝑁1,𝑖≠𝑘 , −𝑁1 ≤ 𝑘 ≤ 𝑁2  (8.5)

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
http://en.wikipedia.org/wiki/Polynomial_interpolation
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Edward_Waring
http://en.wikipedia.org/wiki/Leonhard_Euler
http://en.wikipedia.org/wiki/Leonhard_Euler
http://en.wikipedia.org/wiki/Leonhard_Euler
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8.2 SRC using Lagrange Interpolation 

The mathematical background of Lagrange Interpolation is known from last section. 

Now the implementation of SRC using Lagrange interpolation algorithm will be 

given. At first an example will be given to make a clear idea how it works and then 

the performance will be discussed.  

Consider the design of a SRC with an interpolation factor of 4/3. The order of the 

Lagrange polynomial is defined by 𝑁2 + 𝑁1.  It has already been proved that the best 

approximation results can be obtained when the approximated point is in the middle 

of the given points. Therefore 𝑁2 = 1 + 𝑁1. When 𝑁2 = 1, only two input samples 

will be used to determine the output samples and it is exactly a linear interpolator.  

For simplicity, a third-order polynomial approximation with 𝑁2 = 1 and 𝑁1 = 2 is 

used. In this case, the equation (8.4) is reduced to, 

 

   y[n] = P−2 δ x n − 2 + P−1 δ x n − 1 + P0 δ x n + P1 δ x n + 1   (8.6) 

 

Here the Lagrange polynomials Pk δ  are given by  

 

    P−2 δ =
δ+1

−2+1
×

δ+0

−2+0
×

δ−1

−2−1
=

1

6
(−δ3 + δ),                  (8.7 a) 

    P−1 δ =
δ+2

−1+2
×

δ+0

−1+0
×

δ−1

−1−1
=

1

2
(δ3 + δ2 − 2δ),              (8.7 b) 

    P0 δ =
δ+2

−0+2
×

δ+1

−0+1
×

δ−1

0−1
= −

1

2
(δ3 + 2δ2 − δ − 2),           (8.7 c) 

      P1 δ =
δ+2

1+2
×

δ+1

1+1
×

δ−0

1−0
=

1

6
(δ3 + 3δ2 + 2δ),                 (8.7 d) 

 

     Fig 8.1 Input and Output sample location of an interpolator with factor 4/3 
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Fig 8.1 gives the information about the locations of input and output samples for an 

interpolator factor 4/3. The input sample locations are marked with a squire and the 

output sample locations are marked with a circle. The locations of output samples 

y[0], y[1] and y[2] in the input sample index is marked with an arrow. 

From this figure it is clear that the value of δ for the calculation of y[n], to be labeled 

as δ0, is 0. Substituting this value of δ in equations (8.7), the four 𝑃𝑘 𝛿  values can 

be obtained as 

 

               P−2  δ0 = 0      P−1  δ0 = 0   

       P0  δ0 = 1       P1  δ0 = 0 

 

Next, the value of δ for the computation of y[n+1] is 3/4 and is labeled as δ1. Using 

this value, the four 𝑃𝑘 𝛿  values can be obtained as 

 

               P−2  δ1 = 0.0547      P−1  δ1 = −0.2578   

       P0  δ1 = 0.6016        P1  δ1 = 0.6016 

 

It is clear that y[n] and y[n+1] can be got by passing these values to equation (8.6). 

The calculation of y[n+2] and y[n+3] can be obtained by the same way. But as has 

been explained before, in order to get an accurate approximation, the estimated 

sample should be in the center of the given samples. So input sample 

x[n-1],x[n],x[n+1] and x[n+2] are used for y[n+1]; input samples x[n],x[n+1],x[n+2] 

and x[n+2] are used for y[n+2].   

From Fig 8.1it can be seen that the value of δ2 for the computation of y[n+2] is 1/2. 

It is exactly the distance between the time index n+1 and the arrow on the right. The 

value of δ3 for the computation of y[n+3] is 1/4. It is exactly the distance between 

the time index n+2 and the arrow on the right. 

 

The calculation of the output samples can be changed into a matrix form  

    

 
 
 
 

𝑦 𝑛 

𝑦 𝑛 + 1 

𝑦 𝑛 + 2 

𝑦 𝑛 + 3  
 
 
 

= 𝑯 

 
 
 
 
 
 
𝑥 𝑛 − 2 

𝑥 𝑛 − 1 

𝑥 𝑛 

𝑥 𝑛 + 1 

𝑥 𝑛 + 2 

𝑥[𝑛 + 3] 
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where       H= 

𝑯𝟎

𝑯𝟏

𝑯𝟐

𝑯𝟑

 ,  

    𝑯𝟎 =  𝑃−2 𝛿0    𝑃−1 𝛿0    𝑃0 𝛿0      𝑃1 𝛿0        0            0           

             𝑯𝟏 =   𝑃−2 𝛿1    𝑃−1 𝛿1    𝑃0 𝛿1      𝑃1 𝛿1        0            0           

              𝑯𝟐 =  0                𝑃−2 𝛿2    𝑃−1 𝛿2    𝑃0 𝛿1     𝑃1 𝛿2      0           

             𝑯𝟑 =  0                 0            𝑃−2 𝛿3      𝑃−1 𝛿3    𝑃0 𝛿3    𝑃1(𝛿3)  

 

The matrix H here is called the block matrix. 𝑯𝟎, 𝑯𝟏, 𝑯𝟐 and 𝑯𝟑 can be seen as 4 

different FIR filters with order 5. H can be seen as a time-varying FIR filters with 6 

coefficients. It will periodically choose the filter coefficients of one the four filters 

above. The period is equal to the output sampling interval. 

Another realization of the example above can be achieved by substituting the 

Lagrange polynomials of equation (8.7) in equation (8.6) which yields, 

 

𝑦 𝑛 = 𝛿3  −
1

6
𝑥 𝑛 − 2 +

1

2
𝑥 𝑛 − 1 −

1

2
𝑥 𝑛 +

1

6
𝑥 𝑛 + 1   

      +𝛿2  −
1

2
𝑥 𝑛 − 1 − 𝑥 𝑛 +

1

2
𝑥 𝑛 + 1   

      +𝛿  
1

6
𝑥 𝑛 − 2 + 𝑥 𝑛 − 1 +

1

2
𝑥 𝑛 +

1

3
𝑥 𝑛 + 1   

      +𝑥[𝑛]  

 

Farrow Structure can be used in the realization of the above equations. The transfer 

functions of the three FIR digital filters are given by  

 

    𝐻0 𝑧 = −
1

6
𝑧−2 +

1

2
𝑧−1 −

1

2
+

1

6
𝑧 

    𝐻1 𝑧 =
1

2
𝑧−1 − 1 +

1

2
𝑧 

    𝐻2 𝑧 =
1

6
𝑧−2 − 𝑧−1 +

1

2
+

1

3
𝑧 

 The realization of such a structure is shown in Fig 8.2. In this realization, only the 
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value of the multiplier coefficient 𝛿 is periodically with the remaining digital filter 

structure kept unchanged. For general K, the number of filters will be K-1. 

 

 

Fig 8.2 Farrow structure for Lagrange Interpolator 

 

Fig 8.3 shows the amplitude response of such a structure for different K. The dashed 

line is the spectrum of the input signal with the bandwidth equal to 0.1Fsin . With 

such bandwidth limitation, the attenuation for K>1 is around 60dB. But it can be 

seen from the figure, the attenuation of the image decrease strongly as the bandwidth 

of the input signal increases.  

 

Fig 8.3 Amplitude responses of Lagrange Interpolator with order 1,3,5,7 and 9 
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8.3 Matlab simulation for Lagrange Interpolation 

The purpose of this section is simulation the SRC using a Lagrange interpolation. 

Like what have been done for linear interpolator in section (5.1), a normal 

interpolator with interpolation factor K0 is needed. This normal interpolator ensures 

a larger bandwidth usage. The value of K0 is supposed to be 8 and the order of the 

Lagrange interpolator is supposed to be 4.  

The first thing is to determine the Lagrange filter coefficients. The following code 

can generate the 3 filters shown in Fig 8.2. The filter coefficients are stored in array 

―lagrange_filter‖. Each row of this array represents one filter. 

      

    lag_orde=4; 

lagrange_filter=zeros(lag_order,lag_order); 

for j=-lag_order/2:lag_order/2-1 

    b=[0,1]; 

    for i=-lag_order/2:lag_order/2-1 

        if j~=i     

          a=[1,-i]; 

          a=a/(j-i); 

          b=conv(a,b); 

           

        end 

    end 

    lagrange_filter(j+1+lag_order/2,:)=b(2:length(b)); 

end 

   lagrange_filter=lagrange_filter'; 

 

After constructing the Lagrange filter, the same scheme is applied as a Linear 

Interpolator. The switch rotates anti-clock with a step size X and a period 1/Fsout . 

The value of p and δ is needed to get the output samples. One thing has changed is 

that 4 values will be used instead 2. They are the output of the (p − 2)th , (p −

1)th , pth  and (p + 1)th  filter.  It is clear that if p<2, a new special case will be got. 

The previous output of polyphase filter H8,6(z) and H8,6(z) is needed. The final 

output can be obtained by passing these four values to the Lagrange filter. The value 

of δ here is still equal to non-integer part of the distance which the switch has 

rotated. The complete code is shown in CD with name lagrange.m. 

Fig 8.4 shows the simulation result. The input signal is a sine wave with frequency 

equal to 0.1 Hz. The input sampling frequency is equal to 1 Hz. The ratio between 

output and input sampling frequency is 1.33. Fig 8.4 (a) is the input samples in time 

domain. Fig 8.4(b) shows the output signal in time domain. The time interval in    

Fig 8.4(a) is exactly 1.33 times larger than that in Fig 8.4(b).  
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               Fig 8.4 Lagrange interpolator in time domain 

 

 

 

 

 

       Fig 8.5 Comparison of Lagrange interpolator and Linear interpolator  

(a) 

(a) 

(b) 

(b) 

(c) (d) 
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Fig 8.5(a) shows the spectrum of the output signal. The attenuation of the images is 

more than 60 dB. Fig 8.5(b) shows output spectrum in the same condition with a 

linear interpolator. Compare the two spectrums, there is almost no difference. This is 

due to the fact that the bandwidth of the input signal is very small, only 0.1Fsin . 

Another simulation results shown in Fig 8.5(c) and 8.5(d) give the evidence that a 

third order Lagrange interpolator is better than the linear interpolator. The input 

sampling frequency is 1 Hz and the ratio is 1.28. The frequency of the input signal is 

changed to 0.34Hz. Fig 8.5(c) shows the spectrum of the output signal of a Lagrange 

interpolator. Fig 8.5(d) shows the spectrum of the output signal of a linear 

interpolator. The attenuation of the image for Lagrange interpolator is around 10dB 

better than that for a linear interpolator.  
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9. Conclusion 

Now look back to the whole thesis and make a conclusion. This master thesis 

develops a system which can do arbitrary sampling rate conversion on a TI DSK 

C6713 board. The whole system can be seen as two separate parts. They are flexible 

interpolator and flexible decimator. As what has been stated in the title of this thesis, 

the linear interpolation theory is applied. An efficient realization of a flexible 

interpolator is first explained. The realization of a flexible decimator is obtained by 

using the transposed theory.  

The goals of this thesis are stated in the first chapter. The first point is ―flexible‖. 

From the testing results in chapter 7, the system can work in different ratio. This ratio 

can be an arbitrary. The second point is ―self-tuning‖. This means the system should 

detect the ratio itself and can adapt itself when the ratio changes. This point is also 

proved in chapter 7. In the testing, the input sampling frequency is fixed and it is 

equal to 19.2 KHz. The output sampling frequency is controlled by a function 

generator. The output sampling frequency is varied between 8 KHz and 25 KHz. The 

system still works when the ratio changes. The quality of this system is measured by 

THD. The result meets the theoretical analyze. The last point is ―Linear interpolator‖. 

The function of a Linear Interpolator (LI) is discussed in section 5.1. The realizations 

of the efficient circuits using such interpolation theory are also shown in Fig 5.11 and 

5.19. It is obvious that the Linear Interpolator is an important component in both 

circuits.  It is clear that all the goals of this thesis have been achieved. 

At last, an alternative interpolation theory is given. It is so called Lagrange 

interpolation. From this chapter, it is known that the linear interpolation is a special 

case of Lagrange interpolation. It is the second-order Lagrange interpolation. It is no 

doubt that a high order Lagrange interpolation theory gives a better result. This is 

proved in the Matlab simulation results. Due to the time limitation, the real-time 

implementation of such a system has not been done.  

Besides the implementation in this thesis, there are also some works that could be 

done in the future in order to improve the behaviour of the system. As is mentioned 

before, a high order interpolation method should be used instead of linear 

interpolation. The FIR filter used in this system is generated by a window function. 

This means the ripples in passband are not same. This causes an unstable system 

performance. An equiripple FIR filter such as ―remez‖ filter should replace the 

existing filter.    
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Appendix A  

List of attachments In CD 

sim_interpolator.m  

The simulation of the structure shown in Fig 5.7 

sim_decimator.m 

The simulation of the structure shown in Fig 5.14 

flexible_interpolator_li.m   

The simulation of a flexible interpolator using linear interpolator 

flexible_decimator_li.m  

The simulation of a flexible decimator using linear interpolator 

thd_LI.m 

The measurement of THD for Linear Interpolator with different values of K0. 

lagrange.m  

The simulation of flexible interpolator using Lagrange interpolator 

Project “flexible interpolator” 

The real-time implementation of a flexible interpolator using linear interpolator 

Project “flexible decimator” 

The real-time implementation of a flexible decimator using linear interpolator 

Project “flexible SRC” 

The real-time implementation of a flexible SRC using linear interpolator 

 


