
Fakultät Technik und Informatik Faculty of Engineering and Computer Science
Department Informatik Department of Computer Science

Filipe Governa

Fighting Spyware
with

Mandatory Access Control
in

Windows Vista

Thesis

Filipe Governa

Fighting Spyware

with

Mandatory Access Control

in

Windows Vista

Thesis submitted in the context of the examination
in the course European Computer Science

at the Department of Computer Science
of the Faculty of Engineering and Computer Science
of the Hamburg University of Applied Sciences

Supervising examiner: Dr. Martin Hübner
Secondary consultant: Dr. Wolfgang Gerken

Delivered on 14 July 2008

Filipe Governa

Title of the paper

Fighting Spyware with Mandatory Access Control in Windows Vista

Keywords

Access Control, Bell-LaPadula Model, Security, Spyware, Windows Vista.

Abstract

Inside this report, existing Mandatory Access Control (MAC) implementations are

analyzed, with a strong focus on Microsoft Corporation’s Mandatory Integrity Control
(MIC) MAC implementation in the Windows Vista operating system (OS), and the

development of an important security concept for efficiently fighting spyware in
Windows Vista using the MAC access control security mechanism is described. The
reasons behind the development of this important security concept are three-way: (i) the

increased and growing seriousness of the threat posed by spyware today to computer
user’s privacy, (ii) the elevated and wide-spread usage of the Microsoft Windows OS,

and (iii) the inefficiency and flawed nature of today’s tools and techniques designed to
fight ever-evolving spyware allied to the efficient and powerful possibilities provided by
MAC in that regard. The problem addressed is spyware, namely (sensitive) information

disclosure. It is addressed by tweaking MIC and taking advantage of it, more precisely
by running Web browsers and e-mail clients with low rights, making sure that objects

created by these applications have equally- low rights, and enabling a security policy in
sensitive files that restricts read access to low-rights subjects, and then using MIC as the
enforcement mechanism. The result is an important security concept, and it is concluded

that, even though application compatibility and user experience is affected, it should be
possible to use MAC to efficiently fight spyware in Windows Vista because spyware

depends on the ability to read in order to collect (sensitive) data, and because the
architecture that enables this (MIC) is already implemented in the OS (Windows Vista).
One significant implication of the developed concept is the ability that it provides to

actively, efficiently, and transparently (to the user) fight the serious and growing threat
of spyware in the most used OS platform in the world.

TABLE OF CONTENTS

List of Figures.. ii
List of Tables .. iii
Acknowledgements... iv
Chapter I: Introduction .. 1

1.1. Problem Definition .. 1
1.2. Motivation ... 3
1.3. Aim of Study ... 4
1.4. Structure of the Work .. 5

Chapter II: Background Concepts .. 7
2.1. Mandatory Access Control ... 7

2.1.1. Applications .. 9
2.1.2. Types and Models .. 10

2.1.2.1. Multi-Level Security ... 10
2.1.2.1.A. Bell-LaPadula Model .. 11
2.1.2.1.B. Biba Model .. 12
2.1.2.1.C. Low-Watermark MAC Model 12

2.1.2.2. Multi-Lateral Security ... 13
2.1.2.2.A. Lattice Model... 14
2.1.2.2.B. Brewer-Nash Model... 14

2.1.2.3. Need-to-Know Principle .. 15
2.1.2.4. Other Security Models ... 15

2.1.2.4.A. Clark Wilson Model ... 15
2.1.2.4.B. British Medical Association Model 16

2.1.3. Disadvantages.. 16
Chapter III: Requirement Analysis ... 17

3.1. To Be Transparent to the User ... 17
3.2. To Provide Active Protection... 17
3.3. To Be Easily Implementable in Windows Vista 17
3.4. To Disable Spyware ... 17
3.5. Additional Important Considerations ... 18

3.5.1. MAC Scope ... 18
3.5.2. Implications of the Term “Mandatory” 18

Chapter IV: Market Review.. 20
4.1. MAC Implementations Overview .. 20
4.2. Security-Enhanced Linux ... 21
4.3. AppArmor... 21
4.4. FreeBSD ... 21
4.5. Trusted Solaris ... 22

4.6. Mac OS X ... 22
4.7. Mandatory Integrity Control .. 23

4.7.1. Concept... 23
4.7.1.1. Extending the Windows Security Architecture 24
4.7.1.2. Features ... 24
4.7.1.3. Purpose ... 26
4.7.1.4. Earlier Integrity Models ... 27

4.7.2. Design ... 29
4.7.2.1. Integrity Levels .. 30
4.7.2.2. Integrity Policies .. 32

4.7.2.2.A. Mandatory Label Policies 33
4.7.2.3. Mandatory Label ACE ... 35
4.7.2.4. How Windows Assigns a Mandatory Label to Objects.. 37

4.7.2.4.A. Default IL.. 39
4.7.2.4.B. Labeling Objects Created by Low Subjects 41
4.7.2.4.C. Creating an Object with a Specific Mandatory Label

.. 42
4.7.2.5. Mandatory Label Inheritance.. 43

4.7.2.5.A. Inheritance and Explicit Labels 46
4.7.2.5.B. Inherit-Only Restriction ... 47
4.7.2.5.C. Protected SACL and Label Inheritance................... 47

4.7.2.6. How Access Checks Work with Mandatory Policy........ 48
4.7.3. Implementation ... 49

4.7.3.1. IEMP at Low Integrity.. 50
4.8. Conclusion .. 53

Chapter V: System Design & Implementation .. 54
5.1. User Profile Folder with NO_READ_UP Mandatory Label Policy . 55
5.2. Web Browsers and E-Mail Clients at Low Integrity 57
5.3. Objects Created by Web Browsers and E-Mail Clients Are Assigned

the Low IL ... 58
5.4. Scenario Solution ... 60
5.5. Concept Applicability Motivation ... 61

Chapter VI: Summary and Outlook .. 63
Glossary .. 65
References ... 74
Bibliography .. 78
Appendix A: SDDL for Mandatory Labels ... 82
Appendix B: Icacls and File IL’s ... 84
Appendix C: Chml and File IL’s ... 85
Appendix D: MIC and Windows Kernel Mode Code Integrity.......................... 91
Appendix E: Getting the IL for an Access Token ... 92

LIST OF FIGURES

Number Page
1. Mark Minasi... 1

2. Security levels in MLS .. 11

3. Security levels in Multi-Lateral Security ... 13

4. Security descriptor fields .. 35

5. Inheritable low mandatory label... 45

6. Inheriting a mandatory label on a child object....................................... 46

7. IEPM processes... 52

8. Icacls and mandatory labels .. 84

LIST OF TABLES

Number Page
1. MAC implementations ... 20

2. IL SID identifier authority values ... 30

3. Defined IL’s and corresponding values... 31

4. IL string names .. 31

5. Integrity policy categories ... 33

6. Mandatory label policies in Windows Vista ... 34

7. Fields contained in the ACE header ... 36

ACKNOWLEDGEMENTS

The author wishes to express sincere appreciation to Dr. Martin Hübner for his

assistance in the preparation of this manuscript. In addition, special thanks to Dr.

Wolfgang Gerken whose support was helpful during the early programming

phase of this undertaking. Thanks also to all the members of Instituto Superior

de Engenharia de Coimbra (ISEC) / Higher Institute of Engineering of Coimbra

(PORTUGAL), University of Huddersfield (UK), and Hochschule für

Angewandte Wissenschaften Hamburg (HAW Hamburg) / Hamburg University

of Applied Sciences (GERMANY) that I had the pleasure to meet for directly

and/or indirectly helping me get to this final stage of the course.

A word of gratitude is also due to my parents Helena and Carlos, my brother

Ricardo, and my girlfriend Anna, for all their continuous support to reach this

stage.

C h a p t e r 1

INTRODUCTION

This [“no-read-up” policy] seemed like a potentially
nice feature in a world beset by Web-borne spyware!

Figure 1 Mark Minasi

(www.minasi.com)

Author of

ADMINISTERING WINDOWS VISTA SECURITY:

THE BIG SURPRISES

in www.minasi.com/vista/chml.htm

Mark Minasi is a best-selling author, popular technology columnist, commentator,

keynote speaker, and one of the world’s leading Microsoft Windows authorities.

This statement of his was in the basis of this thesis.

1.1. Problem Definition

It is widely agreed among computer science experts that spyware poses a

dangerous threat to computer users’ privacy. The Anti-Spyware Coalition (ASC),

a group dedicated to building a consensus about definitions and best practices in

the debate surrounding spyware and other potentially unwanted technologies,

calls it one of the most dire threats facing the Internet;[1] Webroot Software, makers of

popular anti-spyware program Spy Sweeper, calls it an extremely dangerous online

threat that jeopardizes your computer’s data and your personal information [2]. The following

facts support this idea:

http://www.minasi.com/
http://www.minasi.com/vista/chml.htm

 in an estimate based on customer-sent scan logs, Webroot Software said

that 9 out of 10 personal computers (PCs) connected to the Internet are

infected with spyware;[2]

 according to the same company, 88% of Spy Audit (Spy Sweeper tool)

scans have found some form of unwanted program (Trojan, system

monitor, cookie or adware) on consumer computers;[2]

 also according to the same company, some form of spyware can be found

on 87% of corporate PCs; [2]

 according to a 2005 study by America Online LLC. (AOL) and the

National Cyber-Security Alliance, 61% of surveyed users’ computers had

some form of spyware, 92% of surveyed users with spyware reported that

they did not know of its presence, and 91% reported that they had not

given permission for the installation of the spyware;[3]

 according to a September 2006 study by Consumer Reports, United

States (US) consumers spent $7.8 billion in 2004 and 2005 for computer

repairs, parts, and replacements because of malware attacks; [4]

 according to a September 2007 study by the same company, the chances

of getting a spyware infection are 1 in 3; [5]

 according to the same study, the chances of suffering serious damage due

to a spyware infection are 1 in 11. [5]

At the same time, it is a fact that the Microsoft Windows operating system (OS)

from Microsoft Corporation is the most used OS in the world. According to data

from Awio[6], Hitslink[7], OneStat[8], and XiTi[9] – and as of March 20081 –,

Microsoft Windows (all versions) accounts for between 91.57% (Hitslink) and

95.94% (OneStat) of the OS’s market. As of the elaboration of this thesis,

Windows Vista is the most recent commercial release of Microsoft Windows.

It is also widely agreed among computer science experts that Mandatory Access

Control (MAC) is an important access control security model and provides

valuable security, namely in the field of data authorization (data confidentiality

and data integrity).[10] It is defined by the Trusted Computer System Evaluation

Criteria (TCSEC)[11], and is most commonly applicable to Classified National

Security Information.

But it is still somewhat unexplored, unclear, and undocumented how MAC can

be used to efficiently fight spyware in Windows Vista.

1.2. Motivation

The threat of spyware has grown. Consumer Reports recognizes that the chances

of getting a spyware infection and of suffering serious damage due to one have

not decreased;[5] the ASC goes further in its acknowledgement and recognizes that

the threat has grown and evolved from an online nuisance to one of the most dire threats facing

the Internet;[1] Webroot Software, on its side, says that spyware today is more malicious

and powerful than ever before.[12] The following facts support this idea:

 in 2006 alone, Phileas (Webroot’s automated threat research system)

found 3 million malicious websites, a 250% increase from 1.2 million

malicious websites found in 2005; [13]

1 The data from XiTi exceptionally reports to December 2007.

 $198.44 million were lost in 2006 due to cyber fraud with a median dollar

loss of $724.00/complaint, which was up from $183.12 million in total

reported losses in 2005. [13]

Microsoft Windows’ market share has not decreased significantly in the past.

According to data from Awio[6], Hitslink[14], OneStat[8], and XiTi[9] – and in the

period between May 2007 and March 2008 –, Microsoft Windows (all versions)

has only had a slight fluctuation of between -0.53% (Awio) and -2.54% (XiTi). At

the same time – and as of the elaboration of this thesis –, Windows Vista is the

most recent commercial release of Microsoft Windows, and its market share has

been growing significantly. OneStat goes as far as calling it a remarkable fact.[8]

According to data from the same companies – and in the same period of time –

Windows Vista’s OS’s market share has had a fluctuation of between +5.02%

(Awio) and +10.27% (Hitslink [15]).

MAC provides an exciting, promising, and unexplored way of efficiently fighting

this growing threat (spyware) in the most used OS in the world (Microsoft

Windows).

1.3. Aim of Study

The main objective of this thesis is to generate a concept for efficiently fighting

spyware in Windows Vista using MAC.

Considering an explicit example scenario: if a Windows Vista user receives an

attachment in an e-mail, saves it, and then executes it, its (the attachment’s)

process will be able to read the user’s data.

The concept generated in this thesis works as a solution for this explicit example

scenario, preventing this from happening (the attachment’s process being able to

read the user’s data) on a system running Windows Vista.

1.4. Structure of the Work

This thesis details (i) a concept for efficiently fighting spyware in Windows Vista

using MAC, (ii) why it was designed, and (iii) how it works. In this thesis the

following topics are discussed:

 Chapter I: Introduction

Discusses the problem definition, motivation, aim of study, and structure

of the work.

 Chapter II: Background Concepts

Presents, describes, and reviews (in detail) the concept of Mandatory

Access Control (MAC).

 Chapter III: Requirement Analysis

Discusses the requirements of a solution.

 Chapter IV: Market Review

Shows an overview of past work by analyzing existing MAC

implementations, with a strong focus on Microsoft Corporation’s

Mandatory Integrity Control (MIC) MAC implementation in the

Windows Vista OS.

 Chapter V: System Design & Implementation

Shows the conception of an own solution (with a detail description), and

how it is designed to make use of MIC (i.e. how MIC in Windows Vista

can be tweaked in order to enable it).

 Chapter VI: Summary and Outlook

Discusses the state of the project and advancement possibilities.

Summarizing this introduction, the topic of this thesis is how to efficiently fight

spyware in Windows Vista using MAC, and it is important because, as we have

seen, spyware, today more than ever, poses a dangerous threat to computer users’

privacy.

The author thinks and will show that, even though application compatibility and

user experience is affected, it should be possible to use MAC to efficiently fight

spyware in Windows Vista because spyware depends on the ability to read in

order to collect (sensitive) data, and because the architecture that enables this

(MIC) is already implemented in this OS.

C h a p t e r 2

BACKGROUND CONCEPTS

2.1. Mandatory Access Control

Security is an important issue in information systems. A security model, as an

important way to protect the privacy and integrity of messages from being spied

by illegal users, is a formal method to verify and describe a complex information

system. It is widely used not only in the abstract definition of system security

requirements, but also in system design and implementation.

In International Organization for Standardization (ISO) standard 7498-2, five

security objectives are identified: authentication, authorization, integrity,

confidentiality, and non-repudiation. An important security mechanism associated

with authorization and confidentiality issue is access control. Access control is

here defined as a service which is to limit actions that an active system

component (process, agent, user, etc.) can perform. The word “access” means in

this context an interaction between system components that results in the flow of

information.[16] There are two basic forms of access control: Mandatory Access

Control (MAC) and Discretionary Access Control (DAC). Traditionally, one of

these two different security models can he identified depending on who is in

charge of setting security rules.

From the view of security, there are two main components / types of entities in a

realistic computer system. One is object or target, mainly including all passive

entities (constructs), such as (usually and in practice) files, directories, storage

areas, data structures, Transmission Control Protocol (TCP) / User Datagram

Protocol (UDP) ports, network packets, or shared memory segments. The other

is subject or initiator, mainly containing all active entities, such as (usually and in

practice) users, processes (possibly executed on behalf of a user), or threads. The

object is the carrier and channel of information resource, i.e. it contains or

receives information. The subject obtains information by accessing the object. To

precisely describe access control issues, it is assumed that all of a system’s

components fall into one of these two categories.

Mandatory Access Control (MAC) refers to a type of access control by which an

OS constrains the ability of a subject to access or generally perform some sort of

operation on an object. Whenever a subject attempts to access an object, an

authorization rule enforced by the OS kernel examines these security attributes,

and decides whether the access can take place. Any operation by any subject on

any object will be tested against the set of authorization rules (aka policy) to

determine if the operation is allowed.

With MAC, this security policy is centrally controlled by a security policy

administrator; users do not have the ability to override the policy and, for

example, grant access to files that would otherwise be restricted. By contrast,

Discretionary Access Control (DAC), which also governs the ability of subjects to

access objects, allows users the ability to make policy decisions and/or assign

security attributes.2 MAC-enabled systems allow policy administrators to

implement organization-wide security policies. Unlike with DAC, users cannot

override or modify this policy, either accidentally or intentionally. This allows

security administrators to define a central policy that is guaranteed (in principle)

to be enforced for all users.

Historically and traditionally, MAC has been closely associated with Multi-Level

Security (MLS) systems. In the seminal work on the subject which is often

2 The traditional Microsoft Windows and UNIX systems of users, groups, and read, write, and execute

permissions are examples of DAC.

referred to as “Orange Book”, the TCSEC[11] defines MAC as a means of restricting

access to objects based on the sensitivity (as represented by a label) of the information contained in

the objects and the formal authorization (i.e., clearance) of subjects to access information of such

sensitivity. Early implementations of MAC such as HPUX BLS, Harris CS/SX, and

SGI Trusted IRIX were all focused on MLS.

More recently, with the advent of implementations such as SELinux

(incorporated into Linux kernels after 2.6), MAC has started to become more

mainstream, and is evolving out of the MLS niche. These more recent MAC

implementations have recognized that the narrow Orange Book definition,

focused as it was on MLS, is not sufficient for general use. [17] These

implementations provide more depth and flexibility than earlier MLS-focused

implementations,[18] allowing (for example) administrators to focus on issues such

as network attacks and malware without the rigor or constraints of MLS systems.

2.1.1. Applications

MAC models serve to guarantee the security of information against unauthorized

access, and also to enforce system requirements. The protection of information

relates to:

 confidentiality – ensuring that information can be read only by those

authorized to read it (e.g. any piece of information subject to secrecy);

 integrity – ensuring that information can be manipulated only by those

authorized to manipulate it (e.g. the chain of command of a military

employment system such as the Command-and-Control systems).

A characteristic is the implementation of access controls in IT systems.

Furthermore, the security models can also be similarly deployed in organization

forms, processes, and building services engineering.

Such access systems are particularly needed in the area of the military, where it

concerns sensitive information about warfare, but also in the area of authorities,

where it concerns information about technology, politics, foreign trade, and

communications-electronics (C-E).3 Another area of application is patient data in

the health industry (e.g. patient cards).

2.1.2. Types and Models

There are three main types of MAC (each of which may enclose different MAC

models): Multi-Level Security (MLS), Multi-Lateral Security, and Need-to-Know

Principle.

2 .1 .2 .1 . MU LTI-LEVEL SECURITY

This is the simplest (and, to some extent, also historical) type of MAC. MLS

systems establish the model of security levels. Each object is assigned a security

level (classification [CLS]), which typically represents the level of sensitivity of the

information that it contains. The individual security levels divide the objects into

“layers” (vertical arrangement) (Figure 2). The term “vertical” (and, consequently,

the access security) refers to the top-down and bottom-up information flow, and

means that information may only flow without restrictions within layers.

Classified information may not become public. Every subject is, likewise, assigned

a security level (clearance [CLR]), which typically represents its trustworthiness. A

subject may, then, access an object of another layer only if the security level of the

subject (e.g. the CLR of a person) is at least as high as the security level of the

object (e.g. the CLS of a document). As such, with MLS systems, the access is

always decided on the basis of security levels.

3 See also on this “classified information” (Glossary).

MLS systems correspond to the original MAC form, which was specified in the

1970’s. Implementations were mostly used on mainframes in military or other

security-related areas. Until today, this kind of MAC is the furthest common.

Figure 2 Security levels in MLS

2.1.2.1.A) BELL-LAPADULA MODEL

The Bell-LaPadula Model was developed by David Elliott Bell and Len LaPadula

– subsequent to strong guidance from then-CAPT Roger R. Schell, Ph.D.

(USAR, Ret.) – in 1973[19][20][21] to formalize the US Department of Defense

(DoD) MLS policy. It addresses data confidentiality. In the Bell-LaPadula Model,

information is protected against reading by unauthorized subjects. A subject can

read an object only if the security level of the subject (CLR) dominates (i.e. is

greater than or equal to) the security level of the object (CLS), i.e., only if CLR ≥

CLS; additionally, a subject can manipulate an object only if the security level of

the subject (CLR) is dominated by (i.e. is less than or equal to) the security level

of the object (CLS), i.e., only if CLR ≤ CLS. As such, a subject at a given security

level cannot read objects of a higher security level, nor manipulate objects of a

lower security level (“no read-up”, “no write-down”). This results in a bottom-up

information flow (i.e. from bottom to top). There can, although, be a distinction

between trusted and untrusted subjects.[22] Trusted subjects can be relied on not to

compromise security; all other subjects are untrusted. As such, the manipulation

on an object at a given security level by a subject at a higher security level may

happen in the Bell-LaPadula Model via the concept of trusted subjects. Trusted

subjects are not restricted by the “no-write down” security policy. Untrusted

subjects are. Trusted subjects must be shown to be trustworthy with regard to the

security policy. Systems based on the Bell-LaPadula Model were mainly used if

data was subject to a certain secrecy. The classical Bell-LaPadula systems were

replaced by Lattice or Compartment-Based systems.

2.1.2.1.B) BIBA MODEL

Also known as Biba Integrity Model, the Biba Model was developed by Kenneth

J. Biba in 1977 [23]. It addresses data integrity. In the Biba Model, information is

protected against manipulation by unauthorized subjects. A subject can

manipulate an object only if the security level of the subject (CLR) dominates (i.e.

is greater than or equal to) the security level of the object (CLS), i.e., only if CLR

≥ CLS; additionally, a subject can read an object only if the security level of the

subject (CLR) is dominated by (i.e. is less than or equal to) the security level of

the object (CLS), i.e., only if CLR ≤ CLS. As such, a subject at a given security

level cannot manipulate objects of a higher security level, nor read objects of a

lower security level (no write-up, no read-down). This results in a top-down

information flow (i.e. from top to bottom). The Biba Model is used, for example,

in Information Technology (IT) (e.g. as counter measure against attacks on

security-relevant systems such as firewalls) and in military systems (where it is

fundamentally important that an instruction in the command chain cannot be

modified and a wrong instruction is, thus, passed on).

2.1.2.1.C) LOW-WATERMARK MAC MODEL

The Low-Watermark MAC (LoMAC) Model is a variation of the Biba Model that

allows subjects at a given security level to read objects of a lower security level

(no write-up, read all). When this happens, the security level of the reading

subject is reduced to the security level of the object read, so that the subject can

no more manipulate objects of its original security level. This results in a bottom--

up / top-down information flow (i.e. from bottom to top, and from top to

bottom). LoMAC systems are mainly implemented in chroot applications such as

honeypots.

2 .1 .2 .2 . MU LTI -LATERA L SEC URITY

This is a more complex type of MAC. Multi-Lateral Security systems employ not

only a vertical top-down or bottom-up arrangement consisting of security levels

(like MLS), but also a horizontal arrangement consisting of labels, thus forming a

lattice (i.e. they also assign access rights based on segments). Technically, both

security levels and labels are used. This results in a horizontal access system (the

labels) that features additional vertical characteristics (the security levels) (Figure

3). An access to an object is only possible with not only the appropriate security

level (e.g. secret), but also with the appropriate label (e.g. crypto), thus properly

fulfilling all the requirements. If subject A has read access on the security level

strictly confidential, it can read objects of this security level. The same user has,

however, no access to objects that are classified as strictly confidential (crypto). In

order to clarify more complex circumstances, these systems are also designated as

Policy-Based Security systems or Rule-Based Security systems.

Figure 3 Security levels in Multi-Lateral Security

2.1.2.2.A) LATTICE MODEL

Also known as Compartment Model, the Lattice Model was specified in 1976 by

Dorothy E. Denning[24], and in 1993 by Ravi S. Shandu[25]. It is based on the Bell

LaPadula Model, and extends the accesses around labels, thus forming a lattice. If

subject A has read access to the security levels strictly confidential and confidential, it

can read objects of these security levels. The same subject has, however, no

access to objects that are classified as strictly confidential (crypto). Only if the subject

has access to the CLS’s strictly confidential (security level) and crypto (label) can it

access these objects. In principle, the model applies a combination of security

levels with the Need-to-Know Principle: objects become both vertically

(according to security level) and horizontally (according to subject matter)

subdivided, while subjects are assigned a security level per subject matter. An

access can take place only if the requirements of both control systems are

fulfilled. Special attention is put on the control of the information flow. It should

not be possible confidential information to be passed on to untrustworthy

subjects.

2.1.2.2.B) BREWER-NASH MODEL

This model is also known as Chinese Wall Model (where the expression “Chinese

wall” comes from the financial sector), and describes certain rules that are to

prevent a clash of interests to be caused. It is a variation of the Lattice Model, and

was described in 1989 by David F.C. Brewer and Michael J. Nash. [26] This model

was developed to provide information security access controls that can change

dynamically. It was designed to provide controls that mitigate conflict of interest

in commercial organizations. As such, it builds separation of duties within the

access control. This model is also built upon an information flow model. The

individual data is ordinarily arranged into horizontal segments, and mutual access

is barred. In this model, no information can flow between subjects and objects in

a way that would create a conflict of interest.

2 .1 .2 .3 . NEED-TO-KN OW PRIN CIPLE

The Need-to-Know Principle offers an alternative to the security levels model:

here, objects are arranged horizontally into subject matter; each subject is

assigned the subject matter for which they should be responsible. According to

the specification, a subject that wants to access an object must now belong either

to all or at least one of the subject matters that are assigned to the object. Thus,

the spreading range of information is limited substantially, and the control of the

information flow is facilitated. The advantage of this security concept consists on

the fact that individual subjects are only granted the rights needed for their task.

Thereby, the risk of a misuse of applications by exploitation of security

vulnerabilities is minimized. That means, for example, that an application that

does not need authorization for network access receives no rights for this

purpose. This implicates that an attacker that would like to exploit a security

vulnerability cannot misuse a program in order to establish network connections.

2 .1 .2 .4 . OTHER SECURITY MODELS

2.1.2.4.A) CLARK-WILSON MODEL

The Clark-Wilson Model was developed in 1987 by David D. Clark and David R.

Wilson.[27] It describes the integrity of commercial, non-military systems, and is a

variation of the classical MAC approach. Practically every mainframe processes

data on basis of the Clark Wilson Model.

1. The system is in a valid (consistent) initial state.

2. Access to the system only by means of explicitly permitted transactions.

3. Only transactions that bring the system under all circumstances into a

(new) valid state are permitted.

2.1.2.4.B) BRITISH MEDICAL ASSOCIATION MODEL

The British Medical Association (BMA) Model was specified in 1996 by Ross

Anderson.[28] It combines characteristics of the Clark Wilson Model with the Bell

LaPadula Model. The BMA Model is an access model that was developed for the

protection of medical data. It is generally applicable to all data that is subordinate

to data protection. In 1996, it was taken over by the UEMO European Medical

Organization. The BMA Model is not centrally, but rather locally applied. The

policy is determined by the patient.

2.1.3. Disadvantages

The main disadvantage of MAC lies in the complexity of the configuration, since,

for each application, it must be determined which access authorizations the

application requires.

C h a p t e r 3

REQUIREMENT ANALYSIS

A solution should meet the following requirements:

 to be transparent to the user;

 to provide active protection;

 to be easily implementable in Windows Vista;

 most importantly, to disable spyware.

3.1. To Be Transparent to the User

There should be no requirement for administrator or user configuration and/or

interaction for the solution to work correctly.

3.2. To Provide Active Protection

A solution should provide constant “real-time” protection against spyware, as

opposed to passive “on-demand” protection.

3.3. To Be Easily Implementable in Windows Vista

A solution should be able to be implemented in the Windows Vista OS from

Microsoft Corporation without requiring changing a lot of code.

3.4. To Disable Spyware

There is no true consensus on the definition of “spyware” (notwithstanding the

valuable efforts of groups like the ASC). Additionally, there are also several types

of spyware. It should, then, be noted that, in the context of this thesis, “spyware”

is any piece of software that (attempts to) collect(s) sensitive information without

appropriate user consent. Technically speaking, this translates to any piece of

software that (attempts to) read(s) an object containing sensitive information

without user interaction. In the context of this thesis, sensitive information is any

piece of personal, private, confidential, secret, or top secret data. In the context of

this thesis, sensitive information translates to user data files. In the context of this

thesis and Windows Vista, user data files are files located under a user profile of

Windows Vista (%USERPROFILE%). Technologies such as advertising display

software, remote control software, dialing software, system modifying software,

security analysis software, and automatic download software are, thus, out of the

scope of this thesis. Passive tracking technologies are also out of the scope of this

thesis. As far as spyware is concerned, this thesis aims primarily at tracking

software. Concluding, a solution should prevent sensitive information disclosure.

3.5. Additional Important Considerations

3.5.1. MAC Scope

In this thesis, MAC is used to refer to the approach where a system wide security

policy restricts the access rights of subjects (usually processes). This is a wider

interpretation of MAC than that in the TCSEC[11], which focuses on MLS.

3.5.2. Implications of the Term “Mandatory”

It is defended by some that the term “mandatory” used with access controls has

historically implied a very high degree of robustness that assures that the

control/enforcement mechanism(s) resist(s) subversion, thereby enabling it/them

to enforce an access control policy that is mandated by some regulation that must

be absolutely enforced, such as the Executive Order 12958 for US classified

information.

The author disagrees with this assertion. In the author’s opinion, the term

“mandatory” used with access controls does not imply robustness, but only that

the access controls are always (when possible) checked. As such, in the author’s

opinion, if a system evaluates any securable object4 against access controls, and

includes (a) security mechanism(s) that attempt(s) to restrict changes of security

configuration by users other than administrators, then the system is a MAC

system. If those mechanisms fail, then the system may be considered an insecure

MAC system.

Concluding, in the author’s opinion, and in the context of this thesis, MAC does

not imply robustness.

4 In the context of Windows Vista, a securable object is any object with a security descriptor (i.e. files, folders,

pipes, processes, threads, window stations, registry keys, services, printers, shares, inter-process objects,

jobs, and directory objects).

C h a p t e r 4

MARKET REVIEW

4.1. MAC Implementations Overview

A few MAC implementations, such as Unisys’ BLACKER project, were certified

robust enough to separate TS from U late in the last millennium. Their

underlying technology became obsolete, and they were not refreshed. Today

there are no current implementations certified by TCSEC to that level of robust

implementation. However, some less robust products exist (Table 7).

Table 1 MAC implementations

Producer
(Implementation)

Model
Type(s)

System(s) Certification(s)

NSA / Red Hat
(SELinux)

Variant of Bell-
-LaPadula

RHEL, Gentoo
Linux, openSUSE,

Debian

LSPP,
RBACPP,
EAL4+

Novell (AppArmor) - openSUSE -

TrustedBSD Biba, LoMAC FreeBSD -

Sun

Variant of Bell-
-LaPadula

Trusted Solaris -

Apple Biba, LoMAC Mac OS X -

Microsoft (MIC) Variant of Biba Windows Vista -

Rule Set Based
Access Control

Variant of Bell-
-LaPadula

Gentoo Linux,
Debian, Fedora

-

Unisys
Biba, Bell-

-LaPadula, Lattice,
Clark-Wilson

OS2200 TCSEC B1

Argus Systems Group
(PitBull LX)

Lattice AIX, Solaris, Linux
ITSEC F-B1,

E3

4.2. Security-Enhanced Linux

Security-Enhanced Linux (SELinux) is a reference implementation of the Flux

Advanced Security Kernel (FLASK) security architecture for flexible MAC. It was

created in order to demonstrate the value of flexible MACs and how such

controls could be added to an OS. The FLASK architecture has been

subsequently mainstreamed into Linux, having been merged into the mainline

version of Linux in August 2003. It utilizes a Linux 2.6 kernel feature called Linux

Security Modules (LSM), which provides a kernel API that allows modules of

kernel code to govern access control. The FLASK architecture has been ported

to several other systems, including the Solaris OS, the FreeBSD OS, and the

Darwin kernel, spawning a wide range of related work. The FLASK architecture

provides general support for the enforcement of many kinds of MAC security

policies, including those based on the concepts of Type Enforcement (TE), Role-

Based Access Control (RBAC), and MLS. The germinal concepts underlying

SELinux can be traced to several earlier projects by the US National Security

Agency / Central Security Service (NSA/CSS). Red Hat Enterprise Linux

(RHEL) version 4 (and later versions) come with an SELinux-enabled kernel.

Although SELinux is capable of restricting all processes in the system, the default

targeted policy in RHEL confines the most vulnerable programs from the

unconfined domain in which all other programs run. RHEL 5 ships two other

binary policy types: strict (which attempts to implement least privilege) and MLS

(which is based on strict, and adds MLS labels). RHEL 5 contains additional MLS

enhancements, and received 2 Labeled Security Protection Profile (LSPP) / Role-

Based Access Control Protection Profile (RBACPP) / Controlled Access

Protection Profile (CAPP) / Evaluation Assurance Level (EAL) 4+ certifications

in June 2007.[29]

4.3. AppArmor

AppArmor is security software for Linux, released under the GNU General

Public License, that supplements the traditional UNIX DAC model by providing

MAC. SUSE Linux (now supported by Novell) and Ubuntu 7.10 have added

AppArmor. AppArmor utilizes LSM. It is not capable of restricting all programs,

and is not yet included in the kernel.org kernel source tree. In most Linux

distributions, MAC is not installed.

4.4. FreeBSD

FreeBSD is a UNIX-like free OS descended from AT&T UNIX via the Berkeley

Software Distribution (BSD) branch through the 386BSD and 4.4BSD OSs.

Beginning with version 5.0, the work of the TrustedBSD project has been

incorporated into releases of the FreeBSD OS. Development is a work in

progress, and the implementation models, as well as the capabilities, are

constantly improving. MAC on FreeBSD comes with pre-built structures for

implementing MAC models such as Biba and MLS.

4.5. Trusted Solaris

Trusted Solaris is a security-evaluated OS based on Solaris by Sun, featuring a

MAC model. It uses a mandatory and system-enforced access control

mechanism, where CLR’s and labels are used to enforce a security policy.

However, note that the capability to manage labels does not imply the kernel

strength to operate in MLS mode. Access to the labels and control mechanisms

are not robustly protected from corruption in protected domain maintained by a

kernel. The applications a user runs are combined with the security label at which

the user works in the session. Access to information, programs, and devices is

only weakly controlled.

4.6. Mac OS X

Mac OS X is a line of graphical OS’s developed, marketed, and sold by Apple, the

latest of which is pre-loaded on all currently shipping Macintosh computers. Its

MAC framework is an implementation of the TrustedBSD MAC framework.[30] A

limited high-level sandboxing interface is provided by the command-line function

sandbox_init.5

4.7. Mandatory Integrity Control

4.7.1. Concept

Mandatory Integrity Control (MIC) is a core component of the Windows security

architecture that restricts the access permissions of applications that are running

under the same user account and that are less trustworthy.

MIC extends the security architecture of the OS by assigning an integrity level

(IL) to application processes and securable objects.

The IL is a representation of the trustworthiness of running application processes

and objects, such as files created by the application. MIC provides the ability for

resource managers, such as the file system, to use pre-defined policies that block

processes of lower integrity, or lower trustworthiness, from reading or modifying

objects of higher integrity. MIC allows the Windows security model to enforce

new access control restrictions that cannot be defined by granting user or group

permissions in Access Control Lists (ACL’s).

The Windows security architecture is based primarily on granting access rights

(read, write, and execute permissions) and privileges to users or groups that are

represented internally by security identifiers (SID’s). When a user logs on to

Windows, the security subsystem – the Security Reference Monitor (SRM) – sets

5 See sandbox_init manual page for documentation. [31]

the user’s SID and group membership SID’s in a security access token. The

security access token is assigned to every application process that is run by that

user. Every time the application process opens an object, such as a file or registry

key, the resource manager that manages the object calls on the SRM to make an

access decision. The access check determines the allowed access permissions for

this user. The SRM compares the user and group SID’s in the access token with

the access rights in a security descriptor that is associated with the object. If the

user SID is granted full access rights in the object’s ACL, then the application

process that user runs has full access to the object.

4 .7 .1 .1 . EXTENDING THE WIND OWS SECU RITY AR CHITECTURE

MIC extends the security architecture by defining a new Access Control Entry

(ACE) type to represent an IL in an object’s security descriptor. The new ACE

represents the object IL. An IL is also assigned to the security access token when

the access token is initialized. The IL in the access token represents a subject IL.

The IL in the access token is compared against the IL in the security descriptor

when the SRM performs an access check. Windows Vista uses the AccessCheck

function to determine what access rights are allowed to a securable object.

Windows restricts the allowed access rights depending on whether the subject’s

IL is higher or lower than the object, and depending on the integrity policy flags

in the new access control ACE. The SRM implements the IL as a mandatory

label to distinguish it from the discretionary access under user control that ACL’s

provide.

4 .7 .1 .2 . FEATURES

MIC enables a number of important scenarios in Windows Vista. MIC’s main

features are:

 IL’s are assigned automatically to every security access token during

access token creation, which means that every process and thread has an

effective IL for access control;

 the SRM automatically assigns mandatory labels to specific object types;

 the system uses few IL’s, which makes the basic architecture simple to

understand and use;

 integrity policy is flexible, which meets the access requirements of

different object resource managers, and allows for extensibility;

 it integrates with existing security architecture, which minimizes impact to

the large legacy of system and application code that depends on Windows

security;

 there is no requirement for administrators or users to configure IL’s for

the enforcement mechanism to work correctly.

MIC accomplishes this by defining a new mandatory label ACE type for assigning

an IL to objects. Details of this structure are described in a later section of this

thesis. However, the mandatory label ACE defines an object IL without changes

to the existing security descriptor data structure definition or to the commonly

used Discretionary Access Control List (DACL).

MIC is based on a mandatory label that the OS assigns in order to differentiate it

from discretionary access under user control. DAC allows the object owner, or

the group that is granted permission, to change the object’s access permissions.

Windows provides a graphical user interface (GUI) for advanced users to view

and modify the security permissions (represented by the DACL) on objects, such

as files and registry keys. Mandatory labels are always assigned to specific objects,

and there are controls on how the object creator can set or initialize the label on

object creation. No GUI for managing integrity labels is implemented for

Windows Vista, because label management is available or necessary for relatively

few areas.

4 .7 .1 .3 . PURP OSE

The purpose of MIC is to restrict the access permissions of applications that are

running under the same user account and that are less trustworthy. Unknown,

potentially malicious code that is downloaded from the Internet should be

prevented from modifying system state, changing user data files, or manipulating

the behavior of other application programs. The Windows SRM assigns a simple

hierarchy of IL’s to code running at different privilege levels for the same user.

Previous versions of Windows can adjust the security access token privileges of

an application process, although such adjustment is not common. Before

Windows Vista, most applications ran using an administrative account with full

administrator rights. Windows Vista incorporates the concept of least privilege by

enabling broader use of standard user accounts. User Account Control (UAC) in

Admin Approval Mode for administrator accounts means that multiple

applications on the same desktop are running with different privilege levels. For

example, Internet Explorer Protected Mode (IEPM) uses MIC to run the Web

browser in a process with limited access permissions.

The primary security problem that MIC addresses is unauthorized tampering with

user data and, indirectly, with system state. A secondary problem MIC helps with

is information disclosure. However, information disclosure is prevented only with

respect to access to process address space.

Untrustworthy code can try to modify user data in many ways. Some attacks may

try to manipulate data directly by creating, modifying, or deleting files. Other

attacks target another process running at higher privilege, with the goal of getting

arbitrary code to execute in another application that does have the required level

of access. There are many types of cross-process attacks. Because of the wide

range of application design and implementation, MIC does not provide a

complete isolation barrier. MIC is not an application sandbox. However, it can be

one of the security tools that application developers use to restrict the behavior of

less trustworthy applications.

4 .7 .1 .4 . EARLIER INTEGRITY MODELS

Some traits of MIC are similar to earlier integrity models for computer security.

However, MIC addresses primarily tampering or elevation of privilege in the

Windows application environment. Previous integrity models were more

concerned with maintaining integrity of trustworthy processes by enforcing

policies that prevent the reading of untrusted data.

The Biba Model is based on a hierarchy of integrity labels and the access policies

that are allowed when a subject IL dominates the object IL. MIC resembles the

Biba Model in the following ways:

 it uses a hierarchy of integrity labels (integrity labels are not the same as

security labels in the Bell-LePadula Model);

 the system uses a set of ordered subjects, objects, and IL’s;

 the subject’s IL dominates (is greater than or equal to) the object’s IL;

 integrity policies inhibit access to objects but are not used primarily to

limit the flow of information;

 preventing information disclosure is not the main goal.

MIC in Windows Vista does not prevent information disclosure other than with

respect to access to process address space.

With respect to the Windows IL’s, a lower value indicates less trustworthiness,

and a higher value indicates greater trustworthiness. A lower-level subject cannot

modify a higher-level object. The subject’s IL is not dynamic. For example, the IL

of a subject does not change to a lower value if the process reads data from a low-

-integrity object. The strict integrity model in the Biba Model does not allow a

higher-integrity process to read lower-integrity data. This is sometimes called a

“no-read-down” integrity policy. The Windows integrity policies, which are

described in more detail below, do not inhibit or prevent higher-integrity subjects

from reading or executing lower-integrity objects. There are many examples of

attacks where reading malformed, untrusted input data results in an exploit of a

vulnerability in an application and arbitrary code execution. MIC does not inhibit

or prevent reading data at any level. Windows does not enforce a strict integrity

policy as described in the Biba Model. The integrity design assumes that

processes that are designed to handle untrusted data from an unknown or

untrusted source are running at a lower IL, or that untrusted data is verified

before use. However, MIC does not enforce that constraint.

MIC does not implement a dynamic low-watermark policy. A dynamic low-

-watermark policy changes the IL of the subject as the subject opens lower-

integrity objects. An issue with dynamic integrity is when a high-integrity process

obtains open handles to many objects based on high integrity, and then suddenly

becomes a lower-integrity subject after it opens a particular low-integrity file.

Forcing all open handles to higher-integrity objects to close when the IL changes

affects the application’s behavior. The dynamic lower-integrity process itself

becomes a target object of other processes at the lower IL. Such processes might

now be able to modify the behavior of the application (at the same lower level)

that has open handles to higher-integrity objects.

MIC is not suitable for integrity protection of data to support military or

commercial requirements as described in the Clark-Wilson Model. The Windows

implementation of integrity controls does not build on the concepts of

Constrained or Unconstrained Data Items and certified Transformation

Procedures. However, these concepts can be useful for application designers

when they consider information flow from untrusted sources into higher-integrity

processes.

Although MIC is similar to earlier integrity models in computer security,

Windows Vista does not implement any of the models. Instead, MIC limits access

permissions that are available to processes running with different privilege or

trust levels.

4.7.2. Design

MIC is an extension of the Windows security architecture, which is based on the

SRM in the kernel. The SRM enforces access control by comparing user and

group SID’s in the security access token with granted access permissions in the

ACL of an object’s security descriptor. MIC adds an IL to the security access

token and a mandatory label ACE to the System ACL (SACL) in the security

descriptor.

MIC’s major parts are:

 predefined IL’s and their representation;

 integrity policies that restrict access permissions;

 IL assigned to the security access token;

 mandatory label ACE;

 mandatory labels assigned to objects;

 integrity restrictions within the AccessCheck and kernel-mode SeAccessCheck

Application Programming Interfaces (APIs).

Each of these parts is described in more detail below. MIC is always in effect,

independent of other security policy options. The IL checks, like the access

control checks, are not optional. There are no security policy options to disable

IL checks. Although MIC supports UAC, MIC remains in effect when UAC is

disabled by security Group Policy.

4 .7 .2 .1 . INTEGRITY LEVELS

Windows defines integrity levels (IL’s) by using a SID. Using a SID to represent

an IL makes it easy to integrate MIC into existing security data structures without

requiring code changes. IL SID’s have the following form: “S-1-16-xxxx”. Table

1 shows the components of IL SID’s.

Table 2 IL SID identifier authority values

Value Description

16 Represents the Mandatory Label Authority
(SECURITY_MANDATORY_LABEL_AUTHORITY).

xxxx Represents the relative identifier (RID) field that is the IL. The RID is
a hexadecimal value that represents the IL.

There are 4 primary IL’s in Windows Vista with 4 corresponding values. A lower

value indicates a lower IL or a lower level of trustworthiness. These values are

defined in the header file, winnt.h. Table 2 shows the defined IL’s and their

corresponding values.

Table 3 Defined IL’s and corresponding values

Value Description Symbol

0x0000 Untrusted level SECURITY_MANDATORY_UNTRUSTED_RID

0x1000 Low IL SECURITY_MANDATORY_LOW_RID

0x2000 Medium IL SECURITY_MANDATORY_MEDIUM_RID

0x3000 High IL SECURITY_MANDATORY_HIGH_RID

0x4000 System IL SECURITY_MANDATORY_SYSTEM_RID

An example of a medium IL SID is this string: “S-1-16-8192”. The RID value of

8192 is the decimal equivalent of 0x2000.

The RID’s are separated by intervals of 0x1000, which allows for definition of

additional levels. The separation also allows assigning an IL to a process that is

slightly higher than medium: for example, to meet specific system design goals.

The defined IL SID’s have string name values associated with them. Using the

API LookupAccountSID will return string names for each IL SID. Table 3

shows the string names for the IL’s.

Table 4 IL string names

IL SID Name

S-1-16-4096 Mandatory Label\Low Mandatory Level

S-1-16-8192 Mandatory Label\Medium Mandatory Level

S-1-16-12288 Mandatory Label\High Mandatory Level

S-1-16-16384 Mandatory Label\System Mandatory Level

The IL’s are also defined as SID strings in the Security Descriptor Definition

Language (SDDL). The SDDL defines the string format that the

ConvertSecurityDescriptorToStringSecurityDescriptor and

ConvertStringSecurityDescriptorToSecurityDescriptor functions use to describe a security

descriptor as a text string. The language also defines string elements for

describing information in the components of a security descriptor. Using the

SDDL to define the IL’s makes it convenient to define the IL of an object when

the object is created. The SDDL support for mandatory labels is described in

Appendix A: SDDL for Mandatory Labels.

Windows Vista uses IL SID’s in the security access token to represent the subject

IL and uses IL SID’s in the mandatory label ACE in a security descriptor to

represent the object IL.

Example code for getting the access token IL is shown in Appendix E: Getting

the IL for an Access Token.

For information on tools that can be used to modify IL’s, see Appendix B: Icacls

and File IL’s and Appendix C: Chml and File IL’s.

4 .7 .2 .2 . INTEGRITY PO LICIES

MIC uses simple policies to determine how to use the mandatory labels on

objects to restrict the level of access that is available to lower-integrity subjects.

This means that the policies limit the type of access that lower-IL objects are

allowed to have to higher-IL objects. Table 4 shows the two policy categories.

Table 5 Integrity policy categories

Category Description

Access token
mandatory policies

Set in the access token and determine how mandatory
policies apply to the subject, which is represented in the
access token.

Mandatory label
policies

Set in the mandatory label ACE (described below) on
objects, and determine how to restrict access to the object.

The integrity policies are used when the mandatory policy check is performed

when evaluating access permissions on a securable object. The policies determine

how access rights are restricted across IL’s.

4.7.2.2.A) MANDATORY LABEL POLICIES

The mandatory label policies are defined as flags (bits) in the Mask field of the

mandatory label ACE. These policy flags determine the restrictions on access

permissions that apply to lower integrity subjects. Table 5 shows the mandatory

label policies that are defined in Windows Vista.

Table 6 Mandatory label policies in Windows Vista

Policy Description

SYSTEM_MANDATORY_POLICY_NO_WRITE_UP The default policy
on all object
mandatory labels.
The flag is
equivalent to the
NO_WRITE_UP
access token
policy. The policy
restricts write
access to the
object by a
subject with a
lower IL.

SYSTEM_MANDATORY_POLICY_NO_READ_UP Restricts read
access to the
object by a
subject with a
lower IL. The
policy is used to
restrict read
access to the
virtual memory
address space of a
process.

SYSTEM_MANDATORY_POLICY_NO_EXECUTE_UP Restricts execute
access to the
object by a
subject with a
lower IL. The
policy is used to
restrict launch
activation
permissions on a
COM class by
lower-integrity
subjects.

These defined policies meet the design goals for Windows Vista. The architecture

of MIC allows for expansion by defining additional policy options that control

access permissions between subjects and objects at different IL’s.

4 .7 .2 .3 . MANDATORY LABEL ACE

MIC defines a new ACE type, the system mandatory label ACE. The mandatory

label ACE is used to represent the mandatory label of an object in the object’s

security descriptor. The mandatory label contains the IL and associated integrity

policy. A mandatory label ACE is used only in the SACL of the security

descriptor. The SACL is a separate field in the security descriptor from the

DACL.

Figure 4 Security descriptor fields

The DACL contains user and group access permissions to the object. Any user or

group can make updates to the DACL with WRITE_DAC object access

permissions. DACL’s can be updated more frequently and by different users.

One of MIC’s features is that the security system maintains the label with an

object after a mandatory label is applied to the object. Enforcing the appropriate

mandatory label in the object security descriptor, with little or no impact to

applications designed to manage ACL’s, is accomplished by putting the

mandatory label in the SACL, where it is primarily under the control of the

security system. The mandatory label is logically separate from the system audit

entries in the SACL. There is no required order for the mandatory label to

precede or follow the system audit entries in the SACL.

The mandatory label ACE is similar to an access allowed ACE, in that it contains

an ACE header, an access mask, and a SID. The SID portion of the mandatory

label ACE contains the IL SID. Table 6 shows the fields in the ACE header.

Table 7 Fields contained in the ACE header

ACE header
field Value

AceType SYSTEM_MANDATORY_LABEL_ACE_TYPE

AceFlags Control flags that define inheritance of mandatory label
ACE type

AceSize Size of the mandatory label ACE

The mandatory label ACE contains a Mask field. The mask is used to define the

mandatory policies that determine restrictions on the access permissions that

apply to processes (or subjects) with a lower IL. An example policy used widely in

Windows Vista is the NO_WRITE_UP policy. The NO_WRITE_UP policy flag

in the mandatory label ACE mask means that subjects with a lower IL (in the

access token) than the IL SID in the mandatory label on the object are restricted

from getting generic write access to the object.

There is only one effective mandatory label on an object. If a security descriptor

happens to get more than one mandatory label in the SACL, the first mandatory

label ACE in the SACL is the effective label for the object.

4 .7 .2 .4 . HOW WIND OWS A SSIGNS A MANDATO RY LABE L TO

OBJ ECTS

Windows assigns a mandatory label to a securable object when the object security

descriptor is created. The IL on a new object is assigned in one of three ways:

 the SRM assigns the object a mandatory label when the security

descriptor is created for the object;

 the creating process specifies an explicit mandatory label as security

attributes when creating the object using a function, such as CreateFile;

 the parent container defines an inheritable mandatory label ACE that

applies to child objects that are created in the container.

The easiest way to understand how object IL’s are assigned is maybe to assume

that every object is assigned a mandatory label with the same IL as the subject IL

of the creating process (or thread). However, there are exceptions to the general

idea based on object type and subject IL. The exceptions are the result of design

choices that are necessary to support other system requirements for a consistent

user experience when various security policies, such as UAC, are enabled or

disabled.

Mandatory labels can be applied to all securable objects that have access control

based on the security descriptor. There are many types of securable objects,

including process and thread objects, named objects, and persistent objects such

as files or registry keys. Windows Vista does not assign explicit mandatory labels

to all object types when objects are created. The object types to which the SRM

assigns mandatory labels at object creation are:

 processes;

 threads;

 access tokens;

 jobs.

All other object types have either an implicit default or an inherited mandatory

label. Recall that, during access token initialization, an IL is assigned to the

security access token that is created during an interactive logon. The first process

that is launched on behalf of a user logon is userinit.exe, which starts the shell

process, explorer.exe. Userinit.exe is started by a system service (Winlogon) that uses a

call to CreateProcessAsUser and passes in the access token for the interactive logon

user.

CreateProcessAsUser creates a process object and an initial thread, among other

things. When the process object is created, the security descriptor for that process

is assigned the IL from the access token that is assigned as the primary access

token to the new process. When userinit.exe calls CreateProcess to launch the shell,

the process object for explorer.exe is initialized. The process object includes a

security descriptor and primary access token. The mandatory label on the

explorer.exe process is set to the IL of the creating process, userinit.exe, which is

medium. The primary access token for explorer.exe is inherited from the creating

parent process, userinit.exe, and has an IL of medium. When the explorer.exe process

creates a new thread, the thread object is given a security descriptor, and the SRM

assigns an IL to the thread object based on the IL of the creating process. The

thread objects within the explorer.exe process are assigned an IL of medium, which

is the IL of the primary access token of the creating process.6

6 An access token object is a securable object with its own security descriptor. The token’s security descriptor

is used to determine allowed access during OpenProcessToken or OpenThreadToken functions. The access

By always assigning mandatory labels to process, thread, token, and job objects,

MIC prevents processes for the same user at lower IL’s from accessing these

object types and modifying their content or behavior, such as injecting a

Dynamic-Link Library (DLL) or impersonating a higher-level access token.

4.7.2.4.A) DEFAULT IL

Not all object types are assigned a mandatory label ACE in the security

descriptor. If a mandatory label ACE is present in the security descriptor, that is

called an “explicit mandatory label”. If no mandatory label ACE is present, the

SRM uses an implicit default mandatory label for that object during the

mandatory policy check. The default mandatory label assigns a medium IL for all

securable objects. If a mandatory label is not defined in the security descriptor,

the implicit default mandatory label applies to all object types.

The default object IL of medium, combined with the default mandatory policy of

NO_WRITE_UP, restricts modify access to all objects by processes with a

subject IL less than medium. The default mandatory label and policy prevent

untrustworthy processes at low integrity from modifying any user or system files

or registry keys on the system that may otherwise allow discretionary write access

in the DACL.

The NTFS file system objects and registry keys are not automatically labeled

when they are created. These objects do not have mandatory labels after upgrade

from a previous version of Windows to Windows Vista. Files on non-NTFS file

systems (CDFS or FAT32) that do not have security descriptors are not securable

objects and do not have an IL. Every security descriptor must have an implicit

mandatory label.

token object has a mandatory label in the security descriptor on the access token object. The access token

also contains an IL SID in the access token groups list that represents the subject IL.

Processes with a subject IL at or above medium create files and registry keys

without an explicit label. As a consequence, the file system and registry objects

that are created by a high or system IL process have an implicit medium label.

Applications that use mandatory labels can define explicit labels when creating

objects. However, Windows Vista does not assign labels higher than medium IL to

the file system or registry by default. That does not mean that these objects are

necessarily open to modification by lower-integrity processes. The inherited (or

default) DACL on file system or registry objects that were created by a high- or

system-level process grants write access only to members of the Administrators

group or to local System or service accounts.

A number of design constraints required using the default implicit mandatory

label of medium, instead of assigning an explicit mandatory label based on the

subject’s IL for most object types. A specific example is based on the ability to

enable or disable UAC by using local security policy. When UAC is disabled, a

user who is a member of the local Administrators group has all processes running

with a full privilege access token at a high IL. If all objects are explicitly labeled at

the subject’s IL, then all files such as documents and spreadsheets that the user

creates would be assigned a high IL. The high label would seem appropriate, even

though the inherited DACL permissions for the user profile provide sufficient

access control for user access. However, if UAC is enabled by local computer or

Group Policy, most processes run by the same user are assigned a filtered security

access token at a medium IL. After UAC is enabled, the user would not be able to

open files that were created when UAC was disabled. A medium-integrity

application that tried to open the user’s high-integrity documents would receive an

Access Denied error.

If a process is running with a subject IL less than the default IL of medium, that

process will have restricted access permissions to all objects that have an implicit

medium IL. Processes with a low IL will not be able to modify any object with

either an explicit or implicit IL of medium or higher, regardless of the access rights

granted in the DACL to the security principal. Therefore, all objects that are

created by a process with a subject IL less than the default level (medium) are

explicitly labeled by the SRM. Access restrictions on low-integrity processes are

possible in Windows Vista because all applications generally run at the medium IL

and the application compatibility issues are minimal. Applications that run

correctly at low integrity generally require specific design changes to work

correctly with restricted access.

4.7.2.4.B) LABELING OBJECTS CREATED BY LOW SUBJECTS

Applications can be started using the CreateProcessAsUser function at a low IL. A

low process is initialized by CreateProcessAsUser with the following IL information:

 the new process object is created with a security descriptor containing a

mandatory label with low integrity;

 a new thread object is created for that process and with a security

descriptor that contains a mandatory label with low integrity;

 a primary access token is assigned to the new process; the access token

object has a security descriptor with a mandatory label at low, and the

access token contains a TokenIntegrityLevel with a low-integrity SID that

represents the subject IL.

Assuming that the low-integrity process is running, and that it wants to create a

thread: to create a thread, it must open its own process object for write access to

create a new thread object; if the mandatory label on the process object were

medium, the low subject would fail to open the process and would not be able to

create a new thread, but, because the process object is also labeled at low integrity,

the low subject is allowed to open the process for write access and to create a new

thread object. The example shows why it is important that the mandatory labels

on the process object, thread objects, and security access token be consistent at

the same IL.7

Supposing that the low process creates a temporary file: the application calls

CreateFile to create a new file, write some data, and close the file; later, the low

process wants to re-open the same file to append data; if the temporary file has

an implicit default mandatory label at medium IL, the low process will not be able

to reopen the file that it created earlier for modify access. The same issue could

arise for any securable object that a subject with an IL below the default level of

medium creates. Therefore, all securable objects created by a subject with an IL

below the default level are automatically assigned an explicit mandatory label. In

other words, all kernel objects, registry keys, and file system objects are explicitly

labeled at low when the subject IL is low.

4.7.2.4.C) CREATING AN OBJECT WITH A SPECIFIC
 MANDATORY LABEL

Most Windows applications do not need to be “integrity-aware.” The SRM

automatically creates objects and assigns them a mandatory label. Because most

applications run at a medium IL, and the default object IL is medium, the integrity

policy does not change the allowed access control for most applications.

However, some applications, such as services, are designed to support client

applications at different IL’s. The service might be running at a higher IL than the

client, and might want to label new objects created on behalf of the client

explicitly at a lower IL. The IL of the object can be set by the creating process.

The constraint is that the IL on the new object must be less than or equal to the

IL of the creating process.

7 This applies for all IL’s, not only low subjects.

Creating an object with a specific mandatory label

1. Create SDDL security descriptor that defines low mandatory label, e.g.

#define LOW_INTEGRITY_SDDL_SACL_W L”S:(ML;;NW;;;LW)”.

2. Convert SDDL string to security descriptor using

ConvertStringSecurityDescriptorToSecurityDescriptor .

3. Assign security descriptor with low mandatory label to security

attributes structure.

4. Pass security attributes parameter to call to create object, such as

CreateFile.

4 .7 .2 .5 . MANDATORY LABEL INHERITANCE

Windows Vista does not explicitly label files and directories in the NTFS file

system. As mentioned previously, the SRM uses an implicit mandatory label with

a default level of medium for objects that do not have a mandatory label in the

security descriptor.

Applications can be designed to run at a low IL. IEPM is an example of a

Windows Vista application that is designed to run at low integrity. Applications at

low integrity might need folders in the file system where they can write temporary

files or application data. In the case of IEPM, the Temporary Internet Files

folder in the user’s profile is used. A low application can write to a file system

folder by assigning the folder an explicit mandatory label that permits write access

from a low-integrity process.

Depending on the application design, there might be other cooperating processes

that add files to the folder used by the low-integrity application. If the other

processes are also running at low integrity, the files created by those processes are

automatically assigned a low mandatory label. However, if the other partner

process has a higher integrity, the partner process (e.g. a file synchronization

service, or user agent) might create files in the low folder that are not automatically

labeled at low. The partner process creates a medium file in the folder used by the

low application, which the low application cannot modify or delete.

MIC allows a folder with a low mandatory label to have child objects, files, and

subfolders, each with a different, higher mandatory label because each file system

object has a unique security descriptor. There are many scenarios where the

intention is that, for a folder that is assigned a low mandatory label, all files in the

folder must be assigned a low mandatory label so that a low process can modify

them. MIC supports this by enabling mandatory label ACEs to be inheritable

from the parent container to sub-containers and child objects.

The mandatory label ACE type data structure contains an ACE header with an

AceFlags field. The AceFlags field is used to define inheritance flags for the ACE

type that are the same as inheritance flags for other ACE types, such as the

“Access Allowed” ACE type that is used for discretionary access. Mandatory

label ACEs can be defined as inheritable, for container inherit (CI) and/or

object inherit (OI). Mandatory label ACEs cannot be inherit only (IO). If

there is an inheritable mandatory label ACE assigned to a container, the

mandatory label applies to the container itself and to the child objects for which

inheritance applies.

An example of an inheritable mandatory label is the low mandatory label on one

of the folders created under every user profile:

%USERPROFILE%\AppData\LocalLow. This folder is assigned a low mandatory

label when the profile is initialized and intended as the top-level folder that is

writeable by default by low-integrity applications. The following image shows the

inheritable mandatory label on the AppData\LocalLow folder displayed using

the Icacls command. For more information on how Icacls supports mandatory

labels, see Appendix B: Icacls and File IL’s.

The inheritance flags in the mandatory label indicate that the ACE is (OI) and (CI)

ACE with a NO_WRITE_UP (NW) mandatory policy. All subfolders that are

created under the AppData\LocalLow folder will inherit the inheritable label.

Figure 5 Inheritable low mandatory label

When a new file or subfolder is created from a medium process, the new object

inherits the low mandatory label. In the following example, the command prompt

is running in process with medium IL. A file, newfile.txt, and a new folder, Temp, is

created in the LocalLow folder, and both objects inherit the low mandatory label

from the parent container. Icacls indicates that the mandatory label is inherited

with the (I) designation.

Figure 6 Inheriting a mandatory label on a child object

Inheritance for mandatory labels ensures consistency in the IL of objects that are

created under a portion of the file system namespace.

4.7.2.5.A) INHERITANCE AND EXPLICIT LABELS

Objects created in a container that has an inheritable mandatory label inherit the

mandatory label from the container. However, the process that creates a new

object such as a file can provide an explicit mandatory label in the security

attributes parameter to the create function, such as CreateFile.

If the creating process provides an explicit label as a parameter to the object

create function, the new object is assigned the explicit mandatory label provided

by the caller and does not inherit from the parent container. The explicit

mandatory label can have an IL no higher than the subject process creating the

object. The IL in the explicit mandatory label provided by the subject might be

higher than the IL in the parent container’s inheritable mandatory label.

4.7.2.5.B) INHERIT-ONLY RESTRICTION

Inherit-Only is a flag in an ACE that indicates that the ACE does not control

access to the object to which it is attached. IO ACEs are usually assigned to

container objects. The IO ACE is not effective on the container itself; rather, it

applies to child objects of the container. There is a restriction on subjects with an

IL less than the default for setting INHERIT_ONLY labels on new objects. If

the explicit label passed in for a new container object is an INHERIT_ONLY

label with a level less than the default, the label is considered invalid and ignored.

The rationale for this restriction is that a low subject creates a container and tries

to set an INHERIT_ONLY label on the container at low. If the

INHERIT_ONLY label were accepted, the effective IL for the container would

be the implicit default level of medium.

Furthermore, subjects cannot define an INHERIT_ONLY label with an IL

higher than the subject’s IL. For example, a medium subject cannot define an

INHERIT_ONLY label with an IL of high.

4.7.2.5.C) PROTECTED SACL AND LABEL INHERITANCE

SDDL supports defining a protected SACL, which might include an explicit

mandatory label. The protected SACL sets the SE_SACL_PROTECTED flag in

the SECURITY_DESCRIPTOR_CONTROL field of the security descriptor. The

logical separation of LABEL_SECURITY_INFORMATION and

SACL_SECURITY_INFORMATION with respect to access rights is not

complete with respect to how a protected SACL behaves. Mandatory labels are

stored in the SACL. A protected SACL implies that the mandatory label is also

protected.

If the SE_SACL_PROTECTED flag is set in the

SECURITY_DESCRIPTOR_CONTROL, then the mandatory label is also

protected.

 If there is no mandatory label ACE in the protected SACL, an inheritable

mandatory label ACE from the container is not applied (the new object

has an implicit default mandatory label).

 If there is a mandatory label ACE in the protected SACL, changes to the

inheritable label ACE on the container do not affect this object.

For more information about SDDL, see Appendix A: SDDL for Mandatory

Labels.

4 .7 .2 .6 . HOW AC CESS CHECKS W ORK WITH MANDATORY PO LICY

The AccessCheck function enforces the mandatory policy. AccessCheck compares

the specified security descriptor with the specified access token and indicates, in

the AccessStatus parameter, whether access is granted or denied. The

AccessCheck function first compares the IL in the ClientToken with the

mandatory label in the SACL of pSecurityDescriptor to determine what access

rights are not available, based on the mandatory policy. After the mandatory

policy check, the AccessCheck compares the desired access against the access rights

granted in the DACL.

The default mandatory policy prevents lower-integrity processes from gaining

generic write access to higher-integrity objects. For example: by default, a low-

-integrity process is denied generic write access to an object with a higher IL. If

pSecurityDescriptor does not contain a mandatory ACE, an implicit mandatory ACE

is assumed that assigns the object a medium IL. The GenericMapping parameter

determines what access rights are associated with generic write access. If the

GenericMapping parameter is all zeros, then the integrity check will not grant any

specific access rights to a lower-integrity ClientToken. After the integrity check

determines the generic access rights that are available to the caller based on the

mandatory policy, the security descriptor’s DACL is compared with ClientToken to

determine the remaining granted access rights.

4.7.3. Implementation

MIC is used in a number of ways in Windows Vista. Its main purpose is to

restrict the access permissions of applications running under the same user

account that are less trustworthy. MIC prevents less trustworthy code from

modifying objects at a higher level. Most objects under the control of the

Administrators group or System have a DACL that typically grants full control

permission to Administrators and to System, and read and execute permissions to

authenticated users. Examples of resources under control of the Administrators

group and System are the Program Files directory for applications or the

HKEY_LOCAL_MACHINE (HKLM) hive of the registry. MIC does not enhance the

security of objects that are already properly configured to restrict different user

accounts or groups from accessing them. MIC’s primary purpose is to address

different permissions for programs to access resources under the full control of

the same user security principal.

The resources under the control of the same user security principal that need

additional protection are primarily under the user’s profile

(C:\Users\<username> directory and HKEY_CURRENT_USER [HKCU] hive in the

registry) and the application programs currently running on behalf of that user.

Windows Vista uses MIC in the following ways:

 in UAC, it limits access between processes running with standard user

privilege and elevated processes running with full administrative rights in

Admin Approval Mode;

 COM security is aware of IL’s and does not allow lower-integrity clients

to bind to class instances running at a higher IL;

 in the default security settings, it restricts access to the root folder of the

system volume;

 in IEPM, it limits the ability of code running in the Internet browser to

modify user data or user profile settings;

 to enable applications running at low integrity to have a writeable file

location, it assigns specific folders in the user profile a low IL.

MIC is part of the Windows Vista security architecture. Over time, specific

applications that handle untrustworthy input (primarily Internet-facing) are

updated to take advantage of the ability to run at a low IL. Personal productivity

applications are fine running at a medium IL as long as the user knows the source

of input data. For most applications, MIC is completely transparent and does not

interfere with application features. Application services can be updated to provide

better isolation of server resources for client processes at different IL’s.

4 .7 .3 .1 . IEPM AT LOW IN TEGRITY

Internet Explorer (IE) is an example of an application that is designed to accept

arbitrary data and extensible code from the Internet. Because the source of

Internet content is rarely authenticated (signed), it should be assumed that all

input from the Internet is untrustworthy. Attacks against IE, or against any other

Internet browser, demonstrate the untrustworthy nature of dynamic content and

data available from the Internet. From the security perspective, it should be

assumed that the IE process itself is compromised and untrusted, and solutions

should be looked for that limit the potential damage done by attacks on the

browser.

The goal of IEPM is to reduce the access rights available to the process, in order

to limit the ability of an exploit running in the browser to create unwanted startup

files, modify user data files, make annoying changes to browser configuration

settings, or drive the behavior of other programs running on the desktop. All

code running in IEPM in a low-integrity process is considered untrustworthy. The

default medium IL for objects prevents the browser from opening any directories,

files, or registry keys for write access, except those that are explicitly labeled at low

integrity. UIPI prevents the low-integrity browser code from sending any

potentially damaging window messages to other applications that are running on

the desktop.

The browser that is running at low integrity does have read access to user data files.

Because MIC does not enforce confidentiality, it does not restrict the flow of

information. The process can also use default credentials to initiate network

connections, such as to a network proxy server (necessary when authentication is

required to connect to the Internet), or to a network printer device to print a Web

page. The low-integrity process can also initiate an authenticated connection to

other network services and thereby authenticate to those servers as the current

user.

The application design of IE needed some restructuring to run under Protected

Mode at a low IL. The primary change is that certain program operations were

moved out into a separate process, known as a broker process, running at a

medium IL. The broker process is started at medium IL when the user clicks on the

IE icon or on a URL link. The broker checks the URL and zone policy and

launches a child process, iexplore.exe, at the low IL to make the Internet connection

and render the Web page. The following image from Process Explorer shows the

ieuser.exe broker process at medium IL, and the iexplore.exe process at low IL.

Figure 7 IEPM processes

Everything the user experiences in the IE Web browser is done inside the low-

-integrity process. A few specific operations, such as changing Internet Options

settings, or the Save as file dialog, are handled by the broker process. If the URL

is a trusted site, based on the default zone policy settings, the broker process

starts a different instance of iexplore.exe in a medium-integrity process. All browser

extensions and ActiveX controls run inside the low-integrity process. This has the

advantage that any potential exploit to a browser extension is also running at low

integrity.

IE is somewhat more complicated than other applications because it hosts

browser extensions and ActiveX controls that are not developed by Microsoft, it

launches other applications based on mime types for different file extensions, and

it integrates the client window from different applications within a single parent

window frame. Users also download software from the Internet through the

browser and immediately launch an application package or application installer.

Many of these operations require help from the broker process at a higher IL to

mediate through the user to confirm an operation. Otherwise, code running in

the browser could install malicious software on the system and try to modify or

delete the user’s data. Installation of ActiveX controls is performed using an

elevated task started by UAC that requires administrator rights.

Notwithstanding, the integrity mechanism that limits write access to objects is not

a complete isolation mechanism.

4.8. Conclusion

With the analysis of these systems, it can be concluded that, although not certified

by TCSEC as being robust enough to separate TS from U, several of them are,

nevertheless, flexible and powerful. Through proper configuration, they can result

in highly-secure systems. This shows and proves the value of MAC as a powerful

security mechanism.

C h a p t e r 5

SYSTEM DESIGN & IMPLEMENTATION

This concept is a modification of MIC (in that it is modified as to work also as a

variation of the Bell-LaPadula Model), which is an extension of the Windows

security architecture.

The major parts of the concept are:

 configuration tweaking of integrity policies that restrict access

permissions;

 IL assigned to Web browsers and e-mail clients;

 explicit mandatory label assigned to objects created by Web browsers and

e-mail clients (when necessary).

Each of these parts is described in more detail below.

The concept can be used in two main ways in Windows Vista. Its main purpose is

to prevent sensitive information disclosure. The concept prevents Web browsers,

e-mail clients, and processes resulting from executing objects created by these

applications from reading sensitive data. Under the current scheme (in Windows

Vista), the NO_READ_UP mandatory label policy is only used to restrict (read)

access to the virtual memory address space of a process, which enables the

mentioned subjects to read and, thus, collect sensitive data from sensitive files.

Examples of objects created by the mentioned applications whose processes have

read access to sensitive files are attachments saved from e-mails. This concept

enhances the security of sensitive files by enabling the NO_READ_UP

mandatory label policy on them, by running Web browsers and e-mail clients at a

low IL, and by assigning an explicit low mandatory label to objects created by these

applications (when necessary). The solution’s primary requirement of disabling

spyware is, with this, addressed.

The sensitive files that need protection are primarily user data files under the

user’s profile (C:\Users\<username>). The concept can be used by Windows

Vista in the following ways:

 it can restrict read access to the user profile folder by processes resulting

from executing objects created by Web browsers and e-mail clients;

 in Web browsers and e-mail clients, it can limit the ability of code running

in these applications to read user data.

The concept is designed to be a modification of MIC and a part of the Windows

security architecture. Web browsers and e-mail clients can be updated to take

advantage of the ability to run at a low IL and create objects with an explicit low

mandatory label (when necessary). Personal productivity applications are fine

running at a medium IL because only applications running at a low IL are blocked

from reading user data files (typically assigned a medium IL). For the user, the

mechanism is completely transparent.

5.1. User Profile Folder with NO_READ_UP Mandatory Label Policy

The user profile folder, typically C:\Users\<username> (Windows Vista)8, has

historically been used as a convenient place to store sensitive files, and the

practice is even encouraged. Personal files created by users are often saved under

the user profile folder. The default security policy for the user profile folder is

8 In previous versions of Windows (such as Windows XP), the user profile folder was typically

C:\Documents and Settings\<username>.

designed to allow any subjects to read files under it (unless denied in the DACL).

In fact, the policy allows even lower-integrity subjects to read files under it,

regardless of who created them (unless denied in the DACL). This policy does

not properly protect user privacy.

This concept uses the NO_READ_UP mandatory label policy to disable spyware

(and, thus, protect user privacy). This means that the NO_READ_UP mandatory

label policy prevents (sensitive) information disclosure.

This is done by setting the corresponding NO_READ_UP flag (bit) in the Mask

field of the mandatory label ACE of user data files. By doing this, this defined

policy flag will restrict read access to user data files (typically assigned a medium IL)

by Web browsers and e-mail clients, and by processes resulting from executing

objects created by these applications (according to this concept, all properly

assigned a low IL).

Therefore, by enabling the NO_READ_UP mandatory label policy in user data

files, together with running Web browsers and e-mail clients at a low IL and

assigning an explicit low mandatory label to objects created by these applications

(when necessary), the goal of preventing sensitive information disclosure is met.

Low-IL applications such as the ones mentioned, and low-IL processes resulting

from executing low-IL objects created by them cannot read files under the user

profile folder, even if the DACL grants read access. The user profile folder has an

inheritable mandatory label at medium IL, with a NO_READ_UP mandatory

policy, that is object and container inherit, and, as such, propagates to files and

subfolders. This is done by enabling the corresponding CI and OI inheritance

flags in the AceFlags field in the ACE header of the mandatory label ACE of the

user profile folder.

Concluding, this defined policy meets, then, the design goal of disabling spyware

for the generated concept.

5.2. Web Browsers and E-Mail Clients at Low Integrity

Web browsers and e-mail clients are examples of applications that are designed to

accept arbitrary data and extensible code from the Internet. Because the source of

Internet content is rarely authenticated (signed), it should be assumed that all

input from the Internet is untrustworthy. Attacks against Internet-facing

applications demonstrate the untrustworthy nature of dynamic content and data

available from the Internet. From the security perspective, it should be assumed

that these applications’ processes themselves are compromised and untrusted,

and solutions that limit the potential damage done by attacks on these

applications should be looked for. Some proposed solutions to Internet-based

attacks (such as IEPM) try to maintain a rich, highly collaborative user

experience. Unfortunately, rich, highly collaborative user experience allows for

malicious program behavior, such as unauthorized collection of sensitive data.

Rich, highly collaborative user experience does not allow for proper user privacy

protection, if the applications that handle untrustworthy input (such as Web

browsers and e-mail clients) have read access to user data files.

As such, in this concept, Web browsers and e-mail clients are assigned the low IL

(as happens with IEPM). Applications must be specifically designed to be able to

run with a low IL, as that means running with the fewest rights possible. These

applications might need folders in the file system where they can write temporary

files or application data. Folders like the Temporary Internet Files in the

user’s profile (used by IEPM) can be created and used for this goal.

The goal of assigning a low IL to Web browsers and e-mail clients is to reduce the

access rights available to the processes, in order to limit the ability of an exploit

running in one of these applications or the applications themselves to read user

data files. All code running in these applications should be considered

untrustworthy. The default medium IL for user data files prevents them from

opening any user data file for read access, except those that are explicitly labeled at

low integrity.

As such, Web browsers and e-mail clients that are running at low integrity do not

have read access to user data files. Because this concept enforces confidentiality, it

restricts the flow of information.

Because the source of Internet content is rarely authenticated (signed), this

concept that limits read access to sensitive files is (together with MIC), in some

ways, an almost-complete isolation mechanism. The design of Web browsers and

e-mail clients should, then, specifically tailor the behavior of their processes to

maintain least-privilege functionality and allow for proper user privacy protection.

5.3. Objects Created by Web Browsers and E-Mail Clients Are Assigned

the Low IL

Applications running at a low IL (such as IEPM, or, under this concept, any Web

browser or e-mail client) might use special separate broker processes to handle

certain specific operations, such as saving a file downloaded from the Internet

(recall IEPM and the Save as file dialog). These special separate broker processes

might run at an IL higher than low, and, as such, the objects that they (eventually)

create are typically assigned an IL higher than low as well (as is the case with files

saved from the Internet in IEPM, an operation that is handled by the above-

-mentioned medium-IL Save as file dialog). Unless denied in the DACL, subjects

with such an IL (higher than low) have permissions to every medium and low IL

object, such as the read permission that allows the processes resulting from

executing these objects to read (for example) medium IL objects such as user data

files, regardless of eventually-enabled mandatory label policies. As such – and in

order to prevent this from happening –, in this concept, objects created by Web

browsers’ and e-mail clients’ broker processes running at an IL higher than low are

assigned an explicit low mandatory label.9

Creating an object with a specific low mandatory label

1. Broker process creates SDDL security descriptor that defines low

mandatory label, e.g.:immmmmmmmmmmmmmmmmmmmmmmm

#define LOW_INTEGRITY_SDDL_SACL_W L”S:(ML;;NW;;;LW)”.

2. Broker process converts SDDL string to security descriptor using

ConvertStringSecurityDescriptorToSecurityDescriptor .

3. Broker process assigns security descriptor with low mandatory label to

security attributes structure.

4. Broker process passes security attributes parameter to call to create

object, such as CreateFile.

Concluding, although the creating process (the broker process) has an IL higher

than low, the objects created by these subjects are not assigned an IL higher than

low. The objects created by these subjects have an explicit low IL.

The IL change for objects created by Web browsers’ and e-mail clients’ broker

processes running at an IL higher than low describes a change to the IL to

improve user privacy. The change for the IL improves user privacy by allowing

9 Objects created by subjects (such as broker processes) running at a low IL are automatically assigned an

explicit low mandatory label (recall that all securable objects created by a subject with an IL below the

default level are automatically assigned an explicit mandatory label), and, therefore, there is no need to

manually assign an explicit low mandatory label.

the NO_READ_UP mandatory label policy to be activated when (low-IL)

processes resulting from executing these (low-IL) objects attempt to read higher-

-integrity objects such as (medium-IL) user data files, thus preventing the access

from taking place. The low IL for these objects is consistent with the idea that all

input from the Internet is untrustworthy due to the fact that the source of

Internet content is rarely authenticated (signed). User data files assigned the

medium IL are, with this, protected not only from write access but also from read

access by a lower-integrity process such as one resulting from executing such an

object (assigned a low IL). The process access right that is available to lower-

-integrity processes such as the ones resulting from executing such objects to

open a user data file is, with this, limited to execute.

5.4. Scenario Solution

Recalling the explicit example scenario, under the current scheme, if a Windows

Vista user receives an attachment in an e-mail and saves it, it is written with

medium integrity because the process handling the saving operation is running at

medium IL so that the user can save the file in medium-IL locations such as the user

profile, and, as such, the attachment gets an implicit default medium mandatory

label. When the user executes the attachment, its process runs at medium integrity

because the file object is labeled medium; therefore, the user’s data (labeled medium)

is not protected against malicious reads or writes by the attachment. It will, as

such, be able to read, write to, and delete the user’s data.

By running Web browsers and e-mail clients at low IL, and by assigning an explicit

low mandatory label to objects created by these applications when necessary (two

of the three main features of this concept), if a Windows Vista user receives an

attachment in an e-mail and saves it, it is written with low integrity because it came

from the Internet – an untrusted source. When the user executes the attachment,

its process runs at low integrity because the file object is labeled low; therefore, the

user’s data (labeled medium) is protected from malicious writes by the attachment

(a positive “side effect” resultant from the changes implemented by this concept).

It will still, however, be able to read the user’s data. MIC implements a form of

the Biba Model, which ensures integrity by controlling writes and deletions.

Contrast this with the more well-known Bell-LaPadula Model (of which a form is

implemented by this concept, and whose implementation in Windows Vista is

dependent on the activation of the NO_READ_UP mandatory label policy),

which describes levels of confidentiality by controlling reads.

This is, then, where the NO_READ_UP mandatory label policy comes into play.

By enabling the NO_READ_UP mandatory label policy in user data files (the

remaining main feature of this concept), the user’s data (labeled medium) is

protected not only from malicious writes by the attachment, but also from

malicious reads. The attachment’s process will not be able to read, write to, or

delete the user’s data.

This generated solution can be generalized to prevent virtually any process

resulting from executing virtually any object created by virtually any Web browser

or e-mail client, or code running in these applications, from collecting sensitive

data on a system running Windows Vista.

Going one step further, the concept itself can be generalized to prevent virtually

any subject with a given IL α from reading any securable object with an IL β > α

on a system running Windows Vista.

5.5. Concept Applicability Motivation

Concerning the requirements, the special advantages of a MAC solution like this

concept are the following:

 it is transparent to the user (MAC does not require administrator or user

configuration or interaction in order to work correctly);

 it provides active protection (MAC is always in effect, independently of

other security policy options);

 it can be easily implemented in Windows Vista without requiring

changing a lot of code (by making use of MIC);

 most importantly, it can be used to (efficiently) prevent (sensitive)

information disclosure and, thus, disable spyware (MAC constrains read

access, an ability on which spyware depends in order to collect [sensitive]

data).

This concept fulfills the requirements better than the Windows Vista built-in

features (namely MIC) mainly because, unlike any Windows Vista built-in feature

(MIC included), it prevents information disclosure with respect to access to areas

other than the virtual memory address space of a process (such as the user

profile).

C h a p t e r 6

SUMMARY AND OUTLOOK

So it can be seen that, although application compatibility and user experience is

affected (uploading pictures to Web sites and copy & paste are two examples of

affected common user experiences), it should be possible to use MAC to

efficiently fight spyware in Windows Vista for two main reasons. First, spyware

depends on the ability to read in order to collect (sensitive) data. But, most

importantly, the architecture that enables this (MIC) is already implemented in

this OS (Windows Vista).

Notwithstanding the compatibility and user experience issue, the concept does

not hamper the ability to start programs automatically from a Web browser or an

e-mail client (such as for reading various file types – e.g. .pdf files), since it does

not limit execute access.

An interesting positive side effect resulting from the changes implemented by this

concept is that not only user data files get protected from malicious reads, as also

system and user data files themselves get protected from malicious writes as well.

The implementation problems are mainly related with the closed-source

proprietary nature of the Microsoft Windows OS (which does not allow for direct

code access, only through API’s), since the concept implies the modification of

the security properties of files and folders in the user profile. Another possible

problem is the dependence of the concept on Web browsers and e-mail clients

being specifically designed and developed to run with low rights (i.e. on their

behavior being specifically tailored to maintain least privilege-functionality), since

that is a requirement for the concept to work (i.e. for proper user privacy

protection to be possible).

Recalling Mark Minasi’s words: this [“no-read-up” policy] seemed like a potentially nice

feature in a world beset by Web-borne spyware. Not only is this, indeed, a “nice” feature,

as it also proves to be an efficient, useful, and valuable way of protecting

computer users’ privacy by preventing sensitive information disclosure.

So what? Well, the reader should care about this because Microsoft Windows

does not show many truly significant signs of ceasing to be the most used OS in

the world anytime soon and, at the same time, Windows Vista’s market share

keeps growing. Most importantly, though, the reader should care about this

because the threat of spyware keeps growing and MAC provides an efficient,

useful, and valuable way of efficiently fighting this growing threat to computer

user’s privacy.

This work does suggest at least one interesting further avenue, i.e. a way in which

it could be improved by future workers. That is to try to make use of UAC to

intercept denied read attempts and prompt the user to make the final decision on

whether or not these read accesses can take place.

GLOSSARY

386BSD/JOLIX. A free BSD UNIX OS for PC compatible computer systems
based on the Intel 80386.

ACE. Access Control Entry. An entry in an ACL.

ACL. Access Control List. A list of permissions attached to an object.

AIX. Advanced Interactive Executive. The name given to a series of proprietary
OS’s sold by IBM for several of its computer system platforms, based on UNIX
System V with 4.3BSD-compatible command and programming interface
extensions.

AOL. America Online LLC.. An American global Internet services and media
company operated by Time Warner, previously headquartered in Loudoun
County, Virginia (until late April 2008), currently with new offices at 770
Broadway in New York City.

API. Application Programming Interface. A set of declarations of the functions
(or procedures) that an OS, library, or service provides to support requests made
by computer programs. [32]

AppArmor. Application Armor. An open source application security tool for
Linux systems, released under the GNU GPL.

Apple. Apple Inc. (formerly Apple Computer Inc.). An American multinational
corporation with a focus on designing and manufacturing consumer electronics
and closely related software products.

ASC. Anti-Spyware Coalition. A group dedicated to building a consensus about
definitions and best practices in the debate surrounding spyware and other
potentially unwanted technologies.

AT&T. AT&T Inc.. The largest provider of both local and long distance
telephone services, wireless service, and DSL Internet access in the US.

Biba (Integrity) Model. Formal state transition system of computer security
policy developed by Kenneth J. Biba in 1977 [33] that describes a set of access
control rules designed to ensure data integrity.

BSD. Berkeley Software Distribution. The UNIX OS derivative developed and
distributed by the Computer Systems Research Group of the University of
California, Berkeley, from 1977 to 1995.

C-E. Communications-electronics. The specialized field concerned with the use
of electronic devices and systems for the acquisition or acceptance, processing,
storage, display, analysis, protection, disposition, and transfer of information.

CAPP. Controlled Access Protection Profile. Specifies a set of security functional
and assurance requirements for IT products.

CC / Common Criteria. Common Criteria for International Technology
Security Evaluation. An international standard (ISO/IEC 15408) for computer
security.

chroot. An operation on UNIX OS’s that changes the apparent disk root
directory for the current running process and its children.

CI. Container Inherit. A flag in Windows NT-based OS’s that indicates that
subordinate folders will inherit the ACE.

Classified information. Sensitive information to which access is restricted by
law or regulation to particular classes of people.

CLR. (Security) Clearance. MAC security level assigned to a subject, typically
representing its trustworthiness, and granting it access to (classified) information
(e.g. state secrets).

CLS. (Security) Classification. MAC security level assigned to an object, typically
representing the level of sensitivity of the information that it contains.

COM. Component Object Model. A Microsoft-centric interface standard for
software componentry introduced by Microsoft in 1993.

Confidentiality. Ensuring that information can be read only by those authorized
to read it.

Consumer Reports. An American magazine published monthly by Consumers
Union that publishes reviews and comparisons of consumer products and
services based on reporting and results from its in-house testing laboratory.

CPU. Central Processing Unit (or simply “processor”). A description of a class of
logic machines that can execute computer programs.

DAC. Discretionary Access Control. A kind of access control defined by the
TCSEC[11] as a means of restricting access to objects based on the identity of
subjects and/or groups to which they belong.

DACL. Discretionary Access Control List. An ACL that is controlled by the
owner of an object and that specifies the access particular users or groups can
have to the object.

Darwin. An open source UNIX computer OS released by Apple in 2000.

Debian. A computer OS composed entirely of software which is both free and
open source (FOSS).

DLL. Dynamic-Link Library. Microsoft’s implementation of the shared library
concept in the Microsoft Windows and OS/2 OS’s.

DoD/DOD. United States Department of Defense. The federal department
charged with coordinating and supervising all agencies and functions of the
government relating directly to national security and the military in the USA.

DTE. Domain and Type Enforcement. Enhanced version of TE.

DTE UNIX. DTE-enabled UNIX prototype system.

EAL. Evaluation Assurance Level. A numerical grade assigned following the
completion of a CC security evaluation, an international standard in effect since
1999.

Fedora. An RPM-based, general-purpose Linux distribution, developed by the
community-supported Fedora Project and supported by Red Hat.

FLASK. Flux Advanced Security Kernel. An OS security architecture that
provides flexible support for security policies.

Fluke. An OS (kernel and OS architecture) whose structure relies on the
properties specified by the Fluke environment specification.

FreeBSD. Free Berkeley Software Distribution. A Unix-like free OS descended
from AT&T UNIX via the Berkeley Software Distribution (BSD) branch
through the 386BSD and 4.4BSD OS’s.

Gentoo Linux. A Linux distribution OS based on the Portage package
management system.

GNU GPL. GNU General Public License. A widely used free software license,
originally written by Richard Stallman for the GNU Project.

GUI. Graphical User Interface. A type of user interface which allows people to
interact with a computer and computer-controlled devices like computers, hand-
-held devices (MP3 players, Portable Media Players, gaming devices), household
appliances, and office equipment..

Honeypot. A trap set to detect, deflect, or, in some manner, counteract attempts
at unauthorized use of information systems.

IA. Information Assurance. The practice of managing information-related risks.

ID. Identifier. An identifier of something.

IE. (Windows) Internet Explorer (formerly Microsoft Internet Explorer [MSIE]).
A series of graphical Web browsers developed by Microsoft, and included as part
of the Microsoft Windows line of OS’s, starting in 1995.

IEEE. Institute of Electrical and Electronics Engineers. An international non-
profit, professional organization for the advancement of technology related to
electricity.

IEPM. Internet Explorer Protected Mode. Security feature in IE 7 for Windows
Vista designed to help protect users from attack by running an IE process with
restricted privileges on Windows Vista.

IL. Integrity Level. A representation of the trustworthiness of running application
processes and objects in Windows Vista, such as files created by an application.

Integrity. Ensuring that information can be manipulated only by those
authorized to manipulate it.

IO. Inherit Only. A flag in MIC that indicates that the ACE does not apply to the
current object.

IPC. Inter-Process Communication. A set of techniques for the exchange of data
among two or more threads in one or more processes.

ISO. International Organization for Standardization. An international-standard-
-setting body composed of representatives from various national standards
organizations.

ITSEC. Information Technology Security Evaluation Criteria. A structured set of
criteria for evaluating computer security within products and systems.

Java. A programming language originally developed by Sun, and released in 1995
as a core component of Sun’s Java platform.

JFFS2. Journaling Flash File System version 2. A log-structured file system for
use in flash memory devices.

Label. A security attribute which can be applied to files, directories, or other
items in the system. It can be considered a confidentiality stamp; when a label is
placed on a file, it describes the security properties for that specific file, and will
only permit access by files, users, resources, etc., with a similar security setting.
The meaning and interpretation of label values depends on the policy
configuration: while some policies treat a label as representing the integrity or
secrecy of an object, other policies use labels to hold rules for access.

(Principle of) Least/Minimal privilege. A principle that requires that, in a
particular abstraction layer of a computing environment, every module (such as a
process, a user, or a program, on the basis of the layer that we are considering)
must be able to access only such information and resources that are necessary to
its legitimate purpose. [34][35]

Level. The increased or decreased setting of a security attribute. As the level
increases, its security is considered to elevate as well.

Linux. The name usually given to any UNIX-like computer OS that uses the
Linux kernel.

LoMAC. A Linux extension that implements a low-watermark security policy
based on the Biba Model.

Low watermark. A dynamic policy extension to the Biba Model which permits
lowering of the security levels of subjects as subjects open less secure objects for

the purpose of accessing information which is less secure. In most cases, the
original security level of the user is restored after the process is complete.

LSM. Linux Security Modules. A framework that allows the Linux kernel to
support a variety of computer security models while avoiding favoritism toward
any single security implementation.

LSPP. Labeled Security Protection Profile. A PP within the CC that represents a
set of security functional and assurance requirements for IT products.

MAC. Mandatory Access Control. A type of access control by which the OS
constrains the ability of a subject or initiator to access or generally perform some
sort of operation on an object or target.

MAC OS X. Macintosh Operating System 10. A line of graphical OS’s
developed, marketed, and sold by Apple, the latest of which is pre-loaded on all
currently shipping Macintosh computers.

MIC. Mandatory Integrity Control. A security feature in Windows Vista and
Windows Server 2008 (and a core component of the Windows security
architecture) that restricts the access permissions of applications that are running
under the same user account and that are less trustworthy.

Microsoft. Microsoft Corporation. An American multinational computer
technology corporation.

Microsoft Windows. The name of several families of software OS’s by
Microsoft.

MLS. Multi-Level Security. The application of a computer system to process
information with different sensitivities (i.e. at different security levels), permit
simultaneous access by users with different security CLR’s and needs-to-
-know, and prevent users from obtaining access to information for which they
lack authorization.

Novell. Novell Inc.. An American software corporation specializing in network
OS’s such as Novell NetWare and SUSE Linux, secure identity management
products, and application integration and collaboration solutions.

NSA/CSS. National Security Agency / Central Security Service. A cryptologic
intelligence agency of the US government, administered under the US DoD.

 (System) Object. An entity (an allocated region of storage) through which
information flows under the direction of a subject. This includes directories, files,
fields, screens, keyboards, memory, magnetic storage, printers or any other data
storage/moving device. Basically, an object is a data container or a system
resource; access to an object effectively means access to the data..

OI. Object Inherit. A flag in Windows NT-based OS’s that indicates that
subordinate files will inherit the ACE.

openSUSE. A community project, sponsored by Novell and AMD, to develop
and maintain a general purpose Linux distribution.

OS / O/S. Operating System. The software component of a computer system
that is responsible for the management and coordination of activities and the
sharing of the resources of the computer.

PC. Personal Computer. A computer whose original sales price, size, and
capabilities make it useful for individuals, and intended to be operated directly by
an end user, with no intervening computer operator.

PP. Protection Profile. A document used as part of the certification process
according to the CC.

RBAC. Role-Based Access Control. [36][37] An approach to restricting system access
to authorized users.

RBACPP. Role-Based Access Control Protection Profile. Specifies a set of
security functional and assurance requirements for IT products.

Red Hat. A company dedicated to free and open source software, and a major
Linux distribution vendor.

RHEL. Red Hat Enterprise Linux. A Linux distribution produced by Red Hat
and targeted toward the commercial market, including mainframes.

RID. Relative Identifier. The part of a SID that uniquely identifies an account or
group within a domain in the context of the Windows NT line of computer OS’s.

RPC. Remote Procedure Call. A technology that allows a computer program to
cause a subroutine or procedure to execute in another address space (commonly
on another computer on a shared network) without the programmer explicitly
coding the details for this remote interaction.

RSBAC. Rule Set Based Access Control. An open source access control
framework for current Linux kernels, which has been in stable production since
January 2000 (version 1.0.9a).

SACL. System Access Control List. An ACL in Windows NT-based OS’s that
controls the generation of audit messages for attempts to access a securable
object.

SDDL. Security Descriptor Definition Language. Defines the string format that
the ConvertSecurityDescriptorToStringSecurityDescriptor and
ConvertStringSecurityDescriptorToSecurityDescriptor functions use to describe a SID as a
text string in Windows NT-based OS’s.

SELinux. Security-Enhanced Linux. A reference implementation of the FLASK
security architecture for flexible MAC.

Sensitive information. Information or knowledge that might result in loss of an
advantage or level of security if revealed (disclosed) to others who might have
low or unknown trustworthiness and/or indeterminable or hostile intentions.

SID. Security Identifier. A unique name (an alphanumeric character string) in
Windows NT-based OS’s that is assigned by a Windows Domain controller
during the log on process that is used to identify an object, such as a user or a
group of users in a network of Windows NT/2000 systems.

Solaris. Solaris Operating System. A free UNIX-based OS introduced by Sun in
1992 as the successor to SunOS.

SRM. Security Reference Monitor. A tamperproof, always-invoked, and small-
-enough-to-be-fully-tested-and-analyzed security module in Windows NT-based
OS’s that controls all software access to data objects or devices (verifiable).

Sun. Sun Microsystems, Inc.. A multinational vendor of computers, computer
components, computer software, and IT services, founded on 24 February
1982.[38]

SUSE Linux. A major retail Linux distribution, produced in Germany, and
owned by Novell.

TCP. Transmission Control Protocol. One of the core protocols of the Internet
protocol suite.

TCSEC. Trusted Computer System Evaluation Criteria. A US Government
DoD standard that sets basic requirements for assessing the effectiveness of
computer security controls built into a computer system.

TE. Type Enforcement. Table-oriented MAC mechanism/model, well-suited for
confining applications and restricting information flows.

TrustedBSD. Trusted Berkeley Software Distribution. Project that provides a set
of trusted OS extensions to FreeBSD.

Trusted Solaris. A security-evaluated OS based on Solaris by Sun, featuring
MAC.

UAC. User Account Control. A technology and security infrastructure
introduced with Microsoft’s Windows Vista OS.

Ubuntu. A computer OS that has consistently been rated among the most
popular of the many Linux distributions. [39][40][41][42]

UDP. User Datagram Protocol. One of the core protocols of the Internet
protocol suite.

UIPI. User Interface Privilege Isolation. A technology introduced in Windows
Vista and Windows Server 2008 to combat code injection exploits.

Unisys. Unisys Corporation. A global provider of information technology
services and solutions, based in Blue Bell, Pennsylvania, US, and incorporated in
Delaware.[43]

UNIX. A computer OS originally developed in 1969 by a group of AT&T
employees at Bell Labs, including Ken Thompson, Dennis Ritchie, and Douglas
McIlroy.

UNIX-like. An OS that behaves in a manner similar to a UNIX system, while
not necessarily conforming to or being certified to any version of the Single
UNIX Specification.

Windows Vista. A line of OS’s developed by Microsoft for use on PCs,
including home and business desktops, laptops, tablet PCs, and media center
PCs.

REFERENCES

1. ^ a b Anti-Spyware Coalition Definitions Document, June 29, 2006.
http://www.antispywarecoalition.org/documents/DefinitionsJune29200
6.htm

2. ^ a b c d Webroot | Spyware Basics.
http://www.webroot.com/En_US/csc/online-spyware-basics.html

3. ^ AOL/NCSA ONLINE SAFETY STUDY. America Online & The
National Cyber Security Alliance. 2005.
http://www.staysafeonline.info/pdf/safety_study_2005.pdf

4. ^ Consumer Reports, September 2006.
http://www.webroot.com/En_US/csc/online-spyware-basics.html

5. ^ a b c Consumer Reports, September 2007.
http://www.consumerreports.org/cro/electronics-
computers/computers/internet-and-other-services/net-threats-9-
07/spyware/0709_net_spy.htm

6. ^ a b W3Counter global Web stats for March 31, 2008.
http://w3counter.com/globalstats.php?date=2008-03-31

7. ^ Net Applications OS market share for March 2008.
http://marketshare.hitslink.com/report.aspx?qprid=8

8. ^ a b c OneStat press release, April 1, 2008.
http://www.onestat.com/html/aboutus_pressbox58-microsoft-
windows-vista-global-usage-share.html

9. ^ a b XiTiMonitor report, January 21, 2008.
http://www.xitimonitor.com/en-us/internet-users-equipment/operating-
systems-december-2007/index-1-2-7-116.html

10. ^ Yixin Jiang, Chuang Lin, Hao Yin, Zhangxi Tan. SECURITY ANALYSIS

OF MANDATORY ACCESS CONTROL MODEL. Department of
Computer Science and Technology, Tsinghua University. 2004.

11. ^ a b c d (December 1985) TRUSTED COMPUTER SYSTEM

EVALUATION CRITERIA. United States Department of Defense. DoD
Standard 5200.28-STD.
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html

12. ^ Webroot | Spyware Protection and Prevention.
http://www.webroot.com/En_US/csc/spyware-protection.html

13. ^ a b Webroot Software, March 2007.
http://www.webroot.com/En_US/csc/online-spyware-basics.html

14. ^ Net Applications OS market share trend.
http://marketshare.hitslink.com/report.aspx?qprid=9

15. ^ Net Applications OS versions market share trend.

http://www.antispywarecoalition.org/documents/DefinitionsJune292006.htm
http://www.antispywarecoalition.org/documents/DefinitionsJune292006.htm
http://www.webroot.com/En_US/csc/online-spyware-basics.html
http://www.staysafeonline.info/pdf/safety_study_2005.pdf
http://www.webroot.com/En_US/csc/online-spyware-basics.html
http://www.consumerreports.org/cro/electronics-computers/computers/internet-and-other-services/net-threats-9-07/spyware/0709_net_spy.htm
http://www.consumerreports.org/cro/electronics-computers/computers/internet-and-other-services/net-threats-9-07/spyware/0709_net_spy.htm
http://www.consumerreports.org/cro/electronics-computers/computers/internet-and-other-services/net-threats-9-07/spyware/0709_net_spy.htm
http://w3counter.com/globalstats.php?date=2008-03-31
http://marketshare.hitslink.com/report.aspx?qprid=8
http://www.onestat.com/html/aboutus_pressbox58-microsoft-windows-vista-global-usage-share.html
http://www.onestat.com/html/aboutus_pressbox58-microsoft-windows-vista-global-usage-share.html
http://www.xitimonitor.com/en-us/internet-users-equipment/operating-systems-december-2007/index-1-2-7-116.html
http://www.xitimonitor.com/en-us/internet-users-equipment/operating-systems-december-2007/index-1-2-7-116.html
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html
http://www.webroot.com/En_US/csc/spyware-protection.html
http://www.webroot.com/En_US/csc/online-spyware-basics.html
http://marketshare.hitslink.com/report.aspx?qprid=9

http://marketshare.hitslink.com/report.aspx?qprid=11
16. ^ A GUIDE TO UNDERSTANDING SECURITY MODELLING IN

TRUSTED SYSTEMS, National Computer Security Center, Report
NCSC-TG-010, USA, 1992.

17. ^ Loscocco, Peter A.; Smalley, Stephen D.; Muckelbauer, Patrick A.;
Taylor, Ruth C.; Turner, S. Jeff; Farrell, John F.. THE INEVITABILITY

OF FAILURE: THE FLAWED ASSUMPTION OF SECURITY IN

MODERN COMPUTING ENVIRONMENTS. NSA. Retrieved on 2008-
03-15. http://csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf

18. ^ Loscocco, Peter A.; Smalley, Stephen D.. MEETING CRITICAL

SECURITY OBJECTIVES WITH SECURITY-ENHANCED LINUX.
Retrieved on 2008-03-15.
http://www.nsa.gov/selinux/papers/ottawa01.pdf

19. ^ Bell, D. Elliott and LaPadula, Leonard J. (1973). SECURE COMPUTER

SYSTEMS: MATHEMATICAL FOUNDATIONS. MITRE Corporation.
http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf

20. ^ Bell, D. Elliott and LaPadula, Leonard J. (1976). SECURE COMPUTER

SYSTEMS: UNIFIED EXPOSITION AND MULTICS

INTERPRETATION. MITRE Corporation.
http://csrc.nist.gov/publications/history/bell76.pdf

21. ^ Bell, David (December 2005). Looking Back at the Bell-La Padula
Model. Proc. 21st Annual Computer Security Applications Conference : 337-351.
doi:10.1109/CSAC.2005.37. http://dx.doi.org/10.1109/CSAC.2005.37;
http://www.selfless-security.org/presentations/lookingback/looking-
back.html (slides for the talk)

22. ^ S. Castano, M. Fugini, G. Martella, and P. Samarati. DATABASE

SECURITY. Addison-Wesley, 1994.
23. ^ Biba, K. J. INTEGRITY CONSIDERATIONS FOR SECURE

COMPUTER SYSTEMS, MTR-3153, The Mitre Corporation, April 1977.
24. ^ Dorothy E. Denning, A LATTICE MODEL OF SECURE

INFORMATION FLOW, Commun. ACM, v.19 n.5,1976.
25. ^ Ravi S. Sandhu, LATTICE-BASED ACCESS CONTROL MODELS,

Computer, v.26 n.11, p.9-19, November 1993.
26. ^ Dr. David F.C. Brewer, Dr. Michael J. Nash: THE CHINESE WALL

SECURITY POLICY (PDF) Gamma Secure Systems Limited. 1989.
Retrieved on 2008-03-13.
http://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/bre
wer_nash_89.pdf

27. ^ David D. Clark, David R. Wilson. A COMPARISON OF COMMERCIAL

AND MILITARY COMPUTER SECURITY POLICIES. 1987.

http://marketshare.hitslink.com/report.aspx?qprid=11
http://csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf
http://www.nsa.gov/selinux/papers/ottawa01.pdf
http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf
http://csrc.nist.gov/publications/history/bell76.pdf
http://dx.doi.org/10.1109/CSAC.2005.37
http://www.selfless-security.org/presentations/lookingback/looking-back.html
http://www.selfless-security.org/presentations/lookingback/looking-back.html
http://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/brewer_nash_89.pdf
http://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/brewer_nash_89.pdf

28. ^ Ross J. Anderson. A SECURITY POLICY MODEL FOR CLINICAL

INFORMATION SYSTEMS (PDF). University of Cambridge Computer
Laboratory. 1996. Retrieved on 2008-03-13.
http://www.cl.cam.ac.uk/~rja14/Papers/oakpolicy.pdf

29. ^ National Information Assurance Partnership. THE COMMON

CRITERIA EVALUATION AND VALIDATION SCHEME VALIDATED

PRODUCTS LIST. Retrieved on 2008-03-15.
http://www.niap-ccevs.org/cc-scheme/vpl/

30. ^ TrustedBSD Project. TrustedBSD Mandatory Access Control (MAC)
Framework. Retrieved on 2008-03-15.
http://www.trustedbsd.org/mac.html

31. ^ sandbox_init(3) man page (2007-07-07). Retrieved on 2008-03-15.
http://developer.apple.com/DOCUMENTATION/Darwin/Reference
/ManPages/man3/sandbox_init.3.html

32. ^ QUICKSTUDY: APPLICATION PROGRAMMING INTERFACE

(SAPI). ComputerWorld.
http://www.computerworld.com/action/article.do?command=viewArtic
leBasic&articleId=43487

33. ^ Biba, K. J. INTEGRITY CONSIDERATIONS FOR SECURE

COMPUTER SYSTEMS, MTR-3153, The Mitre Corporation, April 1977.
34. ^ Saltzer 75.
35. ^ Denning 76.
36. ^ Ferraiolo, D.F. and Kuhn, D.R. (October 1992). ROLE BASED

ACCESS CONTROL (PDF). 15th National Computer Security Conference: 554-
563.
http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf

37. ^ Sandhu, R., Coyne, E.J., Feinstein, H.L. and Youman, C.E. (August
1996). ROLE-BASED ACCESS CONTROL MODELS (PDF). IEEE
Computer 29 (2): 38–47. IEEE Press.
http://csrc.nist.gov/rbac/sandhu96.pdf

38. ^ THE GLAMOUR IN MASS TRANSIT. Sun Microsystems, Inc. (24
February 2007). Retrieved on 2007-02-25.
http://blogs.sun.com/jonathan/entry/brutal_efficiency_virtualization_b
y_another

39. ^ DISTROWATCH 2005. distrowatch.com. Retrieved on 2008-05-13.
http://distrowatch.com/index.php?dataspan=2005

40. ^ DISTROWATCH 2006. distrowatch.com. Retrieved on 2008-05-13.
http://distrowatch.com/index.php?dataspan=2005

41. ^ DISTROWATCH 2005. distrowatch.com. Retrieved on 2008-05-13.
http://distrowatch.com/index.php?dataspan=2005

42. ^ 2007 DESKTOP LINUX MARKET SURVEY (2007-08-21). Retrieved on
2007-12-27.

http://www.cl.cam.ac.uk/~rja14/Papers/oakpolicy.pdf
http://www.niap-ccevs.org/cc-scheme/vpl/
http://www.trustedbsd.org/mac.html
http://developer.apple.com/DOCUMENTATION/Darwin/Reference/ManPages/man3/sandbox_init.3.html
http://developer.apple.com/DOCUMENTATION/Darwin/Reference/ManPages/man3/sandbox_init.3.html
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=43487
http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf
http://csrc.nist.gov/rbac/sandhu96.pdf
http://blogs.sun.com/jonathan/entry/brutal_efficiency_virtualization_by_another
http://blogs.sun.com/jonathan/entry/brutal_efficiency_virtualization_by_another
http://distrowatch.com/index.php?dataspan=2005
http://distrowatch.com/index.php?dataspan=2005
http://distrowatch.com/index.php?dataspan=2005

http://www.desktoplinux.com/cgi-
bin/survey/survey.cgi?view=archive&id=0813200712407

43. ^ http://www.sec.gov/cgi-bin/browse-
edgar?company=Unisys&CIK=&filenum=&State=&SIC=&owner=incl
ude&action=getcompany

http://www.desktoplinux.com/cgi-bin/survey/survey.cgi?view=archive&id=0813200712407
http://www.desktoplinux.com/cgi-bin/survey/survey.cgi?view=archive&id=0813200712407
http://www.sec.gov/cgi-bin/browse-edgar?company=Unisys&CIK=&filenum=&State=&SIC=&owner=include&action=getcompany
http://www.sec.gov/cgi-bin/browse-edgar?company=Unisys&CIK=&filenum=&State=&SIC=&owner=include&action=getcompany
http://www.sec.gov/cgi-bin/browse-edgar?company=Unisys&CIK=&filenum=&State=&SIC=&owner=include&action=getcompany

BIBLIOGRAPHY

Mandatory Access Control (MAC):

 http://www.wikipedia.org;

 Krzysztof Juszczyszyn, VERIFYING ENTERPRISE’S MANDATORY

ACCESS CONTROL POLICIES WITH COLOURED PETRI NETS,

Wroclaw University of Technology, Wroclaw, Poland, 2003;

 Yixin Jiang, Chuang Lin, Hao Yin, Zhangxi Tan, SECURITY ANALYSIS

OF MAINDATORY ACCESS CONTROL MODEL, Department of

Computer Science and Technology, Tsinghua University, Beijing, P. R.

China, 2004;

 Ninghui Li, Ziqing Mao, Hong Chen, USABLE MANDATORY

INTEGRITY PROTECTION FOR OPERATING SYSTEMS, Center for

Education and Research in Information Assurance and Security

(CERIAS) and Department of Computer Science, Purdue University,

2007;

 Indrakshi Ray, Mahendra Kumar, Towards a location-based mandatory

access control model, Department of Computer Science, Colorado State

University, COMPUTERS & SECURITY 25 (2006) 36 – 44, Science

Direct, Elsevier, www.sciencedirect.com, www.elsevier.com/locate/cose,

29 June 2005;

http://www.wikipedia.org/
http://www.sciencedirect.com/
http://www.elsevier.com/locate/cose

 Sylvia Osborn, MANDATORY ACCESS CONTROL AND ROLE-BASED

ACCESS CONTROL REVISITED, Department of Computer Science,

The University of Western Ontario, 1997;

 Thuong Doan, Steven Demurjian, T.C. Ting, Andreas Ketterl, MAC

AND UML FOR SECURE SOFTWARE DESIGN, University of

Connecticut, 29 October 2004.

Mandatory Integrity Control (MIC):

 msdn.microsoft.com;

 Access Control (http://go.microsoft.com/fwlink/?LinkId=90927);

 Access Control [Security]

(http://go.microsoft.com/fwlink/?LinkId=90928);

 The COM Elevation Moniker

(http://go.microsoft.com/fwlink/?LinkId=90939);

 Biba Integrity Model: Biba, K. J. Integrity Considerations for Secure

Computer Systems, Technical Report MTR-3153, MITRE Corporation,

Bedford, Massachusetts, June 1975;

 D.D. Clark and D.R. Wilson. A Comparison of Commercial and Military

Computer Security Policies. In IEEE Symposium on Computer Security

and Privacy, April 1987;

 Driver Signing Requirements for Windows

(http://go.microsoft.com/fwlink/?LinkId=90930);

http://go.microsoft.com/fwlink/?LinkId=90927
http://go.microsoft.com/fwlink/?LinkId=90928
http://go.microsoft.com/fwlink/?LinkId=90939
http://go.microsoft.com/fwlink/?LinkId=90930

 LOMAC Low Water-Mark Integrity Protection by Timothy Fraser

(http://go.microsoft.com/fwlink/?LinkId=90932);

 Process Security and Access Rights

(http://go.microsoft.com/fwlink/?LinkId=90929);

 Security Descriptor Definition Language (SDDL) [Security]

(http://go.microsoft.com/fwlink/?LinkId=90935);

 SID_IDENTIFIER_AUTHORITY Structure [Security]

(http://go.microsoft.com/fwlink/?LinkId=90933);

 SID Strings [Security] (http://go.microsoft.com/fwlink/?LinkId=90936);

 SYSTEM_MANDATORY_LABEL_ACE Structure [Security]

(http://go.microsoft.com/fwlink/?LinkId=90934);

 TOKEN_INFORMATION_CLASS enumeration [Security]

(http://go.microsoft.com/fwlink/?LinkId=90938);

 Understanding and Working in Protected Mode Internet Explorer

(http://go.microsoft.com/fwlink/?LinkId=90931);

 User Account Control

(http://go.microsoft.com/fwlink/?LinkId=82373).

Security-Enhanced Linux (SELinux):

 http://www.wikipedia.org;

 http://www.nsa.gov/selinux/.

http://go.microsoft.com/fwlink/?LinkId=90932
http://go.microsoft.com/fwlink/?LinkId=90929
http://go.microsoft.com/fwlink/?LinkId=90935
http://go.microsoft.com/fwlink/?LinkId=90933
http://go.microsoft.com/fwlink/?LinkId=90936
http://go.microsoft.com/fwlink/?LinkId=90934
http://go.microsoft.com/fwlink/?LinkId=90938
http://go.microsoft.com/fwlink/?LinkId=90931
http://go.microsoft.com/fwlink/?LinkId=82373
http://www.wikipedia.org/
http://www.nsa.gov/selinux/

AppArmor, FreeBSD, Trusted Solaris, Mac OS X:

 http://www.wikipedia.org.

http://www.wikipedia.org/

A p p e n d i x A

SDDL FOR MANDATORY LABELS

The SDDL is a convenient way to represent access permissions in a string

format. SDDL defines ACE strings and SID strings to represent fields of access

control entries. The ConvertSecurityDescriptorToStringSecurityDescriptor and

ConvertStringSecurityDescriptorToSecurityDescriptor functions can be used to convert

the mandatory label ACE from a binary to a string format and back.

The definitions for SDDL strings are in the header file, sddl.h.

The SDDL string for a mandatory label ACE is defined as follows:

#define SDDL_MANDATORY_LABEL TEXT("ML") // Integrity label

The SDDL strings for the mandatory label policy flags, which

are in the access mask, are the following:

#define SDDL_NO_WRITE_UP TEXT("NW")

#define SDDL_NO_READ_UP TEXT("NR")

#define SDDL_NO_EXECUTE_UP TEXT("NX")

The SDDL SID strings for the IL’s are the following:

#define SDDL_ML_LOW TEXT("LW")

#define SDDL_ML_MEDIUM TEXT("ME")

#define SDDL_ML_HIGH TEXT("HI")

#define SDDL_ML_SYSTEM TEXT("SI")

An example of the SDDL for a mandatory label ACE in a SACL that specifies

NO_WRITE_UP policy for low IL is the following: S:(ML;;NW;;;LW).

SDDL strings can be used with the ConvertStringSecurityDescriptorToSecurityDescriptor

function to initialize a security descriptor with an explicit mandatory label that can

be used as the security attributes parameter when creating a new object, such as a

file, using CreateFile.10

10 When using ConvertSecurityDescriptorToStringSecurityDescriptor, the new security information flag,

LABEL_SECURITY_INFORMATION, must be specified, in order to convert an explicit mandatory

label into the SDDL string equivalent. Without the LABEL_SECURITY_INFORMATION flag, a

mandatory label, if it exists, will not show up in the SACL portion of the string.

A p p e n d i x B

ICACLS AND FILE IL’S

Icacls is a command-line tool developed by Microsoft Corporation that can be

used to manage the security settings on files. The Windows Vista version of Icacls

supports mandatory labels on files.11

Icacls can be used to view and set the IL for a file. Icacls displays the IL SID for a

file if the file has an explicit mandatory label ACE. Icacls does not show the IL

SID for the implicit default IL. Icacls uses the NO_WRITE_UP integrity policy

only when setting the IL of a file.

The following image shows an example of using Icacls to view or set the IL of a

file.

Figure 8 Icacls and mandatory labels

11 icacls.exe is an update to an older program, cacls.exe. Cacls.exe does not recognize mandatory labels.

A p p e n d i x C

CHML AND FILE IL’S

Chml is a command-line tool developed by Mark Minasi that (as Icacls) can be

used to modify IL’s.

C.1. Features

Chml’s main features are:

 installs simply and with a minimum of trouble (chml is, therefore, a

command-line tool that is just a simple EXE file, with no setup program

required);

 allows for viewing a file or folder’s IL;

 allows for changing a file or folder’s IL;

 allows for experimenting with extensions of the basic MIC and going

beyond the standard “no-write-up” policy (no low-integrity process can

modify a higher-integrity object) to the implemented but seldom used “no-

-read-up” policy, which blocks any attempts by a lower-integrity process

or user to read the object.

C.2. Download

Chml can be downloaded from www.minasi.com/vista/chml.exe. It can be

saved somewhere on the Windows path. If stored in the \windows\system32

folder, chml can be used simply by opening a command prompt window and

typing chml.

http://www.minasi.com/vista/chml.exe

C.3. Preparation

Chml can be used “right out-of-the-box” to view a file or folder’s IL by typing

chml fileorfolder, as in C:\>chml \windows\notepad.exe.

To modify an object’s IL, the user account must be given a new-to-Vista

permission, “Modify an object label”. It can be found in the User Rights part of

Group Policy on a Vista machine:

1. open gpedit.msc;

2. navigate to Computer Configuration / Windows Settings / Local Policies

/ User Rights Assignment;

3. open “Modify an object label” (right-hand pane);

4. add user account (by default, there are no user accounts listing with this

privilege);

5. close Group Policy Editor;

6. log off, then back on to finish getting new privilege on logon token.

Now an elevated command prompt must be opened (right-click “Command

Prompt” icon in Accessories, then choose “Run as administrator”) and chml is

ready to be used. There is online help, but here are few quick-starts.

C.4. Modifying an IL

To see chml’s basic powers in action, a folder is created. In this example, one

named c:\test is created. Then it is set to low integrity by typing:

chml c:\test -i:l

The run looks something like this:

C:\>chml c:\test -i:l

chml v1.010 -- Change Windows Integrity Level
by Mark Minasi (c) 2006 www.minasi.com
"chml -?" for syntax, examples and notes.

Integrity level of c:\test successfully set to low.

C:\>

The syntax is simple: chml is followed with the name of the folder, followed by a

lowercase i, a colon, and then one of the letters u, l, m, h, or s, which signify

untrusted, low, medium, high, or system.12 Now, a file named testfile.txt is

created inside c:\test – it does not matter what text is in it, or if there is any

text there. Then chml is asked what integrity label the file has:

C:\>echo Hi there>\test\testfile.txt

C:\>chml c:\test\testfile.txt -b
c:\test\testfile.txt's mandatory integrity level=low

C:\>

What is being seen here is that, just as objects in folders can inherit permissions

from their parent folders, they can also inherit IL’s.

C.5. Seeing the Effect of “No Write Up”

As discussed before, MIC’s main value is to keep lower-integrity processes from

modifying higher-integrity objects. This will be demonstrated by setting a file’s IL

to high, then opening up a non-elevated command prompt (which will run at

medium) and see that the file cannot be erased.

12 If the copyright and help banner are to be skipped, the -b option should be added.

From the elevated command prompt, c:\test is raised to high integrity:

C:\>chml c:\test -i:h -b
Integrity level of c:\test successfully set to high.

C:\>

A second command prompt is opened, but not elevated. If

c:\test\testfile.txt is tried to be erased, an “Access is denied” error will be

received.

C.6. Setting Something to “No Read Up”

Now the “no-read-up” policy will be tried out. As discussed before, there are

actually 3 MIC policies: no read up, no write up, and no execute up, and any

combination of them can be applied to any object using the -nr, -nw and/or -nx

switches. From the elevated command prompt, c:\testfile’s policy is set to

“no read up / no write up”:

C:\>chml c:\test -i:h -nr -nx -b
Integrity level of c:\test successfully set to high.

C:\>

Now, if the file or folder is, at all, tried to be examined from the non-elevated

command prompt, or even from Explorer, for that matter, again an “Access is

denied” will be seen. The reason why an IL of high had to, once again, be

assigned is that integrity labels are simple: each object only gets 1, so, to modify

one, it is not enough to just specify changes, it is necessary to redefine the whole

integrity label.

C.7. Setting an IL to System

As discussed before, MIC only lets a user elevate IL’s to be equal to the user’s

IL. Many OS processes are not explicitly labeled as system, but, when they run,

they run at a system level. As system is of higher trustworthiness than high, that

implies that, if someone were to create a file and somehow manage to label it as

system, then no administrator could delete it.

But there are ways to elevate an account to system. Armed with that power, one

can be sure that, if malware that marks itself as system ever appears, there are

strategies for lowering its IL back down to one that will allow a user to delete it.

Here are 3:

 run scheduled chml task as system;

 use psexec -s to run chml as system (psexec can be found at the

SysInternals Web site: www.SysInternals.com);

 boot WinPE – which logs a user on as system – and run chml.

In every case, the -i:s option must be used, which is available in chml. For

example, to set c:\test\testfile.txt using psexec, psexec would be

downloaded and put in a user’s system path, and the following command would

be typed:

http://www.sysinternals.com/

C:\>psexec -s chml c:\test\testfile.txt -i:s -b

PsExec v1.73 - Execute processes remotely

Copyright (C) 2001-2006 Mark Russinovich

Sysinternals - www.sysinternals.com

Integrity level of c:\test\testfile.txt successfully set to

system.

chml exited on ENT64 with error code 0.

C:\>

C.8. Chml Vs. Icacls

Chml can do things that Icacls cannot:

 set IL’s at untrusted or system;

 assign “no-read-up” or “no-execute-up” integrity policies;

 view the “raw” integrity control label (chml’s -sddl option enables this);

 create and apply a hand-crafted “raw” integrity control label (chml’s -

wsddl option enables this).

The author of this command-line tool (Mark Minasi) can be contacted at

help@minasi.com.

mailto:help@minasi.com

A p p e n d i x D

MIC AND WINDOWS KERNEL MODE CODE INTEGRITY

Windows Vista enforces a requirement on 64-bit platforms that all kernel mode

binaries must be digitally signed. Verifying the digital signature ensures that the

integrity of the binary file has not been tampered with, because the signature was

applied when the image was created. For more information on the Windows

driver signing requirements, see Driver Signing Requirements for Windows

(http://go.microsoft.com/fwlink/?LinkId=90930). The Windows Vista

component implementing kernel mode binary image signature verification is

known as Code Integrity. Code Integrity verifies the integrity of kernel-mode

binary files as the image is loaded into memory by the OS loader (Winload.exe) or

the kernel. Code Integrity is not part of MIC for access control described in this

thesis.

http://go.microsoft.com/fwlink/?LinkId=90930

A p p e n d i x E

GETTING THE IL FOR AN ACCESS TOKEN

The GetTokenInformation API can be used to retrieve the access token IL from the

access token. GetTokenInformation has a parameter to indicate what access token

information class to retrieve. The TOKEN_INFORMATION_CLASS parameter

has a defined value for the IL, TokenIntegrityLevel. GetTokenInformation returns a

TOKEN_MANDATORY_LABEL data structure.

E.1. To Determine the IL of a Process

1. Open handle to access token of current process.

2. Get the IL of access token.

3. Compare IL SID to system-defined IL RID’s.

The following code sample shows how to do this.

void ShowProcessIntegrityLevel()

{

 HANDLE hToken;

 HANDLE hProcess;

 DWORD dwLengthNeeded;

 DWORD dwError = ERROR_SUCCESS;

 PTOKEN_MANDATORY_LABEL pTIL = NULL;

 LPWSTR pStringSid;

 DWORD dwIntegrityLevel;

 hProcess = GetCurrentProcess();

 if (OpenProcessToken(hProcess, TOKEN_QUERY, &hToken))

 {

 // Get the IL.

 if (!GetTokenInformation(hToken, TokenIntegrityLevel,

 NULL, 0, &dwLengthNeeded))

 {

 dwError = GetLastError();

 if (dwError == ERROR_INSUFFICIENT_BUFFER)

 {

 pTIL = (PTOKEN_MANDATORY_LABEL)LocalAlloc(0,

 dwLengthNeeded);

 if (pTIL != NULL)

 {

 if (GetTokenInformation(hToken, TokenIntegrityLevel,

 pTIL, dwLengthNeeded, &dwLengthNeeded))

 {

 dwIntegrityLevel = *GetSID’subAuthority(pTIL-

>Label.Sid,

 (DWORD)(UCHAR)(*GetSID’subAuthorityCount(pTIL>Label.Sid)-

1));

 if (dwIntegrityLevel == SECURITY_MANDATORY_LOW_RID)

 {

 // Low Integrity

 wprintf(L"Low Process");

 }

 else if(dwIntegrityLevel>=SECURITY_MANDATORY_MEDIUM_RID

 && dwIntegrityLevel<SECURITY_MANDATORY_HIGH_RID)

 {

 // Medium Integrity

 wprintf(L"Medium Process");

 }

 else if (dwIntegrityLevel>=SECURITY_MANDATORY_HIGH_RID)

 {

 // High Integrity

 wprintf(L"High Integrity Process");

 }

 else if (dwIntegrityLevel >=

 SECURITY_MANDATORY_SYSTEM_RID)

 {

 // System Integrity

 wprintf(L"System Integrity Process");

 }

 }

 LocalFree(pTIL);

 }

 }

 }

 CloseHandle(hToken);

 }

}

