
V

Elajah Ngankepeh

Hardware and Software for Position Determination
and Visualization for an Indoor Navigation System

Diplomarbeit

Faculty of Engineering and Computer
Science

Department of Information and
Electrical Engineering

Fakultät Technik und Informatik
Department Informations- und
Elektrotechnik

 ii

Elajah Ngankepeh

Hardware and Software for Position Determination
and Visualization for an Indoor Navigation System

Diplomarbeit eingereicht im Rahmen der Diplomprüfung
im Studiengang Informations- und Elektrotechnik
Studienrichtung Automatisierungstechnik
am Department Informations- und Elektrotechnik
der Fakultät Technik und Informatik
der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Ing. Karl-Ragmar Riemschneider
Zweitgutachter : Prof. Dr. Ing. Henry Reetmeyer

Abgegeben am 08. Juli 2008

 iii

Elajah Ngankepeh

Thema der Diplomarbeit
 Hard- und Software für die Positionsberechnung und Anzeige für ein Indoor
 Navigationssystem

Stichworte
 LPS, LED Anzeigesystem, Mikrokontroller Programmierung, MSP430, LED
 Steuerung, MAX7221,USART ,SPI

Kurzzusammenfassung

Die Position eines Gegenstandes, zum Beispiel ein Roboter ist zu bestimmen
und in einer Anschaulicherweise darzustellen. Die Laufzeitunterschiede
werden von einem parallelen Prozeß empfangen, das diese
Laufzeitunterschiede durch Korrelation anhand Schalls berechnet. Da es keine
Synchronisierung zwischen Absender und Detektor gibt, sind nur
Zeitunterschiede direkt ermittelbar und nicht die absoluten Laufzeiten. Ein
16x32 LED- Matrix- Anzeigesystem wurde entwickelt. Die Software wird in der
C-Sprache und der Compiler GNU-Eclipse entwickelt. Der Hardware-Entwurf
ist unter Verwendung von Eagle realisiert.

Elajah Ngankepeh

Title of the paper

Hardware and Software for Position Determination and Visualization for an
Indoor Navigation System

Keywords

LPS, LED Display system, microcontroller programming, MSP430, MAX7221,
LED control, USART, SPI

Abstract

 In this project, the position of an object for example a robot indoor is
determined on the basis of time differences received from a parallel process.
This process calculates the time differences through correlation based on
sound. This sound is detected at different time, proportional to their distance to
the source. Since there is no synchronization between sender and detector,
only differences between the elapsed time are directly obtainable. A display is
developed which serves the purpose of demonstrating the location of the
object. The software is developed using the C language and the compiler GNU
Eclipse. The hardware design has been realised using Eagle.

 iv

Acknowledgement

I would like to thank all those who participated in making this piece of work a reality. Special
thanks go to my examiner Prof. Dr.-lng. Karl-Ragmar Riemschneider, who had been very
available in helping and also for suggesting the thesis. I am equally thankful to my second
examiner , Prof. Dr. Henry Reetmeyer who took the pains to go through the work and assisted
actively in modification. Many thanks equally go to Mr. Jörg Pflüger and Mr. Wolff Gehard ,
who actively supported me during this thesis. I will like to dedicate this piece of work to my
late dad: Moh Tangongho Abraham, not forgetting my mum, my brother Moh Sylvester
Tangongho who made sure I attended the best school available. I also thank my sister Angela
Ngamwe who was so caring and full of assistance. Very special thanks go to Ngoun Abiba
who assisted me at all levels.
I will also like to cease this opportunity to thank all my class mates who participated passively
as well as actively during this thesis.

 v

CONTENTS

Abstract………..iii
Acknowledgement……………………………………………………………iv
List of tables ………..………………………………….…..…………….......iv
List of figures…………………………………………………………….…viii

Chapter 1: Introduction ...1

 1.1 - Task overview ……………………………………………………………….2
 1.2 - Organization of the Thesis…………………………..……………………….2

 1.3 - General setup ………………………………………………………………..4

Chapter 2: Theoretical background..5

 2.1 - From General Positioning System (GPS) to Local Positioning
 System (LPS)………………………………………………………………...5

 2.2 - A 4x4 inverse matrix calculation…………………………...........................11
 2.2.1 - Calculating the cofactors of a 4x4 matrix ……………………………...11
 2.3.1 - The closed solution method in obtaining xp, yp and t0………………...15
 2.3.2 - An alternative closed form solution…………………………………….18

 2.4 - Comparison of Display technologies or systems………………………….. 21

Chapter 3: MSP430 F169 Starter Kit and used Peripheries……………...22

 3.1 - General Characteristics……………………………………………………..22
 3.2 - Ports of the MSP430F169 ………………………………………………….24
 3.3 - UART and SPI……………………………………………………………...25
 3.3.1 - UART…………………………………………………………………..26
 3.3.2 - SPI ……………………………………………………………………..27
 3.3.2.1 - SPI Timing…………………………………………………….……28
 3.4 - Analogue Digital Converter (ADC) ..29
 3.5 - Liquid Crystal Display (LCD)……………………………………….……..32

Chapter 4: Hardware Development….……………………………………...34

 4.1 – Requirements………………………………………………………………34
 4.2 - Tool: Eagle ……………………………………………………………….. 34

 4.3 - PCB Design for LED module ……………………………………………..34
 4.4 - MAX7221 and LED module ……………………………………………....40
 4.4.1 - MAX7221……………………………………………………………....40
 4.4.2 - LED Display (Model No: ELM-1883SRWA)……………………….....45
 4.4.2.1 - General characteristics of LEDs…………………………………....45
 4.4.2.1.1 - A brief History……………………………………………….....45
 4.4.2.1.2 - The electrical and optical Characteristics of LEDs ………........45
 4.4.2.1.3 - Reliability and Lumen Maintenance……………………………48
 4.4.3 - Advantages and Disadvantages of using LEDs…………………….......53

 vi

 4.4.3.1 - Advantages of using LEDs…………………………………………53
 4.4.3.2 - Disadvantages of using LEDs……………………………………....54

 4.5 - MSP430 JTAG Connector……………………………………………….....55
 4.5.1 - Features of JTAG…………………………………………………….....55
 4.5.1.1 - JTAG interface………………………………………………….......56
 4.6 - Recommended Standard 232 (RS232) Connections………………………..56

Chapter 5: Software structuring and development…………………….......59

 5.1 - The GCC tool chain for the Texas Instruments MSP430
microcontrollers…59
 5.1.1 - A Brief History of GCC………………………………………………...59
 5.2 - General modular Software Structure………………………………………..61
 5.2.1 - Programming the Buttons B1, B2 and B3 of the MSP430 for Terminal
 Input of length and width……………………………………………… 62
 5.2.2 - LED control through USART as SPI…………....................................... 65
 5.2.3 - Software for USART as UART………………………………………... 65
 5.2.4 - Software for turning on/off an LED on the display……………………..66
 5.2.5 - Data reception through UART…………………………………………..68
 5.2.5.1 - Reception and data (run time differences) processing………………69
 5.2.6 - Software for displaying characters on the LCD………………………....72
 5.2.7 - Software for coordinating all functions (main function)………………..73
 5.2.8 - Additional steps in realising the main equation in C with
 MSPGCC………………………………………………………………..74
 5.2.9 - Mapping of the area covered by the four sensors to the LED
 display…………………………………………………………………...74

Chapter 6: Modifications to enhance quality results and some application
 examples …………………………………………………………76

 6.0 - A functional test using some fixed data……………………………………..76
 6.1 - Improving Speed, Performance and reducing Power Consumption of
 MSP430…………………………………………………………………….79

 6.2 - Temperature and influence on the speed of sound in air……………………80
 6.3 - Obtaining the temperature using MSP430F169 Starter Kit………………...83
 6.4 - Using the Oscilloscope to control or verify SPI Data………………………87

Chapter 7: Conclusion and proposals for further works………………….89

 7.1 - Conclusion………………………………………………………………….89
 7.2 - Some possible applications of this project …………………………………89
 7.3 - Proposal for further works …………………………………………………90
 7.3.1 - Outlier detection and corrective measures proposal and analysis……...90
 7.3.2 - Kalman filtering as a method for determining the coordinates ………..92
 7.3.3 - Using a single voltage source…………………………………………..92

Chapter 8: Terminology, Bibliography and attachments……………………...94

 8.1 - Terminology ………………………………………………………………..94

 vii

 8.2 - Bibliography………………………………………………………………...98
 8.3 - Attachments…………………………………………………………………99
 8.4 - Content of the CD………………………………………………………….103

 Declaration………………………………………………………………………104

 viii

List of Figures

Figure 1.3: Block diagram of the general setup ………………………………………….…4
Figure 2.0: GPS setup with satellites and an object………………………………………....6
Figure 2.1: Mobile object and four sensors……………………………………………….…6
Figure 2.2: Distance and time covered by sound in air at 25°C…………………………….11
Figure 2.3.1: Rectangular surface of experiment…………………………………………...18
Figure 2.3.2: Signal and reference signal showing run time difference through
 Correlation..19
Figure 3.1.1: MSP430F169 starter Kit and used peripheries………………………………..23
Figure 3.1.3: MSP430 Architecture overview………………………………………………24
Figure 3.3.0: Relevant pins of MSP430 for UART use …………………………………….26
Figure 3.3.1: Block diagram of UART communication…………………………………….27
Figure 3.3.2: MOSI block diagram………………………………………………………….27
Figure 3.3.3: USART SPI Timing [9]………………………………………………………28
Figure 3.4.1: Multiplexer circuit [9]………………………………………………………..29
Figure 3.3.2: ADC12 block diagram [9]………………………………………....................30
Figure 4.2.5.1: LCD of MSP430F169 showing the positioning of 32 characters………….32
Figure 4.2.5.2: LCD of MSP430F169 showing displayed summer room temperature…….33
Figure 4.3.1: A block diagram of the first PCB design ……………………………………35
Figure 4.3.2: First design LED module and PCB mounted………………………………...36
Figure 4.3.3: Two modules of PCB and other electrical components……………………...36
Figure 4.3.4: A block diagram of second design ………………………………………….38
Figure 4.3.5: ERC window…………………………………………………..……………..38
Figure 4.3.6: DRC Error window…………………………………………………………..39
Figure 4.3.7: PCB with electrical components like MAX7221, resistors and
 Capacitors ……………………………………………………………..39
Figure 4.3.8: The full display with 8 LED modules (front view with 512 LEDs)………...40
Figure 4.4.0: Pin description of MAX7221………………………………………………..41
Figure 4.4.1: Cascading MAX7221………………………………………………………..44
Figure 4.3.2.1: Spectra of individual primary colours [22]………………………………...46
Figure 4.3.2.1.2: LED circuit……………………………………………………………….47
Figure 4.3.2.1.3: The inner view of a single LED………………………………………….47
Figure 4.3.2.1.4: 8x8 LED matrix (inside view)……………………………………….…..48
Figure 4.3.2.1.1: Lifetime data across current and temperature variables for a K2 LED
 [11]…………………………………………………………………...49
Figure 4.3.2.1.1.0: Spectrum distribution……………………………………………….....52
 Figure 4.3.2.1.1.1: Forward voltage versus forward current………………………………52
 Figure 4.3.2.1.1.2: Forward current –ambient temperature curve………………………....53
Figure 4.3.2.1.3.1: LED display showing a defective LED in the second PCB…………....54
Figure 4.3.2.1.3.2: LED display showing some disadvantages of LEDs as a
 Display…………………………………………………………………55
Figure 4.4.1: JTAG connector……………………………………………………………...55
Figure 4.4.2: MSP430-JTAG interface (top view)………………………………………....56
Figure 4.4.3: male RS232 connector……………………………………………………….57
Figure 4.4.4: Female RS232 connector…………………………………………………….57
Figure 4.4.5: “Null modem cable ” for 2 microcontrollers [5]…………………………….58
Figure 5.1.1.1: Software connection of MSP430F169 …………………………………....61
Figure 5.2.1: A snap shot illustrating Software structuring………………………………...62
Figure 5.2.1.1: Cross section of MSP430F169 showing the three buttons………………....63
Figure 5.2.1.1.1 : LCD information “Width OK”………………………………………....63

 ix

Figure 5.2.1.2: Surface area covered by sensors mapped on to the 8 LED displays……..64
Figure 5.2.3: LED display board indicating the positions of each display………………64
Figure 5.2.2.1: SPI Initialization…………………………………………………………65
Figure 5.2.2.2: Block diagram of a typical Interrupt process…………………………….66
Figure 5.2.2.3: Receive Interrupt operation [9]…………………………………………..66
Figure 5.2.2.4: Flow chart representing the initialization of the LEDs and MAX7221…67
Figure 5.2.2.5: Flow chart representing the turning on /off of an LED…………………68
Figure 5.2.3.1: State diagram of receiver Enable [9]…………………………………….69
Figure 5.2.3.2: UART initialization……………………………………………………...69
Figure 5.2.5.1: Baud rate registers……………………………………………………….70
Figure 5.2.2.5.2: Flow chart representing the displaying of characters on the LCD …...72
Figure 5.2.2.5.3: Flow chart representing the main……………………………………..73
Figure 6.0.1: Simulated results in Matlab demonstrating the object and the four axes on the
 surface……………………………………………………………………..78
Figure 6.0.2: Simulated position in Matlab displaying (19,3) on the matrix display…...78
 Figure 6.0.3: Erroneous simulated position on the field ………………………………..78
Figure 6.0.4: Erroneous simulated position on the display………………………………79
Figure 6.2.1: Sound vibration in air………………………………………………………81
Figure 6.2.2: Variation of speed of sound in air with temperature……………………….83
Figure 6.3.0: Typical temperature transfer function for MSP430……………………….84
Figure 6.3.1: Software structure for temperature determination using MSP430F169…85
Figure 6.3.2: Block diagram showing steps to prepare data to display …………………86
Figure 6.3.3: Room temperature (hot summer day) in °C displayed on the LCD ……….87
Figure 6.3.4: SPI results from Oscilloscope Tektronix TDS744A……………………….87
Figure 6.3.5: Data through RS232 to microscope………………………………………..88
Figure 7.2.1: Setup for outlier detection…………………………………………………90
Figure 7.2.2: outlier case study result…………………………………………………….91
Figure 7.2.3: Outlier case study result before correction………………………………...92
Figure 7.2.4: DC step down converter…………………………………………………..

 x

List of tables

Table 2.3.1: Second closed form method solutions………………………………………...20
Table 3.3.1: Control registers for ADC with reset value and bit position [9]……………..32
Table 4.3.1: Pin to pin connection of MSP430, LED and MAX7221……………………..37
Table 4.4.0: MAX7221 pin number and description………………………………………42
Table 4.4.1: RSET versus Segment Current and LED Forward Voltage (adapted from [9] and
 [31])……………………………………………………………………………43
Table 4.3.2.1: Primary colours and their wavelengths……………………………………...46
Table 4.3.2.1.1.1: Absolute maximum ratings at 25°C (Ta)………………………….…….50
Table: 4.3.2.1.1.2: Electronic optical characteristics of LED used…………………………50
Table: 4.3.2.1.1.3: Reliability test item and condition for the LEDs used (ELM-1883SRWA)
 [29]……………………………………………………………………...51
Table 4.4.5: RS232 - 9 pins signal type and direction……………………………………...58
Table 6.0.1: Functional test for 8m by 8m………………………………………………….76
Table 6.0.2: Functional test for 4m by 8m………………………………………………….77
Table 6.0.3: Functional test for 4m by 6m………………………………………………….77
Table 6.2.1: Table of variation of speed of sound in air with temperature.. .………..……..82
Table 7.2.2: case study of varied values of Delta 1..……………………………………….91

 xi

 1

Chapter 1: - Introduction

 Science is a system of accumulating reliable knowledge. Broadly speaking, the process
of sciences begins with observations, which are developed into hypothesis, tested by proof or
experimentation, yielding results that can be described in a paper (scientific paper for
example) which is published after a thorough reviewing . Each new contribution mounts on a
bed of existing concepts that are known and trusted. New research could be wrong or
misguided, but the process of referring eliminates work of poor quality. Determining the local
position of an object in the process: Local Positioning System is proceeded from the
principles of General Positioning System GPS. These principles involve sending signals,
receiving these signals, carrying out correlation, determining the time difference between
sender and receiver and finally processing the data to locate the position of the object as well
as the rate of change of position; velocity. A major task in location-aware programming is the
determination of physical location. Researches have created numerous location-sensing
systems that differ in accuracy, coverage, frequency of location updates, and cost of
installation and maintenance.
 This piece of work involves the determination of the position of an object in a limited
area. The limit is about 10 meters. This limit is based on the ability of the receivers to clearly
detect the sound emitted. After the sound is detected, correlation takes place in a parallel
project. The measurement of the time-of-flight (TOF) of a sonic signal propagating from an
emitter to a receiver gives an indication of their relative distance or range. The run time
differences are then calculated by multiplying the maximum correlation position with the
period at which the sound is being emitted. The position at which maximum correlation
occurs is received through Universal Asynchronous Receiver and Transmitter (UART)
protocol communication. The MSP430 is the microcontroller used here as it has many
advantages related to the ultra- low power ability for stand- alone systems. The received run
time differences are then incorporated into the geometry calculation involving the speed of
sound in air.

The most important factor influencing the speed of sound in air is temperature. This factor is
considered in order to improve on the results as far as the accuracy is concerned. The
temperature of air at the moment of carrying out the experiment is obtained using the
MSP430F169. It has a diode, whose voltage fall is linearly related to the temperature of the
environment. The measurement gives an accuracy of up to 1°C after calibration. This
accuracy is sufficient to obtain better results in determining the position of the object. The
obtained temperature is displayed on the Liquid Crystal Display (LCD) which is available on
the MSP430F169 Starter Kit. This LCD can allow 32 characters to be displayed at the same
time. Addressing the LCD is possible with a nibble (4 bits) by nibble or a byte (8 bits) by byte
transfer. The positions of the four sensors (microphones) are fixed and given in using the
three buttons available on the MSP430. The values are seen at the Liquid Crystal Display
(LCD) during input. Values beyond the range are not accepted and set to either the maximum
value or the minimum value depending on the extreme at which the user is exceeding. In the
geometry calculation, it is first considered that the object whose position is to be determined,
is positioned somewhere in the limited area. At the end of the calculation, the coordinates
obtained are those signifying the difference between the real position and the estimated
position. This means the real position of the object in question is then obtained by adding the
estimated position to the calculated difference. This is clearly illustrated in chapter two.
The X and Y coordinates are to be represented on a Light Emitting Diode (LED) display
board with 32x16 LEDs matrix. These coordinates are represented as a point. The Z-axis is
not represented on the LED matrix board as it is two dimensional, though could be displayed

 2

on the LCD every time new values are obtained. To be able to control the matrix boards, the
chip MAX7221 from the company MAXIM was used. These chips are compact, serial
input/output common-cathode display drivers that interface microprocessors (µPs) to 7-
segment numeric LED displays of up to 8 digits, bar-graph displays, or 64 single LEDs.
Included on-chip are a BCD code-B decoder, multiplex scan circuitry, segment and digit
drivers, and an 8x8 static RAM that stores each digit. Only one external resistor is required to
set the segment current for all LEDs. It is compatible with SPI, Queued Serial Peripheral
Interface (QSPI) and MICROWIRE, and has slew-rate-limited segment drivers to reduce
Electromagnetic Interference (EMI)
 Controlling the LEDs from the MSP430 is through the Universal Synchronous and
Asynchronous communication (USART) as Serial Peripheral Interface (SPI) latching the data
out using a clock of the MSP430.
A Printable Circuit Board (PCB) has been designed in Eagle to facilitate connection. The
electric circuit board was double sided and compact to suit the size of the LED matrix board
and its pins.

1.1 - Task Overview

 The thesis involves developing software and hardware for visualization in an indoor
navigation system using sound as the signal. Programming is in C with the compiler
MSPGCC in Eclipse GNU. The microcontroller MSP430F169 Starter Kit is to be employed
for the numerous communications involved. Some of these are UART and SPI. The UART
communication serves in the reception of maximum correlation positions from a parallel
project. These positions are to be processed into run time differences which are further
incorporated in geometry calculation and the position of the object obtained.
 The PCB design is to be realized using Eagle Version 4.11. This Design is to be used
in the visualization module of the hardware, making the entire hardware less cumbersome.
This module consisting of 512 LEDs and on 8 LED matrix Displays. The location of the
object is to be represented on this display, and as a point. The 512 LEDs represent the
bounded area of experiment or room and the representation is such that the LED surface
could be mapped to the area being covered by the 4 sensors.
Some major factors like the temperature, reflection of sound are to be taken into
consideration since the speed of sound in air is influenced by the temperature and sound is
equally reflected by most objects.

1.2 - Organization of the Thesis

 Obtaining and processing the run time differences for four sensors, which have been
obtained through correlation, are most of the theory behind this work, apart from the
behaviour and emission of sound in air. The position (Cartesian coordinate) of an object could
be determined in a range of about 10 meters. The good thing about it is that it could be
applied in an open air likewise indoors. This special characteristic assists to complete certain
general positioning systems that mainly work outdoor. The next and important point is the
methodology to obtain the time differences, process them and finally represent the position of
the object (for example a robot) in question, at any given time on the display. The low power
mixed signal controller MSP430F169 has been of great use as it is the central controller for
the entire project. It is used in obtaining the run time differences, lighting up specific Light
Emitting Diodes (LED) corresponding to the position of an object/robot and also in
determining the temperature of air at the moment of determining the position. This project is a
sub project of a larger project. The run time differences and sound radiation are from other
sub projects.

 3

 The first chapter consists of the general introduction of the project, including the
structure of the entire project.

 In chapter two, the general theory behind the project; processing run time differences
of 4 sensors and displaying the position of the object on a 512 LED matrix board will be
explained. A comparison or rather evolution from the theory of GPS to the development of
LPS (Local Positioning System) is step by step explained here. It is as well elaborated, how
the inverse of a 4x4 matrix is obtained. This is important to ease the coding in the C
programming language. The entire code for this work is written in C using the GNU compiler
in Eclipse. Eclipse version 1.3 was used.

 The third chapter describes the mixed signal microcontroller MSP430 F169 Starter
Kit and its peripheries. The general characteristics are first examined, followed by the ports
of the board, then the universal synchronous and asynchronous transmission ability (USART).
The asynchronous communication is outlined singly, followed by the synchronous
communication (SPI: Serial Periphery Interface). This board has a USART0 (Universal
Synchronous and Asynchronous Receiver and Transmitter 0) and a USART1 (Universal
Synchronous and Asynchronous Receiver and Transmitter 1). These helped very much, as
there was the necessity for a second periphery in order to carry out all the necessary
communications. The first communication, being the continuous reception of run time
differences when the object displaces it self or is displaced and the next is the communication
(SPI) with the MAX7221 chips incorporated in the LED module.
The ability of the analogue-digital converter of the board aided in converting values obtained
as voltage difference across a diode into temperature. There is an analogue-digital converter
with 10 bits resolution (ACD10) as well as a 12 bits resolution: ADC12. The ADC12 was
used in order to have a better resolution and as such a better accuracy.
A liquid crystal display (LCD) is also available on the board and the detail exploitation is
outlined later in chapter three.

 The development of the employed experimental board is explained in chapter four,
not forgetting the tool employed: Eagle. The general structure and functionality of the LED
matrix board is as well outlined here. MAX7221, which is the chip used in this project, has a
few properties that make it convenient for controlling the LEDs. These properties are
thoroughly treated in the third chapter .

 The software part of the project is explained in chapter five. The programming is
modular, with every little section separated to make the layout clear and permit easy detection
and accessibility of errors in case the project is incorporated into a further project. There are
many modules; one is calculating the inverse of a 4x4 matrix. A second module determines
the temperature of air during the experiment. A third module permits the synchronous
communication of the MSP430169 and the 8 LED matrix boards. A fourth module realises the
asynchronous communication between the board and the source of the run time differences.
These and other unlisted modules are discussed thoroughly in chapter five.

 In chapter six, some special techniques adapted are elaborated. These techniques assist in
realising and ameliorating on the results. Only the position at which correlation is maximum,
is received. In order to obtain the run time differences, the position from maximum
correlation calculation is multiplied with the period at which the sound was being sent. The
temperature is a factor which has aided in realising a better result as the speed of sound in air;
the used medium is dependent on the temperature of air at the moment of transmission. In
chapter five, it is explained in detail and the relationship demonstrated.

 4

 The conclusion of the project is done in chapter seven. The project: software and Hardware
for Position determination and display for an indoor Navigation System has been a success as
the task has been tackled adequately. Some possible application of the project is outlined as
well in chapter seven.
Last but not the least is chapter eight which explains most of the specific technical terms
used in the entire project.

1.3 - General setup

 Figure 1.3 is a block diagram showing the general setup involving a foreign
MSP430F169 supplying the run time differences though UART. These values are processed
in the main MSP430F169 to obtain the coordinates of the object which is further represented
on the matrix display board as a point. The control of this board is through SPI as seen in
Figure 1.3.

 Figure 1.3: Block diagram of the general setup

 5

Chapter 2: Theoretical Background

 2.1 - From General Positioning System (GPS) to Local Positioning
 System (LPS

The GPS was created and realised by the American Department of Defense (DOD) and was
originally based on and run with 24 satellites (21 satellites being required and 3 satellites as
replacement). Nowadays, about 30 active satellites orbit the earth in a distance of 20200 km.
GPS satellites transmit signals which enable the exact location of a GPS receiver, if it is
positioned on the surface of the earth, in the earth atmosphere or in a low orbit. GPS is being
used in aviation, nautical navigation and for the orientation ashore. Further it is used in land
surveying and other applications where the determination of the exact position is required.
The GPS signal can be used without a fee by any person in possession of a GPS receiver. The
only prerequisite is an unobstructed view of the satellites (or rather of the sky).
The correct name of the system is NAVSTAR (Navigation System for Timing and Ranging),
but commonly, it is referred to as GPS (Global Positioning System). [16]
In GPS, there are 4 observables. These are:

I. Pseudo distance from the code measurement. Only this method is used in this project
II. Pseudo distance from integrated Doppler-Count

III. Distance from the phase carrier or carrier phase difference
IV. Difference in duration of signal from Interferometry measurements.

The code measurement is based on the correlation process; the PRN-Impulse series of a code
finally over mounts the PRN-Impulse series produced by the receiver. The PRN is a binary
signal with random noise-like properties which is generated by mathematical algorithm or
"code", and consists of repeated pattern of 1's and 0's.
The phase of the reproduced code is shifted in time until the maximum correlation occurs.
The pseudo range is obtained from the formula;

 *i i ip r c t= + △ (2.1.0)

where ri is the distance between receiver and satellite. This distance in LPS will be the
distance from object (sound emitter) to the various sensors.
c is the speed of light in GPS and will be the speed of sound in air in LPS
ti is the time difference between that of the satellite and the receiver in GPS meanwhile in
LPS, it is the run time difference obtained from correlation. The geometrical representation of
the setup in GPS could be seen in Figure 2.0.

 6

0

ri(t1)

Zp

Yp

P

X

Z

Y

Xp

Sat Si at time t1

Sat Si at time t2
ri(t2)

Figure 2.0: GPS setup with satellites and an object

P is the object whose position is to be determined.

The Si are the locations of the satellites, ri(ti) are the ranges between the corresponding
satellite and the receiver (object), xp, yp and zp are the Cartesian coordinates of the receiver.

Figure 2.1: Mobile object and four sensors in LPS

The geometrical distance ri from Satellite Si in the GPS is represented by r1 to r4.
This distance is calculated using the formula of geometry below in equation 2.1.1.

 7

 2 2 2[() () ()]i i p i p i pr x x y y z z= − + − + − i px x= − (2.1.1)

xi, yi , zi are the x, y and z coordinates of the satellite in geometrical system in GPS
meanwhile they are the Cartesian coordinates of the four receivers in the LPS.
xp, yp and zp are the Cartesian coordinates of the object to be determined.
Since there is no synchronisation of the systems (sender and receivers) the speed of light and
time difference play a vital role. For the LPS, it is the speed of sound that is considered since
the signal is sound (ultrasound). From the above point of view, it implies that the actual
distance will be modified as below:

 * *i i i i p ip r c t x x c t= + = − +△ △ (2.1.2.0)

 0*()i ir c t t= − (2.1.2.1)

where to is the time of emission of sound it△ is the time of reception of sound.

The term c*ti is also a distance due to the speed of light in air in GPS and the speed of sound
in air in LPS.
c is the speed of light for GPS meanwhile it is the speed of sound in air. This value is 331.4
metres per second at 0°C. The speed of sound in dry air is given approximately by

331.4 0.6c ϑ≈ + m/s.
 Here, ϑ is the temperature of dry air and c the speed of sound. Meanwhile it△ is the time

difference between the time of the satellite and that of the receiver in GPS. In LPS, it△ is the

run time difference obtained through correlation carried out in a parallel project.
 The ranges are obtained as follows:

 2 2 2 (1/2)

1 1 1 1[() () ()]p p pr x x y y z z= − + − + − …… ……(2.1.3)

 2 2 2 (1/2)
2 2 2 2[() () ()]p p pr x x y y z z= − + − + − …………………(2.1.4)

 2 2 2 (1/2)
3 3 3 3[() () ()]p p pr x x y y z z= − + − + − …… (2.1.5)

With the three equations above, the Cartesian coordinates of the object could be obtained if
there was a common time (synchronisation of the sender and receivers) since there is no
possibility of synchronization, a fourth equation is unavoidable in this case. This will be
explained later in this chapter as it is necessary to first choose a method for determining the
position. Three methods could be considered here.

The first method is the closed solution form. An equation is said to be a closed-form solution
if it solves a given problem in terms of functions and mathematical operations from a given
generally accepted set. For example, an infinite sum would generally not be considered
closed-form. However, the choice of what to call closed-form and what not is rather arbitrary
since a new "closed-form" function could simply be defined in terms of the infinite sum.
In this project, this method will be considered.

The second method is the Kalman-Filtering method. The fast Kalman filter (FKF), devised
by Antti Lange (1941), is an extension of the Helmert-Wolf blocking (HWB) method from
geodesy to real-time applications of Kalman filtering (KF) such as satellite imaging of the
Earth. Kalman filters are an important software technique for building fault-tolerance into a
wide range of systems, including real-time imaging. The computational advantage of FKF is
marginal for applications using only small amounts of data in real-time data. Therefore

 8

improved built-in calibration and data communication infrastructures need to be developed
first and introduced to public use before personal gadgets and machine-to-machine (M2M)
devices can make the best out of FKF . [10]

The third method is the iterative method (Taylor linearization). This method will be
employed as it is technically and easily realisable in microelectronics signal processing. It is
also widely used in the industry.
The prerequisite is the assumption that´px , ´py and ´pz are points very close to the awaited

points, whereby the awaited points sum up to make the position of the object represented by
xp, yp and zp .
The range will further be calculated using the estimated position of the object. This is realised
as shown in the equations below:
 2 2 2 (1/2)

1 1 1 1´ [() () ()]´ ´ ´p p pr x x y y z z= − + − + − … … …… ((2.1.6)

 2 2 2 (1/2)
2 2 2 2´ [() () ()]´ ´ ´p p pr x x y y z z= − + − + − … …… ……(2.1.7)

 2 2 2 (1/2)
3 3 3 3´ [() () ()]´ ´ ´p p pr x x y y z z= − + − + − ………… …… (2.1.8)

..
where 1´r is the calculated range from estimated coordinates of the first sensor, 2´r

calculated range from estimated coordinates of the second sensor, 3´r calculated range from

estimated coordinates of the third sensor.

This approximation differs from the normal distance r with a delta △- sum.
This further implies

1 1 1´r r r= −△ …… … ……… …………. (2.1.9)

 2 2 2́r r r= −△ (2. 2.0)

 3 3 3́r r r= −△ …… ……………. ………………… . (2.2.1)

From the above equations,
∆r1 is the difference between the range of the first and the estimated range
∆r2 is the difference between the range of the second and the estimated range
∆r3 is the difference between the range of the third and the estimated range. The question here
helps in obtaining the coordinates of the object. Since the position of the object had earlier
been estimated, all that is necessary to be done is to add the difference to the estimated
position for various axes, and it is now possible to move to the next stage.

 '

p p px x x s= −△ (2.2.2)

 '
p p py y y= −△ ……………………… ……………… ….(2.2.3)

∆x is the difference in the x axis between the points on the real x axis and the estimated point
on the axis whereas ∆y is the difference in the y-axis between the point on the real y-axis
and the estimated point on the axis.

The influence of the ∆ is on all of the ranges. It is further assumed as follows:

1 1 1 1* * *p p pr a x b y c z= + +△ △ △ △ ……… … …………………….(2.2.4)

2 2 2 2* * *p p pr a x b y c z= + +△ △ △ △ … …… …………………….(2.2.5)

3 3 3 3* * *p p pr a x b y c z= + +△ △ △ △ …………… ………………… (2.2.6)

 9

Where a, b and c are the factors influencing the system and a is the factor influencing x
directly, b is the factor influencing y directly, c is the factor influencing z directly.
These factors could be obtained as demonstrated below from equations 2.2.7 to 2.2.9.

´

´i p
i

i

x x
a

r

−
= − …………………………………… ... (2.2.7)

´

´i p
i

i

y y
b

r

−
= − ……………….. ………………… … (2.2.8)

´

´
i p

i
i

z z
c

r

−
= −

………………… ………………… … (2.2.9)

The index i stand for 1 to 3 corresponding to the three equations involving the ranges r .
A matrix is then formed to determine the ∆ of the coordinates.

1 1 1 1

2 2 2 2

3 3 3 3

*
p

p

p

r a b c x

r a b c y

r a b c z

    
    =     
         

△ △

△ △

△ △

 …… ……................. …… (2.3.0)

If the matrix A =
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 
 
  

 then

 1 *x A r−=△ △ (2.3.1)

1A− is the system matrix

It then implies

1

1 1 1 1

2 2 2 2

3 3 3 3

*
p

p

p

x a b c r

y a b c r

z a b c r

−
     
     =     
         

△ △

△ △

△ △

 ….………………………………….… (2.3.2)

As seen earlier, in equations 2.2.2 and 2.2.3, the equations below representing the coordinates
of the objects could be obtained.
 ´

p p px x x= +△ ……………….. (2.3.3)

 ´
p p py y y= +△ ………………………… (2.3.4)

 ´
p p pz z z= +△ ……………… (2.3.5)

It is assumed and precautions taken to see into it that the coordinates of the receivers are
accurate. Up to now, only three equations have been used to determine Cartesian coordinates.
Since there is a fourth unknown: time constant k a fourth equation will be necessary to obtain
the xp, yp, zp and ki.
 *i ik c t= △ … …………………………(2.3.6)

With ti being the time elapsed between sending and receiving of signal obtained through
correlation and the period of the sent signal.
The system now has four equations which are as follows:
 ´ 2 ´ 2 ´ 2 (1/2)

1 1 1 1 1[() () ()] *p p pp x x y y z z c t= − + − + − + △ ………………………….(2.3.7)

 ´ 2 ´ 2 ´ 2 (1/2)
2 2 2 2 2[() () ()] *p p pp x x y y z z c t= − + − + − + △ ……………………….((2.3.8)

 10

 ´ 2 ´ 2 ´ 2 (1/2)
3 3 3 3 3[() () ()] *p p pp x x y y z z c t= − + − + − + △ ………………… (2.3.9)

 ´ 2 ´ 2 ´ 2 (1/2)
4 4 4 4 4[() () ()] *p p pp x x y y z z c t= − + − + − + △ ……………………….. (2.4.0)

Transforming the four equations above in matrix form makes the system to be better
interpreted in mathematical form.

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1

1
*

1

1

p

p

p

p

xp a b c

yp a b c

zp a b c

kp a b c

    
    
    =
    
    
      

△△

△△

△△

△△

…………………… .(2.4.1)

Anew=

1 1 1

2 2 2

3 3 3

4 4 4

1

1

1

1

a b c

a b c

a b c

a b c

 
 
 
 
 
 

 (2.4.1.0)

 △x=

p

p

p

p

x

y

z

k

 
 
 
 
 
  

△

△

△

△

 (2.4.1.1)

 p△ =

1

2

3

4

p

p

p

p

 
 
 
 
 
 

△

△

△

△

 (2.4.1.2)

 That means
 △x = 1

newA− * p△ ……………….................... (2.4.2)

 ´
pk k k= +△ ………………………. (2.4.3)

Where k is * ic t△

So the final equation to determine the Cartesian position of the object which will then be
displayed by lighting up a corresponding LED on the LED matrix board is given by:

2 2 2() () () *i i p i p i p ip x x y y z z c t= − + − + − + △ ………………… (2.4.4)

 ip 0*()c t ti= − … (2.4.5)

0t is the time at which the signal is sent.

The unknowns are xp, yp and zp which are the Cartesian coordinate of the object in question
xi, yi and zi are estimated and c at the moment known, with the help of the voltage fall
over a diode in MSP430F169 and it△ is obtained from a parallel process.

 11

The distance covered by sound in air is linearly related to the time taken at a particular
temperature. Taking as an example the temperature of 25°C, a curve of distance covered by
sound and time taken could be obtained as shown in Figure 2.2 below.

0

5

10

15

20

25

0 2 4 6 8 10

distance in m

tim
e

in
 m

s

 Figure 2.2: Distance and time covered by sound in air at 25°C

 The next step is working out step by step the inverse a 4x4 matrix which requires that the
determinant be first calculated. The next section has more details on inverse matrix
determination.

2.2 - A 4x4 inverse matrix calculation

This section handles the task of obtaining the inverse of a 4x4 matrix step by step to ease the
understanding and programming. The first step will be calculating the cofactors of the 4x4
matrix as described in section 2.2.1.

 1
1

()(())
det()

TA Co A
A

− =

2.2 .1 - Calculating the cofactors of a 4x4 matrix

Let a matrix A as below be considered. The last column is filled with 1 to make up a 4x4
matrix due to the addition of a fourth constant being a fourth row. The system matrix must be
square.

 12

1 1 1 1

2 2 2 1

3 3 3 1

4 4 4 1

a b c

a b c
A

a b c

a b c

 
 
 =
 
 
 

 (2.4.5)

2. Calculating the first element a11 of the cofactors.

2

2 2 1

11 (1) 3 3 1

4 4 1

b c

a b c

b c

= −
 (2.4.5.1)

 11a []2(3 4) 2(3 4) (3* 4 3* 4)b c c c b b b c c b= − − − + − (2.4.5.2)

3. Calculating the second element a12 of the cofactors.

3

2 2 1

12 (1) 3 3 1

4 4 1

a c

a a c

a c

= −
 (2.4.5.3)

12a []2(3 4) 2(3 4) (3* 4 4* 3)a c c c a a a c a c= − − − − + −

 12a []2(3 4) 2(3 4)a c c c a a= − − − −

 13

4. Calculating the third element a13 of the cofactors.

 4

2 2 1

13 (1) 3 3 1

4 4 1

a b

a a b

a b

= −

 13a []2(3 4) 2(3 4) (3* 4 4* 3)a b b b a a a b a b= − − − + − (2.4.5.4)

The same procedure continues for determining the remaining 13 elements for the cofactors.
Since the pattern is clear, only the results of the rest are listed below.

 a14 = [a2(b3*c4 - b4*c3) - b2(a3*c4 - a4*c3) + c2(a3*b4 - b3*a4)]
 a21 = -[b1(c3 - c4) - c1(b3 - b4) + (b3*c4 - b4*c3)]
 a22 = [a1(c3 - c4) - c1(a3 - a4)+ (a3*c4 - a4*c4)]
 a23 = -[a1(b3 - c4) - b1(a3 - a4) + (a3*b4 - a4*b3)]
 a31 = [b1(c2 - c4) - c1(b2 - b4) + (b2*c4 – c2*b4)]
 a32 = -[a1(c2 - c4) - c1(a2 - a4) + (a2*c4- a4*c2)]
 a33 = [a1(b2 - b4) - b1(a2 - a4) + (a2*b4- a4*b2)]
 a34 = -[a1(b2*c4 - b4*c2) - b1(a2*c4 - a4*c2) +c1(a2*b4- a4*b2)]
 a41 = -[b1(c2 – c3) - c1(b2 – b3) + (b2*c3 – b3*c2)]
 a42 = [a1(c2 - c3) - c1(a2 – a3) + (a2*c3- a3*c2)]
 a43 = -[a1(b2 – b3) - b1(a2 – a3) + (a2*b3- a3*b2)]
 a44 = [a1(b2*c3 – b3*c2) - b1(a2*c3 – a3*c2) +c1(a2*b3- a3*b2)]

Up to this step, all the values are known except the determinant of the 4x matrix
A(det(A)). This will be carried out in the next step.

2 2 1 2 2 1 2 2 1 2 2 2

det() 1 3 3 1 1 3 3 1 1 3 3 1 3 3 3

4 4 1 4 4 1 4 4 1 4 4 4

b c a c a b a b c

A a b c b a c c a b a b c

b c a c a b a b c

= − + − (2.4.5.5)

 ai, bi, ci and 1 are the elements of the 4x4 matrix A

3 1 3 1 3 1
1(2 2)

4 1 4 1 4 1

c b a
a b c

c b a
= − +

3 1 3 1 3 3

1(2 2)
4 1 4 1 4 4

c a a c
b a c

c a a c
− − +

3 1 3 1 3 3

1(2 2)
4 1 4 1 4 4

b a a b
c a b

b a a b
+ − +

 14

3 3 3 3 3 3

(2 2 2)
4 4 4 4 4 4

a b a c a b
a b c

a b a c a b
− − +

 The determinant of a square matrix is a single number calculated by combining all the
elements of the matrix. This is obtained by multiplying the main diagonal and subtracting the
product of the other diagonal. The difference is then multiplied with the outer elements. The
results are then added with each other or subtracted from each other depending on the signs.
The elements of the inverse matrix are then obtained as shown below:

11 12 13 14

21 22 23 24
()

31 32 33 34

41 42 43 44

a a a a

a a a a
Co A

a a a a

a a a a

 
 
 =
 
 
 

 (2.4.6)

11 21 31 41

12 22 32 42
(())

13 23 33 43

14 24 34 44

T

a a a a

a a a a
Co A

a a a a

a a a a

 
 
 =
 
 
 

 …… (2.4.7)

 1

11 21 31 41

12 22 32 421
()

13 23 33 43det()

14 24 34 44

a a a a

a a a a
A

a a a aA

a a a a

−

 
 
 =
 
 
 

 (2.4.8)

Equation 2.4.8 could now be incorporated into equation 2.4.1 to obtain the equation below.

 (2.4.5.4)

 where

1

1 1 1

2 2 2

3 3 3

4 4 4

1

1

1

1

a b c

a b c

a b c

a b c

−
 
 
 
 
 
 

 is A-1

1

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

1

1
*

1

1

p

p

p

p

x a b c p

y a b c p

z a b c p

k a b c p

−
     
     
     =
     
     
      

△ △

△ △

△ △

△ △

 15

2.3.1 - The closed solution method in obtaining xp, yp and t0

After analyzing the iterative method (Taylor linearization), the closed solution method is
worth analysing as the theory is more comprehensive and the programming behind less
complex.
The coordinate equation of an object as seen earlier is considered

2 2 2 2
0() () ()i p i p ix x y y C t t− + − = −

The index i stands for the four sensors (that is from 1 to 4). All other variables and constants
remain as in the method before.
Expanding the above equation gives;

 2 2 2 2

1 1 1 12 2p p p px x x x y y y y− + + − + = 2 2 2 2 2
1 1 0 02C t C t t C t− + (2.5.1)

 2 2 2 2
2 2 2 22 2p p p px x x x y y y y− + + − + = 2 2 2 2 2

2 2 0 02C t C t t C t− + (2.5.2)

 2 2 2 2
3 3 3 32 2p p p px x x x y y y y− + + − + = 2 2 2 2 2

3 3 0 02C t C t t C t− + (2.5.3)

 2 2 2 2
4 4 4 42 2p p p px x x x y y y y− + + − + = 2 2 2 2 2

4 4 0 02C t C t t C t− + (2.5.4)

Equation 2.5.4 will now be subtracted from 2.5.1, 2.5.2 and 2.5.3.

 2 2 2 2

1 4 1 4 1 4 1 4() () 2() 2()p px x y y x x x y y y− + − − − − −

 = 2 2 2 2
1 4 1 4 0() 2 ()C t t C t t t− − − (2.5.5)

 2 2 2 2
2 4 2 4 2 4 2 4() () 2() 2()p px x y y x x x y y y− + − − − − −

 = 2 2 2 2
2 4 2 4 0() 2 ()C t t C t t t− − − (2.5.6)

 2 2 2 2
3 4 3 4 3 4 3 4() () 2() 2()p px x y y x x x y y y− + − − − − −

 = 2 2 2 2
3 4 3 4 0() 2 ()C t t C t t t− − − (2.5.7)

Looking for the value of 0t in equation 2.5.5.

 2 2 2
1 4 02 ()C t t t− = 2 2 2 2 2

1 4 1 4 1 4 1 42() 2() [() ()]p px x x y y y x x C t t− + − − − + −

 ⇒ 0t =
2 2 2 2 2 2 2
1 4 1 4 1 4 1 4 1 4

2
1 4

() 2() () 2() ()

2 ()
p px x x x x y y y y y C t t

C t t

− − + − − − + − + −
−

 (2.5.8)

From equation 2.5.8, the following constants are regrouped.

 A:= 1 4()t t−

 B:= 1 42()x x−

 C:= 1 42()y y−

 D:= 2 2 2 2 2 2 2
1 4 1 4 1 4[() () ()]x x y y C t t− + − − −

 ⇒ 0
p pBx Cy D

t
A

+ −
= (2.5.9)

 16

A second 0t is obtainable from equation 2.5.6.

 2 2 2
2 4 02 ()C t t t− = 2 2 2 2 2

2 4 2 4 2 4 2 42() 2() [() ()]p px x x y y y x x C t t− + − − − + −

 ⇒ 0t =
2 2 2 2 2 2 2

2 4 2 4 2 4 2 4 1 4

2
2 4

() 2() () 2() ()

2 ()
p px x x x x y y y y y C t t

C t t

− − + − − − + − + −
−

 (2.6.1)

From equation 2.6.1, the following constants are regrouped. It is to be noted that the constant
22C disappears since i is a constant factor that will always appear on both sides of the

equations for 0t .

 A1:= 2 4()t t−

 B1:= 2 42()x x−

 C1:= 2 42()y y−

 D1:= 2 2 2 2 2 2 2
2 4 2 4 2 4[() () ()]x x y y C t t− + − − −

 ⇒ 1 1 1
0

1

p pB x C y D
t

A

+ −
= (2.6.2)

Equating equation 2.5.8 to 2.6.2

 ⇒ p pBx Cy D

A

+ −
 = 1 1 1

1

p pB x C y D

A

+ −

⇒ 1 1 1 1() ()p p p pA Bx Cy D A B x C y D+ − = + −

 1 1 1 1

1 1

()p
p

y AC AC A D AD
x

A B AB

− + −
=

−
 (2.6.3)

Using another pair of 0t , another xp could be obtained. Considering equation 2.5.7 above, the

next 0t could be obtained as below.

 2 2 2
3 4 02 ()C t t t− = 2 2 2 2 2

3 4 3 4 3 4 3 42() 2() [() ()]p px x x y y y x x C t t− + − − − + −

 ⇒ 0t =
2 2 2 2 2 2 2
3 4 3 4 3 4 3 4 3 4

2
3 4

() 2() () 2() ()

2 ()
p px x x x x y y y y y C t t

C t t

− − + − − − + − + −
−

(2.6.4)
From equation 2.6.1, the following constants are regrouped.
 A2:= 3 4()t t−

 B2:= 3 42()x x−

 C2:= 3 42()y y−

 D2:= 2 2 2 2 2 2 2
3 4 3 4 3 4[() () ()]x x y y C t t− + − − −

 ⇒ 2 2 2
0

2

p pB x C y D
t

A

+ −
= (2.6.5)

 17

A fourth 0t is obtained so as to equate the next two 0t to obtain another equation dependent

on px and py as unknown.

 2 2 2

1 2 02 ()C t t t− = 2 2 2 2 2
1 2 1 2 1 2 1 22() 2() [() ()]p px x x y y y x x C t t− + − − − + −

 ⇒ 0t =
2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2

2
1 2

() 2() () 2() ()

2 ()
p px x x x x y y y y y C t t

C t t

− − + − − − + − + −
−

 (2.6.6)

From equation 2.6.1, the following constants are regrouped.

 A3:= 1 2()t t−

 B3:= 1 22()x x−

 C3:= 1 22()y y−

 D3:= 2 2 2 2 2 2 2
1 2 1 2 1 2[() () ()]x x y y C t t− + − − −

 ⇒ 3 3 3
0

3

p pB x C y D
t

A

+ −
= (2.6.7)

Now, equating equation 2.6.5 to 2.6.7, it is possible to obtain px dependent on py .

2 2 2

2

p pB x C y D

A

+ −
 = 3 3 3

3

p pB x C y D

A

+ −

⇒ 3 2 2 2 2 3 3 3() ()p p p pA B x C y D A B x C y D+ − = + −

 2 3 3 2 3 2 2 3

3 2 2 3

()p
p

y A C A C A D A D
x

A B A B

− + −
=

−
 (2.6.8)

Equations 2.6.3 and 2.6.8 are equal.

 1 1 1 1

1 1

()py AC AC A D AD

A B AB

− + −
−

= 2 3 3 2 3 2 2 3

3 2 2 3

()py A C A C A D A D

A B A B

− + −
−

 (2.6.9)

From equation 2.6.8, the following constants are regrouped.

 E:= 1 1AC AC−

 F:= 1A D AD−

 G:= 2 3 3 2A C A C−

 H:= 3 2 2 3A D A D−

 I:= 1 1A B AB−

 J:= 3 2 2 3A B A B−

 18

 Now equation 2.6.9 could be rewritten as

 p py E F y G H

I J

+ +
= (2.7.0)

 ⇒ () ()p pJ y E F I y G H+ = +

 p

IH JF
y

JE IG

−=
−

 (2.7.1)

py could now be substituted in one of the equations above involving px , for example

equation 2.6.8. Once these two unknowns (py and px) have been obtained, the third unknown

(0t) could be obtained by substituting the values of py and px in one of the four equations

involving px , py and 0t , for example equation 2.6.7. It is also possible to obtain the three

unknowns (px , py and 0t) using just three equations instead of four. With the three unknowns

determined, it is now left for the software to adequately represent these values (py and px) on

the 16x32 matrix LED board.

2.3.2 - An alternative closed form solution.

In this method, it is considered that the four positions of the microphones are such that they
form a rectangle.

Figure 2.3.1: Rectangular surface of experiment

Let the surface be rectangular. That means the distance between the point 1 to 2 and 3 to 4 is
the same, with the value a and the distance between the point 1 to 3 and 2 to 4 is the same,
with the value b.

 19

Figure 2.3.2: Signal and reference signal showing run time difference through

correlation.

On Figure 2.3.2, ti stands for the time obtained from maximum correlation for the i-
position and d is an offset time since the sender and receiver work asynchronically.

 i im t d= + (2.7.2)

im is a time corresponding to the sum of the offset time and the run time.

 *i ir t C= (2.7.3)

ir are the ranges as represented in Figure 2.3.1 above and obtained as in equation 2.7.3 with C

being the speed of sound, dependent on the temperature.

2 4x x=

 2 1x x a= +

 2 3x x a= + ⇒ 3 2x x a= − 4x a= −

2 1y y=

 2 4y y b= + ⇒ 4 2y y b= −

 2 3y y b= +

 3 2y y b= −

The following equations have been mentioned already in the first method and it is the general
equation for determining the position of an object in a room.

 2 2 2

1 1 1 0x y r+ − = (2.7.4)

 2 2 2
2 2 2 0x y r+ − = (2.7.5)

 2 2 2
3 3 3 0x y r+ − = (2.7.6)

 2 2 2
4 4 4 0x y r+ − = (2.7.7)

Subtracting (2.7.6) from (2.7.7)
 ⇒ 2 2 2 2 2 2

4 3 4 3 4 3 0x x y y r r− + − − + =

 2 2 2 2 2 2
2 2 3 2 2 4 3() () () 0x x a y b y b r r− − + − − − − + =

 2 2 2 2 2
2 4 32 0x a a C t C t− − + =

It is known that t = (m-d)

 ⇒
2 2 2 2 2

4 3
2

() ()

2

a C m d C m d
x

a

+ − − −= (2.7.8)

The value of 2x obtained in equation 2.7.8 above is the first x-coordinate of the object with

the assumptions taken earlier. The value of the corresponding 2y value could be obtained by

subtracting (2.7.5) from (2.7.4) as follows.

 20

 ⇒ 2 2 2 2 2 2
4 2 4 2 4 2 0x x y y r r− + − − + =

 2 2 2 2 2 2
4 4 2 2 4 2() 0x x y y b r r− + − − + − =

 2 2 2 2 2
2 4 22 0y b b C t C t− + − =

It is known that t = (m-d)

 ⇒
2 2 2 2 2

2 4
2

() ()

2

b C m d C m d
y

b

+ − − −= (2.7.9)

The pair of values (2x and 2y) obtained above is just a solution out of many. This could be

other solutions should give the same coordinate. Due to the quadratic nature of the equation, a
value may lie out of the bounded rectangle. In this case, it is not part of the solution.

 (2.7.4) (2.7.5) (2.7.6) (2.7.7)
- (2.7.4) 0

1x 1y 1x , 2y

- (2.7.5)
1x 0

1x , 1y 1y

- (2.7.6)
1y 1x , 1y 0

1x

- (2.7.7)
1x , 1y 1y 1x 0

Table 2.3.1: second closed form method solutions

As shown in Table 2.3.1, the rest of the solutions could be obtained by subtracting the various
equations from one another. Some of them may not return real solutions. Such cases are
examined closely and rejected as a solution.

 21

2.4 - Comparison of Display technologies or systems

 After obtaining the coordinates of the object, the next point is choosing an
adequate display system. There is a good variety of display technology, some of which are
CRT, PDP (Plasma Display Panel), LCD, SED, LCoS including LED Display. After a brief
analysis of the existing displays, it was found out that some were unnecessarily expensive,
some difficult to find, some not suited for a battery powered system, some unnecessarily
complicated to electrically control and some unsuitable in terms of size for an indoor
navigation system. LED Display system was finally chosen as it has many characteristics
favourable for controlling and displaying a 2 dimensional coordinates of an object. The
characteristics that make the LED suitable for such a display are outlined in the general
characteristics section of LED. The most important reason for choosing LED as a display was
due to the visibility of LED lights at longer distances, making it adequate as a display system.
Most typical LEDs are designed to operate with not more than 30–60 Miliwatt of electrical
power. One of the major reasons for choosing LED Display is its high efficiency, as measured
by its light output per unit power input. Another point is the fact that the solid package of the
LED can be designed to focus its light while on the other hand incandescent and fluorescent
sources often require an external reflector to collect light and direct it in an applicable
manner. Further more, LEDs, being solid state components, are difficult to be damaged with
external shock. LEDs light up very quickly. A typical red LED will achieve full brightness in
microseconds. An example is the Philips Lumileds DS23 [11] with less than 100ns. LEDs are
very small in size and many could fit onto printed circuit boards. There are of course a few
disadvantages of using LEDs of which are minimal compared to the advantages. One of the
disadvantages is that their performance largely depends on the ambient temperature of the
operating environment. Over-driving the LED in high ambient temperatures may result in
overheating of the LED package, consequently proceeding to device failure. Also, LEDs have
to be supplied with the correct current which could involve resistors in series or current-
regulated power supplies. The LED Display used requires only one resistor per segment. This
resistor could also be used to vary the brightness of the LED. The brightness of the LED
could be controlled digitally using the brightness register which varies from 0 to 15, with 0
being minimum brightness and 15, maximum brightness.

 22

Chapter 3: MSP430 F169 Starter Kit and used Peripheries

3.1 - General Characteristics

 After analyzing the method to determine the coordinates and a display technology
chosen, an appropriate microcontroller will be necessary. The MSP430 has been chosen for
many reasons, which will be outlined in this chapter.
The MSP430 family of ultra-low-power 16-bit RISC mixed-signal processors from Texas
Instruments (TI) provides the ultimate solution for battery-powered measurement
applications. It is designed for low cost, low power consumption embedded applications. It
suits well for this project as the system (stand alone) uses battery meanwhile the mixed-signal
and digital technologies are fully utilised. This mixed-signal ability permits system designers
to simultaneously interface to analogue signals, sensors and digital components while
maintaining the low power consumption. They can run up to 8MHz (up to 16 MHz for the
new MSP430F2xxx series) and their consumption is only 250 µA per MIPS (Million
instructions per second), which makes them perfect for portable and handheld devices. The
DMA controller module transfers data from one address to another without CPU intervention.

Typical features of the MSP430F169STK include:

• 16-bit RISC architecture
• 125 ns Instruction Cycle
• 48 I/O pins
• 60 Kilobytes Flash
• 2 Kilobytes RAM
• 3-channel Internal DMA
• 12-bit A/D Converter with Internal Reference, Sample-and-Hold, and auto scan
• Dual 12-bit D/A Converters with Synchronization
• 16-bit Timer A with 3 Capture/Compare Registers
• 16-bit Timer with 7 Capture/Compare-With-Shadow Registers
• On-chip Comparator
• USART0 Functions as Asynchronous UART, Synchronous SPI, or I2C

The USART0 is used here for the synchronous communication of the MSP430 board with
the MAX7221 and LED modules. It is the Serial Periphery Interface (SPI) mode. The clock is
required to latch out the data from MSP430 to the chip of the MAX7221. The chip select (CS)
has to be low for a particular chip to permit data to be written to it.

• USART1 functions as Asynchronous UART or Synchronous SPI. In this project,
USART1 is used in the asynchronous communication with another MSP430 to obtain
the point of maximum correlation which reflects the time elapsed between sending and
receiving signals.

• Brown-out Detection
• Supply Voltage Supervisor/Monitor with Programmable Level Detection
• Programmable Code Protection by Security Fuse
• On board LCD used in displaying input, temperature and general information.
• Three buttons B1, B2 and B3 for input purpose

 23

Figure 3.1.1: MSP430F169 starter Kit and used peripheries

Figure 3.1.1 shows MSP430F169 Starter Kit with its peripheries. It has an LCD display which
can display up to 32 characters on two lines. There are three buttons B1, B2 and B3 on board
assisting in inputs. The c code is loaded into the MSP430 from a computer through a JTAG
connector. It is supplied with 7.5 V DC. It has 3 LEDs: PONLED is the power-on LED
indicating the connection to power, LED1 is a red LED between B1 and B2 and there is
LED2, which is green and found between B2 and B3.

 MSP430 has an extra-low power architecture (Figure 3.1.2: MSP430 Architecture
overview), 1.8 – 3.6V operation, 6µs wakeup from standby mode, 16 bits ALU and many
other characteristics making it suitable for a project like this one, needing a battery powered
system. A 16-bit Reduced instruction set computer (RISC) CPU, peripherals and flexible
clock system are combined by using the von-Neumann common memory address bus and
memory data bus. Figure 3.1.2 below gives more explanation to this structure. The MSP430
offers solutions for present and future mixed signal applications.

 24

Figure 3.1.2: MSP430 Architecture overview [9]

It has a uniform instruction format, using a single word with the OPCODE in the same bit
positions in every instruction, demanding less decoding and simple addressing modes, less
complex addressing performed through sequences of arithmetic and /or load-store operations.
Less decoding reduces the time taken to interpret code and consequently implying a faster
reaction or processing.

3.2 – Ports of the MSP430F169

There are all together six ports on the MSP430F169 Starter Kit. The most used port in this
project is the port 3. It is used in lighting up the controllable LEDs available on the board. It
is equally used in the SPI communication as well as in the UART communication to receive
run time differences from a parallel project.
As is standard on microcontrollers, most pins connect to a more specialized peripheral, but if
that peripheral is not needed, the pin may be used for general-purpose I/O. The pins are
divided into 8-bit groups called "ports", each of which is controlled by a number of 8-bit
registers.

PxIN
Port x input. This is a read-only register, and reflects the current state of the pin.

PxOUT
Port x output. The values written to this read/write register are driven out the corresponding
pins when they are configured to output.

PxDIR
Port x data direction. Bits written as 1 configure the corresponding pin for output. Bits written
as 0 configure the pin for input.

 25

PxSEL
Port x function select. Bits written as 1 configure the corresponding pin for use by the
specialized peripheral. Bits written as 0 configure the pin for general-purpose I/O. Port 0 ('3xx
parts only) is not multiplexed with other peripherals and does not have a P0SEL register.

PxIES
Port x interrupt edge select (ports 0-2 only). Selects the edge, which will cause the PxIFG bit
to be set. When the input bit changes from matching the PxIES state to not matching it (that is
whenever a bit in PxIES XOR PxIN changes from clear to set), the corresponding PxIFG bit is
set.

PxIFG
Port x interrupt flag (ports 0-2 only). Set whenever the corresponding pin makes the state
change requested by PxIES. This can be cleared only by software (Can also be set by
software).

PxIE
Port x interrupt enable (ports 0-2 only). When this bit and the corresponding PxIFG bit are
both set, an interrupt is generated.

Note that some pins have special purposes either as inputs or outputs. (For example, timer
pins can be configured as capture inputs or PWM outputs.) In this case, the PxDIR bit controls
which of the two functions the pin performs even when the PxSEL bit is set. If there is only
one special function, then PxDIR is generally ignored. [9]

3.3 - UART and SPI

There are two main communication protocols involved with the outside of the
microcontroller. They are the Universal Asynchronous Receiver/ Transmitter (UART) and the
Serial Peripheral Interface protocol. The MSP430F169 has the ability of offering these two
protocols at the same time, as it has a USART0 and USART1, configurable to work at the
same time. The UART is used in the time difference reception from a parallel process in
another MSP430F169. This is in a continuous mode.

 26

Figure 3.3.0: Relevant pins of MSP430 for UART use

 The SPI is used in controlling the LEDs with the help of MAX7221 chips. The USART1
module is used in communicating with devices and systems that support the RS232
communications [28].

3.3.1 UART

USART as UART is used in this project in receiving data from another MSP403 running
parallel with each other. This communication is duplex, continuous and rapid. The
programming of this section is thoroughly explained and illustrated in Chapter five.

 27

Figure 3.3.1: Block diagram of UART communication

3.3.2 - SP I
SPI stands for serial periphery interface. It is a synchronous communication needing a clock
to permit the data move out of the microprocessor sending.
In synchronous mode, the USART connects the MSP430 to an external system via three or
four pins: SIMO, SOMI, UCLK, and STE. SPI mode is selected when the SYNC bit is set and
the I2C bit is cleared.

The features of SPI include:
- 7- or 8-bit data length.
 This setting was the most convenient as far the communication interface and speed was
 concerned.
- 3-pin and 4-pin SPI operation
- Master or slave modes
- Independent transmit and receive shift registers
- Separate transmit and receive buffer registers
- Selectable UCLK polarity and phase control.
 The clock is generated by the master. This is also true in full duplex communication where
 the master transmits and receives likewise the slave.
- Programmable UCLK frequency in master mode
 The UCLK frequency can be altered and this is possible only in the master mode as already
 explained.
- Independent interrupt capability for receive and transmit

Figure 3.3.2: MOSI block diagram

MOSI (master output, slave input) is used in realising a functional and frictionless
communication between the microcontroller and the 8 MAX7221 slaves.

 28

The master is MSP430F169 sending out data synchronically to the slave (MAX7221). Data is
latched out using the clock of the master. A detailed description is given in the software
section in Chapter five.
It is very important to follow a specific order in the re-configuration process of this module.
Failure to do that may result in anomalous behaviour without explanations. These steps and
the orders are as follows:
1) Set SWRST (BIS.B #SWRST, &UxCTL)
 The SWRST (software reset) configuration is done in the control register UxCTL with x
 being 0 or 1. The two modes could be operated separately and at the same time.
2) Initialize all USART registers with SWRST=1 (including UxCTL)
3) Enable USART module via the Mex and SFRs (USPIEx)
4) Clear SWRST via software (BIC.B #SWRST, & UxCTL). Clearing SWSRT allows
 operation.
5) Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEx).
 The USART has one interrupt vector for transmission and one interrupt vector for recap-
 tion. The UTXIFGx interrupt flag is set by the transmitter to indicate that
 UxTXBUF is ready to accept another character. An interrupt request is generated if
 UTXIEx and GIE are also set. [9]

3.3.2.1- SPI Timing

The polarity and phase of UCLK are independently configured via the CKPL and CKPH
control bits of the USART. Figure 3.3.3 below gives more details to the timing functionality
of the SPI.

Figure 3.3.3: USART SPI Timing [9]

 29

3.4 - Analogue-Digital Converter (ADC)

The ADC12 module supports fast, 12-bit analogue-to-digital conversions. The module
implements a 12-bit SAR core, sample select control, reference generator and a 16 word
conversion-and-control buffer. The conversion and control buffer allows up to 16 independent
ADC samples to be converted and stored without any CPU intervention.

ADC12 features include:
• Greater than 200 ksps maximum conversion rate
• Monotonic 12-bit converter with no missing codes
• Sample-and-hold with programmable sampling periods controlled by software or timers.
• Conversion initiation by software, Timer_A, or Timer_B
• Software selectable on-chip reference voltage generation (1.5 V or 2.5 V)
• Software selectable internal or external reference
• Eight individually configurable external input channels
• Conversion channels for internal temperature sensor, AVCC, and external references
• Independent channel-selectable reference sources for both positive and negative

references
• Selectable conversion clock source
• Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes
• ADC core and reference voltage can be powered down separately
• Interrupt vector register for fast decoding of 18 ADC interrupts.
• 16 conversion-result storage registers
The ADC units on some MSP include a temperature sensor. This feature is easy to use and
also accurate (typically within a degree). ADC12 is a single 12-bit analogue-to-digital
converter, with a built-in sample-and-hold circuit. The front end consists of a multiplexer
circuit which allows the developer to select one of eight external pins, or one of four internal
sources.
The 8 external and four internal analogue signals are selected as the channel for conversion by
the analogue input multiplexer. The input multiplexer is a break-before-make type to reduce
input-to-input noise injection resulting from channel switching as shown in Figure 3.3.1

Figure 3.4.1: Multiplexer circuit [9]

 30

There is an internal diode which permits the ADC to provide an estimated idea of operating
temperature. The temperature diode varies with device. It is remarkably less accurate than an
external temperature sensor though a low cost possibility when the microcontroller is already
available. The MSP430F169 family has the volt-°C relation as follows: 3.55mV change in
voltage is equivalent to 1°C. These values could be obtained as typical values from the data
sheet. A more accurate value of temperature, it is better to use an external sensor. Since an
accuracy of approximately 1°C is quit sufficient to obtain good results as far as the speed of
sound is concerned, it is practical using this internal sensor. The above statement could be
explained using the formula below:

 C = 331+0.6*(θ±1°C) (3.3.2)

Figure 3.3.2: ADC12 block diagram [9]

The ADC core converts an analogue input to its 12-bit digital representation and stores the
result in the conversion memory. The core uses two programmable/selectable voltage levels
(RV + and RV −) to define the upper and lower limits of the conversion. The digital output

 31

(NADC) is full scale (0xFFF≡ 4095 in decimal notation), when the input signal is equal to or
higher than RV + , and zero when the input signal is equal to or lower than RV − . The input

channel and the reference Voltage levels (RV + and RV −) are defined in the conversion-control

memory.
The conversion formula for the ADC result NADC is:

 4095* in R
ADC

R R

V V
N

V V
−

+ −

−=
− (3.3.1)

The ADC12 core is configured by two control registers, ADC12CTL0 and ADC12CTL1. The
core is enabled with the ADC12ON bit. The ADC12 can be turned off when not in use to save
power. With few exceptions the ADC12 control bits can only be modified when ENC = 0.
ENC must be set to 1 before any conversion can take place.

There are four conversion modes:

 - Single channel one-shot
It is a single conversion with results being saved in one of the ADCMEM (analogue digital
memory) registers.

 - Single channel repeated.
It repetitively performs conversion until stopped. Results are being stored in the same
ADCMEM register. Here, the typical method is to loop process when the BUSY flag clears.
This mode will be explained in details in this chapter as it is the employed mode in this
project.

 - Multiple channel, single sequence.
In this mode, the ADC performs multiple conversions, looping through a specific number of
ADCMEM registers one time.

 - Multiple channel repeated.
It is identical to the previous case, apart from the fact that the series of conversion is repeated
until stopped.
These mentioned modes have the advantage that they are a “start and forget'' process. The
code could be written such that the process is initialized and the code could perform other
tasks while the conversion is underway. Nevertheless, these modes have the disadvantage or
rather limitation in the fact that in the repeated mode, the software needs to be ready to read
the ADCMEM registers before they are rewritten, or an interrupt will be generated.
Timing is performed by the conversion clock. This clock may be sourced by any of the clocks
from the Basic Clock Module, or by a fixed RC oscillator which is a dedicated portion of the
ADC. This oscillator is quit similar to DCO, with similar accuracy. The timer has to be
initialized in the ADC12CTL1 register, and the DIV value and clock source must be selected
so as to the conversion frequency meets the data sheet specifications. The conversion takes
thirteen cycles of the conversion clock source.

ADC12 Control Registers
ADC12CTL0, ADC control register = 0. Address: 0x01A0h. All bits are read/write. Bits 15
though 4 may only be edited when ENC = 0.

 32

SHT1/SHT0: Sample and Hold Time. SHT1 determines the sample and hold time for ADC0
through ADC7 and SHT0 determines the sample and hold time for ADC8 through ADC15.
The sample and hold time is 4*(ADC_Clock_Time)*(n). [9]
- AD12CTL1, ADC control register = 1. It has the address: 0x01A2. All bits except 0 (BUSY)
are read or write. Bit 15 through 3 may only be edited when ENC = 0.

Table 3.3.1: Control registers for ADC with reset value and bit position [9].

A single channel is sampled and converted continuously. The ADC results are written to the
ADC12MEMx defined by the CSTARTADDx bits. Since only one ADC12MEMx memory is
available for this mode, the results need to be read after each conversion and before the next
sequence.
After conversion, the values of voltage change with reference of either 1.5V or 2.5V are saved
in ADC12MEM10 register. The value is related to temperature as below:

 U = T * 3.55mV + 986mV (3.3.2)

 T1..5V = ADC12MEM10*0.103158 - 277.75 °C (3.3.3)
 T2.5V = ADC12MEM10*0.172 - 277.75 °C (3.3.4)
Equation 3.3.2 is based on the reference voltage of 1.5V and equation 3.3.4 on the reference
Voltage of 2.5V.
These relationships are explained in detail in the datasheet of MSP430-169. In order to obtain
accurate values, a calibration at a temperature of about 25°C is necessary.

3.5- Liquid Crystal Display (LCD)

The temperature of the chip, obtained through ADC12, which is linearly dependent on the
change of voltage in a diode of the circuit, is represented on the LCD. The setting of the
coordinates of the axis of the four receivers is also displayed on the LCD. Writing a character
to the liquid crystal of the MSP430F169 family is done in two steps. The first step is to send a
command to set the LCD and the next step is to send the upper nibble and then the lower
nibble of the data to be displayed. Figure 3.5.1 shows how the 32 characters are distributed.

Figure 4.5.1: LCD of MSP430F169 showing the positioning of 32 characters.

 33

As already mentioned, the LCD on MSP430F169STK can display 32 characters at the same
time, with 16 characters per line as shown in Figure 3.2.5.1 above.
Only characters can be represented on the LDC. In order to represent integers for example, it
is first converted into ASCII before sent to the LCD.

Figure 3.5.2: LCD of MSP430F169 showing displayed summer room temperature

Only half a byte is sent at a time that is the upper and lower nibble. Before sending the data, a
command is first sent to set the LCD ready to accept the data. In sending the command, the
upper nibble is first obtained by carrying out an AND operation of a constant with 0xF0. As
such, the lower nibble is set to zero and the upper nibble to 1 or high. This is saved in temp.
An OR operation is carried out between LDC data (P4OUT) and temp in order to position the
content of temp, which is the upper nibble in LCD data without changing the content. The
LCD is then set to command mode (P4OUT& = ~BIT3) which is represented as
RS_LOW. At this point, the LCD is toggled (_E();). _E(); is a subroutine that sets
P4OUT | = BIT1 (E_HIGH) , then does nothing and then sets P4OUT& = ~BIT1
(E_LOW). After that, the lower nibble of the sent data (e) is obtained by shifting the content
of temp 4 places to the right and carrying out an OR operation with LCD data. The e may be
a data to clear the display, precise an address or any other reasonable operation. The toggle
sub function (_E();) is then called again. This then completes the SEND_CMD (e)
function. The details of the computing of the above, is explained in chapter five.

 It is first of advisable to delay a bite before starting the sending operation. This whole
sending process is identical to that of sending a command with the mare difference that the
character sent now will be displayed on the LCD. For a better understanding, refer back to the
subroutine SEND_CMD();. As explained earlier, only characters could be sent and
recognized on the LCD. A trial to send integers directly, for example will result to unknown
signs or characters that have no relation with what has been sent. After a few trials, it was
noticed that the function itoa in mspgcc with Eclipse could not return the ASCII characters
expected. For that reason, sprintf is used. The characters are saved in a buffer of type char and
the content of the buffer is then sent to the LCD using the function named SEND_CHAR ().
An example is sprintf(buffer,"%d",value) converts to decimal base,
sprintf(str, "%x" ,value) converts to hexadecimal base and sprintf(str,
"%o", va- lue) converts to octal base. The data processed (for example 27°C) to send to
LCD are merely integer and character. The temperature values are integer, degree (°) and
Celsius (C) are both characters. The coordinates of the receivers are all integers. These values
are put in through the buttons B1, B2 and B3 and are displayed as well on the LCD.

 34

Chapter 4: Hardware Development

4.1 – Requirements

A few hardware and hardware component were necessary to realise this project. Some of
them included:

• MSP430 F169 Starter Kit
• 8 chips of type MAX7221
• 8 pieces of 8x8 LED dot matrix display from Everlight Electronics Co., LTD model

no: ELM-1883SRWA
• 16 Capacitors (8 of 10µF and 8 of 100nF)
• 8 resistors (each 25 KΩ or 22 KΩ)
• 7.5 V voltage supply for MSP430 F169
• 5 V voltage supply for MAX7221 connected at pin 19
• A few binders and cable of different sizes and types
• Printable circuit board, designed using Eagle

4.2 -Tool: Eagle

EAGLE (Easily Applicable Graphical Layout Editor) is an ECAD program. The Version
4.11 was used in this project. This software is relatively easy to learn and design simple
electrical layouts. It provides a schematic editor, for designing circuit diagrams and an
integrated PCB layout editor, which automatically starts off with all of the components
required by the schematic. It also provides a good autorouter, which once the components
have been placed will attempt to automatically find an optimal track layout to make the
electrical connections. It does not always manage to find a way of routing all the signals,
although it permits manual routing of critical paths such as power and high frequency lines
before letting the autorouter handle the other connections.

4.3 – PCB Design for LED module

A printable circuit board (PCB) has been developed as an interface between the chips and the
LEDs mainly.
It was necessary to abide as much as possible to certain rules to improve on the design and
functionality of the circuit. Cable bends of 90° and less were avoided as much as possible
,although the circuit is in a relatively low frequency section. Cable bends of 90° or less could
lead to data loss or corruption.
The capacitors were as closed to the chips (MAX7221) as possible, as such reducing
unnecessary increase in conducting length and consequently increase in resistance.
An increase in the resistance leads to a greater voltage fall. This voltage fall is exactly what
reduces the functionality of the capacitors, as their function is to store charges.
There are two possible ways of designing this layout in Eagle.
The first method is modular. Since there are 8 similar modules involved, only one circuit is
designed and 8 of them reproduced. It was double sided; the front side for the LEDs and the
other side for the other electrical components, like the resistor, capacitors as well as the
connectors.

 35

 Five cables are connected from the MSP430F169 Starter Kit (STK) to the first module.
The first cable is that for the clock to assist in latching out the data. This clock is serially
connected to the rest of the modules and using connectors from one module to the next
though the connections through the modules are internal on the printable circuit board (PCB).

The second cable is the data-in (DIN) cable conducting the data and addresses through the
PCB to the MAX7221 integrated circuit and consequently setting some registers, lighting up
or turning off specific LEDs as well as lighting a segment or a digit just to name a few.

The third cable is supply voltage (5V) cable supplying all the 8 modules. This cable is not
from the microcontroller as it cannot meet up with the current requirement of the 8 LED
displays.
The fourth cable is the Ground cable assisting in realizing a common earth for the modules,
the microcontroller and the source. The Ground of the microcontroller is linked to that of the
supply (5 volts) voltage source to realize the above statement.

The fifth cable is the chip select (CS) cable. The chip select is low active for MAX7221
permitting writing on to a chip while this method is easy to realize in Eagle since it does not
involve a lot of drawing, therefore reducing the time factor. This method requires at the end
relatively more soldering resulting from the connectors (joints) from one module to the next.
In addition to that, when all the modules were placed next to each other, the LED displays
could not fit to each other as there was a space of about 4 mm between the one display and the
next, although the layout was in its minimal design size. See Figure4.3.2 on the next page.
More so, a more complicated structure was required to keep the modules intact.
A block diagram of the first design is shown in figure 4.2.1 below. It is a unit out of eight.
The attachment section should be consulted for the schematics.

Figure 4.3.1: A block diagram of the first PCB design

 36

 Figure 4.3.2: First design LED module and PCB mounted

Figure 4.3.2, shows two modules of the first design of PCB plugged together. The connector
from one module to the next, being an additional hardware, is one of the disadvantages of the
design since it involves 16 additional hardware pieces (connectors: 8 males and 8 females).

Figure: 4.3.3: Two modules of PCB and other electri cal components

 37

The table below shows how the pins of MAX7221 were connected to that of the LED and to
the MSP430F169.

MSP430F169 MAX7221 SEG/ DIG/ Others LED pin

P3.1 1 DIN -
- 2 DIG0 13
- 3 DIG4 6

Port1 GND 4 GND -
- 5 DIG6 15
- 6 DIG2 4
- 7 DIG3 10
- 8 DIG7 16

Port1 GND 9 GND -
- 10 DIG5 11
- 11 DIG1 3

P3.0 12 CS -

P3.3 13 CLK -
- 14 SEGA 14
- 15 SEGF 2
- 16 SEGB 8
- 17 SEGG 5
- 18 ISET -
- 19 V+ -

- 20 SEGC 12
- 21 SEGE 7
- 22 SEGDP 9
- 23 SEGD 1
- 24 DOUT -

Table 4.3.1: Pin to pin connection of MSP430, LED and MAX7221

 There are four connections from the MSP430. The data is sent out (MOSI) through port 3 on
pin 1. The ground from the controller is linked to that of MAX7221 IC at pin 4 and 9 through
port 1 GND. Chip select is on port 3 pin 0 (connected to pin 12 of the IC) and the clock is on
port 3 pin 3, connected to pin 13 of the IC.

Figure 4.3.4 on the next page, shows the a block diagram of the PCB design. It is compact and
the eight similar modules are connected together on a platform. This method is more
advantageous as explained above. It takes more time to be designed but it reduces the space
between one display and the neighbouring which makes demonstration optically better.

 38

Figure 4.3.4: A block diagram of second design

The second design occupies less space and the soldering involved is reduced due to the
absence of connectors (16 in number) as in the first method. This also implies the
employment of less hardware, thereby making the design cheaper. No complicated structure is
needed here for the PCB and LED display to be fixed tight as there are allocations for screws
on the board.
Nevertheless, there are a few inconveniences using this method. The Schematics is
cumbersome, needing more time for design and control as well as increasing the possibility of
having an error that is not detectable with the ERC check. See chapter 8 for the schematics
and board of the designs.

 Figure 4.3.5: ERC window

 39

After carrying out the electrical rule check of the schematics, there were no errors.
Nevertheless, there were a few warnings as seen on Figure 4.2.5above. These warnings are
negligible as they are mainly indicating the connection of power supply to nets. The other
point is the data out pin of the eighth MAX7221 chip. This pin is open as there are no further
connections on it. The consistency of the board and schematics is also confirmed as shown on
Figure 4.2.5: ERC window above.

Figure 4.3.6: DRC Error window

After designing the PCB, there were a few “errors” from the design rule checks (DRC). These
are not important and so are to be ignored. These “errors” are due to the sizes of the name of
the board, date, author’s name, version and the name of the laboratory in which the work was
done. These notifications could be turned off by increasing the sizes of the named items
above. Since it was decided on the given sizes, it is not necessary turning off the notifications.

Figure 4.3.7: Produced PCB with electrical components like the IC MAX7221,
resistors and capacitors

 40

Figure 4.3.7 is the result of the hardware design. It is compact, double sided and
functions as expected. The DIN, CLK, GND and voltage are measured at the
various chips and they appear as they are supposed to, and when they are supposed
to. These qualify the hardware technically and optically.

Figure 4.3.8: The full display with 8 LED modules (front view with 512 LEDs)

 4.4 -MAX7221 and LED module

 The chip MAX7221 and the LEDs are the most important electrical component of the
circuit since they play a vital role in the development of the display. As already explained, the
MAX7221 are the ICs that make the control of the LEDs realisable. The communication
between the microcontroller and the ICs is through USART in SPI mode with the data being
latched out with the assistance of the master (MSP430) clock.

 4.4.1 - MAX7221

 MAX7221 is compact, having serial input/output common-cathode display drivers that
interface microprocessor or microcontrollers to 64 individual LEDs. MAX7221 was chosen
for this project for couples of reasons. One of the most important reasons, being the
availability in small quantity as only 8 of them are necessary to drive 512 LEDs. A further
reason is the fact that it permits SPI control and each IC can control up to 64 LEDs. The fact
that these ICs could be cascaded to control 512 LEDs also contributed to the decision of
choice.
It is compatible with Serial Peripheral Interface (SPI), queued serial peripheral interface
(QSPI) and MICROWIRE (µWire), a restricted subset of SPI.
It has slew rate-limited segment drivers to reduce Electromagnetic interference (EMI).

 41

This device include a 150µA shut-down mode, analogue and digital brightness control, a scan
limit register that allows the user to display from 1 to 8 digits, and a test mode that forces all
LEDs on.
A convenient 4-wire serial interface connects to all common microcontrollers (µCs).
It has a 24-pin dual in-line package (DIP) and SO packages. Figure 4.3.9 shows an overview
of a DIP sockets.
A "DIP" is a "dual in-line package“ that has two rows of pins that are in a line. These sockets
are usually soldered permanently onto a printed circuit board (PCB). A DIP chip can then be
inserted and removed easily as in this case with MAX7221.
 The voltage with respect to ground (GND), the operating supply voltage (V+) is between

-0.3V and 6V, the DIN, CLK, LOAD andCS.All other pins have potential difference from
-0.3V to +0.3V. The sink current in DIG 0-7 is 500mA meanwhile the source current of SEG
A - G, DP is 100mA.

Figure 4.4.0: Pin description of MAX7221

The minimum value for intensity limiting resistor should be 9.53K Ohm. This resistor is
either variable or fixed. A fixed resistor was decided for this project as a digital brightness
control is possible through software. Its variation influences the brightness of the LEDs.
There are many modes in which the MAX7221 could be driven. There is the serial addressing
mode, the shut down mode, the initial power up-mode and the no-Op mode. In the serial
addressing mode, CS must be low to clock data in or out. The data is then latched into either

the digit or control registers on the rising edge of CS. CS must go high concurrently with or
after the 16th rising clock edge, but before the next rising clock edge or data will be lost. Data
at DIN is propagated through the shift register and appears at DOUT 16.5 clock cycles later.
Data is clocked out on the falling edge of CLK. Data bits are labelled D0–D15. D8–D11
contains the register address. D0–D7 contains the data, and D12–D15 are “don’t care” bits.
The first received is D15, the most significant bit (MSB).

Figure 4.4.0 above shows a view of the MAX7221 chip. The pins are described in the table
below.

 42

Pin Number Description
1 DIN - Serial Data In
2 DIG 0 - Digit 0 Drive Line
3 DIG 4 - Digit 4 Drive Line
4 GND - Ground
5 DIG 6 - Digit
6 Drive Line 6 DIG 2 - Digit 2 Drive Line
7 DIG 3 - Digit 3 Drive Line
8 DIG 7 - Digit 7 Drive Line
9 GND - Ground
10 DIG 5 - Digit 5 Drive Line
11 DIG 1 - Digit 1 Drive Line
12 LOAD(CS) - Chip Select
13 CLK - Serial Clock
14 SEG A - Segment A Drive Line
15 SEG F - Segment F Drive Line
16 SEG B - Segment B Drive Line
17 SEG G - Segment G Drive Line
18 ISET - Peak Segment Current
19 V+ - Positive Supply Voltage
20 SEG C - Segment C Drive Line
21 SEG E - Segment E Drive Line
22 SEG DP - Segment Decimal Point Drive Line
23 SEG D - Segment D Drive Line
24 DOUT - Serial Data Out

Table 4.4.0: MAX7221 pin number and description.

 The no-op register is used in cascading MAX7221s. All devices LOAD/ CS input are
connected together and DOUT connected to DIN on adjacent devices. DOUT is a CMOS
logic-level output that easily drives DIN of successively cascaded parts. For example, if four
MAX7221s are cascaded, then to write to the fourth chip, the desired 16-bit word is sent,

followed by three no-op codes. When CS goes high, data is latched (In electronics, a latch is
a data storage system used to store information in sequential logic systems. One latch can
store one bit of information) in all devices. The first three chips receive no-op commands, and
the fourth receives the intended data.

Supply Bypassing and Wiring
To minimize power-supply ripple due to the peak digit driver currents, connect a 10µF
electrolytic and a 0.1µF ceramic capacitor between V+ and GND as close to the device as
possible. The MAX7221 should be placed in close proximity to the LED display, and
connections should be kept as short as possible to minimize the effects of wiring inductance

 43

and electromagnetic interference. Also, both GND pins (pin 4 and 9) must be connected to
ground.

Selecting RSET Resistor and Using External Drivers
The current per segment is approximately 100 times the current in ISET. To select RSET, see
Table 4.4.1. The MAX7221’s maximum recommended segment current is 40mA. For
segment current levels above these levels, external digit drivers will be needed. In this
application, this driver serves only as controllers for other high-current drivers or transistors.
Therefore, to conserve power, RSET = 47kOhm is used when using external current sources as
segment drivers. RSET must be selected accordingly.

Table 4.4.1: RSET versus Segment Current and LED Forward Voltage[9]

Cascading drivers

The example in Figure 4.4.1 drives 16 digits using a 3-wire µP interface. If the number of
digits is not a multiple of 8, both drivers’ scan limits registers are set to the same number, so
one display will not appear brighter than the other. For example, if 12 digits are need, 6 digits
should be used per display, with both scan-limit registers set for 6 digits so that both displays
have a 1/6 duty cycle per digit.

 44

Figure: 4.4.1: cascading MAX7221 (adapted from [9] and [31])

 If 11 digits are needed, both scan-limit registers are set for 6 digits and one digit driver left
unconnected. If one display is set for for 6 digits and the other for 5 digits, the second display
will appear brighter because its duty cycle per digit will be 1/5 while that of the first display
will be 1/6. Refer to the No-Op Register section for additional information.
Figure 4.4.1 shows two MAX/221 IC cascaded together. In this project, eight of them have
been cascaded together, with the DOUT of a MAX7221 being the DIN of the next.

Computing Power Dissipation
The power dissipation is a factor worth analysing, so as to know the limits of current for the
system. The upper limit for power dissipation (PD) for theMAX7221 is determined from the
following equation:

PD = (V + x 8mA) + (V+ - VLED)*(DUTY x ISEG x N) where:
V+ = supply voltage
DUTY = duty cycle set by intensity register
N = number of segments driven (worst case is 8)
VLED = LED forward voltage
ISEG = segment current set by RSET

 45

Dissipation Example:
ISEG = 40mA, N = 8, DUTY = 31/32, VLED = 1.8V at 40mA, V+ = 5.25V

PD = 5.25V (8mA) + (5.25V - 1.8V) (31/32 x40mA x 8) = 1.11W
Thus, for a CERDIP package (qJA = +60°C/W [9]), the maximum allowed ambient
temperature TA is given by:

TJ (MAX) = TA + PD *qJA + 150°C (4.3)
 = TA +1.11W x 60°C/W (4.4)
 From the above equations, TA = +83.4°C.

4.4.2 - LED Display (Model No: ELM-1883SRWA)

4.4.2.1 - General characteristics of LEDs

4.4.2.1.1 -A brief History

 Light Emitting Diodes (LEDs) are expected to be used in a variety of new applications as a
next-generation lighting source. The demands on electronic products go towards cheaper and
easier to handle products that show the full, or even better optical detectors performance of
expensive products. In the area of optical detectors, this demand leads to integrated
photodiodes and receiver on one chip. [2]
Commercial research into LED technology started in 1962 at Bell Labs, Hewlett-Packard,
IBM, Monsanto and RCA [11]. Work on gallium arsenide phosphate (GaAsP) led HP and
Monsanto to introduce the first commercial 655nm red LEDs in 1969. In 1971, HP released
the 5300A 500MHz portable frequency counter using GaAsP LED display. The Commission
Internationale de l’Eclairage (CIE) formalized standards for measuring light and the response
of the human eye to light in the 1930s. This commission defined the primary colours
including their wavelength. Radiant light intensity (wavelengths) is measured in lumens
meanwhile luminous intensity is measured in candelas (cd). The lumen definition states that
683 lumens of light are provided by 1 watt of monochromatic radiation at a wavelength of
555nm. The mechanical construction of the LED lamp determines the radiated light pattern. A
narrow radiated pattern will appear very bright.
LEDs are processed in wafer forms that are similar to silicon-integrated circuits and broken
out into dice.

 4.4.2.1.2 - The electrical and optical Characteristics of LEDs

LEDs are usually small, have a long life with mean time between failures (MTBF) of about
100,000 to over 1,000,000 hours for a continuous operation. Their behaviours are similar to
other semiconductor diodes. The forward voltage in LEDs is higher and differs with different
materials used for different colours. The forward voltage increases with current and decreases
with temperature. The voltage decreases with temperature with a gradient of about 2mV/°C.
The optical comportment of LEDs varies remarkably with temperature. The quantity of light
emitted by the LED lamp falls as the junction temperature rises. This is due to a rise in the
recombination of holes and mainly because the energy gap of the semiconductor varies with

 46

temperature. LEDs of different colours have different wavelengths. Table 3.3.2.1 shows this
variation for the three primary colours.

Colour name Wavelength in nanometres
 Red 700

 Green 5461.1

 Blue 435.8

Table 4.3.2.1: Primary colours and their wavelengths

Figure 4.3.2.1: Spectra of individual primary colours [22]

The behaviour of the three primary colours as far as intensity and wavelength (lambda: λ) is
concerned is demonstrated in Figure 3.3.2.1 above. It is visible that at lower values of λ, the
blue colour attains its maximum intensity. This is followed by the green and then the red
colour. The explanation is simply the fact that at values of λ around their various wavelengths,
they attain their maximum intensity. Table 3.3.2.1 and Figure 3.3.2.1 explain this behaviour
closely. These explanations help understand some of the characteristics of LED and their
colours so as to judiciously handle them in hardware and software combination.
A simple electrical circuit diagram of an LED basically consists of a DC source, an LED and
a resistor. See the Figure 3.3.2.1.2 below for further clarifications.

 47

Figure 4.3.2.1.2: LED circuit

The correct resistance of the resistor R could be calculated using the formula below:

 R LED

LEDrating

P V

I

−= (4.3.2.1)

Where:
R is the resistor in Ohms (Ω), P is the Power supply voltage (such as a 5 volt battery) LEDV is

the voltage drop across the LED (typically about 1.7 - 3.3 volts; this varies with the colour of
the LED), LEDratingI is the LED current rating from the manufacturer of the LED (usually

given in milliamperes).

Figure 4.3.2.1.3: The inner view of a single LED (adapted from [32])

 48

The LED used in this project is an 8*8 Dot Matrix Display with large emitting dots. This
series of display have a large emitting area (3.0mm diameter) and LED sources configured in
a 64 dots 8*8 matrix array. The device is made up of white surface and grey dots. From the
centre of an LED to the next is 4mm, making the total of 28mm as the width or height of the
device from the centre of the first LED to the centre of the last (8th) LED. The total width is
28mm + 4mm = 32mm. From one pin of the LED to the next is 2.54mm
It is a low power and high brightness LED, making it suitable to its use as a display for a
battery supplied device. The emitted colour is red. The intensity is either digitally controlled
using the intensity register or through a variable resistor 47KΩ. The maximum recommended
segment current is 40mA. [9]

Figure 4.3.2.1.4: 8x8 LED matrix (inside view)

An LED matrix display as shown on Figure 4.3.2.1.4 is made up of 64 LEDs and they have a
common cathode. The address of each LED is also shown. An example of an address is
(0, 6). The 0 stands for the row and the 6 stands for column. The anode is connected on the
segments from A to G including the decimal point DP meanwhile the cathode is connected to
the digits (DIG0 to DIG7) as seen in Figure 4.3.2.1.4 above.

4.4.2.1.3 - Reliability and Lumen Maintenance

This sub section outlines an important point in choosing the LED as a display. Lumen
maintenance is simply the amount of light emitted from a source at any given time relative to
the light output when the source was first measured. It is expressed as a percentage. The
effects of lumen depreciation are noticed for example when changing an old light bulb with a
new one. This steady decline over time is known as lumen maintenance . The materials inside
the bulb will continue to deteriorate until finally the bulb will no longer emit any light. This is

 49

known as the bulb's mortality. With conventional light sources, the bulb usually fails before
our eyes notice the change in lumen maintenance. .
LEDs also experience lumen depreciation but it happens over a much longer period of time,
usually tens of thousands of hours. Compared to conventional light sources, one notices very
little degradation of light with LUXEON LEDs. .
Not all LEDs deliver the same lumen maintenance. An LED is a complex package of mater-
ials that must all work together to deliver long lifetimes. Everything from the design of the
chip, thermal management, optics material, phosphors and even the assembly of the entire pa-
ckage will affect lumen maintenance. Some LEDs demonstrate very rapid depreciation but
Philips Lumileds technical advances in all of these areas has led to the industry’s longest lived
LEDs — LUXEON. [11]

Figure 4.3.2.1.1: Lifetime data across current and temperature variables for a K2 LED [11]

The junction temperature of LEDs is a very important factor in considering an LED. The
curves in Figure 4.3.2.1.1 show a variation of junction temperature with life time of the LEDs
in hours for four different currents (1.5A, 1A, 700mA and 350mA). As shown in the curves,
an increase of current will lead to an increase of the junction temperature. This helps in giving
a guide line to maintaining the current at a minimum level to avoid excessive heating.
 LED lifetime could be predicted using the Weibull distribution function.
The Weibull distribution function can be written as:

1
()

(; ,)
kk xk x

f x k e λλ
λ λ

−
− =  

 
 [11] (4.3.2.1)

where x, k and λ are derived from experimental data based on collected data, such as recorded
lumen maintenance of power LEDs undergoing lifetime testing, values for x, k and λ can be
calculated. The Weibull distribution function is then used to extrapolate the recorded data to
predict behaviour over a period longer than that measured. The application of the Weibull

 50

function acknowledges that the size of the recorded data set, influences the accuracy of the
calculated values x, k and λ. A larger body of experimental data produces values that more
closely resemble the behaviour of the system. The ideal LED driving circuit is optimal when
the LED characteristics listed are taken into consideration. LEDs are electronic devices that
emit light by the delivery of current, so appropriate power sources are required to drive them.

Table: 4.3.2.1.1.1: Absolute maximum ratings at 25°C (Ta)

Table: 4.3.2.1.1.1 gives the ratings for the reverse voltage, forward current, operating
temperature, storage temperature, soldering temperature, power dissipation and pick forward
current.

Table: 4.3.2.1.1.2: Electronic optical characteristics of LED used

 51

No Item Test

conditions
Test
Hours/Cycle

Sample
size

1 Solder heat TEMP:260°C
±5°C

5SEC 76 PCS

2 Temperature
cycle

H:+85°C
30min
 5min
L:-55°C 30min

50 CYCLES 76 PCS

3 Thermal shock H: +100°C
 10min
L:-10°C 5min

50 CYCLES 76 PCS

4 High
temperature
storage

TEMP:100°C 1000 CYCLES 76 PCS

5 Low
temperature
storage

TEMP:-55°C 1000 CYCLES 76 PCS

6 DC operating
life

If = 20mA 1000 CYCLES 76 PCS

7 High
temperature /
High humidity

85°C/85%RH 1000CYCLES 76 PCS

Table: 4.3.2.1.1.3: Reliability test item and condition for the LEDs used (ELM-

1883SRWA) [29]

Table 4.3.2.1.1.3 gives brief extreme conditions under which some LEDs have been tested.
These limits are not to be exceeded, so as to avoid abnormal behaviour of the LEDs.

The LEDs (ELM-1883SRWA) have some typical electro-optical properties that need to be
taken in to consideration to avoid damages and faulty results. The curves below give more
details to these properties.

 52

Figure 4.3.2.1.1.0: Spectrum distribution

The luminous intensity has a short range of wavelength (~620-700nm) over which the

percentage is above zero.

Figure 4.3.2.1.1.1: Forward voltage versus forward current.

 53

 Figure 4.3.2.1.1.2: Forward current – ambient temperature curve.

The variation of forward current with the ambient temperature is represented in Figure
4.3.2.1.1.2. The forward current remains stable from 0°C to room temperature and then begins
to decrease with further increase of ambient temperature. At 85°C, the current falls to zero,
implying these LEDs could not be controlled at such temperatures. This property is very
important in limiting as temperatures above 85 could damage the device.

4.4.3 – Advantages and Disadvantages of using LEDs

4.4.3.1 - Advantages of using LEDs

• LEDs produce more light per watt than incandescent bulbs; this is useful in battery
powered or energy-saving devices. LEDs can emit light of an intended colour without
the use of colour filters that traditional lighting methods require. This is more efficient
and can lower initial costs.

• The solid package of the LED can be designed to focus its light. Incandescent and
fluorescent sources often require an external reflector to collect light and direct it in a
usable manner.

• When used in applications where dimming is required, LEDs do not change their color
tint as the current passing through them is lowered, unlike incandescent lamps, which
turn yellow.

• LEDs are ideal for use in applications that are subject to frequent on-off cycling,
unlike fluorescent lamps that burn out more quickly when cycled frequently, or HID
lamps that require a long time before restarting.

• LEDs, being solid state components, are difficult to damage with external shock.
Fluorescent and incandescent bulbs are easily broken if dropped on the ground.

• LEDs can have a relatively long useful life. One report estimates 35,000 to 50,000
hours of useful life, though time to complete failure may be longer. [11] Fluorescent
tubes typically are rated at about 30,000 hours, and incandescent light bulbs at 1,000–
2,000 hours. [11]

• LEDs mostly fail by dimming over time, rather than the abrupt burn-out of incandes-
cent bulbs .

 54

• LEDs light up very quickly. A typical red indicator LED will achieve full brightness in
microseconds; Philips Lumileds technical datasheet DS23 for the Luxeon Star states
"less than 100ns." LEDs used in communications devices can have even faster
response times.

• LEDs can be very small and are easily populated onto printed circuit boards.
• LEDs do not contain mercury, unlike compact fluorescent lamps.
• Low voltage supply means simple installation.
• Low heat dissipation. That means it does not influence measured object due to heat

dissipation.
• Unlike most other illumination sources the output of LED lights are very close to

linear. [12]

4.4.3.2 - Disadvantages of using LEDs

Though there are more advantages of using the LED matrix as a display, there are
nevertheless a few disadvantages. Some of these are as include:

• LEDs cannot be used in applications that need a sharply directive and collimated beam
of light. LEDs are not capable of providing directivity below a few degrees. In such
cases LASERs (or LED lasers) may be a better option.

• LEDs are currently more expensive, price per lumen, on an initial capital cost basis,
than more conventional lighting technologies.

• The performance of LEDs depends much on the ambient temperature of the operating
environment. Overheating may lead to overheating of the LED package, consequently
leading to device malfunctioning or even failure. Proper heat-sinking is required to
maintain long life.

Figure 4.3.2.1.3.1: LED display showing a defective LED in the second PCB

 55

Figure 4.3.2.1.3.2: LED display showing some disadvantages of LEDs as a display

Though the intensity of the LED displays has been set to the same value in the
intensity register, the intensity of some LEDs is weaker.

 4.5 - MSP430 JTAG Connector

JTAG stands for Joint Test Action Group. [13] It is an IEEE standard for boundary scan
technology. MSP430-JTAG is used for programming and flashing emulation with MSP430
microprocessors.

4.5.1 – Features of JTAG

MSP430-JTAG connects to LPT parallel port. This permits writing and debugging code in C
language for all MSP430 microcontrollers. MSP430-JTAG has the advantage that it does not
need external power source since MSP430 microcontrollers require only 3-5 mA while
programming, and all necessary power supply is taken from the LPT port.

Figure 4.4.1: JTAG connector

 56

4.5.1.1 - JTAG interface

The JTAG connector is 2x7 pin with 0.1" step and TI recommended JTAG layout. The PIN.1
is marked with square pad on bottom and arrow on top.

Figure 4.4.2: MSP430-JTAG interface (top view)

There are 14 pins for the JTAG interface of which some are not connected. Those that are not
connected are labelled NC. TMS - Test Mode Select (input from controller) (pull up required
to force entry into reset state in event of a bad connection on TMS).
TCK is the Test Clock (input from controller).
TDI - Test Data In (input from controller).
TDO - Test Data Out (output to controller or next chip in chain).
The above, function hand in hand, making it possible to write and debug the code in MSP430.

 4.6 - Recommended Standard 232 (RS232) connections

RS-232 (Recommended Standard 232) is a standard for serial binary data signals connecting
between a DTE (Data Terminal Equipment) and a DCE (Data Circuit-terminating
Equipment). It is commonly used in computer serial ports as well as in microprocessors and
microcontrollers. The RS-232 standard defines the voltage levels that correspond to logical
one and logical zero levels. Valid signals are plus or minus 3 to 15 volts. The range near zero
volts is not a valid RS-232 level; logic one is defined as a negative voltage, the signal
condition is called marking, and has the functional significance of OFF. Logic zero is
positive, the signal condition is spacing, and has the function ON.
RS232 Standard needs a minimum interface of 3 wires
– 1 Signal from TxDA to RxDB
– 1 Signal to RxDA from TxDB
– 1 Wire GND = common ground signal [5]
Most serial communications structures send the data bits within each byte such that LSB
(Least Significant Bit) is first. [5] This is equally known as "little endian" transmissions. It is
also possible, but very rare to have a transmission in which the MSB (Most Significant Bit) in
a Byte is transferred first. This is also called “big endian”.

 57

Figure 4.4.3: Male RS232 connector

The male RS232, likewise the female has 9 pins though extended out to fit with the 9 holes of
the female. Figure 4.4.3 shows the male while Figure 4.4.4 the female.

Figure 4.4.4: Female RS232 connector

The RS232 connector is used in the UART communication between two MSP430. The
connector is shown in Figure 4.4.3 and 4.4.4. The holes, numbered from 1 to 9 have their
various functions. These functions are listed in Table 4.4.1 below. Since the female side is to
be connected on the MSP430F169 STK, it will be necessary using an RS323 that both ends
are female or else they should be adapted to suit this purpose. During the project, for test
purpose, the male-female connector was used as communication (RS232) was between a
microcontroller, needing a female and the PC needing a male.

 58

Figure 4.4.5: “Null Modem cable” for two controllers [5]

As shown in Figure 4.4.5, there is crossover of TxD to RxD and RxD to TxD, since two
females are connecting. There is no crossover in the case of a male-female.
Some abbreviations used in RS232 interface between two MSP430 are explained below.
Transmit Data – Home MSP430F169 serial data output stream to foreign MSP430F169
Receive Data – Home MSP430 serial data input stream from foreign MSP430F169
GND - Signal ground
Carrier Detect - tells foreign MSP430F169 that MSP430F169 has good connection
Clear To Send - MSP430F169 is ready to receive data from foreign MSP430F169
Data Set Ready – indicates the readiness for data reception
Data Terminal Ready - tells modem that PC is ready
Request To Send – tells home MSPF169 that foreign MSP430F169 wants to send data

Signal Type Abbreviation Direction DE-9

Common Ground G - 5
Transmitted Data TxD out 3
Received Data RxD in 2

Data Transmit Ready DTR out 4
Data Set Ready DSR in 6

Request To Send RTS out 7
Clear To Send CTS in 8

Carrier Detection DCD in 1
Ring Indicator RI in 9

Table 4.4.5: RS232 - 9 pins signal type and direction

Table 4.4.1 above gives an overview of an RS232 signal types and the directions of signals.

 59

Chapter 5: Software structuring and development

 After selecting the desired hardware, an appropriate software design is necessary, though
the choice of the hardware also involve the viability of the software design.
Hardware and software co-design is not new but has been gaining more and more attention in
the past years due to the search for a better method of controlling, regulation and generally
automating systems. A major problem in the architectural development of systems is finding
a pattern of the system’s function as far as the components is concerned, which are regarded
as the systems resource. The overall cost of such a system like that in this project does not
depend solely on the hardware, since the degree of complexity of the software design is
dependent on the hardware available or obtained. An example is designing software for an
LCD display and another for an LED display. A given system will as well deliver higher
performance when the hardware design is tuned to the software application likewise vice
versa. Micro-controllers with the aid of sensors and actuators allow the system to
communicate with the environment often called reactive systems. They react to the
environment by executing functions in predefined time windows and events. An example of
event reaction is the “unavoidable” use of interrupts. When certain events occur, an interrupt
system can signal the processor to suspend processing the current instruction sequence and to
begin an interrupt service routine (ISR). The ISR will perform any processing required based
on the source of the interrupt before returning to the original instruction sequence.
The software has been developed in a modular form. This was not the first design since the
complexity of the software part could not be identified at the beginning of the project.
 A few tools were used in realising the software programming and it is worth mentioning the
quality and reason of choice of compiler, and a few other software tools.

5.1 - The GCC toolchain for the Texas Instruments MSP430
microcontrollers

5.1.1 - A Brief History of GCC

The GNU Compiler Collection (usually shortened to GCC) is a set of compilers produced
for various programming languages by the GNU Project. GCC is a key component of the
GNU toolchain. As well as being the official compiler of the GNU system, GCC has been
adopted as the standard compiler by most other modern Unix-like computer operating
systems, including Linux, the BSD family and Mac OS X. GCC has been ported to a wide
variety of computer architectures, and is widely deployed as a tool in commercial, proprietary
and closed source software development environments. In addition to the processors used in
personal computers, it also supports microcontrollers, DSPs and 64-bit CPUs. GCC is also
used in popular embedded platforms like MSP430, Symbian, Playstation and Sega Dreamcast.
GCC has a modular design, allowing support for new languages and architectures to be added.
Adding a new language front-end to GCC enables the use of that language on any
architecture, provided that the necessary run-time facilities (such as libraries) are available.
Similarly, adding support for a new architecture makes it available to all languages.

 60

 The original author of the GNU C Compiler (GCC) is Richard Stallman, the founder of the
GNU Project. The GNU Project was started in 1984 to create a complete Unix-like operating
system as free software, in order to promote freedom and cooperation among computer users
and programmers. Every Unix-like operating system needs a C compiler, and as there were no
free compilers in existence at that time, the GNU Project had to develop one from scratch.
The work was funded by donations from individuals and companies to the Free Software
Foundation, a non-profit organization set up to support the work of the GNU Project.

The first release of GCC was made in 1987. This was a significant breakthrough, being the
first portable ANSI C optimizing compiler released as free software. Since that time GCC has
become one of the most important tools in the development of free software.

A major revision of the compiler came with the 2.0 series in 1992, which added the ability to
compile C++. In 1997 an experimental branch of the compiler (EGCS) was created, to
improve optimization and C++ support. Following this work, EGCS was adopted as the new
main-line of GCC development, and these features became widely available in the 3.0 release
of GCC in 2001. Over time GCC has been extended to support many additional languages,
including FORTRAN, ADA, Java and Objective-C. The acronym GCC is now used to refer to
the "GNU Compiler Collection". The C language could be used with good efficiency in
microcontrollers. [23]

The following packages are included in the MSPGCC:

• GNU Debugger (GDB)
GDB stands for the GNU debugger. It is a portable debugger which runs on many Unix-like
systems and works for many programming languages, including C, C++, and FORTRAN. It is
free software released under the GNU General Public License.
GDB offers extensive facilities for tracing and altering the execution of computer programs.
The user can monitor and modify the values of programs' internal variables, and even call
functions independently of the program's normal behaviour. [24]
GDB, the GNU Project debugger, allows you to see what is going on `inside' another program
while it executes -- or what another program was doing at the moment it crashed.
GDB can carry out four main functions (plus other things in support of these) to assist catch
bugs in the act:
- Start the program, specifying anything that might affect its behaviour.
- Make the program stop on specified conditions.
- Examine what has happened, when your program has stopped.
- Change things in your program, so you can experiment with correcting the effects of one
 bug and go on to learn about another. [3]

• GDB-proxy.
 The program provides a TCP/IP too JTAG interface for the MSP430 FET JTAG device.
The GNU remote debug protocol is respected by the TCP/IP side. As such, it could be used
with GDB to provide a full in-circuit debug environment for the MSP430. The parallel port
interface is supported as well as the universal serial bus box (on windows only). The proxy is
started using the piece of command below.

 61

 As seen in Figure 5.1.1.1, the MSP430F169 has been recognised and connected. At this
stage, the Debug will be executed. Should the name ‘MSP430F169’ not appear as shown in
the Figure above, then hardware and or software reset will be necessary.

 Figure 5.1.1.1: Software connection of MSP430F169

• Giveio

The giveio driver allows programs free access to a computer’s parallel port. This driver is
required when using gdbproxy on a Windows NT, 2000 or XP machine. In the absence of
giveio, gdbproxy will be blocked from controlling the parallel port and consequently the
JTAG tool.

• Binutils
The GNU assembler, linker and binary utilities. The programs in this package are used to
assemble, link and manipulate binary and object files. The GNU Binary Utilities, or binutils,
is a collection of programming tools for the manipulation of object code in various object file
formats. These include an assembler, linker and other tools for handling executable files. The
current versions were originally written by programmers at Cygnus Solutions using the
Binary File Descriptor library (libbfd). They are typically used in conjunction with GNU
Compiler Collection, make, and GDB. [26]

 5.2 –General modular software structure

In order to program deep and still have an overview of the design, a modular form is not
avoidable. As seen in Figure 5.2.1, the source codes have been regrouped in modules. This
structure has the advantage that it is easy for further trends, changes are easily undertaken as
point of change is easily traceable and the layout is simply formal for such an amount of code.

 62

Some of the source code designs will be analysed here, though some have already been
explained in the theory section, for example the inverse calculation of a 4x4 matrix. It is
easily understandable in conjunction with the source code accompanying this documentation.

Figure 5.2.1: A snap shot illustrating Software structuring

In the main function, all the other functions are called and executed at the required time and
place. The coordinates of the object are obtained in a sub function which then makes these
values (xp yp and zp) available in the main function. The calculation of these coordinates
requires the temperature at that moment. The temperature is also calculated every cycle and as
well displayed on the LCD display.
Before starting the measures, the dimension of the area of experiment is given in using the
three buttons B1, B2 and B3. This is outlined in section 5.2.1.
The details of most of the important functions are described in the next sub chapters.

5.2.1 - Programming the buttons B1, B2 and B3 of the MSP430 for terminal

input of length and width

There are three buttons (B1, B2 and B3) on the MSP430F169 situated on port 1 pins 5, 6 and
7 respectively. These buttons are utilised in the input of the length and width of the surface
covered for determining the object found within this area. The buttons appear on the
MSP430F169 as shown in Figure5.2.1.1 below. These buttons could be programmed in two
manners. The first method is by using interrupt since port 1 of MSP430F169 supports
interrupt. This method is generally preferable but due to certain anomalous behaviour of the
interrupt, this method was considered in a second position. The second method is simply
writing a function with a counter and a delay function. This function is called in the main
function when the button B1 is pressed, else it is not executed. The counting is done and at the

 63

same time the value displayed on the LCD. Since only characters are sent to the LCD, a buffer
of characters is saved and with the help of a for loop, these values are sent to the LCD parallel
to the increment of the content of the counter. As such, the value displayed on the LCD is
exactly the content of the incremented counter. The counter increments by 1, approximately
after every 300ms, giving time for the user to be able to react when desired value is attained.
This waiting time is both for the increment of the counter as well as for the display on the
LCD. A detail description of the sending process is outlined in the section dealing with the
LCD.

Figure 5.2.1.1: Cross section of MSP430F169 showing the three buttons

The counting is such that when B1 is pressed and not released, a function is called which
functions as described above. When this button, B1 is released, a message is sent to the LCD

Figure 5.2.1.1.1 : LCD information “Width OK”

The relationship between this value read in and the surface covered by the four sensors is
illustrated in Figure 5.2.1.2. Should B2 be pressed at this stage, as required, a similar
procedure as for B1 starts with the difference that the content of the new counter is equals the
length in metres. When the desired value is attained as seen at the LCD, the button B2 is
released and a message appears indicating that the input of the length is done.
A second message appears asking the user to press B3 to exit input. When this is done, the
input values are given further for calculations and the LCD set free for other purposes like
displaying the temperature of the environment in relation to the temperature of a diode of
MSP430F169, whose voltage fall is dependent on temperature.

B1 B2 B3

 64

Figure 5.2.1.2: Surface area covered by sensors mapped on to the 8 LED

displays

Should B2 be released when the right value is attained, a new message is displayed on the
LCD indicating the input is accepted, and asking the user to press B3 to exit input process.
This message keeps on blinking as long as the user does not press B3.
Button B1 and B1 with B3 for confirmation are used for the input of the width and length of
the surface covered by the four sensors, which corresponds to the Y-axis and mapped to the
size of two displays (See Figure 5.2.1.3) vertically to each other. These two displays could be
any of the following pairs: Display 1 and 5 or Display 2 and 6 or Display 4 and 8. Button B2
is mainly used in the input of the length of the surface area, which is mapped to the length of
4 LED displays in two rows and corresponds to the X-axis. The two rows are 1-2-3-4 and 5-
6-7-8. Figure 5.2.1.33 illustrates the above description.

Figure 5.2.3: LED display board indicating the positions of each display

 65

 5.2.2 –LED control through USART as SPI

The ideal LED driving circuit is optimized when the characteristics of the LED are taken into
consideration. LEDs are electronic devices that emit light by the delivery of current, so
appropriate power sources are required to drive them. The supply voltage is typically
predetermined in each application system. In this case, it is 5V. A constant-current source
circuit is required to enable safe and stable lighting, designed to keep the delivery of current
to LEDs at a constant rate.

Figure 5.2.2.1: SPI Initialization

The SPI is initialised as shown in the snap shot above (Figure 5.2.2.1). There are 8 bits, no
parity and one stop bit. After setting and initialising the registers, it is necessary to delay a bite
to allow enough time for the slaves (MAX7221) to get ready. See Figure 5.2.2.1

5.2.3 – Software for USART as UART
The functionality of the USART as UART has already been outlined in chapter four.
The maximum correlation positions representing the run time differences for the 4 sensors are
obtained through USART as UART with the help of an interrupt that automatically starts
when a flag signals the begin of the send process.
The URXIFGx interrupt flag is set each time a character is received and loaded into
UxRXBUF. An interrupt request is generated if URXIEx and GIE are also set. URXIFGx and
URXIEx are reset by a system reset PUC signal or when SWRST = 1. URXIFGx is
automatically reset if the pending interrupt is served (when URXSE = 0) or when UxRXBUF
is read. The operation is shown in Figure 5.2.2.3. [9].

 66

Figure 5.2.2.2: Block diagram of a typical Interrupt process

Figure 5.2.2.3: Receive Interrupt operation [9]

URXEIE is used to enable or disable erroneous characters from setting URXIFGx. When
using multiprocessor addressing modes, URXWIE is used to auto-detect valid address
characters and reject unwanted data characters. Two types of characters do not set URXIFGx:
- Erroneous characters when URXEIE = 0
- Non-address characters when URXWIE = 1
 When URXEIE = 1 a break condition will set the BRK bit and the URXIFGx flag. [9]

5.2.4 – Software for turning on/off an LED on the display

The light emitting diodes (LEDs) are controlled with the help of the IC MAX7221 and the
microcontroller MSP430. The first step in controlling the LEDs after initializing the USART
as SPI of the microcontroller is represented in the flow chart shown in Figure 5.2.2.4 below.

 67

Figure 5.2.2.4: Flow chart representing the initialization of the LEDs and

MAX7221

After initializing the LEDs using the MAX7221, a specific LED could be turned on,
representing the coordinate of the object. This is done repetitively and fast, permitting the
displacement of the object to be timely displayed. With the help of the sensitivity of the
display (discussed in section 5.2.4) and modulo 8, the values to be displayed are obtained
from the obtained coordinates (xp and yp). This is then displayed with the yp being the rows
and the xp being the column on the display. Sensitivity helps to get a factor of multiplication
on the field to represent an LED on the display. The calculation with modulo 8, helps to
determine on which display the LED, as a point should be turned on or off.

 68

Figure 5.2.2.5: Flow chart representing the turning on /off of an LED.

It is taken care of, that the dimension of the LED (512 points) is maximally exploited with the
help of sensitivity, which further assists mapping the distance on the field covered by four
sensors to the number of points available on the rows and columns of the matrix display board
display. The function to set an LED is one requiring three input parameters which are the
address (display from 0 to 7), the row and column (from 0 to 7 each) as well as the state. The
state could be ON (0x001) or OFF (0x00).

 5.2.5 - Data reception through UART

Setting for UART protocol in this project was: 8 bits data length, no parity bit and one stop
bit. The baud rate was set to 9600. Modulation is set and its calculation is explained with a
worked example subsequently in this chapter.
When UTXEx is set, the UART transmitter is enabled. Transmission is initiated by writing
data to UxTXBUF (transmission buffer). The data is then moved to the transmit shift register
on the next BIT CLK after the TX shift register is empty, and transmission begins. Figure
5.2.3.1 gives more details.
The receive enable bit, URXEx, enables or disables data reception on URXDx
as shown in Figure 5.2.3.1. Disabling the USART receiver stops the receive operation
following completion of any character currently being received or immediately if no receive
operation is active. The receive-data buffer, UxRXBUF, contains the character moved from
the RX shift register after the character is received.[9]

 69

Figure 5.2.3.1: State diagram of receiver Enable [9]

 When the UTXEx bit is reset the transmitter is stopped. Any data moved to UxTXBUF and
any active transmission of data currently in the transmit shift register prior to clearing UTXEx
will continue until all data transmission is completed. [9]

Figure 5.2.3.2: UART initialization

The initialization of the UART is carried out as shown in Figure 5.2.3.2. The length of the bits
is 8, with no parity and just one stop bit. The clock source is then selected and the division
factor set. No modulation is used in this situation as it is not necessary. The UART module is
then enabled, making sending and receiving possible. The interrupt is then enabled at the end.

5.2.5.1 - Reception and data (run time differences) processing

 The run time differences are the time differences between the receivers and sender. It is
obtained through correlation in a parallel project and sent through universal asynchronous
receiver and transmitter protocol. The settings for this protocol were 8 bit character, no parity,
1 stop bit and 9600 bits per second. These same settings are done for the sender of the
maximum correlated position. The data actually sent, are the positions of maximum

 70

correlation and vary from 0 to 127. The baud rate is given by
 BRCLK

baud rate =
N

 , where

0 1N UxBR UxBR= + and
0UxBR and 1UxBR are the Baud rate registers . The values and register settings are shown in

the figure below.

Figure: 5.2.5.1: Baud rate registers

The above mentioned positions obtained through correlation are multiplied with the period at
which the signal, in this case sound was being sent. As such, the run time differences are
obtained, processed and incorporated in the geometry calculation of the position of the object
in question.

As discussed previously, the obtained positions through correlation are multiplied with the
period of emitted signal to obtain the time differences. An example of an obtain data is shown
below.
RX [17] = A034B131C160D100E
RX is the array in which the sent data which is coded is stored. There are altogether 17
characters sent for each displacement of the object. The letter A at RX [0] indicates the start
of data and at the same time indicates that the maximum correlation position for the first
sensor (microphones) is being sent. These are then saved in another buffer pos_t1[3]. The
next character received is 0. This is saved in pos_t1[0], the next character 3 saved in
pos_t1[1] and the next character 4 is saved in pos_t1[2]. This procedure is repeated for 131,
160 and 100.The character B indicates the end of pos_t1[3] and the beginning of pos_t2[3],
character C indicates the end pos_t2[3] and the beginning of pos_t3[3] while the character D
indicates the end of pos_t3[3] and the beginning of pos_t4[3]. As already explained,
pos_tx[3] are buffers used to save the various positions where x corresponds to the sensor
number . The character E at the last address of RX [17] signifies the end of a transmission
session.
Let the obtained data 034 be considered. These values are a string of characters. The character
0 is multiplied by 100 and added to 3 which were multiplied by 10 and then the result added
to 4. In order to make that clearer, the equations below are of good use.

_ 1 0*100 3*10 4pos t = + +

 Here, i is from 1 to 3. The same procedure is carried out for _ 2pos t , _ 3pos t and

_ 4pos t to obtain the run time differences.
At this point, the data have been received and partially processed. These time differences are
then added in the equation

 2 2 2() () () *i i i i ip x x y y z z c t= − + − + − + △ (5.2.2)

 0*()ic t t= −

 71

where it are the time differences obtained through correlation for each sensor and 0t is the

difference between the clock of the sender and that of the receiver The above equations have
been programmed as explained in the theory section in chapter two.

5.2.3.1 Modulation calculation

It is worth demonstrating how the value of modulation is obtained. This aid in decreasing
erroneous bits and size.

Example: a baud rate of 4800 baud is required with a crystal frequency of 32,768 Hz. This is
necessary because the UART also has to run during low power mode 3. With only the ACLK
available, the theoretical division factor—the truncated value is the content of baud-rate
register UBR (UBR1/UBR0), given by:

This means that the baud-rate register UBR1 (MSBs) is loaded with zero, and the UBR0
register contains a 6. To get a rough estimate of the 8-bit modulation register UMCTL, the
fractional part 0.826667 is multiplied by 8 (the number of bits in register UMCTL):

 (5.2.3.1)

The rounded result 7 is the number of ones to be placed into the modulation register UMCTL.
The corrected baud rate with the UMCTL register containing 7 ones is:

 (5.2.3.2)

This results in an average baud rate error of:

 (5.2.3.3)

To get the best-fitting bit sequence for modulation register UMCTL, the following algorithm
can be used: the fractional part of the theoretical division factor is summed up eight times; the
actual m-bit is set if a carry to the integer part occurs, and is cleared otherwise. An example
using the fraction 0.82667 previously calculated follows:

Fraction Addition Carry to next integer UMCTL Bits

The result of the calculated bits m7 down to m0 is
0xEF (11101111b). The above calculations help in the
amelioration of the transmission of data, as such
reducing frame error.

0.82667 + 0.82667 = 1.65333 Yes m0 1
1.65333 + 0.82667 = 2.48000 Yes m1 1
2.48000 + 0.82667 = 3.30667 Yes m2 1
3.30667 + 0.82667 = 4.13333 Yes m3 1
4.13333 + 0.82667 = 4.96000 No m4 0
4.96000 + 0.82667 = 5.78667 Yes m5 1
5.78667 + 0.82667 = 6.61333 Yes m6 1
6.61333 + 0.82667 = 7.44000 Yes m7 1

 72

5.2.6 – Software for displaying characters on the LCD

As already mentioned and discussed, the MSP430F169STK has an LCD display on board and
can display 32 characters on two lines. This periphery has been very useful in this project. In
the input of the sensor positions, the LCD display help in the confirmation of the input value.
It is as well used for indicating erroneous situations. An example of such a situation is when
the input value exceeds the limit. Furthermore, the LCD is used in displaying the temperature
obtained from a diode of the MSP430. General information, like welcome message and others
are displayed on the LCD.

Figure 5.2.2.5.2: Flow chart representing the displaying of characters on the LCD

The first step in writing on the LCD is to define, declare and initialise variables. It is then
delayed for a while as indicated on Figure 5.2.2.5.2 so as to enable the hardware to be ready.
Since sending of data is per nibble, the upper nibble of the character to be is first obtained by
setting the lower nibbles to zero with an AND combination of the data with 0xf0. The
upper nibble of the LCD data is set and an OR operation is carried out with the data to be sent.
This data was earlier arranged for this purpose. The same operation is carried out for the
lower nibble. In addition to that, the data has to be shifted four places to the right to occupy
the LSB position.

 73

5.2.7 – Software for coordinating all functions (main function)

In the central function (main.c), all the other functions are called at the appropriate position,
time or event. The first step is to define, declare and initialise global and local variables. The
functions to initialise the LCD, UART, SPI, MAX7221 and set interrupts are called and
executed. The next step is displaying a welcome message on the LCD. A for ever loop is
started. It is then asked if the positions of the sensors are to be given in. This is through the
three buttons as explained earlier. Should it be confirmed that the input is to be carried out by
pressing B2, then a function called buttonsinput.c is called and the steps in executing
the commands are followed. The details are outlined in the button programming section in this
chapter. The above steps are represented in a flow chart in Figure 5.2.2.5.3 below.

 Figure 5.2.2.5.3: Flow chart representing the main function

Should this function not be called, a next function to obtain and display the temperature is
called and executed. The x and y coordinates of the object in question is then determined by
calling the function called closedform_solution(); . This function calculates the x and
the y position of the object. During this process, the temperature of the environment obtained
a step before is used to improve on the results as the speed of sound in air is dependent on the
temperature. The final step is calling a function (setLED(int adr, int row, int
col, unsigned char state);) that was earlier described. This function turns on an
LED corresponding to the x-y pair value on the LED display. This is done as a point
corresponding to the position of the object on the field. The procedures from the point where
the input using B2 was done or the point where it was supposed to be done, repeats for ever
and the temperature and the x and y coordinates are actualised continuously. The details of the
codes are available in the CD ROM accompanying this report.

 74

5.2.8 - Additional steps in realising the main equation in C with MSPGCC

In order to be able to realise the equation 2 2 2() () () *i i i i ip x x y y z z c t= − + − + − + △ , some

routines were necessary as it was difficult calling them directly and applying them. An
example is the square root function (sqr). It was complicated calling this function directly. For
this reason, it was vital programming a function that does the square root calculation. The
Newton’s iteration method was chosen as it gave accurate results compared with the
calculator TI-92 Plus.

Above is a section of the code. The iteration is done 100 times as long as the result obtained is
different from the result before. The result obtained is x and that before being xn. The source
code is available for a detailed commentated code.

5.2.9 – Mapping of the area covered by the four sensors to the LED display

The mapping of the area under experiment to the display size is done for a few reasons. The
first reason is to represent the point at which the object is located logically and easily
understandable. The second point is to make use of the entire LED display board for an area
between 1x1 and 8x8 square metres. The total number of LEDs to cover this range of 1x1 up
to 8x8 is 512.
 For a minimum length of 1metre (100 cm), a fixed distance on the field is mapped
represents an LED on the display. Depending on the x- coordinate of the object, a particular
LED will be lighted and the next will be lighted only when the distance per LED for that
length has been covered.
This distance is obtained as such:

mX
32

L= ……………………………………………………………………… (5.2.3.1)

 where mX is the distance in the length on the field needed to be moved for a next LED on

the display to be lighted and is also called the sensibility .
L is the length on the field covering the four sensors which is put in through the Button B2 on
the MSP430 controller. The number 32 stands for the total number of LEDs on the four LED
boards aligned next to each other on the X-axis.

For a minimum length of 1m, the distance
minmX =

1

32
 = 0.03125 m ~ 31 mm per LED

For a maximum length of 8m, the distance
maxm

8
X

32
= = 0.25 m ~ 250 mm per LED

A similar procedure is carried out for the width as described below.

 mY
16

W= ………………………………………………((5.2.3.1)

 75

 where mY is the distance in the width on the field needed to be moved for a next LED on

the display to be lighted and is also called the sensibility of the Y-axis .
W is the width on the field covering the four sensors which is put in through the Button B2 on
the MSP430 controller. The number 16 stands for the total number of LEDs on the two LED
boards aligned next to each other on the Y-axis.

For a minimum length of 1m, the distance
minmY =

1

16
 = 0.0625 m ~ 6 cm per LED

For a maximum length of 8 m, the distance
maxm

8
Y

16
= = 0.5 m ~ 50 cm per LED

The above calculated values help in covering the entire 16x32 LED matrix display for just 1m
on the field or for up to 8m.

 76

Chapter 6: Modifications to enhance quality results and some
application examples

6.0 - A functional test using some fixed data

In order to carry out this test, a few positions of an object on a given surface area are chosen,
the run time differences calculated and the x and y axis calculated as well. These calculated
values are then compared with those obtained from the software. An example of a group of
value is (3, 2, and 1). The digit 3 stands for the display number, which is the fourth,
counting from 0. The 2 stands for the column, where the LED to be lighted is situated or
supposed to be situated. It then depends on whether it is a real or expected value. The 1 stands
for the row to be lighted. In order to simplify these data, it will simply be considered as a
matrix of 16 by 32. The LED point will then be given by two digits. The first stands for the x-
axis and the second, for the y-axis.

2 2
i i

i

x y

C

+
∆ =t

C is the speed of sound at 25°C. This value is 346ms-1 . The values y and y are estimated or
measured and i∆t subsequently calculated. The conditions mentioned above are for the

expected values. The temperature is not stable, though roughly 25°C. This difference in
temperature values affects the real values. These could be observed in the tables below.

 A test for an 8m by 8m surface
For a surface of 8m by 8m, the following results were obtained.

x in
m

y in
m ∆t1 in µs ∆t2 in µs ∆t3 in µs ∆t4 in µs

Expected
position

Real
position

1 8 2890 20231 23301 30723 (4,16) (4,16)
2 7 6463 17580 21041 26646 (8,14) (8,14)
3 6 10421 15564 19388 22573 (12,12) (12,12)
4 4 16349 16349 16349 16349 (16,8) (16,8)
5 5 16852 12262 20437 16852 (20,10) (20,10)
6 3 22573 15564 19388 10421 (24,6) (24,6)
7 2 26646 17580 21041 6463 (28,4) (28,4)
8 1 30723 23121 23301 2890 (32,2) (32,2)

 Table 6.0.1: Functional test for 8m by 8m

Table 6.0.1 above shows the characteristics properties for a field of 8 meters squared. The real
values are exactly the expected values. This is because it is a simulation and does not involve
rounding up of digits that could result in differences between real and expected values.

 77

 A test for a 4m by 8m surface
For a surface of 4m by 8m, the following results were obtained.

x in m y in m ∆t1 in µs ∆t2 in µs ∆t3 in µs ∆t4 in µs
Expected
position

Real
position

1 8 2890 8671 23301 24694 (8,16) (8,16)
2 7 6463 6463 21041 21041 (16,14) (16,14)
3 6 10421 6463 19388 17580 (24,12) (24,12)
4 4 16349 11561 16349 11561 (32,8) (32,8)
3 5 12262 9140 16852 14737 (24,10) (24,10)
2 3 15564 15564 10421 10421 (16,6) (16,6)
1 2 17580 19388 6463 10421 (8,4) (8,4)
1 1 20437 22011 4087 9140 (8,2) (8,2)

 Table 6.0.2: Functional test for 4m by 8m

Table 6.0.2 shows calculated values and expected values for a surface of 4m by 8m. The
values are exactly as expected. These are due to the fact that it is a simulation and does not
involve fractions leading to rounding up higher decimal places to null. In such a situation,
there will be a deviation of the real values from the expected values.

 A test for a 4m by 6m surface
For a surface of 4m by 6m, the following results were obtained.

x in
m

y in
m ∆t1 in µs ∆t2 in µs ∆t3 in µs ∆t4 in µs

Expected
position

Real
position

1 6 2890 8671 17580 19388 (8,16) (8,16)
2 5 6463 6463 15564 15564 (16,13) (16,13)
3 4 10421 15564 19388 22573 (24,11) (24,10)
4 3 10421 6463 14451 11916 (32,8) (32,8)
1 2 11916 14451 6463 10421 (8,5) (8,5)
2 1 15564 15564 6463 6463 (16, 3) (16,2)

 Table 6.0.3: Functional test for 4m by 6m
In Table 6.0.3 the results obtained confined to the expected results, but for the x-y positions
(3, 4) and (2, 1). This is due to rounding up error which could be corrected by watching the
fractions and consequently correcting the values.

 78

Figure 6.0.1: Simulated results in Matlab demonstrating the object and the four axes on
the surface

Figure 6.0.2: Simulated position in Matlab displaying (19, 3) on the matrix display

Figure 6.0.1 above shows the field of experiment, with the axes and the object in question.
Figure 6.0.2 shows a simulated example of the position of an object. The method used in this
simulation is the closed solution method with the assumption that the axes are in a rectangular
form. This display could be compared with Figure 6.0.1. This figure is the actual position of
the object as on the field. In the case where there is an error or the results are not accurate,
there is more than one point lighted on the LED.

 Figure 6.0.3: Erroneous simulated position on the field

 79

 Figure 6.0.4: Erroneous simulated position on the display

 Figure 6.0.3 and 6.0.4 show some erroneous situations. These situations are built in the
simulation to reflect some extreme real situations where there is for example a lot of reflection
of sound or other forms of disturbances. The factors influencing the system have been tackled
appropriately starting from reflection (in another sub project) to temperature changes
 The modifications to improve on the results, which have been outlined alongside the
methods, could be divided in to two sections. The first section is the adequate management of
the software to improve on the performance of the microcontroller and the second is the
modification of some parameters influencing the results like the temperature of air, reflection
of sound and outlier.

6.1 – Improving Speed, Performance and reducing Power Consumption
of MSP430

There are four low power modes in addition to regular operating mode on the MSP430:
Active Mode is the fully powered mode when the processor executes code and all clocks and
peripherals are active. The chip consumes about 340 µA with 1 MHz clock at 3.3V in this
mode.
 i -Low Power Mode 1 (LPM1) disables the CPU and MCLK while leaving the ACLK and
SMCLK enabled. This allows timers, peripherals, and analogue systems to continue
operation while dropping current consumption to about 70 µA with 1MHz clock at 3.3V.
Because the timers and other internal interrupt systems still operate, the processor will be able
to wake itself.
 ii- Low Power Mode 2 (LPM2) disables the CPU, MCLK, and the DCO are disabled but
the SMCLK and ACLK are active. The DC is disabled if the DCO is not used for MCLK or
SMCLK in active mode. Internal interrupts can still operate. Current consumption drops to
about 17 µA.
 iii - Low Power Mode 3 (LPM3) disables the CPU, MCLK, SMCLK, and DCO. The DC
and ACLK remain active. This allows some peripherals and internal interrupts to continue.
Current consumption drops to about 2 µA.
 iv – Low Power Mode 4 (LPM4) Current consumption drops to about .1 µA, but all clocks
and the CPU are disabled. This prevents any of the on-chip modules from operating, and only
off-chip interrupts can wake the device.
 To enter a low power mode the status register in the CPU has been set to indicate the
desired mode. This change of mode helps considerably in the reduction of power
consumption. The long life of the battery is achieved through judicious hardware and
software design. Skilful programming will allow the same work to be done with cheaper
parts to improve the bottom line. It is well known from the consumer computer market that

 80

the speed of computers can be measured in hertz (Hz). It is less well known that the
frequency of the computer’s processor does not adequately indicate a computer’s performance
or even the performance of the processor itself. In order to improve the performance of a
software application, it is necessary to understand the way performance is measured.
 A simple way to get the time a program will take to perform a task is to count the
number of processor cycles that the code will take. On the MSP430, each CPU instruction,
jump, and interrupt takes a fixed number of cycles as explained in the MSP430 user’s Guide.
Taking into account branching, function calls, and interrupts, the assembly code of a program
can be used to calculate the time needed for a section of code. If this time is known,
alternative methods could then be used to find out which takes a shorter time to do the task.
This method was adapted in the software development. This led to a faster task performance
and less battery consumption. The battery consumption is an important factor as the device is
a stand-alone requiring battery as voltage supply and not an AC source.
Removing unnecessary instructions is a start to improving performance. Test code left in a
final version, any unnecessary instructions in a loop, can all significantly increase the time in
a section of code.
 In C, unnecessary code takes the form of too many method calls inside of a loop
(because each method call adds a layer to the heap). While this is only a slight efficiency loss
for code that is only executed once per sample, the loss can be very damaging if multiplied by
a large loop. When trying to reduce execution time, it is best to start with the regions of the
code where the processor spends the most time. Parts of the program that are only executed
rarely have only a small effect on the speed compared to a loop that might run 100 times per
sample. For example, if a duty can be done once, outside of the loop, do not do it many times
inside of the loop. [14]
 A judicious use of timers and other instruction saving interrupts were taken in
consideration. The timer interrupts allow the processor to periodically check on the status of
the program without the use of slow while(1) or for(;;) loops (polling). However, for
correct program behaviour, it was important doing the minimum possible work in an interrupt.
This is most important with interrupts that happen frequently because the control flow of the
program can be thrown off when interrupts happen faster than the system can handle. If the
same interrupt occurs a second time before the first occurrence of the interrupt has completed,
program behaviour is much more difficult to control. It is much easier to simply ensure that
the interrupt is short enough to avoid the danger all together.
It was also avoided to calculate values that have been calculated already. A piece of reusable
information was saved and simply called later.

6.2 –Temperature and influence on the speed of sound in air

A further factor in ameliorating on the quality of the results is the incorporation of
temperature to obtain an accurate value of the speed of sound in air at the moment of
measurement.
 A sound wave is a pressure disturbance which travels through a medium by means
of particle-to-particle interaction.
The speed of sound is variable and depends mainly on the temperature and the properties of
the substance through which the wave is travelling. In this project, the medium is air.
Since temperature and thus the speed of sound normally decrease with increasing altitude,
sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at
some distance from the source. Figure 6.2.1 shows a sound source and the manner in which it
vibrates in air.

 81

Figure 6.2.1: Sound vibration in air.

The decrease of the sound speed with height is referred to as a negative sound speed gradient.
However, in the stratosphere, the speed of sound increases with height due to heating within
the ozone layer, producing a positive sound-speed gradient.
All other things being equal, sound will travel more slowly in denser materials, and faster in
stiffer ones. For example, sound will travel faster in iron than uranium, and faster in hydrogen
than nitrogen, due to the lower density of the first material of each set. At the same time,
sound will travel faster in iron than hydrogen, because the internal bonds in a solid like iron
are much stronger than the gaseous bonds between hydrogen molecules. In general, solids will
have a higher speed of sound than liquids, and liquids will have a higher speed of sound than
gases. The variation of the speed of sound and the density (different medium) is given in the
equation below.

K

c
ρ

= ………………(6.2.1)

Where K is a coefficient of stiffness ρ is the density.
 In this project, it is not of great interest to analyse the behaviour of the speed of sound in
different mediums since air alone is the medium here.

 1331.3 1
273.15

C ms
ϑ−= + ………………………(6.2.2)

From the above equation, it is further simplified to equation 6.2.2.1 below.

 1331.3 0.606*C msϑ −= + (6.2.3)
where is the temperature in degrees Celsius (°C) and C, the speed of sound at this
temperature.

 82

Table 6.2.1: Table of variation of speed of sound in air with temperature.

Table 6.2.1 shows how the speed of sound in air is related to the temperature. For this
demonstration, values are taken between 0 and 100 with an interval of 10, except at the point
25°C (room temperature) which is important. At this point, the speed of sound is 346.450 m/s.
This variation of speed of sound with temperature in the air is worth analysing as it improves
the accuracy of the coordinates of the object in question.

Speed of sound in air in
m/s

Temperature in
°C

331.30

0,0

337.360

10,0

343.42

20

346.450

25

349.480

30

355.540

40

361.60

50

367.660

60

373.720

70

379.780

80

385.840

90

391.90

100

 83

Variation of speed of sound with temperature

320,0

330,0

340,0

350,0

360,0

370,0

380,0

390,0

400,0

0,0 20,0 40,0 60,0 80,0 100,0 120,0

Temperature / °C

S
pe

ed
 o

f s
ou

nd
 /

 m
/s

Figure: 6.2.2: Variation of speed of sound in air with temperature

The gradient of the curve gives the 0.6ms-1/°C constant and the intercept being ~331ms-1. This
confirms the linear behaviour of the speed of sound – temperature of air. [27]

6.3 – Obtaining the temperature using MSP430F169 Starter Kit

The MSP430F169 Starter Kit makes it possible to obtain the temperature of the air at the
place and time of experiment. There is a diode on board of this microcontroller whose change
in voltage is directly related to the temperature of the diode. This change of voltage yielding
the temperature of the diode could be calibrated to give the temperature of the room or place
of carrying out the measurements. MSP430F169 offers a precision analogue-to-digital
converter delivering an accuracy of about 1°C. There are tow ADC: the 10 bits resolution
ADC (ADC10) and the 12 bits ADC (ADC12). This periphery is one of the most sophiscated
peripheries of MSP430F169 though requiring less power in realising its task of conversion as
it works with the CPU asleep. In this project, the ADC12 is employed for the mare fact that it
offers better results compared to the ADC10 with less resolution. ADC12 has a built in
sample-and-hold circuit. [9] The front end is made up of a multiplexer circuit. This circuit
makes it possible to choose one of eight external pins. The voltage fall in relation to

 84

temperature in °C is given by 3.35mV/°C for this microcontroller. Since the voltage fall over
the diode is linearly related to the temperature of the diode, it is then calibrated at about 25°C
to obtain the room temperature. More details, especially concerning the various modes are
explained in the ADC section (chapter 3 sub section 3.3). It is to be taken note of that the
calibration varies from one MSP430F169 to the next.

Figure 6.3.0: Typical temperature transfer function for MSP430.

A typical temperature transfer function could be represented as in Figure 6.3.0 above. It is a
linear function with the y-intercept of ~ 0.986 and a positive gradient of 3.55*10-3 V/°C.

 85

Figure 6.3.3 describes the procedures in obtaining the temperature of the environment in
which the position determination is being carried out.

Figure 6.3.1: software structure for temperature determination using MSP430F169

The elaboration of ADC in chapter three, section 3.3 gives more information for temperature
determination using MSP430.
In writing the code, it is considered [9], tested and proven that there is a voltage fall of
3.35mV per °C. Figure 6.3.0 above supports this statement. This measurement gives an
accuracy of about 1°C. It is enough to obtain better results for this project. Should there be a
necessity for a more accurate measurement, then the idea of using an external sensor could
have been analysed.
The first step is to define and initialize variables as well as the necessary registers. The
voltage reference is then set. This reference is internal. As next, the ACD12 is started. As long

 86

as the conversion is going on, the next instruction is not executed until conversion is finished.
During this time of conversion, the CPU could be doing other activities. As soon as the
conversion is over, the last 12 bits of the converted value being voltage fall is retrieved and
saved in a temporal memory for further calculations. The reason why only the last 12 bits are
considered is because it is enough as far as the accuracy is concerned and voltage fall is in
that range.
The content of the temporal memory is now multiplied with a constant (standard for this
MSP430 type) a and divided by another constant b by shifting it c times to the right.
The value now undergoes calibration to obtain the room temperature in °C.
 The few lines of code below give more details.

temperatu= ADC12MEM0 & 0x00000FFF;
temperatu *= 845; // a=845 Steps to convert to degree
temperatu >>=13; // => divided by 8192= b Calibration
purpose
 //temperatu = 278; 13= c
temperatu -= (278+6); // 6 is due to calibration

Figure 6.3.2: Block diagram showing steps to prepare data to display

The obtained temperature is broken down into single Bytes and sent to the LCD display as
seen in Figure 6.3.2. The first step is to define an array (buffer) that can contain all the
characters to be displayed. These values are then saved at various addresses of the buffer and
as such with a loop, they are sent singly to the LCD. This procedure is repetitive in the main
function, delivering the actual temperature every few milliseconds.

 87

Figure 6.3.3: Room temperature (hot summer day) in °C displayed on the LCD

The obtained temperature is displayed on the LCD. See Figure 6.3.3 above. R,T, :,
space,2,7,.,0,space,o,C, and the rest of the data are sent singly to the LCD . A single character
is sent by sending two times a nibble. The upper nibble is first sent, followed by the lower
nibble. As such it is possible to make almost any character appear on the LCD.

6.4 - Using the Oscilloscope to control or verify SPI Data.

In the primordial phase of SPI programming, the sent Data were verified on the Oscilloscope
so as to adjust the settings/ initialization of the SPI-Periphery. The CLK-Signal and the Data-
Signal from the MSP430F169 were connected to Channel 1 and 2 of the oscilloscope
(Tektronix TDS744A). After a setup as seen on the figure below, the results could be
obtained. The data sent was 0x55 (in binary form; 01010101) and the clock was set at 4MHz.
After obtaining the results, the configuration of the periphery was maintained and its
programming continued.

Figure 6.3.4: SPI results from Oscilloscope Tektronix TDS744A

The principles are such that Data bits are inverted, that is +V means 1/H (H: High) and –V
means 0/L (L: Low). The Bits in a Byte are transmitted such that LSB is first and MSB last. It
is also called “little endian”.

 88

Further more, each byte begins with a high start bit and ends with one or two stop bits that are
low. In this case, there is one stop bit, 8 bits data length and no parity bit. The line is low
when idle. Figure 6.3.5 shows the above explanation.

Figure 6.3.5: RS232 Data to microscope

The binary data 01010101 (0x55) is sent and data observed on the oscilloscope is 101010.
Each bit is inverted. This control helps, especially at the beginning to test if the data sent is as
well received.

 89

Chapter 7: Conclusion and proposals for further works

7.1 – Conclusion

This project; Hardware and Software for Position Determination and Visualization for an
indoor Navigation System has been a success as the task of the thesis has been fully tackled
on the part of the hardware design as well as on that of the software . Many mathematical
methods in determining the coordinate of an object have been examined. The first examined
method was the iterative method (Taylor linearization). This method involved more code in
programming. The closed solution method was then examined. This method gave good results
and programming was not complicated. A third method was derived from the second method
by assuming the area of experiment is rectangular. This means two sides were always the
same as the opposite side. It returned good results and also gave the possibility of controlling
if the values were in the expected positions. This possibility could be examined by the simple
fact that there were many pairs of x and y. A pair of results was compared with another. In
case of a mistake, it could be detected even at the level of demonstration on the LED display.
This is observed when not only an LED is lighted but two or four.
 The choice of the right hardware component was judicious, selecting the right combination
chip (IC) and LED matrix display, that of resistors, capacitors and all the others.
The software design has been modular, making it easy for future work, error detection and
also rendering it possible to have an eye on the codes while programming. In order to improve
on the results (coordinate of the object) some factors have been considered that led to better
results. An example is temperature. Reflection was as well taken into consideration in a
parallel project.

The PCB design as outlined in chapter four has been progressively developed using Eagle to
draw the schematics and finally the board layout. The first board had a few properties which
brought the idea of amelioration. One of the main properties was the space between a display
module and the next. Though this design, after adaptation was functional, it was decided on a
more adequate design. This new design made it possible to produce just one PCB. This helped
in avoiding the use of multiple connectors from one display to the next, as well as the errors
that could be involved in using these connectors. This second PCB was designed in such a
way that the 8 LED matrix display (512 LEDs) could fit on the PCB and the each display fit
to the next without a space. This property makes the system as a display technology, more
demonstrative.
There are a few measures which could have been considered in improving on the results. Due
to some factors like available material and scope of work, these factors were left out. Some of
these factors are listed in chapter seven, section 7.2.

7. 2 – Some possible applications of this project

Localization applications have been developed for a number of everyday scenarios. In the
industries and research centres, localization can be very important in determining the position
of a robot for example, allowing a full control of the robot. Robots are gaining more and more
importance nowadays and its control as well.

 90

 It could equally be used in museum guides. Many visitors to museums are unfamiliar with
the navigation at the location. Having such a display could help such visitors navigate on this
unfamiliar place easily. They will need to move around with the display to be able to locate
their position.
 The developed hardware and software are applicable in research purposes in the IT and
automation engineering laboratories of the University of Applied Sciences Hamburg
Germany.
In many industries, this project could be applied in logistics in determining the position of a
mobile transport cart (carriage) in transporting materials from one angle in the factory to the
next. In order to make this realisable, the actual position of this cart is necessary.

7.3 – Proposals for further works

7.3.1 - Outlier detection and corrective measures proposal and analysis

An outlier is an observation that lies outside the overall pattern of a distribution (Moore and
McCabe 1999). Usually, the presence of an outlier indicates some sort of problem. This can
be a case which does not fit the model under study or an error in measurement. The first step
is to detect the outlier. Detection will vary depending on the source. After detection, reduction
measures are adapted and if possible substituted.
Due to reflection of sound and other disturbing factors in a room, further measures are taken
to assure a better accuracy with the available standard conditions. One of these measures is
the detection of outlier and treating them. The diagrams below explain a case study for the
four sensors, where three of them indicate similar values and one indicates an extreme value.

Figure 7.2.1: Setup for outlier detection

Case 1, 2 and 4 are normal and good values but the third case is an outlier. In order to
improve on the accuracy, the third values are omitted and calculations done with just the

 91

values of the first, second and fourth values. In so doing, the range of accuracy is improved.
Mathematically, there is no fixed value for an outlier but ultimately a subjective issue. The
cause of an outlier determines how it should be treated. In this case, it is simply left out and it
improves on the result as demonstrated on the diagrams above.

Case number Delta 1 / standardized values
1 3,7
2 3,71
3 1
4 3,7

Table 7.2.2 case study of varied values of Delta 1

A resulting curve from Table 7.2.2 clearly indicates the presence of an outlier. This could
equally be deduced from the table.

outlier case study

Delta 1 Delta 1

Delta 1

Delta 1

0

0,5

1

1,5

2

2,5

3

3,5

4

1,00 2,00 3,00 4,00 5,00
case number

de
lta

(s

ta
nd

ar
di

ze
d)

Figure 7.2.2: Outlier case study result before correction

After the outlier detection and correction, the curve is almost a straight line. See the curve
below.

 92

outlier case study

Delta 1 Delta 1 Delta 1

1

1,5

2

2,5

3

3,5

4

1,00 2,00 3,00 4,00 5,00
case number

de
lta

(s

ta
nd

ar
di

ze
d)

Figure 7.2.3: Outlier case study result after correction

As seen in figure 7.2.2, the results for the various cases are more or less the same where as it
there an extreme value (outlier) was lying out of the range. This correction should definitively
yield better results if implemented as described. Though better results are expected, it has the
disadvantage that few but good data are eliminated. This requires a thorough study of the
system and other techniques.

7.3.2 - Kalman filtering as a method for determining the coordinates

Kalman filtering is a relatively recent (1960) development in filtering, although it has its roots
as far back as Gauss (1795). Kalman filtering has been applied in areas as diverse as aeros-
pace, marine navigation, nuclear power plant instrumentation, demographic modelling,
manufacturing, and many others. The question which is addressed by the Kalman filter is this:
Given our knowledge of the behaviour of the system, and given our measurements, what is
the best estimate of position and velocity? We know how the system behaves according to the
system equation, and we have measurements of the position, so how can we determine the
best estimate of the system variables? Surely we can do better than just take each
measurement at its face value, especially if we suspect that we have a lot of measurement
noise. This aspect could not be verified in the scope of this work but is a point of interest for
further works in position determination.

 7.3.3 - Using a single voltage source

A further proposal on future works is the use of one voltage source instead of two as it is the
case in this project. One supplies the microprocessor MSP430F169STK. It has a voltage of
7.5V. The other source supplies the MAX7221 and LED module, requiring between 3.5V –
5V. The MSP430F169 can not supply this module, since the current requirement of the LEDs
can not be met by the microcontroller.

 93

Figure 7.2.4: DC step down converter.

In this circuit the transistor turning ON will put voltage Vin on one end of the inductor. This
voltage will tend to cause the inductor current to rise. When the transistor is OFF, the current
will continue flowing through the inductor but now flowing through the diode. We initially
assume that the current through the inductor does not reach zero, thus the voltage at Vx will
now be only the voltage across the conducting diode during the full OFF time. The average
voltage at Vx will depend on the average ON time of the transistor provided the inductor
current is continuous.[31].

0
i

x
t

d
v v L

d
− =

The two voltage sources could be adapted to supply the microcontroller as well as the LEDs
by using a step down of the 7.5V at the entrance of the LED module. Typically the output
produced is at a different voltage level than the input. In addition, DC-to-DC converters are
used to provide noise isolation, power bus regulation.

 94

Chapter 8: -Terminology Bibliography and attachments

8.1 –Terminology

ADC: Analogue-to-Digital Converter

ACLK: Auxiliary Clock
See Basic Clock Module [9]

BOR: Brown-Out Reset

C/A-Code
The standard (Clear/Acquisition) GPS PRN code, also known as the Civilian Code or S-Code. Only
modulated on the L1 carrier. Used by the GPS receiver to acquire and decode the L1 satellite signal, and
from which the L1 pseudo-range measurement is made.

Coarse Acquisition (C/A)
A spread spectrum direct sequence code that is used primarily by commercial GPS receivers to determine
the pseudo-range to a transmitting GPS satellite, modulated on the L1 carrier.

CPU: Central Processing Unit

CTS − Clear To Send
The CTS signal is received from the other end of the serial cable. A space voltage indicates that it is alright
to send more serial data from your workstation. CTS is usually used to regulate the flow of serial data from
your workstation to the other end.

DAC: Digital-to-Analogue Converter

DCD − Data Carrier Detect
The DCD signal is received from the computer or device on the other end of your serial cable. A space
voltage on this signal line indicates that the computer or device is currently connected or on line. DCD is
not always used or available.

DCE : Data Circuit-terminating Equipment

DCO: Digitally Controlled Oscillator

DLP
Digital Light Processing (DLP) is a trademark owned by Texas Instruments, representing a technology used
in projectors and video projectors.

DRC: Design Rule Checks

 Dst: Destination

DTE: Data Terminal Equipment

DTR − Data Terminal Ready
The DTR signal is generated by your workstation and tells the computer or device on the other end that you
are ready (a space voltage) or not−ready (a mark voltage). DTR is usually enabled automatically whenever
you open the serial interface on the workstation.

FLL : Frequency Locked Loop

 95

GIE : General Interrupt Enable

GND − Logic Ground
Technically the logic ground is not a signal, but without it none of the other signals will operate. Basically,
the logic ground acts as a reference voltage so that the electronics know which voltages are positive or
negative.

GPS General Positioning System

IEEE
Institute of Electrical and Electronics Engineers. IEEE is one of the leading standards-making
organizations in the world. IEEE performs its standards making and maintaining functions through the
IEEE Standards Association (IEEE-SA). IEEE standards affect a wide range of industries including: power
and energy, biomedical and healthcare, Information Technology (IT) [19].

INT(N/2): Integer portion of N/2

Intensity
Intensity (mcd) stands for Milli Candle Power and measures the intensity of LED.

Interferometry
Interferometry is the technique of superimposing (interfering) two or more waves, to detect differences
between them.

Interrupt
An interrupt is an event in hardware that triggers the processor to jump from its current program counter to
a specific point in the code. Interrupts are designed to be special events whose occurrence cannot be
predicted precisely (or at all). The MSP has many different kinds of events that can trigger interrupts, and
for each one the processor will send the execution to a specific point in memory.

I/O: Input/Output

ISR: Interrupt Service Routine

JTAG
Joint Test Action Group [21]

LCD
A liquid crystal display (LCD) is a thin, flat display device made up of any number of colour or
monochrome pixels arrayed in front of a light source or reflector. It is often utilized in battery-powered
electronic devices because it uses very small amounts of electric power.

LcoS
Liquid crystal on silicon (LCOS or LCoS) is a "micro-projection" or "micro-display" technology typically
applied in projection televisions-.

 LPS Local Positioning System

LPM : Low-Power Mode

LSB: Least-Significant Bit

LSD: Least-Significant Digit

MAB : Memory Address Bus

MCLK : Master Clock
See Basic Clock Module [9]

 96

MDB : Memory Data Bus

MSB: Most-Significant Bit

MSD: Most-Significant Digit

NMI : (Non)-Maskable Interrupt
See System Resets Interrupts and Operating Modes [9]

PC: Program Counter
See RISC 16-Bit CPU

P-Code
The Precise or Protected code. A very long sequence of PRN binary biphase modulations on the GPS L1
and L2 carrier at a chip rate of 10.23MHz, which repeats about every 267 days. Each one week segment of
this code is unique to a GPS satellite and is reset each week. Under the policy of "Anti-Spoofing" the US
Dept. of Defense has encrypted the P-Code (replacing it with a so-called Y-Code). Only US military and
other authorised users are able to overcome AS using special receivers.

See System Resets Interrupts and Operating Modes [9]

PUC: Power-Up Clear

 Pseudo-Random Noise (PRN)
A binary signal with random noise-like properties. It is generated by mathematical algorithm or "code", and
consists of repeated pattern of 1's and 0's. This binary code can be modulated on the GPS carrier waves
using Binary Shift-Key (BSK) modulation. The C/A-Code and the P-Code are examples of PRN codes.
Each satellite transmits a unique C/A-Code and P-Code sequence (on the same L1 and L2 frequencies), and
hence a satellite may be identified according to its "PRN number", e.g. PRN2 or PRN14 are particular GPS
satellites.

Pseudo-Range
A distance measurement based on the correlation of a satellite's transmitted code (may be the C/A-Code or
the encrypted P-Code) and the local receiver's reference code (for that PRN satellite number), that has not
been corrected for errors in synchronisation between the transmitter's clock and the receiver's clock. Hence
a pseudo-range measurement is a time-error biased distance measurement. The precision of the
measurement is a function of the resolution of the code; hence C/A-Code pseudo-range measurements may
have a "noise" at the few metre level for standard GPS receivers (and at the sub-metre precision level in the
case of so-called "narrow correlator" GPS receivers). [20]

PUC: Power-Up Clear
See System Resets Interrupts and Operating Modes [9]

QSPI:
Queued serial peripheral interface (QSPI)

RAM : Random Access Memory

RISC:
The acronym RISC (pronounced risk), for reduced instruction set computing, represents a CPU design
strategy emphasizing the insight that simplified instructions which "do less" may still provide for higher
performance if this simplicity can be utilized to make instructions execute very quickly.[30]

RS-232: Recommended Standard 232

 97

RTS − Request To Send
The RTS signal is set to the space voltage by your workstation to indicate that more data is ready to be sent.
Like CTS, RTS helps to regulate the flow of data between your workstation and the computer or device on
the other end of the serial cable. Most workstations leave this signal set to the space voltage all the time.

Run time differences
In the context of this project, the run time differences are the time at which a sensor (microphone) receives
the sound signal in comparison with another.

RXD − Received Data
The RXD signal carries data transmitted from the computer or device on the other end to your workstation.
Like TXD, mark and space voltages are interpreted as 1 and 0, respectively.

SCG: System Clock Generator
See System Resets Interrupts and Operating Modes

SHT: Sample and hold time

SFR: Special Function Register

SMCLK: Sub-System Master Clock
See Basic Clock Module

SP: Stack Pointer. See RISC 16-Bit CPU

SR: Status Register

Src: Source . See RISC 16-Bit CPU

SPI : Serial peripheral interface

TOS: Top-of-Stack See RISC 16-Bit CPU

TXD − Transmitted Data
The TXD signal carries data transmitted from your workstation to the computer or device on the other end
(like a MODEM). A mark voltage is interpreted as a value of 1, while a space voltage is interpreted as a
value of 0.

UART
A universal asynchronous receiver/transmitter

USART
A universal synchronous and asynchronous receiver/transmitter

UTXEx: Transmit enable bit

UxRXBUF: Receive buffer

UxTXBUF: Transmit buffer

Wafer
A wafer is a thin slice of semiconductor material, such as a silicon crystal, used in the fabrication of
integrated circuit and other micro devices.

WDT : Watchdog Timer.

 98

8.2 - Bibliography

[1] Grundlagen und Anwendung globaler Satellitennavigationssystem 2. Edition by
 Prof. Dr. Ing. habil Werner Mansfeld
[2] Journal ; Elektonik und Informationstechnik (e&i) Third issue of 3.2008
[3] http://www.gnu.org/software/gdb/ as of 17.04.08 at 12:10
[4] Richard M. Stallman and Bjrn Remset 1987
 Richard Stallman lecture at the Royal Institute of Technology, Sweden (1986-10-30)
[5] Lecture material of Lecture MC and Lab MCL of Prof. Dr. Ing Riemschneider
 University of Applied Sciences Hamburg Germany
[6] http://www.network-theory.co.uk/docs/gccintro/gccintro_4.html :11:52 17 April 2008
[7] The Master Handbook of Acoustics. New York: McGraw-Hill)
[8] Embedded System Design Using the TI MSP430 Series by Chris Nagy, Published by
 Elsevier Science (USA) 003
[9] MSP430F169 Manual from Texas Instruments
[10 Source: Journal of Basic Engineering, Vol. 82: pp. 35-45. and from Lange, A.
………1999. Finnish Meteorological Institute Contributions, No. 22, Helsinki, Finland
[11] http://www.lumileds.com as of 17.04.08
[12] http://www.imagehouse.dk/default.asp?file=products_lightsources_advantagesof.htm
 as of 12.05.08
[13] http://dictionary.die.net/jtag as of 19.04.2008 at 10:09:01 AM
[14] http://cnx.org/ 15 as of 19.04.2008 at 11:20:03 AM
[16] http://www.kowoma.de/en/gps/history.htm as of Monday, 24 March 2008 at 06:45
[17] http://myhome.spu.edu/bolding/EE4211/EagleTutorial4.htm as of 13.04.08
[18] http://www.cadsoftusa.com/ as of 13.04.08
[19] http://standards.ieee.org/ as of 19/04/2008 12:36
[20] http://www.gmat.unsw.edu.au/snap/gps/glossary_r-z.htm
[21] http://www.techweb.com/encyclopedia/defineterm.jhtml?term=JTAG as of
 19/04/2008 12:32
[22] Some Experiments on Colours, Nature 111, 1871, in John William Strutt (Lord
 Rayleigh) (1899). Scientific Papers. University Press.
[23] http://www.network-theory.co.uk/docs/gccintro/gccintro_4.html :11:52 17 April 2008
[24] Lecture material Richard M. Stallman and Bjrn Remset Richard Stallman lecture at
 the Royal Institute of Technology, Sweden (1986-10-30)
[25] Physics by Prof Dr. Tao Pang Cambridge University Press, Cambridge, UK, 2006)
 Publisher: Cambridge University Press
 Published: February 2006
[26] http://www.gnu.org/software/binutils/ as of 17.04.08 12:36)
[27] The Master Handbook of Acoustics. New York: McGraw-Hill
[28] Microcontroller Programming The microchip PIC by Julio Sanchez Minnesota State
 University, Mankato and Maria P. Canton, South Central College, North Mankato,
 Minnesota 2007
[29] EVERLIGHT LED Data Sheet
 (http://www.datasheetcatalog.com/everlightelectronics/1/) as of 21.11.2007
[30] http://en.wikipedia.org/wiki/Reduced_instruction_set_computer as of 04.06.2008 at
 22:00
[31] http://www.powerdesigners.com/InfoWeb/design_center/articles/DC-
 DC/converter.shtm as of 20.06.2008
[32] http://ww.dansdata.com/images/caselight/friodea380.jpg as of 12.03.2008 at 18:34

 99

8.3 - Attachments

Attachment 1: Schematics of first PCB design version

 100

Attachment 2: Board of first PCB design

Attachment 3 and 4 are the schematics and board of the second and final design of PCB and
are attached as extra pages at the end of this document.

 101

 A3 format : Attachment 3: Schematics of second PCB design

 102

 A3 format: Attachment 4: Board of second PCB design

 103

 Content of the CD

Folder1: Hardware Development

 -pin list of second PCB design
 -part list of second PCB design
 -net list of second PCB design
 -some pictures of hardware

Folder2: LPS_test

 -various C codes

Folder3: Matlab files

Folder4: Documentation in PDF format

Folder5: Excel files

Folder6: Files from Eagle

 104

Versicherung über die Selbständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung
nach §25(4) ohne fremde Hilfe selbständig verfasst und nur die angegebenen
Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken
entnommene Stellen habe ich unter Angabe der Quellen Kenntlich gemacht.

 Ort Datum Unterschrift

