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Abstract 

In this project a DSP based real time system has been developed to localize                      
the audio source in reverberant environment. The System is developed on TI’s 
TMS320C6713 DSP. The Incoherent Wideband MUSIC Algorithm used in the 
project is based on Eigenvalue decomposition method. The algorithm is simu-
lated in MATLAB under real time constraint. The project is developed in C us-
ing TI’s Code Composer Studio. 
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Kurzzusammenfassung 

In dieser Arbeit wurde ein DSP basiertes Echtzeitsystem entwickelt, dass zur  
Lokalisierung einer Audioquelle in einem nachhallendem Raum eingesetzt 
wird. Das System wurde auf dem TI‘s TMS320C6713 DSP entwickelt. Der 
verwendete Incohärenter Breitband MUSIC-Algorithmus basiert auf der 
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bedingungen simuliert. Die Implementierung auf dem DSP erfolgte in der 
Programmiersprache C. 
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ABSTRACT 
 

The detection and estimation techniques that are used in Microphone Array Processing 

depend on the spatial and temporal characteristics of the signals that arrive on the 

Microphone Array. A combination of Microphone Arrays and sophisticated signal 

processing has been used to acquire the high-quality speech audio. These applications 

exploit the spatial filtering ability of Microphone Array. 

 

In this thesis wideband array processing is considered to develop a real-time DSP 

system based on an adaptive, robust, wideband algorithm to localize the speech source 

in reverberant environment. The approach is based on sampling the spectrum of the 

source signal to generate narrowband frequency bins and then these separate 

estimates at multiple frequencies are combined into single direction of arrival. For this 

purpose Incoherent Signal-Subspace method with high resolution MUSIC algorithm is 

used. 

 

The algorithm is first developed in MATLAB and it can be shown that the algorithm is 

effective in locating the audio source with high resolution, with significant results for SNR 

down to -5 dB. The MUSIC algorithm requires the knowledge of frequency of audio 

source in wideband environment a priori.  

 

The Incoherent wideband MUSIC algorithm is then implemented on DSP TMS320C6713 

with PCM 3003 codec. A self-calibrating algorithm is employed to calibrate the 

microphone’s signal obtained from Microphone Array. The self-calibrated algorithm was 

tested in anti-acoustic room and the performance of algorithm was good. Thereafter, 

complete system was tested in seminar room for an audio source under strong 

reverberation effect and noisy environment with six and eight microphones. The 

performance of algorithm in real time was good and the results obtained were quite 

satisfactory and were within the acceptable range of deviation. 
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1. INTRODUCTION 
 

In speech applications, where a conventional microphone need to be placed very near to 

Speaker forces the Speaker to either wear the microphone or need to be monitored by 

Human interface. However this restriction is undesirable and inconvenient for many 

applications like teleconferencing, car telephony and localizing a source in reverberant 

environment. For these applications a combination of microphone arrays and 

sophisticated signal processing can be used as they exploit the spatial filtering ability of 

microphone array. A microphone array is known to be effective method to enhance the 

SNR in noisy environments resulting in significant improvement of speech 

characteristics. 

Most of the applications like speech enhancement for Human Computer interface or in 

hearing aids requires accurate localization techniques to produce direction of arrival or 

estimates at a high rate with minimum latency i.e. in real time. While localizing a source 

a system must produce reliable location estimates. The movement of Speaker must be 

negligible for the duration of computation of data set or the refreshing rate must be high 

enough to avoid errors.  

In all these applications, one thing is common i.e. to determine the direction of arrival of 

the acoustic source in reverberant environment. Reverberation which is being defined as 

the complicated set of reflections that are produced when a sound wave travels from 

source to listener by bouncing off many different surfaces. This phenomenon is very 

common in closed space like conference hall. The reverberation effect can severely 

degrade the performance of direction of arrival algorithms. The motivation of this thesis 

is to develop a real time DSP system to localize an acoustic source in reverberant 

environment.   

1.1 Background of this Thesis 
  

The basic theory behind the estimation of direction of arrival using Microphone Array is 

to make use of the phase information present in the signals picked by sensors which are 

spatially separated. When the microphones are spatially separated the sound source 

signal arrive at them with time differences. For known array geometry, these time- 

delayed signals are dependent on the direction of arrival of the signal.  
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In so far as the estimation of direction of arrival for narrowband sources are concerned, 

the theory is well established and lots of literature is available. Within many direction of 

arrival algorithms, MUSIC (Multiple Signal Classification) [1, 2] has been most widely 

studied. The MUSIC algorithm is based on Eigen-value Decomposition (EVD) method. 

The EVD method divides the cross-correlation matrix of the array signals into signal and 

noise subspaces. The popularity of MUSIC algorithm is due to its generality i.e. it is 

applicable to arrays of arbitrary but known configurations and response, and can be 

used to estimate multiple parameters per source. The condition is that array response 

must be known for all the possible combinations of source parameters. 

The narrowband MUSIC produces a sharp beam patterns, but requires the frequency bin 

to have high SNR. In general, any narrowband direction of arrival technique will not 

exploit the wideband nature of the acoustic sources. To exploit as much of the 

multispectral content from the acoustic source as possible, improve accuracy and 

stability of the direction of arrival estimates, a wideband direction of arrival algorithm is 

required.  

One approach is to implement wideband MUSIC algorithm using Incoherent Signal-

Subspace method [3] in frequency domain. This approach is useful if there is sufficient 

or high SNR in multiple frequency bins, so that narrowband MUSIC algorithm yields 

good results independently for each bin. Over each processing interval it is assumed 

that a single frequency bin is occupied by a single source only. This takes advantage of 

the non stationary nature of the source and simplifies the algorithmic complexity of the 

algorithm. This assumption is justified because different wideband sources are not likely 

to occupy all of the same bins in any given processing interval and keeps on changing 

bins as function of time.   

1.2 Thesis Organization 
 

The dissertation is organized as follows. In this chapter the background and motivation 

behind this work is discussed. In the following chapter some array processing 

techniques and the concepts behind the MUSIC algorithm is discussed. Also the 

theoretical implementation of the MUSIC algorithm in wideband is introduced. In Chapter 

3, the characteristics of microphone array are explained. The DSP sub-system and 

interfacing between them is also discussed. In Chapter 4, the methods and techniques 

used for the implementation of algorithm is discussed. Also the simulation results of the 



 

     
 
                                                                 3   

algorithm are analyzed. In Chapter 5, the implementation of algorithm in real time is 

explained. In Chapter 6, the systematic analysis of tests conducted in real time is 

presented. In Chapter 7, the summarization of the work done with results is concluded 

and further improvement as well as possible future work is discussed.  
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2. THEORY 
 

An array processing is usually performed in two steps: detection and localization. 

Detection is a terminology used for the procedure that determines the number of signals 

arriving at array. Localization (also called estimation) is a process to estimate the spatial 

parameters of the signals such as direction of arrival. The methods that are used for 

detection and localization are generally categorized as subspace decomposition or 

beam forming techniques. The subspace decomposition has a better resolution in 

comparison to beam forming techniques but on the other hand their implementation is 

more complex. The most common subspace decomposition techniques are MUSIC and 

ESPRIT algorithms. In this thesis MUSIC algorithm is used. 

2.1 Fundamentals of Array Processing  
In a normal environment, a wave field at a spatially fixed microphone is linearly related to 

an assumed signal, s(t). This is true for an enclosed space (e.g. conference hall) as well 

as for free space. In free space or non-reverberant environment, sound waves 

propagate without any interference from different objects such as wall or other sources. 

But in a closed space such a free-space model is not realistic. However it accurately 

describes the direct-path propagation from source to microphone, even in reverberant 

environment. The linearity of the medium allows the microphone signal to be modeled as 

the superposition of a direct path component plus the reflected sound waves. Signal 

processing algorithms rely on separating the direct path component from reflected 

waves and noise as it is able to parameterize the location of Speaker.   

2.1.1 Direction of Propagation and Arrival 
Figure 2.1 in next page shows the layout of linear microphone array consisting of M 

microphones with K incident signals from a sound source. In this analysis, the incident 

waves are assumed to be plane waves (spherical wavefront) i.e. the sound source is 

approximated as at a much greater distance than the distance between microphones. 

This assumption implies that the sound waves reaching at different microphones are 

parallel to each other because the far-field arrays cannot resolve the range of the 

source. As the sound waves have to travel different distances to reach their respective 

microphones, this means that these sound waves will be time-delayed or time-advanced 

versions of each other. As depicted in Figure 2.1 the direction perpendicular to the 
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microphone array will be taken as reference direction of arrival. The angles in the 

clockwise direction with respect to this reference will be positive and in anticlockwise 

direction will be negative.  

 
Figure 2.1 Uniform Linear Array with Far Field Source 

For conventional purpose, the first microphone M1 is chosen as the reference 

microphone. The distance between any microphone pair is constant, say d. The distance 

to be travelled by sound waves from a source to a microphone Mi with respect to 

reference microphone M1 will be given by Eq. 2.1 

                                                     sini
i

d
v

τ θ= −                                                         (2.1)                             

This equation indicates that the sound wave incident on microphone Mi will be time-

delayed version of reference microphone.  
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Assuming that effects of microphones are very small we can ignore the attenuation and 

propagation delay caused by microphones. We also assumed that microphones are 

ideal and their impulse response is 1. These assumptions will lead to Eq. 2.7 

                                                      - ( )

1
( ) ( ) ( )k i k

D
j

i k i
k

x t s t e w tω τ θ

=

= +∑                                 (2.7) 

Eq. 2.7 can be rewritten if we consider that D (assumption: D < No. of Microphone) 

sound sources are impinging on the microphone array from different directions. Then the 

received signal at the ith microphone will be expressed as 

                                                    
1

( ) ( ) ( ) ( )
D

i i k k i
k

x t a s t w tθ
=

= +∑                                      (2.8) 

where sk(t) is the signal of the kth audio signal, ai(θk) is the complex response of the ith 

microphone to the kth audio signal and wi(t) is the additive noise at the ith microphone.                

2.1.2 Spatial Aliasing Effect 
From Eq. 2.6 the location vector of an array is defined as the frequency response of the 

array for a given direction of arrival. For an array of M sensors, the location vector is a 

column vector with M components and is represented by a(ω, θ). The location vector of 

a uniform linear array with the phase reference taken at the first sensor is given by 

                                        
2 sin 2 ( 1)sin

( ) 1 .........
Td d Mj j

a e e
θ θπ π

λ λθ
−

− −⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                               (2.9) 

  We can see that the distance between microphones and λ or frequency of incident 

signal is related to each other. As it is known that for a narrowband direction of arrival 

estimation, the received signals between microphones have a phase delay with respect 

to each other. This phase difference between a pair of microphone should not be more 

than π because the phase difference of φ > π is indistinguishable from a phase lead of 

2π – φ or vice-versa. Spatial Aliasing [4] occurs if the phase delay between a pair of 

microphone is greater than π then the signals that are located at θ1 and θ2 will give the 

same array output. Because any phase difference greater than ±π will be wrapped 

around in the range. This spatial undersampling will cause aliasing of higher frequency 

components down into the frequency band of interest and will result into the wrong 

interpretation of delays in time domain which subsequently will lead to wrong estimation 

of direction of arrival. Figure 2.3 on next page depicts this situation. 
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Figure 2.3(a) Spatial Aliasing Effect and Estimated Direction of Arrival using MUSIC 

 

 
Figure 2.3(b) No Spatial Aliasing Effect and Estimated Direction of Arrival using MUSIC 
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be chosen in the given spectrum, say fmax and the condition for avoiding spatial aliasing 

is given in Eq. 2.10 

                                                    max2 fπ τ π≤                                                           (2.10)   

Substituting forτ , we can calculate the minimum required distance between adjacent 

microphones to avoid spatial aliasing, which is given by Eq. 2.11 

                                                      
max sin

1
2

v
f

d
θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

≤                                                   (2.11) 

Hence the relationship between d and λ is given by Eq. 2.12 

                                                     min

sin
1
2

d λ
θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

≤                                                           (2.12) 

where λmin is the smallest wavelength. 

Therefore in a worst case scenario i.e. when θ = 90˚, the distance between two adjacent 

microphones should not be greater than half of λmin present in the signal. According to [4] 

if the distance between two adjacent microphones is greater than min

2
λ

, it will lead to 

multiple main lobes, which is undesirable. 

If the spatial sampling rate is kept at less than min

2
λ

for the highest frequency of interest, 

the spacing between microphones can be adjusted according to our requirement. As the 

distance between microphones get closer, the far field signals in the microphones are 

more highly correlated and the Microphone array has better overall background noise 

suppression over a wider range of frequencies. As the spacing gets further apart, the 

array will have less overall suppression and becomes restricted to lower frequency 

responses. 

2.1.3 Relation between Source-Array Distance and SPL 
The commonest model for sound sources is the point source which assumes that the 

sound waves are radiating from a point. As in real time the Source-Array distance is 

varied and it is important to know in principle how much signal power is available for 

array processing. In this section, a mathematical formula is shown to relate the Source-

Array distance with signal power. 

Sound Pressure Level (SPL) decreases proportionally with distance say ‘R’ from the 

sound source. The Figure 2.4 in next page shows a source of sound with two listening 

positions: the closer one is r cm away; the farther one is R cm away.   
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Figure 2.4 Effect of distance in SPL 

 

The change in the sound pressure level between the two positions is given by: 

⎟
⎠
⎞

⎜
⎝
⎛×=

r
RLevelpressureSoundtheinChange Log20  

For speech applications, the reference point is generally accepted as 96 dB SPL 

approximately 1 cm (r) from the lips of a person when he or she speaks [12]. 

The equation which we can plot (Figure 2.5) is shown below. 

⎟
⎠
⎞

⎜
⎝
⎛×−=

r
RdBLevelpressureSound Log2096)(

 
The Figure 2.5 shows the plot.  

 
Figure 2.5 Change in SPL with increase in Source-Array Distance 
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at 150 cm is approximately 52.5 dB and at 300 cm 46.5 dB. If microphones are placed at 

a distance of say 5 cm from each other in an array. Then the distance between 1st and 

8th microphone for array having 8 microphones will be 35 cm and difference in SPL will 

be 1 dB, but at 300 cm the overall power of signal is dropped to 45.5 dB for the farthest 

microphone in the array and if high noise level is present in spectrum then there is a 

possibility of losing the main signal for large Source-Array distance like 400 cm and 

beyond that. In chapter 4.3, the effect of low SNRs on the performance of algorithm is 

discussed. 

2.2 MUSIC Algorithm in Frequency Domain 
Many subspace decomposition methods divide the observation space into the signal and 

noise subspaces. The first step in these techniques is to estimate the signal and noise 

subspaces by decomposing the array correlation matrix into its eigen-structure form. The 

subspace spanned by the eigenvectors of Covariance matrix corresponding to dominant 

eigenvalues is termed as Signal subspace. The detection methods use the fact that 

signal eigenvalues are larger than the noise eigenvalues. One of the most popular 

method is MUSIC ( MUltiple SIgnal Classification ) which can be characterize as the 

method for estimating the individual frequencies of multiple time-harmonic signals. The 

algorithm is considered in frequency domain [5]. Eq. 2.8 can be written as follows 

                                                       s⋅X(t) = (t) + w(t)A(θ)                                        (2.13) 

The frequency domain representation of the vector x(t) can be obtained by taking the 

Fourier transform of above equation 

                                                     ⋅X(ω,θ) = S(ω) + W(ω)A(ω,θ)                              (2.14) 

where, 1 N[X (ω,θ) X (ω,θ)]X(ω,θ) T= , ...,  is the N-dimensional vector of array output  

            T
1 D[S (ω) S (ω)]=S(ω) , ...,   is the D-dimensional vector of audio signal  

           1 N[W (ω) W (ω)]W(ω) T= , ...,   is the N-dimensional of noise  

As the microphones are assumed to be identical and under far-field consideration, the 

array steering vector A(ω,θ)  can be written as  

            

1 2

1 2

1 2

2 2 2

( 1) ( 1) ( 1)

1 1 1

[ ,..., ]

D

D

D

j j j

j j j

j N j N j N

e e e
e e e

e e e

ωτ ωτ ωτ

ωτ ωτ ωτ

ωτ ωτ ωτ

− − −

− − −

− − − − − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 DA(ω,θ) a(ω,θ ) a(ω,θ )    (2.15) 
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All of the classical beamforming techniques use the output covariance matrix to 

determine direction of arrival of source. Another important property of the covariance 

matrix is that one can see the output power at each of the sensors and the matrix can 

easily be modified to make the gains at all of the sensors.  

The symmetric covariance matrix of X  of Eq. 2.14 is given by 

                           
M

n 1

1R̂( , ) E[ ]
M

ω θ ω θ ω θ
=

= ⋅ = ∑H HX X X ( , )X( , )                               (2.16) 

where, E[ּ] is the expectation operator and {}H denotes complex conjugate transpose. 

 

On replacing with their respective values, we get 

                      ( ) ( )
M

H

n 1

1 S S
M

ω ω ω ω ω ω
=

⋅ ⋅ ⋅∑ A( ,θ) ( )+W( ) A( ,θ) ( )+W( )                    (2.17) 

    
The Eq. 2.17 is further calculated as 

               ( ) ( )
M

H

n 1

1 S S
M

ω ω ω ω ω ω
=

⋅ ⋅ ⋅∑ H HA( ,θ) ( )+W( ) ( ) A ( ,θ)+W ( )               (2.18) 

                   
( )

( )

M
H

n 1
M

H

n 1

1
M

1
M

ω ω ω ω ω ω ω

ω ω ω ω ω

=

=

∑

∑

H H

H H

A( ,θ)S( )S ( )A ( ,θ)+ A( ,θ)S( )W ( )

                     + W( )S ( )A ( ,θ)+W( )W ( )
              (2.19) 

 

Eq. 2.19 is rearranged as following 

M M
H

n 1 n 1

M M
H

n 1 n 1

1 1
M M

1 1
M M

ω ω ω ω ω ω

ω ω ω ω ω ω

= =

= =

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤
+⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑

H H

H H

A( ,θ) S( )S( ) A ( ,θ)+ W( )W ( )

                           + A( ,θ) S( )W ( ) W( )S ( ) A ( ,θ)
(2.20) 

 

As it is assumed that the noises and incoming signals are not correlated, which means 

the last two parts are equal to zeros, so Eq. 2.20 is reduced to 
M M

n 1 n 1

1 1     
M M

ω ω ω ω ω ω
= =

⎡ ⎤
+⎢ ⎥

⎣ ⎦
∑ ∑H H HA( ,θ) S( )S( ) A( ,θ) W( )W( )                             (2.21) 

Hence the Covariance matrix is given by  

           
H 2

S R
ˆˆ ˆ ˆR( , )   S       R ( , ) R ( , )

                 N D     D D    D N            N N
ω θ ω ω σ ω θ ω θ= ⋅ ⋅ + ⋅ +

× × × ×
A( ,θ)   A( ,θ) I =                  (2.22) 
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I is the N x N identity matrix. σ2 is the noise variance in each channel if the noise is 
white, σ2 I is the N x N covariance matrix of the noises. Ŝ  is the D x D Auto-covariance 
matrix of input signal.  

For MUSIC to be applicable the input signals are assumed to be uncorrelated, so the  

covariance matrix Ŝ  will be a diagonal matrix having full rank D, 

                                                            1 D
ˆ diag{P ,  ... ,P }=S                                           (2.23)   

where,       2
kP E | S | ,     k 1, ... ,Dω⎡ ⎤= =⎣ ⎦k ( ) . 

Pk is the spectral power density of the kth signal. Ŝ  will be positive-definite if and only if 
the D signal vectors are linearly independent.   

Under these assumptions, HŜω ω⋅ ⋅A( ,θ) A( ,θ)  is a positive semidefinite N x N matrix of 
rank D with 

                     ˆ( ) [ ]Hrank S span Nω ω⋅ ⋅ = <1 DA( ,θ) A( ,θ) a(θ ), ...,a(θ )                      (2.24) 

 

Let 1 2 N...λ λ λ≥ ≥ ≥  denote the eigenvalues of R̂ and 1 2 N...η η η≥ ≥ ≥  denote the 
eigenvalues of matrix HŜω ω⋅ ⋅A( ,θ) A( ,θ)  respectively. From Eq. 2.22 we can easily 
see the following relation.    

                                               2
i i ,      i 1,..., Nλ η σ= + =                                               (2.25) 

Since the rank of Ŝ  is D and the number of sources D is smaller than the number of 
microphones N, the matrix HŜω ω⋅ ⋅A( ,θ) A( ,θ)  is singular, i.e. 

  

                                           det( HŜω ω⋅ ⋅A( ,θ) A( ,θ) ) = 0                                          (2.26) 

   

Eq. 2.26 implies that the D columns of HŜω ω⋅ ⋅A( ,θ) A( ,θ)  span a D-dimensional 
subspace of N-dimensional complex space. This subspace is referred as Signal 
Subspace. The smallest (N-D) eigenvalues of HŜω ω⋅ ⋅A( ,θ) A( ,θ)  are zero, i.e. 

D 1 N 0η η+ = = = .  

Determining the direction of arrivals for the no-noise is simply a matter of finding the D 
unique elements of ωA( ,θ)  that intersect the subspace. But if we consider the presence 
of the noise component 2σ I  to the matrix HŜω ω⋅ ⋅A( ,θ) A( ,θ) , then the matrix R̂  will 
be of full rank. The noise component will not affect the corresponding eigenvectors 
because it simply increases all eigenvalues by same amount as shown in Figure 2.6[5] 
in next page. 
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The above equation implies that the subspace spanned by the eigenvectors 
{ , ,... }D+1 D+2 Ne e e  is the orthogonal complement of the subspace spanned by the steering 
vector ω ω ω1 2 D{a( ,θ ),a( ,θ ), ...,a( ,θ )} . This is represented as 

                  [ ] [ ]span span ω ω⊥D+1 N 1 De , ...,e a( ,θ ), ...,a( ,θ )                                       (2.32) 

As mentioned above that the eigenvectors of the covariance matrix R̂  are orthogonal to 
each other, so SE and RE are orthogonal complement. This can be expressed as 

                                         1 1[ , , ] [ , , ]T T
S D R D Ne e e e+= ⊥ =E E                             (2.33) 

Thus we can see that the columns of SE  span the D-dimensional signal subspace of N-
dimensional complex space in the same way as the column vectors of matrix ωA( ,θ)  
i.e.  

                                  [ ] [ ]span span ω ω=1 D 1 De , ...,e a( ,θ ), ...,a( ,θ )                            (2.34)  

The subspace spanned by the D eigenvectors corresponding to the D largest 
eigenvalues of R̂  is referred as the signal subspace. The noise space is the subspace 
spanned by the N-D eigenvectors of R̂  associated with the N-D smallest eigenvalues. 
The signal subspace and noise subspace are orthogonal complement to each other.  

The direction of arrival can be determined by searching for the steering vectors which 
are orthogonal to the noise subspace, namely by finding vectors on the array manifold 
that have zero projection in the noise subspace. In practice, R̂  is unknown, but it can be 
estimated from the available data as in Eq. 2.22. But in real time consideration, there are 
many errors which are unavoidable, thus one can only search for the steering vectors 
which are most closely orthogonal to the noise subspace.  

To obtain a mathematical measure of closeness to orthogonality, it is beneficial to define 
an orthogonality error vector ωε(a( ,θ))  whose kth element is the inner product of 

ωa( ,θ)  and the kth eigenvector ke  of the noise subspace. Thus the error vector 
ωε(a( ,θ))  can be written as 

     [ ( 1), , ( )] [ , , , , ]TD Nω ε ε ω ω= + = < > < >D+1 Nε(a( ,θ)) a( ,θ) e a( ,θ) e               (2.35)    

The Euclidean norm of ( )ε ωa( ,θ)  is 

( )2 2 2( 1) (D Nω ε ε= + + +ε(a( ,θ))    

                              
22

1

N

i D

ω ω ω ω
= +

= ⋅ = ⋅ ⋅∑ PH H
iε(a( ,θ)) e a( ,θ) a ( ,θ) a( ,θ)               (2.36)    

Where =P H
R RE E   

The minimum squared Euclidean norm associated with a steering vector ωa( ,θ)  that is 
an optimum one. The direction steered by the optimum steering vector is the true 
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direction of arrival. The MUSIC algorithm estimates the DOAs as the peaks of the 
MUSIC spectrum as  

                       1 1ˆ ( , )MUSICS ω θ
ω ω ω ω

= =
⋅ ⋅PH H H

R Ra ( ,θ) a( ,θ) a ( ,θ)E E a( ,θ)
           (2.37)  

 

2.3 Wideband Array Processing 
The sub decomposition methods were initially developed for narrowband signal 

localization and are not applicable to wideband cases. To solve this problem many 

approaches were suggested. One of them is by using conventional sub-band 

techniques, but these techniques do not offer any improvement. Another approach is to 

apply narrowband filters to the signals and then treat them separately as narrowband 

problem. If we analyze a speech spectrum of a wave file as shown in Figure 2.7. We can 

see that the speech signals have significant power over a wide range of frequencies and 

also speech signals exhibit formant frequencies.  

 
Figure 2.7 Speech spectrum of a woman’s voice 
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In the whole spectrum, there are specific frequencies which exhibit more power than 

other frequencies. It makes sense to use these frequencies for estimating the direction 

of arrival. 

One of approach is suggested by Su & Morf [6], according to them narrowband high 

resolution subspace methods like MUSIC can be used to determine narrowband 

beampatterns over many temporal frequencies and then combine them. The only 

condition is that there should be sufficient or high SNR in multiple frequency bins so that 

narrowband methods can yield good results independently for each bin. Another 

assumption is that every look angle has only one target, so that signal subspace 

consists of one eigenvector, with the other N-1 eigenvectors forming the noise subspace 

[7]. This way one can apply faster eigen-analysis algorithms.  

Based on this approach Incoherent or Coherent wideband array processing techniques 

can be employed for detection and tracking of audio source. Figure 2.8 shows the basic 

principle of Incoherent method. 

 
 
 
          1                           x1(t)                         X1(ω) 
                                                                                                                                                                         
                                                                                                                                       DOA                        
     
         M                           xM(t)                       XM(ω)  
           
 
  

Figure 2.8 Basic Principle of Incoherent Method 

 

The basic steps in both techniques are as follows: 

 

i. Use block-adaptive pre-processing to adaptively select the narrowband 

frequency bins. 

ii. Apply MUSIC algorithm, and apply Incoherent or Coherent techniques. 

iii. Estimate the directions of the sources from the resulting beam form. 

 

The difference between the two techniques is of computational complexity. For 

incoherent the computational complexity is given in Eq. 2.38 and for coherent is given in 

Eq. 2.39,  
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ሾܱሺܰଶሻܯ     ൅ ܱሺܰଷሻ ൅ ܵ כ ܱሺܰଶሻሿ                                   (2.38) 

    ܵሾܯ כ ܱሺܰଶሻ ൅ ܱሺܰଷሻ ൅ ܱሺܰଶሻሿ                                   (2.39) 

where M is the number of frequency bins and S is the number of look angles.  

The first squared term in the bracket corresponds to the formation of the correlation 

matrix; the cubic term is for a SVD (Singular Value Decomposition) calculation to 

perform Eigenvalue Decomposition as EVD and SVD both gives the same result (will be 

discussed in Chapter 4.2 in detail) and last term for computation of every look angle. For 

both methods, the most expensive computational cost is the SVD which is O(N3). This 

term defines the complexity of algorithms and we can see that for incoherent it is 

M*O(N3) while for coherent it is S*O(N3).  

For real time applications, there is no priori knowledge of the source directions. For 

coherent wideband processing, microphone array scans in all direction which means it 

requires a very large number of SVD calculation. However for incoherent wideband 

processing, the number of SVD calculations depends on the number of frequency bins 

which is actually just a fraction of SVD calculations required in coherent wideband 

processing. Therefore for low cost, low power DSP processor like TI’s C6713, coherent 

technique is quite computationally intensive. The incoherent wideband technique is 

somewhat more suited for our application. 

 

The steps are explained as follows: 

 

1) The first step is to overcome the non-stationary nature of the source. This is 

being done by segmenting the data in fixed size of blocks. Therefore the samples 

are collected from each channel of ADC and are stored in terms of data blocks 

for further processing. 

2) The second step involves the conversion of real Time domain signal to complex 

Frequency domain as the algorithm works in Frequency domain. This is being 

done by performing FFT for each data blocks. 

i i

i k k i k k

s⋅

↓
⋅

          X (t) = (t) + w(t)

                               
X (ω ,θ) = S (ω ) + W(ω )

A(θ)

A(ω ,θ)  
 

3) The third step is to compute the average power spectrum and then adaptively 

select the M frequency components for wideband processing. 



 

     
 
                                                                 19   

4) Next step is to form the estimated narrowband spatial correlation matrix 

x kR̂ ( , )ω θ  for every adaptively selected frequency ωk for k = 1,2,….M. 

5) In this step narrowband MUSIC algorithm is applied for each spatial correlation 

matrix x kR̂ ( , )ω θ . 

6) In this second last step all beam-patterns or pseudospectrum are incoherently 

averaged together as shown in Figure 2.40 to give resultant spectrum, 

 

                                     
1

1ˆ ( , )
M

Incoherent k
k k k

P ω θ
ω ω=

=∑ H H
R Ra ( ,θ)E E a( ,θ)

                   (2.40)                  

                              
 

7) The last step is to employ a Tracker algorithm to determine the direction of 

arrival. 

 

The flow chart for implementing the Incoherent Wideband MUSIC algorithm is shown in 

Figure 2.9 on next page. 
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3. DSP-Based Real time System 
 
Microphone array technology has been proposed for various speech applications. By 

localizing the direction of arrival of desired speech source, attenuating background 

noises and rejecting discrete spatial interferes, a microphone array can enhance the 

SNR in a noisy environment with notable improvement in speech intelligibility. The 

Microphone array is constructed with 8 microphones with pre-amplifying circuit. The out- 

put of pre-amplifying circuits are connected to the ADC channel of the PCM Codec, 

which in turn is connected to the DSK 6713 through an adapter. Figure below shows 

block diagram of Hardware connections. 

 

 
          1                           x1(t)                          x1(t) 
                                                                                                                                                                         
                                                                                                                                       DOA                        
     
         M                           xM(t)                        xM(t)  
           
 
  

Figure 3.1 Main blocks of DSP Sub-system  

 

In first section, Microphone array system is described and then in the next sections the 

subsystems of DSP and interfacing between them is discussed.  

3.1 Microphone Array 
In this section the properties of microphone and the construction of microphone array is 

described. An omnidirectional elektret condenser microphone capsule WM-52BT is used 

in the application. It is a low voltage, 1.5 volt operation microphone and suitable for all 

voice applications as it has frequency range of 20 - 16000 Hz [8].  

One of the important things is having an ideal flat frequency response, so that 

microphone will remain equally sensitive to the whole frequency range of interest. For 

this application the most desirable thing is having a flat frequency response through the 

whole spectrum and the microphone used in the application has good flat frequency 

response. A typical flat frequency response curve [8] is shown in Figure 3.2 in next 

page. 
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Figure 3.2 Flat Frequency Response Curve for WM-BT52 

 

The internal circuit diagram of this condenser is shown in Figure 3.3.  

 
Figure 3.3 Schematic Diagram of WM-52BT 

 

The output of microphone is less than 100 mV and varies across microphones whereas 

the required input voltage for ADC of PCM 3003 Codec is 1.8 Vpp; therefore the signal 

needs to be amplified before feeding into the PCM Codec. To match the incoming signal 

with the input characteristics of the PCM Codec, pre-amplifying circuit is used. Non-

uniform delays and gains among different microphones may lead to sub-optimum 

processing of the receiving waveforms. Therefore microphones need to be calibrated. 

The calibration of microphones will be discussed in Chapter 5. The circuit diagram of the 

pre-amplifier used is shown in Figure 3.4. 

 
Figure 3.4 Amplifying Circuit Diagram for Microphone 
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The ADC channel of I/O card PCM3003 has the input voltage range of 0 - 3.3 Volt. But 

the output voltage from microphone varies from negative to positive. Therefore an offset 

is provided to shift the range to 0 – 3.3 Volt which will be removed from the data 

segment to get a DC free input signal. As 8 microphones are used in the application, 

they are connected to 8 ADC channel from 1 to 8. The Figure 3.5 below shows the 

pictorial view of microphone’s amplifying PCB (courtesy to DSP Lab, Hamburg 

University of Applied Science) used in this project. 

 
Figure 3.5 Pictorial view of Microphone Array’s amplifying circuit 

 

 3.2 DSP Sub-System 
The DSK 6713 includes DSP board (TI’s C6713) with I/O Card (PCM 3003). The 

complete pictorial setup of DSK 6713 is shown in Figure 3.6. 

 

 
 

Figure 3.6 Complete setup of DSP Sub-System 
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3.2.1 PCM 3003 Audio Daughter Card 
In this application 8-channel Audio daughter card PCM 3003 [10] from D.SignT is used. 

The four PCM 3003 Codec are connected via a special adapter board with serial ports 

McBSPs of DSK 6713. Clocks and frame synchronization signals are generated by the 

PCM 3003 and acts as a master device. The ADCs employ delta-sigma modulation with 

64x oversampling. The ADC includes a digital decimation filter and the DAC include a 

digital interpolation filter. The codec operate with left-justified and right-justified formats 

and has 16 bit resolution. The codec has the sampling frequency from 8 – 48 KHz and 

all ADC operate synchronously with the sampling frequency. The block diagram of the 

PCM3003 [9] is shown in Figure 3.7. 

 

 
 

Figure 3.7 Block Diagram of PCM 3003 Card 

 

3.2.2 DSP:TMS320C6713                                        
TMS320C6000 devices are first DSP processors that use an enhancement of the Very 
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Long Instruction Word (VLIW) architecture which is very well suited for numerically 

intensive algorithms as it allows achieving high performance through instruction level 

parallelism. The internal program memory is structured in such a way, so that a total of 

eight instructions can be fetched every cycle. 
In this project, 225 MHz TMS320C6713 floating point DSP is used, which at the clock 

rate of 225 MHz can process information at a rate of 1.35 Giga-floating-point operations 

per second (GFLOPS). The functional block diagram [10] of C6713 is shown in Figure 

3.8. 

 It has the following features: 

 Memory 

 16 MB SDRAM 

 512 KB Flash Memory 

 264  KB Internal Memory  

 General purpose I/O 

 4 LEDs 

 4 DIP Switches 

 Eight Execution Units composed of six ALUs and two Multiplier Units 

 32-bit External Memory Interface 

 Multichannel Buffered Serial Port 

 USB interface to PC 

 

 
Figure 3.8 Functional Block Diagram of C6713 
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3.3 Code Composer Studio 
Code Composer Studio (CCS) provides an integrated development (IDE) for real-time 

DSP applications based on the C programming language. It incorporates a C compiler, 

an assembler and a linker. It has good graphical capabilities and supports real-time 

debugging. The software development flow [11] for C6713 is shown in Figure 3.9. 

 
Figure 3.9 TMS320C6713 Software Development Flow 

 

3.4 Interfacing between DSP and PCM 3003 
A DSP motherboard may make use of some or all of the signals presented by the PCM 

Codec. For interfacing between DSK 6713 and PCM3003 codec, DSK board has two 

McBSPs and each one of them is connected to the PCM 3003 codec via six signals. The 

McBSP consists of a data path and a control path that is connected to the PCM codec. 
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Data communication between the device and the McBSP takes place via the data 

transmit (DX) pin for transmission and via the data receive (DR) pin for reception. 

Control information (clocking and frame synchronization) is communicated via CLKS, 

CLKX, CLKR, FSX, and FSR. The Figure 3.10 shows functional block diagram taken 

from spra488c [14].  

 
Figure 3.10 Function Block Diagram of McBSP 

 

The blocks are explained as follows: 

 

Transmitter: The data to be transmitted is written in DXR using EDMA and the contents 

of this register are copied to the XSR (transmit shift register). The transfer starts as soon 

as the FSX (transmit frame sync) is detected and one bit of data is shifted out of XSR on 

every transmit clock CLKX. 

Receiver: The data received on the DR pin is shifted into the RSR (receive shift 

register) on every receive clock (CLKR). The data in RSR is copied to RBR (receive 

buffer register) and then to DRR (data receive register). 

Sample Rate Generator: Here control signals such as clocks (CLKR/X) and frame sync 

(FSR/X) are generated. Both are bidirectional pins and can be used as input or output. 

Events/Interrupt Generation: The McBSP generates sync events to the EDMA to 
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indicate that data is ready in DRR or that DXR is ready for new data. They are REVT 

(read sync event) and XEVT (write sync event). In the same way CPU can read/write to 

the McBSP based on interrupts generated by the McBSP.                         

For example in establishing the data transmission between the PCM 3003 and McBSP0, 

the DAT_RX0 is connected to DRR0 (Serial Port Receive Data), CLK_RX0 is connected 

to CLKX0 (Serial Port Transmit Clock) and FS_RX0 is connected to FSR0 (Serial Port 

Receive Frame)  as shown in Figure 3.12.  

PCM 3003 multiplexes the data outputs of two ADC onto a single serial data input to the 

C6713 and similarly a single serial data output of the C6713 is de-multiplexed and feeds 

the inputs of two DAC.  

The serial transmission sequence between PCM 3003 and C6713 is not an actual serial 

channel number. The transmission sequence is as follows: 

 

                       First Codec Left audio channel   Channel 0 

                       Second Codec Left audio channel       Channel 2 

                       First Codec Right audio channel   Channel 1 

                       Second Codec Right audio channel     Channel 3 

                       Third Codec Left audio channel   Channel 4 

                       Forth Codec Left audio channel           Channel 6 

                       Third Codec Right audio channel   Channel 5 

                       Forth Codec Right audio channel         Channel 7 

 

Because of the existence of a frame sync pulse at the starting of both left and right 

channel in serial data format it is difficult to distinguish between them. Therefore the 

channels need to be tracked while developing the software. Because all codec operate 

synchronously, only the McBSP0 interrupt is used. The McBSP1 transmitter is 

processed along with McBSP0. The functioning of McBSPs is shown in Figure 3.11. 
 
PCM3003 FS     ____| |_________| |_________| |_________| |_______ 

                        _____ _____ _____ _____ _____ _____ _____ _ 
   PCM3003 DAT McBSP0 --|_ch0_|_ch2_|_ch1_|_ch3_|_ch0_|_ch2_|_ch1_|_ 
                        _____ _____ _____ _____ _____ _____ _____ _ 
     PCM3003 DAT McBSP1 --|_ch4_|_ch6_|_ch5_|_ch7_|_ch4_|_ch6_|_ch5_|_ 

 

Figure 3.11 Accessing of data through McBSPs 
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One of the software objectives is to collect the block of samples from ADC channels of 

the Codec into the DSP as soon as possible and the most efficient way to do this is 

through EDMA (Enhanced DMA). The multichannel buffered serial ports (McBSPs) are 

the only on-chip peripherals that would require servicing by the EDMA. As already 

explained each McBSP has a data receive register (DRR), a data transmit register 

(DXR), a receive-event signal (REVT), and a transmit-event signal (XEVT). The DRR 

and DXR are memory-mapped registers, and the events are set when data is 

transferred in to (REVT) or out of (XEVT) the McBSPs respectively. The Data transfer 

block diagram between the devices using EDMA and McBSP0 is shown in Figure 3.12. 

 

 
 

Figure 3.12 Data Transfer Block Diagram using EDMA 

 

In this application a demo program provided by the Dsign.T is used for the transmission 

of samples from PCM codec to the DSK 6713. This demo program did the initialization 

and has configured the PCM Codec with the MCBSPs of C6713. For more information 

regarding configuration please refer to SPRA488C [14]. 

As EDMA transfer samples from codec to DSP the CPU still performs its operation 

during this time and will only be interrupted by EDMA when the transmission of data is 

finished and ready for processing. Hence the CPU is free from the data transmission 
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control, thus increases the speed and efficiency of the application. The frequency of 

interruption depends on the block size, less the block size more will be the interruption 

or vice-versa. Figure 3.13 shows the data transmission through EDMA. 

 

  

                             Interrupt    

                     

                                                                            

 

 

                                                                                                 Yes                             No 

 

                                                   

 

 

Figure 3.13 Data transmission through EDMA  

 

The transmission of data can be summarized as follows: The program sets the 

appropriate values in the EDMA registers and starts the EDMA. Then it will wait for the 

EDMA interrupts which indicates that the data block is ready. Once an interrupt 

occurred, processing will start. When the processing is finished, the program will start 

processing on new set of data samples and the process will repeat itself. 

The function flowchart of this demo program for software interfacing between PCM 3003 

Codec and C6713 DSP is shown in Figure 3.14. 

Main() 

 

 

 

 

 

 

 

 

 

Figure 3.14 Function Flowchart of main program 
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Although the configuration presented here allows the EDMA to transfer samples but it 

presents a number of restrictions to the CPU. Since the buffers for each channel are 

continuosly filled and emptied by EDMA, the CPU must match its pace in processing the 

data. If the algorithm to be implemented is numerically intensive, which is mostly the 

case there is a very good chance of mismatch between the two’s pace. To avoid this 

problem a simple technique called PingPong buffering technique [13] is used in this 

demo program, which allows the CPU activity to be decoupled from the EDMA activity. 

This simply means that there are two sets of data buffers for all incoming data streams. 

While the EDMA is transferring data in to the ping buffers, the CPU is manipulating the 

data (copy data and process) in the pong buffers. The whole process can be explained 

as follows; the EDMA controller reads audio data from the McBSP and places it in a 

buffer in memory. On the data receive side there are two logical buffers, PING and 

PONG. When the first data comes in, it is placed in the PING buffer. When it is full the 

new data is redirected to the PONG buffer and the DSP is free to process the PING data 

without fear of it being overwritten. When the PONG buffer fills up, the configuration is 

reversed. The ping-pong data transfer continues indefinitely with one buffer always 

hosting the active transfer and one remaining stable for the DSP to operate on. Using 

PingPong buffering technique, the DSP can take as long as the time it takes to fill an 

entire buffer to process the data, making it much easier to meet a real-time schedule. 

Hence for every channel there are in effect three buffers namely Ping buffer, Pong buffer 

and Process buffer. The ping-pong scheme with EDMA is shown below in Figure 3.14. 
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Figure 3.15 Ping-Pong Buffering for McBSP DATA 
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The 2-d buffer structure being employed in the demo program for this interface is shown 

in Figure 3.16. Each channel uses two blocks (0 & 1). While EDMA receives from 

block0, the CPU can copy and process block1 and vice-versa. 

 

 
 

Figure 3.16 Ping-Pong Buffer Structure  
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4. Algorithm: Methods and Simulation  
The main motive of the Incoherent Wideband MUSIC Algorithm is to pick the 

dominant/resonant frequencies of the source in wideband spectrum and apply the 

narrowband MUSIC algorithm separately for each frequency component and finally find 

the mean of separately calculated MUSIC spectrum to determine the approximate 

direction of arrival. The picking of peaks with respect to dominant frequency in a 

spectrum can be achieved by Linear Prediction Analysis or Spectrogram (average 

threshold method) method. After finding the peaks, SVD (Singular Value Decomposition) 

method is applied on output matrix obtained from microphones with respect to peaks to 

separate the signal subspace from noise subspace. The direction of arrival is 

approximated by averaging the separately calculated Narrowband MUSIC spectrum. In 

this chapter the methods to find the dominant frequencies in a speech signal and after 

that SVD method is discussed. Later on the influence of parameters on algorithm is 

analyzed and respective simulation results are presented. 

 

4.1 Spectral Analysis 
Spectral analysis [38] is a signal processing technique aimed at presenting the dynamic 

patterns of signals in the frequency domain. In the coming subsection two of the most 

commonly used method for spectral analysis based on Fourier methods is discussed.  

 

4.1.1 Linear Predictive Analysis 
LPC is one of the most powerful speech analysis technique [15] and also one of the 

most useful methods for encoding good quality speech at a low bit rate. This method 

exploits the predictable nature of speech signals. Linear prediction models the human 

vocal tract as an infinite impulse response system that produces the speech signal 

(Figure 4.1). For vowel sounds and other voiced regions of speech, which have a 

resonant structure and high degree of similarity over time-shifts that are multiples of their 

pitch period, this modeling produces an efficient representation of the speech. 

 
Figure 4.1 Linear Prediction Model of Speech 
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In this method the basic step is to find the formant or dominant frequency and that can 

be determined using difference equation, which expresses each sample of the signal as 

a linear combination of previous samples.  

The linear prediction method can be stated as finding the coefficients aj which result in 

the best prediction of the speech sample y[n] in terms of past sample y [n-j], j = 

{1,…..,P}. The predicted sample ݕ෤ [n] is then given as  

 

෤ ሾ݊ሿݕ     ൌ  ∑ ௝ܽ ݕ ሾ݊ െ ݆ሿ௉
௝ୀଵ        (4.1)                        

where P is the number of past samples of y [n]. 

 

These coefficients of the difference equation also called prediction coefficients 

characterize the formant frequency. To estimate these coefficients the LPC system 

minimizes the mean square error between the predicted signal and actual signal. 

These coefficients are used to obtain the frequency response of the speech signal. In 

Eq. 4.1, when the predicted sample equals the actual signal then we have 

ሾ݊ሿ ݕ     ൌ  ∑ ௝ܽ ݕ ሾ݊ െ ݆ሿ௉
௝ୀଵ                                                 (4.2) 

ሻݖሺܪ               ൌ  ∑ ሺ ௝ܽ ܪሺݖሻ ିݖ௝ሻ௉
௝ୀଵ                                               (4.3) 

ሻݖሺܪ                           ൌ ଵ
ଵି∑ ሺ௔ೕ  ௭షೕሻು

ೕసభ
                                                       (4.4) 

 

The Eq. 4.4 gives a direct implementation of the spectral model as an all-pole filter in the 

complex z domain. 

Simulations are run in Matlab to see the performance of this method to determine the 

resonant frequency components present in the speech. For this purpose a wav file 

(TheForce.wav provided by DSP Lab, HAW Hamburg) is used. 

Matlab function ‘lpc’ from Matlab Signal Processing Tool Box is employed to determine 

the linear prediction coefficients (lpf) of the Pth order forward linear predictor and then 

‘freqz’ is used to find the frequency response. 
 

      lpf=lpc(Y,P); 
[h,f]=freqz(1,lpf,N,fs); 

 

It is very important to choose a correct number of coefficients P because too many 

coefficients will yield a good fit to signal spectrum but will miss spectral envelope. On the 

other hand, few coefficients will miss formants. A reasonable number is 10 to 20.  

Normally in a spectrum the presence of formant will be at interval of approx. 1000Hz i.e.  
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the degree is usually the same as the sampling frequency in KHz, therefore a good idea 

is to choose ‘((sampling frequency/1000)+2)’ coefficients [16].  

The Figure 4.2 below shows a Time domain representation and Frequency domain 

spectrum using Linear Prediction Analysis. The peaks shown in the frequency domain 

indicates the main frequencies present in the speech, the values are shown in Table 4.1. 

 
Figure 4.2 Determination of dominant frequency using Linear Prediction Analysis 

 

Now the simulations are repeated again with wave file which also contains noise at 1 

KHz. The simulation results are shown in next page (Figure 4.3). This time Linear 

Prediction Analysis failed to indicate the noise present in the spectrum as well as other 

dominant frequencies and the difference between the dominant frequencies keeps on 

increasing with the increase in number of frequency components. The formant 

frequencies which are calculated in both cases are shown in Table 4.1.  

 

Frequency / Hz  Frequency 1 Frequency 2 Frequency 3 Frequency 4 

Speech 413  1363  2575 3667 

Speech + noise 500 1310 1920 2800 

 

Table 4.1 Comparison of calculated dominant frequency using LPC method for speech 
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Figure 4.3 Determination of dominant frequency using LPC for speech+noise signal 

 

Even though the LPC method is very efficient in finding the dominant frequencies in a 

speech spectrum but fails when any dominant frequency contains noise which in turns 

affects other frequencies present in the speech spectrum. But in real time high noise 

level can affect any dominant frequency; therefore this method is not suitable for source 

localizationas in current form and a modified LPC method can be tried. In addition to this 

Levinson-Durbin algorithm [38] which is required to use for real time is also very 

numerically intensive, that makes it avoidable for low speed DSP.  

 

4.1.2 Spectrogram 
Spectrogram is a powerful general-purpose method for spectral analysis. The basic idea 

is to assume non-stationary signals as a set of adjacent quasi-stationary signals. This is 

being achieved by considering a time-varying signal obtained by sliding a rectangular 

window across the time signal and then perform a Short Time Fourier Transform (STFT). 

The STFT has a fixed resolution in time and frequency, in the same manner as the 

Fourier Transform.  
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The frequency resolution Δf = 1/NΔt is controlled by the length of the window. The 

modulus square of STFT  |ܵሺ߱ሻ|ଶ is called spectrogram. 

The spectrogram gives us the power distributed in the frequency domain. By finding the 

peaks corresponding to the frequency component having high spectral density, one can 

approximate the dominant frequencies present in the spectrum. 

In Matlab, at first FFT is applied to the time domain signal to obtain the complex 

frequency domain spectrum and then absolute value of the spectrum is calculated to get 

Spectrogram, which shows the high spectral densities around dominant frequencies 

present in the speech. 

Simulations are run for the same speech signal as used in LPC with and without noise 

signal to see the effect in determining the dominant frequencies. The Figure 4.4 in next 

page shows the power spectrum and it can be seen how the power is distributed in the 

whole frequency range. If we compare the dominant frequencies estimated by 

spectrogram method and LPC method, they are same (Table 4.3). Now the simulations 

were repeated for the same speech signal but this time with noise (Figure 4.5). This time 

one can see that the noise has the highest power spectral density, but it has no effect on 

other dominant frequencies (Table 4.2) and the noisy signal can be filtered out.  

 

Frequency / Hz  Frequency 1 Frequency 2 Frequency 3 Frequency 4 

Speech 413  1363  2575 3667 

Speech + noise 413 1000 1363 2575 

 

Table 4.2 Comparison of calculated dominant frequency using Spectrogram method  

 

In Table 4.3 it can be easily seen that the approximation of dominant frequencies with 

Spectrogram method is accurate for speech+noise signal then the LPC method.  

 

Frequency / Hz  Frequency 1 Frequency 2 Frequency 3 Frequency 4

LPC without noise 413  1363  2575 3667 

Spectrogram without noise 413  1363  2575 3667 

LPC with noise 500 1310 1920 2800 

Spectrogram with noise 413 1000 1363 2575 

 

Table 4.3 Comparison between Spectrogram and LPC method 
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Figure 4.4 Spectrogram of speech signal  

 
Figure 4.5 Spectrogram of speech signal with noise signal at 1 KHz 
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For the localization of speaker in wideband more than one frequencies present in the 

spectrum are considered, therefore if in one bin the SNR is very low, still with the 

approximation of other frequencies it is possible to localize the position of speaker and in 

most cases the noise will not be concentrated in one frequency but will be spread in the 

whole range.  

 

4.2 MUSIC Algorithm 
After finding the main frequency component present in the spectrum, next step is to 

define the matrix around these main frequencies and calculate the MUSIC spectrum. 

This step is being accomplished in two steps: first step is to separate the signal 

subspace from noise subspace for each frequency, which is being achieved by using 

SVD (Singular Value Decomposition) and the second step is to calculate the MUSIC 

spectrum for each frequency and averaged them to find the location of Source.  

 

4.2.1 Singular Value Decomposition 
As discussed in Chapter 2.2, it is clear that covariance matrix is defined from the output 

matrix of the microphone signals and then EVD is performed to get the eigenvalues and 

eigenvectors. But EVD has some limitations like it is applicable to only on square and 

non-defective matrices. Another approach is to use SVD; it is introduced by Golub and 

Kahan [17] in 1965 as a decomposition technique for calculating the singular values, 

pseudo inverse and rank of a matrix. It is applicable to both complex and real matrices 

and is motivated by the following geometric fact [18]: 

 

The image of the unit sphere under any M X N matrix is an ellipse. 

 

It can be directly implemented on the output matrix defined from microphones without 

any need to derive covariance matrix. The relation between EVD and SVD is as follows: 

SVD method decomposes a matrix say, A into three new matrices as shown below 

 

       A = UּWּVT                                                               (4.5) 

where     

U termed as left eigenvectors is a matrix whose columns are the eigenvectors of AAT  

W (Σ) called diagonal matrix, whose diagonal elements are the singular values of A 

V termed as right eigenvectors is a matrix whose columns are the eigenvectors of ATA 
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Therefore we can say that U and V are M X M and N X N orthonormal matrices and W is 

an M X N diagonal matrix with the nonnegative singular values wj , j = 1,…,min(M,N), 

arranged in decreasing order along the diagonal.  

For U and V, in both case the order of product of W and WT is square diagonal matrix 

and keeping in mind the definition of EVD and recalling Eq. 2.27, we can say 

ATA = VWTWVT is the EVD of ATA and AAT = UWWTUT is the EVD of AAT 

If we assume that A is square and symmetric, then each eigenvector for A with 

eigenvalue w is an eigenvector for A2 = AAT = ATA with eigenvalues w2. Hence the left 

and right singular vectors for A are the absolute value of its eigenvalues. That is the EVD 

and SVD essentially coincide for symmetric A and are actually identical [19]. Therefore 

SVD can be used instead of EVD in MUSIC algorithm.   

 

An important geometrical interpretation of SVD is shown in Figure 4.6, for M = N = 2.  

Let assume that the columns of U and V are denoted by the vectors uj, j = 1,...M and vj, 

j = 1,…N. If we analyze the three factors of SVD separately, we can see that VT is 

nothing but pure rotation of the circle. Figure 4.6 shows how the axes v1 and v2 are 

rotated by VT to coincide with the coordinate axes. In next step the circle is stretched  

by W (Σ) in the directions of the coordinate axes to form an ellipse. The third step rotates  

the ellipse by U into its final position. It can be easily noted that v1 and v2 are rotated to 

end up as u1 and u2, the principal axes of the final ellipse. 

 
Figure 4.6 Geometrical Meaning of SVD 
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This SVD algorithm is being called Full SVD and is numerically very intensive. But this 

algorithm has good geometrical properties which can be exploited to reduce the 

computational time. Let assume matrix A (M X N) with M ≥ N and A has full rank N. Then 

we can see that A has ‘n’ singular values i.e. wj, j = 1,…,N , arranged in decreasing order 

along the diagonal. Also the vectors uj, j = 1,...,N will be numbered corresponding to the 

singular values. Thus the vector wjּuj will be the jth largest corresponding principal semi 

axis. Similarly vj, j = 1,…N are the preimages of corresponding principal semi axis. 

Hence it can be shown that  

       Aּvj = wjּuj,   1 ≤ j ≤ N                                              (4.6) 

The above equation can also be represented as ܣ · ܸ ൌ  ෡ܷ ·  ෡ܹ , where W is a N X N 

diagonal matrix with positive real values, U is an M X N matrix with orthonormal columns 

and V is an N X N matrix also with orthonormal columns. As we can see that U is unitary 

and therefore its inverse can be multiplied to the right side of above equation.  We get, 

 

    A = ෡ܷ ·  ෡ܹ  · ்ܸ                                                                 (4.7) 

 

This factorization of A is called as a Reduced Singular Value Decomposition or Thin 

SVD. This Thin SVD is being implemented in Numerical Recipes in C [20], which will be 

used for the ‘C’ implementation. The collection of vector equations shown in Eq. 4.11 

can be expressed as a matrix equation, 

 

 
Figure 4.7 Reduced Form of SVD Algorithm 

 

After finding out the eigenvalues, the signal subspace is separated from noise subspace 

corresponding to the eigenvalues.  
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4.2.2 MUSIC Spectrum 
 

The next step is to calculate the MUSIC spectrum using the noise subspace obtained 

from the SVD method and already calculated steering vectors corresponding to the 

dominant frequencies. Pseudospectrum will be calculated for each frequency component 

separately and then will be averaged to get wideband MUSIC spectrum to localize the 

position of speaker. The Eq. 2.40 used to calculate the incoherent wideband spectrum 

has been derived in Chapter 2.3 and is shown below again, 

 

    ෠ܲூ௡௖௢௛௘௥௘௡௧ ሺ߱௞, ሻߠ ൌ  ∑ ଵ
௦௧௘௘௥ሺఠೖ,ఏሻ·ே௢௜௦௘௦௣௔௖௘·௦௧௘௘௥ᇲሺఠೖ,ఏሻ

ெ
௞ୀଵ                     (4.8) 

where Noisespace is the Noise subspace obtained corresponding to eigenvalues for  

           each frequency present in the spectrum  

 

After calculating the incoherent wideband MUSIC spectrum, a tracker algorithm is 

employed to find the highest peak value in the spectrum and then find the angle (DOA) 

corresponding to the peak value and also find the error in estimation.  

The flow chart in Chapter 2 (Figure 2.9) has summarized the complete algorithmic 

implementation. 

Till now only the main parts of the algorithm and the related theory have been discussed. 

Before proceeding to the simulations of the algorithm, the complete algorithm is 

summarized as follows: 

The sine waves are generated at the specified frequencies for each microphone and 256 

samples of these sine waves are phase-delayed respectively with number of 

microphones, which are six & eight in our case fulfilling the far-field assumption. The 

next step is to apply FFT on each microphone’s time signal to obtain complex frequency 

domain signal. Then bin-based threshold method is used to find the dominant frequency 

component present in the spectrum, this is being accomplished by creating bins or 

subband and searching for the maximum absolute value in each bin and zeroing of 

others. After finding out the dominant frequencies the output matrix is created around 

these frequencies. Thereafter eigenvalues and eigenvectors are calculated for 

respective output matrix. After that the signal subspace is separated from noise 

subspace corresponding to the eigenvalues. The next step is to calculate the MUSIC 

spectrum for each dominant frequency component present in the spectrum and average 

them to have a wideband MUSIC spectrum. Of course for the calculation of MUSIC 
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spectrum pre-knowledge of frequencies is required. In the end a tracker algorithm is 

employed to localize the source. 

4.3 Simulations and Influence of Parameters 
Before implementing an algorithm for real time system, it is always desirable to verify the 

algorithm using simulations. The performance of the algorithm for estimation of Direction 

of Arrival is tested in simulated environment using Matlab. This is being achieved by 

varying the different parameters which can have effect on the Microphone Array, 

algorithm and the complete system. Simulations are performed keeping in mind the real 

system setup as in the end it would be interesting to compare the simulation’s result with 

real system’s result. For this purpose a GUI (Graphical User Interface) version of the 

algorithm is developed which helps a lot in analyzing the behavior of algorithm with the    

change of parameters. The GUI of the algorithm is shown in Figure 4.8. 

  

 
 

Figure 4.8 GUI implementation of Incoherent Wideband MUSIC Algorithm 

 

As shown in Figure 4.8 the main parameters which can influence the algorithm are on 

the left side of figure. The number of microphones are fixed at 6 for simulations, the 

number of frequencies which can be analyzed are up to 4 because as discussed earlier 
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mostly the dominant frequencies are at a distance on average of 500 to 800 Hz in a 

speech spectrum, theoretically MUSIC algorithm can localize N-1 (N is number of 

microphones) sources but keeping in mind the objective of the work only two sources 

are considered, the length of uniform linear array plays very important role in fulfilling the 

far-field assumption but also determines the resolution of the algorithm, spacing between 

microphones is kept at 5.2 cm because of the limitations imposed by physical 

Microphone array which is used in the real system experiments, Signal to Noise Ratio 

(SNR) plays very important role as in real time SNR can varies from 5 to 40 dB and it 

would be very interesting to see the behavior of algorithm at low SNRs, the number of 

samples are  kept constant and also the sampling frequency. The simulations are 

performed for the frequency varies from 1 to 4; SNR varies from -10 dB to 10 dB, 

keeping spacing between microphones at 5.2 cm. The frequencies which are being 

shown on the right side of graphs in Figure 4.8 are chosen after analyzing the speech 

spectrum of many wave files (corresponds to different speakers) and are the 

approximation of those speech files. The direction of arrival is varied from -90° to +90° 

for the simulations. 

At first simulations are performed with very high SNR to analyze the behavior of 

algorithm. The Figure 4.9 shows the deviation of estimated direction of arrival from 

actual direction of arrival. 

 
Figure 4.9 Estimation of DOAs for 1 source, 4 frequencies, with SNR = 100 dB  
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We can draw some inference from the Figure 4.9 regarding the performance of the 

algorithm. It can be easily seen that Estimated DOA at any angle θ is approximately 

mirrored by the same angle θ in opposite direction. This is because of the reason that 

received microphone signal undergo the same delays irrespective of whether they are 

coming from positive direction or the negative direction. We can also see that when the 

source is beyond േ70° the variation in Estimated DOA from actual DOA generally 

increases with the increase in θ. Another important feature which was noticed as shown 

in Figure 4.10 is that the Peak of the spectrum at angle 0° is infinity. This feature can be 

attributed to the fact that the all microphone signals are in phase, which in turn gives one 

very large eigenvalue and others being equal to zeros. However in real time environment 

one cannot expect the same as there will always be noise around 30dB below the 

source or less as well as because of the quantization constraints and near field effects.  

In real time for localizing a source the area of interest is normally much smaller than 

what is simulated here. Generally speaking, in a seminar room the area of interest 

ranges between േ40° and the algorithm works very well in this range, but without the 

presence of noise. In next sections the behavior of algorithm is analyzed with noise and 

also by varying other parameters, which can influence the algorithm in real time.  

 

 
 

Figure 4.10 Estimated DOA for 4 frequencies at angle 0° with SNR = 100dB 
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4.3.1 Simulations with Narrowband MUSIC 
In this section the simulations of algorithm are performed in presence of white noise as 

well as by varying SNRs. Even though all parameters have influence on the performance 

of algorithm, like numbers of samples are taken as 256 but if 128 samples are taken 

then there was little bad effect on the stability of algorithm and change in sampling 

frequency also have an effect. 

In this section only the performance of Narrowband MUSIC algorithm is discussed, as 

simulations are performed when only one source is present in the spectrum. The stability 

of algorithm is checked by varying the SNR from 10 to -10 dB because Signal to Noise 

Ratio keep on changing in real time and it would be interesting to see the performance of 

algorithm with varying SNRs. All results are averaged value of 10 approximations.  

Simulations are done with SNRs 10, 5, -5 and -10 dB for direction of arrival ranging from 

-80° to +80°. Figure 4.11 shows the deviation in estimations for different SNRs. 

 
Figure 4.11 Estimated DOAs for narrowband source with varying SNR 
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are quite stable. Even though we can notice that at 5 dB the algorithm performs very well 

or it is difficult to differentiate the estimated direction of arrival from that of 10 dB, but the 

values which are shown one are actually averaged value. The range of estimated 

direction of arrival is much more than what is being observed for 10 dB. Below 0 dB the 

algorithm has failed to measure the DOAs accurately and variation in estimation is quite 

large. Also we can see that at SNR -10 dB the algorithm breaks down. It is because of 

the reason that eigenvalues obtained from SVD of matrix cannot span the noise 

subspace accurately and hence the wrong estimation of DOAs. 

 

4.3.2 Simulations with Wideband Sources 
In this section algorithm is simulated with two, three and four frequencies. The 

parameters are same as what is used for simulations of narrowband MUSIC. The 

simulations are performed for two frequency sources i.e. 1.1 KHz and 1.9 KHz, three 

frequency sources i.e. 1.1 KHz, 1.9 KHz and 2.4 KHz and four frequency sources i.e. 1.1 

KHz, 1.9 KHz, 2.4 KHz and 3 KHz and the results are shown in Figure 4.12, Figure 4.13 

and Figure 4.14 respectively.  

 
Figure 4.12 Estimated DOAs for two sources (1100 Hz and 1900 Hz) with varying SNR 
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Figure 4.13 Estimated DOAs for three sources with varying SNR 

 

 
Figure 4.14 Estimated DOAs for four sources with varying SNR 
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It can be easily interpreted from the figures that with the increase in number of frequency 

component the performance of algorithm shows remarkable improvement for SNR equal 

to -5 dB, but for SNR equal to -10 dB the algorithm still breaks down. Other than that it 

was also observed that algorithm is much more stable with 3 and 4 frequencies. Also in 

all cases the variability in estimated direction of arrivals increases with decrease in 

SNRs, but not so rapidly. For example the deviation in estimated direction of arrival for 

four frequencies is within the range of ±2° especially for ±50° for SNR equal to 10 dB. 

One can also observed that for the range of ±50° the difference between estimated 

direction of arrival for 3 and 4 frequencies is not noticeable for SNR equal to 5 and 10 

dB, but below that the differences can be easily noticed. It was also noticed that for SNR 

less than 5 dB the spectrum is much wider. Although it is very unlikely that one will 

encounter the SNR below -5 dB in real time situation still we have seen that the 

algorithm works very well in simulated high noise environment. But in real time there are 

many external factors like near field effects, quantization effect on input signals which 

cannot be accounted in simulated environment. The figures below show an example of 

estimated direction of arrival for -40° for all the four setups for SNR equal to -5 dB. 

 

 
 

Figure 4.15 EDOA for 1100 Hz at -40° for SNR = -5 dB 
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Figure 4.16 EDOA for 1100, 1900 Hz at -40° for SNR = -5 dB 

 

 
 

Figure 4.17 EDOA for 1100, 1900 & 2400 Hz at -40° for SNR = -5 dB 
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Figure 4.18 EDOA for 1100, 1900, 2400, 3000 Hz at -40° for SNR = -5 dB 

4.3.3 Resolution of Algorithm 
Another important factor in determining the capability of algorithm is to see the limit of 

resolution in terms of estimating the two sources separately and also the required 

distance between two frequencies i.e. frequency selectiveness. Theoretically speaking 

the MUSIC algorithm should be able to resolve two arbitrarily close sources and it would 

be quite interesting to see the how accurately the algorithm works for close angular 

spacing as well as frequency.  

It was observed in the simulation for angular closings, that for SNRs above -5 dB the 

resolution is quite good and the algorithm is able to separate the two sources. 

To see the frequency resolution of the algorithm the simulations are done by keeping 

one source at fixed frequency and varying another. It was done for every main frequency 

i.e. 1 KHz, 1.9 KHz, 2.4 KHz and 3.0 KHz and for angular direction of arrival of -40°. 

When two frequencies are used the frequency resolution was approximately 300 Hz for 

SNRs above 10 dB. For three frequencies the resolution was 250 Hz. And for four 

frequencies the resolution was 200 Hz. All the estimated direction of arrivals was in the 

range of ±1° for SNRs 10 dB and above.  

Figure 4.19 in next page shows the frequency resolution with four frequencies. 
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Figure 4.19 Frequency Resolution for 1.1 KHz, 1.3 KHz, 1.5 KHz and 1.7 KHz at -40°  
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5. Implementation of Algorithm 
In chapter 4.3 the performance of algorithm has been seen in simulated environment 

and the results are excellent ones and now the algorithm is implemented on DSK C6713 

(TI’s TMS320C6000 DSP) board. The simulated environment provides an ideal 

environment and in real time there are always surprises. In this chapter implementation 

of algorithm in C using Code Composer Studio 3.1 platinum edition is discussed. In the 

first section adaptive array algorithm (calibration of array) is introduced and explained 

which is needed as the linear microphone array is bounded by physical constraints like; 

no two microphones can be similar in characteristics because of the material used. After 

implementing the adaptive algorithm, the next step is to find the dominant frequencies 

present in the spectrum using spectrogram method, which is being discussed in 

subsequent section. The third main step (third section of the chapter) is to define the 

output matrix around the dominant frequencies and apply incoherent wideband MUSIC 

algorithm and in the last section of the chapter the Tracker algorithm employed is 

discussed. The Figure 5.1 below shows all implementation steps in the form of block 

diagram. 

 
 
          1                           x1(t)                         X1(ω) 
                                                                                                                                                                         
                                                                                                                                       DOA                        
     
         M                           xM(t)                       XM(ω)  
           
 
  

Figure 5.1 Main blocks of Incoherent Wideband MUSIC Algorithm 
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microphones or due to mismatch between microphone preamplifiers. Because of the 

differing tolerances between different microphones in an array introduce gain and phase 
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One of the most commonly method to avoid this mismatch is to preselect the 

microphones for an optimal match or to predetermine calibration filters in a special 

measurement and apply them afterwards. Another approach is to calibrate each 

microphone separately by comparing it with a reference microphone in specialized 

environment. But these approaches are very expensive as they require manual 

calibration for each microphone and specialized equipment. It is appropriate for 

calibration of microphones prepared for precise acoustic measurements, but not for 

general purpose microphone array as in our case. Also the microphone’s characteristics 

usually changes over time due to aging effect or environmental influences. Hence a self-

calibrating adaptive algorithm is required for tracking these changes. 

The self-calibrating algorithm used in the project is based on the method proposed by 

Van Compernolle [21] and later on modified by Buck, Haulick and Pfleiderer [22]. Van 

Compernolle proposed a self-calibrating algorithm where an adaptive filter unit (A.U.) is 

placed just after the ADC channel. This unit compensates for the mismatch between the 

microphones during the normal operation in the background. One microphone is chosen 

as reference and all other microphones of the array are adaptively matched to this 

reference. But using a single microphone’s signal as a reference signal runs the risk of 

choosing a microphone with bad characteristics. Buck, Haulick and Pfleiderer suggested 

taking an average of all microphones’ signal in an array and using it as a reference 

signal. The method suggested by them is simple and straightforward. Block diagram of 

the self-calibrating algorithm is shown in Figure 5.2. The calibrated output signals of 

every channel are filtered versions of the desired signal and contain the required spatial 

information which will be used for further algorithmic processing.  

 

The method used is explained below: 

The first input ݔሺ݇ሻ is the desired signal which is being matched to the reference 

signal ݀௔௩௚ሺ݇ሻ, which is a second input by the adaptive filter ݓ௟ሺ݇ሻ. 

The reference signal davg(k) is given by 

                  ݀௔௩௚ሺ݇ሻ ൌ  ∑ ଵ
ெ

௠ሺ݇ሻெݔ
௠ୀଵ ,       

where M is Number of Microphones 

 

The output signals of the adaptive filter unit (A.U.) are the calibrated signal ݔ௖ሺ݇ሻ and the 

error signal ݁ሺ݇ሻ. This calibrated output signal is the enhanced and relatively flat version 

of the incoming signal received by microphone array in terms of amplitude. 
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Figure 5.2 Block Diagram of Self-Calibrating Microphone Array 

 

The coefficients of the adaptive filter are optimized using an LMS (Least Mean Square) 

algorithm [23] based on the error signal. The output of the adaptive filter is given by 

 

௖ሺ݇ሻݔ               ൌ  ∑ ሺ݇ݔ௟ሺ݇ሻݓ െ ݈ሻேିଵ
௟ୀ଴                                            (5.1) 

where ݓ௟ሺ݇ሻ represents N coefficients for a specific time k.  

 

The coefficients ݓ௟ሺ݇ሻ are adjusted such that a mean squared error function is 

minimized. This mean squared error function is ܧሾ݁ଶሺ݇ሻሿ, where E represents the 

expected value. Since there are ‘݈’ coefficients, a gradient of the mean squared error 

function is required, but instead an estimate using the gradient of e2(k) can be found 

 

௟ሺ݇ݓ   ൅ 1ሻ ൌ ௟ሺ݇ሻݓ  ൅ ሺ݇ݔሺ݇ሻ݁ߚ  െ ݈ሻ    whr, k = 0,1,....N-1                    (5.2) 

 

The above equation gives a simple but powerful and efficient means of updating the 

coefficients, without the need for averaging or differentiating. 

For each specific time k, each coefficient ݓ௟ሺ݇ሻ is updated by new coefficient unless the 

error signal e(k) is zero. After the filter’s output ݔ௖ሺ݇ሻ, the error signal e(k) and each of 
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the coefficients ݓ௟ሺ݇ሻ are updated for a specific time k, a new sample is acquired from 

ADC and the adaptation process is repeated. The flow chart is shown in Figure 5.4. 

The important parameters in LMS algorithm is adaptation rate β, which defines the rate 

of convergence and accuracy of calibration process and the number of coefficients ‘݈’, 

which defines the speed and stability of the LMS algorithm. After testing the system in an 

anti-acoustic room, the optimum values reached are 6 and 1 for number of coefficients 

and adaptation rate respectively. The audio source was placed 300 cm from the array 

and played 1.1 KHz frequency, then the algorithm was run. The average gain 

(amplification) factor obtained for every channel after performing the self-calibrating 

algorithm varied from 4.23 to 5.55. The directions of arrivals estimated with self-

calibrating algorithm are good and will be presented in Chapter 6.2. 
The self-calibrating algorithm is being implemented in fixed point format and as a 

following function (cali.c) in the project: 
 

void calibration(short int *in_buffer1,short int *in_buffer2, 
            short int *in_buffer3,short int *in_buffer4, 
            short int *in_buffer5,short int *in_buffer6) 

where 
short int in_bufferM;    // points to the buffer storing 
                            microphone signal, M is No. of Mic 
                                    

 

Figure below shows the un-calibrated and calibrated signals for six channels. 

 

  
 

Figure 5.3 Self-Calibrated signals in real time for six channels 
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Figure below shows the flow chart of the self-calibrating algorithm. 
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Figure 5.4 Flow chart of self-calibrating algorithm 
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5.2 Spectral analysis in Real time 
As discussed in Chapter 4, spectrogram method was used to find the main frequencies 

present in the spectrum. In Matlab it is comparatively easier to calculate power spectrum 

using FFT function and finding the main frequencies using sort function as we can use 

complete CPU resources of system and inbuilt functions. But in real time system the 

speed and memory both plays a critical role and it is important to have an efficient 

implementation of algorithm on DSP system. In this section of the chapter, conversion of 

real calibrated signal to complex frequency domain signal and then adaptive selection of 

the main frequencies present in the power spectrum is discussed. 

 5.2.1 Complex Frequency Domain signal 
The fixed point calibrated real time domain signal need to be converted into floating point 

frequency domain as the signal in Eq. 2.5 is in complex form. This is because the effect 

of a time delay on the time domain signals is just the phase difference in frequency 

domain and the incoherent wideband MUSIC algorithm is applicable in frequency 

domain. If we are interested in analytic signal, this can be accomplished by Hilbert 

transform, which introduces 90° phase shift between real and imaginary part of signal. 

Also the Hilbert transformed analytic series has the same amplitude and frequency 

content as the original real signal and includes phase information that depends on the 

phase of the real time domain signal. But we are interested in frequency domain signal.  

 

At first fixed point need to be converted to floating point because SVD routine which is 

used for Eigenvalue decomposition requires floating point values as input. As the fixed 

point signal is being represented as short int (Q15 format)[24] and the mantissa part 

of floating point is larger than ADC resolution of the PCM Codec, fixed point is simply 

type casted into floating point. Still the safest way for typecasting is shown below: 

  
channelM = ((float)(ibufferM/215-1)) 

 

where ibufferM is the input fixed point sample. 

The next step is to perform FFT (Fast Fourier Transform) to obtain frequency domain 

signal. When a normal Radix-2 512-point FFT algorithm was used, it was too much 

numerically intensive and was taking lots of cycles. As six channels and later on eight 

channels are used in the test setup corresponding to the number of microphones, 
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therefore using this normal FFT algorithm is not a good option, as for every channel 

containing 256 complex samples it was consuming approximately 320,000 cycles.   

Another option is to use TI optimized Radix-2 Complex FFT algorithm from 

TMS320C6713 DSP Library [25]. This routine required N (=256 in project) complex 

floating-point numbers arranged as successive real and imaginary pairs, N/2 complex 

twiddle coefficients in bit-reversed order and length of FFT (N). This function is being 

used as follows: 
gen_w_r2(W, BUFLEN); 
bit_rev(W, BUFLEN>>1); 
cfftr2_dit(channelM,W,BUFLEN); 
bit_rev(channelM, BUFLEN); 

 

The twiddle coefficients “W” were generated once in the starting of main program and 

passed on to the function calculatefft() in fftcalculation.c. This function 

required only between 11,500 to 13,000 cycles. This improvement in terms of cycles can 

be attributed to the assembly optimized FFT by TI specifically for TMS320C6713 DSP, 

which takes full advantage of the eight parallel functional units of the VLIW architecture. 

The function to obtain complex frequency domain signal is being implemented as the 

following function (fftcalculation.c) in the project 

 
void calculatefft(short int *ibuffer1,short int *ibuffer2, 
short int *ibuffer3,short int *ibuffer4,short int *ibuffer5, 
short int *ibuffer6,float *W,COMPLEX *channel1, COMPLEX *channel2, 
COMPLEX *channel3,COMPLEX *channel4,COMPLEX *channel5,COMPLEX *channel6) 
 
The parameters used are explained as below: 

 
short int *ibufferM   // M channels having real calibrated signal 

float W                 // Twiddle factors 

short int BUFLEN        // Data block size 256, in project 

COMPLEX *channelM     // M channels having frequency domain signal       

 

5.2.2 Adaptive Selection of Main Frequencies 

 
The next step is to compute the power spectrum of the signal and then adaptively select 

the main frequencies present in the power spectrum. A simple threshold method based 

on frequency bin is used to select the main frequencies. In this method depending on the 

number of frequency component we would like to analyze a threshold is defined and the 
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frequencies above that threshold will be chosen. As in real time the speech spectrum 

keeps on changing because of various factors like change in speakers pitch, changing 

SNR etc. Therefore the threshold value cannot be fixed to a numerical value. Also to find 

the main frequencies sorting the whole power spectrum is time consuming. The better 

approach is to define the whole power spectrum in terms of bin and choose the highest 

frequency component in that bin and then fix the threshold adaptively depending on the 

number of frequency component and select the main frequencies above that threshold. 

The bin size can be chosen depending on the frequency resolution. 

In implementing this threshold based method, initially power spectrum is calculated from 

complex frequency domain signal for half of the BUFLEN. This part of the algorithm is 

implemented in function peakfind(). The parameters required for implementation are 

shown below: 
 
short int bin=4;        // depends on frequency resolution 

 float localmax;    // varies for every bin 
 float threshold;    // depends on number of main frequencies 
 short int d= 64;          // BUFLEN/bin; BIN 
 float swap;     // shell sort to find main frequencies 
 static int flag2=1;   // to indicate a swap occurred 
 
At first the power spectrum is divided in terms of bin, then largest frequency component 

is searched and selected as local maximum in that bin and the other components are 

zeroed as shown in Figure 5.6. These local maximas are stored in a separate array 

called Threshold array. In next step this array is sorted in decreasing order and then 

depending on the number of frequency components to be analyzed threshold is chosen. 

For example, if 4 frequencies need to be analyzed, then the threshold can be chosen as 

an arbitrary value less than T[4] as shown in Figure 5.6 in next page. In the end 

corresponding frequencies are selected which are greater than the threshold. 

This part of the algorithm is implemented as the following function (peakfind.c) in the 

project: 
peakfind(float *S, float *T, short int *freq) 

 where   
 float *S     // Power spectrum S[BUFLEN/2] 

 float *T     // Threshold array T[BIN] 

 short int *freq   // Indexes of main frequencies   

 

The figures in next page shows the flow chart for implementation of function peakfind()        

and the power spectrum obtained in real time before and after the implementation of 
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bin based threshold method. 
 

 

 

 

 

 

 

                                                                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Implementation of function peakfind() 

 

 
Figure 5.6 Power Spectrum for 4 frequencies before and after the peakfind function  
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5.3 Narrowband Spectrum & Incoherent Averaging 
The next step is to calculate the narrowband MUSIC spectrum for every main frequency 

present in the spectrum and do the incoherent averaging of resultant MUSIC spectrums. 

At first output matrix are defined around main frequencies, for that purpose the complex 

values around these frequencies are picked from frequency spectrum. The output matrix 

is defined as M x N matrix where M indicates the number of complex points taken 

around the frequency and N indicates the number of microphones (M ≥ N). The main 

parameters used for this part of algorithm are declared in header file micvariable.h 

and explained below. 
 
#define CUT 2           // Samples to be taken around frequency 

#define M 6   // Number of complex points / samples 

#define N 6             // Number of Microphones 

#define SOURCE 1        // Number of Source 

#define NROW 6          // Number of rows for MUSIC Spectrum  

#define NCOL 6          // Number of columns for MUSIC spectrum 

#define DIRECTION 181   // DOA Range of [െ ஠
ଶ

, ஠
ଶ
] 

 

The sample complex matrix obtained for one main frequency is b[2*M][N]. After 

obtaining the matrices for every main frequency, the next step is to perform the singular 

value decomposition of these matrices separately as discussed in Chapter 4.2.1 to 

obtain the eigenvalues and then the corresponding signal and noise subspace. These 

two sub-steps will be discussed in next two subsections. 

5.3.1 Singular Value Decomposition of Complex Matrix 
Earlier practical methods for computing the SVD resembles closely the Jacobi 

eigenvalue algorithm, which uses plane rotations or Givens rotations. However, these 

were replaced by the methods suggested by Golub & Kahan [17], which 

uses Householder transformations. In 1971, Golub & Reinsch [26] published a variant of 

the Golub/Kahan algorithm that is still the one most-used today. 

The SVD of a matrix is typically computed by a two-step procedure. In the first step, the 

matrix is reduced to a bidiagonal matrix. This step takes O(MN2) flops. The second step 

is to compute the SVD of the bidiagonal matrix. This step can only be done with 

an iterative method, so the second step is in principle infinite (just as for eigenvalue 

algorithms). However, in practice it suffices to compute the SVD up to a certain 
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precision, like the machine epsilon. If this precision is considered constant, then the 

second step takes O(N) iterations, each costing O(N) flops. Thus, the first step is more 

expensive. 

Implementing SVD algorithm in C is very complex and daunting task. One of the many 

variants of Golub/Kahan algorithms is suggested by Golub & Businger [27] and modified 

by Burkardt in FORTRAN [28], which can be used directly on complex matrix. The 

complex SVD is implemented as the following function in the project: 
 

void CSVD(COMPLEX a[][N], int Mmax, int Nmax, int M, int N, int P,  

    int NU, int NV, float *W, COMPLEX u[][M], COMPLEX v[][N]) 

 

The complex matrix a[][N] is destroyed by CSVD and also M ≥ N, otherwise rows 

should be filled with zero; the parameters used are explained as below: 

 
COMPLEX a[][N]      // M x N matrix on which singular value 

                    // decomposition is performed 

Mmax = M            // Dimension of rows of complex matrix a and u  

   // also column of complex matrix u 

Nmax = N            // Dimensions of complex matrix v  

NU = M              // No. of columns to be computed in matrix u  

NV = N              // No. of columns to be computed in matrix v 

W                   // Computed Singular values of dimension 1 X N 

COMPLEX u[][M]      // M x M matrix gives the NU columns of u 

COMPLEX v[][N]      // N x N matrix gives the NV columns of v 

 

This algorithm requires 200,000 cycles for one time calculation and as we are interested 

in up to four narrowband MUSIC spectrum, that means will consume approximately 

800,000 cycles for estimating one DOA with four frequencies. Even though this SVD 

algorithm works fine, but has some stability issues, which is completely undesirable for a 

real time system. Other than that this algorithm has one more deficiency, all the 

dimensions defined in this algorithm are under the assumption that N ≤ 100. Although it 

suffices the current requirement but in future may cause adaptability problem, if there is 

a need to use dimensions greater than that what is specified. 

The reasons discussed above leads us to use another SVD algorithm given in Press, 

Teukolsky and Vetterling [20]. This routine called svdcmp, performs SVD on matrix a 

and replacing it by matrix u and give W and v separately. This routine is based on a 

routine by Forsythe [29] and modified by Li & Cheng [30], which in turn based on the                
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original routine of Golub & Reinsch [26]. But this algorithm is real valued algorithm that 

means it does not perform SVD on complex matrix. The complex matrix should be 

converted to real matrix before using in this svdcmp algorithm. A method for converting a 

complex matrix into real matrix is suggested by Scibor-Marchocki [32]. This method is 

based on the following algorithm: 

 

The complex-matrix C is isomorphic to the sum (A + i B), which in turn is isomorphic to 

the real-matrix (A, B; -B, A).  The real-matrices A and B are obtained as the real and 

imaginary parts of the given complex-matrix C. 

 

Using this algorithm M x N complex matrix is converted into real matrix as shown below: 

 

              ሺ ܣ ൅ ሻ ܤ݅  ·   ሺ ݑ ൅ ሻ ݒ݅ ൌ ݑሺݓ   ൅  ሻ                         (5.4) ݒ݅

 

to the following 2M x 2N real matrix 

 

              ቂܣ െܤ
ܤ ܣ ቃ ·  ቂݑ

ቃݒ ൌ ݓ ቂݑ
 ቃ                                                    (5.5)ݒ

 

This implies that if w1, w2……wN are the eigenvalues of complex matrix, then 

eigenvalues of Eq. 5.5 are w1, w1, w2, w2…… wN wN. The ሺݑ ൅ ݑand ݅ሺ (ݒ݅ ൅  ሻ areݒ݅

eigenvector pair according to the same eigenvalue. Therefore, one eigenvalue and one 

eigenvector are selected from each pair for separating the signal and noise subspace.  

This SVD algorithm does not sort the eigenvalues and their respective eigenvectors as 

in Matlab SVD function. Hence the next logical step is to sort the paired singular values 

and their respective eigenvectors in decreasing order. After sorting these values the 

signal subspace is separated from noise subspace under the assumption that each main 

frequency has one source i.e. the highest value represents the signal subspace and the 

rest represents the noise subspace.  

The whole SVD algorithm is implemented in the project as the following functions: 
 

void cmplextoreal(float b[2*M][N], float a[2*M+1][2*N+1])  
void svdcmp(float a[][2*N+1], int M, int N, float w[], float v[][2*N+1]) 

void sortnoisespace(float w[], float v[][2*N+1],  

  float noise[][2*N],int microphone)  
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The parameters used in these functions are explained as follows: 

 
float b[2*M][N]       // 2*M x N complex matrix, where each column 

                      // contains M complex samples  
float a[2*M+1][2*N+1] // 2*M+1 x 2*N+1 real matrix on which SVD is 

                // performed and replaced by matrix u  

M                     // Number of samples taken aroung main frequency  

N                     // Number of Microphones in Microphone Array 

W                     // Computed Singular values of dimension 1 X 2*N+1 

float v[2*N+1][2*N+1] // 2*N+1 x 2*N+1 matrix 

float noise[N-1][2*N] // Noise subspace 

 

The indices of the array used in this routine starts from 1, therefore the dimension of 

each array in this routine is incremented by 1. This routine required 120,000 cycles for 

one SVD calculation along with conversion of complex matrix to real matrix that means 

needs 480,000 cycles for SVD calculation of four frequencies. Also this algorithm is 

stable in compare to the earlier one.  

5.3.2 Spectrum and Tracker Algorithm 
Once the signal and noise subspaces are separated, the next step is to find the MUSIC 

spectrum for every frequency present in the speech and then incoherent wideband 

MUSIC spectrum is calculated using Eq. 2.40, represented here again. 

              PINCOHERENT(wk,θ) = ∑
ଵ

௔ಹሺ௪ೖ,ఏሻ௉௔ሺ௪ೖ,ఏሻ
ெ
ଵ                                                (5.6) 

 

 As the MUSIC algorithm requires the prior knowledge of the steer vectors of the whole 

space for every main frequency, which are being calculated in a standalone program 

and added to the project (spectrum.c) as follows: 

 

float steer[2* DIRECTION * NROW]       // ERሺω, θሻ in Eq. 2.35 

float steer_herm[2* DIRECTION * NROW]  // ܧோ
ுሺω, θሻ in Eq. 2.35 

 where 

 DIRECTION 181  // spans the DOA from 
ିగ
ଶ

గ ݋ݐ 
ଶ
 Resolution angle is 1° 

 NROW 6         // Number of rows (N) for Spectrum calculation 

                                                                       

                                                                     

The steering vectors are calculated for every main frequency assumed to be present in 
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the spectrum based on the premise of converting the DOA back to phase delay for every 

microphone present in the array. DOA gives xi+1(t) a time delay of ߬௜ߠሺ݇ሻ ൌ  ௗ ௦௜௡ఏೖ
௩

, the 

distance covered by the planar wave during this time is ݀ ߠ݊݅ݏ௞, and the period 

is ݀ ߠ݊݅ݏ௞/ߣ, so the complex steering vectors based on phase delay is given 

by ݆݁2ߨௗ ௦௜௡ఏೖ/ఒ. The flow chart for the calculation is shown in Figure 5.7.                                                    
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Figure 5.7 Process for calculating steering vector 

 

In this last step of the complete algorithm, the calculated narrowband MUSIC spectrum 

for each main frequency are averaged together incoherently to get a resultant wideband 

MUSIC spectrum. The narrowband MUSIC spectrum is calculated as follows; MUSIC 
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for that frequency. Then a tracker algorithm is employed to search the approximated 

direction of arrival from the wideband MUSIC spectrum. This is being accomplished as 

the following function (spectrum.c) in the project: 

 
 void spectrum(float noise[][2*N],short int NOFREQ) 

where 
 float noise[N-1][2*N]  // Noise subspace 

 short int NOFREQ    // Number of frequency present in the spectrum 

 

Figure 5.8 shows the flow chart for calculating the Wideband spectrum and tracker 

algorithm used for four main frequencies presented in the spectrum.    
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Figure 5.8 Incoherent Wideband Spectrum and Tracker algorithm for 4 Frequencies 
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5.4 Tests with Simulated Input Signal 
After implementing the complete algorithm on DSP, algorithm’s functionality is tested 

with simulated input signal generated from Matlab. The tests have been conducted for 

one frequency and two frequencies. The uncorrelated white noise is also added to the 

generated signals to get a feeling of the behavior of the algorithm in the presence of 

simulated noisy environment. The numbers of microphones assumed are 6, the spacing 

between microphones is 5.2 cm and the frequencies are 1100 Hz and 1900 Hz. 

The simulated microphone signals generated from the Matlab are saved in the header 

file microphone.h in the project. The algorithm is ran for direction of arrivals from -40° to 

40° at the step size of 10° and resolution of algorithm is 2°.  

 
Figure 5.9 Estimated DAO for simulated input signal of 1.1 KHZ and 1.9 KHz 

 

It can be easily observed that with simulated input signals the algorithm performed well 

even for one frequency and the results obtained are almost comparable except in few 

cases to the simulation results discussed in Chapter 4.3. Hence we can conclude that 

algorithm works fine and in principle do the required job. 
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6. Tests in Real time  
To see the functionality and behavior of the algorithm in real time tests are conducted in 

a systematic way. At first the performance of self-calibrating algorithm is verified in 

estimating the DOA. For this purpose tests are done in anti-acoustic room. After verifying 

the algorithm, the whole system is moved to a classroom and tests are done in real time. 

In the following sections the microphone array setup and the other components of the 

system are introduced, thereon the results of systematic tests are discussed. 

6.1 System setup 
The microphones and their amplifying circuit are molded on the small PCB board, which 

are arranged in the linear fashion on a supporting frame. The microphones are 

connected to the power supply with separate connectors, below the microphones and 

the ADC channel of PCM3003 codec connected to the microphones using buses which 

in turn are connected to the DSK 6713. The whole setup is shown below 

 

 
  

                                                                   
 

Figure 6.1 Pictorial view of Microphone array system with User PC 
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4 meters, avoiding the spatial aliasing effect (depending on the length of array and 

highest frequency present in the spectrum). The frequencies of audio sources which has 

been used are 1100 Hz, 1900 Hz, 2400 Hz and 3000 Hz. For our application the 

optimum distance (R) between the array and source is measured as follows:  

 

 Maximum frequency present in the spectrum (fmax): 3400 Hz  

Spacing between microphones of array (d):   5.2 cm 

 Length of microphone array (L):                          27 cm 

 Velocity of sound waves at room temperature (c):    343 x 102 cm s-1 

 

    ܴ ൌ  ଶ כ ሺ௅ሻమ 
௖

 ௠݂௔௫ 

  

The minimal calculated distance for satisfying far field condition is 144.52 cm. As the 

source is kept at 200 cm and beyond that, hence all test cases satisfy the far-field 

requirement.  

6.2 Tests in anti-acoustic room 
The complete system is placed in an empty part of anti-acoustic room. The microphone 

array is placed in the middle of the room and then the DSK 6713 and the supporting stuff 

along with laptop are placed behind it. The speakers are placed near the wall at a 

distance of 300 cm from array and the frequency generators behind that. This room can 

be assumed to be having SNR greater than 40 dB. The whole purpose of testing the 

system in this room is to see the performance of self-calibrating algorithm and as a 

whole the functionality of the complete algorithm. The tests are conducted with audio 

source having one, two and three frequencies without using the self-calibrating algorithm 

and then with the self-calibrating algorithm. It was observed that the performance of the 

algorithm does not vary noticeably with change in distance between source and array 

like 200 cm to 400 cm and also they need not to be in light of sight condition, especially 

in case of two and three frequencies. Initially the functionality of the algorithm and the 

system is checked by running some tests. The results obtained were the expected one, 

even though it was not done in a systematic way. The systematic test results for one 

frequency, two frequencies and three frequencies with un-calibrated and calibrated array 

are shown in Figure 6.2, 6.3 and 6.4 respectively. 
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Figure 6.2 Estimated DOA for 1.1 KHz  

 

 
Figure 6.3 Estimated DOA for 1.1 KHz and 1.9 KHz 
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Figure 6.4 Estimated DOA for 1.1 KHz, 1.9 KHz and 2.4 KHz 

 

It can be easily observed that the performance of the system is quite good with self-

calibrating array and for two and three frequencies the variation in estimating the DOA is 

not so much different. For two frequencies the estimated DOAs is well within the range 

of ±5° of actual DOA, whereas for three frequencies the range is between ±4° of actual 

DOA. We can also observe that with the increase in number of frequency component 

present in the spectrum, the performance of the algorithm improves for un-calibrated 

array as well. Also a person can observe that the estimated directions of arrivals at θ 

and 180-θ are approximately mirror images of each other. This is because of the reason 

that the microphones in an array undergo a same delay irrespective of the ± direction of 

arrival. 
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is 4.5 m and the source-array distance is varied between the two.  The setting of setup in 

the room is shown in Figure 6.5. As the room has strong reverberation effect from all the 

three walls and also the floor because of high reflection coefficient, the array and source 

both are placed at the same height from floor (110 cm) to have line of sight propagation, 

which is required to differentiate between the direct path and indirect path. Although the 

room chosen has normal white noise for the testing, but lifts working just besides the 

room and behind the array (approximately at a distance of 5 m) makes the room very 

nearby to the real environment. All the tests are carried under the same condition as far 

as the parameters of the systems like spacing between microphones, samples etc. are 

concerned except the noise level keeps on changing in room because of lift’s continuous 

movement. All estimated direction of arrivals shown and discussed are average values 

of 10 estimations. 

 

 

 
 

 

Figure 6.5 Setup of system in classroom 
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6.3.1 Tests with 6 Microphones 
Initially the system is tested with the source placed at a distance of 300 cm from the 

array and moved the source from -40° to +40° at a step size of 5°. Of course the 

distance between the source and array will increase with the moving of source away 

from 0°, but in a general scenario a speaker will not move in a semicircular fashion. The 

results are shown in Figure 6.6. We can observe that for one frequency the results are 

worse, for direction of arrival beyond ±20° the estimation is bad that means the MUSIC 

algorithm is not able to differentiate between the calculated eigenvalues to span the 

signal subspace from noise subspace. Also it was observed that for some direction of 

arrival like +5° the estimated DOA is -5°, it can be attributed to the high reflections from 

the floor which was causing change in phases. For two frequencies the deviations are 

more or less similar to the one frequency except in few cases. For the three frequencies 

the estimation is far better than the two previous cases except for +25° the range of 

deviation is between ±8°. Then the performance of system is checked with four 

frequencies and as expected the results are improved over three frequencies. The 

general range of deviations is between ±6°. 

 
Figure 6.6 Comparison of EDOA for all frequencies for 6 Microphones & 300 cm  
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Another important parameter is the MUSIC spectrum; it was observed that as the 

number of frequencies increased the MUSIC spectrum becomes narrower. That means 

for four frequencies the MUSIC spectrum was the narrowest one and for 1 frequency it 

was the broadest one. Also it was noticed that as the source moves away from 0°, the 

wideband MUSIC spectrum becomes wider and wider. The results obtained in the class 

room are not better if a comparison is made with the estimations in anti-acoustic room. 

Figure 6.7 shows a comparison between the results obtained in anti-acoustic room and 

classroom for two and three frequencies. In anti-acoustic room the difference between 

two and three frequencies was not so much, but in a class room the difference is clearly 

visible and quite high. The reasons for this difference can be attributed to the SNR and 

reflections in both cases. In anti-acoustic room the SNR is well above 40 dB, whereas in 

real environment the SNR is low and also keeps on varying. In an anti-acoustic room 

there were only one or two reflections, whereas in classroom there are multiple sources 

of varying reflections. 

 
Figure 6.7 Comparison between class room and anti-acoustic room 
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The reason for such a high deviation for +25° in all cases can be attributed to very high 

reverberation effect of the room at this particular angle and distance because when the 

source is moved left and right of this direction, the deviation was within the average 

range. As with the increase in the number of frequencies presents in the spectrum it 

actually improved. For one and two frequencies the MUSIC spectrum was around 0°, 

whereas for three frequencies it was around 11° and for four frequencies it was around 

17°. It is a remarkable improvement in a kind of worst case scenario. 

6.3.2 Effect of Source-Array Distance 
It would be interesting to see the effect on system by increasing the Source-Array 

distance as it is known that the signal power drops with the increase in distance. Now 

the source is placed 400 cm away from the array and the tests are repeated for all the 

four frequency combinations. The results are shown in Figure 6.8. As expected the 

results are much worse than the earlier case for almost all frequencies, but not for all 

direction of arrival.  

 
Figure 6.8 Comparison of EDOA for all frequencies for 6 Microphones & 400 cm 

 

We can notice that the results in case of four frequencies are better than the other 

combinations and except for few directions of arrivals the results are almost comparable  

-40 -30 -20 -10 0 10 20 30 40
-40

-20

0

20

40

60

80

 Actual DOA / ° 

 D
ev

ia
tio

n 
/ °

 

 Deviation of Estimated DOA from Actual DOA 

 

 
1 freq
2 freq
3 freq
4 freq



 

     
 
                                                                 77   

to the earlier test with 300 cm.  

When estimated directions of arrivals are compared for only four frequencies with the 

Source-Array distance varied from 200 cm to 400 cm. One can see that (as shown in 

Figure 6.9) the results for 200 cm and 300 cm are almost comparable, but a close look 

on the graph will reveal that for 200 cm the results are qualitatively better. But for 400 cm 

that’s not a case and the results are bad in comparison to other two cases.  

 
Figure 6.9 Comparison of four frequencies with Source-Array Distance  
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behavior of algorithm at -40°, for all the combinations the deviation was above 10°. This 

deviation must have caused by the reverberation effect in the room at this particular 

angle. Also it was noticed that for four frequencies the estimated direction of arrival for 

many directions is almost equal to the actual direction of arrival or within a span of ±1°. 

 

 
Figure 6.10 Comparison of EDOA for all frequencies for 8 Microphones & 300 cm 

 

It would be quite interesting to make a case by case comparison between 6 and 8 

microphones. The comparison is shown in Figure 6.11 in next page. One can notice that 

for the four frequencies the results with 8 microphones are qualitatively better than the 

results with 6 microphones. When a comparison is made between the wideband MUSIC 

spectrums obtained from the two cases, it was found that microphone array with 6 

microphones has narrower wideband MUSIC spectrum than with 8 microphones. That 

means in most of the cases the MUSIC spectrum’s beamform for six microphones was 

much narrower than that of 8 microphones whereas in terms of amplitudes of wideband 

MUSIC spectrum, the values is higher for 8 microphones. 
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Figure 6.11 Comparisons between EDOA for 6 and 8 Microphones 

 

6.4 Stability in Estimated DOAs 
In the results discussed till now it is very clear that system performance is far better with 

four frequencies in almost all cases. Till now all the results discussed are average values 

of the estimated direction of arrival and it would be interesting to see the variation 

between the every estimated value for every direction of arrival with respect to the 

number of microphones. The comparative results between the 6 and 8 microphones for 

every direction of arrival are shown in following figures. It can be easily observed that in 

general for 8 microphones the variation between the estimated values is much less 

fluctuating in comparison to the 6 microphones barring few exceptions. In figures shown 

in next page the blue indicates estimated direction of arrival for 6 microphones and red 

indicates for 8 microphones and for every angle the graph shows 10 iterations.  
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Figure 6.12 Estimated values for four frequencies 

 
Figure 6.13 Estimated values for four frequencies 
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Figure 6.14 Estimated values for four frequencies 

 
Figure 6.15 Estimated values for four frequencies 
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6.5 Comparison of Wideband MUSIC Spectrum 
Another parameter to see the behavior of algorithm is to look at the beam pattern formed 

in the Code Composer Studio. The beam patterns showed remarkable change with the 

change in distance between source and array and with the movement of source from 

one angle to another. Mostly MUSIC spectrum is narrower and has highest amplitude at 

0° and keeps on widening with the increase in angle. It was also observed that beam 

patterns formed were also affected with the change in power of main frequencies 

present in the spectrum. In the figures below are shown the MUSIC spectrum got in the 

Code Composer Studio for four frequencies with 6 and 8 microphones for -40°, 0° and 

+40°. 

 

 

 
 

 
 

Figure 6.16 MUSIC Spectrum at -40° with 4 frequencies for 6 and 8 microphones 
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Figure 6.17 MUSIC Spectrum at 0° with 4 frequencies for 6 and 8 microphones 

 

 

 
 

Figure 6.18 MUSIC Spectrum at 40° with 4 frequencies for 6 and 8 microphones 
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6.6 Analysis of Tests 
The performance of algorithm in principle is good and the results obtained in real time 

environment are quite satisfactory. Although the results obtained in real time are not 

approximately similar to the results got in anti-acoustic room. Still the results obtained 

are quite good enough considering the real time environment in which the tests are 

performed. The tests with four frequencies were far better than other combination of 

frequencies in almost all cases i.e. irrespective of number of microphones in an array 

and the source-array distance. When the tests conducted with 6 and 8 microphones are 

compared, the results were almost comparable but qualitatively they were better for 8 

microphones. Another important observation from the tests is that for most of the cases 

the algorithm works quite well in between ±20°, the deviation from actual angle was 

mostly within the range of 5°. This range is quite good enough if we look at kind of 

applications where this algorithm can be used like steering video camera towards the 

speaker in a seminar. As the source goes beyond ±20° the deviation is comparatively 

higher for some cases or angles. This is because of the reason that as the source move 

from 0° the source-array distance also increases. If at 0° the source-array distance is 

300 cm that +40° it will be approximately 392 cm this implies that the signal power has 

been dropped by approximately 3 dB as discussed in Chapter 2.1.3. Hence the effect of 

noise increases as the source moves away from 0°. When the level of noise present in 

the room is measured, it was found that the Signal-to-Noise ratio was varying and 

sometimes goes below 15 dB during the all tests. As well as the room chosen has 

comparatively high reflections from floors in compare to a normal seminar room. In some 

tests for one or two direction of arrivals the estimation was bad in compare to average 

deviations. The only possible reason for this could be the high reflections from the floor 

or very low SNR at these particular angles and frequencies. When source is moved 

there was an improvement. Also it was observed that the wideband MUSIC spectrum 

gives a sharp beam at 0° and get broadens as the source moves towards ±40° also as 

the number of frequencies present in the spectrum increases the MUSIC spectrum 

becomes narrower and narrower. Also it was observed that the algorithm is not able to 

differentiate more than the two sources and only if they are at least 20° apart. 
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7. Conclusion & Future work    

7.1 Conclusion & Summary of work 
In this thesis work, a DSP based real time system to localize a source in wideband is 

developed, which is based on incoherent wideband MUSIC algorithm. The system is 

developed using TI’s DSK 6713 board (TMS320C6713 DSP) with daughter card PCM 

3003 codec and adjustable Microphone array with pre-amp.  

 

The algorithmic implementation can be divided in four phase. In first phase, a self-

calibrating algorithm is developed for the Microphone array to calibrate the signals 

received through different microphones in terms of amplitude and phase, as the 

microphones used do not have similar characteristics. In second phase, a peak-search 

algorithm is developed based on bin-threshold method to select the frequencies having 

higher energy than other frequencies and define a subband around these main 

frequencies. In the third phase, the wideband signal is decomposed into the number of 

narrowband spectrum depending on the main frequencies and then MUSIC algorithm is 

applied to each subband using SVD method. In the last phase, all MUSIC spectrums 

calculated are incoherently averaged and then a tracker algorithm is employed to search 

for the peak and the corresponding Direction of arrival.    

 

Before implementing the algorithm on hardware, the behavior of algorithm was tested in 

simulated environment by varying the various parameters. It was observed that the 

performance of algorithm was very good in the simulated environment even at very low 

SNR value. The performance of algorithm improves with the increase in number of 

frequencies, especially with three and more frequencies. The algorithm works very finely 

when the source is in front of array or within the range of ±70° and starts behaving 

abruptly when the source goes beyond ±70°.  

 

The system was at first tested in anti-acoustic room having high SNR and with almost no 

reverberation effect. The purpose was to test the system with and without self-calibrating 

algorithm and it was found that the results obtained with self-calibrating algorithm were 

quite good enough. 

 

Thereafter the performance of the system was tested in a class room with varying SNR  
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and strong reverberation effect. The tests were conducted in a systematic way, initially 

the system was tested with six microphones and the source-array distance is varied and 

also the source was moved between ±40° having frequencies from one to four. After that 

the system was tested with eight microphones. The algorithm is able to localize the 

source with the deviation of ±5° in the range of interest with four frequencies. It was 

observed that the system works better with the increase in number of frequencies and 

was best with four frequencies for both six as well as eight microphones. The 

performance of system decreases with the increase in source-array distance. Also it was 

seen that in real time the algorithm is not able to separate more than two sources and 

that too when they are at least 20° apart from each other. Still the performance of 

system depends on the room and its environment. 

7.2 Improvement & Future work 
Although the system worked quite satisfactory still there is a room for improvement, 

especially in case of microphone array. The microphone array can be mounted on a 

special frame structure having less coupling effect as well as having less reflection. Also 

the distance between the microphones was not the optimal one as well as all 

microphones connections should be made behind the microphone array to avoid near 

field effects. 

 

Another improvement in the performance of system could be achieved using a 2-D array 

instead of 1-D array used in this project. It can be because of the fact that with 2-D array 

there will be more microphones and hence the more information will be available for 

processing in algorithm and probably the better estimation in direction of arrival.  

 

To make the system more adaptive to real speaker the steering vector corresponding to 

main frequencies can be calculated within the algorithm instead of using pre-calculated 

steering vectors. Also with large Source-Array distance the results were not good as the 

signal received by microphone array weakens, to further enhance the signal an 

Automatic Gain Control can be implemented. 

 

For localizing the audio source incoherent wideband MUSIC algorithm works fine in real 

time, but performance degrades when the source moves far away from centre. To 

further enhance the performance of the system a maximum power (MP) beamforming 
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array algorithm along with the wideband MUSIC algorithm can be implemented as 

suggested by Tung, Chen, Hudsen and Reed [36]. The algorithm suggested by them   is 

for 2-D source localization and developed in two steps. Initially source is localized using 

wideband MUSIC algorithm and after that maximum power beamforming algorithm is 

applied to enhance the desired signal and attenuate undesired spatially distributed 

interferences and background noises. 

 

Though the MUSIC algorithm works well in our tests and has high resolution property, 

newer algorithm such as ESPRIT algorithm can also be employed. ESPRIT (Estimation 

of Signal Parameters via Rotational Invariance Techniques) is a recently developed 

eigenspace-based technique that has the same excellent resolution properties as 

MUSIC, but is termed as much more computationally efficient. 
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APPENDIX 

This Master report contains an appendix of program listings, hardware descriptions etc. 

on a CD. This Appendix is deposited with Prof. Dr.-Ing Hans Peter Kölzer and Prof. Dr.-

Ing Ulrich Sauvagerd. 

 

Contents: 
 

 Source Code 
 

• Project for 6 Microphones 
• Project for 8 Microphones 
• Project for steer vector calculations 
• Matlab GUI implementation of algorithm  

 
 Master Thesis 

 
• Thesis report in pdf format 
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