
Dimitar Zlatkov

Development of Web Community Application with Ruby on
Rails framework

Bachelor Thesis based on the examination and study
regulations for the Bachelor of Engineering degree
programme Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Hans-Jürgen Hotop
Second examiner: Prof. Dr. Dieter Müller-Wichards
Day of delivery May 28th 2009

Dimitar Zlatkov 1

Dimitar Zlatkov

Title of the Bachelor Thesis
Development of Web Community Application with Ruby on Rails framework

Keywords
Ruby, Ruby on Rails, Web Application, Community, Internet, WWW, MVC
Framework, HTML, MySQL, Mongrel

Abstract
This thesis discusses the development steps of a web-based community
application that enables a user to log-in, communicate and interact with other
users in a browser based environment. It describes in detail the
implementation of an application front-end and back-end. The thesis has
formulated and defined an approach to develop such a web application using
the Ruby on Rails technology.

Dimitar Zlatkov

Thema der Bachelorarbeit
Entwicklung von Web-Community-Applikation mit Ruby on Rails Framework

Stichworte
Ruby, Ruby on Rails, Web Application, Community, Internet, WWW, MVC
Framework, HTML, MySQL, Mongrel

Kurzzusammenfassung
Diese Arbeit beschäftigt sich mit der Entwicklung einer web-basierten
Community Platform, die es eingeloggten Benutzern erlaubt, in einer Browser-
basierten Umgebung, miteinander zu interagieren. Es beschreibt detailliert die
Implementation von Front- und Back-End einer Anwendung mit Hilfe der
Ruby-on-Rails-Technologie.

Dimitar Zlatkov 2

Table of Contents
List of Figures..4
Chapter 1 – Introduction..5

1.1 The Problem..5
1.2 The Web Community Application Overview..6
1.3 The Scope of this Report..7
1.4 The Structure of this Report..8

Chapter 2 - Software Tools Overview...9
Chapter 3 - Project Analysis and Requirements...16

3.1 Project Analysis...16
3.2 Project Functional Requirements..17
3.3 Project Software Requirements..19
3.4 Project Hardware Requirements...22

Chapter 4 - Project Design..25
4.1 Web Application Three-Tier Model...25
4.2 Web Community Application Architecture...26
4.3 Overview of the Application MVC Architecture...28
4.4 Implementation of the Application MVC Architecture.......................................29

4.4.1 The View Layer..29
4.4.2 The Model Layer..32
4.4.3 The Controller Layer..34

4.5 Back-end - Database Design..37
Chapter 5 – System Realization..43

5.1 Realization of Log-in ..43
5.2 Realization of User Profile...45
5.3 Realization of Social Network...48
5.4 Realization of Messaging System...50
5.5 Realization of Comments System...54
5.6 Realization of Administrator User...55
5.7 Realization of Navigation Bar and Search Engine..59
5.8 Integrating Google Maps...62

Chapter 6 – Testing and Further Development...65
6.1 Automated Tests...65
6.2 Usability Tests...68
6.3 Further work..71

Chapter 7 – Conclusion...73
Appendix A - References...75
Appendix B - Glossary ..76
Appendix C - Source Code Listing ...78
Declaration ..79

Dimitar Zlatkov 3

List of Figures
Fig. 2.1 The Model View Controller architecture [7]..10
Fig. 2.2 Architecture of standard Ruby on Rails web application [8]..........................12
Fig. 3.1 Overview of the Spring Framework [12]...21
Fig. 3.2 Mongrel Cluster architecture using Apache 2.2 as load balancer [11]..........23
Fig. 4.1 Visual overview of a Three-tiered Web Application.......................................25
Fig. 4.2 High-level view of the Web Community application.......................................26
Fig. 4.3 Use case diagram of the Web Community application..................................27
Fig. 4.4 Model-View-Controller Architecture of the Web Community application.......28
Fig. 4.5 Web Community application logged-in layout template view.........................30
Fig. 4.6 Web Community application not logged-in layout template view...................31
Fig. 4.7 Model layer class diagram of the Web Community Application.....................32
Fig. 4.8 Routes table of the Web Community application...35
Fig. 4.9 Database design model of the Web Community application.........................42
Fig. 5.1 Start page of the Web Community application...43
Fig. 5.2 Profile page of the Web Community application..45
Fig. 5.3 Edit profile page of the Web Community application.....................................46
Fig. 5.4 Edit album page of the Web Community application.....................................47
Fig. 5.5 Friends index page of the Web Community application................................49
Fig. 5.6 Sent new page of the Web Community application......................................51
Fig. 5.7 Sent page of the Web Community application...52
Fig. 5.8 Inbox page of the Web Community application...53
Fig. 5.9 Show message page of Web Community application....................................54
Fig. 5.10 Comments partial page of the Web Community application........................55
Fig. 5.11 Administrator user page of the Web Community application.......................56
Fig. 5.12 State diagram of User model in the Web Community application...............57
Fig. 5.13 New user page of the Web Community application.....................................58
Fig. 5.14 Navigation bar of the Web Community application......................................59
Fig. 5.15 Home page of the Web Community application...60
Fig. 5.16 Map page of the Web Community application...62
Fig. 5.17 Add photo location form...63
Fig. 5.18 Show map page with photo markers..64
Fig. 6.1 Run all unit tests for User model..65
Fig. 6.2 Running sessions controller functional tests..68
Fig. 6.3 User opens the start page and tries to log-in...69
Fig. 6.4 User is asked to enter correct email/password combination.........................69
Fig. 6.5 User is redirected to home page..70
Fig. 6.6 User selects the desired album..70
Fig. 6.7 User attempts to update album with invalid content......................................71

Dimitar Zlatkov 4

Chapter 1 – Introduction

Chapter 1 – Introduction

1.1 The Problem

Nowadays, social web communities and networks have become part of everyday life
of the Internet user. With the rapid growth of the World Wide Web, Internet
communities have earned a wide popularity. Web communities have become a new
way of communication between different people.

Many social clubs and organizations are still not adjusted to the modern way of Web
2.0 communication. Club members and company employees communicate between
each other using telephone, mobile phone, instant messaging and mail services.
These ways of communication can overcome long distances and are sufficient for a
one-to-one communication. However, they can lead to additional costs, difficulties
and misunderstandings when it comes to simultaneous communication between a
group of people. Phones and mobile calls could spend sometimes a large amount
from the club or organization's budget. Sending emails could be sometimes
insufficient. For example, the club chairperson sends an email to all of the club
members. Not every member is using the same mail service provider. Different
providers can handle the email message differently, and some could handle it as
Spam. In this way some club members will not receive the message.

From the above problems, the need was realized to develop a Web 2.0 application,
which will provide more convenient, faster, cheaper and efficient way of
communication between group of members. One of the most commonly used
technologies to realize a web-based community application is the client-server
architecture. The project implements a standard client-server web application, where
the client sends a request for a resource located on the server, and the server
application responds the required resource to the client.

Dimitar Zlatkov 5

Chapter 1 – Introduction

1.2 The Web Community Application Overview

The Web Community application aims at supporting application users in
communication and interaction with other application members by providing different
functions and a user friendly interface.

The application interacts with the users through a website, which is always available
via the Internet. The project is divided into two functional units – application front-end
and application back-end.

Application Front-end

The front-end of the Web Community application is the user interface. The website
page is the application interface, where the users can interact with the program. Club
members or company employees have their user website account. They can log-in
using their email address and application password. They can check their community
mailbox, read and send messages. Application users can add club members as
friends, communicate with them, share images and profiles with them. Additionally
user can create albums, add images, link images to map, change profile, search
other users, search addresses and locations on the World's map, save locations, etc.

Application Back-end

The application back-end consists of a relational database of different database
tables, where the user data is stored and from where the user data is retrieved. When
the community user submits a request, request values are checked and structured in
the front-end and then sent to the back-end. The database handles these values and
responds to the front-end to the user.

Dimitar Zlatkov 6

Chapter 1 – Introduction

1.3 The Scope of this Report

The Objective

The objective of this project is to design and implement a prototype version of a web-
based community platform using the Ruby on Rails technology . The application user
interface will have to handle all the requests from the users, refine the input, send
queries to the database, handle the response from it, refine the response and then
send to the web interface to the users. This is the main task of the report, and it will
focus on the development of a web-based application with Ruby on Rails framework.

The Target Audience

The target audience of this report are social network groups. Groups of people, who
are members of the same club or are part of the same organization or company will
largely benefit from the use of this application. The concept of social networking that
has been introduced later in the chapters helps the application users to share their
comments, images and profiles to other fellow members of the web community.
These actions provide the perfect environment for an efficient user interaction.
Logged-in as administrator user, the club chairperson can also use the community
platform to aid the process of communication.

Normal everyday web users also benefit from the use of the web community
application. These users can interact with the application by searching places of
interest and addresses locations on the World's map.

Dimitar Zlatkov 7

Chapter 1 – Introduction

1.4 The Structure of this Report

This report is divided into seven chapters. The thesis starts with an index page,
followed by a list of figures. The report is written using the following chapter structure.

Chapter 1 is the Introduction chapter.

Chapter 2 presents the technologies needed to build up this application. This chapter
introduces the reader to the Model-View-Controller architecture. The Ruby on Rails
framework and the Ruby object-oriented programming language are also introduced.

Chapter 3 discusses the functional requirements for the Web Community application.
This includes the user requirements which are mapped to the base functions of the
application. Different possibilities for the realization are presented and discussed.
The specific software to be used is presented and the reasons for choosing this
software are pointed out. In conclusion the hardware requirements are discussed.

Chapter 4 examines in detail the design steps for realizing the Web Community
application. An overview of the different implementation steps of the project is
presented. The Model-View-Controller architecture and the relational database model
of the application are discussed.

Chapter 5 describes the process of building up the application based on the system
design architecture presented in chapter four. This chapter focuses on the realization
of different parts of the Web Community application design. Some specific software
techniques are investigated in detail.

Chapter 6 discusses the different techniques used for testing the Web Community
application. Project testing is done to guarantee that the application is stable, reliable
and safe from hacker attacks. Future project development, implementation of new
parts, and extension of the application functionality is discussed as well.

Chapter 7 is the conclusion chapter of this report. A summary of the techniques used
and design implementation is presented.

At the end of the report, the reader can find a References page followed by an
Appendix. The CD with the source code and documentation of this project is also
provided.

Dimitar Zlatkov 8

Chapter 2 - Software Tools Overview

Chapter 2 - Software Tools Overview

This chapter will give a short explanation of some abbreviations and keywords, which
will be used further in the report. The information included in this section aims to
make reading this report easier to follow by the reader.

Web application

In software engineering, a web application or web-app is an application that is
accessed with a web browser over a network such as the Internet. It is a computer
software application, coded in a browser-supported language such as HTML and
Javascript, and reliant on the web browser to render the application executable. Web
applications are popular because the browser acts as a client, sometimes called a
thin client. The ability to update and maintain Web applications without distributing
and installing software on potentially thousands of client computers is a key reason
for their popularity. Web applications are used to implement many different kind of
tasks such as web mails and calendars, online shops and auctions, currency
converters and etc.

Online Community

An online community or a virtual community is a group of people who primarily
interact via communication media such as email, Internet social network service or
instant messages rather than face to face, for social, professional, educational or
other purposes. Nowadays virtual and online communities have become a
supplemental form of communication between people who share common business
interests, hobbies or friendship.

Web Framework

A web application framework is a software framework designed to support the
development of dynamic websites, web applications and web services. Web
application frameworks facilitate rapid application development by allowing the
programmer to define a high-level description of the program. Many frameworks
provide libraries for database access, template and session management, and often
promote code reuse. One architectural pattern of a web framework is the Model View
Controller (MVC) architecture, designed to separate the data model with business
rules from the user interface. Most MVC frameworks follow a push-based
architecture. These frameworks use actions that do the required processing, and
then "push" the data to the view layer to render the results. Ruby on Rails and Spring
MVC are good examples of this architecture. An alternative to this is pull-based
architecture, sometimes also called "component-based". These frameworks start with
the view layer, which can then "pull" results from multiple controllers as needed. In
this architecture, multiple controllers can be involved with a single view. Figure 2.1
visualizes the MVC architecture.

Dimitar Zlatkov 9

Chapter 2 - Software Tools Overview

Fig. 2.1 The Model View Controller architecture [7].

Don't Repeat Yourself

Don't Repeat Yourself or DRY is a process philosophy aimed at reducing duplication.
The philosophy emphasizes that information should not be duplicated, because
duplication increases the difficulty of change, may decrease clarity, and leads to
opportunities for inconsistency. DRY code is created by data transformation, which
allows the software developer to avoid copy and paste operations. DRY code usually
makes large software systems easier to maintain and becomes increasingly
important in applications that use multi-tier architectures.

Convention over Configuration

Convention over Configuration or CoC is a software design paradigm which seeks to
decrease the number of decisions that software developer needs to make, gaining
simplicity, but not necessarily losing flexibility. CoC essentially means a developer
only needs to specify unconventional aspects of the application. For example, if
there's a class User in the model, the corresponding table in the database is called
users by default.

Representational state transfer

Representational state transfer or REST is a style of software architecture for
distributed hypermedia systems such as the World Wide Web (WWW). REST refers

Dimitar Zlatkov 10

Chapter 2 - Software Tools Overview

in the strictest sense to a collection of network architecture principles which outline
how resources are defined and addressed. Systems which follow REST principles
are often referred to as "RESTful".

In the REST architecture, data and functionality are considered resources, and these
resources are accessed using Uniform Resource Identifiers (URIs), typically links on
the web. The resources are acted upon by using a set of simple, well-defined
operations. The REST architecture is fundamentally a client-server architecture, and
is designed to use a stateless communication protocol, typically HTTP. In the REST
architecture, clients and servers exchange representations of resources using a
standardized interface and protocol. These principles encourages REST applications
to be simple, lightweight, and have high performance. A RESTful web application
typically map the four main HTTP methods: POST, GET, PUT, and DELETE
respectively to database operations: create, retrieve, update, and delete, so-called
CRUD actions.

Ruby

Ruby is a dynamic, open source script programming language with a focus on
simplicity and productivity. It is object-oriented, platform-independent and supports
multi-threading. In Ruby, every data type is an object, every function is a method.
Every bit of information and code can be given their own properties and actions.
Ruby has exception handling features, like Java or Python, which makes it easy to
handle errors. The syntax of Ruby is broadly similar to Perl and Python. Since its
public release in 1995 (Ruby 0.95), Ruby has drawn devoted coders worldwide. In
2006 (Ruby 1.8.6), Ruby achieved mass acceptance. The latest stable version of
Ruby (Ruby 1.9.1) was released on 30 January 2009. It introduces a lot of changes
and it is nearly two times faster compared to version 1.8.6. For more information
about the Ruby programming language, please visit Ruby web page [5].

Ruby on Rails Framework

Ruby on Rails, RoR or just Rails is a web development framework written in Ruby
language. It is designed to make programming web applications easier. Rails makes
it possible for the programmer to write less code, while accomplishing more than
many other languages and frameworks. Rails is organized around the Model, View,
Controller architecture. MVC benefits for isolating the business logic from the user
interface, keeping programming code DRY and making it clear where different types
of code belong for easier maintenance of the application. For more information about
Ruby on Rails, please visit the Rails web page [6]. Figure 2.2 shows a standard
architecture of a RoR web application.

Dimitar Zlatkov 11

Chapter 2 - Software Tools Overview

Fig. 2.2 Architecture of standard Ruby on Rails web application [8].

Models

A model represents the information data of an application and the rules to manipulate
that data. In the case of Rails, models are primarily used for managing the rules of
interaction with a corresponding database table. In most cases, one table in the
database will correspond to one model in the application. The bulk of the
application’s business logic will be concentrated in the models.

Views

Views represent the user interface of the application. In Rails, views are often HTML
files with embedded Ruby code that performs tasks related solely to the presentation
of the data. Views handle the job of providing data to the web browser or other tool
that is used to make requests from the application.

Controllers

Dimitar Zlatkov 12

Chapter 2 - Software Tools Overview

Controllers provide the “glue” between models and views. In Rails, controllers are
responsible for processing the incoming requests from the web browser, interrogating
the models for data, and passing that data on to the views for presentation.

Ruby on Rails Components

Rails provides a full stack of components for creating web applications. They are the
core classes of the Ruby on Rails framework.

Action Controller (ActionController::Base)

Action Controller is the component that manages the controllers in a Rails
application. The Action Controller framework processes incoming requests to a Rails
application, extracts parameters, and dispatches them to the intended action. An
action is defined as a public method on the controller, which will automatically be
made accessible to the web-server through Rails Routes. The two basic action
archetypes used in Action Controllers are get-and-show and do-and-redirect. Most
actions are variations of these themes. Services provided by Action Controller include
session management, template rendering, and redirect management.

Action View (ActionView::Base)

Action View manages the views of a Rails application. It can create both HTML and
XML output by default. Action View manages rendering templates, including nested
and partial templates, and has built-in AJAX support. Action View templates can be
written in three ways. Templates, using a mixture of embedded Ruby (ERb) code and
HTML code, have an .html.erb file extension. Templates, using the Jim Weirich’s
Builder::XmlMarkup library, have the .builder or .rxml file extension. Templates, using
the ActionView::Helpers::PrototypeHelper::JavaScriptGenerator module, have .rjs file
extension.

Active Record (ActiveRecord::Base)

Active Record is the object-relational mapping (ORM) layer supplied with Rails. It
closely follows the standard ORM model: tables map to classes, rows to objects, and
columns to object attributes. It provides database independence, basic CRUD
functionality, advanced finding capabilities, and the ability to relate models to one
another, among other services. Active Record objects don’t specify their attributes
directly, but rather infer them from the table definition with which they are linked.
Adding, removing, and changing attributes and their type are done directly in the
database. Any change is instantly reflected in the Active Record objects.

Action Mailer (ActionMailer::Base)

Action Mailer is a framework for building e-mail services. Action Mailer can be used
to send emails based on flexible templates, or to receive and process incoming
email.

Dimitar Zlatkov 13

Chapter 2 - Software Tools Overview

Active Resource (ActiveResource::Base)

Active Resource provides a framework for managing the connection between
business objects a RESTful web services. It implements a way to map web-based
resources to local objects with CRUD semantics.

Active Support (ActiveSupport::Base64)

Active Support is an extensive collection of utility classes and standard Ruby library
extensions that are used in the Rails, both by the core code and by the application's
code.

Ruby on Rails 2.1.x - Directory Structure

Rails framework assumes a specific run-time directory layout. Here is a structure of
the top-level directories generated on rails project creation.

app: This directory organizes the application components.

app/controllers: The controllers sub-directory is where Rails looks to find controller
classes.

app/helpers: The helpers sub-directory holds any helper classes used to assist the
model, view, and controller classes.

app/models: The models sub-directory holds the classes that model and wrap the
data stored in the application's database.

app/views: The views sub-directory holds the display templates to fill in with data
from the application, convert to HTML, and return to the user's browser.

config: This directory contains the small amount of configuration code that an Rails
application needs, including the database configuration (in database.yml), the Rails
environment structure (in environment.rb), and routing of incoming web requests (in
routes.rb). One can also tailor the behavior of the three Rails environments for test,
development, and production with files found in the config/environments directory.

db: This directory holds the migration files of the application (in db/migrate) and the
schema.rb

doc: This directory is where the application documentation will be stored when
generated using rake doc:app.

lib: This directory contains application specific libraries and any kind of custom code
that doesn't belong under controllers, models, or helpers.

Dimitar Zlatkov 14

Chapter 2 - Software Tools Overview

log: Error logs go here. Rails creates scripts that help to manage various error logs.
In this directory are the separate logs for the server (server.log) and each Rails
environment (development.log, test.log, and production.log) stored.

public: Like the public directory for a web server, this directory has web files that
don't change. It should be set as the DOCUMENT_ROOT of the used web server.

public/images: Sub-directory for the image files and graphics

public/javascripts: Sub-directory for the Javascript files.

public/stylesheets: Sub-directory for the CSS files

script: This directory holds scripts to launch and manage the various tools that come
with Rails.

test: The tests written and those created by Rails go here. You'll see a sub-directory
for fixtures (test/fixtures) functional (test/functional), integration (test/integration) and
unit tests (test/unit).

tmp: Rails uses this directory to hold temporary files for intermediate processing.

vendor: Libraries provided by third-party vendors (such as security libraries,
database utilities or plug-ins beyond the basic Rails distribution) go here.

Apart from these directories there are two files available in the root directory.

README: This file contains a basic detail about Rails application and description of
the directory structure explained above.

Rakefile: This file is similar to Unix Makefile which helps with building, packaging and
testing the Rails code. This will be used by rake utility supplied along with Ruby
installation.

Dimitar Zlatkov 15

Chapter 3 - Project Analysis and Requirements

Chapter 3 - Project Analysis and Requirements

In this chapter the main requirements that the project has to fulfill are pointed out.
The possible software solutions are presented. The software needed for the project
implementation is discussed and reasons for choosing it is given. A discussion of the
hardware requirements is made as well.

3.1 Project Analysis

The desire to a community is as old as humanity and online social networking sites
do seem to solve a need that is different from simply using email, chat and blogging
tools separately. Social network service focuses on building online communities of
people who share interests and activities, or who are interested in exploring the
interests and activities of others. Web based social networks provide a variety of
ways for users to interact, such as e-mail and instant messaging services. Social
networking has encouraged new ways to communicate and share information. The
traditional way to interact face-to-face has been substituted by the interactive
technology, which makes it possible for people to network with their peers from
anywhere, at any time, in an online environment. Community websites are being
used regularly by millions of people. In the past few years they have become an
enduring part of everyday life.

In general, social networking services can be broken down into two broad categories:
internal social networking (ISN) and external social networking (ESN) sites, such as
Orkut, MySpace, Facebook, Twitter. Both types can increase the feeling of
community among people. An ISN is a closed, private community that consists of a
group of people within a club, company, association, society, education provider or
organization. An ESN is open, public and available to all web users community. It can
be small specialized community (i. e. community of people linked by a single
common interest) or it can be large generic social networking site such as MySpace
or Facebook. Based on the domain of application social networks can be divided into
various types of networks and communities. Social communities can function as
online meeting places for business and industry professionals. This allows individuals
to be accessible from anywhere, at any time in an online environment and establish
their real identity in a verifiable place. A professional network is used for the business
to business marketplace. These networks improve the ability for people to advance
professionally, by finding, connecting and networking with others. Business
professionals can share experiences with others who have a need to learn from
similar experiences. One example of social networking being used for business
purposes is LinkedIn.com, which aims to interconnect professionals. List of popular
social networking websites and communities is provided in the references [10].

Almost all social community applications have a set of features which are considered
essential to qualify as a social networking service, namely: the ability to set up and
customize a personal “profile”, an ability for members to comment, fine granular
control of who sees what (privacy settings), ability to block an unwanted member,

Dimitar Zlatkov 16

Chapter 3 - Project Analysis and Requirements

have own page of personal, blog like entries or notes and individual picture albums
and ability to own, form or be member of a Group or Community within the network.
Some additional features include the ability to create groups that share common
interests or affiliations, ability to upload or stream live videos, and ability to hold
discussions in forums. The users of a social community can be divided into three
basic groups – visitors, normal users and super users. The visitor can only observe
the community and view its content. They are not allowed to add new content or
participate in discussions. Visitors are usually not visible to other community
members. Normal users have the full access to all the community features. They
have own page in the community and are visible to other members. The super users
have extended control privileges.

This report focuses only on the first category of services – ISN web applications.
Large generic social communities are out of the scope of the report and will not be
point of discussion. The work describes in detail and focuses on the development of
an internal social networking application, closed or private community. The project
aims to reach a small, closed group of people, who are members of real life social
organization, club or company. People of this community will share common
interests. The application will make it easier to keep in touch with contacts around the
world. It aims to improve the ability for people to advance professionally, by finding,
connecting and networking with others.

In the following sub chapters the functional, software and hardware requirements for
developing a social network/web community are discussed. In other words the project
needs in terms of functionality, software and hardware are pointed out.

3.2 Project Functional Requirements

Functional requirements describe the desired functions of the project, they are the
core of each project and they have an important role in the success of the project.
This sub chapter starts with a discussion of the main functional needs and continues
with explaining each of them in detail. As a small web community platform the project
needs to implement some basic features. In order to achieve a social network
functionality the application has to include user roles, profiles, semi-persistent public
commentary on the profile, messaging system and a traversable publicly articulated
social network displayed in relation to the profile. Including all these features in a web
application transforms this application to a basic social network service. During the
project development additional features can be added on to expand the application
functionality. In the following section the main features are listed and discussed.

User Role. The project application requires different types of users, where user role
corresponds to the privileges given to a certain user. Based on the application role
users can be divided into two categories: superusers - administrators, and normal
users. Superuser is a user with extended administrative privileges. He has control
over the users in the social network. Superuser can delete, suspend or activate a
normal user. Administrator user can access every user's profile, delete messages

Dimitar Zlatkov 17

Chapter 3 - Project Analysis and Requirements

and photos with inappropriate content. Normal user is a user, member of the web
community, who can modify only his/her profile and has no administrative privileges.
A small community platform has to implement different user roles. A social network
application needs to have administrator users, who have control over the network
and can make decisions about users and their profile's content. Without user roles a
small community can hardly exist and will be very difficult to maintain.

Profile. The web community application requires user profiles. A profile includes an
identifiable handle - the person's name or nick name, information about that person
(e.g. age, sex, location, interests, etc.). User profiles also include a photograph and
information about last log-in. Profiles have unique URLs that can be visited directly.
User has the ability to modify his/her web page, i.e. his/her profile. Community
individual has the option to create new albums, add pictures to his/her album, post
comment on them or link them to a location. A small community application has to
have user profiles, because they represent the user in the social network. Profiles act
as a presentation of user's identity in front of other community members and this is
the reason why they have to be persistent in social network application.

Semi-persistent public comments. Participants can leave comments - guest book
messages on other user profiles or photo comments for everyone to see. These
comments are semi-persistent in that they are not ephemeral but they may disappear
over period of time or upon removal. These comments are showed in the guest book
section or in the album section of the user's profile and are reverse-chronological in
display. Because of these comments, profiles are a combination of an individuals'
self-expression and what others say about that individual. A small community needs
to implement public comments feature, since comments form a way for the user to
express his/her opinion in public. Public comments can reveal parts of member's
identity and can be reason for communication between members, who do not know
each other. The use of public comments contribute to the social network
development and a web community project can only benefit from them.

Traversable, publicly articulated social network. Participants have the ability to
list other profiles as “friends” or “contacts” or some equivalent. This generates a
social community graph which may be directed (“attention network” type of social
network where friendship does not have to be confirmed) or undirected (social
network where the other person must accept friendship). This articulated social
network is displayed on an individual's profile for all other users to view. Each node
contains a link to the profile of the other person so that individuals can traverse the
network through friends of friends. Becoming a friend with other community users,
individual exposures his/her profile. In other words user's avatar, friends, albums and
photos are visible and shared between members of the network who are linked as
“friends”. Relations between users play an important role in communities, the user
has the ability to distinguish between different members, to select individuals and
allow them to see his/her profile. These are some of the main reasons why social
network application has to implement relationships between users.

Dimitar Zlatkov 18

Chapter 3 - Project Analysis and Requirements

Messaging system. Communication is an important part of Web Community
application. The social network requires a messaging system which allows users to
communicate between each other at any time when they are logged in. User are
allowed to compose, send and receive messages, as well as send and receive
friendship invitations and requests. Using the messaging system, administrators has
the ability to contact certain user or a group of users, provide important information
about events or happenings. A small community needs to implement a messaging
system, since the communication between users form the foundations of the
communities. Without any messaging system community platform cannot exist.

3.3 Project Software Requirements

In this sub chapter the software needed for the implementation of the required social
network functionality is discussed. Different types of software can be used for the
implementation of the project. The following section focuses on some advantages
and disadvantages of the possible software solutions, starting from Web content
management system, through MVC frameworks like RoR, Zend and Cake, to Java
programming.

Web content management system (WCMS or Web CMS) is content management
system software, usually implemented as a web application, for creating and
managing HTML content. It is used to manage and control a large, dynamic collection
of web material such as HTML documents, images, audio and video files. A WCMS
facilitates content creation, content control, editing, and many essential web
maintenance functions. A Content Management System works by storing files and
text into a database. When a web page is requested, the CMS system accesses the
database and renders the web page. Because the data is separated from the code,
changes to the data can be made using a web interface that requires no knowledge
of HTML. Benefits of WCMS are that the administration is typically done via browser-
based interfaces, it provides a web-site maintenance tool for non-technical
administrators, many plug-ins and additional features exist for CMS applications. A
lot of software companies, provide different content management systems, but not all
of them are open source and free of charge. Some disadvantages are: Content
Management systems are resource hungry, servers they run on need to be
maintained by technicians, and content management requires more memory, CPU
power and software maintenance; Content Management hosting is expensive since
CMS require additional software (ASP, PHP or CGI) installed; Content Management
systems need to be upgraded to changes in software - new versions of server
software or office software will impact on the functionality of the CMS; Many CMS
systems do not index properly on search engines.

Ruby on Rails is MVC framework designed for web application development. It
offers higher developer productivity and less complexity. Because Rails is a complete
solution, there are much fewer decisions to be made and it is much faster to get
started. Some benefits of Rails are: Rails uses the dynamics of Ruby to bring back
web application development closer to the productivity of productive non-web

Dimitar Zlatkov 19

Chapter 3 - Project Analysis and Requirements

application development frameworks; Rails applications require a few lines of code to
identify each database connection, as well as one line of configuration for each
different type of routing; Rails embraces the DRY principle; Ruby on Rails includes all
the components necessary to build complete web applications from the database
forward (even including a pure-Ruby web server for those who wish to develop
immediately without setting up a web server such as Apache), providing object-
database linkage, a Model-View-Controller framework, unit and functional testing
tools, out-of-the-box support for AJAX and CSS, support for multiple template
systems, multi-environment deployments, support for automated local and remote
deployments, inbound and outbound email support, web services support, etc. Ruby
on Rails has many disadvantages. One potential constraint is that Ruby is relatively
slow compared to other programming languages. Rails has a lot of techniques to
compensate the slowness of Ruby in most scenarios, however those techniques
involve more resources. Second constraint is the security. There are well established
tools, libraries, and techniques in corporate environment that have leveraged C+
+/Java for a long time. Ruby on Rails is just too new and a bit immature to be able to
challenge them yet. Another disadvantage is the lack of complete documentation
online. Some of the generated rubydocs will just contain the name of the method,
compared to php.net/ sample-function-name-here with lots of comments and tutorials
or the javadocs from Sun. For more information please look at the documentation [9].

PHP is a popular scripting language originally designed for producing dynamic web
pages, scales well, and offers many third party components. There are a number of
MVC frameworks (including CakePHP and Zend), but none seem to be a standard.
Another reported advantage of PHP over other languages is availability of a large
pool of developers. This leads to very large community support. Like Ruby, PHP has
very fast development cycle. PHP has no formal specification.

Java is platform independent object oriented programming language. Java is many
times faster on code execution than other programming languages. It has the lowest
hosting costs, and best scalability options, but the more complex solution. Developer
speed and productivity varies drastically depending on which platforms, third party
tools and development environments are chosen. Poor decisions have far reaching
consequences. One famous open source application framework for the Java platform
is Spring. The framework was first released under the Apache 2.0 license in June
2003. The current version of Spring is 2.5.6. Spring framework features its own MVC
framework, which was not originally planned. Spring is not a single framework.
Rather it is more of a collection of independent tools, packages, bind by its Core
package. Web package provides a Model-View-Controller implementation for web
applications. Spring framework is very well supported and documented. Spring
enforces good programming practices like coding to interfaces, reducing coupling
and allowing easy testability. Figure 3.1 shows the six modules on which the Spring
framework is organized.

Dimitar Zlatkov 20

Chapter 3 - Project Analysis and Requirements

Fig. 3.1 Overview of the Spring Framework [12].

Some disadvantages of the Spring framework are that Spring distribution is over
150MB, Spring is complex, and it takes significant amount of time to learn Spring.
Spring applications often use large amounts of XML. Considering Spring, means
programmer will be spending a significant amount of time coding in XML, writing
database configuration files. Moving application development from Java to XML has
many significant drawbacks such as there is no tool available for editing XML, type
safety is thrown away - typos are easy to make, but hard to find, compile time errors
become a run-time errors.

In conclusion web application can be developed using different programming
languages, systems, and frameworks. Each of the above explained techniques has
an application spectrum, in which best programming performance and efficiency can
be achieved. If the goal is to develop a large application which has to be frequently
edited or updated by multiple authors, considering content management system is a
logical choice. Large scale web applications running on multiple servers could be
also developed using Java or PHP MVC framework. Java framework offers the best
support for developing financial services, e.g. online banking web applications,
where security features are critical requirements and cannot be compromised upon.

Dimitar Zlatkov 21

Chapter 3 - Project Analysis and Requirements

Ruby on Rails may not fit very well in an existing “enterprise” architecture with all
kinds of rules and regulations. For example, certain large companies have policies
such as using stored procedures to access databases and to use certain naming
conventions for table and field names. Under such circumstances, Rails will begin to
loose its magic since it relies on CoC and automatically reflects on the underlying
table structure. Although security and scalability are downsides of Rails, the fast
learning curve, the low complexity and the high developer productivity makes it very
suitable for small up to middle-scaling web applications.

This report focuses only on the development of web community application with Ruby
on Rails framework. It will not include any further information about the application
development with other software frameworks or systems.

3.4 Project Hardware Requirements

This sub chapter discusses the hardware needed for the implementation of the
project. In order to install and run the software and programs required for the project
development, one needs to make sure that required hardware is up to date.

On the server side a minimum requirement to run web application is one web server.
A web server is a computer that is responsible for accepting HTTP requests from
clients (user agents such as web browsers), and serving them HTTP responses
along with optional data contents, which usually are web pages such as HTML
documents and linked objects (images, etc.). RoR application usually runs on
Mongrel or Apache web server. Mongrel is an open-source HTTP library and web
server for Ruby web applications. One popular configuration is to run Apache 2.2 as
a load balancer using mod_proxy_balancer in conjunction with several Mongrel
instances, with each Mongrel instance running on a separate port. This is something
that can be configured very easily using the mongrel_cluster management utility.
Apache can divide the incoming requests among the available Mongrel processes,
and, with careful configuration, can even serve static content itself without having to
delegate to Mongrel. This approach is called clustering and figure 3.2 shows a
standard Mongrel cluster architecture.

Dimitar Zlatkov 22

Chapter 3 - Project Analysis and Requirements

Fig. 3.2 Mongrel Cluster architecture using Apache 2.2 as load balancer [11].

Each Mongrel instance is self-sufficient and runs independent of the others
duplicating all of the resources on each server. The database sits on a separate
database server accessible by all other servers. Installation of a Relational Database
Management System (RDBMS): MySQL is needed. MySQL is an open source
RDBMS written in C and C++. It is used as a database component on many different
system platforms such as Linux, Mac OS X, SunOS, Symbian, Solaris, MS Windows.
MySQL is very popular for web applications. High-traffic web platforms such as
Google, YouTube, Wikipedia, Flickr and Facebook use MySQL for data storage and
logging user data.

On the developer side a minimum of one workstation is required. System
requirements for installing and running all the developer tools are: Windows, Linux or
Mac operating system, minimum of 512 MB RAM-Memory, Pentium 4-level processor
or higher. An Ext3 or NTFS formatted file system partition with minimum 3 GB of free
space plus adequate free space for the web site development is needed. A display at
a minimum screen resolution of 1024 pixels x 768 pixels is required. For the
developing, testing and deploying the web application project a router for Internet
access is needed, as well as Internet connection, with 56 Kbps or faster connection

Dimitar Zlatkov 23

Chapter 3 - Project Analysis and Requirements

between client computers and server. The local machine needs also an installed
Software Development Kit (SDK) and MySQL client server.

Software and hardware requirements have an important role in the application
development. Together with the functional requirements they build the foundation for
every project. Requirements are considered by many experts to be the major non-
management, non-business reason projects don't achieve the "magic triangle" of on-
time, on-budget and high quality. Very few projects do an effective job of identifying
and carrying through the project and all the requirements correctly. Many projects
even fail due to requirements problems. This is the reason why developer needs to
do a much better job on requirements if he wishes to develop quality software on-
time and on-budget. Furthermore, requirements' errors compound during the project
development. The earlier requirements problems are found, the less expensive they
are to fix. Therefore, the best time to fix them is right when one is involved with
gathering, understanding, and documenting them. In conclusion, it can be said that
the success of the given task depends in the first place on the project planning as
well as on the good analysis of the requirements and the possibilities for solving the
problems.

Dimitar Zlatkov 24

Chapter 4 - Project Design

Chapter 4 - Project Design

4.1 Web Application Three-Tier Model

The project follows a three-tier client-server software architecture model. The
application is separated into three parts called “tiers”. Tiers are usually different
machines. The three tiers include client tier, application tier and database tier. The
client sends HTTP requests through the web browser. Web server services request
by making queries and updates against the database server. Results are passed
back to the web server, where user interface in HTML is generated. HTML template
is returned to client browser. Figure 4.1 shows the Three-Tier architecture of the
project.

Fig. 4.1 Visual overview of a Three-tiered Web Application.

The client tier – the front-end of the application is a web browser. Each client has its
own personal computer with installed operating system. A web browser runs on top
of the operating system. Typical operating systems at this tier include various
distributions of Linux such as Ubuntu, Red Hat and SUSE, Microsoft Windows and

Dimitar Zlatkov 25

Chapter 4 - Project Design

Mac. Typical web browsers include Mozilla Firefox, Internet Explorer, SeaMonkey,
Opera, Safari.

The Web Application Tier – the middle tier includes the application’s business logic. It
controls the application’s functionality by performing detailed processing. In the MVC
architecture of this application, Application-tier is used as the view, the controller and
the model layer. Details about the design of these layers will be discussed in the next
sub chapter – Web Community Application Architecture.

The Database Tier – the back-end of the application consists of MySQL RDBMS
running on a database server/local server. This tier stores and retrieves the
information. The database tier keeps data neutral and independent from business
logic.

During the Web Community Application development, the front-end and back-end are
located on the same local server.

After making it clear about the functional, software and hardware requirements of the
project, and having understand the idea of the Model-View-Controller architecture,
the next step is to design the web application architecture.

4.2 Web Community Application Architecture

The application is divided into application front-end, which is the user interface, from
where the user interacts with the community platform, and application back-end,
which is the database system of the platform.

Fig. 4.2 High-level view of the Web Community application.

What does the Web Community User do?

Dimitar Zlatkov 26

Chapter 4 - Project Design

Figure 4.3 shows the use case diagram of the potential actors and their actions. Use
case describes the system’s behavior as it responds to a request originated from
outside of the system. In other words, a use case describes “who” can do “what” with
the system in question.

Fig. 4.3 Use case diagram of the Web Community application.

Dimitar Zlatkov 27

Chapter 4 - Project Design

Once the functional requirements are partitioned into actions of requests and
responds between users and application, the next step is to identify the business
logic, presentation logic, control flow logic and model them as objects.
The following sub chapter introduces the general MVC structure design of the Web
Community application and then we will go further into internal design of each layer
of the MVC to decide which objects each layer needs.

4.3 Overview of the Application MVC Architecture

Fig. 4.4 Model-View-Controller Architecture of the Web Community application.

Dimitar Zlatkov 28

Chapter 4 - Project Design

A user sends a HTTP request to the controller through the web browser. The
controller receives the request, handles the request with corresponding control logic
for this specific request, and invokes a view to respond to the user browser. The
model has different objects to store different data type and objects which have
business rules to process the data. When receiving request data from a browser,
data is checked for invalid input value, refined and sent to the back-end. The
response data from the back-end is as well refined and sent to the web browser.
The view is responsible for generating the user interface, normally based on data in
the model. The view includes different HTML templates and layouts, their dynamic
values are the values stored in the value objects. The object state and value can be
updated.

4.4 Implementation of the Application MVC Architecture

4.4.1 The View Layer

The Ruby on Rails technology for handling user view in this web community
application are rhtml templates. Rhtml templates are a mixture of HTML and
embedded Ruby (ERb). They are used to generate HTML pages. In general, this
application uses ERb for presentation of the dynamic contents and logic for
presenting the view.

There are some considerations in the view layer
• View has only presentation logic
• Embedded Ruby code is kept to minimum
• Make use of the view template helpers
• Make use of view partial templates and layouts
• Friendly user interface for the view

It is decided that the controller layer is responsible for the control logic, and the model
layer manages the business rules. So that the view layer will focus only on the
presentation logic. Besides, Rails comes with a bunch of built-in helper methods and
modules, which will be used to simplify templates and encapsulate the complex
presentation logic.

Many pages in the Web Community application share the same tops, tails, and
sidebars. Same functionality appears in many places. In order to avoid duplication
layouts, shared partials and components are used.

The Web Community application makes use of two layout styles. One is used for
logged-in users, it has a top with a navigation menu and search bar, a central place,
where all the templates are loaded, a sidebar on the right, and a footer on the bottom.
Figure 4.5 shows the logged-in layout template. A second layout for the not logged-
in/ not registered users is implemented. It has a top with a log-in form and a central
template place. Figure 4.6 shows the not logged-in layout template.

Dimitar Zlatkov 29

Chapter 4 - Project Design

Fig. 4.5 Web Community application logged-in layout template view.

Dimitar Zlatkov 30

Chapter 4 - Project Design

Fig. 4.6 Web Community application not logged-in layout template view.

In conclusion we can say that using this design, the View layer is totally separated
from others layers. The layout can be easily modified in future development. The
design encourages developer roles. If developer team becomes bigger in future,

Dimitar Zlatkov 31

Chapter 4 - Project Design

designers can work separately on the templates and views, and the developing
period can be shortened.

4.4.2 The Model Layer

The model layer encapsulates the data objects and business logic of the application.
It is the object-relational mapping (ORM) layer of the application. The project closely
follows the standard ORM model: tables map to classes, rows to objects and
columns to object attributes. Figure 4.7 shows the model layer realized as a class
diagram.

Fig. 4.7 Model layer class diagram of the Web Community Application.

User class is an important class of the web community project. It includes all the
business logic for user account authorization and authentication. The User class
includes methods for creating new users and building new accounts, searching users
of the community and finding mutual friends, resetting user's password. Only signed
in users are allowed to use the community platform. A User object will be created for
each logged-in user. The User class has login, name, email, crypted_password, salt,

Dimitar Zlatkov 32

Chapter 4 - Project Design

and state attributes. In the next chapter more information about process of logging in,
password generation and user state will be provided.

UserMailer class allows the application to send email messages to user's private mail
account. The class includes methods for creating notification emails after registering
a community account, after activating a community account, and after requesting
forgotten password or password change.

UserObserver class watches the user account. It has methods for delivering emails
after user account is created or activated. The after_create() and after_save()
methods use UserMailer class to send an email to user's personal email account.

Settings class include attributes for the current space available on server, as well as
number of signed in users, maximum albums available per user, maximum photos
available per album, maximum number of messages per user. Settings class
attributes can be modified only by the administrator and are used for limiting
community user's account.

Comment class implements polymorphic association, which allows comments to be
added to multiple models. Comments are used for the community user's wall, where
people can leave short messages, and for the user's photos, where people can
comment on a photo. The Comment class includes attributes such as comment,
user_id, commentable_id and commentable_type. In next chapter an example how
the comments work will be provided.

Folder class provides the mailbox system for the community platform. An Folder
object with name attribute “Inbox” is created when new community user is added.

Message, MessageCopy class provide the messaging system for the mailbox.
Message class includes method for creating message copies to all the message
recipients. After creating a Message object, MessageCopy objects are created for all
the recipients.

Profile class includes many different attributes about the community user's profile. A
Profile object is created when new user is added. Its attributes can be modified by the
community user. Each user has a profile, which provides some personal information
about the user to other community members.

Wall class represents the user profile's wall (guest book) and includes references to
user comments. A Wall object is created when new user is added to the community
application. User can modify his/her wall, this includes also deleting comments from
his/her it.

Album class is used for the community user's picture albums. An Album object with
album_name “Profile Album” is created when new user is added. Community User is
allowed to create additional Album objects and to change object attributes.

Dimitar Zlatkov 33

Chapter 4 - Project Design

Photo class is used for the user's photos. It includes methods for resizing images, as
well as finding next and previous picture in an album. Photo class makes use of
Rmagick image processing library for resizing photos. User is allowed to create,
update and delete Photo objects.

Location class objects are used to store a photo location. User is allowed to create
one Location object per Photo object. Location object is used by the application to
locate an image on the map.

In conclusion we can say the design of the model layer is optimized for future
expansion of the application. Separating different tasks in the model layer can help to
divide the development process to different developer roles in this model layer. All
the business logic of the project is encapsulated in the model. Model methods are
used to refine request data, send the request to the back-end, receive the response
from the database, refine it and respond to the client's view.

4.4.3 The Controller Layer

The controller layer of the MVC is used for the control logic of the application. The
control logic works with both the view layer and the model layer. For the view layer,
the controller is responsible for selecting the next view. For the model layer, the
controller will use the business value objects and executes the business logic
processes.

At its simplest, the web application accepts an incoming request from a web browser,
processes it, and sends a response back. The controller acts as a single interface for
all incoming HTTP requests from the clients. The information is encoded in the
request URL, a subsystem called “routing” is used to determine what should be done
with that request. The web application determines the name of the controller that
handles this particular request, along with a list of any other request parameters.
Typically one of these additional parameters identifies the action to be invoked in the
target controller. Once the controller is identified, a new instance of the controller
class is created, and its process method is called, passing in the request details and
a response object. The controller then calls a method with the same name as the
action. The action method in the controller will need to execute the business logic
processing, to update the business value objects and to decide the next page to
return to the browser.

The config/routes.rb file contains all routing information for the application. The
Routing component draws a map that connects external URLs to the internals of the
web community application. The routes.rb file is processed from top to bottom when
a request comes in. The request will be dispatched to the first matching route. If there
is no matching route, an HTTP status 404 – Not Found error message, is returned to
the caller. In order to achieve the desired application functionality RESTful, Named
and Nested Routes were used. A look at the config/routes.rb file will provide the
reader a short explanation about the different types of routes. Figure 4.8 shows a

Dimitar Zlatkov 34

Chapter 4 - Project Design

table of the used routes in the Web Community project, along with the matching
controller, action and HTTP verb.

HTTP
verb

URL Controller Action Used for

GET /users Users index Home page

GET /users/:id Users show Show user profile

GET /users/:user_id/friends Friends index Show user
friends

PUT /users/:user_id/friends/:id Friends update Accept friendship
request

POST /users/:user_id/friends/:id Friends create Create friendship
request

DELET
E

 /users/:user_id/friends/:id Friends destroy Delete friend,
decline
friendship
request

GET /users/:user_id/albums Albums index Show user
albums

GET /users/:user_id/albums/new Albums new HTML form for
new album

GET /users/:user_id/albums/:id/edit Albums edit HTML form for
edit album

PUT /users/:user_id/albums/:id Albums update Update user
album

DELET
E

 /users/:user_id/albums/:id Albums destroy Delete user
album

GET /
users/:user_id/albums/:album_id/photos/:id

Photos show Show user photo

GET /
users/:user_id/albums/:album_id/photos/:id
/edit

Photos edit HTML form for
edit photo

PUT /
users/:user_id/albums/:album_id/photos/:id

Photos update Update user
photo

DELET
E

/
users/:user_id/albums/:album_id/photos/:id

Photos destroy Delete user
photo

GET /profiles/:id/edit Profiles edit Edit user profile

PUT /profiles/:id Profiles update Update user
profile

GET /mailbox & /inbox Mailbox index User Inbox

POST /mailbox/delete_messages Mailbox delete_me
ssages

Delete selected
messages

GET /messages/:id Messages show Show user

Dimitar Zlatkov 35

Chapter 4 - Project Design

message

GET /messages/:id/reply Messages reply Reply to user
message

GET /messages/:id/forward Messages forward Forward user
message

GET /sent Sent index Show all sent
messages

GET /sent/:id Sent show Show sent
message

POST /sent/delete_messages Sent delete_me
ssages

Delete selected
messages

GET /sent/new Sent new HTML form for
creating new
message

POST /sent Sent create Creates new
message

GET /maps Maps index Show map

GET /admin/users admin/Users index Admin home

GET /admin/users/new admin/Users new HTML form for
adding new user

POST /admin/users/:id/suspend admin/Users suspend Suspend user

POST /admin/users/:id/unsuspend admin/Users unsuspen
d

Activate user

DELET
E

/admin/users/:id/purge admin/Users purge Delete user

GET /admin/settings/edit admin/Settings edit HTML form for
editing
application
settings

PUT /admin/settings admin/Settings update Update
application
settings

GET /session/new & /login Session new HTML form for
login

Fig. 4.8 Routes table of the Web Community application.

After routing has determined which controller to use for a request, the controller is
responsible for making sense of the request and producing the appropriate output.
The controller ensures the model data is available to the view, so it can display this
data to the user, and the controller is responsible for saving and updating user data
in the model.

Dimitar Zlatkov 36

Chapter 4 - Project Design

4.5 Back-end - Database Design

After introducing the MVC structure design of the Web Community application, it is
time to have closer look on the database design. Developing with Rails provides a
convenient way of creating, altering and managing databases and tables by using
migrations. Migrations are sub classes of ActiveRecord::Migration class and can be
found in the db/migrate directory. Creating a model class in Rails application,
automatically generates a create table migration class with two class methods: up –
for performing the required transformations and down – for reverting them.

For the back-end of the Web Community project a MySQL RDBMS is used. The
design of database is strongly connected to the design and the business rules of the
application’s model layer. The configuration of the application's database is done in
config/database.yml file.

Data stored and retrieved from tables on the database server are as follows.

Users Table

This table holds all the information entered by the administrator user at the time of
registration.

• id – this field is the primary key of the users table
• login – this field holds the community nick name of the user
• name – this field holds the full name of the user
• email – this field holds the email address of the user, used for log-in

authentication
• crypted_password – this field holds the user crypted password, stored as 40-

character string of hex digits
• salt – this field holds the password salt, stored as 40-character string of hex

digits
• remember_token – this field holds the remember me value, stored as 40-

character string of hex digits
• remember_token_expires_at – the field holds the remember me expire date

and time, stored as datetime type
• activation_code – this field holds a 40-character string activation code,

generated when new user is created
• activated_at – this field holds the date and time, when user activated his/her

account, stored as datetime type
• state – this field holds the user state, stored as varchar(255) type
• deleted_at – this field holds the date and time, when user has been deleted,

stored as datetime type
• reset_code – this field holds the 40-character string reset code for password

change
• created_at – this field holds the date and time, when user has been created,

stored as datetime type

Dimitar Zlatkov 37

Chapter 4 - Project Design

• updated_at – this field holds the date and time, when user has been updated,
stored as datetime type

Profiles Table

This table holds all the personal information about the community user.

• id – the field is the primary key of profiles table
• user_id – the field is the foreign key to users table
• first_name – the field holds the first name of the community user
• last_name – the field holds the second name of the community user
• birthday – the field holds the the birthday of the community user, stored as

date type
• gender – the field holds the gender of the community user
• hometown – the field holds the home town/city of the community user
• homecountry – the field holds the home country of the community user
• city – the field holds the current living town/city of the community user
• zipcode – the field holds the zip code of user's address
• country – the field holds the current living country of the community user
• region – the field holds the current living region of the community user
• status – the field holds the user status
• school – the field holds the user's school
• skype – the field holds the user's skype account
• interests – the field holds the user's interests
• about_me – the field holds information about the user
• here_for – the fields holds the user's community intentions
• website – the field holds the user's website
• created_at – this field holds the date and time, when profile has been created,

stored as datetime type
• updated_at – this field holds the date and time, when profile has been

updated, stored as datetime type

Albums Table

This table holds the community user albums – album name and album location.

• id – the field is the primary key of albums table
• user_id – the field is the foreign key to users table
• album_name – the field holds the album name
• location – the field holds the album location
• created_at – the field holds the date and time, when the album is created
• updated_at – the field holds the date and time, when the album is updated

Photos Table

This table holds the user photos. Each photo is represented by photo image, photo
thumb and photo small.

Dimitar Zlatkov 38

Chapter 4 - Project Design

• id – the field is primary key of photos table
• user_id – the field is foreign key to users table
• album_id – the field is foreign key to albums table
• parent_id – the field holds the parent id (the id of photo image) for photo

thumb and photo small
• size – the field holds the photo size
• width – the field holds the photo width
• height – the field holds the photo height
• content_type – the field holds the photo, image type
• filename – the field holds the file name of the photo
• thumbnail – the thumbnail type of the photo (NULL for photo image, thumb for

photo thumb and small for photo small)
• description – the field holds the photo description, entered by the user
• location – the field holds the photo location, entered by the user
• created_at – the field holds the date and time, when photo has been added
• updated_at – the field holds the date and time, when photo has been updated

Friendships Table

This table holds the community user friendships and friendship requests.

• id – the field is the primary key of friendships table
• user_id – the field is the foreign key to users table
• friend_id – the field holds the friend user id
• status – the field holds the friendship status (requested, pending, accepted)
• created_at – the field holds the date and time, when friendship has been

requested
• updated_at – the field holds the date and time, when friendship has been

updated

Walls Table

This table holds the community user profile wall.

• id - the field is primary key of walls table
• user_id – the field is the foreign key to users table
• title - the field holds the wall's title
• created_at – the field holds the date and time, when wall has been created
• updated_at – the field holds the date and time, when wall has been updated

Comments Table

This table holds the community user comments for user wall profile and user photos.

• id – the field is primary key of comments table
• title – the field holds the comment's title

Dimitar Zlatkov 39

Chapter 4 - Project Design

• comment – the field holds the comment's text
• user_id – the field is foreign key to users table
• commentable_id – the field holds the commentable id (wall id or photo id)
• commentable_type – the field holds the commentable type (Wall or Photo)
• created_at – the field holds the date and time, when comment has been

created
• updated_at – the field holds the date and time, when comment has been

updated

Folders Table

This table holds the community user messages folders.

• id – the field is primary key of folders table
• user_id – the field is foreign key to users table
• parent_id – the field holds the id of the parent folder
• name – the field holds the folder name
• created_at – the field holds the date and time, when folder has been created
• updated_at – the field holds the date and time, when folder has been updated

Messages Table

This table holds the community user messages.

• id – the field is primary key of messages table
• author_id – the field is foreign key to users table
• subject – the field holds the message subject
• body – the field holds the message text
• removed – the field holds the removed flag, stored as boolean.
• created_at – the field holds the date and time, when message has been

created
• updated_at – the field holds the date and time, when message has been

updated

MessageCopies Table

This table holds the community user received messages.

• id – the field is primary key of message_copies table
• recipient_id – the field is foreign key to users table
• message_id – the field is foreign key to messages table
• folder_id – the field is foreign key to folders table
• read_at – the field holds the date and time, when message has been read
• created_at – the field holds the date and time, when message has been

created
• updated_at – the field holds the date and time, when message has been

updated

Dimitar Zlatkov 40

Chapter 4 - Project Design

Locations Table

This table holds the locations for added to map photos

• id – the field is primary key of locations table
• photo_id – the field is foreign key to photos table
• name – the field holds the location description
• address – the field holds the full address location
• city – the field holds the location city
• country – the field holds the location country
• state – the field holds the location state
• zip – the field holds the location zip code
• lat – the field holds the location latitude, stored as decimal
• lng – the field holds the location longitude, stored as decimal
• created_at – the field holds the date and time, when the location has been

created
• updated_at – the field holds the date and time, when the location has been

updated

Settings Table

This table holds application server information and constants, user by the
administrator user to restrict and manage community users.

• id – the field is primary key of settings table
• space – the field holds the absolute available application space in megabytes
• user_space – the field holds the available user space in megabytes
• photo_size – the field holds the average photo size of the application
• max_photos – the field holds the maximum photos available per album
• max_albums – the field holds the maximum album available per user
• max_messages – the field holds the maximum messages available per user
• created_at – the field holds the date and time, when setting has been created
• updated_at – the field holds the date and time, when setting has been

updated

SchemaMigrations Table

This table holds information about the current schema migration version. The table
has just one column and one row. When the database is migrated (roll back or
update), the version number is read, the migration code then looks at all migration
files in db/migrate directory, finds the current version and migrates the database to
previous or newer version.

• version – the field is primary key of schema_migrations table

Figure 4.10 show the database design model of the web community application.

Dimitar Zlatkov 41

Chapter 4 - Project Design

Fig. 4.9 Database design model of the Web Community application.

Finally, it should be stated, that the current database model is not a final one. During
the Web Community project development, changes in database tables and table
attributes could be committed.

Dimitar Zlatkov 42

Chapter 5 – System Realization

Chapter 5 – System Realization

5.1 Realization of Log-in

The log-in/start page provides two text fields on top right corner used for user
authentication. User is authenticated by email account and password. Figure 5.1
shows the start page of the Web Community application.

Fig. 5.1 Start page of the Web Community application.

A non registered user has the ability to use the map, find addresses and places of
interest. More information about the realization and integration of Google Maps, as
well as the implementation of the search engine and the map sidebar will be given
further in this chapter.

The next step is to have a look at how the User authentication is implemented. The
SessionsController is the controller that handles the actual log-in/logout functionality
on the site. After submitting a valid email address and password, SessionsController
calls the create method for creating new session. A cookie is used to store the
session id on the user's web browser, but before the cookie is stored, the email and
password are checked. This is done by the User model method authenticate(email,
password).

Dimitar Zlatkov 43

Chapter 5 – System Realization

def self.authenticate(email, password)
 return nil if email.blank? || password.blank?
 u = find_in_state :first, :active, :conditions => {:email => email}
 u && u.authenticated?(password) ? u : nil
end

The authenticate(email, password) method takes the email and password parameters
from the log-in form on the start page. It first checks if email or password are empty
and returns a nil object if one of them is blank. Then it get the first user from the
database where state is active and email matches, and saves it in an object. At the
end, if object is not nil and object password matches the password parameter, user
object is returned. The authenticated?(password) method takes the user password,
encrypts it and returns true if equal to the user crypted_password attribute in the
Users database table.

def authenticated?(password)
 crypted_password == encrypt(password)
 end

How is the authentication system of the Web Community application realized?

The authentication system is realized in such a way that the Users database table
does not save the user password itself. The Users table has two columns
crypted_password and salt, and each User object has a crypted_password attribute
and a salt attribute. When new user is created, a salt is generated using the
make_token method and user's password is encrypted using the encrypt(password)
method. Both methods make use of the secure_digest(*args) method, which runs a
SHA1 (Secure Hashing Algorithm) digest on the received arguments and returns a
40-character string of hexadecimal digits. In this way the saved values for the
crypted_password and salt in the Users table are a 40-character hex strings.

 def make_token
 secure_digest(Time.now, (1..10).map{ rand.to_s })
 end

 def encrypt(password)
 self.class.password_digest(password, salt)
 end

 def secure_digest(*args)
 Digest::SHA1.hexdigest(args.flatten.join('--'))
 end

 def password_digest(password, salt)
 digest = REST_AUTH_SITE_KEY
 REST_AUTH_DIGEST_STRETCHES.times do
 digest = secure_digest(digest, salt, password, REST_AUTH_SITE_KEY)
 end
 digest
 end

Dimitar Zlatkov 44

Chapter 5 – System Realization

The password_digest(password, salt) method makes the crypted password more
secured by using the two site keys REST_AUTH_SITE_KEY and
REST_AUTH_DIGEST_STRETCHES, which are randomly generated numbers. The
site keys gives additional protection against a dictionary attack. Without site key, if
database were to be compromised the users' passwords will be vulnerable to a
hacker attack. With a site key, an attacker needs access to both site's code and site's
database in order to mount an offline dictionary attack.

5.2 Realization of User Profile

After log-in, user is able to see and modify his/her profile. The profile page include
information about the user, user's friends and user's albums. The profile page serves
also as a presentational page, it presents the user to the community. Figure 5.2
shows the profile page of the Web Community application.

Fig. 5.2 Profile page of the Web Community application.

The profile page is separated into several sections. The Account, Personal and
Contact sections are managed by the ProfilesController, user's profile attributes are
saved in the Profiles database table. The Profile section contains the user profile

Dimitar Zlatkov 45

Chapter 5 – System Realization

image, links to view and edit user albums, and link to edit user's profile. The Friends
and Albums sections contain links to user's friends, respectively user's albums.

Editing the profile is done by clicking on the “Edit Profile” link. The edit profile page
provides a form for editing all the user information. Edit profile form is divided into
four sections – “Change personal info”, “Change address info”, “More info” and “Set
Profile Pic”. In “Change personal info” section user can edit information about his/her
date of birth, gender, first and family name. The “Change address info” section
includes information about user's address, city, country and region. The “More info”
section contains information about user's interests, hobbies, user's website and
others. The last link navigates user to his/her Profile album, where user can change
his/her profile image. Clicking the “Update” button, updates the user's profile
information. Figure 5.3 show the edit profile page of the Web Community application.

Fig. 5.3 Edit profile page of the Web Community application.

Dimitar Zlatkov 46

Chapter 5 – System Realization

Uploading images to user profile

Community user can create new albums and upload images to albums. The Web
Community application uses “attachment_fu” plug-in by Rick Olson. Attachment_fu
facilitates the image file uploads in the application. For image manipulation and
resizing, as well as generation of thumbnails, the Rmagick image processor is used.
RMagick is an interface, using the Ruby programming language and the
ImageMagick® and GraphicsMagick image processing libraries. More information is
available on [13].

The upload photo form is part of the edit album page. The photo upload form consist
of text field and browse button, where user can browse images on his/her personal
computer or other external storage devices. The “Update” button uploads the
selected from user image. Figure 5.4 shows the edit album page of the Web
Community application.

Fig. 5.4 Edit album page of the Web Community application.

Dimitar Zlatkov 47

Chapter 5 – System Realization

The Photo model of the application make use of two methods available from the
“attachment_fu” plug-in. The following code snippet shows part of model class Photo,
available in app/models directory.

 has_attachment :content_type => :image,
 :size => 0.megabyte..3.2.megabytes,
 :storage => :file_system,
 :processor => 'Rmagick',
 :resize_to => '450x450',
 :thumbnails => {:thumb => 'thumb: 90x90>', :small => 'crop: 30x30>'}

 validates_as_attachment

The used parameters for the has_attachment method are content_type, size,
storage, processor, resize_to and thumbnails. The content_type specifies the type of
uploading file, image option allows all standard types of images to be uploaded. The
size defines the maximum and minimum size of the file. The storage specifies the
storage system, where the files are stored. Using the file_system parameter saves
the resized images in a directory on the server. The processor parameter defines the
used image library for image processing. The Web Community application uses the
Rmagick image library. The resize_to parameter specifies the size to which the
images will be resized. Application uses a “450x450” pixel, the image will be resized
to 450 pixel on the longer side. In other words if the image width is bigger than the
image height, image width will be resized to 450 pixel, and the image height will be
resized proportionally. The thumbnails parameter of the has_attachment method
takes two sub-parameters - thumb and small. When an image is uploaded, it will be
resized, two additional images will be generated – thumb with 90x90 pixel and small
with 30x30 pixel. Looking in the database table Photos on each image upload three
new records are been added. The first is the actual image resized with filename -
image_filename and id - image_id. The second is the small image with filename -
image_filename_small and parent_id - image_id. The third is the thumb image with
filename - image_filename_thumb and parent_id - image_id.

The validates_as_attachment method prevents files outside of the valid range (size
range) from being saved.

5.3 Realization of Social Network

Social network functionality is one of the core features of the application. The Web
Community user can add other users – friends to his or her profile. The friends index
page allows the user to see his or her current friends, requested friends, and pending
friends. Figure 5.5 shows the friends index page of the Web Community application.

Dimitar Zlatkov 48

Chapter 5 – System Realization

Fig. 5.5 Friends index page of the Web Community application.

By clicking the friend's name or profile picture, the user is linked to his or her friend
(current, requested or pending) profile. User has the option to send messages to
friends and view friends of his or her friend. User can also remove current friend from
his or her network, cancel a friendship request, accept or reject a pending friend.

How does the social network work?

All the friendship functionality is done by the FriendsController class, which can be
found in app/controllers directory. A typical scenario is when the community user log-
ins and starts playing around with the application. First the user finds a known friend
using the searching machine and sends a friendship request. How the searching
machine works is explained later in this chapter. After the friendship request is sent,
the requested user receives a message in his or her mailbox. This first step is done
by the create action in FriendsController class.

 def create
 @message = current_user.sent_messages.build(:to => params[:friend_id],
 :subject => "Friendship Requested", :body => params[:friendship][:body])
 @user = User.find(current_user)
 @friend = User.find(params[:friend_id])
 params[:friendship1] = {:user_id => @user.id, :friend_id => @friend..id, :status =>
'requested'}
 params[:friendship2] = {:user_id => @friend.id, :friend_id => @user.id, :status =>
'pending'}
 @friendship1 = Friendship.create(params[:friendship1])
 @friendship2 = Friendship.create(params[:friendship2])

...
 end

A Message object is created, the user and the friend are found and saved in User
objects, and two Friendship objects are created – one for the user with status
attribute “requested” and one for the friend with status attribute “pending”. Every new

Dimitar Zlatkov 49

Chapter 5 – System Realization

relationship add two new records (rows) in the Friendships database table with
user_id, friend_id and status. As one can see in the friendship1 and friendship2
parameters have the user_id and friend_id values substituted.

The next step is when the possible new friend sees the friendship invitation, he or
she has two possibilities - either to accept or to reject the friendship request. In case
of rejecting it the destroy action in FriendsController class is called.

 def destroy
 @user = User.find(params[:user_id])
 @friend = User.find(params[:id])
 @friendship1 =
@user.friendships.find_by_user_id_and_friend_id(params[:user_id],params[:id]).destroy
 @friendship2 =
@friend.friendships.find_by_user_id_and_friend_id(params[:id],params[:user_id]).destroy
 redirect_to user_friends_path
 end

The users are first found in the Users database table and saved in instance variables
@user and @friend. Next, the two friendships are found and deleted. In case of
accepting the friendship request, the update() method in FriendsController class is
called.

 def update
 @user = User.find(current_user)
 @friend = User.find(params[:id])
 params[:friendship1]={:user_id => @user.id, :friend_id => @friend.id, :status =>
'accepted'}
 params[:friendship2]={:user_id => @friend.id, :friend_id => @user.id, :status =>
'accepted'}
 @friendship1 = Friendship.find_by_user_id_and_friend_id(@user.id, @friend.id)
 @friendship2 = Friendship.find_by_user_id_and_friend_id(@friend.id, @user.id)
 if @friendship1.update_attributes(params[:friendship1]) &&
 @friendship2.update_attributes(params[:friendship2])
 flash[:notice] = 'User sucessfully accepted!'
 redirect_to user_friends_path(@user)
 else
 redirect_to user_path(current_user)
 end
 end

It finds the user and friend in the Users database table, creates the new friendship
parameters with status 'accepted', finds the two friendships in the Friendships table
and updates them with the new parameters.

5.4 Realization of Messaging System

Web community user can compose, send and receive messages from other users.
The mailbox system makes use of the Folders, Messages and MessageCopies
database tables. Three controllers are used to handle the messaging system
functionality.

Dimitar Zlatkov 50

Chapter 5 – System Realization

Community user can compose and send messages to other users. The sent new
page is showed on figure 5.6. The compose HTML form has text fields for recipient,
message subject and message body. After pressing the “Send” button, the create()
method in SentController is called.

Fig. 5.6 Sent new page of the Web Community application.

Before new message is created and stored in the Messages database table, the
Message model, in app/models directory, validates the message by using the
validation helper methods. The following code snippet shows the validation of
presence and length of the :subject and :body Message attributes.

validates_presence_of :subject, :message => "Subject is missing!"
validates_length_of :subject, :within => 1..60, :message => "Subject should be 1 to 60
characters long!"
validates_presence_of :body, :message => "Message body is missing!"
validates_length_of :body, :within => 1..450, :message => "Body should be 1 to 450
characters long!"

After the validation the prepare_copies() method in Message model is called. The
method is responsible for building copies for each recipient and link them to
recipients Inbox folder id.

 def prepare_copies
 return if to.blank?
 to.each do |recipient|
 recipient = User.find(recipient)
 message_copies.build(:recipient_id => recipient.id, :folder_id => recipient.inbox.id,

:created_at => Time.now)
 end
 end

Dimitar Zlatkov 51

Chapter 5 – System Realization

After message copies are built, message is created and saved in Messages table.
Web Community member can see and read his or her sent messages using the sent
page. Sent page shows a list of all the sent messages by the user. Figure 5.7 shows
the sent page of the Web Community application.

Fig. 5.7 Sent page of the Web Community application.

User has the option to select or unselect all sent messages. The user can delete sent
messages by selecting the desired message and pressing the “Delete” button. This
will call the delete_messages method in SentController.

def delete_messages
 if params[:message_ids]
 @messages = current_user.sent_messages.find(params[:message_ids])
 for message in @messages
 message_copy = MessageCopy.find_by_message_id(message.id, :first)
 if message_copy != nil
 message.removed = 1
 message.save
 else
 message.destroy
 end
 end
 end
 redirect_to :action => "index"
 end

The message_ids parameter is an array containing all the selected message ids. All
the selected messages are found in the Messages table and stored in @messages
instance variable. For each message in @messages, a message copy is searched, if

Dimitar Zlatkov 52

Chapter 5 – System Realization

found the message removed attribute is set to “1” and message is saved, else the
message is deleted. The reason of not deleting the message directly is that all the
received messages the user has, are instances of MessageCopies. Since the
MessageCopies table does not have the message body and subject attributes, it
stores only the message_id, recipient_id and folder_id, the original message record
in Messages database table is needed. The removed message attribute is set “1”, if
the message was deleted by the author, but it is still present in the recipient's Inbox.

User can check his or her received messages using the Inbox page. The
MailboxController is responsible for showing and deleting received messages –
objects of MessageCopies database table, from the Inbox folder. Figure 5.8 shows
the Inbox page of the web community application.

Fig. 5.8 Inbox page of the Web Community application.

User can also select and unselect all messages. The “Delete” button calls the
delete_messages method from the MailboxController.

def delete_messages
 @folder ||= current_user.folders.find(params[:id])
 if params[:message_ids]
 @messages = @folder.messages.find(params[:message_ids])
 for received_message in @messages
 sent_message = Message.find(received_message.message_id)
 received_message.destroy
 if (sent_message.removed == true)
 sent_message.destroy unless

 @folder.messages.find_by_message_id(sent_message.id)
 end
 end
 end
 redirect_to inbox_path

Dimitar Zlatkov 53

Chapter 5 – System Realization

 end

The delete_messages method here first finds and saves the user's Inbox folder into a
@folder instance variable. The Inbox folder contains all the received messages. This
time @messages represents an array of MessageCopies objects. For each message
in @messages the original message is found first, then the received message(the
MessageCopy) is deleted. If the sent message removed flag is true, in other words –
the author has deleted this message, and the are no other recipients, who have this
message saved, the sent message is deleted from Messages database table.

User can read each message, reply to it or forward it. By clicking the message
subject in the Inbox page the show action in MessagesController is called. The
MessagesController handles the show, reply and forward actions. Figure 5.9 shows
the show message page of the Web Community application.

Fig. 5.9 Show message page of Web Community application.

User can reply to or forward the message. The “Reply” link will call the reply action in
MessagesController, which will generate a new compose message form with a
recipient - “John”, subject - “Re: Friendship Request” and body - “> Please allow me
to see your profile.”. The “Forward” link will call the forward action in
MessagesController, which will generate new compose message form with subject -
“Fwd: Friendship Requested” and body - “> Please allow me to see your profile.”.

5.5 Realization of Comments System

A community user can comment on his or her wall and on his or her friends' walls.
User can also comment on his or her photos and on his or her friends' photos. Since
both walls and photos have comments and the application uses only one Comments
table, the Comment model implements a polymorphic relationship. In other words a
single model can be associated to an arbitrary number of other model types. If the
user adds a wall comment, a new record with be created in the Comments database
table with the comment text, user_id – the current user, commentable_id – the wall id
and commentable_type – Wall. On the other hand if the user comments on a photo, a
new record will be created in the Comments database table with comment text,

Dimitar Zlatkov 54

Chapter 5 – System Realization

user_id – current user, commentable_id – the id of the photo and commentable_type
– Photo. Using the polymorphic association keyword: commentable, there is no need
to create additional table columns in Comments table such as wall_id or photo_id.
The application makes use of the two commentable_id and commentable_type
columns to distinguish between different types of comments. In this way adding more
models, which have many comments will not be a problem.

The comment system functionality is realized by the CommentsController in
app/controllers directory. Community user can add new comment to walls or photos,
and he or she can delete comments from his or her wall or photos. Figure 5.10 shows
the comments page of the Web Community application, which includes the add new
comment form.

Fig. 5.10 Comments partial page of the Web Community application.

By pressing the “Post” button, POST request is generated, the create action in
CommentsController is called, comment text is first validated, then comment object is
created and saved in the Comments database table.

5.6 Realization of Administrator User

The administrator user is super user, who has access to the application settings,
stored in Settings database table, and can control other members of the web
community application. For the realization of the administrator user, the application
uses an admin namespace with routes to admin UsersController and admin

Dimitar Zlatkov 55

Chapter 5 – System Realization

SettingsController. The code snippet shows the declaration of admin namespace in
routes.rb file, stored in config directory.

map.namespace :admin do |admin|
 admin.resources :users, :member => { :suspend => :post,
 :unsuspend => :post,
 :purge => :delete }
 admin.resource :settings, :collection => {:calculate => :any}
end

The admin.resources :users and admin.resource :settings create RESTful routes.
RESTful routes provide a mapping between the HTTP verbs and
Admin::UsersController, respectively Admin::SettingsController actions. Figure 5.11
shows the administrator user page of the Web Community application. The page has
“Control Panel” section, where the administrator can see the current application
settings. Application settings can be edited by pressing the “Edit” link in the bottom-
right corner of the “Control Panel”. Under the “Control Panel” section administrator
can see and control all the community users.

Fig. 5.11 Administrator user page of the Web Community application.

The User model in the application acts as a finite state machine. The Web
Community application uses the AASM (Acts As State Machine) library for Ruby to
add the finite state machine functionality. The following code snippet defines the user
states.

aasm_column :state

Dimitar Zlatkov 56

Chapter 5 – System Realization

 aasm_initial_state :initial => :passive
 aasm_state :passive
 aasm_state :pending, :enter => :make_activation_code
 aasm_state :active, :enter => :do_activate
 aasm_state :suspended
 aasm_state :deleted, :enter => :do_delete

The column state in Users database table is used to save the current user state. User
can have five different states, where passive state is used only when new user is
created. The :enter option executes the given action when user enters in the state.
Figure 5.12 shows a state diagram of User model.

Fig. 5.12 State diagram of User model in the Web Community application.

The state transitions are defined by the following code snippet.

 aasm_event :activate do
 transitions :from => :pending, :to => :active
 end
 aasm_event :suspend do
 transitions :from => [:passive, :pending, :active], :to => :suspended
 end
 aasm_event :delete do
 transitions :from => [:passive, :pending, :active, :suspended], :to => :deleted
 end
 aasm_event :unsuspend do
 transitions :from => :suspended, :to => :active, :guard => Proc.new {|u| !
u.activated_at.blank? }
 transitions :from => :suspended, :to => :pending, :guard => Proc.new {|u| !
u.activation_code.blank? }

Dimitar Zlatkov 57

Chapter 5 – System Realization

 transitions :from => :suspended, :to => :passive
 end

Now lets see how a new community user is created and controlled by the
administrator. By pressing the “Create New User” link, the administrator calls the new
action in Admin::UsersController.

 def new
 @random_password = User.random_password(8)
 @user = User.new
 end

 def self.random_password(size = 8)
 chars = (('a'..'z').to_a + ('0'..'9').to_a + ('A'..'Z').to_a) - %w(i o 0 1 l 0 O)
 (1..size).collect{|a| chars[rand(chars.size)] }.join
 end

The new action generates a random password using the random_password(size)
method in User model, creates new empty User object and renders the new user
page. The random_password(size) method takes alphabets, numbers from 0 to 9,
capital letter alphabets and adds them to an array. Then removes 'I', 'o', '0', '1', 'l', '0',
'O' and stores the new array. Finally eight random characters are chosen from the
array and returned as a string. Figure 5.13 shows the new user page of the Web
Community application.

Fig. 5.13 New user page of the Web Community application.

Administrator should enter user name, full name and email in the text fields provided,
the password and confirm password fields are filled out automatically. After pressing
the “Sign up” button, the create action in Admin::UsersController is called.

def create
 @user = User.new(params[:user])
 @user.register! if @user && @user.valid?

 ...
end

Dimitar Zlatkov 58

Chapter 5 – System Realization

New user object is created using the :user parameters, initial user state is passive.
User is registered and state transition is done – from passive to pending. User
activation code is generated using the make_activation_code() method in User model
and stored in the activation_code column in Users database table. An email with the
user activation code is sent to user's email account. After user clicks the activation
link, a state transition is done from pending to active.

How does the email notification work?

The class UserObserver in app/models directory observes the User model, it has two
methods after_create(user) and after_save(user). Each time a user is saved or new
user is created, the after_save, respectively after_create method is called.

 def after_create(user)
 user.reload
 UserMailer.deliver_signup_notification(user)
 end

 def after_save(user)
 user.reload
 UserMailer.deliver_activation(user) if user.recently_activated?
 UserMailer.deliver_reset_notification(user) if user.recently_reset?
 end

The UserMailer class in app/models is responsible for email message creation and
delivery. The application use email notifications when new user is created, activated
or user password is reseted.

The administrator user can suspend, activate or remove by one click any user of the
Web Community application. Once the “suspend” link is clicked, the suspend action
in Admin::UsersController is called, a state transition from active state to suspended
state is done. In suspended state user can not access his or her account, but the
account is present in the database and can be activated by the administrator. Once
the “remove” link is clicked, the purge action in Admin::UsersController is called, a
state transition from current user state to deleted state is done, user account is
deleted and can not be recovered.

5.7 Realization of Navigation Bar and Search Engine

When logged-in, the community user can navigate through the pages using the
navigation bar, positioned on the top of the page. Figure 5.14 shows the navigation
bar of the community platform. The partial template can be found in
app/views/shared/_navigation.html.erb file.

Fig. 5.14 Navigation bar of the Web Community application.

Dimitar Zlatkov 59

Chapter 5 – System Realization

The navigation bar contains links to home page (“Home”), show profile page
(“Profile”), show friends page (“Friends”), inbox page (“Inbox”), show map page (“The
World”). In right corner links to home page (user's login name used), settings
(“Settings”) and logout link (“Logout”) can be found. The search form in the right
corner uses the search(search) method in User model.

 def self.search(search)
 if(search)
 find(:all, :conditions => ['login LIKE ? OR name LIKE ?', "%#{search}%", "%#{search}%"])
 end
 end

The method takes the search parameters entered by the user, finds all users in Users
database table, who have login like or name like the searched name. The home page
of the Web Community application includes an extended search form, where user
can search other users by user name, full name, gender, status, city, country and
region. Figure 5.15 shows the home page of the Web Community platform.

Fig. 5.15 Home page of the Web Community application.

The search form uses the extended_search(params) method in User model to search
for other community users in Users database table. The following code snippet
shows the the extended search method.

def self.extended_search(params)
 query= [] #here go the SQL strings with "?" placeholders
 values= []#here go the values to be inserted in the strings of the query

Dimitar Zlatkov 60

Chapter 5 – System Realization

 if params[:login] && params[:login] != ""
 query << " users.login = ?"
 values << params[:login]
 end
 if params[:gender] && params[:gender] != "all"
 query << " profiles.gender = ?"
 values << params[:gender]
 end
 if params[:status] && params[:status] != "all"
 query << " profiles.status = ?"
 values << params[:status]
 end
 if params[:city] && params[:city] != ""
 query << " profiles.city = ?"
 values << params[:city]
 end
 if params[:country] && params[:country].to_s != "all"
 query << " profiles.country = ?"
 values << params[:country]
 end
 conditions = []
 conditions << query.join(" AND ")
 conditions += values
 find(:all, :conditions => conditions, :include => [:profile])
end

The extended_search(params) method checks the selected by the user search form
fields. Each field value has a query string and parameter value, which are pushed
into a query, respectively values arrays. After all the parameters are checked, query
array entries are joined by an AND phrase and pushed into conditions array. At the
end conditions and values are joined, Users table is searched and all the matching
users are returned.

Dimitar Zlatkov 61

Chapter 5 – System Realization

5.8 Integrating Google Maps

Community user has the ability to interact with the World's map. On current point of
development the user can search places and addresses on the map, he can also link
photos from his albums to map locations. Figure 5.16 shows how the search places
and addresses work.

Fig. 5.16 Map page of the Web Community application.

After entering an address in the search field and pressing “Search” button, the search
action in MapsController is called. The found locations are displayed in the sidebar,
the first found location is focused and pointed on the map.

For linking user photos to the map, the Locations database table is used to store
photo location. Each photo can be linked to only one location on the map. This is
done from the show photo page in Web Community platform. The following figure
shows the add location form.

Dimitar Zlatkov 62

Chapter 5 – System Realization

Fig. 5.17 Add photo location form.

The add photo location form consist of two text fields – “Enter photo title” and “Enter
photo location”. User should enter both photo title and precise location, when
pressing the “Add to Map” button, the create action in LocationsController is called.

def create
 @photo = Photo.find(params[:id])
 @loc = GoogleGeocoder.geocode(params[:address])
 if @loc.success
 @location = Location.new(:photo_id => @photo.id, :name => params[:name],
 :address => @loc.full_address, :city => @loc.city, :state => @loc.state,
 :zip => @loc.zip, :country => @loc.country_code, :lat => @loc.lat, :lng => @loc.lng)
 if @location.save

...
end

The create action uses Geokit library for Ruby to geocode the address entered. If
successfully geocoded, a new Location object is created with the geocoded address
parameters. In the page sidebar a small map with a marker, pointing exact photo
location, will appear. All the entries, stored in the Locations database table, can be
viewed on the map as small thumbnails. By clicking them an info window with the
photo is showed on the map. The photo is a link to show photo page of user,
uploaded that photo. Figure 5.18 shows a map example with linked photos on it. By
clicking the info window photo, user will be redirected to the uploader's profile.

Dimitar Zlatkov 63

Chapter 5 – System Realization

Fig. 5.18 Show map page with photo markers.

For integrating Google Maps in the web community project, an API key is needed.
The API key can be generated on the Google Maps API website [14] and it can be
used only for one domain name. The Google Maps API is implemented in Javascript
and to integrate it in the application, a script tag in the page head should be included.

<script type="text/javascript" src="http://maps.google.com/maps?
file=api&v=2&key=ABQIAAAAdAtcnIwG_jTGwL1CAqxcVxTJQa0g3IQ9GZqIMmInSLzwtGDKaBT1Jt-0
jpamfPG4jJsvBmLBDf0XIg&sensor=true">
</script>

The following code includes the Google Javascript files if the key provided matches
the domain name of the application. Since the web community application is still in
development process, the key used is for http://localhost:3000/. All the functions used
for manipulating the map - map initialization, adding and removing markers are
written in Javascript and can be found in the public/javascripts/application.js file. The
Web Community application CSS files can be found in public/stylesheets directory.

Dimitar Zlatkov 64

Chapter 6 – Testing and Further Development

Chapter 6 – Testing and Further Development

The purpose of tests is to check the correctness and stability of the front-end and
also of the back-end of the application. The web community project has been tested
with and without using a web browser.

6.1 Automated Tests

Developing with Ruby on Rails allows to write automated tests and fixtures for the
Web Community application. By convention tests are divided into unit tests – for
testing the models, functional tests – for testing a single action in a controller, and
integration tests – for testing the flow through one or more controllers. Fixtures are
files in YAML or CSV format, which contain the data for a single model. The name of
the fixture file is significant, because it should match the name of a database table.
All the automated test classes and fixtures files are located in test directory of the
application's root directory.

Unit tests are used to test the Web Community application models. The unit test
classes can be found in test/unit directory of the application. Unit test classes are
subclasses of Test::Unit::TestCase class, part of the Test::Unit framework that comes
pre-installed with Ruby. Executing can be done easily from the console terminal.
Figure 6.1 shows how to run unit tests. Here we ran all unit tests, written for the User
model in the Web Community application. The tests are stored in user_test.rb file in
unit/test directory.

Fig. 6.1 Run all unit tests for User model.

When all unit tests have finished, a message with the elapsed time in seconds,
number of tests executed, number of assertions, failures and errors is displayed. If
the test is passed, 0 failures and 0 errors should appear. Lets have a look now at
some unit test examples.

class UserTest < ActiveSupport::TestCase
 fixtures :users #load fixtures which will be used
 ...

Dimitar Zlatkov 65

Chapter 6 – Testing and Further Development

end

The fixtures directive loads the fixture data, corresponding to the given model name,
into the corresponding database table before each test method in the test case is run.
The name of the fixture file determines the table that is loaded, in case of using
:users will cause the users.yml fixture file to be used. Here is how a fixture from
users.yml file look like.

quentin:
 id: 3
 login: quentin
 name: Quentin Tarantino
 email: quentin@hotmail.com
 salt: aca9e1a5cd7629909bac4d647d9484cdc54008c3
 crypted_password: 26c9e3a8ed1204e22ab09347aa87895806d38f0c
 state: active
 activated_at: 2009-05-08 21:05:36
 activation_code:
 deleted_at:
 reset_code:
 remember_token:
 remember_token_expires_at:

Each test method always starts with the prefix “test_”. The following code snippet
shows two tests – test_should_require_email and test_should_reset_password from
user_test.rb file

class UserTest < ActiveSupport::TestCase
 ...
 def test_should_require_email
 u = create_user(:email => nil)
 assert !u.save, "User with no email saved!"
 end

 def test_should_reset_password
 users(:quentin).update_attributes(:password => 'new password',
:password_confirmation => 'new password')
 assert_equal users(:quentin), User.authenticate('quentin@hotmail.com', 'new password')
 end
 ...
end

The first method – test_should_require_email, creates a User object without an
email. The assert statement checks if user can be saved. In case of user saved, the
assertion is not true and generates a failure, “User with no email saved!” is displayed
and test fails. The second method resets the password of user quentin if the two
user objects are the same. If password is not reseted, assertion will generate a failure
and test will fail.

Functional tests are used to test the Web Community application controllers. The
functional test classes can be found in test/functional directory of the application.
They are subclasses of ActionController::TestCase class. The purpose of writing

Dimitar Zlatkov 66

Chapter 6 – Testing and Further Development

functional tests is to test various actions of a single controller. Controllers handle the
incoming web request to the Web Community application and eventually respond
with a rendered view.
Application functional tests inspect if the web request was successful, if the
community user was redirected to the right page, if the community user was
successfully authenticated, if the correct object was stored in the response template,
if the appropriate message was displayed, and etc. The following code snippet
shows functional tests from the sessions_controller_test.rb file, found in
test/functional directory.

class SessionsControllerTest < ActionController::TestCase

 fixtures :users, :folders
 def test_should_login_and_redirect
 post :create, :email => 'quentin@hotmail.com', :password => 'monkey'
 assert session[:user_id]
 assert_response :redirect
 end
 ...
 def test_should_logout
 login_as :quentin
 get :destroy
 assert_nil session[:user_id]
 assert_response :redirect
 end

 def test_should_remember_me
 @request.cookies["auth_token"] = nil
 post :create, :email => 'quentin@hotmail.com', :password => 'monkey', :remember_me
=> "1"
 assert_not_nil @response.cookies["auth_token"]
 end
 ...
end

User opens the start page, enters his or her email account and password, and clicks
the “Login” button. A POST request to the create action in SessionsController is sent,
if user is valid, he or she is redirected to user home page. Now we check this
scenario by writing an automated test. First, all the fixtures needed for the tests are
loaded. The test_should_login_and_redirect method generates a POST request to
SessionsController, calling the create method with :email and :password parameters
set. On the next code line assertion checks if new user session has been created.
Finally, assertion checks if the response was redirect.

User is logged in and he or she decides to logout. The user clicks the “Logout” link, a
GET request to the destroy action in SessionsController is sent, user session is set to
nil, user is redirected to start page. We check this scenario by writing the second
method – test_should_logout. It generates a GET request to the destroy action in
SessionsController. After the destroy action is executed, the test checks with an
assertion if user session is set to nil and if the response is redirect. The test will be

Dimitar Zlatkov 67

Chapter 6 – Testing and Further Development

successful when all assertions have passed, and no failure or error has been
generated.

The third test - test_should_remember_me, generates a POST request to create
action in SessionsController with remember_me parameter set to '1', and checks if
after the log-in, the auth_token cookie is set. The two instance variables - @request
and @response, are available by default to all functional tests. Figure 6.2 shows the
results after running all sessions controller functional tests.

Fig. 6.2 Running sessions controller functional tests.

The Web Community application is working in development environment. Not all
automated tests are written. In order to bring the project to production environment,
unit and functional tests should be included for each application model, respectively
application controller. Unit tests should include at least one test method for each
model function. Functional tests should include at least one test method for each
controller action.

6.2 Usability Tests

The Web Community application has been tested with the web browser. In order to
test the project functionality, test users are used. Next step will be to run through a
typical web page scenario. First, the community user opens the start page in his or
her browser client. User enters his or her email account and password and tries to
log-in (Figure 6.1). Log-in fails, because user has entered a wrong email address or
wrong password. User is redirected to log-in page (Figure 6.2), an error message is
displayed.

Dimitar Zlatkov 68

Chapter 6 – Testing and Further Development

Fig. 6.3 User opens the start page and tries to log-in.

Fig. 6.4 User is asked to enter correct email/password combination.

After user enters the correct email and password combination, he or she is redirected
to the home page (Figure 6.5). User decides to add new image to his or her album.
He or she goes to the profile page (Figure 6.6) and clicks on the the desired album in
Albums section. Edit album page is displayed. Community user selects the add
image form and tries to update the album. He or she decides to test the form and
selects a non image file or a image file bigger than 3 MB. When clicking the “Update”
button, the page is redisplayed with an error message on top (Figure 6.5). Album can
not be updated.

Dimitar Zlatkov 69

Chapter 6 – Testing and Further Development

Fig. 6.5 User is redirected to home page.

Fig. 6.6 User selects the desired album.

Dimitar Zlatkov 70

Chapter 6 – Testing and Further Development

Fig. 6.7 User attempts to update album with invalid content.

Similar usability tests has been made for all the pages and user forms in the Web
Community application. Usability tests help to find application errors and web
browser bugs. On current level of development, application is tested only with Mozilla
Firefox browser and full functionality with other web browser clients is not
guaranteed. For future testing, the Web Community application will be loaded on real
web server.

6.3 Further work

More Testing. The application is still running in development environment and
includes some newly developed parts, which are not yet fully tested. Application
errors and bugs could still occur. In order to bring the Web Community application to
production environment additional tests are needed. Future development includes
writing more automated unit and functional tests. Every model and controller method
should be tested with and without a web browser support.

Extending web browsers support. Future development includes testing and
modifying the application in order to work with other web browsers. Support for
Internet Explorer and Google Chrome is planned to be developed. Different web
browsers display in a different way the page and code optimization is needed.
Application modification includes changes in some HTML view templates, as well as
changes in the CSS files of the application.

Dimitar Zlatkov 71

Chapter 6 – Testing and Further Development

Implementing unimplemented features.

Use SSL to transmit sensitive information. Future development includes
implementing a HTTPS protocol for SessionsController and UsersController, in order
to encrypt the traffic between the user web browser and the server. SSL will be used
whenever forms that capture sensitive information appear, and whenever the server
responds to user with a sensitive information. If a regular HTTP request comes along
for a method that has been declared to require SSL, it will be intercepted and
immediately issue a redirect back to the same URL, but with a protocol of HTTPS.
That way the community user will automatically be switched to a secure connection
without the need to perform any explicit protocol setting. Similarly, if an HTTPS
request comes in for an action that shouldn't use SSL, it will be automatically
redirected back to the same URL, but with a protocol of HTTP.

Implementing a Blog. Future development includes implementing a blog, where
users can post new articles, other community users can comment and non
community users can only read the articles and article's comments. In order to
extend the Web Community application with a blog, new database table should be
created. This database table will hold the blog articles. An Article model, as well as
an ArticlesController will be needed. Each article will have many comments with
commentable_id holding the id of the article and commentable_type will be of type
Article. A normal article record will have an id, article_title, article_text. The blog page
will show all the articles, by calling the index action in ArticlesController class. By
selecting an article user will be redirected to show article page, the show action in
ArticlesController will be called. The show article page will display the article with its
full text, the comments for this article, and a HTML form for writing new comment.
Only signed community users will be able to write comments to the article.
Community blog will be used for additional communication between users. It will also
provide community information to other, non-registered users.

Extending map functionality. On current level of application development, Google
Maps is integrated in the Web Community application. By loading the map, user has
the option to change between different map types, zoom out and zoom in the map,
search the map for places of interest and addresses. Logged-in users have the
additional option to see linked images on the World's map. Extending the current
functionality includes providing users to calculate routes and distances between two
points of interest. Function to link images directly on the map is also planned to be
implemented. These new functions will be programmed in Javascript. Community
user will be able to save locations from the map in My Locations profile section,
which is not yet implemented. My Locations will link other community members –
friends to user's locations.

Dimitar Zlatkov 72

Chapter 7 – Conclusion

Chapter 7 – Conclusion

The title of the thesis is “Development of Web Community Application with Ruby on
Rails framework”. This report described how the MVC architecture applies to the Web
Community application under the Ruby on Rails framework environment. Using the
RoR technology, the application has been divided into smaller components.
Developing application's functionality into modules, has helped to separate stable
code from frequently changed one, to reuse source code, and to maintain and extend
the application more easily.

The main objectives at the start of the thesis were as follows

• To design and develop a data structure that can comprehensively define and
hold each user properties.

• To design and develop a friendly user interface by which users of the system
can interact with it in a browser environment.

• The users must be able to log-in the application by using a personal email
address and a password.

• The users must be able to change their profile settings.
• The users must be able to link with other users and to share each other

profiles.
• The users must be able to comment on other users profiles and images.
• The users must be able to send and receive messages from other users.

At the end of the thesis the following things are achieved

• A front-end is developed for the client browser which is a system by which
users can interact with the application.

• A data structure that comprehensively defines and stores user properties,
comments, friendships and messages is devised.

• The administrator user can create new users and add them or remove them
from the community application.

• The user can log-in the application by using email address and a password.
• Once the user has logged-in, he is able to change his profile properties.
• Once the user has logged-in, he is able to search and add new friends.
• Once the user has logged-in, he is able to share his profile with other friends,

comment on others profile, comment on others images.
• Once the user has logged-in, he is able to check his mailbox, write, send and

receive messages from other community users.

Extra features that have been implemented

• User is able to create albums and add photos to his albums.
• User is able to interact with Google Maps by means of searching places,

zooming and moving across the map, changing the map type.

Dimitar Zlatkov 73

Chapter 7 – Conclusion

• User is able to link his album photos to the map, making them visible to other
users.

Further work involves continuing writing and executing tests, solving different errors
and application bugs, implementing unimplemented features. After securing and
testing is finished, the application will be brought to production environment and will
be deployed on server.

Finally, it can be stated that all the important aspects of the project have been fulfilled
by this thesis. Uncompleted work has been mentioned in the Further Work section of
Chapter 6.

Dimitar Zlatkov 74

Appendix A - References

Appendix A - References

[1] Dave Thomas, David Heinemeier Hansson: Agile Web Development with Rails
Second Edition, Pragmatic Bookshelf, ISBN 0-9776166-3-0

[2] Dave Thomas, Chad Fowler and Andy Hunt: Programming Ruby Second Edition,
Pragmatic Bookshelf, ISBN 0-9745140-5-5

[3] Andre Lewis, Michael Purvis, Jeffrey Sambells and Cameron Turner: Beginning
Google Maps Applications with Rails and AJAX, Apress, ISBN 1-59059-787-7

[4] Andy Budd, Cameron Moll and Simon Collison: CSS Mastery, Friendsof, ISBN
1-59059-614-5

[5] http://www.ruby-lang.org/en/ (27.03.2009)

[6] http://rubyonrails.org/ (27.03.2009)

[7]
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/app-
arch/app-arch2.html (29.03.2009)

[8] http://thepaisano.files.wordpress.com/2008/04/rails2.png (29.03.2009)

[9] http://rewrite.rickbradley.com/pages/moving_to_rails/ (29.03.2009)

[10] http://en.wikipedia.org/wiki/List_of_social_networking_websites (04.04.2009)

[11] http://kb.linuxvirtualserver.org/images/6/60/Rails-apache-mongrel.png
(05.04.2009)

[12] http://javatouch.googlepages.com/spring-overview.png/spring-overview-full.jpg
(13.04.2009)

[13] http://rmagick.rubyforge.org/ (29.03.2009)

[14] http://code.google.com/apis/maps/signup.html (08.05.2009)

Dimitar Zlatkov 75

Appendix B - Glossary

Appendix B - Glossary

AJAX Asynchronous Javascript and XML

ATOM Web syndication format used for web feeds

CGI Common Gateway Interface

CMS Content Management System

CSS Cascaded Style Sheets

CSV Comma Separated Values

DBMS Database Management System

ERb Embedded Ruby

Ext3 Third extended file-system commonly used by the Linux kernel

JSP Java Server Pages

NTFS Windows NT standard file-system

MVC Model View Controller

OS Operating System

RDBMS Relational Database Management System

RSS Web syndication format used to publish frequently updated works

RoR Ruby on Rails

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

Dimitar Zlatkov 76

Appendix B - Glossary

HTTPS Hyper Text Transfer Protocol Secure

XHTML Extensible Hyper Text Markup Language

XML Extensible Markup Language

YAML Human-readable data serialization format

WCMS Web Content Management System

WWW World Wide Web

Dimitar Zlatkov 77

Appendix C - Source Code Listing

Appendix C - Source Code Listing

This Bachelor Thesis contains the source code and documentation of the project on a
CD. The CD also includes API HTML Document of the application and the Bachelor
Report in PDF format. This Appendix is deposited with Prof. Dr. Hotop.

Dimitar Zlatkov 78

Declaration

Declaration

I declare within the meaning of section 25(4) of the Examination and Study
Regulations of the International Degree Course Information Engineering that: this
Bachelor Thesis has been completed by myself independently without outside help
and only the defined sources and study aids were used. Sections that reflect the
thoughts or works of others are made known through the definition of sources.

-------------------------------------- -----------------------------------
 City, Date Signature

Dimitar Zlatkov 79

	Chapter 1 – Introduction
	1.1 The Problem
	1.2 The Web Community Application Overview
	1.3 The Scope of this Report
	1.4 The Structure of this Report

	Chapter 2 - Software Tools Overview
	Chapter 3 - Project Analysis and Requirements
	3.1 Project Analysis
	3.2 Project Functional Requirements
	3.3 Project Software Requirements
	3.4 Project Hardware Requirements

	Chapter 4 - Project Design
	4.1 Web Application Three-Tier Model
	4.2 Web Community Application Architecture
	4.3 Overview of the Application MVC Architecture
	4.4 Implementation of the Application MVC Architecture
	4.4.1 The View Layer
	4.4.2 The Model Layer
	4.4.3 The Controller Layer

	4.5 Back-end - Database Design

	Chapter 5 – System Realization
	5.1 Realization of Log-in
	5.2 Realization of User Profile
	5.3 Realization of Social Network
	5.4 Realization of Messaging System
	5.5 Realization of Comments System
	5.6 Realization of Administrator User
	5.7 Realization of Navigation Bar and Search Engine
	5.8 Integrating Google Maps

	Chapter 6 – Testing and Further Development
	6.1 Automated Tests
	6.2 Usability Tests
	6.3 Further work

	Chapter 7 – Conclusion
	Appendix A - References
	Appendix B - Glossary
	Appendix C - Source Code Listing
	Declaration

