

Faculty of Engineering and Computer Science Fakultät Techchnik und Informatik

Department Computer Science Studiendepartment Informatik

EADS Deutschland GmbH

Bachelor Thesis
Parham Vasaiely

Interactive Simulation of SysML Models

using Modelica

2

Parham Vasaiely

Interactive Simulation of SysML Models

using Modelica

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung

im Studiengang Angewandte Informatik

am Studiendepartment Informatik

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. Olaf Zukunft

Zweitgutachterin : Prof. Dr. Bettina Buth

Abgegeben am: 24.08.2009

3

Parham Vasaiely

Title of the thesis
Interactive Simulation of SysML Models using Modelica

Keywords
UML, SysML, Modelica, Simulation, Interactive, System, Model based Engineering,

Systems Engineering

Abstract
The International Council on Systems Engineering (INCOSE) identified Model-Based

Systems Engineering as a key driver for effective and efficient system development in the

future. System simulation using models is widely used for analysis, communication or

training purposes. This thesis presents an approach for user-interactive simulation of

system models which are created using the graphical Systems Modelling Language

(SysML) and translated into executable Modelica models. A software prototype based on

the OpenModelica environment will be developed and demonstrates the application on a

concrete example.

Parham Vasaiely

Thema der Bachelorarbeit
Interaktive Simulation von SysML Modellen unter Verwendung von Modelica

Stichworte
UML, SysML, Modelica, Simulation, Interaktive, System, Modell basierte Entwicklung,

System Entwicklung

Kurzzusammenfassung
International Council on Systems Engineering (INCOSE), erkannte die Modellbasierte

System Entwicklung als eine effektive und effiziente Schlüsseltechnik für die zukünftige

Entwicklungen von Systemen. Die Simulation von Systemen wird meist zu Analyse-,

Kommunikations- oder Einweisungs- Zwecken verwendet. In dieser Arbeit wird ein Ansatz

zur interaktiven Simulation von System Modellen, welche unter Verwendung der

graphischen Systemmodellierungssprache SysML erzeugt und in ausführbare Modelica

Modelle übersetzt wurden, präsentiert. Ein Software Prototyp, welches auf der

OpenModelica Umgebung basiert, wird entwickelt und eingesetzt um ein konkretes Beispiel

der Anwendung zu demonstrieren.

4

Acknowledgments
First of all I must thank my family because of they support and love. My mom, Soudabeh,

has always believed in me and her positivity is my moving spirit. Through the good times

and the bad times, she has been my most important source of support.

I must thank EADS Innovation Works and Wladimir Schamai, my advisor at EADS, he is a

very competent engineer and it was a pleasure to work with him.

Also, I appreciatively acknowledge the support of Lawrence Harris, from the Technical

English Language Services (http://www.tels.de), for supporting my technical English

spelling and his effort to correct my thesis.

Finally, I am grateful for the academic software licenses provided by Microsoft, IBM,

Object Refinery Limited.

http://www.tels.de

5

Table of Contents

I. List of Figures .. 7

II. List of Tables.. 9

III. Glossary ... 10

1. Introduction .. 11

1.1. Background... 11

1.2. Objective of the thesis... 12

1.3. Thesis Structure.. 13

2. State of the Art ... 14

2.1. Modelica – An Overview ... 14

2.1.1. The Modelica application area ... 14

2.1.2. Modelling and Simulation Tools for Modelica... 14

2.1.2.1. Dymola ... 15

2.1.2.2. MathModelica... 16

2.1.2.3. OpenModelica .. 16

2.2. The Systems Modelling Language.. 19

3. Demonstration System... 21

3.1. The Two Tanks System .. 21

4. Translation of a SysML model to a Modelica model... 23

4.1. Mapping of SysML to Modelica... 23

4.1.1. Model transformation ... 23

4.1.2. Additional Stereotypes... 26

4.1.3. SysML Parametric to Modelica Equation ... 28

4.2. TanksConnectedPI System in SysML... 29

4.2.1. System structure with SysML Block Definition Diagram and SysML Internal

Block- Diagram .. 33

4.2.2. Block Definition Diagrams of the constraint blocks 36

4.2.3. Parametric Diagrams of the parametrics structure....................................... 37

5. Interactive Simulation Runtime .. 41

5.1. OpenModelica Interactive ... 42

5.1.1. The OpenModelica Subsystem.. 43

5.1.1.1. OpenModelica Subsystem Service Interface.. 44

5.1.2. The OpenModelica Interactive Subsystem .. 44

5.1.2.1. OMI::Control... 44

6

5.1.2.2. OMI::ResultManager .. 45

5.1.2.3. OMI::Calculation... 48

5.1.2.4. OMI::Transfer ... 48

5.1.3. Communication Interface (Architecture) .. 49

5.1.3.1. Communication .. 49

5.1.3.2. Operation Messages .. 50

5.1.4. OpenModelica Interactive Structure and Behaviour..................................... 52

5.1.5. Testing of the OpenModelica Interactive simulation runtime........................ 56

5.1.5.1. Back to Back Tests .. 56

6. Interactive Graphical User Interface... 58

6.1. Simulation configuration.. 58

6.2. Simulation Environment .. 59

7. Conclusions and Future Work.. 62

7.1. Conclusions .. 62

7.2. Future Work .. 62

IV. References ... 64

V. Appendix .. 67

7

I. List of Figures
Figure 2-1 Dymola system modelling (left) and plot of simulation results (right) 15

Figure 2-2 MathModelica system modelling (left) and plot of simulation results (right) 16

Figure 2-3 OpenModelica (1.4.5) System overview architecture....................................... 17

Figure 2-4 OMC generated executable program to simulate a Modelica model................ 18

Figure 2-5 OM Simulation Runtime main components and their dependencies................ 18

Figure 2-6 Relationship between SysML and UML ... 19

Figure 2-7 SysML Diagram Types... 20

Figure 3-1 Two tanks with proportional–integral continuous controllers connected together

.. 21

Figure 3-2 TanksConnectedPI structure diagram.. 22

Figure 3-3 Plot of simulation results from the levels of tank1 and tank2 22

Figure 4-1 The created Stereotypes in Rhapsody... 27

Figure 4-2 TwoTanks Package Structure.. 29

Figure 4-3 Tank Block ... 29

Figure 4-4 LiquidSource Block .. 30

Figure 4-5 BaseController Block ... 30

Figure 4-6 PIcontinuousController Block... 31

Figure 4-7 TanksConnectedPI Block... 31

Figure 4-8 ReadSignal FlowSpecification.. 32

Figure 4-9 ActSignal FlowSpecification... 32

Figure 4-10 LiquidFlow FlowSpecification... 32

Figure 4-11 BBD TanksConnectedPI .. 33

Figure 4-12 Inheritance between BaseController and PIcontinuousController 33

Figure 4-13 IBD TanksConnectedPI ... 34

Figure 4-14 BDD Tank Constraints ... 36

Figure 4-15 BDD BaseController Constraints.. 36

Figure 4-16 BDD PIcontinuousController Constraints ... 36

Figure 4-17 BDD LiquidSource Constraints .. 37

Figure 4-18 PAR Tank... 37

Figure 4-19 PAR BaseController and PIcontinuousController... 39

Figure 4-20 PAR Outgoing flow level of the LiquidSource... 40

Figure 5-1 OpenModelica Interactive System Architecture Overview 43

8

Figure 5-2 Pseudo code of push and pull in SRDF ... 48

Figure 5-3 UML-Structure OM and OMI with some attributes and methods...................... 52

Figure 5-4 UML-Seq Handshake, model initialization and set Transfer filter mask 53

Figure 5-5 UML-Seq Simulation start .. 53

Figure 5-6 UML-Seq Calculation phase .. 54

Figure 5-7 UML-Seq Transfer to client phase ... 54

Figure 5-8 UML-Seq Change Value of a parameters .. 55

Figure 5-9 Plot of Simulation Results Tank1.h and Source.qOut.lflow 56

Figure 6-1 Simulation Configuration Tool .. 58

Figure 6-2 Simulation control center ... 59

Figure 6-3 Selection of properties to display on plot ... 60

Figure 6-4 New plot to display tank1.h and tank2.h .. 60

Figure 6-5 Live plot of tank1.h and tank2.h ... 61

9

II. List of Tables
Table 4-1 SysML Package à Modelica Package ... 24

Table 4-2 SysML Block à Modelica Block.. 24

Table 4-3 SysML Attribute à Modelica Variable... 24

Table 4-4 SysML FlowSpecification à Modelica Connector ... 24

Table 4-5 Atomic Flow Port Node à Instance of connector.. 24

Table 4-6 SysML Connector à Modelica Connection... 25

Table 4-7 SysML Flow (FlowDirection) à Modelica Causality of connector instance 25

Table 4-8 SysML Inheritance (Gen/Spec) à Modelica extends.. 25

Table 4-9 SysML Datatype Double à Modelica Datatype Real .. 25

Table 4-10 SysML Stereotype <<variable>> for Modelica variability and unit 26

Table 4-11 SysML Stereotype <<extendsRelation>> for Modelica modification of inherit

variable values .. 26

Table 4-12 SysML Stereotype <<abstract>> for Modelica partial...................................... 27

Table 4-13 SysML Stereotype <<composite>> for Modelica instance modification 27

Table 4-14 SysML Parametric elements ... 28

Table 5-1 OMI server and client components.. 50

Table 5-2 GUI server and client components .. 50

Table 5-3 Available messages from a GUI to OMI (Request-Reply) 51

Table 5-4 Available messages from OMI::Control to GUI.. 51

Table 5-5 Available messages from OMI::Transfer to GUI.. 51

Table 5-6 source.flowLevel values for a Back to Back Test .. 56

Table 5-7 Results of the Back to Back Test .. 57

10

III. Glossary

BBD Block Definition Diagram
DASSL Differential/Algebraic System Solver
EADS European Aeronautic Defence and Space
GUI Graphical User Interface
IBD Internal Block Diagram
INCOSE International Council on Systems Engineering
IS Interactive Simulation
MBSE Model-Based Systems Engineering
OM OpenModelica
OMC OpenModelica Compiler
OMG Object Management Group
OMI OpenModelica Interactive
PAR Parametric Diagram
PI proportional–integral
SysML Systems Modelling Language
UP Unified Software Development Process
XML Extensible Markup Language

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 11

1. Introduction

1.1. Background

The International Council on Systems Engineering (INCOSE) [19] identified Model-Based

Systems Engineering (MBSE) [11] as the key driver for effective and efficient system

development in the future. One of the key MBSE drivers identified was the need for a

standardized notation for description of system requirements or design at any level of

abstraction. However, in the operational field was quickly realised that a comprehensive

simulation of systems (e.g. for the purpose of system analysis, validation and verification)

is the main beneficial part of an MBSE approach.

In the development of complex systems multiple engineering disciplines are involved each

using its own formalisms and tools to develop their own parts of the system.

Examples of complex systems are Robotics, Automotive, Aircraft and Biomechanics.

OMG Systems Modelling Language (SysML) [20] was developed in order to support

effective communication among the parties involved by means of a standardized graphical

notation. Since SysML does not include an action language it is up to the tool vendor to

select an appropriate one and to make SysML models executable. For example, the COTS

SysML tool Rhapsody (IBM) provides code generation from SysML models and enables

interactive simulation of models. In turn, Modelica [21] is a well-defined object oriented

modelling language which is dedicated to the simulation of physical systems.

For comparison MATLAB/Simulink [9] is widely used in industry for modelling and

simulation of systems.

However, there are essential differences when compared with SysML/Modelica:

- MATLAB/Simulink does not have a standardized graphical notation whereas SysML

has a standardized general purpose graphical notation for modelling different views

of the system definition.

- MATLAB/Simulink is based on the signal-oriented paradigm (also referred to as

block-oriented), which always forces a causal dependence between inputs and

outputs of a block when solving equation systems. This is different to Modelica

which follows the equation-based modelling paradigm and enables acausal

modelling. This approach is more suitable for physical systems modelling.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 12

- MATLAB/Simulink does not support inheritance-concepts for classification of

components in order to enable their reuse. Both, SysML and Modelica provide such

capabilities.

Putting together SysML and Modelica gives a powerful combination for modelling and

simulation of complex systems at any stage of system development.

1.2. Objective of the thesis

Current activities inside the OMG SysML address integration of SysML with Modelica in

order to combine the graphical modelling capability of SysML with the simulation power of

Modelica. This research contributes to this effort as well as to a larger initiative established

between the EADS Innovation Works (Hamburg) in collaboration with the Modelica

developers at the Linkoping University in Sweden.

This research project is aimed at integrating SysML and Modelica in order to enable

system modelling and simulation respectively. In the early development stages system

engineers do not need a deep, detailed physical or mathematical modelling and simulation

but rather the capability to express system structure and behaviour. In terms of behaviour

state-charts (in different versions) are widely used for time-discrete and reactive behaviour

modelling and simulation. SysML introduces the parametric concepts for constrained

based behaviour modelling. The constraints can be expressed using mathematical

equations and thus facilitate time-continuous system behaviour simulation. However,

SysML does not define an execution language for any kind of behaviour and leave this

choice and the definition of the detailed execution semantics to the implementers and tool

vendors.

This work is a step towards the application of Model-Based Systems Engineering

paradigm. It combines the descriptive power of SysML with the simulation power of

Modelica and enables creation of executable system models for different purposes and at

different levels of abstraction.

The main objective of this thesis is to enable a user-interactive of simulation system

behaviour that incorporates time-continues, time-discrete or event-based behaviour.

This challenge includes two research problems:

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 13

- How to apply the execution semantics of Modelica to SysML models in order to

make them executable?

- When using Modelica the system models are typically simulated from a defined

start time to a stop time. It is not possible to interact with the model when the

simulation is running. The question is: What are the necessary extensions of

Modelica simulation environments in order to enable user interactive simulation?

In particular the latest is the focus of this thesis. The main purpose of such simulation is it

to enable the interaction with the system model during system simulation in order to

support system-related analysis, communication or training.

1.3. Thesis Structure

The thesis work contains the following chapters:

Chapter 2. “State of the Art” is a short introduction to the Modelica language, Modelica

tools and SysML.

Chapter 3. “Demonstration System” describes the used demonstration system and its

components.

Chapter 4. “Translation of a SysML model to a Modelica model” discusses a possible

approach to map SysML to Modelica and shows a full application of this approach by

translating the demonstration model from SysML to executable Modelica code.

Chapter 5. “Interactive Simulation Runtime” discusses implementation details of the

interactive simulation runtime based on OpenModelica.

Chapter 6. “Interactive Graphical User Interface” presents a short description of a

developed interactive simulation environment to demonstrate the whole application.

Chapter 7. “Conclusions and Future Work” summarizes the thesis work and provides

several future work directions.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 14

2. State of the Art

2.1. Modelica – An Overview

Bellow is a short introduction to the Modelica language, its features and some application

area examples. In addition two commercial and one open source Modelica modelling and

simulation environments will be introduced.

Modelica is an object oriented programming language. It is based on the declarative

programming paradigm which expresses the logic of a computation by describing what the

application should accomplish without describing its control flow. This minimizes side

effects which are absolutely unrequested during a simulation phase.

Models in Modelica are described mathematically using differential, algebraic and discrete

equations. Modelica tools will have enough information to solve every particular variable

automatically, at assessed the given equations. Therefore the Modelica system and

component models are perfectly suited to be simulated by a simulation environment.

By the “Simulation in Europe Basic Research Working Group” the endeavours for the

Modelica language started in 1996 within ESPRIT Project. Many well-known object-

oriented modelling designers worked together to finish the language specification in 1999.

The Modelica Association was founded for further development and promotion of Modelica

which is an open source language.

2.1.1. The Modelica application area

The Modelica language can be used for modelling large, complex and heterogeneous

physical systems, for example automotive or aerospace applications involving mechanical,

electrical, hydraulic and control subsystems or process oriented applications and

generation.

2.1.2. Modelling and Simulation Tools for Modelica

The Modelica language is textual based, so a modelling environment is needed to offer a

component based rather than visual component based modelling of systems. Also the

simulation part of the models needs a simulation environment.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 15

There are several modelling and simulation environments on the market, which offers a

component based modelling and the simulation of the Modelica model (Components from

the standard Modelica library or especially constructed components [22]).

Needs for the modelling and simulation environments:

- To conveniently define a Modelica model with a graphical user interface

(composition diagram/schematic editor) such that the result of the graphical editing

is a (internal) textual description of the model in the Modelica format.

- To translate the defined Modelica model into a form which can be efficiently

simulated in an appropriate simulation environment. This requires sophisticated

symbolic transformation techniques.

- To simulate the translated model using a standard numerical integration methods to

visualize the result.

Here are some popular ones.

2.1.2.1. Dymola

The Dynamic Modeling Laboratory, Dymola [23], is a powerful Modelica modelling and

simulation environment. Besides the graphical modelling capabilities it is possible to

simulate the dynamic behaviour and complex interactions among systems from many

engineering domains. The Dymola environment is completely open so users can easily

introduce components or modify existing components to match the user’s own unique

requirements. Dymola is also compatible with many other tools so existing models from

other tools can be used, for example it contains an interface to MATLAB and Simulink, and

has CAD file import functionality. It has a powerful Modelica translator which is able to

work on models with a huge number of equations (> 100,000), provided the complexity of

these equations is reasonable. Dymola is probably the most powerful Tool which uses the

Modelica language.

Figure 2-1 Dymola system modelling (left) and plot of simulation results (right)

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 16

2.1.2.2. MathModelica

MathModelica [25] is a modelling and simulation environment developed by MathCore

Engineering AB. It consists of three major parts – a Modelica Editor, a Notebook and

Simulation centre.

There are two major versions of MathModelica: Lite and System Designer (Professional).

- MathModelica Lite is the most basic modelling environment in the MathModelica

family and it is free for academic and personal use. Unlike the other editions the Lite

version uses the Modelica open source compiler from OpenModelica [24]. It

provides a basic graphical modelling environment to conveniently define a Modelica

model with a graphical user interface using the standard Modelica library

components. The code editor provides a textual representation of the graphical

model as Modelica code.

- MathModelica System Designer (Professional) has more modelling elements,

including the standard Modelica library components and has the capability to

simulate the model and plot its results. A model can be further documented in

Mathematica Notebook. The MathModelica Notebook can also be used for

simulation scripting and model analysis.

Figure 2-2 MathModelica system modelling (left) and plot of simulation results (right)

2.1.2.3. OpenModelica

OpenModelica is an open source Modelica environment developed and supported by

Linköping University [27] and the Open Source Modelica Consortium (OSMC) [26].

The OpenModelica environment consists of several interconnected subsystems. The goal

of the project is to create a complete modelling, compilation and simulation environment

based on free software distributed in source code and executable form which is intended

for use in research, teaching, and industry [17].

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 17

The OpenModelica environment is a collection of tools, OpenModelica Tools, to create a

complete Modelica model. After instantiating the models can be simulated and the results

plotted as a chart. A full tutorial is available based on the Modelica book by Peter Fritzson

[2] which introduces the Modelica language, and an Eclipse plug-in (MDT) supports

professionals while creating Modelica models. For more information on components

please refer to the OpenModelica website [24] or “OpenModelica System Structure” [16].

OpenModelica Tools

Figure 2-3 OpenModelica (1.4.5) System overview architecture

- Interactive session handler (OMShell) parses and interprets commands. Modelica

expressions sent to it by other components for evaluation, simulation, plotting, etc.

- OpenModelica Compiler (OMC) translates Modelica to C code. OMC also builds

simulation executables which are linked with selected ODE and DAE solvers.

- An execution and run-time module executes compiled binary code as well as

simulation code from equation based models, linked with numerical solvers.

- Emacs textual model editor/browser is a model editor based on Gnu Emacs.

Besides an editor, browsing of Modelica file hierarchy is possible.

- Eclipse Plug-in editor/browser provides class and library hierarchy browsing, syntax

highlighting and editing capabilities.

- OMNotebook model editor is similar to Mathematica Notebook editor with basic

functionality which help document and perform simulation.

- Graphical model editor/browser represents the MathModelica Lite product provided

by MathCore without cost for academic usage. It allows graphical model

composition, Modelica library browsing, etc.

- Modelica debugger is a conventional full-feature debugger integrated in Eclipse for

displaying the source code. Stepping, breakpoint setting/unsetting are supported.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 18

OpenModelica Simulation Runtime
As mentioned above after creating and instantiating a Modelica model it is possible to

simulate the model with OpenModelica.

After calling the “simulation(…)” or “buildModel(…)” operation from the interactive session

handler, an executable, standalone C/C++ program is generate from the internal

simulation runtime code and the generated C/C++ model code by the OMC (in this case

model.cpp).

 Executable Model

OMC Simulation
Runtime Library
(sim_runtime.cpp…)

OMC Generated
Code
(model.cpp…)

Figure 2-4 OMC generated executable program to simulate a Modelica model

The simulation runtime is insufficiently documented. Based on the C/C++ source code the

following main components and their behaviour are identified:

Figure 2-5 OM Simulation Runtime main components and their dependencies

- global data struct: Contains all model information, simulation options and simulation

data. It represents the model at any time of the simulation. Nearly all components

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 19

use the global data structure to store and read information or data concerning the

simulation and the model. This structure is part of the “simulation_runtime”.

- simulation_runtime: Includes the main function and call to the “solver_dasrt”. The

“simulation_runtime.cpp” uses the generated “model.cpp” to initialize the global data

structure.

- solver_dasrt: Wrapper for a “Differential/Algebraic System Solver” (DASSL). The

DASSL is a free-for-use and open source solver [10] [18]. It solves all

mathematically equations from the model. The simulation runtime also contains a

simple Euler solver but it has not been implemented yet.

The OpenModelica simulation is not in real-time and accordingly not user interactive. It

simulates the model between a specified time interval (start and stop time) as fast as the

computer power will allow. The simulation runtime stores the simulation results in a

“model_res.plt”. Afterwards a standard GUI plots the results into a chart.

For more information please visit the Modelica Association website [12] or

“Principles of Object-Oriented Modeling and Simulation with Modelica 2.1” by

Peter Fritzson [2].

2.2. The Systems Modelling Language

The Systems Modeling Language (SysML) [1] is a general-purpose graphical modeling

language for the Systems-Engineering domain. It is used to specifying, analyzing,

designing, and verifying complex systems. The language provides graphical

representations with a semantic foundation for modeling system requirements, behavior,

structure, and parametric, which is used to integrate with other engineering analysis

models.

U M L 2 S y sM L

S y sM L
E x te ns io n s

to U M L
U M L re use d

by S y sM L No t re qu ir ed b y
S y sM L

Figure 2-6 Relationship between SysML and UML

SysML represents a subset of UML 2 with extensions needed to satisfy the requirements

of the UML for Systems Engineering.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 20

Figure 2-7 SysML Diagram Types

The taxonomy of SysML diagrams is presented in Figure 2-7 SysML Diagram Types.

The following are the major extensions of SysML Diagrams compared to UML Diagrams:

- The Requirements diagram supports requirements presentation in tabular or in

graphical notation, allows composition of requirements and supports traceability,

verification and satisfaction of requirements by other system elements.

- The Block diagram extends the Composite Structure diagram of UML 2. This

diagram is to capture system components, their parts and connections between

parts. Connections are handled by means of ports which may contain data flows.

- The Parametric diagram helps perform engineering analysis such as performance

analysis. Parametric diagram contains constraint elements, which define

mathematical equation, linked to properties of model elements.

- Activity diagrams show system behaviour as data and control flows. Activity

diagram is similar to Enhanced Functional Flow Block diagram (EFFBDs), which is

already widely used by system engineers. Activity decomposition is supported by

SysML.

For more information about SysML see the OMG SysML website [20] or

“A Practical Guide to SysML” by Sanford Friedenthal, Alan Moore and Rick Steiner [3].

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 21

3. Demonstration System
In the following a system is described that will be used throughout this thesis as an

example system.

This example of a system is selected based on the following criteria:

- The example system should not be too complex. It should be understandable by

readers without requiring specific technical background.

- The demonstration system should represent a natural physical problem which is not

domain specific.

- The example shall address basic concepts of the Modelica and SysML languages

(such as object-orientation, component-based approach and time-continuous

behaviour modelling).

- The demonstration system will be used as proof of concepts throughout this thesis.

3.1. The Two Tanks System

Tank 1 Tank 2

 Level Sensor
 PI Controller

 Liquid Flow In

 Liquid Flow Out

Liquid
Source

MaxLevel

Level h

Level h

Figure 3-1 Two tanks with proportional–integral continuous controllers connected together

The system depicted in Figure 3-1 is based on a demonstration model which is given in

the Modelica book by Peter Fritzson [[2], Page 386]. It represents two tanks connected

together, and a liquid source which fills the first tank with liquid. Each tank has a

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 22

continuous proportional–integral (PI) controller connected to it, which regulates the level of

liquid contained in the tanks to a reference level. While the liquid source fills the first tank

with liquid the PI continuous controller regulates the outflow from the tank depending on its

actual level. Liquid from the first tank flows into the second tank, which the PI continuous

controller also tries to regulate. This is a natural and non domain specific physical problem.

The system is called “TanksConnectedPI”.

Figure 3-2 TanksConnectedPI structure diagram

tank1.h

tank2.h

Figure 3-3 Plot of simulation results from the levels of tank1 and tank2

The graphs depicted in Figure 3-3 display the levels of tank1 and tank2 from 0s - 300s.

The PI continuous controllers of both tanks try to get the levels to their reference levels

(tank1 reference = 0.25, tank2 reference = 0.4). In this example the levels are regulated

after 230s.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 23

4. Translation of a SysML model to a Modelica model
As mentioned above the SysML standard does not define any action language, so that by

default the created model is not executable. In order to enable the simulation of such

models they need to be translated into an executable language, in this case Modelica. In

order to do so the concepts from SysML and Modelica needs to be mapped to each other.

The following is an approach for mapping and the resultant translation of the

“TanksConnectedPI” model elements based on the full available Modelica code [Appendix

A].

4.1. Mapping of SysML to Modelica

Modelica and SysML, like UML, follow the object-oriented paradigm. The resulting

language structure is similar. For example, the main structural unit in SysML is Block (a

sub-type of the UML Class) which corresponds to the Modelica Class in object-oriented

sense. However, there are concepts that are different and have no correspondence

between the two languages. In order to enable capturing of contents that are not present in

SysML its’ extension mechanism (profiles) is used. Profiles allow extension of the

UML/SysML meta-model by means of stereotypes.

The following sections present the basic mapping between the SysML and Modelica as

well as additional stereotypes that are defined in order to enable the capturing of Modelica

specific concepts.

4.1.1. Model transformation

Well defined mapping is the most important part of a translation from one language into

another. The following tables list a selected subset of SysML elements which are used for

modelling the “TanksConnectedPI” demonstration model in SysML. A SysML element and

its corresponding Modelica element are depicted in the left and centre columns

respectively. The right column contains the commonality between the SysML and Modelica

language elements.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 24

SysML (Rhapsody) Modelica Commonality
Package package

The package is the basic unit of

partitioning. The packages partition the

model elements into logical groupings

that minimize circular dependencies

among them.

Packages in Modelica are used

for logical groupings. Packages

may contain definitions of

constants, functions, and sub

packages.

The packages partition the

model elements into logical

groupings.

Table 4-1 SysML Package à Modelica Package

SysML (Rhapsody) Modelica Commonality
Block block

Blocks are modular units of system

description. Each block defines a

collection of features to describe a

system or other element of interest.

In Modelica everything is a class.

The basic class concept is

“model”. “block” has the same

properties as “model” but with

some restrictions. The connector

instances must have a specified

direction.

Describes a component.

These may include both

structural and behavioural

features, containing all its

parts and properties.

Table 4-2 SysML Block à Modelica Block

SysML (Rhapsody) Modelica Commonality
Attribute Variable

Property of a block which contains data.

It could be from a pre defined or a user

defined data type.

Property of a class which

contains data and is from a pre

defined data type. It has

variability.

Property which contains data

and has a specified data type.

Table 4-3 SysML Attribute à Modelica Variable

SysML (Rhapsody) Modelica Commonality
Flow Specification connector

A flow Specification defines a set of

input and or/output flows for a non

composite flow port.

A class with restrictions which

could be used to connect

components to each other.

Used to connect components

to each other and describing

the flow data.

Table 4-4 SysML FlowSpecification à Modelica Connector

SysML (Rhapsody) Modelica Commonality
Atomic Flow Port Node Instance of connector

An atomic flow port describes

interaction point where an item can flow

into or out of a block, or both, as

indicates by the direction of the arrow in

the Atomic Flow Port Node.

Instance of a connector is part of

a component and is used to

describe interaction. Its direction

has to be defined in the owner

class.

Specifies that a component

has an interaction point.

Table 4-5 Atomic Flow Port Node à Instance of connector

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 25

SysML (Rhapsody) Modelica Commonality
Connector

flow(x,y) (between flowPorts)

Connection

equation connect(x,y)

A connector is used to bind two parts

(or ports) and provides the opportunity

for those to interact, although the

connector says nothing about the

nature of the interaction.

The connection equation

specifies an interaction between

connectors of different

components.

Specifies interaction between

elements.

Table 4-6 SysML Connector à Modelica Connection

SysML (Rhapsody) Modelica Commonality
Flow (FlowDirection) Causality of connector instance

Flows specify the exchange of

information between system elements.

They allow you to describe the flow of

data and commands within a system at

an early stage, before committing to a

specific design. The direction describes

the flow direction.

When using “block” all used

connectors must have a flow

direction. In Modelica the

available directions are “input” or

“output”.

Specifies the flow direction

between two connected

components.

Note: Bidirectional is not

possible.

Table 4-7 SysML Flow (FlowDirection) à Modelica Causality of connector instance

SysML (Rhapsody) Modelica Commonality
Generalisation/Specialisation Inheritance (extends)

A generalization describes a

relationship between a general

classifier and a specialized classifier.

The specialized classifier can inherit

structure and behaviour of the general

classifier.

A block can inherit structure and

behaviour of another block.

Inherit of structure and

behaviour of another block.

Table 4-8 SysML Inheritance (Gen/Spec) à Modelica extends

SysML (Rhapsody) Modelica Commonality
Double Real

A pre defined data type which

represents floating point number

values.

A pre defined data type which

represents floating point number

values. A real variable has a set

of attributes such as unit of

measure, initial value, minimum

and maximum value.

A pre defined data type which

represents floating point

number values.

Table 4-9 SysML Datatype Double à Modelica Datatype Real

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 26

4.1.2. Additional Stereotypes

SysML Stereotypes can be used to satisfy some semantics of the executable language.

a. There are four variability levels of attributes in Modelica, so a SysML “attribute”

needs an additional Stereotype to recognise its variability. Also the optional unit of

a value can be presented by a tag of this Stereotype.

SysML (Rhapsody) element Needed Modelica addition Benefit/Effect
Attribute variability Depending on its type an

attribute will get a type prefix.

The type also specifies how

the initialisation will be

defined.

Stereotype name Tags Characteristic Effect
parameter Prefix “parameter” initialValue

interpretation

“…=x;”

constant Prefix “constant” initialValue

interpretation

“…=x;”

discrete-time Prefix -non- initialValue

interpretation

“(start = x, …)”

variability

continuous-time Prefix -non- initialValue

interpretation

“(start = x, …)”

<<variable>>

unit String (…, unit=”…”)

Table 4-10 SysML Stereotype <<variable>> for Modelica variability and unit

b. A Stereotype is needed to modify the values of an extended class.

SysML (Rhapsody) element Needed Modelica addition Benefit/Effect
Generalisation path Modify inherit variable values Set default values for

inherited attributes.

Stereotype name Tags Characteristic Effect
<<extendsRelation>> typeModification String with Dot-Notation extends … (…=x, …=x);

Table 4-11 SysML Stereotype <<extendsRelation>> for Modelica modification of inherit variable
values

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 27

c. Since Rhapsody 7.2 does not support a SysML abstract block, a Stereotype has

to be defined to specify a block as abstract.

SysML (Rhapsody) element Needed Modelica addition Benefit/Effect
Block partial A block which offers general

structure and behaviour for a

group of specialised block.

This block can not be

instantiated as a component.

Effect Stereotype name Tags

Prefix
<<abstract>> non partial

Table 4-12 SysML Stereotype <<abstract>> for Modelica partial

d. Modelica provides a method to modify variable values of instances by using the

dot notation.

SysML (Rhapsody) element Needed Modelica addition Benefit/Effect
Instance Instance modification A value of an intern

variable from an

instance can be modified

using the “dot notation”.

The variable name and

its new value in brackets

will be appended to the

instance declaration.

Stereotype name Tags Characteristic Effect
<<composite>> instanceModification String with Dot-Notation Instance… (…=x, …=x);

Table 4-13 SysML Stereotype <<composite>> for Modelica instance modification

Figure 4-1 The created Stereotypes in Rhapsody

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 28

4.1.3. SysML Parametric to Modelica Equation

SysML Parametric diagrams are used to create systems of equations that can constrain

properties of blocks. This diagram and a combination of the below described elements are

used to generate a Modelica confirm equation.

SysML (Rhapsody) element Description
Constraint Block Node A constraint block encapsulates a constraint to enable it to be

defined once and then used in different contexts. The block

contains Constraints and Constraint parameters which are used in

the constraints.

Constraint Property Node Constraint properties are defined by constraint blocks and used to

bind parameters. This enables complex systems of equations to

be composed from more primitive equations, and for the

parameters of the equations to explicitly constraint properties of

blocks.

Constraint Parameter Node A special kind of property that is used in the constraint expression

of a constraint block. Constraint parameters do not have direction.

Value Binding Path Binding connectors connect constraint parameters to each other

and to value properties. They express an equality relationship

between their bound elements.

Constraint Generic mechanism for expressing constraints on a system as text

expression that can be applied to any model element. A constraint

includes an equation as text expression.

Table 4-14 SysML Parametric elements

The following is an approach to translate a SysML Parametric into a Modelica equation

using the above depicted parametric elements:

- An equation which is represented as a constraint has to confirm to the Modelica

syntax and semantic for equations.

- A parameter name in the constraint equation expression should be general, this

supports the reuse approach of SysML.

- A constraint block contains only a single constraint and all its used constraint

parameters. This is easier to understand and translate.

- A constraint property represents this constraint block in a parametric diagram.

- Binding connectors allocate the general constrain parameters to specific block

values so that the equation can be translated into Modelica equation code with the

required value names.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 29

4.2. TanksConnectedPI System in SysML

The following is the full SysML model of the demonstration system. The model has been

created with IBM Rhapsody 7.2 [30].

System structure is depicted in Block Definition Diagrams (BBD), Internal Block Diagrams

(IBD) and in Parametric Diagrams (PAR). Every diagram will be translated in

consequential Modelica code, which could afterwards merge to a coherent model code.

Since, the modelling tool IBM Rhapsody does not offer a SysML conform diagram frame,

the frames will not be depicted in the diagrams.

Note: Translated code is highlighted in green.

Figure 4-2 TwoTanks Package Structure

Blocks are grouped in packages. For OpenModelica it is important to signal a package

membership for a block so that OM can load all classes include in the specified package.

For this there is a need for a special “package” class in the project package folder. In

addition, all classes need a “within…” declaration in their first code line.

Resultant Modelica code:

<<package>>TwoTanks à package.mo (Modelica)
package TwoTanks
end TwoTanks;

Tank
«block»

Attributes
«variable» area:double=0.5
«variable» flowGain:double=0.05
«variable» minV:double=0
«variable» maxV:double=10
«variable» h:double=0.0

qOut:LiquidFlow
qIn:LiquidFlow

tSensor:ReadSignal tActuator:ActSignal

Figure 4-3 Tank Block

The tank is a SysML block with the depicted attributes and instances of flow Properties.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 30

The variability of its attributes is explicitly given in the tag variability of its Stereotype

variable. The Tag “unit” presents the unit of the value.

The package membership is given by the package structure in Figure 4-2.

Resultant Modelica code:

<<block>>Tank à Tank.mo (Modelica)
within TwoTanks;
block Tank
 ReadSignal tSensor;
 ActSignal tActuator;
 LiquidFlow qIn;
 LiquidFlow qOut;
 parameter Real area (unit = "m2") = 0.5;
 parameter Real flowGain (unit = "m2/s") = 0.05;
 parameter Real minV = 0
 parameter Real maxV = 10;
 Real h (start = 0.0, unit = "m");
end Tank;

LiquidSource
«block»

Attributes
«variable» flowLevel:double=0.02

qOut:LiquidFlow

Figure 4-4 LiquidSource Block

Procedure is the same as translate Tank Block.

Resultant Modelica code:

LiquidSource.mo (Modelica)
within TwoTanks;
block LiquidSource
 LiquidFlow qOut;
 parameter Real flowLevel = 0.02;
end LiquidSource;

BaseController
«block,abstract»

Attributes
«variable» K:double=2
«variable» T:double=10
«variable» ref:double
«variable» error:double
«variable» outCtr:double cOut:ActSignalcIn:ReadSignal

Figure 4-5 BaseController Block

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 31

The block in Figure 4-5 has the Stereotype abstract which signals that it is a partial

Modelica block.

Resultant Modelica code:

<<block>> BaseController à BaseController.mo (Modelica)
within TwoTanks;
partial block BaseController
 ReadSignal cIn;
 ActSignal cOut;
 parameter Real ref;
 parameter Real K = 2;
 parameter Real T (unit = "s") = 10;
 Real error;
 Real outCtr;
end BaseController;

PIcontinuousController
«block»

Attributes
«variable» x:double

Figure 4-6 PIcontinuousController Block

<<block>> PIcontinuousController à PIcontinuousController.mo (Modelica)
within TwoTanks;
block PIcontinuousController;
 Real x;
end PIcontinuousController;

TanksConnectedPI
«block»

Attributes

Figure 4-7 TanksConnectedPI Block

<<block>> TanksConnectedPI à TanksConnectedPI.mo (Modelica)
within TwoTanks;
block TanksConnectedPI
end TanksConnectedPI;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 32

ReadSignal
«flowSpeci fication»

Attributes
«flowProperty,variable» val:double

Figure 4-8 ReadSignal FlowSpecification

A flow specification attribute has the Stereotype “flowProperty” which states that each flow

property has a data type and a direction (in, out, or inout). To use a flow specification for

different instances with different flow directions the attribute direction has to be ignored.

Also the Stereotype variable is selected for a flow specification attribute to assign a

variability type and a unit for it.

Resultant Modelica code:

<<flowProperty>> ReadSignal à ReadSignal.mo (Modelica)
within TwoTanks;
connector ReadSignal
 Real val (unit = "m");
end ReadSignal;

ActSignal
«flowSpeci fication»

Attributes
«flowProperty,variable» act:double

Figure 4-9 ActSignal FlowSpecification

<< flowProperty >> ActSignal à ActSignal.mo (Modelica)
within TwoTanks;
connector ActSignal
 Real act;
end ActSignal;

LiquidFlow
«flowSpecification»

Attributes
«flowProperty,variable» lflow:double

Figure 4-10 LiquidFlow FlowSpecification

<< flowProperty >> LiquidFlow à LiquidFlow.mo (Modelica)
within TwoTanks;
connector LiquidFlow
end LiquidFlow;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 33

4.2.1. System structure with SysML Block Definition Diagram and
SysML Internal Block- Diagram

TanksConnectedPI
«block»

1tank1 1tank1

Tank
«block»

1source 1source

LiquidSource
«block»

1piContinuous1

PIcontinuousController
«block»

1piContinuous1

1
tank2

Tank
«block»

1
tank2

PIcontinuousController
«block»

1

piContinuous2

1

piContinuous2

Figure 4-11 BBD TanksConnectedPI

The BDD in Figure 4-11 presents the “TanksConnectedPI” and its relationship to other

components, connected with compositions.

Resultant Modelica code:

TanksConnectedPI.mo (Modelica)
block TanksConnectedPI
 LiquidSource source;
 Tank tank1;
 Tank tank2;
 PIcontinuousController piContinuous1;
 PIcontinuousController piContinuous2;
end TanksConnectedPI;

BaseController
«block,abstract»

«extendsRelation»

PIcontinuousController
«block»

«extendsRelation»

Figure 4-12 Inheritance between BaseController and PIcontinuousController

To cover also a part of the object oriented approach “PIcontinuousController” inherits

behaviour from “BaseController”. These components are also SysML blocks. To modify

inherited variable values the Stereotype “extendedRelation” gives a modifier string in its

tag “typeModification”. In This case “K” and “T” are inherited variables to be modified.

Resultant Modelica code:

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 34

<<block>> PIcontinuousController à PIcontinuousController.mo (Modelica)
block PIcontinuousController extends BaseController (K = 2, T = 10);
 ...
end PIcontinuousController;

TanksConnectedPI
«block»

source:LiquidSource1

Attributes
«variable» flowLevel:double=0.02

qOut:LiquidFlow

piContinuous1:PIcontinuousController
1 «composite»

cOut:ActSignalcIn:ReadSignal

piContinuous2:PIcontinuousController
1 «composi te»

cOut:ActSignalcIn:ReadSignal

tank2:Tank1

Attributes
«variable» area:double=1.3

qOut:LiquidFlowqIn:LiquidFlow

tSensor:ReadSignal tActuator:ActSignal

tank1:Tank1

Attributes
«variable» area:double=1

qOut:LiquidFlow liquidqIn:LiquidFlow

liquid

tSensor:ReadSignal tActuator:ActSignal

liquid

liquid

Figure 4-13 IBD TanksConnectedPI

The IBD in Figure 4-13 displays the components of the “TanksConnectedPI” system and

their associations to each other. Specialised attributes of the parts (in the first level) can be

modified directly in the Tab “Attributes” à “Value”, for example “area” from “Tank” and

“flowLevel” from “LiquidSource”. Since Rhapsody does not offer full instance modification

the modification of inherit attribute values and nested attribute values must be done

manually by the Stereotype “composite” and its tag “instanceModification” as a textual

expression, for example “ref” from “PIcontinuousController”. The parts are connected with

SysML flow ports.

Resultant Modelica code:

LiquidSource.mo (Modelica)
block LiquidSource
 output LiquidFlow qOut;
 ...
end LiquidSource;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 35

<<block>>Tank à Tank.mo (Modelica)
block Tank
 output ReadSignal tSensor;
 input ActSignal tActuator;
 input LiquidFlow qIn;
 output LiquidFlow qOut;
 ...
end Tank;

<<block>> BaseController à BaseController.mo (Modelica)
block BaseController
 input ReadSignal cIn;
 output ActSignal cOut;
 ...
end BaseController;

TanksConnectedPI.mo (Modelica)
block TanksConnectedPI
 LiquidSource source (flowLevel = 0.02);
 Tank tank1 (area = 1);
 Tank tank2 (area = 1.3);
 PIcontinuousController piContinuous1 (ref = 0.25);
 PIcontinuousController piContinuous2 (ref = 0.4);
equation
 connect(source.qOut, tank1.qIn);
 connect(piContinuous1.cOut, tank1.tActuator);
 connect(tank1.tSensor, piContinuous1.cIn);
 connect(tank1.qOut, tank2.qIn);
 connect(piContinuous2.cOut, tank2.tActuator);
 connect(tank2.tSensor, piContinuous2.cIn);
end TanksConnectedPI;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 36

4.2.2. Block Definition Diagrams of the constraint blocks

Tank
«block»

1

Tank::Mass_Balance
«ConstraintBlock»

Constraints
der(h) = (x - y) / a

1 1

Tank::qOutFlow
«ConstraintBlock»

Constraints
a = if (-b * c) > max then max else if (-b * c) < min then min else (-b * c)

11

Tank::sensorValue
«ConstraintBlock»

Constraints
a = b;

1

Figure 4-14 BDD Tank Constraints

- The “sensorValue” constraint allocates the tank level “h” to the flow port which is

connected to the “PIcontinuousController”. In this case it is a simple allocation but it

could also be a complex equation, therefore it is realised as a constraint.

- The “MassBalance” constraint describes how the tank level “h” is identified.

- The “qOutFlow” constraint defines the value of the out flow level depending on

some internal attributes and the calculation result of the “PIcontinuousController”.

BaseController
«block»

BaseController::cout_act
«ConstraintBlock»

Constraints
a = b

11 1

BaseController::errorValue
«ConstraintBlock»

Constraints
a = b - c

1

Figure 4-15 BDD BaseController Constraints

PIcontinuousController
«block»

PIcontinuousController::outControl
«ConstraintBlock»

Constraints
a = b * (c + d);

11 1

PIcontinuousController::state_variable
«ConstraintBlock»

Constraints
der(x) = a / b

1

Figure 4-16 BDD PIcontinuousController Constraints

“BaseController” and “PIcontinuousController” provide constraints which calculate the

required flow gain to remove excess liquid from the tank depending on the tank level.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 37

LiquidSource
«block»

1

LiquidSource::outflow
«ConstraintBlock»

Constraints
a = b

1

Figure 4-17 BDD LiquidSource Constraints

The liquid source constraint allocates the flow level to the outgoing flow port, which is

connected to the first tank. In this case it is a simple allocation but it could also be a

complex equation, therefore it is represented as a constraint.

4.2.3. Parametric Diagrams of the parametrics structure

e1:Mass_Balance1

Constraints
der(h) = (x - y) / a h:double

a:double

y:double

x:double
Tank.qIn:LiquidFlow1

«flowProperty,variable» lflow:double

Tank.qOut:LiquidFlow1

«flowProperty,variable» lflow:double

area:double=0.5
«variable»

h:double=0.0
«variable»

Tank.tSensor:ReadSignal
1 «flowSpeci fication»

Attributes
«flowProperty,variable» val:double

e2:sensorValue1

a = b;

a:double

b:double

e3:qOutFlow1

a = if (-b * c) > max then max else if (-b * c) < min then min else (-b * c)

a:double

c:double

b:double

max:double min:double

Tank.tActuator:ActSignal
1 «flowSpeci fication»

Attributes
«flowProperty,variable» act:double

flowGain:double=0.05
«variable»

maxV:double=10
«variable»

minV:double=0
«variable»

Figure 4-18 PAR Tank

The constraint property “e1:Mass_Balance” describes a special equation type. As depicted

in Figure 4-18 the derivative of “h” will be allocated to the model attribute h, but the real

values are quite different. This is possible because Modelica integrates the result of

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 38

“der(h)” to get the value for “h” automatically, so there is no need for a separate equation

for this. The translation will be done as described in chapter 4.1.3 with respect to the

Modelica equation syntax and semantic.

Resultant Modelica code:

<<block>>Tank à Tank.mo (Modelica)
block Tank
 ...
equation
 der(h) = (qIn.lflow - qOut.lflow) / area;
 qOut.lflow = if (-flowGain * tActuator.act) > maxV then maxV else if
 (-flowGain * tActuator.act) < minV then minV else (-flowGain *
 tActuator.act);
 tSensor.val = h;
end Tank;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 39

e5:cout_act
1 «ConstraintProperty,ConstraintBlock»

Constraints
a = b b:doublea:double

e6:errorValue
1 «ConstraintProperty,ConstraintBlock»

Constraints
a = b - c

c:double

b:double

a:double

e7:state_variable
1 «ConstraintProperty,ConstraintBlock»

Constraints
der(x) = a / b

der_x:double

b:double

a:double

e8:outControl
1 «ConstraintProperty,ConstraintBlock»

Constraints
a = b * (c + d);

d:double

c:double

a:double

b:double

error:double
«variable»

T:double=10
«variable»

x:double
«variable»

BaseController.cIn:ReadSignal
1 «flowSpecification»

Attributes
«flowProperty,variable» val:double

ref:double
«variable»

K:double=2
«variable»

outCtr:double
«variable»

BaseController.cOut:ActSignal
1 «flowSpecification»

Attributes
«flowProperty,variable» act:double

Figure 4-19 PAR BaseController and PIcontinuousController

Same procedure as translation of “PAR Tank”.

Resultant Modelica code:

<<block>> BaseController à BaseController.mo (Modelica)
partial block BaseController
 ...
equation
 error = ref - cIn.val;
 cOut.act = outCtr;
end BaseController;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 40

<<block>> PIcontinuousController à PIcontinuousController.mo (Modelica)
block PIcontinuousController extends BaseController;
 ...
equation
 der(x) = error / T;
 outCtr = K * (error + x);
end PIcontinuousController;

e4:out flow
1 «ConstraintProperty,ConstraintBlock»

Constraints
a = b

b:doub le a:doub leflowLevel:double=0.02
«variable»

Liquid Source.qOut:Liq uidFlow
1 «flowSpecification»

Attributes
«flowProperty,variable» lfl ...

Operations

Figure 4-20 PAR Outgoing flow level of the LiquidSource

Same procedure as translation of “PAR Tank”.

Resultant Modelica code:

<<block>> LiquidSource à LiquidSource.mo (Modelica)
block LiquidSource
 ...
equation
 qOut.lflow = flowLevel;
end LiquidSource;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 41

5. Interactive Simulation Runtime
A simulation runtime is needed to simulate a system. In this case the simulation runtime is

combined with the system model which is represented in the executable programming

language C/C++. The physical system behaviour is represented as mathematical

equations which are time dependent.

The following are some general requirements for an interactive simulation runtime:

- The user shall be able to stimulate the system during a running system simulation

and to observe its’ reaction immediately.

- Simulation runtime behaviour has to be controllable and adaptable to offer an

interaction with a user.

- A user should receive simulation results during a simulation in “real-time” to realise

real-time simulation. Since network process time and some other factors like

scheduling of processes from the operation system this is not given at any time.

- In order to offer a stable simulation, a runtime has to inform a GUI of errors and

consequential simulation aborts.

- Simulation results should not under-run or exceed a tolerance compared to a

thoroughly reliable value, for a correct simulation.

- Communication between a simulation runtime and a user GUI should use a well

defined interface and be base on a common technology, for example message

parsing, CORBA or RMI.

- An interactive simulation runtime should be based on OM, since the OM simulation

runtime is the only open source, and as far as is possible, stable Modelica

simulation tool [28].

As mentioned above, the OM simulation runtime has no real-time simulation capabilities

and does not provide any user interaction while the simulation is running.

The following are some identified modifications and expansions of the existing source

code which are needed to fulfil the general requirements:

- Real-time and network communication capabilities expansion: In order to offer a

user-interactive and real-time simulation we need, for example, threading, network

protocols and synchronization units.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 42

- Management of resources: De-allocation of used memory after a simulation step,

release and deletion of all synchronisation units and deletion of all sockets.

- Modification of data storage and in/out operations: Removal of unnecessary in/out

operations and other overhead.

Unfortunately the OM system is not subject to any specific or general software architecture

and no standard programming style is identifiable. No UML diagrams were created for the

OM system and the source code is inadequately documented. The principles of

modularisation, information hiding and many other development patterns have not been

respected. An attempt to modify and expand the existing modules of OM failed after many

attempts because of the above grievances in its documentation and programming style.

For example, an attempt to modify the solver system to slow down its calculation

frequency or change its variable data failed because of unanticipated behaviour during

calculations.

5.1. OpenModelica Interactive

The new simulation runtime will be called “OpenModelica Interactive” (OMI).

OMI is an executable simulation application. The executable file will be generated by the

OMC, which contains the full Modelica (SysML) model as C/C++ code with all required

equations, conditions and a solver to simulate a whole system or a single system

component. However, the best way to expand the existing code with the required

capabilities is to separate the OMI system into different subsystems, which will also

support the modularisation and information hiding principles. The separation into

subsystems is attached to the service-oriented architecture, which has the advantage of

replacing, modifying and expanding the single subsystems without changes to the other

subsystem components.

The OMI is separated into two subsystems:

- The old modified OM Subsystem

- The new OMI Subsystem

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 43

ControlCalculation

Transfer

Global
Data

Simulation
Control

Simulation
DataFlow

Result
Manager

Orig. OM
components

OM Service
Interface

 OpenModelica Interactive
(As Server/Service)

Interactive GUI
(As Client)

Simulation Units Communication Units

OMI Subsystem (new) OM Subsystem (old)

Figure 5-1 OpenModelica Interactive System Architecture Overview

5.1.1. The OpenModelica Subsystem

The OpenModelica subsystem consists of the partially modified “Orig. OM components”

and a global data structure, as shown in Figure 2-5.

Modifications:

- Following a calculation stage, the results will be printed into a file in preparation for

plotting. OMI does not need this result file. In order to improve the performance this

function has to be removed from the “Solver_DASRT”.

- The “Orig. OM components” use many variables which are stored in the global

scope. These global scope variables must be reinitialized before running a new

solving step, otherwise the solver will not calculate the results correctly.

- Allocated memory must be released after a solving step and also a whole

simulation run also. The OM system has to De-allocate this memory after every

solving step.

Expansion:

- The new OMI subsystem components need to be called when a simulation begins.

This will be done from the main function in “simulation_runtime.cpp”, which starts

the “OMI_Control”, which takes over the whole simulation control.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 44

- The access to the simulation data “global_data” needs to be synchronized,

therefore a Mutex is implemented, which controls the access between the OM

components, such as the solver, and the OMI subsystem components.

- OM Service Interface: A unit which controls all access to the OM subsystem

components from other subsystems. All parallel activities on the OM will be

synchronized.

5.1.1.1. OpenModelica Subsystem Service Interface

The OM subsystem offers three main services: A Simulation Data-, a Simulation Data-
Name and a Solving- Service.

- Simulation Data Service: Model and simulation specific data for example variable

names, values and numbers, are stored in a global data structure. Most of this data

needs to be changed during the simulation single steps, but some data are static,

for example the step time. This service provides data query and manipulation.

- Simulation Data Name Service: Returns the model data names as string for

example variable or parameter names, this will be used to generate the filter mask

as mentioned in chapter 5.1.2.4.

- Solving Service: This service simulates a Modelica model for a specific time interval

by using a DASSL solver and the standard OM components. It sends the result for

a stop time to the caller and stores it to the global data structure. Some parameters

are needed to use the solving service from the OM Subsystem:

o Start time

o Stop time

o A tolerance for results

5.1.2. The OpenModelica Interactive Subsystem

The OpenModelica Interactive subsystem uses the above mentioned services to simulate

a Modelica model without any knowledge of used solvers, equations and conditions. The

subsystem is also separated into different modules.

5.1.2.1. OMI::Control

The “Control” module is the interface between OMI and a GUI. It is implemented as a

single thread to support parallel tasks and independent reactivity. As the main controlling

and communication instance at simulation initialisation phase and while simulation is

running it manages simulation properties and also behaviour. A client can permanently

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 45

send operations as messages to the “Control” unit, it can react at any time to feedback

from the “Calculation” or “Transfer” threads and it also sends messages to a client, for

example error or status messages.

The following are its main tasks:

- Waiting for a GUI to connect with, based on the network communication protocols

TCP/IP.

- Waiting for a request or an error and abort message from a GUI.

- Handling of a GUI request and replying with the correct execution with a done

message.

- Managing all “Calculation” and “Transfer” threads from the OMI subsystem.

- Watching for feedback from a global error handler which handles all occurred errors

from “Transfer”, “Calculation” and “Control” threads in the form of an error message.

- Informing a GUI if a fatal error occurs.

5.1.2.2. OMI::ResultManager

While a simulation is running the “Calculation” thread produces simulation results for every

time step, and the “Transfer” thread sends the single results to a client. There is a need for

synchronization and organisation of simulation results. However, the application cannot

store all results because this would cause the system to run out of memory.

This scenario is the typical “producer and consumer problem with restricted buffer”, which

is well known in IT science.

The “ResultManager” assumes responsibility for organizing simulation result data and

synchronizing access to these data.

Simulation Step Data (SSD)
The main unit of the “ResultManagers” is a collection of simulation step data elements

(SimulationStepData) which contain all important result values for each simulation step.

The “OM Solver” needs the following data for every single simulation step to solve the

equations and to confirm the conditions:

- A time stamp which marks for what time step these data represent.

- All state values and their derivatives.

- All algebraic values.

- All parameter values.

This container is restricted to prevent the system running out of memory.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 46

Simulation Result Data for Forwarding (SRDF)
Main organisation and management tasks while sending data to a GUI:

- Organise which data should be send to a GUI.

- Organise which data are obsolete.

- Manage how to synchronize the access from the different producers and

consumers.

- Manage how the producers and consumers should inform about free slot.

- Manage how the producers and consumers should inform about new results.

The “simulation result data for forwarding” (SRDF) is a container which contains

references to slots of the SSD array. This container is implemented as an array.
The buffer is restricted to “n” elements. This is important because a “Calculation” thread

could be much faster than the “Transfer” thread, which would cause the system to run out

of memory. Also “SRDF” is organized as a queue so it based on the principle of First in

First out (FIFO). This is the above mentioned typical “producer and consumer problem with

a restricted buffer”.

The following is a brief description of the organisation of the data array “SRDF” based on a

short example:

nt : Simulation result for the time n (C++ structure).

arr_srdf[n]: Array buffer with the maximum size “n”, starts at address “1000”.

ptf ●: Pointer to the first element i.e. least nt appendage the FIFO principles.

- If “ptf” points to a slot with a null, “pop” does not work.

ptd ▲: Pointer to the next free slot, where an element nt could be inserted.

- If “ptd” points to a busy slot, push does not work.

push: Insert a nt into “arr_srdf”.

pop: Take and remove a nt from the “arr_srdf”.

laa = Last array address.

Initialization Phase and example push, pop operations as pseudo code:

- arr_srdf[n] initialized with null

- ptf = arr_srdf;

- ptd = arr_srdf;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 47

- laa = &arr_srdff[n-1] //Last Array Address in this case 1028

1000 1004 1008 1012 1016 1020 1024 1028
null null null null null null null null
●▲

1. push 0t à if *ptd == null, then: (*ptd = 0t , if ptd != laa then: pdt++
else: ptd = arr_srdf)

0t
null null null null null null null

● ▲

2. push 1t à if *ptd == null, then: (*ptd = 1t , if ptd != laa then: pdt++
else: ptd = arr_srdf)

0t 1t
null null null null null null

● ▲

3. push 6t à if *ptd == null, then: (*ptd = 6t , if ptd != laa then: pdt++
else: ptd = arr_srdf)

6t 1t 2t 3t 4t 5t 6t
null

● ▲
4. pop à if *ptf != null, then: (get(*ptf), *ptf = null, if ptf != laa then:

pft++ else: ptf = arr_srdf))
null null

2t 3t 4t 5t 6t
null

 ● ▲
5. pop à if *ptf != null, then: (get(*ptf), *ptf = null, if ptf != laa then:

pft++ else: ptf = arr_srdf))

Case array buffer is full: Cannot perform a push action, until the slot which the ptd is

pointing on is not null.

8t 9t 2t 3t 4t 5t 6t 7t
 ▲●

Case array buffer is empty: Cannot perform a pop action, until the slot which the ptf is

pointing on is not filled with a nt
null null null null null null null null
 ●▲

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 48

Figure 5-2 Pseudo code of push and pull in SRDF

The computer science has a design pattern to solve the “producer and consumer problem

with restricted buffer”. It will use Semaphores and Mutexes. Involved members are

“Calculation” as producer and “Transfer” as consumer.

5.1.2.3. OMI::Calculation

The “Calculation” thread is synonymous to a producer which uses the “OM Solving

Service” to get results for a specific time step and to inform the “ResultManager” about the

new simulation results. It uses the parameters described in 5.1.1.1. to calculate the interval

between single calculation steps (1+→ nn TT) in a loop, until the simulation is interrupted by

the “Control” or because of an occurred error.

If a single solving step is very complex and takes a long time to be solved, it is possible to

create more than one producer to start the next simulation step during the data storing

time.

5.1.2.4. OMI::Transfer

Similar to a consumer, the “Transfer” thread tries to get simulation results from the

“ResultManager” and send them to the GUI immediately after starting a simulation. If the

push(result nt)
{

If(*ptd == null)
{

*ptd = nt ;
If(ptd != laa)
 ptd++;
else: ptd = arr_srdf;

 }
 else: Can’t push nt because there is no free slot
}

pop()
{
 if(i*ptf != null)

{
 do(*ptf);
 *ptf = null;
 If(ptf != laa)
 ptf++;
 else: ptf = arr_srdf;
 }

else: Can’t pop an element because the buffer is empty
}

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 49

communication takes longer than a calculation step, it is also possible to create more than

one consumer.

The “Transfer” uses a property filter mask containing all property names whoes result

values are important for the GUI. The GUI must set this mask using the “setfilter” operation

from chapter 5.1.3.2, otherwise the transfer sends only the actual simulation time. This is

very useful for increasing the communication speed while sending results to the GUI.

5.1.3. Communication Interface (Architecture)

As depicted in Figure 5-1 the behaviour between the OMI and a GUI is like a server and

client behaviour respectively.

5.1.3.1. Communication

There are some possible technologies to realise the communication between the OMI and

a GUI. The following are some of these technologies:

- CORBA: The “Common Object Requesting Broker Architecture” is a standard

defined by the OMG which enables software components written in multiple

computer languages to work together. This specification offers a name service,

object management service and some other very useful concepts.

- Message Parsing using a common network communication technology: The

principle of message parsing is used when an application does not have shared

memory. It is used in combination with a network communication technology when

the information exchange can be constructed on a basic structure, for example

strings.

For the OMI realisation CORBA is too overloaded. The name service will not be used

because there is only one single simulation runtime and only one GUI. There are no

objects on the “C++” simulation runtime side. However, message parsing using a common

network technology seems to be the most suitable way.

The network communication technology “TCP/IP” will be used to send and receive

messages; it has many advantages compared with “UDP/IP” [8]. Each system has its own

server and client implementations to receive and send messages respectively.

For an example system application the servers and clients will get static IP addresses.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 50

Name Description URL

Control Server Waits for requests from the GUI Waits for connection on:

127.0.0.1:10501

Control Client Replies to the GUI and sends

other synchronization messages

to it

Tries to connect on:

127.0.0.1:10500

Transfer Client Sends simulation results to a GUI Tries to connect on:

127.0.0.1:10502

Table 5-1 OMI server and client components

Name Description URL

Control Client Requests to the OMI Control

Server

Tries to connect on:

127.0.0.1:10500

Control Server Waits for information from the

OMI Control Client

Waits for connection on:

127.0.0.1:10500

Transfer Server Waits for simulation results from

the OMI Transfer Client

Waits for connection on:

127.0.0.1:10502

Table 5-2 GUI server and client components

5.1.3.2. Operation Messages

To use messages parsing there is a need to specify a communications protocol.

A string message begins with a specified prefix and ends with a specified suffix.

The prefix describes the request type, for example an operation. Depending on the request

type, some additional information and parameters can appended on it. The suffix is to

check if the message has been received correctly and if the sender has created it

correctly. All parts should be separated with “#”.

The following are all available message strings between a GUI and the OMI system:

Request from GUI to OMI::Control
GUI Request Description OMI::Control Reply

start#end Starts or continues the simulation done#end

pause#end Pauses the running simulation done#end

stop#end Stops the running simulation and

resets all values to the beginning

done#end

shutdown#end Shuts the simulation down done#end

setfilter#

var1:var2#

par1:par2#

end

Sets the filter for variables and

parameters which should send

from OMI to the client GUI

done#end

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 51

changetime#Tn#end Changes the simulation time and

goes back to a specific time step

done#end

changevalue#Tn#

par1=2.3:par2=33.3#

end

Changes the value of the

appended parameters and stets

the simulation time back to the

point where the user clicked in the

GUI

done#end

error#TYPE#end Error handling not implemented

yet

Error: *

Table 5-3 Available messages from a GUI to OMI (Request-Reply)

 Messages from OMI::Control to GUI
OMI::Control Description GUI

Error: MESSAGE If an error occurs the OMI::Control

generates an error messages and

sends the this messages with the

prefix “Error:” to the GUI

Up to the GUI developers

Table 5-4 Available messages from OMI::Control to GUI

Messages from OMI::Transfer to GUI
OMI::Transfer Description GUI

result#ID#Tn#

var1=Val:var2=Val#

par1=Val:par2=Val#

end

Sends the simulation result for a

time step Tn to the client GUI.

Maybe an ID is important to

identify the results which are

obsolete (not implemented yet).

none

Table 5-5 Available messages from OMI::Transfer to GUI

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 52

5.1.4. OpenModelica Interactive Structure and Behaviour

The OMI structure and behaviour will be represented as UML diagrams. Use cases will be

illustrated in UML Sequence diagrams.

+simulationDataService()
+solvingService()
+simulationDataNameService()
+threadCalculation()
+initializeSSD_AND_SRDF()
+getResultData()
+setResultData()
-createSSDEntry()
-calculate()

-simStepData_from_Calculation : SimulationStepData
-p_SimStepData_from_Calculation : SimulationStepData

OMI::Calculation

+reportError(ein errorMessage)
+threadTransfer()
+simulationDataService()
+solvingService()
+simulationDataNameService()
+threadCalculation()
+initializeSSD_AND_SRDF()
+getResultData()
+setResultData()
-threadClientControl()
+sendMessageToClient()
+reInitAll()
+startSimulation()
+stopSimulation()
+pauseSimulation()
+changeSimulationTime()
+changeParameterValues()
+parseMessageFromClient()
+shutDown()
+createErrorMessage()
+setVariableFilterForTransfer()
+initialize()
+setFilterForTransfer()
+createServerSocket()
+connectToGUI()
+setGlobalData()
+parseState()
+parseAlgebraic()

-NUMBER_PRODUCER : int
-NUMBER_CONSUMER : int

OMI::Control

+threadTransfer()
+initializeSSD_AND_SRDF()
+getResultData()
+setResultData()
-sendMessageToClient() : int
+connectToTransferServer() : int
+printSSDTransfer() : int
+setVariableFilter()

-simStepData_from_Transfer : SimulationStepData
-p_SimResDataForw_from_Transfer : SimulationStepData

OMI::Transfer

CalculationInterface

ControlInterface

TransferInterface

ReportErrorInterface

«uses»«uses»

«uses»

«uses»

«uses»«uses»

«uses»

«uses»

+initializeSSD_AND_SRDF()
+getResultData()
+setResultData()
-addDataToSSD()
-pointNextFreeSSDSlot()
-pointNextFreeSRDFSlot()
-pointNextUsedSRDFSlot()
-pushSRDF()
-popSRDF()
-printSSD()
-printSRDF()
+getSSDForTime()

-ssdArray : SimulationStepData = MAX_SSD
-MAX_SRDF : int = 20
-MAX_SSD : int = 200
-

OMI::ResultManager

ResultManagerInterface

ResultManagerInterface

ResultManagerInterface

ResultManagerInterface

+setValues()
+getValues()

OM::GlobalDataManager

+simulationDataService()
+solvingService()
+simulationDataNameService()

OM::OMService

OMServiceInterface

+solveEquations()

OM::Solver
«uses»«uses»

OMServiceInterface

OMServiceInterface

CalculationInterface

CalculationInterface

TransferInterface

O
M

ServiceInterface

Figure 5-3 UML-Structure OM and OMI with some attributes and methods

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 53

Figure 5-4 UML-Seq Handshake, model initialization and set Transfer filter mask

The UML-Sequence diagram in Figure 5-4 illustrates the network specific handshake

phase, the model initialization phase, which includes creation and initialisation of all

producers and consumers, and the definition of the filter mask for the consumers (Transfer

threads) the filter message is the “setfilter” operation from Table 5-3.

Figure 5-5 UML-Seq Simulation start

After the initialization phase the client can start the simulation with the message “start”

from Table 5-3. This will cause the “OMI::Control” to start all producers and consumers so

they will calculate and send results respectively.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 54

OMI::Calculation OM::Solver OMI::ResultManager

solveEquations

simulateT(n)-T(n+1)

setResultData

setDone

loop

OM::GlobalDataManager

getValues

OM::OMService

solvingService

done

returnResults returnValues

Sequenz-SimulationStart
ref

Figure 5-6 UML-Seq Calculation phase

After simulating T(n) to T(n+1) the result must set to the “SimulateStepData” collection.

The “setResultData()” method is synchronized and the caller must wait if a mutex or the

semaphore is in use.

OMI::ResultManager

ClientGUI

OMI::Transfer

Sequenz-SimulationStart

loop
getResultData

getDone

sendMessageToClient()

ref

Figure 5-7 UML-Seq Transfer to client phase

The “Transfer” thread calls the “getResultData” method in a loop and waits for new results

referenced in the “SimulateStepData” collection to send them to a GUI.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 55

OM::OMServiceOMI::Control OMI::Calculation OMI::Transfer OMI::ResultManager

ClientGUI

changeParameterValues

interrupt

interrupt

OM::GlobalDataManager

getSSDForTime()

SSDForTime(x)

setValues()

setDone

resume

Sequenz-SimulationPhase [Calculation&Transfer]

ref

resume

simulationDataService()

Figure 5-8 UML-Seq Change Value of a parameters

A more complex sequence is changing parameter values. The client sends a

“changevalue” message with a time T(n) and the new values. “Control” interrupts all

producers and consumers so it can access on the “SSD” and “SRDF” of the

“ResultManager”. “Control” uses the “OM::Service” to put the new values into the global

data structure. After this, it resets the data in to “SSD” by using data from the time step

T(n) and resumes all components.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 56

5.1.5. Testing of the OpenModelica Interactive simulation runtime

Since rounding errors occur while storing and recalling result values by the

“OMI::ResultManager”, the “OM::Solver” will get changed values compared to the non

Real-time calculation of OM.

5.1.5.1. Back to Back Tests

Two or more versions of the same application are compared concerning their outputs

using the same inputs. In this case one version is the original OM system and the other is

the new OMI system. The demonstration model will be used with the standard variable and

parameter values [Appendix B]. Only the outgoing flow level of the source will be changed

during the simulation time.
Name Start value Value after 200s Value after 400s Value after 600s

source.flowLevel 0.02 0.04 0.08 0.16

Table 5-6 source.flowLevel values for a Back to Back Test

As depicted in Table 5-6 the outgoing liquid from the source starts at “0.02” and doubles

every 200 seconds. The following plot shows the level of liquid in the first tank (“tank1.h”)

and the gain of the outgoing liquid from the source (“source.qOut.lflow”)

Figure 5-9 Plot of Simulation Results Tank1.h and Source.qOut.lflow

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 57

Time (s) lflow OM - tank1.h OMI - tank1.h Deviation (absolute) Deviation (percent)

0.0 0.02 0.000000 0.000000 0.000000 0.00%

1.0 0.02 0.020000 0.020000 0.000000 0.00%

2.0 0.02 0.040000 0.040000 0.000000 0.00%

3.0 0.02 0.060000 0.060000 0.000000 0.00%

4.0 0.02 0.070000 0.070000 0.000000 0.00%

18.0 0.02 0.360000 0.360000 0.000000 0.00%

19.0 0.02 0.376354 0.375674 0.000680 -0.18%
20.0 0.02 0.376526 0.375149 0.001377 -0.37%
92.0 0.02 0.250041 0.250041 0.000000 0.00%

131.0 0.02 0.250001 0.250001 0.000000 0.00%

132.0 0.02 0.250000 0.250000 0.000000 0.00%

198.0 0.02 0.249999 0.250000 0.000001 0.00%

199.0 0.02 0.250081 0.250000 0.000081 -0.03%

200.0 0.04 0.262371 0.262512 0.000141 +0.05%
201.0 0.04 0.266349 0.266330 0.000019 -0.01%

202.0 0.04 0.266702 0.266689 0.000013 0.00%

203.0 0.04 0.265699 0.265612 0.000087 -0.03%

389.0 0.04 0.249999 0.250000 0.000001 0.00%

399.0 0.04 0.250064 0.250000 0.000064 -0.03%

400.0 0.08 0.275022 0.275007 0.000015 -0.01%

401.0 0.08 0.282507 0.28258 0.000073 +0.03%

402.0 0.08 0.283273 0.283346 0.000073 +0.03%

403.0 0.08 0.281430 0.281512 0.000082 +0.03%

589.0 0.08 0.250000 0.250000 0.000000 0.00%

599.0 0.08 0.250430 0.250000 0.000430 -0.17%
600.0 0.16 0.30002 0.299893 0.000127 -0.04%
601.0 0.16 0.315029 0.315043 0.000014 0.00%

602.0 0.16 0.316480 0.316591 0.000111 +0.04%
603.0 0.16 0.312852 0.312944 0.000092 +0.03%

Table 5-7 Results of the Back to Back Test

The time values from 0.0s – 132.0s are selected at random. The time when

“Source.qOut.lflow” is changed and its limits are important for this Back to Back test. “OM -

tank1.h” represents the results of the original OM simulation runtime. “OMI - tank1.h”

represents the results of the new modified OMI simulation runtime. As depicted in Table

5-7 the deviations between “OM - tank1.h” and ““OMI - tank1.h”” are in the range of

±0.01% and ±0.05%. This is acceptable in view of the fact that the deviation will not be

larger. It will be further reduced according to the number of results provided

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 58

6. Interactive Graphical User Interface
In order to demonstrate the developed interactive simulation capabilities a Graphical User

Interface (GUI) has been developed. The simulation environment is implemented in Java

[31]. The GUI is implemented in the Standard Widget Toolkit (SWT) [32], it is an open

source widget toolkit for Java designed to provide efficient and mobile GUI development.

6.1. Simulation configuration

While translating a SysML model into Modelica code a XML file containing all model

information has to be generated. This file will be needed to configure simulation data, for

example, it defines which parameter should be used interactively or which attributes

should be displayed on a plot.

The XML file contains the following information:

- Specific model information, for example its name, version or general comments.

- All variables with values, types and comments.

- All parameters with values, types and comments.

A simulation configuration tool reads this initial XML [Appendix C] file and offers a GUI to

change values and properties on it.

Figure 6-1 Simulation Configuration Tool
The simulation configuration tool displays all components and their attributes as a tree.

A variable is marked with a (VAR) and the user has the following options for it:

- Display the selected variable on a plot (Check the “Plot” option).

A parameter is marked with a (PAR) and the user has the following options for it:

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 59

- Display the selected parameter on a plot (Check the “Plot” option).

- Use the selected parameter interactively (Check the “Interactive” option).

- Set another start value as default. This will cause a “changevalue” message from

the GUI to OMI with the new values.

- If the type is a float or integer the user can set a minimum and maximum value for

it. This can be used to offer sliders in the control center.

The tool completes the information from the initial XML file with new data and generates a

new configured XML file [Appendix D].

6.2. Simulation Environment

The interactive GUI depicted in Figure 5-1 communicates with the OMI simulation runtime,

which runs concurrently on a computer using operations from Table 5-3. The GUI has also

a “GUI::ControlServer”, a “GUI::ControlClient” and a “GUI::TransferServer” to receive

result data from the “OMI::TransferClient”. The network configuration is depicted in Table

5-2.

The interactive simulation environment reads the configured XML file and generates all

containers and objects containing all variables, parameters and their properties. The GUI

builds a connection to the simulation runtime and initialises the runtime displayed in Figure

5-4. After initialization of the runtime a simulation control center will be displayed and

offers the interactive simulation of the model using the OMI simulation runtime.

Figure 6-2 Simulation control center

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 60

Figure 6-3 Selection of properties to display on plot

The user can display the results as graphical charts which are implemented using

“JFreeChart” a freely available Java graph plotting solution [29].

 After selecting “Add new Plot” in the control center a new window depicted in Figure 6-3 is

shown. In this window the user can select all variables and parameters which are marked

as “Plot” in the simulation configuration tool. By selecting “Create Plot” a new and empty

chart plot view as displayed in Figure 6-4 will be created.

Figure 6-4 New plot to display tank1.h and tank2.h

The chart plot view communicates with the control center using the observer pattern to get

new results for its properties.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 61

Figure 6-5 Live plot of tank1.h and tank2.h

By clicking the play button in the control center the “start#end” message from Table 5-3

will be sent to the runtime and the simulation begins. Now the user can enter a new value

for a parameter and click “Change manually” to stimulate the model interactively.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 62

7. Conclusions and Future Work

7.1. Conclusions

This work presents a system modelling and simulation approach that enables the creation

of executable system models which can be simulated interactively. It proved the possibility

to make SysML models executable by providing a possible mapping between the SysML

and Modelica and rules for translating SysML models into Modelica code. A concrete

example of a Two Tanks Systems is used to illustrate this approach.

Moreover, this thesis presents a new OpenModelica Interactive (OMI) simulation

environment which enables user- interactive real-time system simulation of system time-

continuous and time-discrete behaviour and provides a powerful interface for the

visualization of system which is simulated. A simplified graphical user interface of a

simulation centre is implemented in order to demonstrate the outcomes.

7.2. Future Work

The future work is mostly connected with mapping of SysML to Modelica, implementation

of SysML diagrams and extending the simulation runtime for more simulation

functionalities. Full implementation of the tasks listed below may result in a complete and

stand-alone system modelling and simulation environment tool.

A general and complete mapping supporting all the concepts of SysML and Modelica is

still to be elaborated. The following are some elements to be mapped completely:

- Modelica Equations and Algebraic Equations.

- Integration of the Modelica Standard Library.

- SysML State Chart Diagram.

- SysML Activity Diagram.

- SysML Requirements.

- Efficient translation rules.

An efficient and powerful simulation runtime is the most important part for an interactive

real-time simulation. The following are some extensions to the OMI simulation runtime:

- A more powerful and stable solver.

- Extending of the simulation control API with additional operations.

- Extending of the communication interface.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 63

In order to make this approach useable in operational field the following parts need to

integrate as a stand-alone modelling and simulation environment tool or an Eclipse Plug-

In:

- The SysML modelling environment.

- The SysML to Modelica transformation.

- The OMI simulation runtime.

- The simulation center.

The following are open tanks to integrate the parts:

- Automated Modelica code generation from SysML diagrams.

- Modelica code and diagram synchronization.

- Integration with the OpenModelica compiler (OMC).

- Modelica code or library presentation as SysML.

- Integration with Modelica Development Tooling (MDT).

This is an ongoing research project at the EADS Innovation Works in cooperation with the

Linkoping University and the OMG SysML/Modelica Integration Working Group.

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 64

IV. References
[1] Sanford Friedenthal, Alan Moore and Rick Steiner, 2008, Practical Guide to SysML: The

Systems Modeling Language, Morgan Kaufmann.

[2] Fritzson Peter, 2004, Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,

Wiley-IEEE Press.

[3] Andrew S. Tanenbaum and Maarten Van Steen, 2006,Distributed Systems: Principles and

Paradigms, Prentice Hall

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman, 2006, Compilers: Principles,

Techniques, and Tools, Addison Wesley.

[5] André Willms, 2008, Einstieg in Visual C++ 2008, Galileo Computing.

[6] Jürgen Wolf, 2006, C++ von A bis Z, Galileo Computing.

[7] Ralf Reussner und Wilhelm Hasselbring, 2006, Handbuch der Software-Architektur, dpunkt

Verlag.

[8] Andrew S. Tanenbaum, 2003, Computer Networks (4th Edition), Prentice Hall.

[9] Frieder Grupp und Florian Grupp, 2007, Simulink: Grundlagen und Beispiele, Oldenbourg.

[10] K.E. Brenan, S.L. Campbell, and L.R. Petzold, 1996, Numerical Solution of Initial Value

Problems in Differential/Algebraic Equations. SIAM, second edition.

[11] Friedenthal, Sanford, Greigo, Regina, and Mark Sampson, INCOSE MBSE Roadmap, in

“INCOSE Model Based Systems Engineering (MBSE) Workshop Outbrief” (Presentation

Slides), presented at INCOSE International Workshop 2008, Albuquerque, NM, pg. 6, Jan. 26,

2008

[12] Modelica Association, 2005, "Modelica Language Specification Version 3.0",

http://www.modelica.org/documents/ModelicaSpec30.pdf, September 5, 2007.

[13] Object Management Group UML, “OMG Unified Modeling Language (OMG UML),

Infrastructure, V2.1.2”, http://www.omg.org/docs/formal/07-11-04.pdf, November 2007.

http://www.modelica.org/documents/ModelicaSpec30.pdf
http://www.omg.org/docs/formal/07-11-04.pdf

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 65

[14] Object Management Group UML, “OMG Unified Modeling Language (OMG UML),

Superstructure, V2.1.2”, http://www.omg.org/docs/formal/07-11-02.pdf, November 2007.

[15] Object Management Group SysML, “OMG Systems Modeling Language (OMG SysML™)

Specification”, http://www.omg.org/docs/formal/08-11-02.pdf, November 2008.

[16] PELAB, Peter Fritzson, “OpenModelica System Documentation, Version, 2008-01-27 for

OpenModelica1.4.5”,

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/1.4.5/doc/OpenModelicaSyst

em.pdf, January 2009.

[17] PELAB, Peter Fritzson, “OpenModelica Users Guide, Version 2009-01-27 for OpenModelica

1.4.5”,

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/1.4.5/doc/OpenModelicaUser

sGuide.pdf, January 2009.

[18] Computing and Mathematics Research Division Lawrence Livermore National Laboratory,

Petzold, Linda R., http://www.netlib.org/ode/ddassl.f, December 12 2006.

[19] The International Council on Systems Engineering (INCOSE), Last Accessed: 2009

http://www.incose.org/

[20] Object Management Group (OMG) Systems Modelling Language, Last Accessed: 2009

http://www.omgsysml.org/

[21] Modelica and the Modelica Association, Last Accessed: 2009

http://www.modelica.org/

[22] Modelica and the Modelica Association, Modelica Libraries, Last Accessed: 2009

http://www.modelica.org/libraries

[23] Dynasim AB, Dymola, Last Accessed: 2009

http://www.dynasim.se/

[24] The OpenModelica Project, Last Accessed: 2009

http://www.ida.liu.se/~pelab/modelica/OpenModelica.html

[25] MathCore Engineering AB, MathModelica, Last Accessed: 2009

http://www.mathcore.com/products/mathmodelica/

http://www.omg.org/docs/formal/07-11-02.pdf
http://www.omg.org/docs/formal/08-11-02.pdf
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/1.4.5/doc/OpenModelicaSyst
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/releases/1.4.5/doc/OpenModelicaUser
http://www.netlib.org/ode/ddassl.f
http://www.incose.org/
http://www.omgsysml.org/
http://www.modelica.org/
http://www.modelica.org/libraries
http://www.dynasim.se/
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html
http://www.mathcore.com/products/mathmodelica/

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 66

[26] Open Source Modelica Consortium, Last Accessed: 2009

http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html

[27] Linköping University, Last Accessed: 2009

http://www.liu.se

[28] OpenModelica source code version 1.4.5 from Subversion repository,

http://www.ida.liu.se/labs/pelab/modelica/OpenModelica.html#Download

[29] Object Refinery Limited, JFreeChart, Last Access: 2009 http://www.jfree.org/jfreechart/

[30] IBM Rational Rhapsody, Systems-Engineering Tool Rhapsody 7.2,

http://www.telelogic.com/products/rhapsody/index.cfm

[31] Sun Microsystems, Java, http://java.sun.com/

[32] The Standard Widget Toolkit (SWT), Version 3.4.2 (13 February 2009),

http://www.eclipse.org/swt/

http://www.ida.liu.se/labs/pelab/modelica/OpenSourceModelicaConsortium.html
http://www.liu.se
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica.html#Download
http://www.jfree.org/jfreechart/
http://www.telelogic.com/products/rhapsody/index.cfm
http://java.sun.com/
http://www.eclipse.org/swt/

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 67

V. Appendix
Appendix A. The TanksConnectedPI demonstration model Modelica code

package.mo
package TwoTanks
end TwoTanks;

ReadSignal.mo
within TwoTanks;

connector ReadSignal "Reading fluid level"
 Real val(unit = "m");
end ReadSignal;

LiquidFlow.mo
within TwoTanks;

connector LiquidFlow "Liquid flow at inlets or outlets"
 Real lflow(unit = "m3/s");
end LiquidFlow;

ActSignal.mo
within TwoTanks;

connector ActSignal "Signal to actuator for setting valve position"
 Real act;
end ActSignal;

Tank.mo
within TwoTanks;

block Tank
 output ReadSignal tSensor "Connector, sensor reading tank level (m)";
 input ActSignal tActuator "Connector, actuator controlling input
flow";
 input LiquidFlow qIn "Connector, flow (m3/s) through input
valve";
 output LiquidFlow qOut "Connector, flow (m3/s) through output
valve";
 parameter Real area(unit = "m2") = 0.5;
 parameter Real flowGain(start = 1.99, unit = "m2/s") = 0.5;
 parameter Real minV= 0, maxV = 10; // Limits for output valve flow
 Real h(start = 0.0, unit = "m") "Tank level";
 equation
 der(h) = (qIn.lflow - qOut.lflow)/area; // Mass balance equation
 qOut.lflow = if (-flowGain*tActuator.act) >maxV then maxV
 else if (-flowGain*tActuator.act) <minV then minV
 else (-flowGain*tActuator.act);
 tSensor.val = h;
end Tank;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 68

BaseController.mo
within TwoTanks;

partial block BaseController
 input ReadSignal cIn "Input sensor level, connector";
 output ActSignal cOut "Control to actuator, connector";
 parameter Real Ts(unit = "s") = 0.1;
 parameter Real K = 2 "Gain";
 parameter Real T(unit = "s") = 10 "Time constant";
 parameter Real ref "Reference level";
 Real error "Deviation from reference level";
 Real outCtr "Output control signal";
equation
 error = ref - cIn.val;
 cOut.act = outCtr;
end BaseController;

PIcontinuousController.mo
within TwoTanks;

block PIcontinuousController extends BaseController(K = 2, T = 10);
 Real x "State variable of continuous PI controller";
equation
 der(x) = error/T;
 outCtr = K*(error + x);
end PIcontinuousController;

LiquidSource.mo
within TwoTanks;

block LiquidSource
 output LiquidFlow qOut;
 parameter Real flowLevel = 0.02;
equation
 qOut.lflow = flowLevel;
end LiquidSource;

TanksConnectedPI.mo
within TwoTanks;

block TanksConnectedPI
 LiquidSource source(flowLevel = 0.02);
 Tank tank1(area = 1);
 Tank tank2(area = 1.3);
 PIcontinuousController piContinuous1(ref = 0.25);
 PIcontinuousController piContinuous2(ref = 0.4);
 equation
 connect(source.qOut, tank1.qIn);
 connect(piContinuous1.cOut, tank1.tActuator);
 connect(tank1.tSensor, piContinuous1.cIn);
 connect(tank1.qOut, tank2.qIn);
 connect(piContinuous2.cOut, tank2.tActuator);
 connect(tank2.tSensor, piContinuous2.cIn);
end TanksConnectedPI;

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 69

Appendix B. Standard parameter and variable values

Name Type Value

tank1.h Variable 0.0

tank2.h Variable 0.0

piContinuous1.x Variable 0.0

piContinuous2.x Variable 0.0

tank1.tActuator.act Variable 0.0

tank1.qIn.lflow Variable 0.0

tank2.tActuator.act Variable 0.0

tank2.qIn.lflow Variable 0.0

tank2.qOut.lflow Variable 0.0

piContinuous1.error Variable 0.0

piContinuous2.error Variable 0.0

source.qOut.lflow Variable 0.0

tank1.tSensor.val Variable 0.0

tank1.qOut.lflow Variable 0.0

tank2.tSensor.val Variable 0.0

piContinuous1.cIn.val Variable 0.0

piContinuous1.cOut.act Variable 0.0

piContinuous1.outCtr Variable 0.0

piContinuous2.cIn.val Variable 0.0

piContinuous2.cOut.act Variable 0.0

piContinuous2.outCtr Variable 0.0

source.flowLevel Parameter 0.02

tank1.area Parameter 1.0

tank1.flowGain Parameter 0.5

tank1.minV Parameter 0.0

tank1.maxV Parameter 10.0

tank2.area Parameter 1.3

tank2.flowGain Parameter 0.5

tank2.minV Parameter 0.0

tank2.maxV Parameter 10.0

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 70

piContinuous1.Ts Parameter 0.1

piContinuous1.K Parameter 2.0

piContinuous1.T Parameter 10.0

piContinuous1.ref Parameter 0.25

piContinuous2.Ts Parameter 0.1

piContinuous2.K Parameter 2.0

piContinuous2.T Parameter 10.0

piContinuous2.ref Parameter 0.4

Appendix C. Structure example of the „TwoTanks_Init.xml”

- <model>

- <general>

 <name>TwoTanks</name> - <!-- Project Name -->

 <version>1.0</version> - <!-- Version of project -->

 <id /> - <!-- A unique identifier for a ModelConfiguration.xml and a corresponding

ModelSimulation.exe, the Model data initialization tool generates the ID -->

 <n_states>4</n_states>

 <n_algebraics>17</n_algebraics>

 <n_parameters>17</n_parameters>

 <n_string_parameters>0</n_string_parameters>

 <n_string_variables>0</n_string_variables>

 <comment>This TwoTanks model is a demonstration model for the bachelor thesis by

Parham Vasaiely</comment>

 </general>

- <mainclass name="main"> - <!-- Main Class -->

- <general>

 <type>TanksConnectedPI</type>

 <comment>no comment yet</comment>

 </general>

- <variables>

- <var name="tank1.h">

- <general>

 <type>Real</type> - <!-- Datatype -->

 <comment>no comment yet</comment>

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 71

 <plot>false</plot>

 </general>

 <value>0.0</value>

 </var>

...

- <parameters>

- <par name="source.flowLevel">

- <general>

 <type>Real</type> - <!-- Datatype -->

 <comment>no comment yet</comment>

 <plot>false</plot>

 <interactive>false</interactive>

 </general>

 <value>0.02</value>

 <minValue />

 <maxValue />

 </par>

...

Appendix D. Structure example of the „TwoTanks_SimulationConfig.xml“
- <model>

- <general>

 <name>TwoTanks</name> - <!-- Project Name -->

 <version>1.0</version> - <!-- Version of project -->

 <id>4711</id> - <!-- A unique identifier for a ModelConfiguration.xml and a corresponding

ModelSimulation.exe, the Model data initialization tool generates the ID -->

 <n_states>4</n_states>

 <n_algebraics>17</n_algebraics>

 <n_parameters>17</n_parameters>

 <n_string_parameters>0</n_string_parameters>

 <n_string_variables>0</n_string_variables>

 <comment>This TwoTanks model is a demonstration model for the bachelor thesis of

Parham Vasaiely</comment>

 </general>

- <mainclass name="main">- <!-- Main Class -->

- <general>

 <type>TanksConnectedPI</type>

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 72

 <comment>no comment yet</comment>

 </general>

- <variables>

- <var name="tank1.h">

- <general>

 <type>Real</type> - <!-- Datatype -->

 <comment>no comment yet</comment>

 <plot>true</plot>

 </general>

 <value>0.0</value>

 </var>

- <parameters>

- <par name="source.flowLevel">

- <general>

 <type>Real</type> - <!-- Datatype -->

 <comment>no comment yet</comment>

 <plot>true</plot>

 <interactive>true</interactive>

 </general>

 <value>0.02</value>

 <minValue>0.01</minValue>

 <maxValue>1.0</maxValue>

 </par>

Bachelor Thesis
Interactive Simulation of SysML Models using Open Modelica 73

Versicherung über Selbstständigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung nach

§24(5) ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Hilfsmittel

benutzt habe.

Hamburg, 24.08.2009

Ort, Datum Unterschrift

