
Fakultät Technik und Informatik Faculty of Engineering and Computer Science
Department Informations- und Department of Information and
Elektrotechnik Electrical Engineering

Ioana Semedrea

Automatic Keyword Controlled GUI Screen Layout
Generation for RTDX Applications Running on

TMS320C6713 DSP

Bachelor Thesis

Ioana Semedrea

Automatic Keyword Controlled GUI Screen Layout

Generation for RTDX Applications Running on

TMS320C6713 DSP

Bachelor Thesis based on the examination and study regulations for

the Bachelor of Engineering degree programme

Information Engineering

at the Department of Information and Electrical Engineering

of the Faculty of Engineering and Computer Science

of the University of Applied Sciences Hamburg

Supervising examiner: Prof. Dr. Ulrich Sauvagerd

Second examiner: Prof. Dr. rer. nat. Hans-Jürgen Hotop

Day of delivery 26 August 2009

Ioana Semedrea

Title of the Bachelor Thesis

Automatic Keyword Controlled GUI Screen Layout Generation for RTDX Applications
Running on TMS320C6713 DSP

Keywords

C6713, DSP, DSK board, RTDX, real-time applications, host-to-target connection,
RTDX channel, RTDX block, C-programming

Abstract

The aim of this bachelor project is the implementation of a PC application that assists
in the debugging and controlling of digital signal processor applications running on the
Texas Instruments TMS320C6713 processor. The developed PC application provides
the infrastructure for transferring data between a DSP and a PC in real time, without
interrupting the execution of the DSP program. The data transferring procedure is
based on the Real-Time Data Exchange technology of Texas Instruments. The
distinguishing characteristic of the developed application is its ability to adjust itself to
the specific requirements of each DSP application. The user can determine the layout
of the PC application screen through a set of keywords inserted in the DSP program
code. A graphical user interface offers the necessary tools for visualizing and
modifying the DSP data. The exchange of data from PC to DSP is fully realized. From
DSP to PC data exchange is available for selected data structures and it can be
extended to all supported data structure types.

Ioana Semedrea

Thema der Bachelorarbeit

Automatische Keyword-gesteuerte Generierung von GUI-Layouts für TMS320C6713
DSP RTDX-Anwendungen

Stichworte

C6713, DSP, DSK-Board, RTDX, Echtzeitanwendungen, Host-Target
Kommunikation, RTDX-Kanal, RTDX-Block, C Programmierung

Kurzzusammenfassung

Ziel dieser Bachelorarbeit ist die Implementierung einer PC-Anwendung, die eine auf
dem TMS320C6713 Prozessor von Texas Instruments laufende Anwendung für
digitale Signalverarbeitung beim Debugging und der Steuerung unterstützt. Die
entwickelte PC-Anwendung stellt die Infrastruktur für Datenübertragung zwischen PC
und DSP in Echtzeit bereit, ohne den Ablauf des DSP-Programms zu unterbrechen.
Der Datenaustausch basiert auf der von Texas Instruments bereitgestellten Real-
Time Data Exchange Technologie. Der Schwerpunkt der entwickelten Anwendung ist
deren Fähigkeit, sich an die spezifischen Anforderungen jeder DSP-Anwendung
anzupassen. Der User kann durch im Code des DSP-Programms eingefügte
„Keywords“ das Layout des PC-Anwendungsfensters bestimmen. Die
Datenübertragung vom PC zum DSP ist vollständig realisiert. Für ausgewählte
Datenstrukturen ist auch die Übertragung vom DSP zum PC realisiert, wobei eine
Erweiterung für alle unterstützten Datenstrukturen einfach realisiert werden kann.

 1

Contents

1. Introduction ……………………………………………………………………………..………………………………….. 2

2. Hardware and Software Background ……….………………………………………………………………. 4

2.1 The DSK Board with TMS320C6713 DSP …………………………………………………………… 4

2.2 The Real-Time Data Exchange Technology ……………………………………………………….. 6

3. Analysis and Requirements of the Host Application …………………………………………….. 15

3.1 Texas Instruments Host Applications for Real-Time Data Exchange …………………. 15

3.2 Tools for Developing RTDX Host Applications ……………………………………………………. 17

3.3 Requirements of the Developed RTDX Host Application …………………………………. 18

4. Design of the RTDX Display Application …………………………………………………………….. 20

4.1 System Design ………………………………………………………………………………………………. 20

4.2 Design of the Host Application ………………………………………………………………………… 21

5. Implementation of the RTDX Display Application ….……………………………………………….. 29

5.1 Automatic GUI Screen Generation ……………………………………………………………………….. 29

5.2 RTDX Realization in the Host Application ………………………………………………………… 31

5.3 RTDX Display Application Performance ………………………………………………………………. 33

5.4 Guidelines for DSP Applications Using RTDX Display ……………………………………… 35

5.5 Testing Outcome for RTDX Display ………………………………………………………………… 36

6. Further Development of RTDX Display .……………………………………………………………….. 39

7. Conclusion ……… 39

8. References …… 40

Glossary and Abbreviations ……………………………………………………………... 42

List of Figures …… 43

Appendix …….. 45

1. Introduction

 2

1 Introduction

Digital signal processing is concerned with the electronic processing of signals or

applications which demand fast numerical computing. It is employed in a wide variety of

domains, spanning from audio, speech and image processing to controls and

communications.

Digital signal processors (DSPs) perform predominantly real-time signal processing. This

implies keeping pace with an external event, usually an analog signal. In analyzing real-time

DSP systems, application designers need to obtain accurate, real-world information to

ensure proper results. In this context, traditional debugging practices such as stopping the

application at designated breakpoints to read data storage locations can only deliver isolated

snapshots of the system operation. Since data gathered through this procedure may not

correctly reflect the behavior of the running DSP application, Texas Instruments’ Real-Time

Data Exchange technology (RTDX) comes to respond to the arising need for a more

accurate analysis mechanism.

RTDX enables the bidirectional exchanging of data between a host computer, namely a PC

and a target processor, the DSP, through data pipelines, in real time and with minimal

interference with the operation of the target software. It facilitates the tracking of tasks being

executed on a DSP, the gathering of real-time statistics on system execution and the

displaying of variables in real-time, hence shortening development time. RTDX is well-suited

for a variety of control, servo, audio or embedded applications, as well as some image

processing applications.

The bachelor project presented in this thesis resulted in the context of building an RTDX host

application that would assist the DSP development carried out within the Digital Signal

Processing Laboratory of Hamburg University of Applied Sciences (HAW). The leading

feature of the desired PC host application is the flexibility to automatically create an

appropriate screen layout and supporting underlying structure for exchanging data in real

time with every application running on the TMS320C6713 digital signal processor of Texas

Instruments.

The developed application, RTDX Display, employs the RTDX technology in the background

of a graphical user interface (GUI), to provide a series of tools for the transfer of data from

the host PC to the target DSP, and partially from the target to the host. It is designed to work

in combination with a pattern of keywords indicated in the target application, thus allowing

the user to easily choose the most convenient format for displaying the data of interest. This

design strategy empowers the RTDX Display with the ability to self-adjust according to the

individual requirements of each DSP application it serves, relieving the user from the need to

create or modify regularly the supporting host application.

The role of the RTDX Display application within an RTDX enabled system is illustrated in

Figure 1.1. The original diagram was extracted from reference [6].

1. Introduction

 3

Figure 1.1 An RTDX enabled DSP-PC system employing the RTDX Display application

After an introduction to the RTDX technology, this thesis elaborates on the requirements,

design and implementation of RTDX Display, and lays out possible directions for its further

development.

2. Hardware and Software Background

 4

2 Hardware and Software Background

For the realization of the RTDX Display application, a DSK (DSP Starter Kit) board

containing the TMS320C6713 digital signal processor from Texas Instruments (TI) was used,

along with TI’s accompanying PC-hosted Code Composer Studio (version 3.1.0), an

integrated development environment (IDE) which incorporates the necessary software

support tools for DSP application design. The Real-Time Data Exchange is a standard

component of the TI DSP and it is available with Code Composer Studio (CCS). An overview

of the DSP hardware to which the PC application connects, and a description of the data

transfer technology realizing the communication between the two sides are given here.

2.1 The DSK Board with TMS320C6713 DSP

The TMS320C6713-based DSK board manufactured by Spectrum Digital is a standalone

platform for the evaluation and development of applications for the TI C67xx DSP family. An

image and a block diagram of the board are shown in figures 2.1 and 2.2.

Figure 2.1 TMS320C6713-based DSK board [3]

2. Hardware and Software Background

 5

Figure 2.2 Block diagram of the C6713 DSK [2]

A summarized list of the board’s key features and devices, as seen in Figure 2.2, is taken

from reference [2]:

� a TMS320C6713 DSP (C6713) operating at 225MHz

� a TLV320AIC23 (AIC23) stereo audio codec

� 16 Mbytes of synchronous DRAM

� 512 Kbytes of non-volatile flash memory

� 4 user accessible LEDs and DIP switches

� software board configuration through registers implemented in CPLD

� standard expansion connectors for daughter card use

� JTAG emulation through on-board JTAG emulator with USB host interface or external

emulator

� single voltage power supply (+5V)

The C6713 onboard the DSK is a floating-point processor, capable of fixed-point arithmetic

as well, and based on the very-long-instruction-word (VLIW) architecture. Reference [4]

contains a complete technical documentation on the C6713 DSP.

The AIC23 stereo codec provides analog-to-digital conversion and digital-to-analog

conversion for the board’s input and output of analog audio signals. It communicates with the

DSP through two multichannel buffered serial ports (McBSPs), of which McBSP0 serves as

control for the codec configuration, and McBSP1 for bi-directional transfer of digital audio

samples. Sampling rates between 8 and 96 kHz are supported.

A daughter card expansion permits the board to be used in conjunction with third party add-in

boards. By re-routing the McBSP0 and McBSP1 ports to the expansion connectors in

software, the C6713 DSP can be joined to external codecs. One such setup is presented in

Figure 2.3, where a DSK board is connected to two daughter card codecs, yielding a total of

2. Hardware and Software Background

 6

four analog inputs and four analog outputs to the codecs. In the development of the present

application a DSK board with this setup is used.

Figure 2.3 C6713 DSK board with two PCM3003 daughter cards [3]

The register based user interface of the programmable logic device (CPLD) allows the user

to configure the board by reading and writing to these registers. For interactive feedback, the

board includes 4 LEDs and a 4 position DIP switch, also accessed through reading and

writing to the CPLD registers. The DSK board communicates with CCS on the host PC

through an embedded Joint Test Action Group (JTAG) emulator with a USB host interface.

An external JTAG connector enables the DSK to be used with an external emulator as well.

Further information on the C6713 DSK board can be found in References [2] and [3].

2.2 The Real-Time Data Exchange Technology

The Real-Time Data Exchange technology offers the developer continuous visibility into the

execution of DSP applications, in real-time, by transferring data between a host computer

and the target DSP without interfering with the running target application. In this thesis, the

two platforms are referred to in short as target and host. The data can be analyzed in a host

client software with the help of the Microsoft Component Object Model (COM) interface

available with RTDX, delivering to the user a realistic representation of the DSP application

behavior. RTDX consists of target and host components, and operates as a

Figure 2.4 RTDX data flow [7]

2. Hardware and Software Background

 7

collection of virtual unidirectional channels between the two platforms, as suggested in

Figure 2.4.

To establish target-to-host communication, an output channel must be configured on the

target side. A small RTDX library located on the target provides functions for writing data to

the channel. The data is then automatically recorded into a target buffer defined in the target

library. From this buffer, data is sent to the host through the JTAG interface. The host

receives the data from the JTAG interface and stores it either into a memory buffer, or into a

log file, depending on the RTDX mode of operation. The collected data can be viewed in a

GUI based application of choice on the host PC. The process can be visualized as in Figure

2.5.

Figure 2.5 Target-to-host communication [5]

Similarly, for host-to-target data transfer, an input channel must be created on the target

side. The RTDX host library buffers all data sent to the target and waits for a transfer request

Figure 2.6 Host-to-target communication [5]

2. Hardware and Software Background

 8

from the target. When a request is intercepted and the buffered data is sufficient to satisfy

the request, the data is transferred to the specified location and the RTDX target library is

notified of the transfer completion. Figure 2.6 shows a diagram of this process.

Following is a description of the CCS project configuration properties that need to be

considered when using RTDX, along with key RTDX features and useful control tools

available with the CCS IDE.

DSP/BIOS is a kernel organized as a set of modules, packaged as a run-time library and

integrated with the Code Composer IDE. It provides run-time services used to build DSP

applications and manage application resources. The kernel includes a configuration tool, with

the help of which a configuration file (.cdb) is generated, along with support files and a

linker command file (.cmd). The configuration file can be further managed within a visual

editor. The DSP/BIOS Configuration Tool handles automatically a number of RTDX settings

discussed next.

A project using the RTDX technology needs to link the corresponding RTDX target library

(rtdx.lib in the case of C6713), and to specify the RTDX include directory

(ccsinstall\TARGET\rtdx\include). For compatibility with some previous RTDX releases, the

rtdx_evt.h file is provided.

Two implementations of RTDX are available, polling-driven and interrupt-driven, specific to

different processor families. The polling implementation relies on regular calls to the

RTDX_Poll() function of the target library in order to capture the data on the channel. The

ideal performance of the target application using this implementation is obtained by

balancing between low polling rates which lead to low data rates, and high polling rates

which lead to high overhead.

In the interrupt-driven implementation used by the C6x family of processors (including the

C6713), the emulation logic makes calls to the RTDX_Poll() function when appropriate. For

host-to-target transfers, the host triggers a special emulation interrupt on the target (the so-

called message interrupt), whose interrupt service routine (ISR) triggers RTDX_Poll() for the

transfer to occur. Within the same implementation, the RTDX host library receives data from

the target through the emulation driver for CCS, which polls the JTAG interface continuously

while RTDX is enabled. The DSP/BIOS configuration sets the two interrupts reserved for

RTDX (HWI_INT3, HWI_RESERVED1), maps the appropriate ISRs and sets the interrupt

masks. Without the employment of the DSP/BIOS, interrupt related settings must be

manually configured. On the C6x processor family, polling-based DSP applications, which

continuously poll the McBSP for data ready to be received or transmitted, use the interrupt-

driven RTDX implementation as well.

The RTDX protocol uses data buffers on both sides of the communication. The RTDX target

buffer temporarily stores data that is waiting to be transferred to the host. The buffer size is

given in minimal addressable units (MAUs) and it varies per target. In a DSP/BIOS

configured project, the RTDX target buffer is handled by DSP/BIOS and can be changed with

the DSP/BIOS Configuration Tool (Figure 2.7). By default, the buffer size for the C6713

processor is set to 1032 MAUs. At the same time, memory is automatically allocated for the

2. Hardware and Software Background

 9

RTDX Data Segment (.rtdx_data), used for buffering the target-to-host data transfers, and

for the RTDX Text Segment (.rtdx_text), used for the RTDX code.

For projects not using the DSP/BIOS, the buffer size can be modified by adding to the project

a copy of the target specific rtdx_buf.c file (found under ccs\TARGET\rtdx\lib), which is used

by the RTDX buffer manager. The constant BUFRSZ defined in this file can be set to the

desired value. Reference [5] provides detailed instructions on configuring RTDX without

DSP/BIOS.

Figure 2.7 RTDX Manager Properties

The RTDX host buffer stores data transferred from the target when the continuous

operation mode is chosen. For 32-bit target architectures, the buffer must be eight bytes

larger than the largest message coming from the target, while for 16-bit architectures four

extra bytes are required. In a multiprocessor setup, at least one buffer is needed for each

processor. The default size of the main buffer is 1024 bytes, and a minimum of four buffers

are automatically configured. The buffers can be modified from the RTDX Configuration

Page in CCS (Figure 2.8).

RTDX supports two modes of operation for receiving data from the target: continuous and

non-continuous. In continuous mode, data is recorded in a circular memory buffer by the

RTDX host library. The host client must uninterruptedly read from the output channel coming

from the target in order to drain the host buffers of data.

In non-continuous mode, data received from the target is written to a log file (*.rtd) on the

host. An RTDX host client can read and process data from the log file as it becomes

available. In this case, the Data Source must be set to Live Data (from target) in the RTDX

Configuration Page (Figure 2.8). Alternatively, the log file can be viewed with the help of the

RTDX Dump Utility, for non-real-time analysis. The RTDX Dump Utility, which is provided by

TI along with the RTDX technology (ccsinstall\examples\hostapps\rtdx\dumprtd\dumprtd),

converts the binary log file into a text file. In this case, the corresponding Data Source is

Playback (from log file).

2. Hardware and Software Background

 10

Figure 2.8 RTDX Configuration Page in Code Composer Studio

Data is transferred between the two communicating RTDX libraries across channels. As a

matter of convention, channels sending data out of the DSP are called output channels, while

those routing data into the DSP are referred to as input channels. For viewing the initialized

channels, the CCS IDE provides the Channel Viewer Control. As can be seen in Figure 2.9,

for output channels the control shows the status of the channels (represented by the check

box and disabled in the displayed case), the number of messages transferred on each

channel (XFRCount), the number of bytes waiting to be read (ByteCount), the number of

messages waiting to be read (MsgCount), the length of the current message in bytes

(MsgLen) and the sequence number of the current message (MsgNum). For accessing the

data on the channels, the developer must make use of a host display software.

Figure 2.9 RTDX Channel Viewer Control

In terms of RTDX performance, two measures are considered: the communication rate and

the target rate. The communication rate refers to the target-to-host data exchange rate.

The so-called “standard RTDX” technology described in this chapter which uses the

XDS510-class (eXtended Development System) scan-based emulator is capable of data

rates of 10 Kbytes/sec. and higher [12]. The achieved communication rate from host to target

is more unpredictable, due to the fact that two data transmissions occur for this type of

transfer, namely a request from the target followed by data being supplied by the host. The

2. Hardware and Software Background

 11

rate of retrieving target data from the host library by the host client varies also, as the

underlying host operating system may not conform to real-time constraints. Some of the

recommendations given in reference [11] for improving the communication rate include:

� Running on a host PC with a faster CPU and more memory, which allows the

emulation driver faster and longer lasting polling of the JTAG interface for data.

� Reducing the number of tasks competing for CPU execution cycles, allowing the

emulation driver more uninterrupted polling of the JTAG interface.

� Saving the log file always on a local hard drive, as saving over a network connection

may violate real-time constraints of RTDX and may cause data loss.

To reduce data transfer overheads on the host, larger data blocks can be passed to and from

the RTDX interface, as opposed to many small blocks.

The target rate measures the amount of target resources consumed by RTDX. As

recommended in reference [11], the percentage of target processor capacity used by RTDX

can be reduced by:

� Increasing the clock rate of the DSP, for a faster execution of the RTDX

communication mechanism.

� Sending data in fewer and larger blocks, which decreases the impact of the overhead

associated with each transfer. The required RTDX control information is two words

per message, which amounts to 64 bits (2*32 bits) per message in the case of the

C6713 DSP. According to reference [5], the total effect of the RTDX activity on the

real-time behavior of the DSP application is given by the actual data transfer,

specifically by the size of the message including the overhead, which is the single

RTDX task executed at high-priority. The more time-consuming work of preparing the

RTDX buffers and performing the RTDX calls is done within the idle loop.

� Linking RTDX code and data to on-chip memory, which is generally faster than

external memory, or reducing the wait states of the target system, to allow for quicker

data access and code execution in external memory.

� Reducing the polling frequency, in polling implementations of RTDX.

To assist in diagnosing target-to-host transfer issues, TI provides the RTDX Data Rate

Viewer Control as an ActiveX control available with CCS. The Data Rate Viewer (Figure

2.10) monitors and displays the effective target-to-host throughput of the target application.

The current, average and peak data rates for a given output channel and the amount of

bandwidth consumed by the RTDX transfer overhead are displayed. The control does not

measure host-to-target throughput.

The CCS IDE supports C language and assembly language DSP development. For

assembly language target applications, a corresponding RTDX interface (rtdx.i) exists in the

form of a macro interface include file. Data communication is possible in both directions

between an assembly level application and a host client.

2. Hardware and Software Background

 12

Figure 2.10 Data Rate Viewer Control [9]

RTDX can be used in a multiprocessor environment as well. The RTDX host library is

equipped to handle such a setup from the host application, with the restriction that all

connected processors must share the same configuration for the operation mode, the host

buffers and the log file, as these are global attributes of RTDX.

Texas Instruments produces DSP simulators for most of its device configurations. Multiple

simulators are available, as they offer a variety of debug and tuning features. Specific RTDX

target simulator libraries exist to support RTDX when running the DSP application inside

simulators.

On the host platform, display and analysis tools communicate with the TI CCS debugger

through Microsoft’s Automation, an inter-process communication mechanism based on the

COM model. The host application, an Automation client, extracts an RTDX wrapper class

from the RTDX type library rtdxint.dll exposed by the RTDX component and included with

Code Composer Studio. In turn, the CCS debugger acts as an Automation server. Designers

can develop COM enabled customized applications using standard software display

packages, such as National Instruments' LabVIEW, Quinn-Curtis' Real-Time Graphics Tools

and Microsoft Excel, or build their own GUI applications in Visual C++, Visual Basic or

MATLAB. The Code Composer Studio installation includes a few basic host applications,

such as the RTDX General-Purpose Display and the RTDX Dump Utiliy. Chapter 3 gives an

overview of the existing RTDX enabled host applications, and of the possible environments

for developing new ones.

The host side COM API is provided by version 1.0 of standard RTDX. A later extension using

the same type of emulator comes with version 2.0, which adds an RTDX host-side Java API

and is supported by Code Composer Studio versions starting with 3.3.

Another variation of the technology is High-speed RTDX (HSRTDX), which operates in

conjunction with an additional silicon module on the DSP, the so-called HSRTDX unit, and

requires an emulation controller of the XDS560 class. The diagram of the basic HSRTDX

target architecture in Figure 2.10 shows the additional components present between the two

connected systems. Compared to the standard RTDX bandwidth of about 10 Kbytes/second,

2. Hardware and Software Background

 13

HSRTDX provides much higher data transfer rates (2 Mbytes/second), and an increased

responsiveness of RTDX enabled host controlled applications [10]. The XDS560 emulator

also supports standard RTDX, raising the transfer rates as high as 130 Kbytes/second, even

when the HSRTDX unit is not available on the target processor [12]. When converting a

standard RTDX-based DSP application to HSRTDX, one must take into account that

HSRTDX is used with the interrupt-driven RTDX implementation, for which the HSRTDX unit

reserves three interrupts, namely INT3, INT11 and INT12. Reference [10] guides the user

through applying High-speed RTDX to a DSP application.

Figure 2.11 Basic components of the HSRTDX target architecture [11]

On both sides of the communication, the RTDX API exposes a series of functions for

configuring RTDX, creating, enabling and opening channels, for sending and receiving data,

as well as query functions to monitor the status of the transfers. A variety of data types can

be transferred as single values or arrays in both directions and also as structures from the

target to the host, including 8-bit, 16-bit or 32-bit integers, and 32-bit or 64-bit floating-point

values. The target interface defines one read-function and one write-function for transfers of

all data types. The two functions which require a named channel, a handle to the buffer to

read from or write to and the size of this buffer are declared as follows:

int RTDX_read(RTDX_InputChannel *ichan, void *buffer, int bsize)

int RTDX_write(RTDX_outputChannel *ochan, void *buffer, int bsize)

On the host side, the COM interface defines specialized functions for each type and size of

data to be read from and written to the RTDX library buffer. Functions sending and receiving

single values take such forms as

long ReadI4(long * pData)

long WriteI4(long Data, long * numBytes)

where *pData indicates where a 4-byte integer is to be received and Data is the 4-byte

integer being sent. To transfer data efficiently, arrays of all data types are placed into single

dimensional SAFEARRAYs and bundled in VARIANT structures to be passed to the

channels of both directions, VARIANT and SAFEARRAY being types defined by the

2. Hardware and Software Background

 14

Automation library. Read-functions handling arrays on the host side resemble the following

declaration applying to 2-byte integer arrays:

long ReadSAI2(VARIANT * pArr)

Transferring data on multiple channels simultaneously from the target to the host is also

possible. Data is received in the host buffer in the order in which it was sent from the target,

while the reading from the log file is done in sequence. This transferring scenario is not

supported in the opposite direction, and write-functions on the host do not specify a channel

name. Therefore transfers from host to target are done with one opened channel at a time. A

complete documentation of the host and target RTDX APIs is available in reference [11].

The discussion of the software tools involved in the development of the RTDX Display

application is carried out further, in relation to the first sketch of functionality requirements.

3. Analysis and Requirements of the Host Application

 15

3 Analysis and Requirements of the Host Application

This chapter presents the tool options that DSP designers have at their disposal for use on

the PC host side to display and control data from a target software. It introduces available

host applications for RTDX, as well as graphical display tools appropriate for RTDX

development, and it concludes with an analysis of the tool alternatives and a layout of

requirements for the developed RTDX host application.

3.1 Texas Instruments Host Applications for Real-Time Data Exchange

Two basic host applications provided by Texas Instruments as part of the Code Composer

Studio package are discussed here, to present the features they offer in support of Real-

Time Data Exchange. The RTDX Dump Utility and the RTDX General-Purpose Display can

be accessed from the directory ccsinstall\examples\hostapps\rtdx.

The RTDX Dump Utility (dumprtd.exe) serves both as an RTDX COM client for live data,

and as a log file dumper for non-real-time data viewing. It was created using Microsoft

Visual C++, it supports 16-bit and 32-bit TI processors, and it offers a display for target data

only. In raw log file dump mode, it does not require an active connection to CCS. The

screenshot in Figure 3.1 shows the Dump Utility being used to read converted data from a

pre-recorded binary log file (.rtd). The display lists the data in column format. Even in live

mode, the tool is not equipped for host-to-target transfer.

Figure 3.1 Reading an RTDX log file with the Dump Utility

The RTDX General-Purpose Display (gpdprog.exe) enables the transfer of integer and float

type values, mainly from target to host, on any number of channels. It was built using

Microsoft Visual Basic, and is able to support High-speed RTDX as well. In order to set up a

transfer, the user must specify the channels as declared in the target application, and

several parameters of the DSP board. Data in displayed in a spreadsheet-like window, in

which the number of rows is determined by the total number of messages written to the

3. Analysis and Requirements of the Host Application

 16

selected channel, while the columns correspond to the number of members of each

message, as in the case of transferring arrays or C structs. Channels are read-only or write-

only, and each channel is visualized in its individual window.

Figure 3.2 General-Purpose Display setup [10]

Figure 3.3 General-Purpose Display channel data [10]

For host-to-target transfer, the spreadsheet offers the single option of sending automatically

generated values, starting with 0 and incremented by 1, up to any specified number of

values, limited only by the size of the RTDX buffers. The user cannot otherwise edit the

data on a host-to-target channel. Figures 3.2 and 3.3 show the setup of the General-

3. Analysis and Requirements of the Host Application

 17

Purpose Display with a host-to-target channel, and the automatically generated data on that

channel.

3.2 Tools for Developing RTDX Host Applications

The DSP developer who wishes to have more flexibility in the host application than

provided by the two TI basic hosts, can stream RTDX data into a number of COM compliant

visualization packages. Microsoft Visual C++ and Visual Basic applications can be built to

use the RTDX host interface according to the requirements defined by the user. A Microsoft

Excel RTDX COM client can be built as well, using Excel and Visual Basic for Applications

(VBA, also available within Excel), to produce a spreadsheet style host application.

Alternatively, MATLAB from The MathWorks can be used to connect through RTDX to a

DSP application. MATLAB is a high-performance language and environment for technical

computing. It provides a function plotting mechanism which can be a useful component to

an RTDX host application, and GUI building features that can aid the developer in

displaying RTDX data. When CCS v.3.3 is used, the supported standard RTDX v.2.0 offers

a Java host interface, which extends further the developer’s choice of IDEs.

In addition to programmatically developing the host application, the user can also choose

from several RTDX compatible graphical tool packages. Some of these packages can

enhance the host application user interface, and others can even eliminate the need for

programming it, by providing a complete graphical development environment. The most

popular of them are briefly introduced here.

Quinn-Curtis’ Real-Time Graphics Tools contain a collection of real-time graphics and user

interface routines, oriented toward real-time applications requiring fast display and updating

of data. This product was designed for development of Windows applications using Visual

C++. The main part of this software is provided as a dynamic link library (DLL), and a small

part comes as C or C++ source code, which must be compiled and linked with a user

application. By incorporating this toolkit in a Visual C++ RTDX host client, the DSP

developer can build instrument interfaces for handling data on RTDX channels, or build

editable graphs, real-time plots, and exchange images between the host and other

applications.

Another popular software for testing DSP performance with RTDX is National Instruments’

LabVIEW, a graphical development environment with configuration utilities designed

specifically for test and measurement applications. A LabVIEW program consists of two

parts: the front panel, a user interface containing control inputs and graphs, and the block

diagram, where the graphical code is developed. LabVIEW has the capacity to establish

communication with the DSP through an RTDX toolkit. Channels must be created in the

DSP application inside CCS, and the user must specify the names of the configured

channels in the host LabVIEW application to be able to view and modify them in the front

panel. Figure 3.4 shows a block diagram of an RTDX enabled LabVIEW program.

3. Analysis and Requirements of the Host Application

 18

Figure 3.4 Basic DSP test system architecture using LabVIEW [13]

3.3 Requirements of the Developed RTDX Host Application

The preliminary considerations regarding the planned RTDX host application resulted in the

following list of functionality requirements:

� The host application must apply to all DSP programs using the C language and

executed on the given C6713 processor, so that the user does not need to modify it

and recompile it, regardless of the number of RTDX channels involved and of the

DSP program design.

� The user must be able to decide which target program variables are to be used for

data transfer.

� The user should choose the form of graphical display for each target program

variable that was marked for data transfer; particularly, a display possibility for large

size buffers of data is required.

� Data transfers for 2-byte and 4-byte integers need to be supported, while no float

value support is necessary.

� The design should allow the host client to read the initial values of the selected

variables from the target application, display them, enable the user to modify them

on the spot, and finally to send them from the host back to the target.

� For buffer type variables, data transfers from the target to the host should also be

possible.

� The user must have the option to control from the host client when the data

transfers for each variable occur.

The laboratory resources available for the development and future maintenance of the host

application were summarized as follows:

� Version 3.1 of Code Composer Studio is mainly used for DSP application

development, while currently migrating to v.3.3; RTDX v.1.0 accompanies CCS

v.3.1.

3. Analysis and Requirements of the Host Application

 19

� The DSK boards which the RTDX host client is meant to assist use the JTAG

emulation for standard RTDX communication; a possible future employment of

HSRTDX would allow for an easy conversion of the host client from standard RTDX.

� The Visual Studio 6 IDE is used for C and C++, PC based application development,

and a future migration to a later version is presumed.

� The MATLAB IDE is the tool of choice for data analysis, visualization and

simulation.

Based on the formulated requirements and listed tools at hand, an evaluation of the options

for the desired RTDX host application is now possible. The readily available TI host

applications offer very limited features, which do not meet the expected level of flexibility

from the RTDX host client. The previously discussed graphical environments and toolkits

would only enhance the graphical interface of the RTDX host client. An application built in

LabVIEW has the benefit of requiring a much shorter development time, but it would

maintain still a level of dependence on the target application, since channel names would

have to be specified and the host client would have to be readapted for each individual DSP

application.

A study of the laid out functionality requirements, and an analysis of the commercially

available development tools and supporting laboratory resources, led to the following

technical requirements for the constructed RTDX host application:

� A customized application is needed to meet the requirements of the RTDX host

client.

� Visual Studio 6 and C++ are to be used for the development, enhanced by the

Microsoft Foundation Class Library (MFC) v. 7.0.

� The C language target application needs to specify within its code which variables

are to take part in RTDX transfers, the direction of the transfers and the format in

which to have data displayed.

� At startup, the host client should obtain the instructions regarding the marked

variables from the target program and display their initial values in the requested

graphical format.

� The target application needs to declare the required RTDX channels, and the host

application must match the same channel structure after reading at startup the

instructions from the target.

� The host client GUI must be able to build itself according to the information read

from the target program, namely to adjust its content and size.

� GUI controls that the host should be able to provide, include: slider, push button,

radio button, check box and edit box; for arrays beyond a certain size, a separate

window should display an appropriate large size edit box.

� For variables requiring transfer channels in both directions, data must be displayed

in the same control on the GUI, to allow for easy data modification and resending.

� Support for transfers of 2-byte and 4-byte integer data must be provided.

4. Design of the RTDX Display Application

 20

4 Design of the RTDX Display Application

Described herein is the design strategy for the RTDX Display application, starting with a view

of the entire system as determined by the traced out requirements, and followed by a

detailed account of the application structure.

4.1 System Design

Figure 4.1 illustrates the two-platform system involved in DSP development, in which the TI

Code Composer Studio IDE is used on the PC side to produce the executable file running on

the DSP. The RTDX technology is employed to provide real-time communication between

the two processors, according to the concept described in chapter 2.2. The host client for

visualizing the exchanged data is represented by the RTDX Display application. As marked

on the diagram, RTDX Display acquires its defining information at startup through a simple

file reading procedure. Within the DSP program, the global declaration section of the .c

source file supplies the self-adjusting host application with all the details of the developer’s

needs for monitoring the target execution. The further exchange of live data between RTDX

Display and the target application occurs as described by the scheme of the RTDX data flow

presented earlier. The implementation makes use of an RTDX log file for reading the

transferred data.

Figure 4.1 System Design including the RTDX Display

4. Design of the RTDX Display Application

 21

4.2 Design of the Host Application

RTDX Display was developed as a dialog-based MFC application in the Visual Studio 6 IDE.

The Microsoft Foundation Classes library is a collection of pre-written C++ classes which

assist the developer in building Windows applications efficiently. The MFC term “dialog-

based” refers to applications containing at least one screen window, named dialog box and

referred to as dialog. Two files automatically generated by the AppWizard constitute the core

of the present application:

� RTDX Display.cpp, the main application source file that defines the application class

CRTDXDisplayApp, which handles application startup and termination. A global

CRTDXDisplayApp instance is created here.

� RTDX DisplayDlg.cpp, with the CRTDXDisplayDlg class, which defines the behavior

of the application’s main dialog

Other standard files of this dialog based project include: RTDX Display.rc, a resource script

storing the dialog's template, Resource.h, a header file defining new resource IDs and

StdAfx.h, a header file for standard system include files that provide the MFC support

structure.

In order to ease the debugging process during development and to provide a convenient

method of controlling the RTDX data transfer when using a debug configuration of RTDX

Display, a console otherwise not present in an MFC application is added to the project. The

“subsystem” linker option is changed from “windows” to “console”, as shown in Figure 4.2.

Figure 4.2 Introducing a console into an MFC application

This option indicates to the operating system how the project executable is to be run and it

determines the starting address for the program. The project adds the file MFCConsole.cpp

4. Design of the RTDX Display Application

 22

which provides the main() function required by the chosen linker option. To restore the

regular entry point of the Windows application, the control flow is passed to WinMain(), a

Windows API function called in the startup path of an MFC program to achieve the duty of a

C main() function. Debugging code that directs its output to the console can be inserted with

the preprocessor #ifdef DEBUG statement. A release configuration will exclude these code

sections and the console can be deactivated by resetting the “subsystem” linker option to

“windows”. This will cause the linker to ignore the main() function in MFCConsole.cpp.

Before laying out an appropriate design for the self-adjusting host application, the initial

defining information about the target data to be transferred later through RTDX is described

in detail. To allow for an automatic interpretation of the requests specified in the target

program code, the user is instructed to note the following standardized format when setting

up the target C source file:

� All variables intended for RTDX transfer must be declared globally and before the

preprocessor directives.

� The list of variables must be framed by the opening and closing comment lines

//START RTDX and //END RTDX. This section of the target code is referred to as the

“RTDX block”.

� Only the five control types announced in the requirements can be recognized by

RTDX Display: edit box, slider push button, radio button and check box.

� Edit box controls can deal only with array variables, i.e. single values must request

other control types.

� The RTDX channels are labeled in accordance with the convention used by the

RTDX API, namely from the perspective of the target application: in-channels for PC

to DSP transfer and out-channels for DSP to PC transfer.

� All variable types can attach an in-type channel, while out-type channels are only

supported for array variables.

� Array declarations must always specify the array size, and preprocessor constants

are not recognized for this purpose.

� Only one variable should be declared per line.

� Uninitialized variables are allowed.

� Fully initialized arrays of large sizes and may split the declaration on several lines.

� Every variable declaration must be followed by a comment on the same line (for an

array, on the last line of its declaration), indicating the direction of the channels

connecting it with the host, and the associated control type to be used in the host

application.

The top section of a C source file containing an RTDX block is extracted in Figure 4.3. The

comments accompanying variable declarations in the RTDX block are expected to have the

following format:

� For an edit box: //in/editbox i.e. channel/control. The channel type may also be

“out”, or “inout” when the target declares both an in-channel and an out-channel.

� For a slider: //in/slider/1 1 10 i.e. channel/control/range. The range is expressed as:

start of range, increment, end of range. Here, the indicated range is between 1 and

10, with increments of 1.

4. Design of the RTDX Display Application

 23

� For a push button: //in/pushbutton/stop i.e. channel/control/2ndname. The second

name is a label for the opposite state of the push button and is optional.

� For a radio button: //in/radiobutton/1 i.e. channel/control/group_flag. As MFC

radio buttons function only in groups, at least two radio button declarations should

exist in one group, and they should be declared on adjacent lines. The group flag sets

the first radio button of a group to one and the others to 0.

� For a check box: //in/checkbox i.e. channel/control.

The startup state of each control results from the value to which the mapping variable is

initialized. Additional information regarding the RTDX block is given in the Appendix RTDX

Display User’s Guide.

Since RTDX channels must be named the same way in both host and target applications,

RTDX Display expects that the channels on the target are named “in_channelx” and

“out_channelx”, where x is the sequence number of the corresponding variable in the RTDX

block (e.g. “out_channel3” for the variable declared third).

Figure 4.3 Top section of a C source file showing an RTDX block

Another decisive factor for the application design is the strategy used in the transferring of

data through RTDX. In this respect, two aspects are considered: the assignment of data

either to individual or to collective channels, and the timing of channel enabling for transfers.

Sending target data from all variables in one single package to the host avoids transporting

overhead bytes on the target, as previously discussed in chapter 2.2. However, this is

possible only when all transferred variables are of the same data type, packaged either as an

array or as a structure, since the host interface provides only read-functions for data of one

type on each channel. At the same time, since the target-to-host transfers apply to arrays

only in the current implementation and their number and size are not known in advance,

handling all array transfers collectively would assume that possibly very large buffers of

values are unnecessarily transferred at every modification of one single array. Therefore it is

4. Design of the RTDX Display Application

 24

more advantageous to perform target-to-host data transfers on individual channels. For host-

to-target transfers, RTDX does not support the packaging of data in structures. Variables of

the same type could be sent to the target as a collective array and unpacked correspondingly

in the target application. RTDX Display transfers variables individually from host to target as

well.

The choice of multiple host-to-target channels of different data types in the application has an

impact on the enabling strategy of in-channels (going to the DSP).The write-functions of the

RTDX host interface do not apply to specific channels, instead they send data to the host

library, where data waits for a read-request from the target (see host-to-target data transfers

described in chapter 2.2). In order to keep host-leaving data mapped to its channel, only one

enabled channel can exist in the application at one time.

Proceeding from the presented requirements, the class structure illustrated by the class

diagram in Figure 4.4 was chosen. Class and sequence diagrams included in this thesis are

generated using the Borland Together Unified Modeling Language (UML) tool (v. 6.1). The

class diagram employs the UML graphical notation to show the data members and class

composition relationships. The general design of classes follows the data encapsulation

concept of object oriented programming (OOP). Private data members are accessed through

standard read and write public functions. The defining features of the implemented classes

are described next.

Class CRTDXDisplayApp is derived from CWinApp, the MFC base class for Windows

application objects, whose InitInstance() member function of CWinApp is overridden to

create the CRTDXDisplayDlg dialog object and load it.

The CRTDXDisplayDlg class inherits CDialog, the parent class of dialog boxes. CDialog

provides the framework for handling Windows notification messages received by the dialog

from its controls, as a result of the user’s actions. MFC provides a message map facility

consisting of a set of macros which connect Windows messages to specific message handler

functions. The message map entries and message handler member functions corresponding

to the selected Windows messages are generated by the ClassWizard. The

CRTDXDisplayDlg class overrides the OnInitDialog() function of its base class to handle all

dialog initialization, including obtaining the defining information from the target application

and building the appropriate GUI screen. The class declares a message map for the

handlers which apply to the supported control types.

To link the RTDX technology into the application, class IRtdxExp, which makes available the

RTDX client API, is generated from the rtdxint.dll type library with the help of the

ClassWizard. As an IDispatch wrapper class derived from the COleDispatchDriver class,

IRtdxExp automates the host application as described in chapter 2.2, providing the two-way

communication between RTDX Display and the CCS debugger. An IRtdxExp instance is

used by the dialog to establish the connection with the DSP and to perform all RTDX related

operations.

For the identification of the C source file to be opened, the user is requested to enter the file

path in an input box generated by RTDX Display before initializing the main application

4. Design of the RTDX Display Application

 25

Figure 4.4 RTDX Display class diagram showing data members and class relationships

4. Design of the RTDX Display Application

 26

dialog. This design is advantageous, as it does not enforce a precise relative location of the

two communicating applications. The process can be shortened by storing the last

successfully opened file path and displaying it as the default option in the input box. For this

purpose, class CInputBox derived from the MFC class CWnd is constructed to take user

input in an edit box and to pass it to the main dialog.

Class RTDXVariable groups the information collected at startup from the RTDX block,

including variable definition, channel type and control type. The dialog keeps an array of

RTDXVariable objects to use in building the GUI.

For the representation of the possible controls to be handled by the dialog, three classes are

created by inheriting corresponding MFC control type classes: class Slider, derived from

CSliderCtrl, class EditBox, derived from CEdit and class CMyButton, derived from CButton.

Push buttons, radio buttons and check boxes are constructed as objects of type CButton

specifying different styles. According to the requirements, all classes representing controls

handle storage and data transfers for variables of types short and int.

Class Slider holds defining information about a slider object. To provide a way to visualize

the current value of a Slider object (particularly useful for sliders with a large number of

increments), class Slider references a read-only edit box which is updated along with the

movement of the slider.

Class EditBox supports only array variables, for which it keeps two parallel arrays, in string

format for display purposes, and in the specified numeric (short or int) for transferring on the

RTDX channels. To trigger the transfers of edit box data, an EditBox object requires one

attached button for each direction of data transfer. For uninitialized arrays declared in the

target application, an empty edit box is created. Depending on the DSP program concept, the

user can either manually enter values for the respective array and send them to the target, or

acquire live data from the DSP program, with the help of the corresponding transfer button.

The attached transfer buttons are enabled or disabled to match the transfer directions

allowed by the declared channels, and by the availability of data in the edit box. For space

management reasons, arrays above a set maximum size are displayed in a separate dialog

handled by class LargeEditDlg.

Class LargeEditDlg builds a new dialog for the display of a large size edit box. To realize this,

the large edit box and its accompanying objects are created and initialized in the main dialog,

where they remain invisible. The LargeEditDlg instance takes two pointers from the main

dialog at construction time, pointers which supply the IRtdxExp object and the invisible edit

box structure. The large dialog creates local objects for the edit box and its buttons which are

initialized to the state of the original objects they mirror. When closing, the large dialog stores

all changes made in the local objects into their invisible ones in the main dialog. This design

allows the same data to be available for later instances of LargeEditDlg which deal with this

edit box.

Each edit box and its attached transfer buttons are placed on a frame (of type CMyButton

with group box style). The frame of a large edit box is displayed in closed form, and

attempting to open it triggers the creation of the new dialog.

4. Design of the RTDX Display Application

 27

Instances of class CMyButton are implemented to support controls of type push button, radio

button, check box or group box. For push buttons associated with edit boxes, the class holds

four references of its own type to provide for the control structure related to an edit box.

Within the same structure, a button instance uses a reference to an edit box.

The constructed pointer structure dealing with the displaying and transferring of data to and

from an edit box can be seen in the diagram in Figure 4.5. The button controlling the

expansion of the group box is placed at the structure top and it contains references to all

dependent objects. The LargeEditDlg dialog holds a reference to this button to have access

to the entire structure it must build for a large edit box.

A model of the resulting screen layout of RTDX Display is sketched in Figure 4.6.

Figure 4.5 Pointer structure handling edit box operations

Figure 4.6 RTDX Display GUI layout model

Class Common serves as a utility class, grouping static functions for handling string

operations and type conversion of array members between numeric and string

4. Design of the RTDX Display Application

 28

representation. These functions are employed in reading the RTDX block, as well as in

manipulating the values displayed by an edit box.

Class CAboutDlg is generated as part of RTDX DisplayDlg.cpp and it displays an “About”

message dialog typical of window-based applications.

The current design of RTDX Display does not support reading from the RTDX log file in

Playback mode, as the initial data displayed by the host application is extracted from the

RTDX block of the DSP program, and the loading of processed data from the log file to the

edit boxes through the DSK->PC buttons (seen in Figure 4.6) requires an active connection

to the DSP.

The following chapter presents the implementation of the application according to the
outlined design concept.

5. Implementation of the RTDX Display Application

 29

5 Implementation of the RTDX Display Application

This chapter describes the implementation of the host application for Real-Time Data

Exchange. The realization of its automatic generation based on the DSP application

requirements is presented, followed by a discussion of the procedures achieving the transfer

of data between the two communicating platforms. Guidelines for handling RTDX in the DSP

program and an analysis of the performance of RTDX Display conclude the chapter.

5.1 Automatic GUI Screen Generation

The diagram in Figure 5.1 shows the sequence of processes involved in the automatic

generation of the RTDX Display screen. The flow of tasks behind the individual illustrated

blocks is detailed here in sequence.

1. Typically of an MFC dialog application, an instance of class CRTDXDisplayApp is created

at the execution start.

2. As dictated by the “subsystem” linker option, a console is generated and the main()

function defined in file MFCConsole.cpp is detected as the entry point to the project.

From here the flow of control is directed to the WinMain() function of the Windows API to

start building a Windows application.

3. The InitInstance() function of the application object instantiates the main dialog

CRTDXDisplayDlg.

4. The dialog’s initialization, which takes place in the OnInitDialog() function, begins with

creating an IRtdxExp object of type IDispatch to define the application as an RTDX

Automation client. A connection to the DSP is established and RTDX is enabled for this

connection.

5. A CInputBox instance is created, which loads the input box for entering the path of the

DSP program source file.

6. If the file is successfully opened, its path is stored in a text file located in the RTDX

Display project folder, to be loaded in the input box as the default path for the next

application execution. A message box informs the user if the indicated file cannot be

opened.

7. The RTDX block is read from the C source file and if unexpected content is detected, the

user is informed to review the file setup. The individual variables are stored in the dialog

as a two-dimensional array of the MFC CString type.

8. Objects of RTDXVariable type are created in an array from the acquired variable

declarations, to provide throughout the application execution easy access to the user

defined RTDX block information.

9. The last task of the dialog’s initialization is the function BuildGUI(), which constructs the

required controls on the screen. A sequence diagram of this process follows in Figure

5.2. The types of controls to be created are obtained in a loop through the RTDXVariable

array. To place the controls on the dialog, the vertical offset from the dialog top is

recorded after each control is created. The screen size calculation is based on the final

value of the vertical offset.

5. Implementation of the RTDX Display Application

 30

Figure 5.1 Flow diagram of the automatic GUI screen generation of RTDX Display

5. Implementation of the RTDX Display Application

 31

Figure 5.2 Sequence diagram of the BuildGUI() function

5.2 RTDX Realization in the Host Application

The host application controls the exchanging of data between the two platforms by initiating

the transfers every time the user requests them. In the case of sliders, user action triggers

the OnHScroll() message handler of a horizontal scroll bar or slider, where the transfer of

slider values to the DSP application occurs. The active slider object is identified, the

appropriate channel for host-to-target transfer is opened and enabled, data is sent on the

channel and finally the channel is disabled, according to the chosen design. This message

handler is executed once for every increment crossed by the slider moving action, therefore

the transfer of slider values to the DSP consists of one data package for each increment

change.

Handling of data transfers from edit box and button-type controls takes place in the dialog‘s

OnMsgBtnClick () message handler which detects button-click actions. A sequence diagram

of this implemented handler function is illustrated in Figure 5.3, in which the non-essential

steps were hidden. The function starts by determining the type of button that Windows

received the message from. For check boxes, radio buttons and push buttons other than the

ones serving edit boxes, the transfer is implemented only from host to target, therefore a

single variable is sent to the DSP after its channel name is built and the channel is enabled.

In the case of edit box helper buttons, the referenced edit box object is found and the data

package for the requested transfer is built. At this point, arrays are sent to the target or read

5. Implementation of the RTDX Display Application

 32

from the incoming channel as a wrapping VARIANT type structure (as described in chapter

2.2). The channels are disabled before the message handler quits.

Figure 5.3 Partial sequence diagram of the message handler OnMsgBtnClick()

5. Implementation of the RTDX Display Application

 33

When the button message handler is generated from expand buttons of edit box frames, the

creation of a LargeEditDlg dialog is initiated, whose SetDialogComponents() function is

called to pass two pointers from the main dialog. The data transfers of large arrays follow the

same procedure as in the case of small arrays. Changes made to the data in a large edit box

are stored in the original edit box array from the main dialog, to be available for subsequent

instances of the LargeEditDlg object.

In response to changes occurring in an edit box, whether through loading from the DSP,

typing or pasting, the OnMsgEditChange() handler of the dialog is executed. The entered

characters are verified and only numeric entries are allowed as positive or negative values,

separated by blank spaces or tabs. For an array with an in-channel attached, the PC->DSK

button is enabled if valid text is detected in the edit box and a data transfer to the target is

possible.

5.3 RTDX Display Performance

To test the functionality of the realized host application, a test DSP program is built with the

RTDX block shown in Figure 5.4, which requests all supported controls. The path of the file is

entered at startup by an input box, as seen in Figure 5.5. When executed, RTDX Display

generates the screen captured in Figure 5.6. The variables listed in the given RTDX block

have been assigned the appropriate controls and are laid out in the same sequence on the

screen, showing variable names and initial values. Three large size edit boxes are

represented by closed frames. Figure 5.7 shows an image of the opened sin_table2 edit box,

allowing data transfers in both directions (both transfer buttons are enabled), as indicated by

the requested channel type. From the host application screen, the user can monitor and

adjust the activity in the DSP program.

Figure 5.4. RTDX block in DSP program

5. Implementation of the RTDX Display Application

 34

Figure 5.5 Input box requesting the C source file path at startup

Figure 5.6 RTDX Display screen built from the RTDX block in Figure 5.4

5. Implementation of the RTDX Display Application

 35

Figure 5.7 Large edit box dialog with in-channel and out-channel

5.4 Guidelines for DSP Applications Using RTDX Display

When introducing RTDX operations into a DSP application intended to communicate with

RTDX Display, the user must adhere to a number of guidelines. As previously mentioned,

RTDX channels are declared globally on the target as either input or output channels, and

their names should follow the established naming conventions. The channel declarations

required for the test case presented in this chapter are extracted in Figure 5.7. As requested

by the design of the host application, channels should not be enabled on the target, as this

task is handled on the host.

Figure 5.8 Channel declaration section in the target program

The test program used is interrupt-driven using INT11. In the main() function, an infinite loop

executes data transfer statements on all declared channels. Upon interrupt, execution

proceeds to the mapping ISR, where simple tasks are performed to serve the testing

concept. The beginning of this infinite loop is presented in Figure 5.9 to illustrate the channel

handling strategy. All reading and writing actions occur when the respective channels are

enabled from the host. To read input from the host, the channel’s busy-status is checked and

the read-function is called. Writing data to a channel for a variable having a read channel as

well requires confirmation that there is no interference with a parallel reading action to the

same variable.

5. Implementation of the RTDX Display Application

 36

Based on the size of data transferred on the out-channels, the size of the RTDX target buffer

must be considered, to insure the largest message including its overhead of 8 bytes (for the

C6713 processor) is accommodated. Similarly, the RTDX host buffer must be large enough

for the data transferred on the in-channels to avoid buffer overruns (see chapter 2.2 for a

discussion of RTDX buffers).

Figure 5.9 Sending and receiving data on RTDX channels in the DSP application

5.5 Testing Outcome for RTDX Display

In testing the RTDX Display application, a performance issue related to data transfers

triggered by slider controls is noticed. Host-to-target packages sent from the OnHScroll()

message handler of a slider do not reach in some cases the DSP application as expected.

This behavior is investigated with the help of a query function provided by the RTDX host

interface and declared as follows:

long StatusOfWrite(long * numBytes)

The numBytes parameter returns the state of the RTDX Host library internal buffer, where

data sent from the host application is stored until a read request is received from the target.

After the write-function in the OnHScroll() handler executes, StatusOfWrite () is called and

the value numBytes is directed to the console. An attempt to increase the slider value from 1

to 4 produces the messages shown in Figure 5.8. A message is recorded for every increment

passed, and additional handler executions may occur when dropping the slider in the final

position. Analyzing the host-to-target transfer procedure, an inference can be made that the

slider channel is at times disabled when the target read request reaches the host buffer,

which leads to an occasional build-up of data packages sent from the slider and not picked

up by the target in-channel.

The coming chapter presents considerations for directions of improvements and functionality

extensions for the RTDX application.

5. Implementation of the RTDX Display Application

 37

Figure 5.10 Console displaying debugging messages from the OnHScroll() message

handler function

6. Further Development of RTDX Display

 38

6 Further Development of RTDX Display

In response to the drawbacks detected in the performance of RTDX Display, suitable

modifications to the realization of the application are suggested here. At the same time,

proposal for functionality extensions are given.

To avoid the limitations imposed by the requirement that only one outgoing RTDX channel

can transfer data from the host to the target application at a given time, the design can

introduce the option to group some of the host data on one single channel, when the needs

of the DSP program allow it. The user can indicate to the self-adjusting host application

which variables of the same type are to be grouped in arrays, and the target code must

unpack them correspondingly upon receiving. This transfer alternative would allow slider

channels to be kept enabled for the entire duration of the application execution, which would

eliminate the occasional data losses discussed in chapter 5.5.

A helpful feature when using large edit boxes can be the possibility to have more such dialog

windows available in parallel. This would permit the comparison of data from different

vectors, for instance between input and output values to implemented DSP algorithms. To

achieve this, all created MFC dialogs must be declared non-modal.

Additional flexibility can be easily added to the structure of the RTDX block. Initialized arrays

could be read without a specified size, and preprocessor constant definitions representing

the length of arrays can be included in the recognized declaration styles as well.

In the implementation of the main dialog, problems related to calculating the scrolling

parameters of the window’s vertical scroll bar occurred. Improvements to the vertical scrolling

possibilities are necessary when dealing with dialogs containing more controls than the

screen length can accommodate.

The target-to-host data transfers can be implemented for all control types supported by

RTDX Display.

For DSP applications requiring frequent target-to-host transfers of data from several

variables, the user can be allowed to choose if sending this data as members of one

structure is beneficial. Measurements performed with the Data Rate Viewer Control can aid

in estimating the impact of the target-to-host transfers on the performance of the DSP

application. This transfer strategy is more suitable for single variables than for large vector

variables. The RTDX block can take information regarding the method of choice from the

user.

7. Conclusion

 39

7 Conclusion

This bachelor project set out to build a tool that accompanies the development of digital

signal processing applications on the TMS320C6713 digital signal processor of Texas

Instruments. The tool was required to provide visual and interactive means to monitor and

control the execution of DSP applications from a PC environment, by employing TI’s Real-

Time Data Exchange technology. RTDX supplies a framework for communicating in a non-

invasive manner with real-time DSP applications, allowing in this way the acquisition of

accurate debugging results. In utilizing this technology, the principal demand of the PC-

hosted application was to have the capability to adjust itself according to the specific DSP

program needs.

RTDX Display was developed as an MFC-based application which collects its defining

information from the DSP program it supports. By laying down a keyword-based format for

the user requests, the PC application achieves the required ability to automatically generate

a complete structure enabled for data exchange with the DSP.

A detailed requirement analysis was carried out and a variety of RTDX capabilities were

investigated to create a design that responds to the common DSP application debugging

needs presented by the intended users.

The developed application realizes PC-to-DSP data transfer for all data structures supported

and it provides DSP-to-PC transfer for the most frequent scenarios specific to the described

development setup. The evaluation of the application performance yielded a series of

recommendations for further extensions and improvements. RTDX Display enhances the

accuracy of DSP application debugging by providing user-determined tools for real-time

analysis.

8. References

 40

8 References

[1] Chassaing, R.: Digital Signal Processing and Applications with the C6713 and

C6416 DSK

 Wiley, New Jersey, 2005

[2] Spectrum Digital Inc., TMS320C6713 DSK Technical Reference

November 2003. Document Number: 506735-0001, Revision B

[3] Sauvagerd, U: Dual PCM Evaluation Texas Instruments Test Board,

DV_DUETT_board_description.pdf

 Hamburg University of Applied Sciences, May 2006

[4] Texas Instruments Inc., TMS320C6713 Floating-Point Digital Signal

Processor

 November 2005. Literature Number: SPRS186L

[5] Texas Instruments Inc., DSP/BIOS, RTDX and Host-Target Communications

February 2003. Literature Number: SPRA895

[6] Texas Instruments Inc., TMS320C6700 Code Composer Studio Tutorial

 February 2000. Literature Number: SPRU301C

[7] Texas Instruments Inc., TMS320 DSP/BIOS User’s Guide

November 2004. Literature Number: SPRU423F

[8] Texas Instruments Inc., DSP/BIOS Kernel Technical Overview

 August 2001. Literature Number: SPRA780

[9] Texas Instruments Inc., How to Optimize Your Target Application for RTDX

Throughput

 January 2003. Literature Number: SPRA872A

[10] Texas Instruments Inc., How to Use High-Speed RTDX Effectively

 May 2002. Literature Number: SPRA821

[11] Texas Instruments Inc., Code Composer Studio Help, RTDX.hlp

 May 2005. Literature Number: SPRH197A

[12] Texas Instruments Inc., Tools & Software Overview, Emulators/Analyzers,

RTDX and High-Speed RTDX

 http://focus.ti.com/dsp/docs/dspfindtoolswbytooltype.tsp?sectionId=3&tabId=2

093&toolTypeId=12&familyId=44

 Last accessed on 10 August 2009

8. References

 41

[13] Trimborn, M.: Developing DSP Test Systems for TI DSPs

National Instruments, November 2006

http://www.en-

genius.net/site/zones/dspZONE/technical_notes/dsp_technote_110606#

Last accessed on 10 August 2009

[14] Sauvagerd, U.: Software Construction in C++

Hamburg University of Applied Sciences, March 2004

[15] Lippman, S. B., J. Lajoye und B. E. Moo: C++ Primer, Fourth Edition

 Addison Wesley Professional, 2005

[16] Chien, C. C.: Professional Software Development with Visual C++ 6.0 & MFC

 Charles River Media, Inc., Hingham, Massachusetts, 2002

[17] Microsoft Developer Network, MSDN Library, MFC Reference

 http://msdn.microsoft.com/en-us/library/bk77x1wx(VS.71).aspx

 Last accessed on 10 August 2009

Glossary and Abbreviations

 42

Glossary and Abbreviations

API Application Programming Interface

C6713 The TMS320C6713 digital signal processor of Texas Instruments

CCS Code Composer Studio, a TI Integrated Development Environment

COM Microsoft Component Object Model

Control A visual object used in window-based applications to perform specific tasks

CPLD Complex Programmable Logic Device

Dialog Dialog box, a screen window built on the MFC framework

DSK DSP Starter Kit

DSP Digital signal processor

DSP/BIOS A real-time kernel integrated with the Code Composer Studio

Emulator A special purpose software or hardware imitating the behavior of another

system

GUI Graphical User Interface

Host A PC which hosts software monitoring the operation of a connected DSP

HSRTDX High-speed RTDX

In-channel An RTDX channel for PC to DSP data transfer

JTAG Joint Test Action Group

Library A collection of subroutines or classes used to develop software

MFC Microsoft Foundation Class Library

Out-channel An RTDX channel for DSP to PC data transfer

Real-time Describing a system that is subject to operational deadlines from event to

system response

RTDX The Real-time Data Exchange technology of Texas Instruments

RTDX block A code section contained in a target C source file and specifying user

requests for the automatic building of the RTDX Display host application

Target A DSP on which applications being monitored from a connected PC are

executed

TI Texas Instruments

List of Figures

 43

List of Figures

1.1 An RTDX enabled DSP-PC system employing the RTDX Display application ……. 3

2.1 TMS320C6713-based DSK board [3] ……………………………………………………………… 4

2.2 Block diagram of the C6713 DSK [2] ……………………………………………………………… 5

2.3 C6713 DSK board with two PCM3003 daughter cards [3] ………………………………. 6

2.4 RTDX data flow [7] ………………………………………………………………………………………. 6

2.5 Target-to-host communication [5] ……………………………………………………………………….. 7

2.6 Host-to-target communication [5] …………………………………………………………………. 7

2.7 RTDX Manager Properties …………………………………………………………………………………. 9

2.8 RTDX Configuration Page in Code Composer Studio ……………………………………… 10

2.9 RTDX Channel Viewer Control ………………………………………………………………………….. 10

2.10 Data Rate Viewer Control [9] …………………………………………………………………………….. 12

2.11 Basic components of the HSRTDX target architecture [11] ……………………………. 13

3.1 Reading an RTDX log file with the Dump Utility ………………………………………………… 15

3.2 General-Purpose Display Setup [10] .……………………………………………….. ………….. 16

3.3 General-Purpose Display Channel Data [10] …………………………………………………….. 16

3.4 Basic DSP Test System Architecture Using LabVIEW [13] ………………………. …… 18

4.1 System Design including the RTDX Display …………………………………………………. 20

4.2 Introducing a console into an MFC application …………………………………………………. 21

4.3 Top section of a C source file showing an RTDX block …………………………………. 23

4.4 RTDX Display class diagram showing data members and class relationships … 25

4.5 Pointer structure handling edit box operations …………………………………………….. .. 26

4.6 RTDX Display GUI layout model …………………………………………………………………………. 27

5.1 Flow diagram of the automatic GUI screen generation of RTDX Display …………. 30

5.2 Sequence diagram of the BuildGUI() function ……………………………………………………. 31

5.3 Partial sequence diagram of the message handler OnMsgBtnClick() ……………….. 32

5.4 RTDX block in DSP program …………………………………………….………………………………… 33

List of Figures

 44

5.5 Input box requesting the C source file path at startup ……………………………………… 34

5.6 RTDX Display screen built from the RTDX block in Figure 5.4 ………………………… 34

5.7 Large edit box dialog with in-channel and out-channel ………………………………………. 35

5.8 Channel declaration section in the target program ………………………………………….. 35

5.9 Sending and receiving data on RTDX channels in the DSP application ……….. ….. 36

5.10 Console displaying debugging messages from the OnHScroll() message handler

function…… 37

 45

Appendix

This Bachelor Thesis contains an appendix including a program source code listing (MS

Visual C++ project) and a supporting Code Composer Studio project on a CD deposited with

Prof. Dr. Ulrich Sauvagerd.

Declaration

I declare within the meaning of section 25(4) of the Examination and Study Regulations of the
International Degree Course Information Engineering that this Bachelor Thesis has been
completed by myself independently without outside help and only the defined sourced and
study aids were used. Sections that reflect the thoughts or works of others are made known
through the definition of sources.

Hamburg, 26 August 2009

Ioana Semedrea

