

Wedndah Asaha Asong

Establishing a Communication Infrastructure to
Optimize a Distributed Energy Control System

Master thesis based on the examination and study regulations for
the Master of Engineering degree programme
Information Engineering
at the Department of Information and Electrical Engineering
of the Faculty of Engineering and Computer Science
of the University of Applied Sciences Hamburg

Supervising examiner : Prof. Dr. Wolfgang Fohl
Second examiner : Prof. Dr. Ulrich Sauvagerd

Day of delivery December 10th 2009

Wedndah Asaha Asong

Title of the Master Thesis

Establishing a Communication Infrastructure to Optimize a Distributed Energy
Control System

Keywords

Energy grid, energy controller, communal heating system, communication pro-
tocol, solar thermal plant

Abstract

This thesis describes the development of a communication infrastructure for a
distributed energy control system. This system has multiple controllers which
communicate with each other and with some web servers. The controllers can
as well be accessed remotely via a centralized server.

End of text

Wedndah Asaha Asong

Thema der Masterarbeit

Entwicklung einer Kommunikationsinfrastruktur für die Optimierung eines
verteilten Energiesteuerungssystems

Stichworte

Energienetz, Energiesteuerungsgerät, kommunale Heizung,
Kommunikationsprotokol, solarthermische Anlage

Kurzzusammenfassung

Diese Arbeit umfasst die Entwicklung einer Kommunikationsinfrastruktur für
ein verteiltes Energiesteuerungssystem. Dieses System hat mehrere
Steuerungsgeräte, die miteinander und mit einigen Webservern
kommunizieren. Die Geräte können auch über einen zentralen Server
fernzugegriffen werden.

Ende des Textes

Dedication

I dedicate my thesis to my parents for their much love, care, support and encouragement. They

sacrificed a lot to make me what I am today and the principles they brought me up with, guide

me to this very day. Simply said; without them, this thesis would not be possible. I love you

mum and dad and thank you so much for all you have done to my life.

1 | P a g e

Contents

1 INTRODUCTION...7

1.1 PROJECT OVERVIEW ..8

1.2 THESIS OUTLINE ...9

2 REQUIREMENTS ANALYSIS ..10

2.1 THE ENERGY GRID ..10

2.2 THE T400 ENERGY CONTROLLER ..11

2.2.1 Use Case ..11

2.2.2 Activity Diagram ..13

2.3 COMMUNICATION REQUIREMENTS ...14

2.3.1 T400 – T400 ...14

2.3.2 T400 – District Heat Authority ..15

2.3.3 T400 – Web DB ..15

2.3.4 T400 – Remote Administrator ..15

3 SYSTEM DESIGN ..16

3.1 NETWORK ARCHITECTURE ...16

3.2 DESIGN CONSTRAINTS..17

3.2.1 Solution 1: Direct Access ..17

3.2.2 Solution 2: Access via a Centralized Server ...18

4 SYSTEM SPECIFICATION ..21

4.1 DATABASE MODEL ..22

4.1.1 User Table ..22

4.1.2 Group Table ...23

4.1.3 UserGroup Table ..23

4.1.4 Device Table ...23

4.1.5 Users View ...24

4.1.6 User_roles Table ..24

4.2 SERVICE SPECIFICATION ..24

4.2.1 Service Signal ...25

4.2.2 Init Service ...27

4.2.3 List Service ...27

4.2.4 Resource Service ..27

4.2.5 Update Service ...28

4.2.6 Error Service ...28

4.2.7 Connect Service ..28

4.2.8 Data Service ...29

4.2.9 Disconnect Service ...29

2 | P a g e

4.3 PROTOCOL SPECIFICATION ..29

4.3.1 Static Protocol Specification ...30

4.3.2 Dynamic Protocol Specification ..33

5 SYSTEM IMPLEMENTATION ..38

5.1 DEVELOPMENT ENVIRONMENT ..38

5.1.1 NanoLIAB Board ...38

5.1.2 Windows XP PC ..39

5.2 MYSQL DATABASE ...39

5.2.1 User Table ..40

5.2.2 Groups Table ..40

5.2.3 UserGroup Table ..41

5.2.4 Device Table ...41

5.2.5 Users View ...42

5.2.6 User_roles Table ..42

5.3 CENTRALIZED SERVER ..42

5.3.1 Software Architecture ..43

5.3.2 Package dk.sunsil.cs.util ...45

5.3.3 Package dk.sunsil.cs.bean ..47

5.3.4 Package dk.sunsil.cs.dao ..49

5.3.5 Package dk.sunsil.cs.dao.impl ..51

5.3.6 Package dk.sunsil.cs.signal ...53

5.3.7 Package dk.sunsil.cs.appentity ...54

5.3.8 Package dk.sunsil.cs.servlet ...56

5.3.9 Package dk.sunsil.cs.servlet.form ...59

5.3.10 Package dk.sunsil.cs.servlet.action ...60

5.3.11 Summary..61

6 SYSTEM TESTING ...62

6.1 AUTHENTIFICATION ...62

6.2 THE HOMEPAGE ...62

6.3 THE DEVICE PAGE ...64

6.4 THE USER PAGE ...66

6.5 THE GROUPS PAGE ...68

6.6 THE USERGROUP PAGE ..70

6.7 THE CONNECT PAGE ..71

7 CONCLUSION ..73

 REFERENCES………. 74
ABBREVIATIONS..…….. 75
APPENDIX……… 76
ACKNOWLEDGEMENT ……………..………………………………………………………………………………………… 84
DECLARATION……. 85

3 | P a g e

Figures

FIGURE 1-1: TYPICAL SETUP FOR A SOLAR THERMAL SYSTEM ..7

FIGURE 1-2: A SIMPLE COMMUNAL SYSTEM ..8

FIGURE 2-1: SIMPLE USE CASE OF ENERGY GRID ...10

FIGURE 2-2: USE CASE OF T400 ENERGY CONTROLLER...12

FIGURE 2-3: ACTIVITY DIAGRAM OF T400 ENERGY CONTROLLER ..13

FIGURE 3-1: NETWORK ARCHITECTURE FOR COMMUNAL HEATING SYSTEMS..16

FIGURE 3-2: DIRECT REMOTE ACCESS TO T400 DEVICE ..17

FIGURE 3-3: REMOTE ACCESS TO T400 DEVICE VIA A CENTRALIZED SERVER ..19

FIGURE 4-1: SYSTEM SPECIFICATION...21

FIGURE 4-2: DATABASE MODEL ..22

FIGURE 4-3: SERVICE SPECIFICATION ..25

FIGURE 4-4: STRUCTURE OF A SERVICE SIGNAL ...26

FIGURE 4-5: SEQUENCE DIAGRAM ...30

FIGURE 4-6: BLOCK SPECIFICATION OF TAPPENTITY ...31

FIGURE 4-7: BLOCK SPECIFICATION OF CSAPPENTITY ...32

FIGURE 4-8: STATE DIAGRAM OF TCOM PROCESS ...34

FIGURE 4-9: STATE DIAGRAM OF CSCOM PROCESS ...35

FIGURE 4-10: PROCEDURE CONNECT OF CSCOM ...36

FIGURE 5-1: NANOLIAB BOARD ...39

FIGURE 5-2: SOFTWARE ARCHITECTURE OF CENTRALIZED SERVER ..43

FIGURE 5-3: CLASS DIAGRAM OF PACKAGE DK.SUNSIL.CS.UTIL ..45

FIGURE 5-4: CLASS DIAGRAM OF PACKAGE DK.SUNSIL.CS.BEAN ..47

FIGURE 5-5: CLASS DIAGRAM OF PACKAGE DK.SUNSIL.CS.DAO ..49

FIGURE 5-6: CLASS DIAGRAM OF PACKAGE DK.SUNSIL.CS.DAO.IMPL ..51

FIGURE 5-7: CLASS DIAGRAM OF PACKAGE DK.SUNSIL.CS.SIGNAL ..53

FIGURE 5-8: CLASS DIAGRAM OF PACKAGE DK.SUNSIL.CS.APPENTITY ..54

FIGURE 5-9: CLASS DIAGRAM OF PACKAGE DK.SUNSIL.CS.SERVLET ...56

FIGURE 5-10: CONNECTSERVLET TEMPLATE ...57

FIGURE 5-11: BASESERVLET TEMPLATE ...58

FIGURE 5-12: CLASS DIAGRAM OF PACKAGE DK.SUNSIL.CS.SERVLET.FORM ..59

FIGURE 5-13: CLASS DIAGRAM OF PACKAGE DK.SUNSIL.CS.SERVLET.ACTION ..60

FIGURE 6-1: USER AUTHENTICATION PROMPT ..62

FIGURE 6-2: THE HOMEPAGE ...63

FIGURE 6-3: EDIT PROFILE FORM ..63

FIGURE 6-4: THE DEVICE PAGE ...64

FIGURE 6-5: ADD DEVICE FORM ..65

FIGURE 6-6: EDIT DEVICE FORM..65

FIGURE 6-7: DELETE DEVICE PROMPT ...66

FIGURE 6-8: THE USER PAGE ..66

FIGURE 6-9: ADD USER FORM ..67

FIGURE 6-10: EDIT USER FORM ..67

4 | P a g e

FIGURE 6-11: DELETE USER PROMPT ...68

FIGURE 6-12: THE GROUPS PAGE ..68

FIGURE 6-13: ADD GROUP FORM ...69

FIGURE 6-14: EDIT GROUP FORM ...69

FIGURE 6-15: DELETE GROUP PROMPT ...69

FIGURE 6-16: THE USERGROUP PAGE ..70

FIGURE 6-17: ADD USER GROUP FORM ..70

FIGURE 6-18: DELETE USER GROUP PROMPT ...71

FIGURE 6-19: THE CONNECT PAGE – DEVICE PROPERTIES ...71

FIGURE 6-20: THE CONNECT PAGE - PARAMETERS ..72

FIGURE 6-21: THE CONNECT PAGE - EDIT FORM ...72

5 | P a g e

Tables

TABLE 4-1: SUMMARY OF SERVICE SIGNALS ...26

TABLE 4-2: HTTP ENCODING OF APDU'S FOR SERVICE REQUESTS ..32

TABLE 4-3: HTTP ENCODING OF APDU'S FOR SERVICE RESPONSES ...33

TABLE 5-1: SOFTWARE COMPONENTS OF CENTRALIZED SERVER ..44

TABLE 5-2: LANGUAGE CODES AND NAMES ...46

6 | P a g e

Listings

LISTING 5-1: DEFINITION OF USER TABLE...40

LISTING 5-2: DEFINITION OF GROUPS TABLE...40

LISTING 5-3: DEFINITION OF USERGROUP TABLE ...41

LISTING 5-4: DEFINITION OF DEVICE TABLE ..41

LISTING 5-5: DEFINITION OF USERS VIEW...42

LISTING 5-6: DEFINITION OF USER_ROLES TABLE ...42

LISTING 5-7: LOOKUP OF ENVIRONMENT CONTEXT ..45

LISTING 5-8: FILE LANG.PROPERTIES ...46

LISTING 5-9: CREATING A CONNECTION FROM A DATA SOURCE ..52

LISTING 5-10: LOADING DAO IMPLEMENTATIONS ...52

7 | P a g e

1 Introduction

There is currently a high demand for customized controllers for solar thermal systems in single-

family households. Such systems are used for water and often floor heating. There are more than

a hundred setups to realize these systems depending on the vendor and country in which they are

installed. The Thermius T80, a product of SunSil A/S, is a control unit for such a system. It can

control 24 different setups of a solar thermal system. A typical setup for such a system is

depicted in the following figure;

Figure 1-1: Typical Setup for a Solar Thermal System

The T80 regulates the pumps and valves in the system to control the flow of water in the pipes in

order to efficiently and optimally heat up water for household use and for floor heating. If the

water is not used quickly enough, it may attain unexpectedly high temperatures. As such the heat

removal component at the top, close to the solar panel, dispatches the excess heat into the air.

This may lead to as much as 70% loss of energy production by the solar panel.

Existing energy controllers in the market do have communication capabilities, but are used only

for the purpose of remote monitoring and configuration. The implementation of intelligent

distributed control for a communal warm water system is unique to this project.

There is ongoing research in distributed energy systems for a small local community. Here, a

couple of households share energy from a thermal grid connected to a heat accumulator (located

at the solar thermal plant). A household may or may not have a solar panel. A household with a

solar panel dispatches extra heat it does not need to the grid and absorbs energy from the grid if

8 | P a g e

the panel produces insufficient energy. There are also heat pumps available to supplement the

energy if the grid and panel do not provide enough energy. Households which extract heat from

the grid are charged and when they dispatch heat to the grid, they are monetarily rewarded. This

master project aims at developing communication protocols for the control devices located at

each household in such a communal energy sharing system.

The more advanced controllers, which will be used for the distributed solar energy system, will

be called T400. They will extend the functionality of the T80 to include communication

protocols. They will thus be able to communicate with each other and other entities in the

system. In this way, vital information could be exchanged to help increase the overall efficiency

of the system as well as allow for monetary settlements.

1.1 Project Overview

This project is about the investigation and evaluation of the different options for communication

between the entities of a distributed solar energy system. The controllers in this system use

ARM9 processors with in-built Ethernet, GSM and USB connections. The USB can provide an

interface for Bluetooth or WiFi connections. The main constraints in this project arise from

security issues. The communication should provide mechanisms for authorization, authentication

and validation. If the controllers are connected to the LAN of the household, the communication

should be able to bridge firewalls and NATs.

A controller is located at each household and at the solar thermal plant of a communal system. A

household may or may not have a solar panel. All households and solar thermal plant are

connected to an energy grid which distributes warm water to the households in a community. A

simple communal system is as depicted in the figure below;

Household 1

Household 2

Solar Thermal

Plant and Heat

Accumulator

Household 3

Energy Grid

Figure 1-2: A Simple Communal System

9 | P a g e

A full system analysis and design was done in this project. This involved the identification of

communication parties in a distributed solar energy system and the building of a communication

infrastructure which enabled these parties to communicate with each other. As will be seen in the

chapters that follow, the scope of this project was too much to be done in a single thesis. Even

though a complete system analysis was done, only part of the project was actually realized.

1.2 Thesis Outline

The thesis is outlined in such a way that each chapter discusses a different stage in the system

development process of this project. Five of the software development steps, as described in [8],

are done here. These include the analysis, design, specification, implementation and testing of

the system.

Chapter 2 gives a complete requirement analysis of the system. The use cases of the energy grid

and T400 energy controller are discussed in this chapter. The communication pairs in the system

are identified as well.

Chapter 3 discusses the system design. The network architecture and design constraints are

discussed in detail in this chapter.

In chapter 4, the system specification is discussed. Here, only the remote access of the T400 by a

user is specified. This is done via a centralized server, which also manages a database. The

database model is given and the service and protocol specification of the communication

between the centralized server and a T400 device is also discussed.

In chapter 5, the system implementation is discussed. Here, an overview of the development

environment is given and thereafter follows the implementation of the database and centralized

server. The software architecture of the centralized server is discussed as well.

Chapter 6 discusses the test results. Here, the different web pages generated by the web server

are discussed. The user view of each page is shown and it is explained how the user interacts

with the different pages to carry out the actions specified in the requirements analysis.

Chapter 7 gives a conclusion about the project and general observations and difficulties

encountered while carrying out the tasks involved in the project. It also gives some

recommendations for future work.

10 | P a g e

2 Requirements Analysis

The main aim of the project is to design a communication infrastructure which allows for

information exchange between the control devices in the system. The control devices in turn use

this information to optimize thermal energy storage and consumption. In order to have a feel of

the communication parties involved in the system and of what kind of information they may

exchange, a simple requirements analysis was done for some key components in the system.

In this chapter a simple requirements analysis is done for the energy grid and the T400

controllers involved in the system. This is done with the help of UML use case diagrams. Finally

a detailed requirements analysis is done for the communication infrastructure. Here, the

communication between every set of parties involved in the system, is analyzed separately.

2.1 The Energy Grid

The energy grid consists of well insulated pipes which circulate warm water to the homes in the

community. A solar thermal plant is connected to the grid. The homes in the community and the

solar thermal plant may consume thermal energy from the grid or dispatch thermal energy to the

grid. Below is a simple use case for the energy grid.

Energy Grid

Energy in Grid

Consumer

+ Energy Consumer

«extends»

This is a consumer with an own solar panel.

Energy could be supplied to the grid in case

of excess energy production from the panel.

<<consumes>>

<<produces>>

<<stores>><<produces>>

Solar Thermal

Plant and Heat

Accumulator

Figure 2-1: Simple Use Case of Energy Grid

A solar thermal plant supplies the grid with hot water from a tank heated up by a shared large

solar panel. If there is little or no demand for thermal energy from the grid and there is excess

11 | P a g e

thermal energy entering the grid, this energy can be stored in the water tank if it has the capacity

to absorb more energy. If the tank cannot absorb anymore energy, the solar thermal plant stops

production to avoid overheating and signals all plus-energy households to stop dispatching

excess thermal energy to the grid.

Thermal energy from the hot water in the grid is consumed by households (referred to as

“Consumer” in the use case diagram above). A household pays for the energy it consumes from

the grid.

A household may have an own solar panel which produces energy as well (referred to as “+

Energy Consumer” in the above diagram). If its panel does not produce enough energy, it

consumes additional energy from the grid and pays for the energy as well. If its panel on the

other hand produces more energy than needed, it dispatches the excess energy to the grid. In this

case, the household is monetarily rewarded.

Each household and the solar thermal plant have a T400 controller which switches between

energy sources to optimize energy consumption. There is a need for the controllers to

communicate with each other to ensure that every household gets a fair share of the energy in the

grid.

2.2 The T400 Energy Controller

The T400 energy controller is a small box with an embedded system, located at each household

and at the solar thermal plant. All intelligence in the system is programmed in these boxes. A

T400 controller at the solar thermal plant has a somewhat different functionality as one at a

household. The following two sub-sections discuss the use case and activity diagrams of a T400

at a household.

2.2.1 Use Case

Below is the use case diagram of a T400 energy controller located at a household. It shows

several actors who interact in some way with the controller and some of its basic functionality.

12 | P a g e

T400 Energy Controller

(Use Case)

Parameters

I/O Devices

Net Energy Flow

Measurement

Event Logging

Solar Energy

Energy Flow

to/from Grid

«uses»

Remote Admin

Installer

Solar Panel

Web DB

District Heat Authority

Cetification Authority

<<adjusts>>

<<bills>>

«uses»

<<monitors>>

<<certifies>>

<<configures>>

<<stores>>

<<stores>>

Consumer

<<permits>>

<<produces>>

<<consumes>>
Available Energy

«uses»Solar Thermal

Plant

Figure 2-2: Use Case of T400 Energy Controller

The controller has a set of configuration parameters. These parameters are initially configured by

the installer who also sets their limits. A remote administrator (referred to as “Remote Admin” in

the above use case diagram) may adjust the parameters and monitor the external inputs and

outputs.

The controller measures the net energy flow from and to the grid. This measurement is certified

by a certification authority and the district heat authority uses the measurement to bill the

customer. The measurement is also stored periodically, together with the log data, in a web

database (referred to as “Web DB” in the above use case diagram).

The controller decides in an optimal way the energy source to use (see activity diagram in the

following section). It must however be permitted by the solar thermal plant to absorb energy

from the grid or dispatch energy to the grid. If the household has an own solar panel, it produces

energy if need be. Extra energy from the solar panel may also be dispatched in the grid.

13 | P a g e

2.2.2 Activity Diagram

The following activity diagram shows the behavior of a T400 energy controller on a request for

heat energy from a positive energy consumer, i.e. a household with an own solar panel. It shows

the different energy sources and the criteria used by the controller to decide which energy source

to use.

T400 Energy Controller Activity

Request

Heat

Receive Request

Get Energy from Solar Panel

[Solar Energy Available]

[No Solar Energy]

[No Energy in Grid]

Get Energy from Grid

Electrical Heater

[Energy in Grid]

Figure 2-3: Activity Diagram of T400 Energy Controller

14 | P a g e

The energy sources are prioritized with the solar panel having the highest priority, because it is

the cheapest source of energy, and the electric heater having the lowest priority, because it is

most expensive. If there is not enough solar energy form the panel, energy is extracted from the

grid, if the solar thermal plant permits, else it is taken from the electric heater.

2.3 Communication Requirements

From the requirements analysis so far, it can be observed that the T400 devices do not

exclusively communicate among themselves. They also communicate with actors out of the

communal system. This will be done over the internet, using the World Wide Web. So it will be

preferable to have the T400 devices connected in an IP-based network. This will eliminate the

necessity of a gateway to translate the protocol to IP. If the communication breaks down, a T400

device will function as a normal energy controller for a single household.

From the use case of the T400 controller, four different communication pairs can be identified;

i) T400 – T400

ii) T400 – District Heat Authority

iii) T400 – Web DB

iv) T400 – Remote Administrator

The following sub-sections discuss the requirements for the communication pair of entities listed

above. As will be seen, the communication between the first three pairs of entities is rather trivial

compared to the fourth pair. Due to time constraints, only the communication of the fourth pair

was done in this project, since it is most challenging. More so, SunSil does not permit, for

proprietary reasons, the publication of the communication for the first three pairs. As such, the

discussion from chapter three is solely based on the communication for the fourth pair.

2.3.1 T400 – T400

All T400 devices in a communal system should have easy and direct access to each other. There

is no inter-communication or thermal energy exchange between devices located in different

communities, i.e. each communal system is closed and its operation has nothing to do with the

others. Since the system deals mostly with temperature regulation, which is a rather slow

process, the real time delay of the system could go up to several minutes without affecting the

operation of the system.

T400 devices in a communal system exchange their states and possibly some configuration

parameters to make them aware of their environment. In this way, they could together coordinate

the production and use of energy to optimize the system. The communication protocol should

thus be as open as possible to allow for exchange of any kind of information.

Cost minimization and reliability are always important issues in every system. The T400 devices

should not rely on the internet connections of the households or their telephone lines. These

connections are paid for and controlled by the home owners. They may turn off their modem or

fall short of paying a bill leading to their connection being blocked. This will inhibit the devices

15 | P a g e

from communicating making the system very unreliable. As such, the T400 devices should have

their own communication links. On the other hand, wiring the devices together will be

expensive, so the devices should be linked preferably by some wireless communication.

The devices in a single communal system should all belong to the same LAN, which should have

restricted access. As such, each device will have direct access to the other devices in its

community.

2.3.2 T400 – District Heat Authority

The district heat authority is a web server connected to the internet. It has a public IP-address and

a global URL which can be resolved by the DNS. The T400 devices on the other hand are

located in a LAN and all have only private IP-addresses. So, only a T400 device can initiate a

connection to the web server of the district heat authority. This is done periodically to

communicate any necessary information as discussed in section 2.2.1. A reasonable time interval

in which the T400 devices communicate with the web server of the district heat authority was not

investigated, but is expected to be in the range of daily to weekly. The range is also expected not

to pose a burden on energy consumption or availability of the device.

2.3.3 T400 – Web DB

The communication between these two parties is similar to that discussed in the previous section.

The T400 device initiates the connection and information is periodically communicated. The

time interval for this communication was also not investigated.

2.3.4 T400 – Remote Administrator

In contrast to the communication pairs discussed in the previous two sections, the remote

administrator initiates the connection for this communication. This makes it much more

challenging since the T400 devices have no public IP-address and the connection is externally

initiated, i.e. out of the communal LAN of a group of T400 devices.

Several solutions to bridge the above stated problem are discussed in the next chapter. The

solution however should provide high accessibility, reliability and restricted access. It should

also provide easy access from any computer with a browser and internet connection. A remote

administrator should need no special hardware or software in order to access the device.

16 | P a g e

3 System Design

The discussions in this chapter and subsequent ones focus on the communication between a T400

device and a remote administrator. This chapter starts by discussing the network architecture

which shows how the communication parties are connected to each other, followed by a

discussion of the design constraints and finally a discussion of several solutions taken into

consideration. The advantages and disadvantages of each solution are weighed and reasons are

given to back the final design solution.

3.1 Network Architecture

The T400 devices in a single community are connected in a wireless Virtual Private Network

(VPN). As such, a device has direct access to all other devices in its community. Each VPN has

a gateway to the internet which enables its devices to be accessed remotely and to communicate

with the district heat authority and the web database (see chapter 2 for the functionality of the

district heat authority and web database). The following figure shows the network architecture

with two VPNs. Of course, there can be more VPNs depending on how many communities exist.

Household 1

Household 2

Wireless

Station

Gateway

WWW

Admin 1

Virtual Private

Network

(1)

Solar Thermal

Plant and Heat

 Accummulator

Web DB

District Heat

Authority

Household 1

Household 2

Wireless

Station

Gateway

Virtual Private

Network

(2)

Solar Thermal

Plant and Heat

 Accummulator

Admin 2

Figure 3-1: Network Architecture for Communal Heating Systems

17 | P a g e

An energy sharing community is made up of a solar thermal plant and several households, which

all have a T400 energy control device. These devices communicate with each other to optimize

energy production. They are connected in a VPN provided by a mobile operator. The operator

also provides a gateway to the internet. Each device thus has a SIM-card to give them access to

the mobile network. They then communicate over GPRS.

A remote administrator, the district heat authority and the web database all communicate with

T400 devices over the internet. As mentioned before in chapter 2, devices in different

communities do not communicate with each other. So from the above figure, a device in VPN(1)

for example does not communicate with one in VPN(2).

3.2 Design Constraints

The main design constraint is initiating a connection to a device from without its network, in the

case of remote access. These connections are blocked by firewalls and the devices themselves

have no public IP-addresses. In the following sub-sections several solutions are discussed to

overcome this constraint and their advantages and disadvantages are weighed to get the best

solution.

3.2.1 Solution 1: Direct Access

In this case, a remote administrator connects directly from a PC to a T400 device. A TCP

connection cannot be initiated from the PC because the PC does not belong to the VPN of the

T400 devices, which have only private IP-addresses. The following two figures illustrate two

possibilities of overcoming this problem. A discussion of their advantages and disadvantages

follow thereafter.

T400
Remote

Admin

SMS

Initiate TCP connection

T400
Remote

Admin
VPN Tunnel

(a) Connection via SMS

(b) Connection via VPN Tunnel

Figure 3-2: Direct Remote Access to T400 Device

18 | P a g e

In figure 3-2(a), the PC of the remote administrator sends an SMS to the T400 device, telling it

to initiate a TCP connection to the PC. This SMS contains the IP and port of the remote

administrator’s PC. The PC then listens to this port and waits for the connection from the T400

device. After the connection has been established, the remote administrator has to authenticate

himself. For this to work, the PC of the remote administrator will need to meet the following

requirements;

- A GSM modem for sending SMS

- Software to send the SMS and listen to the appropriate port

- A public IP-address for the TCP connection since the PC is not part of the VPN of the

T400

- The firewall of the PC’s LAN should be configured to free the port

As mentioned in section 2.3.4, high reliability and easy access is required for the remote

administrator. SMS is an unreliable and unconfirmed service. There is no guarantee as to when

the SMS would arrive and if it would arrive at all. Moreover, the PC of the remote administrator

needs special hardware and software, and even a pre-configuration in its LAN, in order to access

the T400 device. This results in the devices having no easy remote access.

Figure 3-2(b) shows a much easier way of achieving direct remote access to a T400 device. The

PC of the remote administrator builds a VPN tunnel to the network of the T400 device. As such,

the PC is virtually part of the device’s network and it can initiate a TCP connection to any device

in that network. The main problem with this solution is accessibility. Mobile operators offer only

a single VPN tunnel to each network they provide. So, only one remote administrator has

exclusive access to all devices in a VPN. Others trying to access any device in the VPN will have

to wait. Also, the remote administrator has to install the VPN client software on his PC. The

T400 device on the other hand could run a small web server, permitting the remote administrator

to connect to it using a browser.

In both cases discussed above, the management of users is decentralized, i.e. each T400 device

would have to manage the users permitted to access it. If a single user has to be granted access to

a group of devices, then this user has to be added to each of the devices. Also, a remote user has

to know the telephone number (for solution (a)) or IP-address (for solution (b)) of each device it

wants to access.

3.2.2 Solution 2: Access via a Centralized Server

As will be seen from the discussions that follow, making use of a centralized server, which acts

as a relay between the T400 devices and remote administrators, brings a lot of advantages with it.

Requirements imposed on the devices and the PC of the remote administrator by the solutions

discussed previously could be transferred to the centralized server. This will greatly reduce the

amount of resources required for communication on the devices as well as the requirements of

the remote administrator’s PC. The following figure shows four possible ways of making use of

a centralized server;

19 | P a g e

T400
Centralized

Server

Remote

Admin

T400
Centralized

Server

Remote

Admin
SMS Request connection

Initiate TCP connection

T400
Centralized

Server

Remote

Admin
Initiate TCP connection

Initiate TCP connection

SMS

(a)

(b)

T400
Centralized

Server

Remote

Admin
Initiate TCP connectionVPN Tunnel

(d)

Initiate TCP connectionPeriodical PULL

(c)

Figure 3-3: Remote Access to T400 Device via a Centralized Server

The requirements for the T400 device and the PC of the remote administrator in figure 3-3(a)

above, are same as those in figure 3-2(a) discussed in the previous section, but for the fact that

the PC of the remote administrator in this case does not need a GSM modem. The job of sending

the SMS to the T400 device is taken over by the centralized server. But it still needs a special

software and LAN configurations as discussed in the previous section. It therefore has little

improvements over that solution.

In figure 3-3(b), the need of a special software on the PC of the remote administrator and LAN

configurations are shifted to the centralized server. This greatly reduces the requirements of the

remote administrator’s PC. The centralized server acts as a relay between the T400 device and

the remote administrator and there is no direct communication between them. As such the

centralized server can provide a web interface to the remote administrator, thus enabling the use

of a browser by the remote administrator. Moreover, user management, authentication and

authorization can be handled by the centralized server. This greatly reduces the demand for

20 | P a g e

resources on the T400 device which would otherwise be responsible for that. Furthermore,

multiple remote administrators communicating with a single device at once can share a single

connection from the device to the centralized server. This further reduces the demand for

resources on the T400 device to manage multiple connections. However, the use of SMS still

makes it unreliable as discussed in the previous section.

In figure 3-3(c), the T400 device periodically pulls the centralized server to find out if any

administrator wants to connect to it. If there is none, the connection is then terminated. On the

other hand, a remote administrator, who wants to connect to a device, contacts the centralized

server to find out if it has a connection to the required device. If it does not, then the remote

administrator will have to wait until the device pulls the server again. This solution causes

delayed access on the side of the remote administrator and too much traffic on the side of the

device. Generally speaking, mobile networks have very limited bandwidth and pulling is no good

practice in mobile networks. It is better to have the server push available information to the

device rather than have the device pull periodically to find out if there is available information

for it. This brings us to our final solution, which is also the solution used in this project.

Figure 3-3(d) is the solution used in this project. The centralized server has a VPN tunnel to

every communal network of the T400 devices. This makes the centralized server part of all the

networks. The centralized server provides a web interface to all remote administrators. A remote

administrator, who wants to connect to a device, makes a simple URL request to the server and

the server initiates a TCP connection to the required device. It then relays information between

the device and the administrator. This solution provides highest accessibility and reliability

compared to the previous solutions. It also makes use of a push operation rather than a pull. This

greatly minimizes the network load. Security is an issue here, in which case users have to

authenticate themselves.

21 | P a g e

4 System Specification

This chapter gives a detailed specification of the communication between a T400 device and a

remote administrator. They communicate via a centralized server as shown in figure 3-3(d).

T400 Device management, user management and the management of access rights are done by

the centralized server with the help of a database. Users from here on refer to the administrators.

The system specification is done using a top-down approach. First an overview of the whole

system is given in the following figure. Here, all key components in the system and how they

interact with each other are shown. Then a specification of each component is given.

T400 Device
Centralized Server

(Apache Tomcat)

Remote User
(Web Browser)

MySQL DB

JDBC

HTTP via VPN Tunnel Secure HTTP

Figure 4-1: System Specification

The user from a remote PC can connect to the centralized server using a web browser. HTTP is

used for the communication and the user has to authenticate. A user may be an administrator,

who is given access rights to all or a group of T400 devices, or a normal household owner (may

be on holidays) who can access only his T400 device at his home. This is an additional attractive

feature of this solution, to improve owner satisfaction. A user, logged on to a device, can adjust

parameters on it and can view the I/O values, energy production and log data of the device.

The centralized server is an Apache Tomcat web server with a servlet engine. It uses a MySQL

database which stores the credentials and rights of all users as well as the details of all T400

devices. It also provides a web interface for querying and manipulating the database. It

communicates with the database using a JDBC driver for MySQL. The specification of the

database is discussed in section 4.1.

A user, who wants to access a T400 device, first logs on to the centralized server. The centralized

server then displays only devices which the logged on user is allowed to access. The user then

selects a device and the centralized server connects to this device through a VPN tunnel. HTTP

is also used for the communication between the centralized server and a T400 device. The

22 | P a g e

centralized server then acts as a relay between the user and the device. Requests from the user

are forwarded to the device and the device responses are forwarded to the user.

4.1 Database Model

As already mentioned, the MySQL database of figure 4-1 is used by the centralized server to

store information necessary for the management of users, devices and access rights. It is also

required by the Apache Tomcat servlet container for authentication. The servlet container reads

the name, password and roles of a user from the database. Below is the database model;

UserDevice

PlantDevice
ENUM_DeviceType

User

PK username

 uentry_date

 last_name

 first_name

 password

 email

 last_login

 rights

 lang

Groups

PK gid

 gname

 location

Device

PK did

 dname

FK1 gid

 location

 ip

 port

 type

FK2 owner

 last_connect

 dentry_date

UserGroup

PK,FK1 username

PK,FK2 gid

DeviceUser

GroupUser

SuperUser
ENUM_UserRights

users

user_name

user_pass

user_roles

PK,FK1 user_name

PK role_name

Figure 4-2: Database Model

The type column in the Device table is an enumeration of ENUM_DeviceType and the rights

column in the User table is an enumeration of ENUM_UserRights. The underlined columns in a

table indicate its primary key (PK) while the columns in bold are required. The columns marked

with FK are foreign keys. The use of the tables in the above figure and their relationships are

explained in the following sub-sections.

4.1.1 User Table

This table stores the credentials of all users who would administrate a T400 device. There are

three kinds of users; SuperUser, GroupUser and DeviceUser, differentiated by their access

rights. A SuperUser can add, delete and modify all T400 devices and all other users. He can also

23 | P a g e

access all devices. A GroupUser can add, modify, delete and access only T400 devices in its

group and can only add DeviceUsers. A DeviceUser can access only devices he owns. This is

specified by the owner column of the Device table. All users can edit their profiles but cannot

change their rights. Below is an explanation of each column in this table;

username – PK of this table which uniquely identifies each user

password – user’s password for authentication

last_name – user’s last name

first_name – user’s first name

email – user’s e-mail address

rights – user’s access right (may be SuperUser, GroupUser or DeviceUser)

lang – user’s language (default value of en for English)

last_login – indicates when a user logged in last

uentry_date – constant value which indicates when a user was added to the database

When a user profile is modified or added to the database by another user, he is informed per e-

mail of the modification and his username and password. The website of the centralized server

may be in several languages. The language chosen by the user is stored in the database, so that

the same language is used for his next login.

4.1.2 Group Table

This table stores each community of T400 devices. Its columns have the following uses;

 gid – group identifier which is an auto-generated primary key

 gname – a unique and meaningful group name to identify each community

 location – the location of each community

4.1.3 UserGroup Table

This table associates a GroupUser to a group. A GroupUser may be in several groups, i.e. be

responsible for all devices in several groups. The table has just two columns; username and gid,

which both serve as its unique PK. Both columns are FK’s which respectively point to the

username of the GroupUser and the gid of the group the user belongs to.

4.1.4 Device Table

This table stores the details of each T400 device. There are two types of devices; UserDevice and

PlantDevice. This is specified by the type column. A UserDevice is located at a household in the

community and has an owner. A PlantDevice on the other hand controls the solar thermal plant,

as shown in figure 3-1, and has no owner. The columns of this table are as explained below;

did – device identifier which is an auto-generated primary key

dname – unique and meaningful device name

gid – FK which points to the group the device belongs to

location – the location of the device

24 | P a g e

ip – the IP-address of the device

port – the connection port of the device

type – the device type (may be PlantDevice or UserDevice)

owner – the owner of the device

last_connect – the date and time the server last connected to the device

dentry_date – the date and time the device was added to the database

The most important columns here are the ip and port. The centralized server uses these values to

connect to the device.

4.1.5 Users View

This view is used exclusively by the Apache Tomcat servlet container for authentication. It is a

copy of the username and password of the User table. These columns are renamed to user_name

and user_pass in this view.

4.1.6 User_roles Table

This table is also used exclusively by the Apache Tomcat servlet container for authentication. An

Apache Tomcat server can run several applications, each having its own container. Only users

with specific roles are allowed to access a container. As such, the Apache Tomcat server uses

this table to identify the roles of each user.

This table has only two columns which both serve as PK for the table. The column user_name

points to a username in the table User and the column user_role specifies the role of the user. A

single user may have several roles.

4.2 Service Specification

The communication between the centralized server and the PC of the remote user is done by the

Apache Tomcat web server and the browser, using HTTP. So, well defined standard protocols

are used here. It is left just to implement the server to provide the necessary HTML web pages

for the remote user.

On the side of the T400 device, the services and protocols still have to be specified. In this

section, the service specification for the communication between the T400 device and the

centralized server is done using SDL service diagrams (see [1] & [2]). The following figure

shows the flow of the various service signals through their Service Access Points (SAP);

25 | P a g e

T400

Software

Centralized

Server

Software

Application Service

TAppEntity CSAppEntity

Transport Service - TCP/IP

(VPN Tunnel)

ASAPASAP

TSAPTSAP

init(ip,port)

list.request(mode)

resource.request(mode, id)

update.request(mode, id, value)

list.confirm(data)

resource.confirm(data)

update.confirm(+/-)

error.indicate(code)

data.request(TSDU)

disconnect.request()

connect.indicate()

data.indicate(TSDU)

list.indicate(mode)

resource.indicate(mode, id)

update.indicate(mode, id, value)

init(port)

list.response(data)

resource.response(data)

update.response(+/-)

connect.request(ip, port)

data.request(TSDU)

connect.confirm(+/-)

data.indicate(TSDU)

Figure 4-3: Service Specification

The application service offers the init, update, list, resource and error services to the T400 and

centralized server software. The services are discussed in detail in the sub-sections that follow. It

has two entities; the T400 Application Entity (TAppEntity) and the Centralized Server

Application Entity (CSAppEntity). They communicate virtually with each other by exchanging

Protocol Data Units (PDU) as discussed in the protocol specification (see section 4.3). They

communicate with their associated software through the Application SAP (ASAP) using service

signals, as shown in the figure above.

The transport service offers the connect, data and disconnect services to the application entities.

Service signals are exchange between the application entities and the transport service through

the Transport SAP (TSAP).

4.2.1 Service Signal

The following table shows a summary of the service signals used in the communication between

a T400 device and the centralized server.

26 | P a g e

Service Access Point

(SAP)
Service Primitive Source Parameters

Application Service Access Point

(ASAP)

init T400 Software port

Centralized Server Software ip, port

list request

T400 Software

Centralized Server Software

Destination

TAppEntity

CSAppEntity

CSAppEntity

indicate TAppEntity

response

T400 Software

TAppEntity data

confirm CSAppEntity Centralized Server Software data

resource request

T400 Software

Centralized Server Software CSAppEntity

indicate TAppEntity

response

T400 Software

TAppEntity data

confirm CSAppEntity Centralized Server Software data

mode, id

mode, id

indicate CSAppEntity Centralized Server Software codeerror

Transport Service Access Point

(TSAP)

connect request CSAppEntity Transport Layer

indicate Transport Layer TAppEntity

confirm +/-

data request

indicate

ip, port

Transport Layer CSAppEntity

TAppEntity / CSAppEntity

TAppEntity / CSAppEntity

TSDU

TSDU

Transport Layer

Transport Layer

disconnect request TAppEntity Transport Layer

update request Centralized Server Software CSAppEntity

indicate TAppEntity T400 Software

mode, id, value

mode, id, value

T400 Softwareresponse TAppEntity +/-

confirm CSAppEntity Centralized Server Software +/-

mode

mode

Table 4-1: Summary of Service Signals

Service signals are made up of four parts; the service, the primitive and some parameters. The

service specifies the task of the signal. All services are discussed in detail in the following sub-

sections. The primitive tells the direction of the signal and its reason. There are four types of

primitives; request, indicate, response and confirm. The parameters contain the information

exchanged by the peer entities.

A request primitive is sent downwards and is used by a communication entity to invoke a service

offered by the layer beneath it. An indicate primitive is sent upwards and is used by a

communication entity to notify the layer above it of a service request made by its peer entity. A

response primitive is sent downwards and is used by a communication entity to respond to a

service indication. Finally, the confirm primitive is sent upwards by a communication entity to

notify the layer above it of a service response to a request it made. A service signal has the

following structure;

service primitive data other parameters

Figure 4-4: Structure of a Service Signal

Data in the above structure is a special parameter. It is a CSV-file (Comma Separated Values).

This is the format used in resource files obtained from the T400 device.

27 | P a g e

4.2.2 Init Service

This is an application service and it creates and initializes instances of the application entities. It

has no primitives. The TAppEntity is initialized with the port it listens to while the CSAppEntity

is initialized with the ip and port of the T400 device it should connect to. So in this setting, the

centralized server initiates the connection to the T400 device.

4.2.3 List Service

This is an application service. It is used by the centralized server to get the list of resources from

the T400 device. Resources are CSV-files containing some data from the T400. This service is

confirmed and has four primitives; request, indicate, response and confirm.

The centralized server sends a request with the service signal list.request(mode) to the

CSAppEntity, which communicates the request to the TAppEntity. On receipt of this request by

the TAppEntity, it notifies the T400 software with the service signal list.indicate(mode). The

parameter mode specifies the access mode, which can either be 0 for user mode or 1 for install

mode. The T400 device uses this parameter to restrict access.

The T400 software responses by sending the service signal list.response(data) to the TAppEntity,

which further communicates this to the CSAppEntity. The CSAppEntity then notifies the

centralized server software of the response by sending it the service signal list.confirm(data).

The parameter data in these signals is a CSV-file containing the available resources on the T400

device. It has two columns, id and title, which give the identifier and name of the resource.

When a user initially connects to a device, the centralized server invokes this service to get the

list of resources the user is allowed to access from the device. It then displays the resource names

to the user for selection. On selection, the server invokes the resource service to fetch the

selected resource.

4.2.4 Resource Service

This is an application service and it is used by the centralized server to fetch a resource (i.e. a

CSV-file) from the T400 device. Each resource has a unique ID. The service is confirmed and

has four primitives namely; request, indicate, response and confirm.

The server fetches the resource by sending the service signal resource.request(mode, id) to the

CSAppEntity, which communicates this to the TAppEntity. On receiving the request, the

TAppEnitity notifies the T400 software of the request by sending it the service signal

resource.indicate(mode, id). The parameter id is the unique identifier of the resource and mode is

used to restrict access as discussed in the list service specification.

The T400 software responses to the server’s request by sending the service signal

resource.response(data) to the TAppEntity. The TAppEntity then communicates this response to

the CSAppEntity, which further notifies the centralized server software by sending it the service

signal resource.confirm(data). The parameter data is a CSV-file of the requested resource.

28 | P a g e

This service is used for monitoring I/O-devices as shown in the use case of a T400 device in the

requirements analysis. A resource may display the details and state of I/O-devices or parameters

on the T400 device. A user may decide to change the value of a parameter, in which case the

update service is invoked.

4.2.5 Update Service

This is an application service as well and it is used by the centralized server to change the value

of a parameter on the T400 device. Every parameter has a unique id. The service is confirmed

and has four primitives; request, indicate, response and confirm.

The request is made by the centralized server software to the CSAppEntity and the parameters id

and value are passed. This is done with the service signal update.request(mode, id,value). The

indicate is made by the TAppEntity to the T400 software, when it receives the request from the

server. This is done with the service signal update.inidicate(mode, id,value). The parameter id

identifies the parameter to be modified on the T400 device while value is the new value of the

parameter. The mode parameter is as discussed in the list service specification.

The T400 software responses to an update request by sending the service signal

update.response(+/-) to the TAppEntity which further communicates this to its peer, the

CSAppEntity. The CSAppEntity then notifies the centralized server software with the service

signal update.confirm(+/-). Positive is sent if the parameter update is successful else negative is

sent.

This service is used to adjust parameters on the T400 device as shown on its use case in the

requirements analysis. An appropriate message is displayed to the user indicating the outcome of

the update.

4.2.6 Error Service

This is an application service and it is used by the CSAppEntity to notify the centralized server

software of any errors which occur while processing a request from it. The service has a single

primitive indicate. The notification is done by sending the service signal error.indicate(code) to

the centralized server software. The parameter code is an error code which uniquely identifies

the error which occurred.

4.2.7 Connect Service

This is a transport service which is used by the CSAppEntity to create a TCP/IP connection to the

T400 device. It is a confirmed service and has three primitives namely; request, indicate and

confirm.

When the CSAppEntity is initialized with the init service, it sends the service signal

connect.request(ip,port) to the transport layer. The parameters ip and port are the IP-address and

port of the T400 device to connect to.

29 | P a g e

The transport layer, on receipt of a connection request, creates a TCP/IP connection to the T400

device. If the connection was successful, the transport layer sends the service signal

connect.inidicate() to the TAppEntity and the service signal connect.confirm(+) to the

CSAppEntity. If the connection failed, the transport layer sends the service signal

connect.confirm(-) to the CSAppEntity.

4.2.8 Data Service

This is also a transport service but it is used by the application entities to exchange data. It is an

unconfirmed service and has just two primitives namely; request and indicate.

An application entity sends data to its peer by sending the service signal data.request(TSDU) to

the transport layer. The transport layer, on the other hand, notifies an application entity of

available data from its peer by sending it the service signal data.indicate(TSDU). The parameter

TSDU is known as the Transport Service Data Unit, which comprises of an Application Protocol

Data Unit (APDU) encoded in the Application Protocol Control Information (APCI). The data

units and control information are specified in section 4.3.1.

4.2.9 Disconnect Service

This is a transport service used by the T400 device to terminate the TCP connection to the

centralized server. When a connection is established to a T400 device, the TAppEntity sets up a

timer for which the connection is kept alive. The timer is reset each time there is data

communication. If the set time expires, the connection is terminated by the TAppEntity. This

service is used exactly for this purpose in which the TAppEntity sends the service signal

disconnect.request() to the transport layer. The service is unconfirmed and has just the single

primitive request.

4.3 Protocol Specification

Each service signal (except the init) from the application software to the application entities

generates a PDU, which is communicated between the peer application entities. The sequence

diagram below shows the PDU’s of the application service;

30 | P a g e

Application Service Centralized Server SoftwareT400 Software

ASAP ASAP

init(port)
init(ip, port)

list.request(mode)

REQ_LIST(mode)

list.indicate(mode)

list.response(data)
LIST(data)

list.confirm(data)

resource.request(mode, id)

REQ_RESOURCE(mode, id)

resource.indicate(mode, id)

resource.response(data)
RESOURCE(data)

resource.confirm(data)

update.request(mode,id,value)

REQ_UPDATE(mode,id,value)

update.indicate(mode,id,value)

update.response(+/-)
UPDATE(+/-)

update.confirm(+/-)

Figure 4-5: Sequence Diagram

The PDU REQ_LIST(mode) communicates the request of the list service by the centralized

server software to the T400 software while the PDU LIST(data) communicates the response. The

PDU REQ_RESOURCE(mode, id) communicates a resource request from the centralized server

software to the T400 software while the PDU RESOURCE(data) communicates the response.

The PDU REQ_UPDATE(mode, id, value) communicates an update service request from the

centralized server software to the T400 software while the PDU UPDATE(+/-) communicates

the response.

4.3.1 Static Protocol Specification

The static protocol specification gives the internal structure of the application entities. This

specification is done using SDL block diagrams (see [1] & [2]). The entities have processes

which communicate with each other by exchanging messages. The TAppEntity will be discussed

first and then follows the CSAppEntity. The figure below shows the internal structure of the

TAppEntity. It has three processes namely; Timer, TCom and Codec.

31 | P a g e

TAppEntity

TComTimer

Codec

ASAP

TSAP

APDU

TiSAP

list.indicate(mode)

resource.indicate(mode, id)

update.indicate(mode, id, value)

data.request(TSDU)

disconnect.request()

connect.indicate()

data.indicate(TSDU)

setTime(id) timeout(id)

REQ_LIST(mode)

REQ_RESOURCE(mode, id)

REQ_UPDATE(mode, id, value)

LIST(data)

RESOURCE(id, data)

UPDATE(+/-)

init(port)

list.response(data)

resource.response(id, data)

update.response(+/-)

Figure 4-6: Block Specification of TAppEntity

The Timer process is used by the TCom for timing purposes. The TCom sets a timer by sending

the signal setTime(id) to the Timer. When the time set elapses, the signal timeout(id) is sent back

to the TCom. The TCom may set multiple timers. As such, the parameter id is used to uniquely

identify every timer so that the TCom knows exactly which time expired. The TCom exchanges

messages with the Timer through the Timer Service Access Point (TiSAP).

TCom stands for T400 Communication. This process is a Finite State Machine (FSM) and it

implements the dynamic and timing behavior of the protocol, as described in the following sub-

section. It reacts to input service signals from the ASAP and APDU’s from the Codec. It may

also dispatch service signals to the ASAP or APDU’s to the Codec.

Codec stands for code/decode. This process codes APDU’s to the TSDU and decodes APDU’s

from the TSDU. It does this by adding the APCI information to the APDU when coding and

removing it when decoding.

Now follows the description of the CSAppEntity. It has three processes as well namely; Timer

CSCom and Codec. The following figure shows its internal structure;

32 | P a g e

CSAppEntity

CSComTimer

Codec

ASAP

TSAP

APDU

TiSAP

setTime(id) timeout(id)

REQ_LIST(mode)

REQ_RESOURCE(mode, id)

REQ_UPDATE(mode, id, value)

LIST(data)

RESOURCE(id, data)

UPDATE(+/-)

init(ip,port)

list.request(mode)

update.request(mode, id, value)

resource.request(mode, id)

connect.request(ip, port)

data.request(TSDU)

connect.confirm(+/-)

data.indicate(TSDU)

list.confirm(data)

resource.confirm(id, data)

update.confirm(+/-)

error.indicate(code)

Figure 4-7: Block Specification of CSAppEntity

The Timer and Codec processes here have the same meaning and functionality as their

counterparts in the TAppEntity. CSCom stands for Centralized Server Communication. It plays

the same role as the TCom.

The APDU’s sent by the CSCom communicate service requests. They are coded using the HTTP

request method GET. The name of the service requested is the resource name of the GET method

and the parameters of the APDU are the HTTP request parameters. The table below shows

examples of the coding of APDU’s for service requests.

APDU HTTP request

REQ_LIST(0) GET /LIST?mode=0 HTTP/1.1

REQ_RESOURCE(0, 10) GET /RESOURCE?mode=0&id=10 HTTP/1.1

UPDATE(1, 200, 50) GET /UPDATE?mode=1&id=200&value=50 HTTP/1.1

Table 4-2: HTTP Encoding of APDU's for Service Requests

33 | P a g e

The APDU’s sent by the TCom process communicate the service response to a service request.

The service responses are encoded as well in HTTP. Here the data parameter of the service

response, which is a CSV-file, is the content of the HTTP response. The following table shows

examples of the coding of APDU’s for service responses.

APDU HTTP request

LIST(CSV-file) HTTP/1.1 200 OK

<CSV-file content>

RESOURCE(CSV-file) HTTP/1.1 200 OK

<CSV-file content>

UPDATE(+) HTTP/1.1 200 OK

UPDATE(-) HTTP/1.1 403 Forbidden

Table 4-3: HTTP Encoding of APDU's for Service Responses

4.3.2 Dynamic Protocol Specification

As already mentioned in the previous sub-section, the dynamic protocol specification specifies

the state machine behavior of the communication processes TCom and CSCom. The timing

behavior is specified as well. This specification is done using SDL state diagrams (see [1] & [2]).

The dynamic behavior of the TCom process will be specified first and thereafter that of the

CSCom. The following figure presents the state diagram of the TCom process.

34 | P a g e

0:Idle

connect.indicate()

1:Connected

REQ_LIST(mode)

list.indicate(mode)

100

2:WaitList

REQ_RESOURCE(mode, id)

resource.indicate(mode, id)

3:WaitResource

setTime(T1)

REQ_UPDATE(mode, id,value)

update.indicate(mode, id,value)

2:WaitList 3:WaitResource

list.response(data) resource.response(data)

LIST(data) RESOURCE(data)

100

disconnect.request()

timeout(T1)

4:WaitUpdate

4:WaitUpdate

update.response(+/-)

UPDATE(+/-)

Figure 4-8: State Diagram of TCom Process

The TCom state machine has five states namely; Idle, Connected, WaitList, WaitResource and

WaitUpdate.

The Idle state is the initial state of the machine when it listens to the server port for a connection

request from the centralized server. The transport layer notifies the machine of a connection

request with the service signal connect.indicate(). On receipt of this signal, the machine sends

the signal setTime(T1) to the Timer process and transits to the state Connected.

In the Connected state, there is an established TCP connection to the centralized server and the

machine waits for APDU’s from its peer. If the time T1 runs out, the Timer process sends the

signal timeout(T1) to the machine. The machine then sends the service signal

disconnect.request() to the transport layer in order to terminate the connection and finally transits

back to the Idle state. When the APDU’s REQ_LIST(mode), REQ_RESOURCE(mode, id) and

REQ_UPDATE(mode, id, value) are received, the machine notifies the T400 software with the

service signals list.inidicate(mode), resource.indicate(mode, id) and update.indicate(mode, id,

value) respectively. Finally, it transits to the states WaitList, WaitResource and WaitUpdate

respectively.

The machine waits for the response of the T400 sofware in the states WaitList, WaitResource and

WaitUpdate. When it receives the service signals list.response(data) in the state WaitList,

resource.response(data) in the state WaitResource and update.response(+/-) in the state

35 | P a g e

WaitUpdate, it dispatches the APDU’s LIST(data), RESOURCE(data) and UPDATE(+/-)

respectively to the Codec process. It then resets the timer T1 and goes back to the state

Connected.

The state diagram of the CSCom process is as follows;

0:Idle

list.request(mode)

2:WaitList3:WaitResource

2:WaitList

3:WaitResource

REQ_LIST(mode)

resource.request(mode, id)

REQ_RESOURCE(mode, id)

update.request(mode, id, value)

REQ_UPDATE(mode, id, value)

LIST(data)

list.confirm(data)

RESOURCE(data)

response.confirm(data)

CONNECT

setTime(T3) setTime(T2)

timeout(T2)

error.indicate(code)

0:Idle

timeout(T3)

error.indicate(code)

0:Idle

CONNECTCONNECT

4:WaitUpdate

setTime(T4)

4:WaitUpdate

UPDATE(+/-)

update.confirm(+/-)

timeout(T4)

error.indicate(code)

0:Idle

Figure 4-9: State Diagram of CSCom Process

The CSCom process has four states; Idle, WaitResource, WaitList and WaitUpdate.

The Idle state is the initial state of the CSCom state machine. In this state it waits for requests

from the centralized server software. If it receives the service signal update.request(mode, id,

value), it calls the procedure CONNECT. This procedure checks if the TCP connection to the

T400 device is still open. If not, it reconnects to the T400 device. The machine then sends the

APU REQ_UPDATE(mode, id, value) to the Codec process, sets a timer with the signal

setTime(T4) to the Timer process and transits to the state WaitUpdate. When the service signal

resource.request(mode, id) is received in the Idle state, the procedure CONNECT is also called

but the APDU REQ_RESOURCE(mode, id) is sent to the Codec. The machine then sends the

signal setTime(T3) to the Timer process and transits to the state WaitResource. If in the Idle state

the service signal list.request(mode) is received, the machine still calls the procedure CONNECT.

Then it sends the APDU REQ_LIST(mode) to the Codec and finally the signal setTime(T2) to the

Timer. Thereafter, it makes a transition to the state WaitList.

36 | P a g e

In the state WaitList, the CSCom state machine waits for the list response from the T400 device.

If the time T2 runs out, the Timer process sends the signal timeout(T2) to the machine. The

machine at this state sends the service signal error.indicate(code) to the centralized server

software and transits to the Idle state. If the APDU LIST(data) is received in time, the machine

notifies the server software with the service signal list.indicate(data) and still transits to the Idle

state.

The CSCom state machine, on the other hand, waits for the resource response from the T400

device when in the state WaitResource. It notifies the centralized server software with the service

signal resource.indicate(data) when it receives the APDU RESOURCE(data) in time. If not, on

receipt of the signal timeout(T3), it sends the service signal error.indicate(code) to the

centralized server software. In both cases, the machine transits to the Idle state.

The CSCom state machine in the state WaitUpdate waits for the update response from the T400

device. It notifies the centralized server software with the service signal update.indicate(+/-)

when it receives the APDU UPDATE(+/-) in time. If not, on receipt of the signal timeout(T4), it

sends the service signal error.indicate(code) to the centralized server software. In both cases, the

machine transits to the Idle state.

Now follows the state diagram of the procedure CONNECT;

connect.request(ip, port)

start

connected?

yesno

1:WaitConnect

setTime(T1)

1:WaitConnect

connect.confirm(+) connect.confirm(-) timeout(T1)

error.indicate(code)

0:Idle

Procedure CONNECT

Figure 4-10: Procedure CONNECT of CSCom

37 | P a g e

The CONNECT procedure starts by checking if the connection to the T400 device is still open. If

it is, the function simply terminates. If not, it has to reconnect. It does this by sending the service

signal connect.request(ip,port) to the transport layer. It then sets the timer T1 by sending the

signal setTime(T1) to the Timer process and transits to the state WaitConnect, where it waits for

confirmation from the transport layer.

The transport layer confirms a connection request with the service signals connect.confirm(+) for

a successful connection and connect.confirm(-) if the connection failed. If the CSCom in the state

WaitConnect receives a positive confirmation, the procedure terminates normally. On the other

hand, if the confirmation is negative or it receives the signal timeout(T1) from the Timer process,

it sends the service signal error.indicate(code) to the server software and transits to the Idle state.

38 | P a g e

5 System Implementation

Due to time constraints, only the MySQL database and the centralized server of the system

specification diagram (see figure 4-1 of the previous chapter) were implemented. More so,

SunSil does not allow, for the purpose of secrecy, the publication of any software running on the

T400 device. As such, the T400 device was simulated, in order to test the communication

between it and the centralized server.

This chapter starts by discussing the development environment of the T400 device, the

centralized server and the MySQL database. It also mentions the tools used for implementation.

Thereafter, it discusses in detail the implementation of the MySQL database and the centralized

server.

5.1 Development Environment

The T400 software and its communication protocol were implemented on a nanoLIAB board

while the MySQL database and the centralized server were implemented on a Windows XP PC.

The following two subsections give a brief description of these development environments.

5.1.1 NanoLIAB Board

LIAB stands for Linux In A Box. This board is based on the ARM9 processor AT91RM9200,

which is well suited for the Linux operating system. The ARM was chosen because of its low

power consumption and low cost. The version of the Linux kernel running on the board used is

the 2.6.16 Linux kernel.

The board has three push buttons, one of which is a reset, and five LED’s. It also has an Ethernet

interface, a serial port, a USB host and a headphone connector. There is an optional base board

which can be connected to the processor board for additional I/O-devices. Below is a diagram

showing the top view of the board;

39 | P a g e

Figure 5-1: NanoLIAB Board

For details of the schematics of this board, visit the website at [3]. As already mentioned, the

implementation of the communication protocol on this board will not be discussed. Only the

simulator used for testing the protocol is discussed in the next chapter.

5.1.2 Windows XP PC

A Windows XP PC was used to implement the MySQL database and the centralized server. The

Professional version of Windows XP was used. The PC was manufactured by Dell Inc. and has

an Intel Core Duo CPU, each of 2.00 GHz, and a RAM size of 2 GB.

5.2 MySQL Database

In this section, the CREATE TABLE statements used to create the tables for the database model

of chapter 4 are discussed. For information about downloading, installing and configuring a

MySQL database, visit its website at [4]. There is a well-documented step-by-step procedure for

getting started with MySQL at the site. The reference manual for MySQL available at this site

was also extensively used for this project.

40 | P a g e

A brief introduction is given into DbVisualizer in Apendix A. This is a tool used in this project

to implement the database. It is a very good and simple tool to use for databases. Now follows

the discussion of the table implementations of the database.

5.2.1 User Table

Listing 5-1: Definition of User Table

The column username is primary key. The columns last_name, first_name and last_login are

optional but the rest must be given. The column rights is an enumeration which defaults to

DeviceUser if not specified. The column lang defaults to en for English. The column uentry_date

is a constant timestamp which defaults to the current timestamp if not specified. When inserting

a new user to the table, the columns username, password and email must be specified. The rest

then take their default values or are set to NULL.

5.2.2 Groups Table

Listing 5-2: Definition of Groups Table

The column gid is primary key and is an automatically incremented unsigned integer. It numbers

the groups inserted into the table from one upwards. It is not allowed to be specified when

inserting a new group to the table. The column gname, on the other hand, must be unique and

must be specified during insertion while location is optional. It is set to NULL if not specified.

41 | P a g e

5.2.3 UserGroup Table

Listing 5-3: Definition of UserGroup Table

The column username of this table references the same column in the User table and the column

gid also references the same column in the Groups table. If a user or a group is deleted from their

tables, the corresponding entries in this table are automatically deleted. The columns of this table

act jointly as primary key and they must both be specified when inserting a row to this table.

5.2.4 Device Table

Listing 5-4: Definition of Device Table

The column did is primary key and is an automatically incremented unsigned integer. It counts

the devices inserted into this table from one upwards. It is not allowed to be specified during

insertion. The column dname is unique and must be specified when inserting a device. The

column gid references the same column of the Groups table. It is set to NULL when its

corresponding group is deleted from the Groups table. The column ip is as well unique and must

be specified during insertion meanwhile the column port may not be specified, in which case it is

set to its default value 8192. The column type is an enumeration which defaults to the value

UserDevice if not specified during insertion. The column owner references the column username

of the User table. When the corresponding user is deleted from the User table, its value is

automatically set to NULL by the database. The column last_connect may or may not be

42 | P a g e

specified during insertion. The column dentry_date is a constant timestamp which is set by

default to the current time if not specified when inserting a device.

5.2.5 Users View

Listing 5-5: Definition of users View

The column user_name of this view represents the column username of the User table while the

column user_pass represents the password column of the User table.

5.2.6 User_roles Table

Listing 5-6: Definition of user_roles Table

The column user_name references the column user_name of the users view which in turn

represents the column username of the User table. On deleting a user from the User table, the

corresponding entry in this table is deleted as well by the database. Both columns of this table are

primary key and must be specified when inserting a row to this table.

5.3 Centralized Server

The centralized server as shown in the system specification of figure 4-1 is an Apache Tomcat

web server with a servlet container. Servlets are implemented in Java. Details on downloading,

installing and configuring a tomcat server are well documented on its website at [6] and will not

be discussed here. However, some vital configurations of the server will be mentioned, in the

course of the discussions here, to explain certain behaviours of the server or why a functionality

is implemented in a particular way. The documentation at the tomcat website at [6] was also

extensively used throughout this project.

The centralized server constitutes the centralized server software and the centralized server

application entity (CSAppEntity) as shown in the service specification of figure 4-3. This section

43 | P a g e

discusses the software architecture and packages of the centralized server. The architecture used

here is generic and can be used for any kind of server application. The actual web pages

generated by the centralized server and how they are interlinked are discussed in the next

chapter. The actions carried out by the user to perform the tasks specified in the requirements

analysis are as well discussed in the next chapter.

Before discussing the implementation of the centralized server application, it is worth

mentioning that the important configuration files for this application, which are needed by the

Apache Tomcat, are shown in Appendix B. Also, the Apache Ant is a tool used to build web

applications for the Apache Tomcat server and automatically install them on the server. This tool

was used extensively in this project. More about this tool can be found in [7].

5.3.1 Software Architecture

The centralized server has a simple three-tier architecture as described in [8]. The tiers consist of

the Presentation Tier, the Logic Tier and the Data Tier. Below is a diagram which illustrates the

tiers, their software components and how the components interact with each other.

Centralized Server

Logical Beans
Service

Signals

Servlets

Data Access

Objects

(DAO)

Application

Entity

(AppEntity)

MySQL

Database

Web

Browser

T400 Device

Presentation Tier

Logic Tier

Data Tier

Figure 5-2: Software Architecture of Centralized Server

44 | P a g e

The Presentation Tier is in charge of the user view, i.e. what the browser displays to the user. It

is made up of the servlets component. Servlets are exclusively used at the backend of the web

interface while HTML and JavaScript are used at the frontend. The servlets dynamically generate

HTML code on request from the web browser.

The Logical Tier acts as an interface between the presentation and data tier. It abstracts the raw

data representation in the data tier from the presentation tier. This makes it possible to change the

MySQL database, for example, to an LDAP server without changing or recompiling the code of

the presentation and logical tiers. All that needs to be done is re-implement the Data Access

Object (DAO) while keeping its interface constant. The DAO is loaded at runtime. The logical

tier consists of two software components; logical beans and service signals. The logical beans are

objects with GET- and SET-functions for all their attributes. They describe the tables in the

database and their attributes correspond to table columns. They also enforce user rights. The

service signals are as described in table 4-1.

The Data Tier is in charge of saving and retrieving data from external actors - the MySQL

database and T400 device in this case. It converts the raw data representation to some logical

form used by the presentation tier. This gives rise to the advantage that the application logic is

decoupled from the underlying data storage. So, changing the form of data storage will require

only this tier to be re-implemented. The Data Tier is made up of two software components; the

Data Access Object (DAO) and the Application Entity (AppEntity). The DAO saves and

retrieves data from the MySQL database while the AppEntity communicates with the T400

devices.

The software components of the different tiers shown in figure 5-2 were all implemented as Java

packages. An additional software component – utilities, not shown in figure 5-2, implements

general utility functionalities like logging, language handling, etc. Below is a table summarizing

all software components and their corresponding Java packages;

Software Component Java Package

Utilities dk.sunsil.cs.util

Logical Beans dk.sunsil.cs.bean

Data Access Objects (DAO) dk.sunsil.cs.dao

Service Signals dk.sunsil.cs.signal

Application Entity (AppEntity) dk.sunsil.cs.appentity

Servlets dk.sunsil.cs.servlet

Table 5-1: Software Components of Centralized Server

45 | P a g e

5.3.2 Package dk.sunsil.cs.util

dk.sunsil.cs.util

Environment

-envCtx: javax.naming.Context

-logsDir: java.lang.String

+getContext(): javax.naming.Context

+getLogger(name: java.lang.String): java.util.logging.Logger

Lang

-instance: Lang

-prop: java.util.Properties = new java.util.Properties()

<<create>>-Lang()

+getInstance(): Lang

+getLangCodes(): java.lang.String[]

+getLangName(langCode: java.lang.String): java.lang.String

+getLangBundle(langCode: java.lang.String): java.util.Properties

bundles

Figure 5-3: Class Diagram of Package dk.sunsil.cs.util

The class Environment is static and it provides the environment context and handles logging. The

private static attribute envCtx is a reference to the single environment context object provided by

the Apache Tomcat server. It is initialized by a static block in the class Environment as follows;

Context initCtx = new InitialContext();

envCtx = (Context) initCtx.lookup("java:comp/env");

Listing 5-7: Lookup of Environment Context

The two lines of code above is a standard way of looking up the environment context of a web

application in the Apache Tomcat server. This environment context is initialized by the Apache

Tomcat server using the context.xml file located in the META-INF directory of the web

application (see Apendix B). The public static function getContext() simple returns the attribute

envCtx.

The private static attribute logsDir specifies the path to the directory where the log files are

saved. It is initialized in the same static block as the attribute envCtx. The public static function

getLogger(name) creates and initializes a logger with the specified name on the first call.

Subsequent calls with the same name simply return the logger. The loggers are initialized, using

the attribute logsDir, such that all information written to this logger is saved in the file with the

following path;

46 | P a g e

<tomcat-home>/logs/sunsil/<name>.yyyy-mm-dd.log

where

 tomcat-home : home directory of the Apache Tomcat server, e.g. C:\Programs\Tomcat.

 name : parameter passed to the function, eg. dk.sunsil.cs.servlet.HomeServlet.

 yyyy-mm-dd : year, month and day when the logging was done, e.g. 2009-08-01.

The class Lang has a singleton pattern as described in [8]. The static private attribute instance is

a reference to the single instance of this class and the private attribute prop stores the properties

of this class in a hash table. The class has a single default constructor Lang() which is private.

This means only this class can create instances of itself. This is done by the public static function

getInstance() which creates the single instance of this class on its first call and returns that

instance on subsequent calls. The function getLangCodes() returns in a string array the codes of

the available languages in the application while the function getLangName(langCode) returns the

full name of a given language code. The table below shows an example of three language codes

and their full names;

Language Code Language Name

en English

de Deutsch

dk Dansk

Table 5-2: Language Codes and Names

The function getLangBundle(langCode) returns a list of textual translations into the language

with the specified code.

The sub-package bundles contains properties-files used to initialize the Lang instance. It contains

the files lang.properties, lang_en.properties and lang_de.properties. The file lang.properties

defines the codes of all available languages and their full names. The language codes are the

keys while the values are the language names. The files lang_en.properties and

lang_de.properties define textual translations in English and German respectively. Below is a

listing of the file lang.properties;

en = English

de = Deutsch

Listing 5-8: File lang.properties

So, to add a new language to the application, add the key-value pair <code> = <name> for the

language in the lang.properties file as shown above and create the file lang_<code>.properties,

47 | P a g e

which contain all required textual translations in that language. Then reload the application and it

will automatically display the language for selection.

5.3.3 Package dk.sunsil.cs.bean

dk.sunsil.cs.bean

UserBean

-username: java.lang.String

-last_name: java.lang.String

-first_name: java.lang.String

-email: java.lang.String

-lang: java.lang.String

-right: Right

-last_login: java.util.Date

-uentry_date: java.util.Date

-password: java.lang.String

<<create>>+UserBean()

<<create>>+UserBean(username: java.lang.String)

+getUsername(): java.lang.String

+setUsername(username: java.lang.String)

+getLast_name(): java.lang.String

+setLast_name(last_name: java.lang.String)

+getFirst_name(): java.lang.String

+setFirst_name(first_name: java.lang.String)

+getEmail(): java.lang.String

+setEmail(email: java.lang.String)

+getLang(): java.lang.String

+setLang(lang: java.lang.String)

+getRight(): Right

+setRight(right: Right)

+getLast_login(): java.util.Date

+setLast_login(last_login: java.util.Date)

+getUentry_date(): java.util.Date

+setUentry_date(uentry_date: java.util.Date)

+getPassword(): java.lang.String

+setPassword(password: java.lang.String)

+getMode(): java.lang.String

+hasAddUserRight(user: UserBean): boolean

+hasEditUserRight(user: UserBean): boolean

+hasDeleteUserRight(user: UserBean): boolean

+hasAddDeviceRight(device: DeviceBean): boolean

+hasEditDeviceRight(device: DeviceBean): boolean

+hasDeleteDeviceRight(device: DeviceBean): boolean

+hasConnectDeviceRight(device: DeviceBean): boolean

+hasAddGroupRight(group: GroupBean): boolean

+hasEditGroupRight(group: GroupBean): boolean

+hasDeleteGroupRight(group: GroupBean): boolean

+hasAddUserGroupRight(usrgrp: UserGroupBean): boolean

+hasDeleteUserGroupRight(usrgrp: UserGroupBean): boolean

+equals(user: UserBean): boolean

Right

-rights: java.lang.String[3] = {"DeviceUser", "GroupUser", "SuperUser"}

+DeviceUser: Right = new Right("DeviceUser")

+GroupUser: Right = new Right("GroupUser")

+SuperUser: Right = new Right("SuperUser")

-index: int

<<create>>+Right(str: java.lang.String)

+equals(right: Right): boolean

+compareTo(right: Right): int

+toString(): String

GroupBean

-gid: int

-gname: java.lang.String

-location: java.lang.String

<<create>>+GroupBean()

<<create>>+GroupBean(gid: int)

+getGid(): int

+setGid(gid: int)

+getGname(): java.lang.String

+setGname(gname: java.lang.String)

+getLocation(): java.lang.String

+setLocation(location: java.lang.String)

UserGroupBean

-username: java.lang.String

-gid: int

+getUsername(): java.lang.String

+setUsername(username: java.lang.String)

+getGid(): int

+setGid(gid: int)

DeviceBean

-did: int

-gid: int

-port: int

-dname: java.lang.String

-location: java.lang.String

-ip: java.lang.String

-type: java.lang.String

+owner: java.lang.String

+last_connect: java.util.Date

+dentry_date: java.util.Date

<<create>>+DeviceBean()

<<create>>+DeviceBean(did: int)

+getDid(): int

+setDid(did: int)

+getGid(): int

+setGid(gid: int)

+getPort(): int

+setPort(port: int)

+getDname(): java.lang.String

+setDname(dname: java.lang.String)

+getLocation(): java.lang.String

+setLocation(location: java.lang.String)

+getIp(): java.lang.String

+setIp(ip: java.lang.String)

+getType(): java.lang.String

+setType(type: java.lang.String)

+getOwner(): java.lang.String

+setOwner(owner: java.lang.String)

+getLast_connect(): java.util.Date

+setLast_connect(last_connect: java.util.Date)

+getDentry_date(): java.util.Date

+setDentry_date(dentry_date: java.util.Date)

java.lang.Comparable<Right>

Figure 5-4: Class Diagram of Package dk.sunsil.cs.bean

48 | P a g e

The class Right describes the user rights as discussed in section 4.1.1 of the system specification.

It implements the interface java.lang.Comparable<Right>. As such, it has to override the

function compareTo(right) of this interface. This function compares the current Right object with

that passed as parameter and returns an integer. It returns zero if both objects are equal else it

returns a negative number if the current object is less than the parameter object and a positive

number otherwise. The private static attribute rights is constant and used in the constructor to

initialize the private attribute index and in the toString() function to get the string value of an

instance. The public static attributes DeviceUser, GroupUser and SuperUser are constant and

can be used as reference objects for comparison. The function equals(right) compares two Right

objects and returns true if they are equal and false otherwise.

The classes UserBean, GroupBean, UserGroupBean and DeviceBean describe a user, group,

usergroup and device respectively. All their attributes have GET- and SET-functions. The HAS-

RIGHT functions of the class UserBean are used to check if a user has the right to carry out the

given operation on the object passed as parameter. These functions are called by the servlets

before a user can carry out any of the given operations on the specified object. The getMode()

function of the class UserBean gets the device access mode of the user. The mode 0 specifies the

user mode and is returned for device users while the mode 1 specifies the install mode which is

returned for group and super users. The function equals(user) of the class UserBean returns true

if the username of both UserBean instances compared are equal else it returns false.

49 | P a g e

5.3.4 Package dk.sunsil.cs.dao

dk.sunsil.cs.dao

DAOException

-errorCode: java.lang.String

<<create>>+DAOException(error_code: java.lang.String, message: java.lang.String)

<<create>>+DAOException(error_code: java.lang.String, cause: Throwable)

+getErrorCode(): java.lang.String

UserDAO

<<interface>>

+getUser(user: dk.sunsil.cs.bean.UserBean, newLogin: boolean)

+selectUsers(user: dk.sunsil.cs.bean.UserBean): dk.sunsil.cs.beans.UserBean[]

+insertUser(user: dk.sunsil.cs.bean.UserBean)

+updateUser(user: dk.sunsil.cs.bean.UserBean)

+deleteUser(user: dk.sunsil.cs.bean.UserBean)

DeviceDAO

<<interface>>

+getDevice(device: dk.sunsil.cs.bean.DeviceBean)

+selectDevices(user: dk.sunsil.cs.bean.UserBean): dk.sunsil.cs.bean.DeviceBean[]

+insertDevice(device: dk.sunsil.cs.bean.DeviceBean)

+updateDevice(device: dk.sunsil.cs.bean.DeviceBean)

+deleteDevice(device: dk.sunsil.cs.bean.DeviceBean)

GroupDAO

<<interface>>

+getGroup(group: dk.sunsil.cs.bean.GroupBean)

+selectGroups(user: dk.sunsil.cs.bean.UserBean): dk.sunsil.cs.bean.GroupBean[]

+insertGroup(group: dk.sunsil.cs.bean.GroupBean)

+updateGroup(group: dk.sunsil.cs.bean.GroupBean)

+deleteGroup(group: dk.sunsil.cs.bean.GroupBean)

UserGroupDAO

<<interface>>

+selectUserGroups(user: dk.sunsil.cs.bean.UserBean): dk.sunsil.cs.bean.UserGroupBean[]

+insertUserGroup(usrgrp: dk.sunsil.cs.bean.UserGroupBean)

+deleteUserGroup(usrgrp: dk.sunsil.cs.bean.UserGroupBean)

java.lang.Exception

impl

Figure 5-5: Class Diagram of Package dk.sunsil.cs.dao

The interface DeviceDAO defines the interface to the Data Access Object (DAO) used to access

the devices in the database. The functions getDevice(device), insertDevice(device),

50 | P a g e

updateDevice(device) and deleteDevice(device) respectively fetch, add, edit and remove the

specified device. The function selectDevices(user) fetches only those devices which the specified

user is allowed to manipulate.

The interface UserDAO defines the interface to DAO used to access the users in the database.

The functions getUser(user, newLogin), insertUser(user), updateUser(user) and

deleteUser(user) respectively fetch, add, edit and remove the specified user. The parameter

newLogin, if true, tells the DAO to set the last login of the specified user to the current time.

This is done by the servlets if the user has a new session. The function selectUsers(user) fetches

only those users which the specified user is allowed to manipulate.

The interface GroupDAO defines the interface to the DAO used to access the groups in the

database. The functions getGroup(group), insertGroup(group), updateGroup(group) and

deleteGroup(group) respectively fetch, add, edit and remove the specified group. The function

selectGroups(user) fetches only those groups which the specified user is allowed to manipulate.

The interface UserGroupDAO defines the interface to the DAO used to access the usergroups in

the database. The functions insertUserGroup(usrgrp) and deleteUserGroup(usrgrp) respectively

add and remove the specified usergroup. The function selectUserGroups(user) fetches only those

usergroups which the specified user is allowed to manipulate.

The class DAOException inherits from the class java.lang.Exception. Its single private attribute

errorCode is set with the parameter error_code of the constructors. The parameters message and

cause of the constructors are passed to the base constructor. The only public method of this class

is the GET-function of the errorCode. All functions of the interfaces in this package throw a

DAOException if an error occurs during execution.

The sub-package impl is discussed in the following sub-section. It contains the implementations

of the DAO interfaces discussed above.

51 | P a g e

5.3.5 Package dk.sunsil.cs.dao.impl

dk.sunsil.cs.dao

dk.sunsil.cs.dao.impl

BaseDAOImpl

-conn: java.sql.Connection

#getConnection(): java.sql.Connection

DeviceDAOImpl

-initDevice(device: dk.sunsil.cs.bean.DeviceBean, rset: java.sql.ResultSet)

+getDevice(device: dk.sunsil.cs.bean.DeviceBean)

+selectDevices(user: dk.sunsil.cs.bean.UserBean): dk.sunsil.cs.bean.DeviceBean[]

+insertDevice(device: dk.sunsil.cs.bean.DeviceBean)

+updateDevice(device: dk.sunsil.cs.bean.DeviceBean)

+deleteDevice(device: dk.sunsil.cs.bean.DeviceBean)

UserDAOImpl

-initUser(user: dk.sunsil.cs.bean.UserBean, rset: java.sql.ResultSet)

+getUser(user: dk.sunsil.cs.bean.UserBean, newLogin: boolean)

+selectUsers(user: dk.sunsil.cs.bean.UserBean): dk.sunsil.cs.bean.UserBean[]

+insertUser(user: dk.sunsil.cs.bean.UserBean)

+updateUser(user: dk.sunsil.cs.bean.UserBean)

+deleteUser(user: dk.sunsil.cs.bean.UserBean)

GroupDAOImpl

+initGroup(group: dk.sunsil.cs.bean.GroupBean, rset: java.sql.ResultSet)

+getGroup(group: dk.sunsil.cs.bean.GroupBean)

+selectGroups(user: dk.sunsil.cs.bean.UserBean): dk.sunsil.cs.bean.GroupBean[]

+insertGroup(group: dk.sunsil.cs.bean.GroupBean)

+updateGroup(group: dk.sunsil.cs.bean.GroupBean)

+deleteGroup(group: dk.sunsil.cs.bean.GroupBean)

UserGroupDAOImpl

+selectUserGroups(user: dk.sunsil.cs.bean.UserBean): dk.sunsil.cs.bean.UserGroupBean[]

+insertUserGroup(usrgrp: dk.sunsil.cs.bean.UserGroupBean)

+deleteUserGroup(usrgrp: dk.sunsil.cs.bean.UserGroupBean)

DeviceDAO

UserDAO

GroupDAO

UserGroupDAO

Figure 5-6: Class Diagram of Package dk.sunsil.cs.dao.impl

The abstract class BaseDAOImpl provides a single SQL connection to the DB for all DAO

implementations. It is more efficient to recycle and reuse already existing connections than to

open new ones according to the documentation at [6]. This uses up less resources and prevents

DB connection pool leaks, where unclosed connections become unavailable for reuse. The

protected static function getConnection() creates a new connection at its first call or if the

existing connection has been closed and reuses this connection for subsequent calls. The

connection is created from the JDBC data source defined in the context configuration file of the

web application (see Appendix B).

The above resource can be accessed through the environment context (see listing 5-7) using its

name. The Java code used to access the above resource and create a connection is as follows;

52 | P a g e

// Look up data source

DataSource ds = (DataSource)Environment.getContext().lookup("jdbc/SunSilDB");

// Allocate a connection from the pool

conn = ds.getConnection();

Listing 5-9: Creating a Connection from a Data Source

The class DeviceDAOImpl inherits from the class BaseDAOImpl, to make use of the connection

it provides, and implements the interface dk.sunsil.cs.dao.DeviceDAO. It therefore implements

all functions of this interface. The additional function initDevice(device, rset) initializes the

specified device with values from a row of the given result set, which is a representation of a

database table.

The class UserDAOImpl inherits from the class BaseDAOImpl, to make use of the connection it

provides, and implements the interface dk.sunsil.cs.dao.UserDAO. It therefore implements all

functions of this interface. The additional function initUser(user, rset) initializes the specified

user with values from a row of the given result set, which is a representation of a database table.

The class GroupDAOImpl inherits from the class BaseDAOImpl, to make use of the connection it

provides, and implements the interface dk.sunsil.cs.dao.GroupDAO. It therefore implements all

functions of this interface. The additional function initGroup(group, rset) initializes the specified

group with values from a row of the given result set, which is a representation of a database

table.

The class UserGroupDAOImpl inherits from the class BaseDAOImpl, to make use of the

connection it provides, and implements the interface dk.sunsil.cs.dao.UserGroupDAO. It

therefore implements all functions of this interface.

All DAO implementation classes are as well defined in the context configuration file of the web

application (see Appendix B). The DAO implementations are loaded at runtime and casted to

their corresponding interfaces. This makes it possible to re-implement them without recompiling

the application by specifying their new class paths for the type attribute. Below is a Java code

listing for loading and casting the DAO implementations;

Context envCtx = Environment.getContext();

DeviceDAO device_dao = (DeviceDAO) evnCtx.lookup("dao/device");

GroupDAO group_dao = (GroupDAO) envCtx.lookup("dao/group");

UserGroupDAO usrgrp_dao = (UserGroupDAO) envCtx.lookup("dao/usergroup");

UserDAO user_dao = (UserDAO) envCtx.lookup("dao/user");

Listing 5-10: Loading DAO Implementations

53 | P a g e

5.3.6 Package dk.sunsil.cs.signal

dk.sunsil.cs.signal

ServiceSignal

-service: Service

-primitive: Primitive

-parameters: java.util.Hashtable<String, Object> = new java.util.Hashtable<String, Object>()

-data: java.io.BufferedReader

<<create>>+ServiceSignal(service: Service, primitive: Primitive)

+getData(): java.io.BufferedReader

+setData(data: java.io.BufferedReader)

+getService(): Service

+setService(service: Service)

+getPrimitive(): Primitive

+setPrimitive(primitive: Primitive)

+getParameters(): java.util.Hashtable<String, Object>

Service

<<enumeration>>

+LIST

+RESOURCE

+UPDATE

+ERROR

Primitive

<<enumeration>>

+REQUEST

+INDICATE

+RESPONSE

+CONFIRM

Figure 5-7: Class Diagram of Package dk.sunsil.cs.signal

The class ServiceSignal describes a service signal as presented in the system specification. Its

private attributes correspond to the four parts of a service signal namely; service, primitive,

parameters and data. The parameters attribute is a hash table in which all parameters are saved.

It has only a GET-function used to get and add or read parameters from the hash table. All other

attributes have GET- and SET-functions. The single public constructor initializes the service and

primitive attributes.

The enumerations Service and Primitive simply enumerate the services and primitives required

by the service signal.

54 | P a g e

5.3.7 Package dk.sunsil.cs.appentity

dk.sunsil.cs.appentity

CSCom

-DELAY: long = 1000

-MAX_INACTIVE: long = 3600000

-timer: java.util.Timer = new java.util.Timer()

-registry: java.util.Hashtable<java.lang.String, CSCom> = new java.util.Hashtable<java.lang.String, CSCom>()

-key: java.lang.String

-tsap: java.net.Socket

-timeout: boolean

-listData: java.io.BufferedReader

<<create>>-CSCom(ip: java.lang.String, port: int)

+init(ip: java.lang.String, port: int): CSCom

+handleRequest(signal: dk.sunsil.cs.signal.ServiceSignal): dk.sunsil.cs.signal.ServiceSignal

+run()

Codec

+code(apdu: dk.sunsil.cs.signal.ServiceSignal, tsap_tx: java.io.PrintStream)

+decode(apdu: dk.sunsil.cs.signal.ServiceSignal, tsap_rx: java.io.BufferedReader)

java.util.TimerTask

Figure 5-8: Class Diagram of Package dk.sunsil.cs.appentity

The class CSCom implements the CSCom state machine as discussed in the specification. It

inherits from the class java.util.TimerTask and overrides the run() function of this class. The

private static attribute DELAY is constant and it specifies, in ms, how long the machine should

wait for a response from the T400 device after it sends a request. The private static attribute

MAX_INACTIVE is also constant and given in ms but it specifies how long a CSCom object is

allowed to stay inactive, i.e. there is no communication. The private static attribute timer

represents the Timer process as discussed in the specification of the CSAppEntity. The private

static attribute registry stores all the CSCom objects in use. The private attribute key is the key

used to save the CSCom object in the registry. The private attribute tsap is the Transport Service

Access Point. It is simply a socket which connects to a T400 device. The private attribute timeout

is used by the timer to send a timeout signal to the CSCom object. The private attribute listData

stores the data of the list service on the first list request and simply returns it on subsequent list

requests since it does not change. The single constructor is private, meaning only the class can

create instances of itself. The ip and port parameters of the constructor specify the IP-address

and port of the T400 device to communicate with. The public static function init(ip, port)

implements the init service as discussed in the specification. It first checks if there is a CSCom

object in the registry which is connected to the given ip and port. If there is, it simply returns this

55 | P a g e

object else it creates a new object with this ip and port and registers it in the registry before

returning it. As such, only one CSCom object is connected to a T400 device at a time, meaning

multiple users simultaneously communicating with a T400 device all share the same TCP

connection from the centralized server to the T400 device. This is more efficient as it saves

resources for multiple connections on both the server and the device and reduces the

communication overhead to initiate TCP connections. The init function also schedules newly

created CSCom objects as timer tasks in the timer. The timer then calls the run() function every

MAX_INACTIVE ms. The run function checks if the connection to the T400 device has been

closed. If it has, the CSCom object has been inactive for too long and it is removed from the

registry. The public function handleRequest(signal) handles the request for all other services. It

is synchronized to prevent simultaneous execution by multiple threads. This avoids a thread

requesting a service from reading the response to the request of another thread.

The class Codec implements the Codec process as discussed in the specification. The static

public function code(apdu, tsap_tx) codes an Application Protocol Data Unit (APDU) into an

HTTP request and writes it into the transmission buffer of the socket which is specified by the

parameter tsap_tx. The static public function decode(apdu, tsap_rx) does the opposite. It decodes

an HTTP response from the T400 device into an APDU. The response is read from the receive

buffer of the socket which is specified by the parameter tsap_rx.

56 | P a g e

5.3.8 Package dk.sunsil.cs.servlet

dk.sunsil.cs.servlet

ResourceServlet

+doGet(request: javax.servlet.http.HttpServletRequest, response: javax.servlet.http.HttpServletResponse)

action form images js

ConnectServlet

-device: dk.sunsil.cs.bean.DeviceBean

-cscom: dk.sunsil.cs.appentity.CSCom

-printMargin(out : java.io.PrintWriter)

-printContent(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

#doGet(out : java.io.PrintWriter)

HomeServlet

#printTitle(out : java.io.PrintWriter)

#printContent(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

UserServlet

#printTitle(out : java.io.PrintWriter)

#printContent(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

GroupServlet

#printTitle(out : java.io.PrintWriter)

#printContent(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

UserGroupServlet

#printTitle(out : java.io.PrintWriter)

#printContent(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

DeviceServlet

#printTitle(out : java.io.PrintWriter)

#printContent(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

BaseServlet

-printLangs(out : java.io.PrintWriter)

-printMargin(out : java.io.PrintWriter)

#printTitle(out : java.io.PrintWriter)
#printContent(out : java.io.PrintWriter)
#doGet(out : java.io.PrintWriter)

+printDate(out : java.io.PrintWriter, date: java.util.Date)

SuperServlet

#user: dk.sunsil.cs.bean.UserBean

#langBundle: java.util.Properties

#request: javax.servlet.http.HttpServletRequest

#response: javax.servlet.http.HttpServletResponse

#getLoggerName(): java.lang.String
#doGet(out : java.io.PrintWriter)
+doGet(request: javax.servlet.http.HttpServletRequest, response: javax.servlet.http.HttpServletResponse)

javax.servlet.http.HttpServlet

Figure 5-9: Class Diagram of Package dk.sunsil.cs.servlet

The sub-package form contains servlets which generate HTML-forms for adding or editing

objects in the database while the sub-package action contains servlets used to carry out actions in

the database. They are both discussed in detail in the next two sub-sections. The sub-packages

images and js contain JPEG-images and javascripts respectively, which are used by the

application.

Servlets are exclusively used at the backend, i.e. the server side, of the web interface. All servlets

inherit from the class javax.servlet.http.HttpServlet and override its public function

57 | P a g e

doGet(request, response). This is the function called for the HTTP GET-method. Servlets have

only default constructors. So, all servlet attributes are initialized in the doGet function. Both

static and dynamic resources are used in the web application. All HTML-pages are dynamically

generated at request. The static resources constitute the images and javascripts stored in the sub-

packages images and js respectively. The class ResourceServlet is used to allocate the static

resources.

The abstract class SuperServlet provides common attributes to all its subclasses. All its attributes

are initialized in the function doGet(request, response) which is final, meaning no subclass can

override this function. The private attribute user is the user bean for the currently logged in user.

The private attribute langBundle is the language bundle which contains the textual translations of

the user’s chosen language. The private attributes request and response are the request and

response parameters of the function doGet(request, response). After the attributes have been

initialized, the protected abstract function doGet(out) is called to generate the HTML code. In

case of any exceptions, the protected abstract function getLoggerName() is called to get the

logger name of a concrete subclass. The class name of the concrete subclass is returned as the

logger name.

The class ConnectServlet inherits from the class SuperServlet and relays information between the

currently logged in user and a T400 device. The private attribute device is the device bean for the

device the user communicates with. The private attribute cscom is the CSCom instance which

communicates with the given device. This servlet has the following template;

Figure 5-10: ConnectServlet Template

The class ConnectServlet generates the HTML-code such that it has the above template. The

private function printMargin(out) is called such that what it prints is displayed in the margin

section of the above template. It prints the list of resources available on the T400 device for

selection by the user. Likewise, the private function printContent(out) is called such that what it

prints is displayed in the content section of the above template. It prints the response of the

service requested. The functions getLoggerName() and doGet(out) implement the abstract

functions of the base class.

58 | P a g e

The abstract class BaseServlet inherits from the class SuperServlet and provides a common

template to all its subclasses. This template is as follows;

Figure 5-11: BaseServlet Template

The BaseServlet also generates HTML-code such that it displays information according to the

above template. The private function printLangs(out) is called such that it prints the other

languages available in the web application in the languages section of the template above. The

private function printMargin(out) is called such that it prints a list of the database tables, which

the logged in user is allowed to view, in the margin section of the above template. The user can

then select a table and its contents will be displayed in the content section of the above template.

The protected abstract function printTitle(out) is called such that it prints the title of the HTML

page. The protected abstract function printContent(out) is called such that it prints the contents

of a database table in the content region of the above template. The protected function

doGet(out) implements the abstract function of the base class and is final, meaning no subclass

can override it. The public static function printDate(out, date) prints the date in following

format;

dd.MM.yyyy HH:mm

where

- dd: 2-digit day of the month

- MM: 2-digit month

- yyyy: 4-digit year

- HH: 2-digit hour from 00 – 23 hours

- mm: 2-digit minute from 00 – 59 minutes

The classes HomeServlet, UserServlet, DeviceServlet, GroupServlet and UserGroupServlet all

inherit from the class BaseServlet and implement all its abstract functions. They display a

welcome message, the User table, the Device table, the Groups table and the UserGroup table

respectively. All servlets and their relative paths are specified in the Web Application

Deployment Descriptor, i.e. the web.xml file (see Appendix B).

59 | P a g e

5.3.9 Package dk.sunsil.cs.servlet.form

dk.sunsil.cs.servlet.form

BaseForm

#action: java.lang.String

#printForm(out : java.io.PrintWriter)
#doGet(out : java.io.PrintWriter)

UserForm

#printForm(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

GroupForm

#printForm(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

DeviceForm

#printForm(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

UserGroupFom

#printForm(out : java.io.PrintWriter)

#getLoggerName(): java.lang.String

dk.sunsil.cs.servlet.SuperServlet

Figure 5-12: Class Diagram of Package dk.sunsil.cs.servlet.form

The abstract class BaseForm inherits from the class dk.sunsil.cs.servlet.SuperServlet and it is the

base class for the classes which generate HTML forms for adding and editing objects in the

database. The protected attribute action is a URL parameter which specifies whether an object

should be added to the database or edited. The protected abstract function printForm(out) is

called to print the required HTML form tag. The protected function doGet(out) implements the

abstract function of its base class and it is final. Therefore, no subclass can override it.

The classes UserForm, GroupForm, DeviceForm and UserGroupForm generate the HTML

forms for adding and editing users, groups, devices and usergroups respectively. They simply

implement the abstract functions of their base class. Their definitions and mappings in the Web

Application Deployment Descriptor are shown in Appendix B.

60 | P a g e

5.3.10 Package dk.sunsil.cs.servlet.action

dk.sunsil.cs.servlet.action

BaseAction

#task: java.lang.String

#executeAction()
#doGet(out : java.io.PrintWriter)

UserAction

-getParams(user: dk.sunsil.cs.bean.UserBean)

#executeAction()

#getLoggerName(): java.lang.String

DeviceAction

-getParams(device: dk.sunsil.cs.bean.DeviceBean)

#executeAction()

#getLoggerName(): java.lang.String

GroupAction

-getParams(group: dk.sunsil.cs.bean.GroupBean)

#executeAction()

#getLoggerName(): java.lang.String

UserGroupAction

#executeAction()

#getLoggerName(): java.lang.String

dk.sunsil.cs.servlet.SuperServlet

Figure 5-13: Class Diagram of Package dk.sunsil.cs.servlet.action

The abstract class BaseAction inherits from the class dk.sunsil.cs.servlet.SuperServlet and is the

base class for the servlets which insert, update and delete objects from the database. The private

attribute task is a URL parameter which specifies the action to be carried out. The protected

abstract function executeAction() carries out the requested task and throws a

dk.sunsil.cs.dao.DAOException if an error occurs. The function doGet(out) implements the

abstract function of the base class and is final. It prints a success message if the requested task

was performed successfully and a failure message otherwise.

The classes DeviceAction, UserAction, GroupAction and UserGroupAction all inherit from the

class BaseAction and implement all its abstract functions. They insert, update and delete objects

from the database tables Device, User, Groups and UserGroup respectively. The private

functions getParams initialize their bean objects with URL parameters. They are defined and

mapped in the Web Application Deployment Descriptor as given in Appendix B.

61 | P a g e

5.3.11 Summary

In sum, the centralized server has a three-tier architecture. Each tier has a set of software

packages which implement specific functionalities of the tier. The centralized server provides a

web interface to the user. This interface uses HTML and JavaScript on the frontend and servlets

on the backend. The servlets belong to the uppermost tier and they dynamically generate the

HTML code for a give web page on request. Data presented in the web pages are gotten either

from the database or a T400 device. In the lowermost tier, Data Access Objects (DAO’s) are

used by the servlet to access the database while the Centralized Server Application Entity

(CSAppEntity) is used to access a T400 device. The servlets communicate with the DAO’s using

logical beans and with the CSAppEntity using service signals, both of which belong to the

middle tier.

62 | P a g e

6 System Testing

This chapter demonstrates some test scenarios of the whole system. A lot of unit tests were

carried out during the implementation phase of the project. Details about all these tests will not

be elaborated here. The test scenarios simply show what the browser displays to the user. The

content of the web pages are shown and explained in the following sections.

The tests were carried out on the development PC, which has an installation of the centralized

server. The centralized server was accessed via the localhost. The server listened to the port

8080, which is the default port of the Apache Tomcat. The centralized server web application is

named sunsil. Therefore, it was access by the URL http://localhost:8080/sunsil.

6.1 Authentification

Users must authenticate with a username and password before being granted access to the

centralized server web application. The following dialog box is shown for authentication;

Figure 6-1: User Authentication Prompt

6.2 The Homepage

The homepage is displayed after a user successfully authenticates. It has the BaseServlet

Template as discussed in the previous chapter (see Figure 5-11). It shows the name and last login

date of the user. Below is the view of the homepage for the super user whason01.

http://localhost:8080/sunsil

63 | P a g e

Figure 6-2: The Homepage

The link Deutsch gives a German translation of this page. The link Home is as well the current

page. The links Device, User, Groups and UserGroup displays the contents of their respective

database tables. The Groups and UserGroup links are not shown for group users, since they are

not allowed to view or modify these tables. The User link is in addition not shown for device

users. The link Edit my profile results in a popup window containing a form with which the user

can edit his personal details. Below is such a popup window for the current user.

Figure 6-3: Edit Profile Form

The user cannot change his username. The fields labeled with the asterisk are required. On

summiting the form, a JavaScript function is called to check if these fields are empty. If they are,

a corresponding error message is shown indicating the empty field which must be filled.

64 | P a g e

6.3 The Device Page

The device page displays the devices the logged on user is allowed to view. It also enables the

user to add, modify, delete or remotely connect to the device. The user is permitted to do just as

much as his access rights requires, as discussed in the system specification. Below is a view of

the device page for the super user whason01.

Figure 6-4: The Device Page

The icons , , and add, connect to, edit and delete a device respectively. Clicking on

any of them, results in a popup window which enables the user to carry out the given task. The

connect icon calls the connect page as described later in this chapter. The add and edit icons

display forms which enables the user to add and edit a device respectively. The delete icon

results in a dialog box which prompts the user to confirm or decline the deletion of the specified

device. If a user is not permitted to carry out any given task, the icon for the task is not

displayed. The add and edit forms as well as the delete prompt are as follows;

65 | P a g e

Figure 6-5: Add Device Form

Figure 6-6: Edit Device Form

66 | P a g e

Figure 6-7: Delete Device Prompt

6.4 The User Page

The user page displays only those users, whom the currently logged on user is allowed to see. It

can be accessed only by super or group users. It also enables the logged on user to add, modify

or delete other users. The user is permitted to do just as much as his access rights allows, as

discussed in the system specification. Below is a view of the user page for the super user

whason01.

Figure 6-8: The User Page

67 | P a g e

The icons , and add, edit and delete a user respectively. Clicking on any of them,

results in a popup window which enables the logged on user to carry out the given task. The add

and edit icons display forms which enables the logged on user to add and edit another user

respectively. The delete icon results in a dialog box which prompts the logged on user to confirm

or decline the deletion of the specified user. If the logged on user is not permitted to carry out

any given task, the icon for the task is not displayed. The add and edit forms as well as the delete

prompt are as follows;

Figure 6-9: Add User Form

Figure 6-10: Edit User Form

68 | P a g e

Figure 6-11: Delete User Prompt

6.5 The Groups Page

The groups page displays all groups in the database. This page can be accessed only by super

users. It also enables the user to add, modify or delete groups. Below is a view of the device page

for the super user whason01.

Figure 6-12: The Groups Page

The icons , and add, edit and delete a group respectively. Clicking on any of them,

results in a popup window which enables the user to carry out the given task. The add and edit

icons display forms which enables the user to add and edit a group respectively. The delete icon

results in a dialog box which prompts the user to confirm or decline the deletion of the specified

group. The add and edit forms as well as the delete prompt are as follows;

69 | P a g e

Figure 6-13: Add Group Form

Figure 6-14: Edit Group Form

Figure 6-15: Delete Group Prompt

70 | P a g e

6.6 The UserGroup Page

The usergroup page displays all user groups in the database. This page can be accessed only by

super users. It also enables the user to add or delete user groups. User groups cannot be edited

Below is a view of the usergroup page for the super user whason01.

Figure 6-16: The UserGroup Page

The icons and add and delete a user group respectively. Clicking on any of them, results

in a popup window which enables the user to carry out the given task. The add icon displays a

form which enables the user to add a user group. The delete icon results in a dialog box which

prompts the user to confirm or decline the deletion of the specified user group. The add form as

well as the delete prompt are as follows;

Figure 6-17: Add User Group Form

71 | P a g e

Figure 6-18: Delete User Group Prompt

6.7 The Connect Page

So far, all pages accessed the database to make some changes. The connect page is the only page

which provides an interface to communicate with a T400 device. This page is called from the

device page when the user clicks the connect button of a device. The following figure shows the

connect page for the device with device ID, did = 9.

Figure 6-19: The Connect Page – Device Properties

The links Parameters and IO-Devices is gotten from the list of resources provided by the device.

They display the parameters and I/O-devices for the T400 device respectively. This list is

retrieved using the list service. The list may differ from device to device. The following figure

shows the result of clicking on the link Parameters;

72 | P a g e

Figure 6-20: The Connect Page - Parameters

The icon is used to change the value of a parameter. On clicking the icon for a given

parameter, a form is displayed which enables the user to enter a new value for the chosen

parameter. The following form is shown for the parameter with id = 182;

Figure 6-21: The Connect Page - Edit Form

73 | P a g e

7 Conclusion

A communication infrastructure for a distributed solar energy system was designed in this

project. A complete system analysis was done. Due to time constraints, however, only parts of

the system were designed, specified, implemented and tested. Four communication pairs were

identified in the system, of which, only one of these pairs were further discussed. This leaves still

a lot to be done in this project. However, the communication protocols developed here could as

well be extended or modified for reuse by the other communication parties. An investigation of

how this could be done will be of interest.

There was no real implementation of the communication protocol on a T400 device because this

device is not yet developed beyond the conceptual stage. Instead, this was simulated, for testing

purposes, on a computer located in the LAN of the centralized server. This is OK since the

devices and the centralized server will share the same LAN, anyway. Setting up a real test

environment with the T400 located in a mobile network and building a VPN tunnel to the

centralized server will be of interest.

Setting up a web server for the District Heat Authority (DHA) and the Web DB entities of the

system still has to be done. Also, an investigation on how to carry out the energy measurements

required by the DHA is still to be done. The billing of the households still has to be specified.

Future work

If the solar thermal plant is a combined heat and power plant, The T400 should be able to receive

price signals from the plant, and then make a decision to consume heat or consume electricity for

heating the water tank in the household. Or to sell as much thermal energy as possible to the grid,

allowing the household water temperature to drop to a set minimum, to optimize earnings.

The T400 could also receive a price signal to help cooling the combined heat and power plant

during night time operations, in case there is a shortage of electricity but no need or room for

thermal energy storage available. Then the T400 will operate the solar thermal panel in reverse,

until morning.

74 | P a g e

References

[1] Peter Gerdsen & Peter Kröger (1994) Kommunikationssysteme 1 – Theorie, Entwurf &

Messtechnik

[2] Peter Gerdsen & Peter Kröger (1994) Kommunikationssysteme 2 – Anleitung zum

praktischen Entwurf (SDL)

[3] LIAB – Linux in a Box (August 2009) <http://www.liab.dk>

[4] MySQL (August 2009) <http://www.mysql.com>

[5] DbVisualiser download (May 2009)

<http://www.minq.se/products/dbvis/download/index.jsp>

[6] Apache Tomcat (August 2009) <http://tomcat.apache.org>

[7] Apache Ant (August 2009) <http://ant.apache.org>

[8] Wikipedia, the free encyclopedia (August 2009) <http://www.en.wikipedia.org>

http://www.liab.dk/
http://www.mysql.com/
http://www.minq.se/products/dbvis/download/index.jsp
http://tomcat.apache.org/
http://ant.apache.org/
http://www.en.wikipedia.org/

75 | P a g e

Abbreviations

ARM Advanced RISC Machine

CPU Central Processing Unit

CSV Comma Separated Values

DB Database

FK Foreign Key

FSM Finite State Machine

GPRS General Packet Radio Service

GSM Global System for Mobile communications

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ID Identifier

JDBC Java Database Connectivity

JPEG Joint Photographic Experts Group

IP Internet Protocol

LAN Local Area Network

LED Light-Emitting Diode

PC Personal Computer

PCI Protocol Control Information

PDU Protocol Data Unit

PK Primary Key

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SAP Service Access Point

SDL Specification and Description Language

SDU Service Data Unit

SMS Short Message Service

TCP Transmission Control Protocol

URL Universal Resource Locator

VPN Virtual Private Network

76 | P a g e

Apendix

A The DbVisualiser Tool

The tool DbVisualizer is a universal database visualization tool, available for free download at

[5]. It gives a complete overview of all tables, views and procedures in a database. It has in

addition an SQL editor which shows SQL statements in coloured text. With this tool, SQL

statements can also be sent to the database for execution and the results sent back and displayed

in another view.

In order to view and manipulate a database with DbVisualizer, a connection to the database must

first be created. The tool provides a wizard which walks you through the creation of a database

connection. The information shown in the following figure is needed to create a connection to a

database;

Figure A-1: DbVisualizer - Database Connection View

77 | P a g e

Below is a view of the data in the user_roles table after the creation of tables and insertion of

data;

Figure A-2: DbVisualizer - Data View of user_roles Table

As can be seen from the above figure, there are different views of a single table. A view can be

chosen by simply clicking on the required tab to the right of the above figure. The tables, views

and procedures in a database can be navigated on the left panel of the above figure. Clicking the

tab SQL Commander in the above figure brings you to the SQL editor where SQL statements can

be typed and run.

78 | P a g e

B Apache Tomcat

The two most important files used by the Apache Tomcat to configure a server application are

the context.xml and web.xml files. They are as follows;

<?xml version="1.0" encoding="UTF-8"?>

<Context>

 <!--############ Realm Declaration ############-->

 <!-- Specify JDBC realm used for user authentication. Every user must

have the roll sunsil -->

 <Realm className="org.apache.catalina.realm.JDBCRealm" debug="99"

 driverName="com.mysql.jdbc.Driver"

 connectionURL=

 "jdbc:mysql://localhost:3306/test?user=root&password=321645"

 userTable="users" userNameCol="user_name" userCredCol="user_pass"

 userRoleTable="user_roles" roleNameCol="role_name"/>

 <!--############ Resource Declarations ############-->

 <!-- Specify JDBC resource used to access MySQL database -->

 <Resource name="jdbc/SunSilDB"

 auth="Application"

 type="javax.sql.DataSource"

 username="root"

 password="321645"

 driverClassName="com.mysql.jdbc.Driver"

 url="jdbc:mysql://localhost:3306/test"

 maxActive="1"

 maxIdle="1"

 maxWait="3000"

 removeAbandoned="true"

 removeAbandonedTimeout="200"

 logAbandoned="true"/>

 <!-- Specify DAO Resources -->

 <Resource name="dao/user" auth="Application"

 type="dk.sunsil.cs.dao.impl.UserDAOImpl"

 factory="org.apache.naming.factory.BeanFactory"/>

 <Resource name="dao/device" auth="Application"

 type="dk.sunsil.cs.dao.impl.DeviceDAOImpl"

 factory="org.apache.naming.factory.BeanFactory"/>

 <Resource name="dao/group" auth="Application"

 type="dk.sunsil.cs.dao.impl.GroupDAOImpl"

 factory="org.apache.naming.factory.BeanFactory"/>

 <Resource name="dao/usergroup" auth="Application"

 type="dk.sunsil.cs.dao.impl.UserGroupDAOImpl"

 factory="org.apache.naming.factory.BeanFactory"/>

</Context>

Listing B-1: context.xml

79 | P a g e

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>SunSil Centralized Server</display-name>

 <context-param>

 <param-name>webmaster</param-name>

 <param-value>waa@sunsil.dk</param-value>

 <description>

 The EMAIL address of the administrator to whom questions

 and comments about this application should be addressed.

 </description>

 </context-param>

 <servlet>

 <servlet-name>home</servlet-name>

 <description> Homepage </description>

 <servlet-class>dk.sunsil.cs.servlet.HomeServlet</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>connect</servlet-name>

 <description> Connects to a T400 device and relays info </description>

 <servlet-class>dk.sunsil.cs.servlet.ConnectServlet</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>user</servlet-name>

 <description> Display User table </description>

 <servlet-class>dk.sunsil.cs.servlet.UserServlet</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>device</servlet-name>

 <description> Display Device table </description>

 <servlet-class>dk.sunsil.cs.servlet.DeviceServlet</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>group</servlet-name>

 <description> Display Groups table </description>

 <servlet-class>dk.sunsil.cs.servlet.GroupServlet</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

80 | P a g e

 <servlet>

 <servlet-name>usergroup</servlet-name>

 <description> Display UserGroup table </description>

 <servlet-class>dk.sunsil.cs.servlet.UserGroupServlet</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>resource</servlet-name>

 <description>

 Resource allocator for static resources like js, images, etc

</description>

 <servlet-class>dk.sunsil.cs.servlet.ResourceServlet</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>UserForm</servlet-name>

 <description>

 Form for adding/editing a row in the User table

</description>

 <servlet-class>dk.sunsil.cs.servlet.form.UserForm</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>DeviceForm</servlet-name>

 <description>

 Form for adding/editing a row in the Device table

</description>

 <servlet-class>dk.sunsil.cs.servlet.form.DeviceForm</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>GroupForm</servlet-name>

 <description>

 Form for adding/editing a row in the Groups table

</description>

 <servlet-class>dk.sunsil.cs.servlet.form.GroupForm</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>UserGroupForm</servlet-name>

 <description>

 Form for adding a row in the UserGroup table

</description>

 <servlet-class>dk.sunsil.cs.servlet.form.UserGroupForm</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>UserAction</servlet-name>

 <description> Add/Edit/Delete a row in the User table </description>

 <servlet-class>dk.sunsil.cs.servlet.action.UserAction</servlet-class>

 <load-on-startup>5</load-on-startup>

81 | P a g e

 </servlet>

 <servlet>

 <servlet-name>DeviceAction</servlet-name>

 <description> Add/Edit/Delete a row in the Device table </description>

 <servlet-class>dk.sunsil.cs.servlet.action.DeviceAction</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>GroupAction</servlet-name>

 <description> Add/Edit/Delete a row in the Groups table </description>

 <servlet-class>dk.sunsil.cs.servlet.action.GroupAction</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>UserGroupAction</servlet-name>

 <description> Add/Delete a row in the UserGroup table </description>

 <servlet-class>

 dk.sunsil.cs.servlet.action.UserGroupAction

</servlet-class>

 <load-on-startup>5</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>home</servlet-name>

 <url-pattern>/home</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>home</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>connect</servlet-name>

 <url-pattern>/connect</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>user</servlet-name>

 <url-pattern>/user</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>device</servlet-name>

 <url-pattern>/device</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>group</servlet-name>

 <url-pattern>/group</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>usergroup</servlet-name>

82 | P a g e

 <url-pattern>/usergroup</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>resource</servlet-name>

 <url-pattern>/js/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>resource</servlet-name>

 <url-pattern>/images/*</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>GroupForm</servlet-name>

 <url-pattern>/form/group</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>UserGroupForm</servlet-name>

 <url-pattern>/form/usergroup</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>UserForm</servlet-name>

 <url-pattern>/form/user</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>DeviceForm</servlet-name>

 <url-pattern>/form/device</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>GroupAction</servlet-name>

 <url-pattern>/action/group</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>UserAction</servlet-name>

 <url-pattern>/action/user</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>UserGroupAction</servlet-name>

 <url-pattern>/action/usergroup</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>DeviceAction</servlet-name>

 <url-pattern>/action/device</url-pattern>

 </servlet-mapping>

 <session-config>

 <session-timeout>30</session-timeout> <!-- 30 minutes -->

 </session-config>

83 | P a g e

 <!-- Declaration of Resource Requirements -->

 <!-- Define a Security Constraint on this Application -->

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Centralized Server</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>sunsil</role-name>

 </auth-constraint>

 </security-constraint>

 <!-- Define the Login Configuration for this Application -->

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>SunSil Application</realm-name>

 </login-config>

 <!-- Security roles referenced by this web application -->

 <security-role>

 <description>

 The role that is required to log in to the SunSil Application

 </description>

 <role-name>sunsil</role-name>

 </security-role>

</web-app>

Listing B-2: Web Application Deployment Descriptor (web.xml)

84 | P a g e

Acknowledgement

I would like to thank everybody who contributed in one way or another to my master project and

thesis. I am extremely grateful to my supervisors Prof. Dr. Wolfgang Fohl and Mr. Jens Fischer

for the time they devoted to my thesis work. Their contributions were very valuable to my work.

I want to also express my gratitude to all my colleagues at SunSil A/S for providing a good

working atmosphere for my project. Special thanks go to Mr. Erik Hansen, Mr. Carsten Mols and

Mrs. Lise Nielson, who helped do some brain storming for the requirements analysis of the

project. Finally, I want to thank my family and friends, without whom my studies and

consequently this thesis would not have been possible. I highly appreciate their moral support

and words of encouragement which kept me going.

85 | P a g e

Declaration

I declare within the meaning of section 25(4) of the Examination and Study Regulations of

the International Degree Course Information Engineering that: this Master Thesis has

been completed by myself independently without outside help and only the defined sources

and study aids were used. Sections that reflect the thoughts or works of others are made

known through the definition of sources.

Hamburg, 10.12.2009
City, Date and Signature

