

Hochschule für Angewandte Wissenschaften Hamburg

Fakultät Life Sciences

Studiengang Ökotrophologie

"Stabilität von Lebensmittelfarbstoffen unter Lichteinfluss bei Dragéeprodukten"

Bachelorarbeit

Tag der Abgabe: 14.08.2020

Vorgelegt von:

Christiane Schoen

Betreuende Prüferin: Frau Prof. Dr. Andrea Bauer

Zweiter Prüfer: Herr Dr. Philipp Werner

Inhalt

Ab	Abbildungeniii			
Tal	belle	en		iv
1.	Ein	leitu	ung	.1
2.	The	eore	tische Grundlagen	.3
2	.1	We	Ilen-Teilchen-Dualismus des Lichts	.3
2	.2	Pho	otochemische Elektronenanregung	.5
2	.3	Pho	otochemische Prozesse	.7
	2.3	.1	Monomolekulare Reaktionen	8
	2.3	.2	Bimolekulare Reaktionen	9
2	.4	Opt	tische Strahlung und Farbeindruck	11
2	.5	Sin	nulation von Sonnenlicht durch Xenonlampen	12
2	.6	Str	uktur der Farbstoffe/Entstehung von Farbigkeit	13
2	.7	Leb	pensmittelfarbstoffe und relevante stabilisierende Zusatzstoffe	15
	2.7	.1	Einteilung der Farbstoffe	15
	2.7	.2	Negative Einflüsse von Licht auf Lebensmittelfarbstoffe	15
	2.7	.3	Kurkumin und sein Verhalten unter Lichteinwirkung	16
	2.7	.4	Zusatzstoffe zur Stabilisation von Kurkumin	19
2	.8	Das	s CIE-L*a*b*-Farbsystem	20
2	.9	Far	babstand ΔE und spektralphotometrische Farbmessung	23
3.	Met	thod	lenteil	25
3	.1	Ver	suchsablauf	25
3	.2	Ver	suchsaufbau	26
	3.2	.1	Material2	26
	3.2	.2	Beschreibung des Bewitterungsgerätes	26
3	.3	Ver	suchsvorbereitung	28

3.3.1		Vorversuche zur Ermittlung von Messwert-Schwankungen der	
Methode und Kalibrierung der verwendeten Geräte			
3	3.3.2	Vorversuch zur Mobilität von kleinteiligen Dragéeprodukten 30	
3	.3.3	. Probenvorbereitung	
3.4	N.	/ersuchsdurchführung36	
3	8.4.1	Prozessparameter für das Bewitterungsgerät 36	
3	8.4.2	Prozessparameter des Farbmessgeräts	
3	.4.3	Messung	
3.5	S	Statistische Methoden	
4. E	Irge	bnisse	
4.1	E	Ergebnisse zur Schellack-Isolierung	
4.2	E	Ergebnisse zur Verkapselung des Kurkumins49	
5. D	Disk	ussion58	
5.1	E	Seantwortung der Forschungsfragen	
5	5.1.1	Einfluss von einer Schellack-Isolierung auf den Farbabbau	
5	5.1.2	Einfluss einer Kurkumin-Verkapselung auf den Farbabbau	
5.2	L	.imitation 61	
6. F	azit	und Ausblick62	
ZusammenfassungI			
Abst	ract		
LiteraturIV			
Eidesstattliche ErklärungIX			
AnhangX			

Abbildungen

Abbildung 1 Darstellung einer elektromagnetischen Welle	3
Abbildung 2 Elektronenanordnung von Atom-/Molekülzuständen	6
Abbildung 3 Allgemeine Darstellung von Prozessen nach photochemischer	
Anregung eines Moleküls	7
Abbildung 4 Elektronenverteilung der Triplett- und Singulett-Zustände von	
Sauerstoff	10
Abbildung 5 Spektrum des sichtbaren Lichts	11
Abbildung 6 Gegenüberstellung der absorbierten Strahlung und der	
wahrgenommenen Farbe	12
Abbildung 7 Strukturformeln der Derivate und Keto-Enol-Tautomere von Kurkum	nin 17
Abbildung 8 Strukturformeln der Abbauprodukte von Kurkumin	18
Abbildung 9 CIE-Farbsohle und -Farbkörper	21
Abbildung 10 CIE - L*a*b*-Farbkugel	22
Abbildung 11 Farbabstandsformel ΔE	23
Abbildung 12 Modifizierte Farbabstandsformel ΔE00	24
Abbildung 13 Probenraumaufbau des Bewitterungsgeräts	27
Abbildung 14 Probenraum des Bewitterungsgeräts	27
Abbildung 15 Einfache Regressionsanalyse der Helligkeitsverläufe der fixierten	
und unfixierten Nonpareille unter Lichteinfluss	31
Abbildung 16 Einfache Regressionsanalyse der Rot-Grün-Verläufe der fixierten	
und unfixierten Nonpareille unter Lichteinfluss	32
Abbildung 17 Einfache Regressionsanalyse der Blau-Gelb-Verläufe der fixierten	l
und unfixierten Nonpareille unter Lichteinfluss	32
Abbildung 18 Zuckerstreusel gefärbt mit Kurkuma-Extrakt vor der Bestrahlung	33
Abbildung 19 Zuckerstreusel gefärbt mit Kurkuma-Extrakt und mit Schellack	
isoliert vor der Bestrahlung	34
Abbildung 20 Zuckerstreusel mit verkapseltem Kurkumin gefärbt vor der	
Bestrahlung	34
Abbildung 21 Zuckerstreusel mit unverkapseltem Kurkumin gefärbt vor der	
Bestrahlung	35

Abbildung 22 Δ E-Mittelwert-Verläufe von mit Kurkuma-Extrakt gefärbten und mit
Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss
Abbildung 23 L*-Mittelwert-Verläufe von mit Kurkuma-Extrakt gefärbten und mit
Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss
Abbildung 24 a*-Mittelwert-Verläufe von mit Kurkuma-Extrakt gefärbten und mit
Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss
Abbildung 25 b*-Mittelwert-Verläufe von mit Kurkuma-Extrakt gefärbten und mit
Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss
Abbildung 26 Δ E-Mittelwert-Verläufe von mit verkapseltem/unverkapseltem
Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss
Abbildung 27 L*-Mittelwert-Verläufe von mit verkapseltem/unverkapseltem
Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss
Abbildung 28 a*-Mittelwert-Verläufe von mit verkapseltem/unverkapseltem
Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss
Abbildung 29 b*-Mittelwert-Verläufe von mit verkapseltem/unverkapseltem
Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Tabellen

Tabelle 1 Verwendete Geräte	26
Tabelle 2 Verwendete Materialien	26
Tabelle 3 Prozessparameter des Bewitterungsgeräts	36
Tabelle 4 Prozessparameter des Farbmessgeräts	37
Tabelle 5 ANOVA-Tabelle der Δ E-Werte von mit Kurkuma-Extrakt gefärbten und	
mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss	40
Tabelle 6 ANOVA-Tabelle der L*-Werte von mit Kurkuma-Extrakt gefärbten und	
mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss	40
Tabelle 7 ANOVA-Tabelle der a*-Werte von mit Kurkuma-Extrakt gefärbten und	
mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss	40
Tabelle 8 ANOVA-Tabelle der b*-Werte von mit Kurkuma-Extrakt gefärbten und	
mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss	41

Tabelle 9 Tukey-Test-Ergebnis der Δ E-Werte bezogen auf die Bestrahlungsdauer
von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten
Zuckerstreuseln unter Lichteinfluss 45
Tabelle 10 Tukey-Test-Ergebnis der L*-Werte bezogen auf die Bestrahlungsdauer
von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten
Zuckerstreuseln unter Lichteinfluss 46
Tabelle 11 Tukey-Test-Ergebnis der a*-Werte bezogen auf die Bestrahlungsdauer
von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten
Zuckerstreuseln unter Lichteinfluss 47
Tabelle 12 Tukey-Test-Ergebnis der b*-Werte bezogen auf die Bestrahlungsdauer
von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten
Zuckerstreuseln unter Lichteinfluss
Tabelle 13 ANOVA-Tabelle der Δ E-Werte von mit verkapseltem/unverkapseltem
Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss
Tabelle 14 ANOVA-Tabelle der L*-Werte von mit verkapseltem/unverkapseltem
Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss
Tabelle 15 ANOVA-Tabelle der a*-Werte von mit verkapseltem/unverkapseltem
Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss
Tabelle 16 ANOVA-Tabelle der b*-Werte von mit verkapseltem/unverkapseltem
Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss
Tabelle 17 Tukey-Test-Ergebnis der Δ E-Werte bezogen auf die
Bestrahlungsdauer von mit verkapseltem/unverkapseltem Kurkumin gefärbten
Zuckerstreuseln unter Lichteinfluss 54
Tabelle 18 Tukey-Test-Ergebnis der L*-Werte bezogen auf die Bestrahlungsdauer
von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter
Lichteinfluss
Tabelle 19 Tukey-Test-Ergebnis der a*-Werte bezogen auf die Bestrahlungsdauer
von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter
Lichteinfluss
Tabelle 20 Tukey-Test-Ergebnis der b*-Werte bezogen auf die Bestrahlungsdauer
von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter
Lichteinfluss

1. Einleitung

Die Färbung von Lebensmittel-Produkten ist aus der Lebensmittelindustrie nicht mehr wegzudenken. Sie ist wichtig für den ersten Eindruck von Lebensmitteln. Die Farbe von Lebensmittel-Produkten wird von Konsumenten oft mit der Genießbarkeit assoziiert (Otterstätter, 2007, S. 19). Sie spielt beim Ess- und Kaufverhalten eine wichtige psychologische Rolle, denn durch sie wird der Appetit der Verbraucher angeregt. Konsumenten kaufen lieber ansprechend und gewohnt gefärbte Lebensmittel (Welsch & Liebmann, 2012, S. 210). Eine Färbung kann Lebensmittel frischer und qualitativ hochwertiger wirken lassen (Berghofer, Schönlechner, & Schmidt, 2015, S. 81).

Lebensmittelfarbstoffe werden eingesetzt, um Produkte farblich den Konsumentenerwartungen anzupassen oder verarbeitungsbedingte Farbverluste auszugleichen. Zudem können mittels Farbstoffen Qualitäts- und Farb-Schwankungen von Rohstoffen in der Herstellung kompensiert werden. Des Weiteren werden sie dasfür eingesetzt, den Geschmack von beispielsweise Zitronenbonbons, farblich zu unterstreichen, indem man sie gelb färbt. Vor allem in der Süßwarenindustrie ist die Färbung von Lebensmittel-Produkten wichtig, denn viele Süßwaren, wie Bonbons, Schokolinsen oder Gummibärchen sehen ohne ihre bunten Farben weniger genießbar aus und wären so eher unverkäuflich (Otterstätter, 2007, S. 19-20).

Sauerstoff, Temperatur und Licht beeinflussen die Stabilität von Farbmitteln. Da die Farbe von Lebensmitteln für die Kaufentscheidung von Konsumenten eine große Bedeutung hat, sind lichtdichte Verpackungen nicht immer geeignet. Die Produkte sind daher von der Herstellung, über die Lagerung und den Transport bis zum Verkauf und Verzehr den herrschenden Lichtbedingungen ausgesetzt (Atlas, 2019, S. 2-3).

Diese Arbeit beschäftigt sich mit der Lichtstabilität von Dragéeprodukten. Dragées gehören zur Kategorie der Süßwaren und werden neben dem Direktverzehr unter anderem auch zum Verzieren von Backwaren oder als Zusatz für Eiscreme verwendet. Es ist wichtig, dass ihre Farbigkeit bei Lichteinwirkung stabil bleibt. Der zugelassene Lebensmittelfarbstoff Kurkumin, welcher häufig im Rahmen von Dragéeprodukten eingesetzt wird, gehört zu den lichtempfindlicheren Farbstoffen (Priyadarsini, 2014, S. 20097). Es ist dennoch ein gängiges Farbmittel zum Färben von Lebensmitteln (Rimbach, Nagursky, & Erbersdobler, 2015, S. 269). Daher wurde eine Untersuchung der Lichtstabilität von Kurkumin anhand von gefärbten Zuckerstreuseln durchgeführt.

Zusätzlich zur Erfassung der Farbabbauverläufe wurden Möglichkeiten zur Reduzierung dieses Abbaus evaluiert. Es wurden dabei die Schellack-Isolierung und die Kurkumin-Verkapselung genauer betrachtet. Schellack wird in der Lebensmittelindustrie als Überzugsmittel eingesetzt (Förster, 2010, S. 83-84). Die Verkapselung des Kurkumins bewirkt die Dispergierfähigkeit von Kurkumin in Wasser. In diesem Experiment soll herausgefunden werden, ob und wie sehr Schellack oder eine Kurkumin-Verkapselung den Farbabbau beeinflussen. Die Forschungsfragen, die durch diesen Versuch beantwortet werden sollen, sind folgende:

- 1. Hat Schellack einen Einfluss auf den Farbabbau von Kurkumin?
- 2. Wenn ja, welchen Einfluss hat Schellack auf den Farbabbau von Kurkumin?
- 3. Hat die Verkapselung des Farbstoffes mit Stärke, Lecithinen, Zitronensäure und Kaliumsorbat einen Einfluss auf den Farbabbau von Kurkumin?
- 4. Wenn ja, welchen Einfluss hat die Verkapselung auf den Farbabbau von Kurkumin?

Die Arbeit befasst sich zunächst mit den theoretischen Grundlagen, die für den Lichtstabilitätstest erforderlich sind. Dieser Teil erklärt die Entstehung von photochemischen Reaktionen und beleuchtet dabei die Eigenschaften von Licht und die photochemische Anregung von Molekülen durch Lichtteilchen. Zudem wird auf den Farbeindruck und die Entstehung von Farbigkeit eingegangen, wobei die Struktur der Farbstoffe eine entscheidende Rolle spielt. Anschließend wird eine Einteilung der Lebensmittelfarbstoffe präsentiert und die negativen Folgen von Licht auf diese Farbmittel erläutert. Zum Verständnis der Farbmessung wird daraufhin das verwendete Farbsystem und die Bestimmung eines Farbabstands erklärt. Nachdem die theoretischen Grundlagen gelegt worden sind, folgt der Methodenteil, in dem der Ablauf, die Durchführung und die Ergebnisse des Experiments dargestellt werden. Abschließend werden die Ergebnisse diskutiert.

2. Theoretische Grundlagen

2.1 Wellen-Teilchen-Dualismus des Lichts

Damit der Mensch Farben wahrnehmen kann, ist Licht erforderlich. Licht ist elektromagnetische Strahlung. Diese Strahlung besitzt sowohl Wellen- als auch Teilcheneigenschaften. Dieses Phänomen nennt man auch Wellen-Teilchen-Dualismus (Beyerer, Leon, & Frese, 2016, S. 27). Betrachtet man Licht als Welle, breitet sich die Strahlung in elektromagnetischen transversalen Schwingungen aus (s. Abb.1) (Eichler & Eichler, 2010, S. 2).

Abbildung 1 Darstellung einer elektromagnetischen Welle (Bühler, Schlaich, & Sinner, 2018, S. 3)

Die Frequenz *v* ist die Anzahl an Schwingungen pro Sekunde und wird in der Einheit Hertz Hz = [1/s] angegeben (Bühler, 2004, S. 4). Aus der Wellenlänge λ und der Frequenz *v* ergibt sich die Lichtgeschwindigkeit *c*, welche eine Naturkonstante ist und im Vakuum bei *c* = 299792458 m/s liegt. Durch die Tatsache, dass die Lichtgeschwindigkeit eine Konstante ist, stehen die Wellenlänge und die Frequenz in direkter Abhängigkeit. Es gilt:

 $c = \lambda * v$

Mit:

c: Lichtgeschwindigkeit $c \approx 2,99*10^8$ m/s

λ: Wellenlänge [nm]

v: Frequenz [Hz]

Mit steigender Wellenlänge sinkt die Frequenz und umgekehrt (Meister, Franzen, & Apel, 2004, S. 57-59). Die Farbigkeit des Lichtes wird durch die Wellenlänge und die Frequenz bestimmt. Die Lichthelligkeit hingegen ist von der Größe der Amplitude *y* abhängig. Bei gleichbleibender Wellenlänge aber Vergrößerung der Amplitude erscheint das Licht heller (Bühler, 2004, S. 4).

Die Lichtenergie wird in Form von Lichtteilchen, den Photonen, transportiert. Im Vakuum bewegen sie sich mit konstanter Lichtgeschwindigkeit *c* fort. Diese Lichtquanten besitzen eine Energie, die durch die Frequenz des Lichtes und die Naturkonstante für das Planck'sche Wirkungsquantum ($h \approx 6,626*10^{-34} \text{ J*s}$) berechnet werden kann. Es gilt (Beyerer, Leon, & Frese, 2016, S. 27):

E = h * v

Mit:

E: Energie der Quanten

h: Planck'sches Wirkungsquantum

v: Frequenz des Lichtes

Die Energie der Photonen hängt von ihrer Frequenz ab (Lübbe, 2013, S. 2). Es können mithilfe der Photonen elektromagnetische Wechselwirkungen stattfinden, indem die bestrahlte Materie Photonen absorbiert und deren Energie aufnimmt (Beyerer, Leon, & Frese, 2016, S. 27).

2.2 Photochemische Elektronenanregung

Trifft Strahlung auf einen Stoff, wird diese absorbiert und reflektiert, aber auch teilweise transmittiert (Welsch & Liebmann, 2012, S. 137).

Farbstoffe haben die charakteristische Fähigkeit, sichtbares Licht zu absorbieren. Dabei werden Elektronen durch Lichtquanten von dem energetischen Grundzustand in den angeregten Zustand versetzt. Im angeregten Zustand befinden sich die Elektronen in einem nicht bindenden Molekülorbital und damit auf einem höheren Energieniveau. Um in diesen höherenergetischen Zustand zu gelangen, benötigen die Elektronen genau das Energiequantum bzw. die Wellenlänge mit der passenden Energie, die dieser Energie zwischen dem Grundzustand und dem angeregten Zustand entspricht. Wie viel Energie für diesen Elektronenübergang benötigt wird, hängt von der chemischen Struktur des Stoffes ab. Je stärker die Bindungsenergie zwischen den Atomen ist, desto mehr Energie wird benötigt für den Elektronenübergang. Demnach wird mehr Energie benötigt, wenn ein Elektron aus einer gesättigten Einfachbindung (σ -Bindung) in den angeregten Zustand versetzt werden soll, als bei einer Doppel- oder Dreifachbindung. Besitzt ein Molekül beispielsweise nur σ -Bindungen, ist kurzwelligere, energiereichere Strahlung im UV-Bereich erforderlich. Am wenigsten Energie wird benötigt, wenn freie/nicht bindende Elektronen angeregt werden (Schrader & Rademacher, 2009, S. 46-48). Es können zum Beispiel auch freie Elektronenpaare des Sauerstoffs angeregt werden (Hädener & Kaufmann, 2006, S. 188). Je weniger Energie benötigt wird, desto mehr wird der benötigte Wellenlängenbereich des Lichtes in den langwelligeren Bereich verschoben, sodass ab einer Wellenlänge von 380 nm der Stoff sichtbar farbig erscheint (s. Kap. 2.4) (Schrader & Rademacher, 2009, S. 46-48). Stoffe, die UV-Licht absorbieren sind für Menschen farblos, wenn sie das Licht streuen (Welsch & Liebmann, 2012, S. 138). Abbildung 2 verdeutlicht den Elektronenübergang beim Absorbieren der Strahlungsenergie.

Abbildung 2 Elektronenanordnung von Atom-/Molekülzuständen (Welsch & Liebmann, 2012, S. 286)

Dabei stellt ein Pfeil jeweils ein Elektron dar. In jedem Molekülorbital können sich höchstens zwei Elektronen aufhalten, die zudem eine unterschiedliche Spin-Richtung aufweisen müssen. Der Grundzustand entspricht in dieser Abbildung einem Singulett-Zustand. Während des Singulett-Zustands halten sich im höchsten besetzten Energieniveau (Highest Occupied Molecular Orbital) zwei Elektronen gegensätzlicher Spin-Richtung auf. Wird die einfallende Strahlung absorbiert, erhält ein Elektron die nötige Energie, um in den angeregten Zustand zu gelangen, in das niedrigste unbesetzte Energieniveau (Lowest Unoccupied Molecular Orbital). Der Energieunterschied der beiden Niveaus entspricht der Energie der absorbierten Strahlung. Bei Elektronenanregung sind zwei angeregte Zustände möglich. Die erste Variante ist der angeregte Singulett-Zustand, bei dem die antiparallele Spin-Richtung der Elektronen trotz Elektronenübergang in das LUMO erhalten bleibt. Eine weitere Möglichkeit ist der Triplett-Zustand, bei dem bei der Elektronenanhebung eine Spin-Umkehr stattfindet (Welsch & Liebmann, 2012, S. 286-287). Die Intensität des Lichtes bestimmt, wie viele Elektronen pro Zeiteinheit aus einer Substanz gelöst werden. Je intensiver das Licht ist, desto mehr Lichtteilchen befinden sich im Photonenstrom. Intensiveres Licht hat eine höhere Energie pro Zeit und Fläche. Die Photonen haben dabei aber dieselbe Energie hv wie weniger intensives Licht, weshalb lediglich mehr Elektronen aus dem Stoff gelöst werden können. Die Energie, die die Elektronen absorbieren können, bleibt dabei gleich (Zinth & Zinth, 2013, S. 270). Ein Molekül befindet sich meist nur kurz (etwa 10⁻¹² s) im angeregten Zustand.

Nach der Absorption fällt das Elektron oft entweder direkt oder über Zwischenstufen auf das niedrigere Energieniveau zurück (Welsch & Liebmann, 2012, S. 137-138). Daraufhin können Wärme oder Fluoreszenzen abgegeben werden, oder aber photochemische Reaktionen stattfinden (s. Abb. 3). Photochemische Reaktionen äußern sich in Umlagerungen, Eliminierungen oder Aufspaltung von Molekülen (Schrader & Rademacher, 2009, S. 234).

Abbildung 3 Allgemeine Darstellung von Prozessen nach photochemischer Anregung eines Moleküls (Schrader & Rademacher, 2009, S. 234)

2.3 Photochemische Prozesse

Elektronen von Farbstoffen lassen sich einfach in höhere Energiezustände versetzten und absorbieren daher energieärmere Strahlung aus dem für den Menschen sichtbaren Spektralbereich. Diese Lichtenergie wird in Form von Wärme oder Emissionen abgegeben oder für photochemische Reaktionen verwendet (Otterstätter, 2007, S. 12).

Wird eine Substanz durch elektromagnetische Strahlung der Wellenlänge zwischen 180 und 1200 nm energetisch angeregt, können darauf photochemische Reaktionen folgen. Es kann sich dabei entweder um monomolekulare Weiterreaktionen oder um bimolekulare Weiterreaktionen handeln. Entweder ist nur das angeregte Molekül von der Reaktion betroffen oder das angeregte Molekül interagiert mit Umgebungsmolekülen. Bei beiden Möglichkeiten der Weiterreaktion gibt es zwei allgemeine Vorgänge, die ablaufen können. Das Molekül kann in seinen Grundzustand zurückfallen, woraufhin Reaktionen folgen, oder es reagiert im angeregten Zustand weiter (Kopf, 1999, S. 1-2).

2.3.1 Monomolekulare Reaktionen

Das angeregte Molekül reagiert hierbei nur mit sich selbst. Fällt es zurück in seinen Grundzustand kommt es zu physikalischen Prozessen, wie Fluoreszenz oder strahlungslose Desaktivierung (Kopf, 1999, S. 1-2). Das Molekül kann die Anregungsenergie in strahlungslose Wärmeenergie umwandeln. Die andere Möglichkeit ist die Emission der anregenden Strahlung. Diese Reaktion nennt man Lumineszenz. Die Lumineszenz durch Lichteinwirkung wird als Photolumineszenz bezeichnet und gliedert sich in Fluoreszenz und Phosphoreszenz. Fluoreszierende Stoffe werden auch als Tagesleuchtfarben bezeichnet, da sie bei Lichteinwirkung sehr grell erscheinen und diese Form der Lumineszenz unmittelbar nach der Bestrahlung endet. Sie haben die Fähigkeit, sehr energiereiches, ultraviolettes Licht in sichtbares Licht umzuwandeln, indem sie UV-Licht absorbieren und einen Teil dieser Energie in sichtbare Strahlung umwandeln und die restliche Energie in Form von Wärme abgeben (Welsch & Liebmann, 2012, S. 287-288). Neben den Tagesleuchtfarben gibt es auch die nachtleuchtenden Farben, die einen phosphoreszierenden Effekt haben. Sie haben die Fähigkeit, Energie zu speichern und sie an einem späteren Zeitpunkt wieder abzugeben. Die Elektronen, die durch Licht angeregt werden, fallen nach der Anregung in einen metastabilen Triplett-Zustand. Nach wenigen Sekunden bis hin zu mehreren Stunden verharren sie in diesem Zustand und gelangen erst dann unter Abgabe von Strahlung in den Grundzustand zurück (Welsch & Liebmann, 2012, S. 289-290).

Reagiert das Molekül bei der intramolekularen Weiterreaktion im angeregten Zustand weiter, kann es zu Photoisomerisierung oder zur Entstehung von Radikalen kommen (Kopf, 1999, S. 1).

2.3.2 Bimolekulare Reaktionen

Fällt ein Molekül bei der bimolekularen Folgereaktion in seinen Grundzustand zurück, überträgt es die dabei freiwerdende Energie auf ein Akzeptormolekül im Grundzustand, was als Photosensibilisierung bezeichnet wird. Ein beliebtes Akzeptormolekül ist der Sauerstoff, woraufhin Photooxidationen folgen können. Das angeregte Molekül bleibt bei der photosensibilisierten Reaktion chemisch unverändert (Kopf, 1999, S. 1). Diese Rektion wird mit Sauerstoff als Akzeptormolekül auch als Typ-II-Reaktion bezeichnet (Sies, 1990, S. 57).

Anders verhält es sich bei der Folgereaktion im angeregten Zustand. Dabei wird der angeregte Stoff chemisch verändert, denn er reagiert mit weiteren Molekülen aus der Umgebung. Beispiele dafür sind die Wasserstoffabstraktions-Reaktion und die Elektronenübertragungsreaktionen (Kopf, 1999, S. 1). Dieser Vorgang wird auch Typ- I -Reaktion genannt (Sies, 1990, S. 57).

Zu den Photosensibilisatoren gehören unter anderem Farbstoffe und Aromaten. Sie können Sauerstoff aus dem Grundzustand in einen angeregten Singulett-Zustand versetzen (DeRosa & Crutchley, 2002, S. 352). Sauerstoff wirkt in seiner angeregten Singulett-Form stärker oxidierend und reagiert schnell mit ungesättigten Kohlenstoff-Kohlenstoff-Verbindungen (DeRosa & Crutchley, 2002, S. 353).

Der Triplett-Zustand (${}^{3}\Sigma_{g}$) ist der Grundzustand des Sauerstoffs, bei dem zwei der insgesamt sechs Valenzelektronen in zwei verschiedenen Orbitalen mit derselben Spin-Richtung vorliegen. Beim ersten angeregten Zustand, dem ersten Singulett-Zustand $({}^{1}\Delta_{g})$ des Sauerstoffs, liegen hingegen die beiden äußersten Valenzelektronen in einem Orbital und mit unterschiedlicher Spin-Richtung vor, was eine Spin-Barriere zum Triplett-Zustand bedeutet, die durch die Energie des Photosensibilisators überwunden wird (s. Abb. 4). Aufgrund dieser Spin-Barriere ist der erste Singulett-Zustand relativ stabil, sodass der Singulett-Sauerstoff gut Reaktionen eingehen kann. Der zweite Singulett-Zustand $(1\sum_{g})$ ist wesentlich instabiler und kurzlebiger, da er dieselbe Spin-Umkehr hat wie der erste Singulettsich die Valenzelektronen Zustand. Hier befinden allerdings in zwei unterschiedlichen Orbitalen. Aufgrund der Instabilität ist der zweite Singulett-Zustand von geringer Bedeutung für die Photooxidation (DeRosa & Crutchley, 2002, S. 352).

Abbildung 4 Elektronenverteilung der Triplett- und Singulett-Zustände von Sauerstoff (DeRosa & Crutchley, 2002, S. 352)

Der Singulett-Sauerstoff kann auf zwei Wegen wieder in seinen Grundzustand zurückgeführt werden, durch physikalisches oder chemisches Quenching (DeRosa & Crutchley, 2002, S. 352-353). Beim physikalischen Quenching findet zunächst eine Photosensibilisierung statt, wodurch der Sauerstoff angeregt wird. Der Sauerstoff reagiert daraufhin mit dem Photosensibilisator im Grundzustand. Dieser fängt den Sauerstoff ab, indem er den Sauerstoff in seinen Grundzustand versetzt und die dabei freiwerdende Energie in Form von Wärme abgibt. Der Photosensibilisator bleibt chemisch bei der Reaktion unverändert (Sies, 1990, S. 57). Die Photosensibilisatoren können mehrfach die Quenching-Reaktion eingehen (Stahl & Sies, 2003, S. 346) Beim chemischen Quenching reagiert der Photosensibilisator mit dem Singulett-Sauerstoff und wird dabei chemisch verändert. Durch diese chemischen Nebenreaktionen können Funktionen von Stoffen verloren gehen (Sies, 1990, S. 57).

Farbstoffe wirken oft als Photosensibilisator und reagieren mit dem Sauerstoff (Gossauer, 2006, S. 147).

2.4 Optische Strahlung und Farbeindruck

Der Bereich der optischen Strahlung ist ein Teil des Gesamtspektrum des Lichtes und reicht von der kurzwelligen UV-Strahlung (λ ab 100 nm) bis zur langwelligen Infrarot-Strahlung (λ bis 10⁶ nm). Sichtbar ist für den Menschen allerdings nur der Spektralbereich der optischen Strahlung mit einer Wellenlänge zwischen 380 – 780 nm (s. Abb. 5) (Greuel, 2014a, S. 24).

Abbildung 5 Spektrum des sichtbaren Lichts (Meister, Franzen, & Apel, 2004, S. 59)

Sonnenlicht enthält alle Wellenlängen des sichtbaren Spektralbereiches und wird auch als "weißes Licht" bezeichnet. Ein nichtselbstleuchtender Körper erscheint dem Menschen farbig, wenn dieser bei Bestrahlung das Licht absorbiert und/oder emittiert (Greuel, 2014a, S. 27-28). Die emittierte Strahlung ist der Teil des Spektrums, der nach der Absorption und Transmission der einfallenden Strahlung reflektiert wird (Lübbe, 2013, S. 7). Durch additive Farbmischung ergibt sich die Farbigkeit des Körpers bzw. Stoffes (Welsch & Liebmann, 2012, S. 137). Deshalb erscheint die emittierte Strahlung dem Betrachter als Komplementär-/Gegenfarbe zur absorbierten Strahlung (s. Abb. 6) (Hesse, Meier, & Zeeh, 2005, S. 1). Vom menschlichen Auge wird die Summe der reflektierten Strahlen unterschiedlicher Wellenlängen wahrgenommen, da das Auge nicht zur Zerlegung des Spektrums fähig ist. Absorbiert ein Stoff beispielsweise das kurzwellige, violette, sichtbare Licht, erscheint dem Menschen der Stoff grün, da dies die reflektierte Komplementärfarbe des absorbierte Spektralbereiches ist (Greuel, 2014a, S. 27-28). Absorbiert ein nichtselbstleuchtender Stoff das gesamte Spektrum des Lichtes, erscheint die Materie schwarz (Lübbe, 2013, S. 5)

absorbierte Spektralfarbe	Komplementärfarbe	
violett	gelbgrün	
blau	gelb	
grünblau	orange	
blaugrün	rot	
grün	purpur	
gelbgrün	violett	
gelb	blau	
orange	grünblau	
rot	blaugrün	
purpur	grün	

Abbildung 6 Gegenüberstellung der absorbierten Strahlung und der wahrgenommenen Farbe (Hesse, Meier, & Zeeh, 2005, S. 1)

Je mehr Lichtwellen des Spektrums absorbiert werden, desto mehr Wärmeenergie wird frei. Schwarze Materialien erwärmen sich daher mehr als weiße (Heid & Reith, 2010, S. 72).

2.5 Simulation von Sonnenlicht durch Xenonlampen

Strahlung kann sowohl von natürlichen als auch von künstlichen Lichtquellen emittiert werden. Dabei können die Emissionsspektren zwischen den unterschiedlichen Lichtquellen variieren. Außerdem unterscheidet man bei der Emission von Licht zwischen einem kontinuierlichen Spektrum und einem Linienspektrum. Beim Linienspektrum werden im Gegensatz zum kontinuierlichen Spektrum nur einzelne Spektrallinien emittiert, wie zum Beispiel bei Lasern oder Leuchtstofflampen.

Sonnenlicht ist eine natürliche Lichtquelle mit einem kontinuierlichen Spektrum. Die Sonne enthält alle Spektrallinien und ihr Licht wird auch als "weißes Licht" bezeichnet. Die Strahlen des Lichts haben verschiedenste Wellenlängen, welche jeweils einer bestimmten Farbe zuzuordnen sind. Alle zusammen ergeben die Farbe Weiß (Greuel, 2014a, S. 26 - 27).

Sonnenlicht kann anhand von Gasentladungslampen simuliert werden. Die Xenonlampe ist eine solche Gasentladungslampe. Dabei emittieren die Xenonmoleküle Licht einer bestimmten Wellenlänge. Das emittierte Spektrum ist

vom Gasdruck abhängig. Dadurch kann ein kontinuierliches Spektrum simuliert werden, welches dem Spektrum des Sonnenlichtes ähnlich ist (Lübbe, 2013, S. 9).

2.6 Struktur der Farbstoffe/Entstehung von Farbigkeit

Substanzen erscheinen farbig, wenn sie Strahlung aus dem für den Menschen sichtbaren Spektralbereich absorbieren und/oder emittieren können (Schrader & Rademacher, 2009, S. 233). Die physikalischen und chemischen Eigenschaften dieser Substanzen entscheiden über die Absorptionsstärke der einzelnen Spektralanteile und somit über die Farbe des Farbstoffes (Beyerer, Leon, & Frese, 2016, S. 81).

Farbstoffe sind, je nach Löslichkeit bzw. chemischer Struktur, in anderen Substanzen löslich. Sie reagieren mit ihnen, sodass das Material farbig erscheint (Ebner, Gehre, & Tallian, 2017, S. 46).

Für die Farbigkeit von organischen Farbstoffen sind die sogenannten Chromophore verantwortlich, deren Elektronen durch optische Strahlung angeregt werden können. Sie absorbieren Licht bestimmter Wellenlänge und lassen so den Farbstoff farbig erscheinen. Ein Chromophor ist die Kernstruktur der Farbstoffe. Chromophore von Farbstoffen enthalten oft konjugierte Doppelbindungen. Diese werden durch π-Elektronen gebildet, welche besonders leicht durch Photonen in höhere Energiezustände angeregt werden können, da ihre Bindungsenergie gering ist (Otterstätter, 2007, S. 12). Einfache σ -Bindungen sind hingegen schwer aufzuspalten, da die Bindungsenergie höher ist. Für ihre Aufspaltung wird Strahlung im UV-Bereich benötigt, weshalb uns viele organische Stoffe farblos erscheinen (Klöckl, 2015, S. 126-127). Für die Farbigkeit von Substanzen reicht allerdings häufig ein konjugiertes Doppelbindungssystem allein nicht aus. Dafür benötigt es meist eine Absenkung der Anregungsenergie in den sichtbaren Spektralbereich Zusammenspiel Donor-Akzeptor-Systeme. Das durch zwischen Elektronenakzeptoren und -donoren führt zu weiteren konjugierten Brücken und somit zur Vergrößerung des π -Elektronensystems (Klöckl, 2015, S. 130). Durch diese sogenannten auxochromen und antiauxochromen Gruppen wird somit die Farbigkeit vertieft (Otterstätter, 2007, S. 12). Auxochrome Gruppen sind

elektronenreich und binden an das Chromophor. Beispiele für Auxochrome sind die Hydroxylgruppe (-OH) oder die Aminogruppe (-NH₂) (Ebner, Gehre, & Tallian, 2017, S. 46-47). Diese Gruppen gelten als Elektronendonatoren, da sie freie Elektronen an das Chromophor abgeben (Klöckl, 2015, S. 127-128). Das Gegenstück zu den Auxochromen sind die Antiauxochrome, die als Elektronenakzeptor wirken. Beispiele für antiauxochrome Gruppen sind die Carbonylgruppe (-CO) und die Nitrogruppe (-NO₂) (Otterstätter, 2007, S. 12). Auxochrome und Antiauxochrome bewirken zusammen eine bathochrome Verschiebung (Klöckl, 2015, S. 130). Die Lichtabsorption wird beim bathochromen Effekt in den langwelligen Spektralbereich verschoben, da die Bindungsenergie zum Molekül sinkt und so weniger Anregungsenergie benötigt wird (Klöckl, 2015, S. 127-128). Der bathochrome Effekt wird auch als Rotverschiebung bezeichnet, da der rote Spektralbereich eine längere, energieärmere Wellenlänge aufweist. Demgegenüber steht der hypsochrome Effekt, der mit der Verkleinerung des delokalisierten π-Elektronensystems einhergeht. Diese Verschiebung wird auch Blauverschiebung genannt (Ebner, Gehre, & Tallian, 2017, S. 47). Für die Lichtabsorption ist die Ausdehnung des π -Elektronensystems entscheidend, denn dadurch wird der Energieunterschied zwischen dem höchsten besetzten (HOMO) und dem niedrigsten unbesetzten Molekülorbital (LUMO) so klein, dass die Energiemenge des sichtbaren Spektrums zur Elektronenanregung ausreicht. Je mehr konjugierte Doppelbindungen in einem Molekül vorhanden sind und je delokalisierter diese π-Elektronen sind, desto größer ist die Wellenlänge des Absorptionsmaximums und desto kleiner ist die benötigte Anregungsenergie (Schrader & Rademacher, 2009, S. 234). Neben der Größe des konjugierten π -Elektronensystems ist für die Farbigkeit auch die Anzahl mesomerer Grenzstrukturen von Bedeutung, denn durch diese Elektronenverschiebung werden die π -Elektronen verstärkt delokalisiert, sodass es zu einer Energieabnahme der Elektronenbindungen kommt (Buddrus & Schmidt, 2015, S. 5-6).

2.7 Lebensmittelfarbstoffe und relevante stabilisierende Zusatzstoffe

Es gibt verschiedene Arten von färbenden Mitteln, die in der Lebensmittelindustrie verwendet werden. Die negativen Einflüsse von Licht können dabei variieren. Als Beispiel für die Lichteinwirkung auf Farbstoffe wird in diesem Kapitel das für den Lichtstabilitätstest relevante Kurkumin näher vorgestellt. Außerdem werden die Zusatzstoffe behandelt, die für die Verkapselung oder die Isolierung bei diesem Versuch eine Rolle spielen und möglicherweise einen stabilisierenden Effekt haben.

2.7.1 Einteilung der Farbstoffe

Zum Färben von Lebensmittel-Produkten können sowohl färbende Lebensmittel und Naturfarbstoffe als auch synthetische Farbstoffe, Pigmente und Lacke genutzt werden. Einige färbende Lebensmittel führen zu unerwünschten geschmacklichen Veränderungen der Produkte. Sie gelten im Gegensatz zu den Farbstoffen als Lebensmittel, da sie rein natürlichen Ursprungs sind. Einige Beispiele für färbende Lebensmittel sind Rote Bete, Paprika-Extrakt oder Kurkuma-Extrakt (Otterstätter, 2007, S. 20-21). Wird der färbende Anteil aus einem Lebensmittel isoliert, wird das Farbmittel als Farbstoff bezeichnet und muss als Zusatzstoff in der Zutatenliste deklariert werden (Theobald, 2012, S. 36-38).

2.7.2 Negative Einflüsse von Licht auf Lebensmittelfarbstoffe

Färbende Lebensmittel und Naturfarbstoffe sind gegenüber Temperaturbelastungen, pH-Wert-Veränderungen oder Lichteinfluss wesentlich instabiler als synthetische Farbstoffe, Farblacke und Pigmente (Otterstätter, 2007, S. 21). Von der Herstellung bis hin zum Transport und Verkauf von Lebensmitteln sind Produkte oft lange einer natürlichen oder künstlichen Lichteinwirkung ausgesetzt. Farbstoffe gehören zu den Lebensmittelbestandteilen, die häufig durch Licht -meist in Verbindung mit Sauerstoff- gefährdet sind. Lebensmittel weisen daraufhin Farbfehler auf (Buchner, 1999, S. 505). Denn durch die Anlagerung von Sauerstoff an ungesättigten Kohlenstoff/Kohlenstoff-Verbindungen kann es zum Verblassen von farbigen Stoffen kommen. Durch das Aufbrechen der konjugierten Doppelbindungen wird der farbgebende Chromophor zerstört, sodass die Farbigkeit verloren geht (Gossauer, 2006, S. 147).

2.7.3 Kurkumin und sein Verhalten unter Lichteinwirkung

Kurkumin ist der farbgebende Inhaltsstoff des Rhizomgewürzes Kurkuma (Rimbach, Nagursky, & Erbersdobler, 2015, S. 268-269). Es ist ein natürlicher Lebensmittelfarbstoff und hat als Zusatzstoff die E-Nummer E 100 (Theobald, 2012, S. 37). Die Kurkumapflanze gehört zur Familie der Ingwergewächse und wird hauptsächlich in Süd- und Südostasien angebaut. Verwendet wird Kurkuma allerdings nicht nur als Gewürz, sondern auch seit langer Zeit als Heil- und Färbemittel. Die Farbe ist dabei ein wichtiges Qualitätsmerkmal. Hergestellt wird das Kurkumagewürz hauptsächlich aus den Rhizomen. Diese weisen eine gute Qualität auf, wenn sie nach dem Trocknen bei der Produktion an der Bruchstelle eine tief orangegelbe Farbe haben. Kurkuma riecht schwach aromatisch-würzig und schmeckt, ähnlich wie Ingwer, scharf und bitter (Rimbach, Nagursky, & S. Erbersdobler, 2015. 268-269). Kurkumin wurde eine antioxidative. entzündungshemmende, antimikrobielle und antikanzerogene Wirkung nachgewiesen (Anand, Kunnumakkara, Newman, & Aggarwal, 2007, S. 807). Neben der Eigenschaft als Gewürz und Heilmittel wird Kurkuma auch Lebensmitteln zum Färben zugesetzt. Der gelbe Farbstoff, Kurkumin, erscheint den Menschen gelb (Rimbach, Nagursky, & Erbersdobler, 2015, S. 268-269). Aufgrund seiner lipophilen Eigenschaften wird er in der Lebensmittelindustrie meistens in Form einer Emulsion verwendet (Theobald, 2012, S. 38). Das Kurkumin wird mittels Lösungsmittelextraktion aus den Rhizomen gewonnen. Dafür werden beispielsweise Ethylacetat, Aceton, Methanol, Hexan oder Ethanol eingesetzt (Otterstätter, 2007, S. 106-107). Zwei Derivate des Kurkumins, Demethoxycurcumin und Bisdemethoxycurcumin sind ebenfalls in Kurkuma enthalten (s. Abb. 7). Kurkuma besteht zu etwa 70 % aus Kohlenhydraten und zu 3-5 % aus Curcuminoiden. Den Rest bilden Wasser, Protein, Fett, ätherische Öle, Mineralstoffe und Vitamine. Von den 3-5 % Curcuminoiden sind etwa 77 % Kurkumin, 17 % Demethoxycurcumin und 3-6 % Bisdemethoxycurcumin.

Das Kurkumin hat zwei tautomere Formen, Keto und Enol (Kotha & Luthria, 2019, S. 3-6). Tautomerie ist eine Form der Isomerie. Dabei können die Strukturformeln

reversibel ineinander umgewandelt werden, sodass ein Gleichgewicht zwischen ihnen entsteht. Es handelt sich dabei um eine Positionsverschiebung von einzelnen Wasserstoffatomen, oder Mehrfachbindungen Atomen, oft (Schrader & Rademacher, 2009, S. 32). Beim Kurkumin handelt es sich um eine eines Wasserstoffatoms, Positionsverschiebung welches entweder als Wasserstoffbrücke zwischen den Ketogruppen fungiert oder an das C-Atom zwischen den Keto-Gruppen gebunden ist. In neutralem und saurem Milieu liegt vermehrt die Keto-Form vor. Unter alkalischen Bedingungen liegt ausschließlich die Enol-Form vor (s. Abb. 7). Im alkalischen Milieu fungiert die Enol-Form demnach als Säure bzw. Protonendonator (Kotha & Luthria, 2019, S. 3-6). Das konjugierte Doppelbindungssystem ist bei der Enol-Form ausgeweiteter als bei der Keto-Struktur. σ -Bindungen sind stabiler als π -Bindungen, was die Degradation bei der Keto-Struktur im sauren Milieu erschwert (Klöckl, 2015, S. 126-127).

Abbildung 7 Strukturformeln der Derivate und Keto-Enol-Tautomere von Kurkumin (Kotha & Luthria, 2019, S. 4)

Kurkumin ist ein symmetrisches Molekül, welches den IUPAC-Namen (1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadien-3,5-dion und die Summenformel C₂₁H₂₀O₆ hat. Das Molekül enthält zwei aromatische Ringsysteme, die jeweils eine phenolische Hydroxylgruppe und eine phenolische an Methoxygruppe bindet. Kurkumin hat ein ausgedehntes π -Elektronensystem. Es absorbiert Licht in zwei Spektralbereichen. Die eine Absorptionsbande liegt im sichtbaren Spektralbereich bei einer Wellenlänge von 410 bis 430 nm und die andere im UV-Bereich bei 265 nm. Das Absorptionsmaximum ist pH-Wertabhängig. Bei alkalischem pH-Wert absorbiert Kurkumin langwelligeres Licht bis 467 nm (Priyadarsini, 2014, S. 20094-20095). Kurkumin weist zudem eine fluoreszierende Wirkung auf (Priyadarsini, 2014, S. 20101). Es hat die Fähigkeit UV-Photonen zu absorbieren und sie in sichtbare Strahlung umzuwandeln (Welsch & Liebmann, 2012, S. 288).

Die Diketongruppe und die zwei phenolischen Gruppen sind die drei funktionellen Gruppen des Kurkumins (Priyadarsini, 2014, S. 20096). Bei Raumtemperatur und einem neutralen pH-Wert ist Kurkumin dennoch wasserunlöslich (Nelson, et al., 2017, S. 1625).

In wässrig-organischen Lösungen verläuft der Abbau von Kurkumin schnell. Dieser Abbau nimmt bei steigendem pH-Wert und bei Sonneneinstrahlung zu. Im sauren Milieu verläuft die Degradation langsamer (Priyadarsini, 2014, S. 20097). Kurkumin wird dabei zu Ferulasäure, Ferulinaldehyd, Vanillin und Vanillinsäure abgebaut (s. Abb. 8) (Kotha & Luthria, 2019, S. 6).

Abbildung 8 Strukturformeln der Abbauprodukte von Kurkumin (Kotha & Luthria, 2019, S. 7)

Diese photochemischen Degradationen ereignen sich hauptsächlich durch die Typ I- und Typ II-Reaktionen mit molekularem Sauerstoff (s. Kap. 2.3.2.) (Nelson, et al., 2017, S. 1625).

Durch eine Verkapselung mit Lipiden kann die chemische Stabilität des Kurkumins verbessert werden (Nelson, et al., 2017, S. 1625).

2.7.4 Zusatzstoffe zur Stabilisation von Kurkumin

Zusatzstoffe sind Stoffe, die zu technologischen Zwecken Lebensmitteln zugesetzt werden. Zugelassene Zusatzstoffe haben von der EU eine E-Nummer zugewiesen bekommen. Die Zusatzstoffe gelten nicht als Lebensmittel und sind in einer eigenen Zusatzstoff-Verordnung geregelt (Batels, 2011, S. 213).

Eine wichtige Kategorie der Zusatzstoffe sind Emulgatoren. Emulgatoren sind sowohl lipophil als auch hydrophil. Sie haben die Fähigkeit, zwei nicht mischbare Flüssigkeiten miteinander zu dispergieren, indem sie die Grenzflächenspannung zwischen ihnen herabsetzen. Sie beschleunigen die Auflösung von lipophilen und fetthaltigen Stoffen in Wasser. Lecithine sind ein Beispiel für natürlich vorkommende Emulgatoren (Batels, 2011, S. 225-227). Sie sind Phospholipide und bestehen aus Phosphorsäure, Fettsäuren sowie Substanzen mit Hydroxylgruppen. Dadurch hat Lecithin wie alle Emulgatoren sowohl hydrophobe als auch hydrophile Eigenschaften (Ebermann, 2008, S. 88-89). Durch diese amphiphile Eigenschaft können Emulgatoren in Wasser eine Lipiddoppelschicht und somit kleine, kugelförmige Vesikel bilden. Dabei zeigen die hydrophilen Teile der Moleküle zur Wasserseite und die hydrophoben Molekülbausteine zur Vesikelmitte hin. Emulgatoren schließen demnach lipophile Stoffe, wie beispielsweise den lipophilen Farbstoff Kurkumin, in ihrer Vesikelmitte ein, sodass sich diese in einer wasserbasierten Flüssigkeit verteilen (Adam, Läugner, & Stark, 2009, S. 271-272).

Chemische Konservierungsstoffe sind Zusatzstoffe, die die Haltbarkeit von Lebensmitteln verlängern, indem sie gegen Schimmelpilze, Fäulniserreger und Gärungserreger wirken. Sorbinsäure und ihre Sorbate sind Konservierungsstoffe, die das Wachstum von Mikroorganismen hemmen (Batels, 2011, S. 216-217).

Der Zusatzstoff Zitronensäure ist ein natürliches Säuerungsmittel mit konservierenden Eigenschaften. In einer Lösung mit Kurkumin bewirkt sie ein saures Milieu und erschwert damit den Zerfall des Kurkumins, wie im vorherigen Kapitel erläutert wurde (Mathias, 2018, S. 39).

19

Eine weitere Kategorie der Zusatzstoffe sind die Überzugsmittel. Zu ihnen zählen unter anderem Wachse, die vor dem Austrocknen sowie vor Farb- und Aromaverlusten schützen sollen. Sie werden vor allem bei Obst und Gemüse und in der Back- und Süßwarenindustrie eingesetzt (Batels, 2011, S. 258). Beispiele für Überzugsmittel sind Bienenwachs und Schellack. Schellack ist ein Harz, das von der Gummilackschildlaus (Kerria lacca) produziert und ausgeschieden wird (AG Fragen und Ernährung, 2017, S. 13). Es ist geschmacks- und geruchsneutral, schützt vor UV-Strahlung, bildet glatte und glänzende Oberflächen und ist nicht wasserlöslich (Förster, 2010, S. 84).

Stärke ist ein Kohlenhydrat, das in der Lebensmittelindustrie als Gelier- und Verdickungsmittel eingesetzt wird (Tegge, 2004, S. 215). Verdickungsmittel können aufgrund ihrer chemischen Struktur große Mengen an Wasser aufnehmen und so die Viskosität von Lebensmitteln erhöhen (Ebermann, 2008, S. 648). Sie verändern die Struktur und Textur von Lebensmitteln und haben unter anderem eine stabilisierende, umhüllende und emulgierende Wirkung. Für den Einsatz in der Lebensmittelindustrie wird die native Stärke oft in ihren physikalischen und chemischen Eigenschaften modifiziert und so den Erfordernissen angepasst (Tegge, 2004, S. 215). Modifizierte Stärken gelten als Zusatzstoff (Batels, 2011, S. 231).

2.8 Das CIE-L*a*b*-Farbsystem

Die "Commision International de L'Éclairage" (CIE; dt.= Internationale Beleuchtungskommission) hat 1931 für die Messung von Farben ein farbmetrisches Modell herausgebracht. Das 1964 überarbeitete, sohlenförmige Modell wurde auf der Basis der Werte für die empfundenen Farben Rot, Grün und Blau eines Normalbeobachters entwickelt. 1964 wurde ein 10°-Beobachter und die Normlichtart D65 (Farbtemperatur = 6500 K) in der Norm festgelegt (Welsch & Liebmann, 2012, S. 122). Aus diesen Werten wurde die Spektralsohle entworfen (s. Abb. 9). X, y und z sind die Werte für die Farben x = Rot, y = Grün und z = Blau mit den Wellenlängen λ_{rot} = 700 nm, $\lambda_{grün}$ = 546,1 nm und λ_{blau} = 435,8 nm (Greule, 2014b, S. 78). Die Summe dieser Normspektralwertanteile ergibt immer 1, weshalb sich der z-Wert einfach aus den x- und y-Werten berechnen lässt (Bühler, Schlaich, & Sinner, 2018, S. 31):

$$x + y + z = 1$$

Anhand der z-Achse kann der Farbort jeder Farbe innerhalb der Spektralwertkurve genau bestimmt werden. In der Mitte der Farbsohle befindet sich der theoretische Weißpunkt. Dieser liegt bei den Koordinaten x=y=0,33 (Welsch & Liebmann, 2012, S. 122-123). Auf der Außenlinie der Farbsohle befinden sich alle gesättigten Farben des wahrnehmbaren Spektrums. Zur Sohlenmitte hin nimmt die Sättigung ab. Die Sohlenmitte wird neben "theoretischem Weißpunkt" auch Unbuntpunkt genannt. Auf der anderen Seite des Unbuntpunktes liegt immer jeweils die Komplementärfarbe eines Farbtons (Brümmer, 2004, S. 10).

Abbildung 9 CIE-Farbsohle und -Farbkörper (Bühler, Schlaich, & Sinner, 2018, S. 31)

Das xyz-Farbmodell dient als Grundlage für weitere Farbmodelle (Welsch & Liebmann, 2012, S. 122-123). Für eine dreidimensionale Darstellung der Farbtöne ist die Helligkeits-Achse (Y) erforderlich. Daraus ergibt sich der so genannte Farbkörper, welcher in Ebenen aufgeteilt ist (s. Abb. 9). Alle Farben in derselben Ebene haben die gleiche Helligkeit. Die Helligkeitswerte gehen von 0 bis 100, wobei Weiß den Helligkeitswert Y=100 besitzt und Schwarz Y=0 (Bühler, Schlaich, & Sinner, 2018, S. 31-33). Anhand des Hellbezugswertes wird in Prozent angegeben,

wie viele Lichtwellen reflektiert werden (Heid & Reith, 2010, S. 72). Zur genauen Farbortbestimmung ist diese dreidimensionale Darstellung mit den folgen drei Kenngrößen erforderlich (Bühler, Schlaich, & Sinner, 2018, S. 31):

- 1. Farbton T: Lage auf der Außenlinie
- 2. Sättigung S: Entfernung von der Außenlinie
- 3. Helligkeit Y: Ebene im Farbkörper

Das CIE-Yxy-Farbmodell hat allerdings nicht die gleichen Abstände zwischen den Farben, wie die empfundenen Farbunterschiede des Menschen. So nimmt Grün in dem Modell beispielsweise einen sehr großen Platz ein im Gegensatz zu anderen Farben. Um dem entgegenzuwirken, wurde das L*a*b*-Farbmodell entwickelt. Dieses Modell wird kugelförmig veranschaulicht (s. Abb. 10).

Abbildung 10 CIE - L*a*b*-Farbkugel (Brümmer, 2004, S. 11)

Die senkrechte L*-Achse beschreibt die Helligkeit, wobei der L*-Wert für Schwarz bei 0 und der L*-Wert für Weiß bei 100 liegt. Im Kugelmittelpunkt ist der L*-Wert bei L*=50. Der Mittelpunkt wird von den Menschen als ein mittleres Grau wahrgenommen. Ähnlich wie beim Farbkörper liegen auch hier alle Farbtöne gleicher Helligkeit in derselben waagerechten Ebene, die in diesem Fall kreisförmig ist. Die a*-Achse beschreibt den Grün-/Rot-Wert eines Stoffes. Positive a*-Werte deuten auf eine Rotfärbung hin und negative a*-Werte auf eine Grünfärbung. Die b*-Achse stellt die Blau-/Gelb-Werte dar. Im Positiven b*-Bereich liegen die Gelbwerte und im negativen die Blauwerte. Je weiter außen die Farbtöne auf der Kreisebene liegen, desto gesättigter sind sie. Bei a=b=0 ist der ungesättigte Unbuntpunkt erreicht (Brümmer, 2004, S. 10-11).

2.9 Farbabstand ΔE und spektralphotometrische Farbmessung

Um die Farbe eines Objektes zu messen, wird die Probe mit breitbandigem Licht bestrahlt und die Reflektion des Lichtes mit einem Spektrometer gemessen. Entscheidend für die Wahrnehmung einer Farbe ist die Beleuchtungsintensität. Soll der visuelle Eindruck eines Prüfobjektes untersucht werden, ist eine Beleuchtung, die dem Tageslicht ähnelt, geeignet. Die CIE hat dafür die Normlichtart D65 als Standard festgelegt (Beyerer, Leon, & Frese, 2016, S. 222-225). Die Normlichtart D65 ist eine genormte Strahlungsverteilung, die anhand von künstlichen Lichtquellen nachgebildet oder simuliert wird. Sie steht für das Tageslicht ("D" = Daylight) bei bedecktem Himmel und einer Farbtemperatur von 6500 Kelvin (Lübbe, 2013, S. 10-11). Dies entspricht der ähnlichsten Farbtemperatur für das natürliche weiße Tageslicht mit UV-Anteil. Anhand der Farbtemperatur wird Licht verschiedener Lichtquellen charakterisiert. Bei einer geringen Farbtemperatur erscheint die Lichtquelle rötlich, bei hoher Farbtemperatur wirkt das Licht weiß bis bläulich (Greuel, 2014a, S. 29).

Um den Farbabstand zwischen der Farbe eines Objektes und einer Referenzprobe zu messen, sollte ein Farbraum gewählt werden, bei dem die Koordinatenabstände nahezu gleiche visuell wahrgenommene Farbunterschiede aufweisen. Nur so kann in einem Farbraum der Abstand zweier Punkte als euklidisch betrachtet werden (s. Abb. 11).

$$\Delta E = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$$
$$= \sqrt{(L_1^* - L_2^*)^2 + (a_1^* - a_2^*)^2 + (b_1^* - b_2^*)^2}$$

Abbildung 11 Farbabstandsformel ΔE (Beyerer, Leon, & Frese, 2016, S. 227)

Der Farbabstand ΔE im CIE-L*a*b*-Farbraum ist nur beinahe euklidisch. Er wurde deshalb modifiziert (Beyerer, Leon, & Frese, 2016, S. 227-228). Die aktuelle Modifikation der CIE-Farbabstandsformel ist die CIEDE2000-Formel, die der optischen Wahrnehmung am nächsten kommt (Witt, 2005, S. 86).

Abbildung 12 Modifizierte Farbabstandsformel ΔΕ00 (Lübbe, 2013, S. 168)

In der Industrie wird mithilfe des Farbabstands die Einhaltung von Spezifikationen zwischen Kunden und Herstellern überprüft (Hiller, 2019, S. 1). Sie dient damit als Hilfestellung zur Bestimmung des Farbabstandes und ist mittlerweile schon so gut entwickelt, dass die objektive Farbmessung eine hohe Qualität farbiger Produkte sicherstellt. Jedoch entspricht das visuelle Farbempfinden oft nicht dem gemessenen Farbabstandswert ΔE (Hiller, 2019, S. 12).

Das menschliche Auge ist in der Lage, Farbunterschiede wahrzunehmen. Allerdings ist die Farbempfindung subjektiv und entsteht durch verschiedene physikalische, psychologische und physiologische Prozesse (Greule, 2014b, S. 71). Das physiologische Farbempfinden weist individuelle Unterschiede auf (Beyerer, Leon, & Frese, 2016, S. 203). Zwar kann jeder mit den gleichen Farbrezeptoren gleiche Farben im Gehirn konstruieren, das Erleben der Farbe unterscheidet sich aber von Mensch zu Mensch (Becker-Carus & Wendt, 2017, S. 98). Bei der Wahrnehmung von Farbe spielen auch individuelle Erfahrungen und Assoziationen eine Rolle. Zudem wird die Farbe im Kontext mit der Umgebung wahrgenommen. Der Hintergrund beispielsweise kann für die Wirkung einer Farbe ausschlaggebend sein (Twiehaus, 2000, S. 14). Auch die Beleuchtung ist ein wichtiger Faktor bei der Farbwahrnehmung. Je nach Lichtquelle können Farben gleich oder verschieden aussehen (Beyerer, Leon, & Frese, 2016, S. 202-203). Bei der Wahrnehmung von Farbabständen kann das menschliche Auge Unterschiede im Farbton (Grün, Rot, Gelb und Blau), der Buntheit/Sättigung und der Helligkeit erkennen. Allerdings sind oftmals besser Farbunterschiede im Farbton, dann in der Sättigung und dann in der

Helligkeit zu erkennen (Hiller, 2019, S. 3). Die aktuelle Formel der CIE (CIE2000) berücksichtigt zwar diese Abstufung mithilfe von Korrekturfaktoren, der instrumentell gemessene Farbabstand ist aber nie genau dem visuell empfundenen Farbabstand entsprechend (Hiller, 2019, S. 9,12).

3. Methodenteil

Im folgenden Abschnitt wird der praktische Teil der Arbeit vorgestellt. Dabei werden der Ablauf, die verwendeten Materialien und Geräte, die Prozessparameter und die statistische Auswertung des Experiments genau beschrieben.

3.1 Versuchsablauf

Bei diesem Versuch wurde die Lichtstabilität von Kurkumin und Kurkuma-Extrakt bei verschiedener Behandlung bzw. Herstellung untersucht. Insgesamt wurden bei dem Versuch vier verschiedene Proben von gelben Zuckerstreuseln betrachtet. Die Proben unterscheiden sich in der Isolation und in der Beschaffenheit des verwendeten Färbemittels. Als Vorversuch wurde zunächst die Mobilität der Proben in einer Petrischale beleuchtet. Des Weiteren wurden für den Versuch eine Kalibration und Verifizierung der Methode durchgeführt. Außerdem wurden der Lichteinfluss und die Schattenbildung verschiedener Probenformen bei der Farbmessung im Zuge der Verifizierung untersucht. Anschließend wurden die Proben für den Lichtstabilitätstest produziert und vorbereitet. Nach der Vorbereitung wurde mit der Bestrahlung begonnen. Die während der Bestrahlung ermittelten und dokumentierten Farbwerte wurden anschließend anhand einer Varianzanalyse ausgewertet und die Ergebnisse interpretiert.

3.2 Versuchsaufbau

3.2.1 Material

Für die Vorversuche sowie für die Untersuchung der Lichtstabilität wurden die in Tabelle 1 und 2 aufgelisteten Geräte und Materialien verwendet.

Tabelle 1 Verwendete Geräte

Geräte	Hersteller
Suntest CPS+ und Sun Cool	Atlas
Spectrophotometer	Konica Minolta
Dragierkessel	Pastaline

Tabelle 2 Verwendete Materialien

Materialien	Hersteller
Petrischalen (Ø 60 mm)	
Uhrgläser aus Quarzglas	
Aluminium-Schalen (Ø 90mm)	Sartorius
Doppelseitiges Klebeband (B=19 mm)	3M Scotch Mount

3.2.2 Beschreibung des Bewitterungsgerätes

Sowohl bei den Vorversuchen als auch beim Hauptversuch wurde das Bewitterungsgerät "Suntest CPS+" der Firma Atlas verwendet.

Anhand einer Xenonlampe simuliert dieses Gerät die Sonneneinstrahlung. Dadurch können die Produktveränderungen durch Sonnenlicht und Temperatur, die unter natürlichen Umständen über Monate oder Jahre entstehen, innerhalb von Wochen untersucht werden (Atlas, 2018). In das Gerät lassen sich zusätzlich Filter einbauen, wodurch verschiedene Szenarien simuliert werden können. Diese Filter filtern das Licht, wie z.B. ein Fensterglas-Filter, UV-Spezialglas-Filter oder Ladenlicht-Filter, sodass das Gerät an eine bestimmte Lagerungs-, Transport- oder Verwendungsform der Produkte angepasst werden kann (Atlas, 2009). In Abbildung 13 ist der Aufbau des Gerätinnenraumes abgebildet.

1 Xenonlampe

2 UV-Spiegel

- 3 Licht-Spiegel
- 4 Quarzglas Schale mit selektiv reflektierender Schicht
- 5 Zusatzfilter
- 6 Reflektor
- 7 Probentisch

Abbildung 13 Probenraumaufbau des Bewitterungsgeräts (Landerer, 2000, S. 5)

Die Proben werden von oben mit der Xenon-Lampe bestrahlt. Das Licht trifft vorher auf den darunter angebauten optischen Filter. Ein UV-Spiegel oberhalb der Lampe reflektiert die UV-Strahlung in den Probenraum. Die ungefährliche IR-/Wärmestrahlung kann durch den Spiegel gelangen. Die im Probenraum verbleibende Restwärme wird durch ein Kühlungssystem reguliert. Diese Regulierung erfolgt durch das SunCool-Kühlsystem. Die Temperatur wird von einem Schwarzstandardsensor erfasst, der in der Mitte des Probenraumes platziert ist (s. Abb. 14).

Abbildung 14 Probenraum des Bewitterungsgeräts (Foto: C. Schoen)

Der Probenraum bietet eine Expositionsfläche von 560 cm² (28 x 20 cm). Im Bereich der Bestrahlungsstärke *E* von 250-765 W/m² erstreckt sich das Lichtspektrum von 300 nm Wellenlänge bis hin zu 800 nm Wellenlänge (Atlas, 2018). Die Bestrahlungsstärke *E* definiert die Intensität einer Lichtquelle. Sie ist vom Strahlungsfluss (ϕ in [W]) und der Größe (A in [m²]) der bestrahlten Fläche abhängig. Der Strahlungsfluss beschreibt die Strahlungsenergie pro Zeiteinheit (1W = 1 Joule/sec) (Greuel, 2014a, S. 25). Der Spezial-Fensterglas-Filter lässt Licht ab einer Wellenlänge von ca. 310 nm durch (Atlas, 2011).

3.3 Versuchsvorbereitung

3.3.1 Vorversuche zur Ermittlung von Messwert-Schwankungen der Methode und Kalibrierung der verwendeten Geräte

"Mit Validierung verbindet jeder Analytiker die Überprüfung einer Methode auf Brauchbarkeit" (Kromidas, 2011, S. 4). Anhand von Validierung wird nachgewiesen und dokumentiert, dass eine Methode unabhängig vom Zeitpunkt und der durchführenden Person zuverlässig ist (ebd.).

Betrachtet werden dabei unter anderem Parameter wie Präzision bzw. Wiederholbarkeit und Robustheit bzw. Störanfälligkeit einer Methode (Kromidas, 2011, S. 43-45).

Messunsicherheiten treten bei jedem Messwert auf. Die Ursachen für diese Messunsicherheiten können sowohl bei der messenden Person, den Geräten, den Umweltbedingungen oder der Probe selbst liegen. Einige Ursachen sind abhängig voneinander und beeinflussen somit verstärkt die Messwerte. So kann es zu Messwert-Schwankungen bei wiederholten Messungen kommen. Diese Streuungen der Messwerte lassen sich beispielsweise anhand der empirischen Varianz s^2 oder der Standardabweichung s ermitteln (Kromidas, 2011, S. 16-18).

Bei der vorliegenden Methodik wurde auf eine vollständige Validierung der Gesamtmethodik verzichtet. Isolierte Validierungen der einzelnen Messmethoden liegen im zur Verfügung stehenden Labor vor, sodass die Messmethoden selbst als valide betrachtet werden können. Im Folgenden sollen jedoch einzelne Einflussgrößen auf Messwert-Schwankungen der Methodik in Anwendung auf die vorliegende Fragestellung untersucht werden.

Bei der vorherrschenden Methode liegt eine Ursache für Messunsicherheiten bei der Farbmessmethode. Bei kleinteiligen Dragéeprodukten ist die zu messende Oberfläche nicht eben, sodass Zwischenräume vorhanden sind. Diese Zwischenräume erscheinen durch die Schattenbildung dunkler als die Farbe der Streusel, was die Messwerte verfälschen kann. Um ein geeignetes Dragéeprodukt für die Untersuchung zu ermitteln, wurde ein Versuch mit Schokolinsen, Nonpareille und Zuckerstreuseln im Vergleich durchgeführt. Die Standardabweichungen zeigen, dass es bei den Schokolinsen, die deutlich größere Schatten-Zwischenräume bilden, zu größeren Abweichungen der Farbwerte kommt (s. Anhang Tabelle 1). Zwischen den Nonpareilles und den Zuckerstreuseln gibt es so gut wie keine Unterschiede. Sie weisen eine ähnliche Schattenbildung auf, welche die Messwerte weniger beeinflussen. Für die Untersuchung wurden aufgrund dieses Vorversuches Zuckerstreusel als Probenform gewählt.

Zusätzlich wurde untersucht, welchen Einfluss gegebenenfalls seitlich auf das Messgut einfallendes Raum- oder Tageslicht auf die Messergebnisse hat. Das Farbmessgerät war in einem beleuchteten Raum mit Fenster platziert. Da die Proben beim Transport aus dem Labor verwackeln können und so die Farbmessung verfälscht würde, war die Verlegung der Farbmessung in einen lichtgeschützteren Raum ausgeschlossen. Außerdem zeigen erhaltene Messwerte, dass die Standardabweichung der Messwerte unter Lichteinflussbedingungen gering ist, sodass die Platzierung des Farbmessgerätes im beleuchteten Raum beibehalten wurde (s. Anhang Tabelle 1). Alle Messungen wurden unter den ähnlichen Lichtbedingungen durchgeführt.

Zudem wurde das Spectrophotometer mehrfach kalibriert, um die Messgenauigkeit des Gerätes zu ermitteln. Bei zehn Messwiederholungen liegt die jeweilige Standardabweichung für die L*a*b*-Werte bei als niedrig eingestuften $s_{L^*} = 0,00$, $s_{a^*} = 0,01$ und $s_{b^*} = 0,01$ (s. Anhang Tabelle 2).

Der zweite beeinflussende Faktor ist das Bewitterungsgerät. Auch dieses wurde mehrfach kalibriert, um die Genauigkeit der Bestrahlungsstärke *E* herauszufinden.

Die Standardabweichung bei fünf Messwiederholungen liegt bei s = 0,0, was für eine sehr hohe Konstanz in der Bestrahlungsstärke spricht (s. Anhang Tabelle 3).

Des Weiteren kann es zu Schwankungen der Messwerte durch den Transport der Proben von dem Bewitterungsgerät zum Farbmessgerät kommen. Dabei können Streusel verrutschen. Das Farbmessgerät misst die Farbe der Oberfläche einer Probe von oben. Die Proben im Bewitterungsgerät sind ebenfalls der Bestrahlung von oben ausgesetzt. Durch Verrutschen kann es sein, dass die Streusel sich bei der Farbmessung mit der nichtbestrahlten Seite nach oben drehen und so die Messwerte verfälschen. Aufgrund dessen wurde ein Vorversuch durchgeführt, bei dem eine Methode entwickelt wurde, durch die die Proben stärker immobilisiert werden können.

Zudem kann es zu einer Fehlerfortpflanzung, also einer Kombination aller Fehlerquellen, kommen.

3.3.2 Vorversuch zur Mobilität von kleinteiligen Dragéeprodukten

Dieser Versuch wurde mit Nonpareilles durchgeführt, bevor die Dragéeart für den Lichtstabilitätstest von Kurkumin festgelegt wurde. Es wurde das Verrutschen der Produktschichten in dem Probengefäß von kleinteiligen Dragéeprodukten für den Transport zwischen Bewitterungsgerät und Farbmessgerät untersucht.

Bei diesem Versuch sollte herausgefunden werden, ob man durch die Fixierung von roteingefärbten Nonpareille-Kügelchen linearere Ergebnisse erzielen kann als bei nicht fixierten. Es wurden dafür zwei Petrischalen zu Hälfte befüllt, wobei eine dieser Schalen zuvor mit einer Aluminiumscheibe präpariert wurde, die mit einem doppelseitigen Klebeband beklebt war. Durch dieses Klebeband sollte die Probe fixiert werden, damit diese transportierfähiger ist und somit die Farbmessung weniger verfälscht. Probe A ist in diesem Fall die fixierte und Probe B die nicht fixierte Probe. Es handelt sich bei dem Färbemittel um das färbende Lebensmittel Rote Bete. Die Proben wurden 660 Minuten lang bei einer Bestrahlungsstärke von 500 W/m² mit dem Bewitterungsgerät bestrahlt. Der Probenraum wurde auf ~ 20 °C reguliert. Alle 30 Minuten wurde mithilfe des Spectrophotometers die Farbe gemessen. Ermittelt wurden dabei die L*a*b*-Werte.
Zur Auswertung der Farbwerte wurde eine einfache Regressionsanalyse durchgeführt. Hinterher wurden die Bestimmtheitsmaße der Modelle verglichen. Die Messungen haben ergeben, dass bei der fixierten Probe A höhere Bestimmtheitsmaße R^2 vorliegen (s. Abb. 15, 16, 17). Das heißt, dass durch die Fixierung der Probe der Einfluss des Verwackelns als Störvariable eingeschränkt werden konnte.

Abbildung 15 Einfache Regressionsanalyse der Helligkeitsverläufe der fixierten und unfixierten Nonpareille unter Lichteinfluss

Abbildung 16 Einfache Regressionsanalyse der Rot-Grün-Verläufe der fixierten und unfixierten Nonpareille unter Lichteinfluss

Abbildung 17 Einfache Regressionsanalyse der Blau-Gelb-Verläufe der fixierten und unfixierten Nonpareille unter Lichteinfluss

Die Erkenntnisse aus diesem Versuch wurden daraufhin auf die Untersuchung der Zuckerstreusel übertragen. Zuckerstreusel weisen durch ihre zylinderartige Form eine ähnliche Gefahr des Verrutschens auf wie kugelförmige Nonpareille.

3.3.3. Probenvorbereitung

Für die Untersuchung wurden vier verschiedene Zuckerstreusel-Proben produziert. Alle Proben wurden mit der gleichen Grundrezeptur hergestellt und erhalten ihre Farbigkeit durch den Farbstoff Kurkumin.

Die Basis aller gefärbten Zuckerstreusel besteht aus Zucker, Glucosesirup, pflanzlichem Fett, Lecithine und Talkum.

Probe A wurde mit dem färbenden Lebensmittel Kurkuma-Extrakt gefärbt, das in etwa 8 % Kurkumin enthält (s. Abb. 18). Das Kurkumin ist in Polysorbat, Sonnenblumenöl und einem Emulgator gelöst. Die Zuckerstreusel wurden nach dem Färben nicht zusätzlich mit einem Überzugsmittel isoliert.

Abbildung 18 Zuckerstreusel gefärbt mit Kurkuma-Extrakt vor der Bestrahlung (Foto: C. Schoen)

Probe B wurde mit dem gleichen färbenden Lebensmittel eingefärbt wie Probe A. Nach dem Färbungsprozess wurden die Zuckerstreusel allerdings mit Schellack isoliert (s. Abb. 19).

Abbildung 19 Zuckerstreusel gefärbt mit Kurkuma-Extrakt und mit Schellack isoliert vor der Bestrahlung (Foto: C. Schoen)

Diese Zuckerstreusel der Probe C wurden mit einem verkapselten Kurkumin gefärbt (s. Abb. 20). Die Verkapselung entsteht durch das Mischen des Kurkumins mit weiteren Stoffen in wässriger Lösung. Es sind zur Verkapselung Stärke, Lecithine, Zitronensäure und Kaliumsorbat dem Farbstoff zugefügt worden. Dadurch lässt sich der sonst wasserunlösliche Farbstoff in Wasser dispergieren und kann für wasserbasierte Produktionsverfahren verwendet werden.

Abbildung 20 Zuckerstreusel mit verkapseltem Kurkumin gefärbt vor der Bestrahlung (Foto: C. Schoen)

Probe D ist hingegen mit einem nahezu reinem, unverkapselten Kurkumin gefärbt worden. Dieser Farbstoff enthält mindestens 95 % Kurkumin (s. Abb. 21).

Abbildung 21 Zuckerstreusel mit unverkapseltem Kurkumin gefärbt vor der Bestrahlung (Foto: C. Schoen)

Für jede Probe wurden je 2 kg weiße Zuckerstreusel abgewogen. Diese wurden jeweils in einen Dragierkessel gefüllt. Bei eingeschaltetem Kessel wurden 19 ml Streusellösung, bestehend aus Zucker, Glucosesirup und Wasser, über jede Probe gegossen. Bei dem verkapselten und unverkapselten Kurkumin wurden jeweils 0,5 g Farbstoff und bei Kurkumin-Lösung 3 g in Wasser gelöst. Die Farbstofflösungen wurden in drei Decken bei laufendem Dragierkessel aufgetragen. Anschließend wurden die Proben bei Raumtemperatur 24 h lang getrocknet. Probe B wurde am nächsten Tag zusätzlich mit Schellack isoliert. Die Isolierung wurde ebenfalls mithilfe des Dragierkessels durchgeführt. 1 kg gefärbte Probe wurde in zwei Decken mit 24 ml Schellacklösung überzogen. Der Schellack wird in einer Alkohollösung aufbewahrt. Der Alkohol verdampft beim Trocknen der Produkte. Die isolierte Probe wurde über Nacht erneut bei Raumtemperatur getrocknet.

Nach der Probenherstellung wurden die Petrischalen vorbereitet. Diese wurden mit einer runden Aluminium-Scheibe präpariert, die zuvor aus Aluminiumschalen ausgeschnitten und mit doppelseitigem Klebeband beklebt wurde. Die Klebebandseite zeigt beim Einlegen der Aluminiumscheibe in die Petrischale nach oben.

Anschließend wurden die vier Petrischalen etwa zur Hälfte befüllt.

3.4 Versuchsdurchführung

Die Versuchsdurchführung beinhaltet die Darstellung der Prozessparameter für das Bewitterungsgerät und das Farbmessgerät. Zudem wird der Messvorgang beschrieben.

3.4.1 Prozessparameter für das Bewitterungsgerät

Für die Bestrahlung der Proben wurde eine Bestrahlungsstärke von $E = 400 \text{ W/m}^2$ gewählt. Dies entspricht in etwa der Sonneneinstrahlung im Freien (Atlas, 2019). Zusätzlich zum beschichteten Quarzglasfilter wurde ein Spezial-Fensterglasfilter eingebaut, welcher ein 3 mm dickes Fenster simuliert und das Durchdringen von UV-Strahlung verhindert (Atlas, 2011). Die Proben wurden somit mit Licht aus dem sichtbaren Spektralbereich mit einer Wellenlänge von 300 bis 800 nm bestrahlt. Während der Bestrahlung wurde der Probenraum konstant auf einer Schwarzstandardtemperatur von ~ 20 °C reguliert, sodass die Temperatur keinen Einfluss auf die Farbveränderungen der Proben hat.

Parameter	Einstellung
Bestrahlungsstärke	400 W/m ²
Optischer Filter	Filter C; Spezial-Fensterglas
Schwarzstandardtemperatur (BST)	20°C

Tabelle 3 Prozessparameter des Bewitterungsgeräts

3.4.2 Prozessparameter des Farbmessgeräts

Das Spectrophotometer CM-600d ist ein tragbares Kugelspektralphotometer. Mit Hilfe einer Xenon-Blitzlampe wird die Farbe gemessen (Konica Minolta, 2020a). Die Parameter für die Farbmessung wurden an die Produkteigenschaften und die Begebenheiten im Bewitterungsgerät angepasst.

Die Oberfläche der Streusel in einer Petrischale entspricht keiner ebenen Fläche. Es ergeben sich zwischen den Streuseln Zwischenräume, wodurch Schatten entstehen. Damit diese Schatten keinen großen Einfluss auf die Farbwerte haben, wurde als Messgeometrie die diffuse Beleuchtung mit einem 8° Sichtwinkel gewählt. Zudem wurde die Glanzfalle eingeschaltet, um die Farbe ohne Glanzanteil zu messen. Somit können die Streuselstruktur und Glanzunterschiede zwischen den Proben die Messwerte nicht beeinflussen (Konica Minolta, 2020b).

Um die Farbmessung an das von der Xenonlampe im Bewitterungsgerät simulierte Tageslicht anzupassen, wurde die Normlichtart D65 gewählt.

Seit 1964 hat die CIE ihr Farbsystem vom 2°-Beobachter auf den 10°-Beobachter normiert (Welsch & Liebmann, 2012, S. 122). Folglich wurde das Farbmessgerät ebenfalls auf ein 10°-Gesichtsfeld eingestellt.

Um genauere Messergebnisse zu erzielen, wurden das Gerät so eingestellt, dass es je Farbmessung fünf automatische Messwiederholungen vornimmt. Aus diesen fünf Messwiederholungen hat das Gerät automatisch Mittelwerte gebildet. Als Farbsystem wurde der L*a*b*-Farbraum gewählt. Der Messöffnung des Farbmessgerätes wurde eine Messblende mit einem Durchmesser von 8 mm und zusätzlichem Ring aufgesetzt.

Parameter	Einstellung
Messgeometrie	d/8°
Lichtart	D65
Sichtwinkel	10°
Glanzanteil	SCE
Farbsystem	L*a*b*
Messwiederholungen	Automatisch; 5 Wiederholungen

Tabelle 4 Prozessparameter des Farbmessgeräts

3.4.3 Messung

Vor Beginn der Bestrahlung wurde die Farbe der Bezüge mit dem Farbmessgerät gemessen. Die ermittelten L*a*b*-Werte wurden daraufhin in einer Excel-Datei dokumentiert. Danach wurde mit der Bestrahlung der Proben begonnen. Jede Stunde wurde die Bestrahlung unterbrochen, um die Farbe der Proben zu messen und die Messwerte zu dokumentieren. Für die Farbmessung wurden die Proben einzeln aus dem Bewitterungsgerät genommen und zum Farbmessgerät transportiert. Jede Probe wurde bei jeder stündlichen Farbmessung fünfmal gemessen. Insgesamt waren die Proben 1440 Minuten lang der Bestrahlung im Bewitterungsgerät ausgesetzt.

3.5 Statistische Methoden

Die L*a*b*-Messwerte wurden während des Experiments mithilfe der Software "Excel" von Microsoft (Version 2006; Build 13001.20384) dokumentiert. Um als erstes den Farbabstand zu berechnen, wurden als L*a*b*-Bezugswerte aus den L*a*b*-Werten der unbestrahlten Proben die Mittelwerte gebildet. Dafür wurde ebenfalls die Software "Excel" verwendet. Aus den gemessenen L*a*b*-Werten wurde dann der Farbabstand $\Delta E00$ zwischen den L*a*b*-Bezugswerten und den stündlich gemessenen Einzelmesswerten berechnet. Für die Berechnung der Farbabstände wurde der Farbabstandsrechner von Bruce Lindbloom verwendet (Lindbloom, 2012).

Anschließend wurde anhand der Software "XLSTAT" (Version 2020.3), die von dem Unternehmen Addinsoft entwickelt wurde, eine Varianzanalyse durchgeführt. Diese dient zur Ermittlung von signifikanten Unterschieden zwischen den Faktoren der Proben. Es handelt sich bei dieser Varianzanalyse um eine zweifaktorielle ANOVA. Zusätzlich zur ANOVA wurde mit dem Programm auch ein Tukey-Test durchgeführt, anhand dessen signifikante Unterschiede zwischen Paaren von Faktorstufen aufgezeigt werden können.

Es wurden für die Untersuchungen zur Isolierung und zur Verkapselung je vier Varianzanalysen durchgeführt. Dabei waren die drei L*a*b*-Farbwerte und der Farbabstand ΔE jeweils die abhängigen Variablen. Bei den Proben C und D wurde die Herstellung des Kurkumins und bei den Proben A und B die Behandlung der Proben als unabhängige Variable gesetzt. Als zweite unabhängige Variable wurde jeweils die Bestrahlungsdauer in Minuten angegeben. Das Signifikanzniveau wurde für die Analyse auf $\alpha = 0,05$ festgelegt. Es handelt sich bei beiden Varianzanalysen um gerichtete Hypothesentests.

4. Ergebnisse

Bei der Varianzanalyse werden mittels der F- und p-Werte signifikante Unterschiede Fisher-Verteilung zwischen zwei Gruppen ermittelt. Die ist eine Wahrscheinlichkeitsverteilung, anhand derer signifikante Unterschiede zwischen Gruppen berechnet werden können. Ist der empirisch ermittelte F-Wert größer als der kritische F-Wert der F-Verteilung herrschen signifikante Unterschiede zwischen den Gruppen und die Nullhypothese wird verworfen (Backhaus, Erichson, Plinke, & Weiber, 2018, S. 172-173). Der p-Wert ist die Wahrscheinlichkeit, dass der kritische F-Wert größer ist als der empirisch ermittelte F-Wert und die Nullhypothese beibehalten wird. Ist der p-Wert kleiner als das Signifikanzniveau α wird die Nullhypothese verworfen (Backhaus, Erichson, Plinke, & Weiber, 2018, S. 174).

Die Originalmessdaten der Farbmessungen, anhand derer die Varianzanalysen durchgeführt worden sind, befinden sich aufgrund des großen Umfangs in digitaler Form auf dem beigefügten USB-Stick.

4.1 Ergebnisse zur Schellack-Isolierung

Aus den Tabellen 5, 6, 7 und 8 lässt sich erkennen, dass die durchgeführte Varianzanalyse eine sehr hohe Signifikanz hat, da der empirisch ermittelte F-Wert sehr groß ist und der p-Wert mit p = < 0,0001 unterhalb des Signifikanzniveaus α = 0,05 liegt. Zudem lässt sich aus diesen Tabellen ablesen, dass es sowohl beim Farbabstand ΔE als auch bei den L*-, a*- und b*-Werten höchstsignifikante Unterschiede zwischen der isolierten und der unisolierten Probe gibt, da die p-Werte bei der Behandlung ebenfalls bei p = < 0,0001liegen. Auch gibt es höchstsignifikante Interaktionen zwischen der Behandlungsart und der Bestrahlungsdauer.

Tabelle 5 ANOVA-Tabelle der ΔE -Werte von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nichtisolierten Zuckerstreuseln unter Lichteinfluss

Quelle	FG	Summe der Quadratwerte	Mittel der Quadratwerte	F	Pr > F
Modell	49	6026,114	122,982	1645,996	<0,0001
Behandlung	1	263,949	263,949	3532,711	<0,0001
Bestrahlungsdauer	24	5712,291	238,012	3185,566	<0,0001
Behandlung*					
Bestrahlungsdauer	24	49,873	2,078	27,813	<0,0001
Fehler	200	14,943	0,075		
Gesamt korrigiert	249	6041,057			

Tabelle 6 ANOVA-Tabelle der L*-Werte von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nichtisolierten Zuckerstreuseln unter Lichteinfluss

Quelle	FG	Summe der Quadratwerte	Mittel der Quadratwerte	F	Pr > F
Modell	49	544,444	11,111	35,697	<0,0001
Behandlung	1	247,944	247,944	796,585	<0,0001
Bestrahlungsdauer	24	252,901	10,538	33,855	<0,0001
Behandlung*					
Bestrahlungsdauer	24	43,598	1,817	5,836	<0,0001
Fehler	200	62,252	0,311		
Gesamt korrigiert	249	606,696			

Tabelle 7 ANOVA-Tabelle der a*-Werte von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nichtisolierten Zuckerstreuseln unter Lichteinfluss

Quelle	FG	Summe der Quadratwerte	Mittel der Quadratwerte	F	Pr > F
Modell	49	471,860	9,630	1318,210	<0,0001
Behandlung	1	1,199	1,199	164,067	<0,0001
Bestrahlungsdauer	24	458,127	19,089	2613,018	<0,0001
Behandlung*					
Bestrahlungsdauer	24	12,534	0,522	71,492	<0,0001
Fehler	200	1,461	0,007		
Gesamt korrigiert	249	473,321			

Quelle	FG	Summe der Quadratwerte	Mittel der Quadratwerte	F	Pr > F
Modell	49	48162,414	982,906	3676,140	<0,0001
Behandlung	1	1109,525	1109,525	4149,703	<0,0001
Bestrahlungsdauer	24	46847,159	1951,965	7300,488	<0,0001
Behandlung*					
Bestrahlungsdauer	24	205,730	8,572	32,060	<0,0001
Fehler	200	53,475	0,267		
Gesamt korrigiert	249	48215,889			

Tabelle 8 ANOVA-Tabelle der b*-Werte von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nichtisolierten Zuckerstreuseln unter Lichteinfluss

Vor Bestrahlungsbeginn wurden bei den Bezugswerten der isolierten und der unisolierten Probe unterschiedliche Farbwerte gemessen (s. Anhang Tabellen 6-9). Die L*-Werte liegen bei der unisolierten Probe bei L* = 89,72 und bei der isolierten bei L* = 88,22. Die a*-Werte liegen bei -5,65 und -7,95 und die b*-Werte bei 78,03 und 78,98.

Die Abbildungen 22 bis 25 zeigen die Mittelwert-Verläufe der ∆E-Werte und L*a*b*-Werte der isolierten und unisolierten Streuselproben während der gesamten Bestrahlungszeit.

Die Δ E-Werte beider Proben zeigen einen steilen Anstieg zwischen 0 und 60 Bestrahlungsminuten. Bei der unisolierten Probe ab etwa 180 Minuten und bei der isolierten Probe ab etwa 300 Minuten verhalten sich die Werte beinahe konstant mit leicht aufsteigender Tendenz. Die Δ E-Werte der unisolierten Probe sind höher und steigen in den ersten 60 Minuten mehr an (s. Abb. 22).

Abbildung 22 ΔE-Mittelwert-Verläufe von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nichtisolierten Zuckerstreuseln unter Lichteinfluss

Die L*-Werte beider Proben haben ebenfalls zu Beginn die größte Steigung, wobei die Werte der unisolierten Probe höher sind und zu Beginn eine größere Steigung aufweisen (s. Abb. 23).

Abbildung 23 L*-Mittelwert-Verläufe von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nichtisolierten Zuckerstreuseln unter Lichteinfluss

Zu Beginn in den ersten 60 Minuten steigen die Kurven der a*-Werte beider Proben stark und nähern sich dann konstant dem Wert a* = 0. Die isolierte Probe hat als Bezug einen niedrigeren a*-Wert, steigt aber in den ersten 60 Minuten stärker an als die unisolierte Probe. Danach verlaufen die a*-Kurven nahezu gleich (s. Abb. 24).

Abbildung 24 a*-Mittelwert-Verläufe von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nichtisolierten Zuckerstreuseln unter Lichteinfluss

Auch die b*-Werte beider Proben verhalten sich ähnlich. Es ist bei beiden Proben in den ersten 60 Minuten ein starker Abfall der b*-Werte zu erkennen. Anschließend verhalten sich die Werte beinahe konstant mit leichtem Abfall. Allerdings fallen die Werte der isolierten Probe nicht ganz so weit ab, wie die der unisolierten (s. Abb. 25). Am Ende der Bestrahlung hat die isolierte Probe einen b*-Wert von b* = 9,36 und die unisolierte einen Wert von b* = 6,16 (s. Anhang Tabelle 9).

Abbildung 25 b*-Mittelwert-Verläufe von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nichtisolierten Zuckerstreuseln unter Lichteinfluss

Die Ergebnisse des Tukey-Tests werden in Form von Tabellen präsentiert, bei denen anhand von Buchstaben die Signifikanz zwischen Gruppen dargestellt wird. Bei mehreren Buchstaben in einer Zeile pro Faktorgruppe oder bei gleichen Buchstaben in einer Spalte herrschen keine signifikanten Unterschiede zwischen den Proben. Die Tukey-Test-Ergebnisse besagen, dass es bei dem Farbwert a^* bis zu einer Bestrahlungsdauer von 360 Minuten und dem Farbwert b^* bis zu einer Bestrahlungsdauer von 300 Minuten signifikante Unterschiede zwischen den Farbverläufen der isolierten und der unisolierten Probe gibt. Danach gibt es keine signifikanten Unterschiede zwischen den Messungen mehr (s. Tab. 11 und 12). Beim Farbabstand ΔE sind ebenfalls zu Beginn der Bestrahlung bis 300 Minuten vermehrt signifikante Unterschiede zwischen den Proben aufgetreten (s. Tab 9). Die Helligkeitsverläufe (L*) beider Proben unterschieden sich lediglich zwischen 0 und 120 Minuten signifikante (s. Tab. 10). Die signifikanten Unterschiede zwischen den stündlich gemessenen Proben sind in den Tabellen 9 bis 12 rot markiert.

Zwischen der isolierten und der unisolierten Probe gibt es bei den a*-Werten ab einer Bestrahlungsdauer von 720 Minuten und den b*-Werten ab 900 Minuten keine signifikanten Unterschiede mehr zwischen den stündlich gemessenen Farbwerten. Der Farbabstand ΔE zeigt ab 840 Minuten keine signifikanten Unterschiede mehr. Die Zeitpunkte, bei denen die Werte keinerlei signifikante Unterschiede mehr aufweisen, sind in den Tabellen 9, 11 und 12 blau markiert.

Bestrahlungs-												
dauer in min	Mittelwertschätzer(ΔE)				G	iru	pp	en				
1440	24,461	А										
1260	24,397	А										
1320	24,372	А										
1380	24,345	А										
1200	24,329	А										
1080	24,262	А										
1140	24,231	А										
900	24,162	А	В									
1020	24,151	А	В									
960	24,126	А	В									
840	24,040	А	В	С								
780	23,737		В	С	D							
660	23,645			С	D							
720	23,461				D	Е						
600	23,138					Е	F					
540	23,090					Е	F					
480	23,009					Е	F					
420	22,774						F	G				
360	22,694						F	G				
300	22,511							G				
240	21,760								Н			
180	21,307								Η			
120	19,902									Ι		
60	18,174										J	
0	0,000											Κ

Tabelle 9 Tukey-Test-Ergebnis der ΔE-Werte bezogen auf die Bestrahlungsdauer von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss

Bestrahlungs- dauer in <i>min</i>	Mittelwertschätzer (L*-Werte)	Gruppen									
900	94,196	А									
840	93,868	Α	В								
1260	93,827	Α	В								
1320	93,765	Α	В	С							
1200	93,748	Α	В	С	D						
960	93,658	Α	В	С	D						1
1440	93,613	Α	В	С	D						
1140	93,604	А	В	С	D	Е					
1020	93,416	Α	В	С	D	Е	F				
660	93,407	А	В	С	D	Ш	F				
1080	93,377	А	В	С	D	Ш	F	ഗ			
780	93,374	Α	В	С	D	ш	F	ഗ			
1380	93,179		В	С	D	Е	F	G			
300	93,019		В	С	D	Е	F	G	Н		
360	93,005		В	С	D	Е	F	G	Н		
720	92,959		В	С	D	ш	F	ഗ	Н		
240	92,871			С	D	ш	F	ഗ	Н		
480	92,828				D	Е	F	G	Н		
420	92,686					Е	F	G	Н		
600	92,649						F	G	Н		1
180	92,555						F	G	Н	Ι	
540	92,463							G	Η	Ι	
60	92,115								Н	Ι	
120	91,704									Ι	
0	88,971										J

Tabelle 10 Tukey-Test-Ergebnis der L*-Werte bezogen auf die Bestrahlungsdauer von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss

Bestrahlungs-	Mittelwertschätzer											
dauer in <i>min</i>	(a*-Werte)				G	Gru	pp	en				
1440	-0,003	А										
1380	-0,005	А										
1020	-0,014	А										
1320	-0,019	А										
1260	-0,032	А										
1080	-0,042	А										
1200	-0,053	А										
1140	-0,064	А										
960	-0,076	А	В									
780	-0,083	А	В									
840	-0,125	А	В									
900	-0,133	А	В	С								
720	-0,142	Α	В	С								
660	-0,206		В	С	D							
600	-0,213		В	С	D							
540	-0,269			С	D	Е						
480	-0,323				D	Ε						
420	-0,363					Ε						
360	-0,384					Е						
300	-0,529						F					
240	-0,763							G				
180	-0,907								Н			
120	-1,405									I		
60	-2,074										J	
0	-6,802											Κ

Tabelle 11 Tukey-Test-Ergebnis der a*-Werte bezogen auf die Bestrahlungsdauer von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss

Bestrahlungs- dauer in <i>min</i>	Mittelwertschätzer (b*-Werte)						G	rup	ope	en					
0	78,502	Α													
60	20,819		В												
120	16,860			С											
180	14,261				D										
240	13,178					Ε									
300	11,873						F								
360	11,497						F								
420	11,047						F	G							
480	10,562							G							
540	10,407							G	Н						
600	10,273							G	Н						
720	9,681								Н	Ι					
660	9,372									Ι	J				
780	9,161									Ι	J	Κ			
840	8,718										J	Κ	L		
960	8,633										J	Κ	L	Μ	
900	8,484											Κ	L	Μ	Ν
1140	8,473											Κ	L	Μ	Ν
1020	8,381											Κ	L	Μ	Ν
1080	8,272												L	Μ	Ν
1200	8,103												L	Μ	Ν
1380	7,989												L	Μ	Ν
1260	7,951												L	Μ	Ν
1320	7,852													Μ	Ν
1440	7,756														Ν

Tabelle 12 Tukey-Test-Ergebnis der b*-Werte bezogen auf die Bestrahlungsdauer von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss

Dem Tukey-Test für die Wechselwirkungen zwischen Bestrahlungsdauer und Behandlungsart lassen sich die signifikanten Unterschiede zwischen den Messwerten zur jeweiligen Bestrahlungszeit entnehmen. Die Tabelle der Δ E-Werte und deren Wechselwirkungen zwischen Behandlungsart und Bestrahlungsdauer befindet sich aufgrund des Umfangs im Anhang (s. Anhang Tabelle 14).

Zwischen den ΔE-Werten der isolierten Probe bei 240 Bestrahlungsminuten und der unisolierten Probe bei 60 Bestrahlungsminuten bestehen keine signifikanten Unterschiede. Unter anderem bestehen auch keine signifikanten Unterschiede zwischen der isolierten Probe nach 780 Minuten Bestrahlung und der unisolierten Probe nach 180 Minuten Bestrahlung sowie zwischen 1440 Minuten (isoliert) und 300 Minuten (unisoliert). Zudem gibt es keine signifikanten Unterschiede zwischen der isolierten Probe bei 1260 Minuten Bestrahlung und 180 Minuten bei der unisolierten. Diese Paarvergleiche sind in Tabelle 14 im Anhang grün markiert.

4.2 Ergebnisse zur Verkapselung des Kurkumins

Bei der Auswertung der Proben C und D zeigt sich ein ähnliches Ergebnis für die Varianzanalyse und die Typ I-Analyse wie bei Proben A und B. Aus den Tabellen 13 bis 16 lässt sich ebenfalls erkennen, dass die durchgeführte Varianzanalyse höchstsignifikante Ergebnisse liefert, da der empirisch ermittelte F-Wert sehr groß ist und der p-Wert mit p = < 0,0001 unterhalb des Signifikanzniveaus α = 0,05 liegt. Zudem lässt sich aus diesen Tabellen ablesen, dass es sowohl beim Farbabstand ΔE als auch bei den L*-, a*- und b*-Werten höchstsignifikante Unterschiede zwischen den Proben mit verkapseltem Kurkumin und unverkapseltem Kurkumin gibt, da die p-Werte für den Faktor Herstellung ebenfalls bei p = < 0,0001 liegen. Auch gibt es höchstsignifikante Interaktionen zwischen der Herstellungsart und der Bestrahlungsdauer.

Quelle	FG	Summe der Quadratwerte	Mittel der Quadratwerte	F	Pr > F
Modell	49	2741,389	55,947	332,063	<0,0001
Herstellung	1	1268,597	1268,597	7529,551	<0,0001
Bestrahlungsdauer	24	1226,960	51,123	303,434	<0,0001
Herstellung*					
Bestrahlungsdauer	24	245,832	10,243	60,796	<0,0001
Fehler	200	33,696	0,168		
Gesamt korrigiert	249	2775,086			

Tabelle 13 ANOVA-Tabelle der ΔE-Werte von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Tabelle 14 ANOVA-Tabelle der L*-Werte von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Quelle	FG	Summe der Quadratwerte	Mittel der Quadratwerte	F	Pr > F
Modell	49	532,927	10,876	47,510	<0,0001
Herstellung	1	230,938	230,938	1008,800	<0,0001
Bestrahlungsdauer	24	254,657	10,611	46,350	<0,0001
Herstellung*					
Bestrahlungsdauer	24	47,332	1,972	8,615	<0,0001
Fehler	200	45,785	0,229		
Gesamt korrigiert	249	578,711			

Tabelle 15 ANOVA-Tabelle der a*-Werte von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Quelle	FG	Summe der Quadratwerte	F	Pr > F	
Modell	49	299,114	6,104	135,976	<0,0001
Herstellung	1	14,386	14,386	320,442	<0,0001
Bestrahlungsdauer	24	242,884	10,120	225,429	<0,0001
Herstellung*					
Bestrahlungsdauer	24	41,844	1,744	38,837	<0,0001
Fehler	200	8,979	0,045		
Gesamt korrigiert	249	308,093			

Tabelle 16 ANOVA-Tabelle der b*-Werte von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Quelle	FG	Summe der Quadratwerte	Mittel der Quadratwerte	ttel der Iratwerte				
Modell	49	38255,223	780,719	631,107	<0,0001			
Herstellung	1	24359,358	24359,358	19691,296	<0,0001			
Bestrahlungsdauer	24	12093,083	503,878	407,319	<0,0001			
Herstellung* Bestrahlungsdauer	24	1802,782	75,116	60,721	<0,0001			
Fehler	200	247,412	1,237					
Gesamt korrigiert	249	38502,635						

Auch bei den Proben C und D wurden vor Beginn der Bestrahlung unterschiedliche Farbwerte als Bezüge gemessen (s. Anhang Tabellen 10-13). Die L*-Werte liegen beim unverkapselten Kurkumin bei 88,19 und beim verkapselten bei 86,46, die a*-Werte liegen bei 6,24 und 4,28 und die b*-Werte bei 65,33 und 72,08. Die Abbildungen 26 bis 29 zeigen die Mittelwert-Verläufe der Δ E-Werte und L*a*b*-Werte des unverkapselten und verkapselten Kurkumins. Die Δ E-Werte beider Proben zeigen einen stetigen Anstieg, wobei die unverkapselte Probe eine größere Steigung hat (s. Abb. 26).

Abbildung 26 Δ E-Mittelwert-Verläufe von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Die L*-Werte beider Proben weisen leichte Schwankungen auf. Die unverkapselte Kurkumin-Probe hat dabei höhere L*-Werte und weist eine höhere Steigung auf als das verkapselte Kurkumin (s. Abb. 27).

Abbildung 27 L*-Mittelwert-Verläufe von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Zu Beginn sind die a*-Werte des unverkapselten Kurkumins etwas höher und der Abfall in der Anfangsphase der Bestrahlung stärker. Im Laufe der Bestrahlung gleichen sich die Verläufe an (s. Abb. 28).

Abbildung 28 a*-Mittelwert-Verläufe von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Die b*-Werte beider Proben fallen stetig. Allerdings sind die Werte des unverkapselten Kurkumins niedriger und weisen einen stärkeren Abfall auf (s. Abb. 29).

Abbildung 29 b*-Mittelwert-Verläufe von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Ergebnisse des Tukey-Tests haben ergeben, Die dass es bei den Farbabstandswerten ΔE signifikante Unterschiede in den ersten beiden Bestrahlungsstunden zwischen dem verkapselten und dem unverkapselten Kurkumin gibt (s. Tab. 17). Danach gibt es nur noch zwischen 720 und 840 Bestrahlungsminuten signifikante Unterschiede zwischen den stündlichen ΔE -Werten. Ab einer Bestrahlungsdauer von 1080 Minuten unterscheiden sich die gemessenen Farbabstandswerte gar nicht mehr signifikant. Bei den Hellbezugswerten L*gibt es bereits ab 780 Bestrahlungsminuten keine signifikanten Unterschiede mehr zwischen den Messwerten der Proben (s. Tab. 18). Bei den a*-Werten gibt es nur vereinzelt zwischen den Messwerten bei 60 und 0, 240 und 360 sowie 720 und 900 Bestrahlungsminuten signifikante Unterschiede zwischen den stündlich aufeinanderfolgenden Messwerten. Ab 960 Bestrahlungsminuten sind keine signifikanten Unterschiede zwischen den a*-Werten der Proben mehr vorhanden (s. Tab. 19). Bis 180 Bestrahlungsminuten gibt es signifikante Unterschiede zwischen den b*-Wertverläufen der Proben. Außerdem gibt es zwischen 720 und 840 Bestrahlungsminuten signifikante Unterschiede zwischen den b*-Werten. Ab 1140 Minuten gibt es keine signifikanten Unterschiede mehr zwischen den b*-Werten der Proben (s. Tab. 20).

Bestrahlungs-															
dauer in min	Mittelwertschätzer(ΔE)						G	rup	ре	n					
1440	8,354	А													
1380	8,034	Α	В												
1200	8,026	Α	В												
1320	8,023	Α	В												
1080	7,889	А	В	С											
1260	7,670		В	С	D										
1140	7,661		В	С	D										
1020	7,310			С	D	Ш									
960	6,995				D	Е									
780	6,896					Е									
900	6,816					Ш									
840	6,774					Е									
720	5,652						F								
660	5,444						F	G							
600	5,388						F	G							
540	4,910							G	Н						
480	4,680								Н	Ι					
420	4,522								Н	Ι					
360	4,068									Ι	J				
300	4,000									T	J				
240	3,604										J	Κ			
180	3,193											K	L		
120	2,730												L		
60	1,427													Μ	
0	0,000														Ν

Tabelle 17 Tukey-Test-Ergebnis der Δ E-Werte bezogen auf die Bestrahlungsdauer von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Bestrahlungs-	Mittelwertschätzer									
dauer in min	(L*-Werte)	Gruppen								
1080	90,023	А								
1200	89,994	А								
1320	89,873	А								
1380	89,861	Α								
1440	89,770	Α								
1140	89,748	Α								
1260	89,729	А								
1020	89,728	А								
960	89,719	А								
840	89,530	А								
900	89,380	А	В							
780	89,294	Α	В	С						
720	88,598		В	С	D					
600	88,564			С	D					
660	88,373				D	Е				
300	88,356				D	Е	F			
540	88,188				D	Е	F			
420	88,151				D	Е	F			
480	87,943				D	Е	F	G		
360	87,708					Е	F	G		
120	87,630					Е	F	G		
240	87,568						F	G	Н	
0	87,323							G	Н	
180	87,207							G	Н	
60	86,806								Η	

Tabelle 18 Tukey-Test-Ergebnis der L*-Werte bezogen auf die Bestrahlungsdauer von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Bestrahlungs- dauer in <i>min</i>	Mittelwertschätzer (a*-Werte)	Gruppen										
60	5,625	Α										
0	5,256		В									
120	5,079		В									
180	4,925		В	С								
240	4,576			С								
360	4,157				D							
300	4,140				D	Е						
420	3,907				D	Е	F					
480	3,803					Ш	F	G				
540	3,735						F	G				
660	3,526							G	Н			
600	3,492							G	Н			
720	3,280								Н			
900	2,892									Ι		
840	2,863									1	J	
780	2,826										J	
960	2,748									1	J	Κ
1020	2,618										J	Κ
1260	2,551									Ι	J	Κ
1140	2,551									I	J	Κ
1080	2,536										J	Κ
1200	2,520										J	Κ
1380	2,423											Κ
1320	2,409											Κ
1440	2,401											K

Tabelle 19 Tukey-Test-Ergebnis der a*-Werte bezogen auf die Bestrahlungsdauer von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Bestrahlungs -dauer in <i>min</i>	Mittelwertschätzer (b*-Werte)	Gruppen													
0	68,705	Α													
60	64,533		В												
120	59,635			С											
180	57,553				D										
240	55,855				D	Е									
300	54,585					Ε	F								
360	54,315					Е	F	G							
420	52,890						F	G	Н						
480	52,679							G	Н						
540	51,768								Н	Ι					
600	50,244									Ι	J				
660	50,198									Ι	J				
720	49,388										J				
840	46,601											Κ			
900	46,385											Κ			
960	46,252											Κ			
780	46,140											Κ			
1020	45,070											Κ	L		
1260	44,085												L	Μ	
1140	43,739												L	Μ	Ν
1080	43,502												L	Μ	Ν
1200	42,974													Μ	Ν
1320	42,886													Μ	Ν
1380	42,814													Μ	Ν
1440	42,228														Ν

Tabelle 20 Tukey-Test-Ergebnis der b*-Werte bezogen auf die Bestrahlungsdauer von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Die Tukey-Test-Ergebnisse zu den Wechselwirkungen zwischen der Herstellungsart und der Behandlungsdauer der Δ E-Werte befinden sich für die Untersuchung der Kurkumin-Verkapselung ebenfalls wegen des großen Umfangs im Anhang (s. Anhang Tabelle 15).

Auffällig sind hier die ΔE-Werte des unverkapselten Kurkumins bei 60 Bestrahlungsminuten und des verkapselten Kurkumins bei 420 Bestrahlungsminuten, die keine signifikanten Unterschiede aufweisen. Ein weiteres Beispiel für nicht-signifikante Unterschiede ist der Paarvergleich zwischen der unverkapselten Probe nach 300 Minuten Bestrahlung und der verkapselten am Ende der Bestrahlung nach 1440 Minuten. Auch diese beiden nicht-signifikanten Unterschiede sind in der Tabelle 15 im Anhang grün markiert.

5. Diskussion

Bei allen vier Proben ist mit zunehmender Bestrahlungsdauer eine Vergrößerung des Farbabstandes, die Abnahme der Farbwerte in Richtung Unbuntpunkt und die Zunahme des Hellbezugswertes zu erkennen. Diese Entwicklung der Farbe lässt auf die Degradation des Kurkumins schließen. Die Xenonlampe im Bewitterungsgerät emittiert Licht der Wellenlänge 300 – 800 nm. Aufgrund des zusätzlichen Fensterglasfilters gelangt jedoch kein UV-Licht an die Proben. Deshalb absorbiert das Kurkumin lediglich den violetten Spektralbereich, sodass die Proben als Komplementärfarbe gelb erscheinen. Die Fluoreszenz hat demnach für das Ergebnis des Lichtstabilitätstests keine Bedeutung. Durch die Lichteinwirkung werden die konjugierten Doppelbindungen des Chromophors angeregt. Beim Übergang zurück in seinen Grundzustand überträgt das Kurkumin die dabei freiwerdende Energie auf den Luftsauerstoff. Der wiederum wird aus seinem Triplett-Grundzustand in seinen angeregten, ersten Singulett-Zustand energetisch angehoben. In dieser Form ist der Sauerstoff reaktiver. die Auf Photosensibilisierung folgt die Photooxidation und damit die Degradation des Kurkumins in die Stoffe Ferulasäure, Ferulinaldehyd, Vanillin und Vanillinsäure. Durch diese Degradation verliert das Kurkumin aufgrund der Veränderung des Chromophors seine Farbigkeit. Es besteht bei den Abbauprodukten kein ausgedehntes π-Elektronensystem mehr, sodass ein energiereicheres Lichtspektrum kürzerer Wellenlänge zur Anregung erforderlich ist, welches sich nicht mehr im sichtbaren Bereich des Menschen befindet.

Sowohl die a*- als auch die b*-Werte bewegen sich mit der Zeit immer weiter in Richtung unbunten Koordinatenursprung. Dies beweist den Abbau der gelbgrünen Farbe. Die L*-Werte steigen derweilen immer weiter an, denn die Farbigkeit nimmt ab und die ungefärbten Zuckerstreusel sind ursprünglich weiß. Ein hoher L*-Wert sagt aus, dass ein immer kleinerer Spektralbereich des weißen Lichtes absorbiert wird. Weiße Stoffe reflektieren das gesamte Spektrum und wirken so heller. Der Farbabstand der Proben zur jeweiligen Bezugsprobe vergrößert sich mit zunehmender Bestrahlungsdauer durch den immer stärkeren Farbabbau und gesteigerten Hellbezugswert.

5.1 Beantwortung der Forschungsfragen

5.1.1 Einfluss von einer Schellack-Isolierung auf den Farbabbau

1. Hat Schellack einen Einfluss auf den Farbabbau von Kurkumin?

Die Ergebnisse zeigen auf Basis der erhaltenen Messwerte höchstsignifikante Unterschiede zwischen der mit Schellack isolierten und der unisolierten Probe. Demnach hat eine zusätzliche Isolierung der gefärbten Zuckerstreusel einen Einfluss auf den Farbabbau des Kurkumins. Folglich lässt sich auch die zweite Forschungsfrage beantworten.

2. Welchen Einfluss hat Schellack auf den Farbabbau von Kurkumin?

Zu Anfang nach der ersten Bestrahlungsstunde ist ein schneller Farbabbau beider Proben festzustellen. Danach verlaufen die Kurven der Farbabstände und der L*a*b*-Werte relativ konstant Der Farbabstand und der Helligkeitswert nehmen während der Bestrahlung zu, wohingegen die Farbwerte sich den Nullwerten nähern. Der Farbabbau der isolierten Probe ist insgesamt nicht so stark, wie der der unisolierten. Ab fünf bis sechs Bestrahlungsstunden sind die Proben im Farbabbau allerdings nicht mehr signifikant unterschiedlich. Nach dieser kurzen Zeit ist vor allem der geringe Grünanteil, aber auch der größere Gelbanteil des Kurkumins stark gesunken. Trotz des negativeren Grünwertes der isolierten Bezugsprobe, geht der Grünanteil gleichschnell verloren wie bei der unisolierten Probe. Die b*-Werte sind nach der Bestrahlung noch knapp im positiven Bereich, wobei die Werte der isolierten Probe noch höher sind als die der unisolierten. Der Gelbanteil ist somit bei der isolierten Probe größer. Der Hellbezugswert der isolierten Probe ist sowohl beim Bezugswert vor der Bestrahlung als auch nach der Bestrahlung niedriger als der der unisolierten. Es gibt in Bezug auf die Helligkeit nur in den ersten zwei Stunden der Bestrahlung signifikante Unterschiede zwischen den Helligkeitsverläufen der Proben. Anschließend nimmt die Helligkeit bei beiden Proben mit geringerem Unterschied in der Steigung zu.

Anhand des Paarvergleiches der Farbabstandswerte lässt sich sagen, dass das Kurkumin unter Lichteinfluss bei der unisolierten Probe vier- bis siebenmal so schnell abgebaut wird wie bei der isolierten Probe. Dennoch ist bei beiden Zuckerstreuselproben ein rasanter Farbabbau zu vermerken. Die Schellack-Isolierung verlangsamt den Farbabbau des Kurkumins, kann ihn allerdings nicht verhindern.

5.1.2 Einfluss einer Kurkumin-Verkapselung auf den Farbabbau

3. Hat die Verkapselung des Kurkumins einen Einfluss auf den Farbabbau? Auch zwischen der verkapselten Kurkumin-Probe und der unverkapselten Kurkumin-Probe wurden auf Basis der erhaltenen Messwerte mithilfe der Varianzanalyse höchstsignifikante Unterschiede ermittelt, was dafürspricht, dass die Verkapselung mit Stärke, Lecithin, Kaliumsorbat und Zitronensäure einen Einfluss auf den Farbabbau hat. Deshalb ist auch die vierte Forschungsfrage relevant.

4 Welchen Einfluss hat die Verkapselung auf den Farbabbau des Kurkumins? Die Unterschiede zwischen den Farbabstandswerten sind in den ersten zwei Bestrahlungsstunden am größten. Danach ist der Verlauf des Farbabstandes bei den Proben nicht mehr signifikant unterschiedlich und die Farbabstände steigen weniger unterschiedlich. Der Farbabstand der Probe mit dem unverkapselten Kurkumin ist dabei größer. Die Farbe des verkapselten Kurkumins verändert sich also nicht so stark wie die der unverkapselte Probe. Auch der Gelbanteil des Kurkumins verschwindet langsamer als bei dem unverkapselten Kurkumin. Ab 360 Bestrahlungsminuten gibt es keine signifikanten Unterschiede mehr im Abbau des Gelbanteils zwischen den Proben. Bis 180 Bestrahlungsminuten wird der geringe Grünanteil der beiden Proben unterschiedlich stark abgebaut. Die unverkapselte Probe baut den Grünanteil in der Anfangszeit stärker ab. Der Grün-Wert der verkapselten Probe ist von Beginn an höher. Außerdem wird der Grünanteil der verkapselten Probe nicht so schnell und stark abgebaut, wie die unverkapselte. Die Hellbezugswerte bei der unverkapselten Probe sind im Gegensatz zum verkapselten Kurkumin höher. Die Helligkeit nimmt bei beiden Proben gleich stark zu.

Ebenso wie die Schellack-Isolierung, wird das Kurkumin durch die Verkapselung vier- bis siebenmal langsamer unter Lichteinfluss abgebaut. Dies lässt sich aus dem Paarvergleich der Farbabstandswerte erkennen.

All diese Ergebnisse sprechen für einen stärkeren Farbabbau des unverkapselten Kurkumins durch die früher eintretende Degradation. Durch die Verkapselung des Kurkumins mit Stärke, Lecithinen, Kaliumsorbat und Zitronensäure wird der Farbabbau verlangsamt. Dies kann an der Zitronensäure, die den pH-Wert senkt und somit das Kurkumin stabiler macht, liegen. Das Kurkumin liegt in seiner Keto-Form vor, weshalb das konjugierte π -Elektronensystem verkleinert ist, im Gegensatz zum Elektronensystem der Enol-Form. Es wird mehr Energie benötigt, um die Elektronen der σ -Bindung anzuregen. Somit wird die Photooxidation und die damit verbundene Degradation verzögert. Die zweite Ursache für die Verlangsamung des Farbabbauprozesses könnte das als Emulgator fungierende Lecithin sein. Lecithine umhüllen als Phosphorlipide das Kurkumin. Durch diese Lipidhülle scheint das Kurkumin neben der erwünschten Eigenschaft der Wasserlöslichkeit auch lichtunempfindlicher zu sein.

5.2 Limitation

Dieses Experiment bezieht sich lediglich auf die instrumentell gemessenen Farbabstände zwischen den Proben. Zur Überprüfung der reellen sensorischen Wahrnehmbarkeit der Farbabstände müsste eine sensorische Prüfung mit einem zuvor eingewiesenen Prüferpanel, welches aus mehreren Personen besteht, durchgeführt werden. Dies war aufgrund der Kontaktbeschränkungen in der aktuellen Corona-Situation nicht durchführbar, hätte aber für den Lichtstabilitätstest weitere interessante Ergebnis beigesteuert.

Außerdem wurde aufgrund der komplexen CIE2000-Farbabstandsformel zur Berechnung der Δ E-Werte ein Farbabstandsrechner verwendet, der die L*a*b*-Messwerte auf ganze Zahlen gerundet hat. Um diese Rundungsfehler zu vermeiden, sollte, beispielsweise in Excel, ein eigenes Makro programmiert werden, anhand dessen die Δ E-Werte berechnet werden können. Dadurch würden die Δ E-Werte rechnerisch genauer sein.

6. Fazit und Ausblick

Anhand dieses Experiments konnten alle vier Forschungsfragen beantwortet werden. Sowohl eine Isolierung mit Schellack als auch eine Verkapselung des Kurkumins mit Stärke, Lecithin, Kaliumsorbat und Zitronensäure sorgen für eine Verzögerung des Farbabbaus. Die Verkapselung des Kurkumins weist eine deutlich bessere Lichtstabilität auf als das unverkapselte Kurkumin. Bei der Schellack-Isolierung ist zwar eine leichte Steigerung der Stabilität zu erkennen, dennoch wird das Kurkumin aus dem Kurkuma-Extrakt schnell und stark abgebaut.

Bei der Verwendung des Naturfarbstoffes Kurkumin in der Lebensmittelindustrie ist demnach eine Verkapselung sinnvoll. Wird ein Lebensmittel mit dem färbenden Lebensmittel Kurkuma-Extrakt gefärbt, ist eine Isolierung ratsam.

Zukünftige Untersuchungen könnten die Lichtstabilität des Kurkuma-Extraktes bei anderen Isolierungsmöglichkeiten, wie Bienenwachs, testen. Zudem könnte erforscht werden, ob und ab welcher Bestrahlungsdauer der Farbabstand des verkapselten Kurkumins tatsächlich sensorisch wahrnehmbar ist. Dafür könnte eine paarweise Vergleichsprüfung durchgeführt werden, bei der die Bezugsprobe jeweils mit den Proben unter stündlich zunehmender Bestrahlungsdauer verglichen werden soll. Außerdem könnte die Lichtbeständigkeit des verkapselten Kurkumins weiter durch andere optische Filter im Bewitterungsgerät bei verschiedenen Szenarien, wie direkte Sonneneinstrahlung oder Lichteinwirkung im Verkaufsladen, untersucht werden. Auch kann die mit dem verkapselten Kurkumin gefärbte Probe bei den Untersuchungen zusätzlich mit Überzugsmitteln isoliert werden. Anhand solcher Versuche kann die Lichtstabilität des Kurkumins weiter optimiert werden, sodass der gelbe Farbstoff auch für anspruchsvolle Lichtbedingungen an Tauglichkeit für die Lebensmittelindustrie gewinnt.

Zusammenfassung

Lebensmittelfarbstoffe sind ein essenzieller Bestandteil der Lebensmittelindustrie, ohne die sich gerade Süßwaren häufig nicht vermarkten lassen würden. Sie sind von ihrer Herstellung bis hin zum Endverbraucher oft Lichteinflüssen ausgesetzt. Farbstoffe erscheinen dem Menschen farbig, wenn sie sichtbares Licht absorbieren. Dieser Farbeindruck entsteht durch chromophore Molekülstrukturen, welche teilweise durch lichtinduzierte Oxidationsvorgänge zerstört werden können. Der Farbstoff selbst und somit auch mit ihm gefärbte Produkte verlieren dadurch an Farbigkeit und entsprechen gegebenenfalls nicht mehr den Erwartungen der Verbraucher.

Kurkumin ist ein Naturfarbstoff, der bekanntermaßen unter Lichteinfluss zu Abbaureaktionen neigt.

Das Ziel dieser Arbeit ist es, die Abnahme der Farbigkeit von mit Kurkumin gefärbten Dragéeprodukten unter Lichteinfluss systematisch zu erfassen. Dafür wurde untersucht, ob und wie das Überzugsmittel Schellack oder eine Verkapselung des Kurkumins mit Stärke, Emulgatoren und Zitronensäure die Lichtstabilität beeinflussen.

Zur praktischen Umsetzung wurde ein Bewitterungsgerät verwendet, mit dem Proben für einen bestimmten Zeitraum konstanter Lichteinwirkung mit definierter Lichtintensität ausgesetzt werden können. Als Grundlage der Untersuchungen dienen Zuckerstreusel repräsentativ für Dragéeprodukte. Diese wurden zum einen mit Kurkuma-Extrakt gefärbt und in mit Schellack isolierter sowie nicht isolierter Form verwendet. Zum anderen wurde zum Färben der Streusel verkapseltes oder unverkapseltes Kurkumin eingesetzt. Die Farbveränderungen wurden über mehrere Bestrahlungsstunden hinweg mit einem optischen Spektrometer ermittelt. Die Ergebnisse zeigen, dass sowohl eine Isolierung der Zuckerstreusel mit Schellack als auch die Verwendung des verkapselten Farbstoffes den Farbabbau verlangsamen können.

Die angewendete Methodik zeigt sich als geeignet, photoinduzierte Farbveränderungen systematisch zu erfassen. Für die Verbesserung der Lichtstabilität von mit Kurkumin gefärbten Dragéeprodukten stellt sowohl die Isolierung des Endproduktes als auch die Verwendung verkapselten Kurkumins eine Möglichkeit dar. Zukünftige Untersuchungen könnten sich in diesem Zusammenhang mit weiteren Isolierungsmöglichkeiten, beispielsweise mit Wachsen, befassen.

Abstract

Food colourings are an essential component of the food industry, without them, especially confectionery would be difficult to market. They are often exposed to the effects of light from their production to the end-consumer. Dyes look colourful to humans when they absorb visible light. This colour impression is caused by chromophoric molecular structures, which can be partially destroyed by light-induced oxidation processes. The dye itself and the dyed products lose their colour and may no longer conform to consumer expectations.

Curcumin is a natural dye which is known to tend to degrade under the influence of light.

The purpose of this study is to systematically record the decrease in colour of curcumin-dyed dragée products under the influence of light. Therefore, it was examined whether and how the coating agent shellac or an encapsulation of curcumin with starch, emulsifiers and citric acid affect the light stability.

For practical implementation, a weathering device was used which can expose samples to constant light influence with defined light intensity for a certain period. Sugar sprinkles representative of dragée products were used as the basis for the examinations. On the one hand, these were dyed with curcuma extract and used in shellac-isolated and non-isolated form. On the other hand, encapsulated or non-encapsulated curcumin was used to dye the sprinkles. The colour changes were determined over several hours of irradiation using an optical spectrometer. The results show that both the isolation of the sugar sprinkles with shellac and the use of the encapsulated dye can slow down the colour degradation.

The applied methods seem to be suitable to systematically detect photo-induced colour changes. Both the isolation of the product and the use of encapsulated curcumin are possible ways to improve the light stability of curcumin-dyed dragée products. In this context, future investigations could deal with further isolation possibilities, for example with waxes.

Literatur

- Adam, Läugner, & Stark. (2009). *Physikalische Chemie und Biophysik* (5. Ausg.). Berlin: Springer-Verlag.
- AG Fragen und Ernährung. (2017). Sachstandsbericht zu "vegetarischen und veganen Lebensmitteln". Lebensmittelchemische Gesellschaft.
- Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (14.
 November 2007). Bioavailability of Curcumin: Problems and Promises.
 Molecular Pharmaceutics, 4(6), S. 807-818.
- Atlas. (2009). Suntest CPS+ SUNTEST Filter Combinations. Abgerufen am 18. Juli 2020 von Atlas - Material Testing Solutions: https://www.atlas-mts.de/-/media/ametekatlas/files/productsservices/standardinstruments/xenonweath ering/151_or_filter_combos_suntest_cps-xls-xxl.pdf?la=de-de
- Atlas. (2011). Suntest CPS+ Product Catalog. Abgerufen am 18. Juli 2020 von Atlas - Material Testing Solutions: https://www.atlas-mts.de/-/media/ametekatlas/files/productsservices/standardinstruments/xenonweath ering/151_or_atlas%20now%20catalog%202011.pdf?la=de-de
- Atlas. (2018). Suntest CPS+. Abgerufen am 26. März 2020 von Atlas Material Testing Solutions: https://www.atlas-mts.de/products/standardinstruments/xenon-weathering/suntest/cps
- Atlas. (2019). Suntest CPS+ Consumer Goods Testing. Abgerufen am 18. Juli 2020 von Atlas - Material Testing Solutions: https://www.atlas-mts.de/-/media/ametekatlas/files/productsservices/standardinstruments/xenonweath ering/151_or_2012-02-14-consumer%20goods%20testing.pdf?la=de-de
- Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2018). *Multivariate Analysemethoden* (15. Ausg.). Berlin: Springer-Verlag.
- Batels, W. (2011). Lebensmittelchemie (7. Ausg.). Berlin: Springer-Verlag.
- Becker-Carus, C., & Wendt, M. (2017). *Allgemeine Psychologie* (2. Ausg.). Berlin: Springer-Verlag.
- Berghofer, E., Schönlechner, R., & Schmidt, J. (2015). Neue Verfahren und Techniken bei der Lebensmittelherstellung und Lebensmittelversorgung -Bedeutung für Konsumentinnen und Konsumenten. Bundesministerium für Gesundheit, Wien.
- Beyerer, J., Leon, F. P., & Frese, C. (2016). Automatische Sichtpr
 üfung Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung
 (2. Ausg.). Berlin: Springer-Verlag.
- Brümmer, H. (Juli 2004). Einige Grundbegriffe der Farbenlehre, der Farbensysteme und des Farbmanagements. *Farbmanagement*.
- Buchner, N. (1999). Verpackung von Lebensmitteln: Lebensmitteltechnologische, verpackungstechnische und mikrobiologische Grundlagen. Berlin: Springer-Verlag.
- Buddrus, J., & Schmidt, B. (2015). *Grundlagen der Organischen Chemie* (5. Ausg.). Berlin/München/Bonn: Walter de Gruyter GmbH.
- Bühler, P. (2004). MediaFarbe analog & digital Farbe in der Medienproduktion (2. Ausg.). Berlin: Springer-Verlag.
- Bühler, P., Schlaich, P., & Sinner, D. (2018). *Digitale Farbe Farbgestaltung, Colormanagement, Farbverarbeitung.* Berlin: Springer-Verlag.
- DeRosa, M. C., & Crutchley, R. J. (2002). Photosensitized singlet oxygen and its applications. In *Coordination Chemistry Reviews* (S. 351-371). Ottawa, Canada: Elsevier Science B.V.
- Ebermann, R. (2008). Lehrbuch Lebensmittelchemie und Ernährung (2. Ausg.). Wien: Springer-Verlag.
- Ebner, F., Gehre, L. A., & Tallian, C. (2017). *Naturstoffe und Biochemie Ein Überblick für Chemiker und Biotechnologen.* Wiesbaden: Springer-Verlag.
- Eichler, J., & Eichler, H. (2010). *Laser Bauformen, Strahlführung. Anwendungen* (7. Ausg.). Berlin: Springer-Verlag.

- Förster, M. (2010). Umweltverträgliche Farben und Lackkonzepte. Herkunft, Produktion, Eigenschaften und Anwendungen von Schellack. *Berufsbildungswissenschaftliche Schriften, 4*, S. 81-88.
- Gossauer, A. (2006). Struktur und Reaktivität der Biomoleküle Eine Einführung in die Organische Chemie. Zürich: Verlag Helvetica Chimica Acta.
- Greuel, R. (2014a). Licht und Strahlung. In G. Roland, *Licht und Beleuchtung im Medienbereich* (S. 23-30). Carl Hanser Verlag.
- Greule, R. (2014b). Farbmetrische Grundlagen. In U. Schmidt (Hrsg.), *Licht und Beleuchtung im Medienbereich* (S. 71-89). München: Carl Hanser Verlag.
- Hädener, A., & Kaufmann, H. (2006). *Grundlagen der organischen Chemie* (11. Ausg.). Basel: Birkenhäuser Verlag.
- Heid, H., & Reith, J. (2010). *Malerfachkunde* (5. Ausg.). Wiesbaden: Vieweg + Teubner Verlag.
- Hesse, M., Meier, H., & Zeeh, B. (2005). *Spektroskopische Methoden in der organischen Chemie* (7. Ausg.). Stuttgart: Georg Thieme Verlag.
- Hiller, G. (2019). Farbabstände und Akzeptanz von Farben. In Buch4
 Farbmanagement Farbabstände, Metamerie und Toleranzberechnungen.
 Lawrenceville: Datacolor. Von
 https://www.datacolor.com/de/unternehmensloesungen/color-management-flipbook-book-4/ abgerufen
- Klöckl, I. (2015). *Chemie der Farbmittel.* Berlin/München/Boston: Walter de Gruyter GmbH.
- Konica Minolta. (2020a). Portable Spektralphotometer CM-700d / CM-600d. Abgerufen am 18. Juli 2020 von Konica Minolta - Measuring Instruments: https://www5.konicaminolta.eu/de/messgeraete/produkte/farbmessung/spek tralphotometer-portabel/cm-700d-cm-600d/einfuehrung.html
- Konica Minolta. (2020b). *Wie Farbmessgeräte "sehen"*. Abgerufen am 18. Juli 2020 von Konica Minolta - Measuring Instruments: https://www5.konicaminolta.eu/de/messgeraete/lernzentrum/farbmessungglanzmessung/colour/wie-farbmessgeraete-sehen.html

- Kopf, P. (1999). Untersuchungen zur photokatalytischen Oxidation organischer Wasserinhaltsstoffe mit Titandioxid und Ozon. Forschungszentrum Karlsruhe, Karlsruhe.
- Kotha, R. R., & Luthria, D. L. (13. August 2019). Curcumin: Biological,
 Pharmaceutical, Nutraceutical and Analytical Aspects. *Molecules*(24), S. 1-27.
- Kromidas, S. (2011). Validierung in der Analytik (2. Ausg.). Weinheim: Wiley-VCH Verlag & Co. KGaA.
- Landerer, S. (2000). Untersuchung der Photostabilität von kardiovaskulären Arzneistoffen und Photostabilisierung von Infusionslösungen. München, Ludwig-Maximilians-Universität München.
- Lindbloom, B. J. (13. Januar 2012). *Color Difference Calculator*. Abgerufen am 30. Juli 2020 von BruceLindbloom.com: http://www.brucelindbloom.com/index.html?Calc.html
- Lübbe, E. (2013). Farbempfindung, Farbbeschreibung und Farbmessung: Eine Formel für die Farbsättigung. Wiesbaden: Springer-Verlag.
- Mathias, D. (2018). *Fit und gesund von 1 bis Hundert Ernährung und Bewegung, Aktuelles medizinisches Wissen zur Gesundheit* (4. Ausg.). Berlin: Springer-Verlag.
- Meister, J., Franzen, R., & Apel, C. (1. April 2004). Grundlagen der Laserzahnheilkunde Das Licht. *LaserZahnheilkunde*, S. 57-61.
- Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (11. Januar 2017). The Essential Medicinal Chemistry of Curcumin. *Journal* of Medicinal Chemistry, 60., S. 1620-1637.
- Otterstätter, G. (2007). *Färbung von Lebensmitteln, Arzneimitteln, Kosmetika* (3. Ausg.). Hamburg: Behr's Verlag.
- Priyadarsini, K. I. (1. Dezember 2014). The Chemistry of Curcumin: From Extraction to Therapeutic Agent. *Molecules*(19), S. 20091-20112.

- Rimbach, G., Nagursky, J., & Erbersdobler, H. F. (2015). *Lebensmittelwarenkunde für Einsteiger* (2. Ausg.). Berlin: Springer-Verlag.
- Schrader, B., & Rademacher, P. (2009). *Kurzes Lehrbuch der organischen Chemie* (3. Ausg.). Berlin: Walter de Gruyter GmbH.
- Sies, H. (5. April 1990). Carotinoide. Deutsches Ärzteblatt, 14(87).
- Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. In H.-H.-U. D. Institut f
 ür Biochemie und Molekularbiologie I (Hrsg.), *Molecular Aspects of Medicine* (S. 345-351). D
 üsseldorf: Elsevier.

Tegge, G. (2004). Stärke und Stärkederivate (3. Ausg.). Hamburg: Behr's Verlag.

- Theobald, S. (April 2012). Lebensmittelzusatzstoffe. *Schweizer Zeitschrift für Ernährungsmedizin*, S. 36-41.
- Twiehaus, O. (2000). Farbsysteme als Entscheidungsparameter im Produktmarketing. Köln: Diplomica Verlag.
- Welsch, N., & Liebmann, C. C. (2012). *Farben Natur, Technik, Kunst* (3. Ausg.). Heidelberg: Spektrum Akademischer Verlag.
- Witt, K. (März 2005). Buntheit im System. (V. Network, Hrsg.) *Farbe und Lack*, S. 86-95.
- Zinth, W., & Zinth, U. (2013). *Optik: Lichtstrahlen Wellen Photonen* (4. Ausg.). München: Oldenbourg Verlag.

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Bachelorarbeit ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quelle kenntlich gemacht.

Datum: 10.08.2020

Unterschrift:

Anhang

Anmerkung: Die Originalrohdaten des Lichtstabilitätstests von Kurkumin befinden sich aufgrund des großen Umfangs in digitaler Version auf dem beiliegenden USB-Stick.

	Schokolir	nsen (gell)	Zuckerstr	eusel (rot	:)	Nonpar	Nonpareille (lila)		
		a*-	b*-		a*-	b*-		a*-	b*-	
Messwiederholungen	L*-Werte	Werte	Werte	L*-Werte	Werte	Werte	L*-Werte	Werte	Werte	
1	67,32	-4,46	31,01	55,78	46,80	25,58	50,60	38,35	-2,32	
2	74,12	-4,75	27,90	56,13	46,59	25,93	51,01	38,51	-2,42	
3	70,26	-5,38	37,49	56,65	47,27	26,19	50,86	38,35	-2,35	
4	78,18	-4,77	27,26	53,57	45,99	26,72	50,88	38,24	-2,49	
5	66,71	-4,44	26,79	54,79	45,74	26,22	51,38	38,08	-2,33	
6	66,67	-4,31	28,19	55,04	45,89	25,92	49,19	37,37	-2,13	
7	77,14	-5,00	29,18	54,79	46,25	26,93	52,49	38,09	-2,35	
8	73,24	-5,54	32,37	54,63	46,28	26,71	50,15	37,05	-2,34	
9	65,62	-4,42	28,75	54,19	46,35	26,63	51,24	37,27	-2,24	
10	64,11	-4,26	28,99	55,37	45,79	26,28	52,11	38,32	-2,46	
Mittelwert:	70,34	-4,73	29,79	55,09	46,30	26,31	50,99	37,96	-2,34	
Standardabweichung:	5,03	0,45	3,18	0,92	0,49	0,43	0,93	0,53	0,10	

Tabelle 1 L*a*b*-Farbmesswerte verschiedener Dragéeformen und ihre Standardabweichungen

Anzahl der			
Messungen	L*-Werte	a*-Werte	b*-Werte
1	97,42	-0,11	0,02
2	97,42	-0,11	0,02
3	97,42	-0,10	0,01
4	97,42	-0,11	0,02
5	97,42	-0,10	0,02
6	97,43	-0,10	0,02
7	97,42	-0,11	0,01
8	97,42	-0,11	0,01
9	97,43	-0,11	0,02
10	97,43	-0,10	0,01
Mittelwert:	97,42	-0,11	0,02
Standardabweichung:	0,00	0,01	0,01

Tabelle 2 L*a*b*-Messwerte der Kalibrierung des Farbmessgeräts

Tabelle 3 Messwerte der Kalibrierung des Bewitterungsgeräts

Anzahl Messungen	Bestrahlungsstärke E [W/m ²]
1	27,0
2	27,0
3	27,0
4	27,0
5	26,9
Mittelwert:	27,0
Standardabweichung:	0,0

	L*-Werte	a*-Werte	b*-Werte
Bestrahlungsdauer in <i>min</i>	fixiert	fixiert	fixiert
0	50,61	37,6	-2,93
30	50,7	37,31	-2,12
60	50,73	37,6	-1,34
90	51,45	37,16	-0,66
120	52,32	36,25	-0,09
150	51,66	36,56	0,49
180	51,98	35,88	1,28
210	52,03	35,73	1,96
240	51,74	35,89	2,51
270	53,19	35,23	2,71
300	52,19	35,11	3,64
330	53,28	34,82	3,57
360	53,33	34,93	4,11
390	54,46	34,12	4,44
420	52,62	35,14	4,5
450	53,26	34,99	4,93
480	53,57	34,61	4,96
510	53,85	34,31	5,45
540	54,18	34,01	6,08
570	54,02	34,28	5,5
600	54,95	33,86	6,14
630	56,03	33,02	6,62
660	56,1	32,68	6,6

Tabelle 4 L*a*b*-Messwerte der fixierten Nonpareille-Probe zur Untersuchung der Mobilität

Tabelle 5 L*a*b*-Messwerte der unfixierten Nonpareille-Probe zur Untersuchung der Mobilität

	L*Werte	a*-Werte	b*-Werte
Bestrahlungsdauer in <i>min</i>	unfixiert	unfixiert	unfixiert
0	49,34	38,55	-3,06
30	49,49	38,13	-1,97
60	52,13	38,01	-1,95
90	51,33	37,83	-1,56
120	51,58	38,41	-1,27
150	51,29	39	-2,26
180	51,37	39,03	-2,19
210	51,38	38,6	-1,54
240	50,44	37,99	-1,21
270	50,56	37,53	-1,52
300	51,06	37,96	-0,82
330	51,73	37,27	0,09
360	50,56	37,65	0,14
390	51,7	36,78	1,52
420	50,73	37,11	0,6

450	51,84	37,56	1,15
480	51,43	36,97	1,35
510	52,23	37,98	0,82
540	53,39	35,61	2,53
570	51,61	37,48	0,46
600	51,73	36,51	0,39
630	52,15	36,03	1,36
660	52,67	35,82	2,1

Tabelle 6 Δ E-Mittelwerte von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss

Kategorie	Mittelwert- schätzer	Standardfehler	Untergrenze (95%)	Obergrenz e (95%)
Behandlung-				
isoliert*Bestrahlungsdauer-0	0,000	0,122	-0,241	0,241
Behandlung-				
isoliert*Bestrahlungsdauer-60	15,982	0,122	15,741	16,223
Behandlung-				
isoliert*Bestrahlungsdauer-120	17,932	0,122	17,691	18,173
Behandlung-				
isoliert*Bestrahlungsdauer-180	19,654	0,122	19,413	19,895
Behandlung-				
isoliert*Bestrahlungsdauer-240	20,162	0,122	19,921	20,403
Behandlung-				
isoliert*Bestrahlungsdauer-300	21,192	0,122	20,951	21,433
Behandlung-				
isoliert*Bestrahlungsdauer-360	21,386	0,122	21,145	21,627
Behandlung-				
isoliert*Bestrahlungsdauer-420	21,552	0,122	21,311	21,793
Behandlung-				
isoliert*Bestrahlungsdauer-480	21,970	0,122	21,729	22,211
Behandlung-				
isoliert*Bestrahlungsdauer-540	22,052	0,122	21,811	22,293
Behandlung-				
isoliert*Bestrahlungsdauer-600	22,256	0,122	22,015	22,497
Behandlung-				
isoliert*Bestrahlungsdauer-660	23,024	0,122	22,783	23,265
Behandlung-	00.070			
isoliert*Bestrahlungsdauer-720	22,670	0,122	22,429	22,911
Benandlung-	00.000	0.400	00.007	00 400
Isoliert Bestranlungsdauer-780	22,868	0,122	22,627	23,109
Benandlung-	00 400	0.400	22.007	22.240
Isoliert Bestranlungsdauer-840	23,108	0,122	22,807	23,349
benanulung-	22.206	0 1 2 2	22 145	22 627
Robandlung	23,300	0,122	23,145	23,027
isoliert*Bestrahlungsdauer-960	23.070	0 122	22 820	23 311
Rehandlung-	23,070	0,122	22,029	23,311
isoliert*Bestrahlungsdauer-1020	23 270	0 122	23 029	23 511
Behandlung-	20,210	0,122	20,020	20,011
isoliert*Bestrahlungsdauer-1080	23 508	0 122	23 267	23 749
Behandlung-	20,000	0,122	20,207	20,140
isoliert*Bestrahlungsdauer-1140	23,326	0,122	23.085	23,567
Behandlung-	20,020	0,122	20,000	20,001
isoliert*Bestrahlungsdauer-1200	23,522	0,122	23,281	23,763
Behandlung-	20,022	0,122	20,201	_0,100
isoliert*Bestrahlungsdauer-1260	23.644	0,122	23,403	23.885

Behandlung-	00 504	0.400	00.050	00.005
Isoliert*Bestranlungsdauer-1320	23,594	0,122	23,353	23,835
isoliert*Bestrahlungsdauer-1380	23 568	0 122	23 327	23 809
Behandlung-	20,000	0,122	20,021	20,003
isoliert*Bestrahlungsdauer-1440	23.694	0.122	23.453	23.935
Behandlung-	_0,001	0,:==		
unisoliert*Bestrahlungsdauer-0	0,000	0,122	-0,241	0,241
Behandlung-				
unisoliert*Bestrahlungsdauer-60	20,366	0,122	20,125	20,607
Behandlung-				
unisoliert*Bestrahlungsdauer-120	21,872	0,122	21,631	22,113
Behandlung-				
unisoliert*Bestrahlungsdauer-180	22,960	0,122	22,719	23,201
Behandlung-	00.050	0.400	00.447	00 500
Unisoliert Bestranlungsdauer-240	23,358	0,122	23,117	23,599
Benandlung-	22 020	0 1 2 2	22 590	24.071
Behandlung	23,030	0,122	23,309	24,071
unisoliert*Bestrahlungsdauer-360	24 002	0 122	23 761	24 243
Behandlung-	21,002	0,122	20,101	21,210
unisoliert*Bestrahlungsdauer-420	23.996	0.122	23,755	24.237
Behandlung-	-,	- /	-,	, -
unisoliert*Bestrahlungsdauer-480	24,048	0,122	23,807	24,289
Behandlung-				
unisoliert*Bestrahlungsdauer-540	24,128	0,122	23,887	24,369
Behandlung-				
unisoliert*Bestrahlungsdauer-600	24,020	0,122	23,779	24,261
Behandlung-	04.000	0.400	04.005	04 507
Unisoliert Bestranlungsdauer-660	24,266	0,122	24,025	24,507
Benandlung-	24 252	0 122	24 011	24 402
Behandlung-	24,232	0,122	24,011	24,493
unisoliert*Bestrahlungsdauer-780	24 606	0 122	24 365	24 847
Behandlung-	,	0,:==	,000	,o
unisoliert*Bestrahlungsdauer-840	24,972	0,122	24,731	25,213
Behandlung-			·	
unisoliert*Bestrahlungsdauer-900	24,938	0,122	24,697	25,179
Behandlung-				
unisoliert*Bestrahlungsdauer-960	25,182	0,122	24,941	25,423
Behandlung-				
unisoliert [*] Bestrahlungsdauer-	05 000	0.400	04 704	05 070
1020 Behandlung	25,032	0,122	24,791	25,273
Denandiung-				
1080	25.016	0 122	24 775	25 257
Behandlung-	20,010	0,122	21,770	20,207
unisoliert*Bestrahlungsdauer-				
1140	25,136	0,122	24,895	25,377
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1200	25,136	0,122	24,895	25,377
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1260 Data an alloration	25,150	0,122	24,909	25,391
Benandlung-				
	25 150	0 122	24 000	25 201
Behandlung-	20,100	0,122	24,909	20,391
unisoliert*Bestrahlungsdauer-				
1380	25.122	0.122	24.881	25.363
Behandlung-	,	-,	,	
unisoliert*Bestrahlungsdauer-				
1440	25,228	0,122	24,987	25,469

Tabelle 7 L*-Mittelwerte von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten

Zuckerstreuseln unter Lichteinfluss

Kategorie	Mittelwert- schätzer	Standardfehler	Untergrenze (95%)	Obergrenze (95%)
Behandlung-				
isoliert*Bestrahlungsdauer-0	88,224	0,250	87,732	88,716
Behandlung-				
isoliert*Bestrahlungsdauer-60	90,540	0,250	90,048	91,032
Behandlung-		0.050		
Isoliert*Bestrahlungsdauer-120	89,814	0,250	89,322	90,306
Benandlung- isoliert*Bestrablungsdauer-180	01 008	0.250	90.516	91 500
Rehandlung-	91,000	0,230	90,510	91,500
isoliert*Bestrahlungsdauer-240	91 282	0 250	90 790	91 774
Behandlung-	01,202	0,200	00,100	01,111
isoliert*Bestrahlungsdauer-300	91,242	0,250	90,750	91,734
Behandlung-			•	
isoliert*Bestrahlungsdauer-360	91,626	0,250	91,134	92,118
Behandlung-				
isoliert*Bestrahlungsdauer-420	91,294	0,250	90,802	91,786
Behandlung-				
isoliert*Bestrahlungsdauer-480	91,850	0,250	91,358	92,342
Behandlung-	04,000	0.050	04.440	00.004
Isoliert*Bestrahlungsdauer-540	91,602	0,250	91,110	92,094
Benandlung-	04 000	0.250	01 220	02.214
Robondlung	91,622	0,250	91,330	92,314
isoliert*Bestrablungsdauer-660	02 002	0.250	92 500	03 /8/
Behandlung-	92,992	0,230	92,500	33,404
isoliert*Bestrahlungsdauer-720	92,240	0.250	91,748	92,732
Behandlung-				
isoliert*Bestrahlungsdauer-780	92,462	0,250	91,970	92,954
Behandlung-				
isoliert*Bestrahlungsdauer-840	92,924	0,250	92,432	93,416
Behandlung-				
isoliert*Bestrahlungsdauer-900	93,694	0,250	93,202	94,186
Behandlung-	00,400	0.050	04.004	00.070
Isoliert Bestranlungsdauer-960	92,486	0,250	91,994	92,978
benandlung- isoliert*Bestrahlungsdauer-1020	02 //0	0.250	01 0/8	02 032
Behandlung-	32,440	0,230	31,340	92,932
isoliert*Bestrahlungsdauer-1080	92,848	0.250	92,356	93,340
Behandlung-	02,010	0,200	01,000	00,010
isoliert*Bestrahlungsdauer-1140	92,956	0,250	92,464	93,448
Behandlung-				
isoliert*Bestrahlungsdauer-1200	93,246	0,250	92,754	93,738
Behandlung-				
isoliert*Bestrahlungsdauer-1260	93,208	0,250	92,716	93,700
Behandlung-	00.040	0.050	00.450	
Isoliert*Bestrahlungsdauer-1320	92,942	0,250	92,450	93,434
Behandlung-	02.240	0.250	01 040	02.022
Behandlung	92,340	0,250	91,040	92,032
isoliert*Bestrahlungsdauer-1///0	92 878	0.250	02 386	93 370
Behandlung-	32,070	0,200	32,300	33,370
unisoliert*Bestrahlungsdauer-0	89.718	0.250	89.226	90.210
Behandlung-		0,200		50,2.0
unisoliert*Bestrahlungsdauer-60	93,690	0,250	93,198	94,182
Behandlung-				
unisoliert*Bestrahlungsdauer-120	93,594	0,250	93,102	94,086

Behandlung-				
unisoliert*Bestrahlungsdauer-180	94,102	0,250	93,610	94,594
Behandlung-				
unisoliert*Bestrahlungsdauer-240	94,460	0,250	93,968	94,952
Behandlung-				
unisoliert*Bestrahlungsdauer-300	94,796	0,250	94,304	95,288
Behandlung-				
unisoliert*Bestrahlungsdauer-360	94,384	0,250	93,892	94,876
Behandlung-				
unisoliert*Bestrahlungsdauer-420	94,078	0,250	93,586	94,570
Behandlung-			·	
unisoliert*Bestrahlungsdauer-480	93,806	0,250	93,314	94,298
Behandlung-				
unisoliert*Bestrahlungsdauer-540	93.324	0.250	92.832	93.816
Behandlung-	/ -	-,	- 1)
unisoliert*Bestrahlungsdauer-600	93,476	0,250	92,984	93,968
Behandlung-	,	,	,	,
unisoliert*Bestrahlungsdauer-660	93.822	0.250	93.330	94.314
Behandlung-	, -	-,	,	- ,-
unisoliert*Bestrahlungsdauer-720	93.678	0.250	93.186	94.170
Behandlung-		-,	,	- , -
unisoliert*Bestrahlungsdauer-780	94.286	0.250	93.794	94,778
Behandlung-		-,		
unisoliert*Bestrahlungsdauer-840	94.812	0.250	94.320	95.304
Behandlung-	- 1-	-,	- ,	,
unisoliert*Bestrahlungsdauer-900	94.698	0.250	94.206	95.190
Behandlung-		-,	- ,	,
unisoliert*Bestrahlungsdauer-960	94.830	0.250	94.338	95.322
Behandlung-		-,	- ,) -
unisoliert*Bestrahlungsdauer-				
1020	94,392	0,250	93,900	94,884
Behandlung-				,
unisoliert*Bestrahlungsdauer-				
1080	93,906	0,250	93,414	94,398
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1140	94,252	0,250	93,760	94,744
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1200	94,250	0,250	93,758	94,742
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1260	94,446	0,250	93,954	94,938
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1320	94,588	0,250	94,096	95,080
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1380	94,018	0,250	93,526	94,510
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1440	94,348	0,250	93,856	94,840

Tabelle 8 a*-Mittelwerte von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss

Kategorie	Mittelwert- schätzer	Standardfehler	Untergrenze (95%)	Obergrenze (95%)
Behandlung-				
isoliert*Bestrahlungsdauer-0	-7,952	0,038	-8,027	-7,877
Behandlung-				
isoliert*Bestrahlungsdauer-60	-2,242	0,038	-2,317	-2,167
Behandlung-				
isoliert*Bestrahlungsdauer-120	-1,474	0,038	-1,549	-1,399
Behandlung-				
isoliert*Bestrahlungsdauer-180	-0,922	0,038	-0,997	-0,847
Behandlung-				
isoliert*Bestrahlungsdauer-240	-0,840	0,038	-0,915	-0,765
Behandlung-	0 500	0.000	0.000	0.450
Isoliert-Bestranlungsdauer-300	-0,528	0,038	-0,603	-0,453
Benandlung-	0.000	0.020	0.440	0.000
Isoliert Bestranlungsdauer-360	-0,368	0,038	-0,443	-0,293
Benandlung-	0.202	0.020	0 457	0.207
Robandlung	-0,362	0,038	-0,457	-0,307
isoliert*Bestrahlungsdauer-480	-0.362	0.038	-0.437	-0.287
Rehandlung-	-0,302	0,030	-0,437	-0,207
isoliert*Bestrahlungsdauer-540	-0 272	0.038	-0.347	-0 197
Behandlung-	0,212	0,000	0,017	0,107
isoliert*Bestrahlungsdauer-600	-0.194	0.038	-0.269	-0.119
Behandlung-	0,101	0,000	0,200	0,110
isoliert*Bestrahlungsdauer-660	-0.214	0.038	-0.289	-0.139
Behandlung-	- ,			-,
isoliert*Bestrahlungsdauer-720	-0,128	0,038	-0,203	-0,053
Behandlung-				
isoliert*Bestrahlungsdauer-780	-0,070	0,038	-0,145	0,005
Behandlung-				
isoliert*Bestrahlungsdauer-840	-0,140	0,038	-0,215	-0,065
Behandlung-				
isoliert*Bestrahlungsdauer-900	-0,188	0,038	-0,263	-0,113
Behandlung-	0.070	0.000	0.454	0.004
Isoliert Bestranlungsdauer-960	-0,076	0,038	-0,151	-0,001
Benandlung-	0.004	0.020	0.070	0.074
Reheadling	-0,004	0,038	-0,079	0,071
benanulung- isoliert*Bestrahlungsdauer-1080	-0.058	0.038	-0.133	0.017
Behandlung-	-0,038	0,030	-0,133	0,017
isoliert*Bestrahlungsdauer-1140	-0 100	0.038	-0 175	-0.025
Behandlung-	0,100	0,000	0,170	0,020
isoliert*Bestrahlungsdauer-1200	-0.086	0.038	-0.161	-0.011
Behandlung-	0,000	0,000		
isoliert*Bestrahlungsdauer-1260	-0,066	0,038	-0,141	0,009
Behandlung-	,	· · · ·	,	,
isoliert*Bestrahlungsdauer-1320	-0,036	0,038	-0,111	0,039
Behandlung-				
isoliert*Bestrahlungsdauer-1380	-0,026	0,038	-0,101	0,049
Behandlung-				
isoliert*Bestrahlungsdauer-1440	-0,032	0,038	-0,107	0,043
Behandlung-				
unisoliert*Bestrahlungsdauer-0	-5,652	0,038	-5,727	-5,577
Behandlung-				
unisoliert*Bestrahlungsdauer-60	-1,906	0,038	-1,981	-1,831
Behandlung-	1 000			4
unisoliert*Bestrahlungsdauer-120	-1,336	0,038	-1,411	-1,261
Benandlung-	0.000	0.000	0.067	0.047
unisolieri destraniungsdauer-180	-0,892	0,038	-0,967	-0,817

Behandlung-				
unisoliert*Bestrahlungsdauer-240	-0,686	0,038	-0,761	-0,611
Behandlung-	,	,	,	•
unisoliert*Bestrahlungsdauer-300	-0,530	0,038	-0,605	-0,455
Behandlung-				
unisoliert*Bestrahlungsdauer-360	-0,400	0,038	-0,475	-0,325
Behandlung-				
unisoliert*Bestrahlungsdauer-420	-0.344	0.038	-0,419	-0,269
Behandlung-				
unisoliert*Bestrahlungsdauer-480	-0.284	0.038	-0,359	-0,209
Behandlung-	,	,	,	,
unisoliert*Bestrahlungsdauer-540	-0,266	0,038	-0,341	-0,191
Behandlung-				
unisoliert*Bestrahlungsdauer-600	-0.232	0.038	-0,307	-0,157
Behandlung-	,	,	,	,
unisoliert*Bestrahlungsdauer-660	-0,198	0.038	-0,273	-0,123
Behandlung-	,	,	,	•
unisoliert*Bestrahlungsdauer-720	-0,156	0,038	-0,231	-0,081
Behandlung-	,	,	,	,
unisoliert*Bestrahlungsdauer-780	-0.096	0.038	-0,171	-0,021
Behandlung-	,	,	,	,
unisoliert*Bestrahlungsdauer-840	-0,110	0,038	-0,185	-0,035
Behandlung-	,	,	,	,
unisoliert*Bestrahlungsdauer-900	-0.078	0.038	-0,153	-0,003
Behandlung-				
unisoliert*Bestrahlungsdauer-960	-0,076	0,038	-0,151	-0,001
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1020	-0,024	0,038	-0,099	0,051
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1080	-0,026	0,038	-0,101	0,049
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1140	-0,028	0,038	-0,103	0,047
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1200	-0,020	0,038	-0,095	0,055
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1260	0,002	0,038	-0,073	0,077
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1320	-0,002	0,038	-0,077	0,073
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1380	0,016	0,038	-0,059	0,091
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1440	0,026	0,038	-0,049	0,101

Tabelle 9 b*-Mittelwerte von mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten Zuckerstreuseln unter Lichteinfluss

Behandlung- isoliert*Bestrahlungsdauer-0 78,976 0,231 78,520 79,432 Behandlung- isoliert*Bestrahlungsdauer-60 25,644 0,231 25,188 26,100 Behandlung- isoliert*Bestrahlungsdauer-120 20,900 0,231 20,444 21,356 Behandlung- isoliert*Bestrahlungsdauer-180 17,670 0,231 17,214 18,126 Behandlung- isoliert*Bestrahlungsdauer-240 16,408 0,231 15,952 16,864 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,94	Kategorie	Mittelwert- schätzer	Standardfehler	Untergrenze (95%)	Obergrenze (95%)					
isoliert*Bestrahlungsdauer-0 78,976 0,231 78,520 79,432 Behandlung- isoliert*Bestrahlungsdauer-60 25,644 0,231 25,188 26,100 Behandlung- isoliert*Bestrahlungsdauer-120 20,900 0,231 20,444 21,356 Behandlung- isoliert*Bestrahlungsdauer-180 17,670 0,231 17,214 18,126 Behandlung- isoliert*Bestrahlungsdauer-240 16,408 0,231 15,952 16,864 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940	Behandlung-									
Behandlung- isoliert*Bestrahlungsdauer-60 25,644 0,231 25,188 26,100 Behandlung- isoliert*Bestrahlungsdauer-120 20,900 0,231 20,444 21,356 Behandlung- isoliert*Bestrahlungsdauer-180 17,670 0,231 17,214 18,126 Behandlung- isoliert*Bestrahlungsdauer-240 16,408 0,231 15,952 16,864 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-300 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10	isoliert*Bestrahlungsdauer-0	78,976	0,231	78,520	79,432					
isoliert*Bestrahlungsdauer-60 25,644 0,231 25,188 26,100 Behandlung- isoliert*Bestrahlungsdauer-120 20,900 0,231 20,444 21,356 Behandlung- isoliert*Bestrahlungsdauer-180 17,670 0,231 17,214 18,126 Behandlung- isoliert*Bestrahlungsdauer-240 16,408 0,231 15,952 16,864 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530	Behandlung-									
Behandlung- isoliert*Bestrahlungsdauer-120 20,900 0,231 20,444 21,356 Behandlung- isoliert*Bestrahlungsdauer-180 17,670 0,231 17,214 18,126 Behandlung- isoliert*Bestrahlungsdauer-240 16,408 0,231 15,952 16,864 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 13,684 14,996 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 1	isoliert*Bestrahlungsdauer-60	25,644	0,231	25,188	26,100					
Isoliert*Bestrahlungsdauer-120 20,900 0,231 20,444 21,356 Behandlung- isoliert*Bestrahlungsdauer-180 17,670 0,231 17,214 18,126 Behandlung- isoliert*Bestrahlungsdauer-240 16,408 0,231 15,952 16,864 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,948 0,231 10,530	Behandlung-	00.000	0.004	00.444	04.050					
Behandlung- isoliert*Bestrahlungsdauer-180 17,670 0,231 17,214 18,126 Behandlung- isoliert*Bestrahlungsdauer-240 16,408 0,231 15,952 16,864 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-780 10,438 0,231	Isoliert [®] Bestranlungsdauer-120	20,900	0,231	20,444	21,356					
Isoliert Bestrahlungsdauer-160 17,070 0,231 17,214 18,120 Behandlung- isoliert*Bestrahlungsdauer-240 16,408 0,231 15,952 16,864 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-300 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-600 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982	Benandlung-	17 670	0.221	17 214	19 126					
Bonnandung- isoliert*Bestrahlungsdauer-240 16,408 0,231 15,952 16,864 Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,	Behandlung-	17,070	0,231	17,214	10,120					
Behandlung- isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-780 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	isoliert*Bestrahlungsdauer-240	16.408	0.231	15.952	16.864					
isoliert*Bestrahlungsdauer-300 14,460 0,231 14,004 14,916 Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-600 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-600 10,726 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982	Behandlung-	,	,	,						
Behandlung- isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-600 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-600 10,726 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	isoliert*Bestrahlungsdauer-300	14,460	0,231	14,004	14,916					
isoliert*Bestrahlungsdauer-360 14,140 0,231 13,684 14,596 Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	Behandlung-									
Behandlung- isoliert*Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-780 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	isoliert*Bestrahlungsdauer-360	14,140	0,231	13,684	14,596					
Isoliert Bestrahlungsdauer-420 13,410 0,231 12,954 13,866 9Behandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- - - - - - - isoliert*Bestrahlungsdauer-600 12,020 0,231 10,270 11,182 - Behandlung- -	Behandlung-	10,110	0.004	10.054	40.000					
9Benandlung- isoliert*Bestrahlungsdauer-480 12,656 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	Isoliert [®] Bestranlungsdauer-420	13,410	0,231	12,954	13,866					
Isoliert Destrahlungsdauer-460 12,000 0,231 12,200 13,112 Behandlung- isoliert*Bestrahlungsdauer-540 12,378 0,231 11,922 12,834 Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-780 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	9Benandlung- isoliort*Bostrablungsdauer 480	12 656	0.221	12 200	12 112					
Definition Definition <thdefinition< th=""> Definition Definiti</thdefinition<>	Behandlung-	12,050	0,231	12,200	13,112					
Behandlung- isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,042 10,894	isoliert*Bestrahlungsdauer-540	12.378	0.231	11.922	12.834					
isoliert*Bestrahlungsdauer-600 12,020 0,231 11,564 12,476 Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	Behandlung-	,	0,201	,•==	,					
Behandlung- isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	isoliert*Bestrahlungsdauer-600	12,020	0,231	11,564	12,476					
isoliert*Bestrahlungsdauer-660 10,726 0,231 10,270 11,182 Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	Behandlung-									
Behandlung- isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	isoliert*Bestrahlungsdauer-660	10,726	0,231	10,270	11,182					
isoliert*Bestrahlungsdauer-720 11,396 0,231 10,940 11,852 Behandlung- isoliert*Bestrahlungsdauer-780 10,986 0,231 10,530 11,442 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung- isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894	Behandlung-									
Behandlung- isoliert*Bestrahlungsdauer-78010,9860,23110,53011,442Behandlung- isoliert*Bestrahlungsdauer-84010,4380,2319,98210,894Behandlung- isoliert*Destrahlungsdauer-84010,0000,0210,04010,231	isoliert*Bestrahlungsdauer-720	11,396	0,231	10,940	11,852					
Isoliert Bestrahlungsdauer-76010,9800,23110,53011,442Behandlung- isoliert*Bestrahlungsdauer-84010,4380,2319,98210,894Behandlung- isoliert*Bestrahlungsdauer-84010,4380,2319,98210,894	Behandlung-	10.096	0.021	10 520	11 112					
isoliert*Bestrahlungsdauer-840 10,438 0,231 9,982 10,894 Behandlung-	Rebandlung	10,986	0,231	10,530	11,442					
Behandlung-	isoliert*Bestrahlungsdauer-840	10 438	0 231	9 982	10 894					
	Behandlung-	10,100	0,201	0,002	10,001					
isoliert"Bestraniungsdauer-900 [10,098] 0,231 9,642 10,554	isoliert*Bestrahlungsdauer-900	10,098	0,231	9,642	10,554					
Behandlung-	Behandlung-									
isoliert*Bestrahlungsdauer-960 10,648 0,231 10,192 11,104	isoliert*Bestrahlungsdauer-960	10,648	0,231	10,192	11,104					
Behandlung-	Behandlung-									
Isoliert*Bestrahlungsdauer-1020 10,174 0,231 9,718 10,630	isoliert*Bestrahlungsdauer-1020	10,174	0,231	9,718	10,630					
Behandlung-	Behandlung-	0.976	0.021	0.420	10 222					
Isolieit Destianiungsuauer-1000 9,070 0,251 9,420 10,552 Bebandlung-	Behandlung-	9,070	0,231	9,420	10,332					
isoliert*Bestrahlungsdauer-1140 10.234 0.231 9.778 10.690	isoliert*Bestrahlungsdauer-1140	10 234	0 231	9 778	10 690					
Behandlung-	Behandlung-	10,201	0,201	0,110	10,000					
isoliert*Bestrahlungsdauer-1200 9,614 0,231 9,158 10,070	isoliert*Bestrahlungsdauer-1200	9,614	0,231	9,158	10,070					
Behandlung-	Behandlung-									
isoliert*Bestrahlungsdauer-1260 9,476 0,231 9,020 9,932	isoliert*Bestrahlungsdauer-1260	9,476	0,231	9,020	9,932					
Behandlung-	Behandlung-									
isoliert*Bestrahlungsdauer-1320 9,436 0,231 8,980 9,892	isoliert*Bestrahlungsdauer-1320	9,436	0,231	8,980	9,892					
Benandlung- Liseliert*Bestrehlungedeuer 1290 0.652 0.221 0.106 10.109	Benandlung-	0.652	0.021	0.106	10 109					
Isolieit Destianiungsuauer-1360 9,052 0,251 9,190 10,106	Behandlung	9,052	0,231	9,190	10,100					
isoliert*Bestrahlungsdauer-1440 9.356 0.231 8.900 9.812	isoliert*Bestrahlungsdauer-1440	9 356	0 231	8 900	9 812					
Behandlung-	Behandlung-	0,000	0,201	0,000	0,012					
unisoliert*Bestrahlungsdauer-0 78,028 0,231 77,572 78,484	unisoliert*Bestrahlungsdauer-0	78,028	0,231	77,572	78,484					
Behandlung-	Behandlung-									
unisoliert*Bestrahlungsdauer-60 15,994 0,231 15,538 16,450	unisoliert*Bestrahlungsdauer-60	15,994	0,231	15,538	16,450					
Behandlung-	Behandlung-									
unisoliert*Bestrahlungsdauer-120 12,820 0,231 12,364 13,276	unisoliert*Bestrahlungsdauer-120	12,820	0,231	12,364	13,276					
Demanduung- unisoliert*Bestrahlungsdauer-180 10.852 0.231 10.396 11.308	penangiung- unisoliert*Bestrahlungsdauer-180	10 852	N 231	10 396	11 308					

Behandlung-				
unisoliert*Bestrahlungsdauer-240	9,948	0,231	9,492	10,404
Behandlung-				
unisoliert*Bestrahlungsdauer-300	9,286	0,231	8,830	9,742
Behandlung-				
unisoliert*Bestrahlungsdauer-360	8,854	0,231	8,398	9,310
Behandlung-				
unisoliert*Bestrahlungsdauer-420	8,684	0,231	8,228	9,140
Behandlung-				
unisoliert*Bestrahlungsdauer-480	8,468	0,231	8,012	8,924
Behandlung-				
unisoliert*Bestrahlungsdauer-540	8,436	0,231	7,980	8,892
Behandlung-				
unisoliert*Bestrahlungsdauer-600	8,526	0,231	8,070	8,982
Behandlung-				
unisoliert*Bestrahlungsdauer-660	8,018	0,231	7,562	8,474
Behandlung-				
unisoliert*Bestrahlungsdauer-720	7,966	0,231	7,510	8,422
Behandlung-				
unisoliert*Bestrahlungsdauer-780	7,336	0,231	6,880	7,792
Behandlung-				
unisoliert*Bestrahlungsdauer-840	6,998	0,231	6,542	7,454
Behandlung-				
unisoliert*Bestrahlungsdauer-900	6,870	0,231	6,414	7,326
Behandlung-				
unisoliert*Bestrahlungsdauer-960	6,618	0,231	6,162	7,074
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1020	6,588	0,231	6,132	7,044
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1080	6,668	0,231	6,212	7,124
Behandlung-				
unisoliert*Bestrahlungsdauer-				
1140	6,712	0,231	6,256	7,168
Behandlung-				
unisoliert*Bestrahlungsdauer-	0.500	0.004	0.400	7 0 40
1200	6,592	0,231	6,136	7,048
Behandlung-				
unisoliert"Bestranlungsdauer-	0,400	0.004	5 070	0.000
1260 Data an allow a	6,426	0,231	5,970	6,882
Benandlung-				
unisolien bestranlungsdauer-	6.069	0.001	E 010	6 704
Robandlung	0,∠08	0,231	5,612	0,724
Denanulully- unisoliert*Bestrablungsdauer				
1380	6 376	0 224	5 970	6 792
Behandlung-	0,320	0,231	5,670	0,702
unisoliert*Bestrahlungedauer-				
1440	6 156	0 231	5 700	6 6 1 2
1110	0,100	0,201	5,700	0,012

Tabelle 10 ΔE-Mittelwerte von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Kategorie	Mittelwert- schätzer	Standardfehler	Untergrenze (95%)	Obergrenze (95%)
Herstellung-	0.000	0 184	-0 362	0 362
Herstellung-	0,000	0,104	-0,302	0,302
unverkapselt*Bestrahlungsdauer-	1 538	0 184	1 176	1 900
Herstellung-	1,000	0,101	1,170	1,000
unverkapselt*Bestrahlungsdauer-	3.410	0.184	3.048	3,772
Herstellung- unverkapselt*Bestrahlungsdauer- 180	4,540	0.184	4,178	4,902
Herstellung- unverkapselt*Bestrahlungsdauer- 240	4.770	0.184	4.408	5.132
Herstellung-	.,	0,.01	.,	0,102
unverkapselt*Bestrahlungsdauer-	5,404	0.184	5.042	5,766
Herstellung- unverkapselt*Bestrahlungsdauer-	5,101	0.101	5,512	0,74
360 Herstellung-	5,912	0,184	5,550	6,274
unverkapselt*Bestrahlungsdauer- 420	6,476	0,184	6,114	6,838
Herstellung- unverkapselt*Bestrahlungsdauer- 480	6,760	0,184	6,398	7,122
Herstellung- unverkapselt*Bestrahlungsdauer- 540	6,738	0,184	6,376	7,100
Herstellung- unverkapselt*Bestrahlungsdauer- 600	7,734	0.184	7.372	8.096
Herstellung- unverkapselt*Bestrahlungsdauer- 660	7,634	0,184	7,272	7,996
Herstellung- unverkapselt*Bestrahlungsdauer- 720	7,830	0,184	7,468	8,192
Herstellung- unverkapselt*Bestrahlungsdauer- 780	10,090	0,184	9,728	10,452
Herstellung- unverkapselt*Bestrahlungsdauer- 840	9,454	0,184	9,092	9,816
Herstellung- unverkapselt*Bestrahlungsdauer- 900	9,436	0,184	9,074	9,798
Herstellung- unverkapselt*Bestrahlungsdauer- 960	10,228	0,184	9,866	10,590
Herstellung- unverkapselt*Bestrahlungsdauer- 1020	10,496	0,184	10,134	10,858
Herstellung- unverkapselt*Bestrahlungsdauer- 1080	11,210	0,184	10,848	11,572

Herstellung-				
unverkapselt*Bestrahlungsdauer-				
1140	10,594	0,184	10,232	10,956
Herstellung-				
	11 1/12	0 184	11 080	11 804
Herstellung-	11,442	0,104	11,000	11,004
unverkapselt*Bestrahlungsdauer-				
1260	10,780	0,184	10,418	11,142
Herstellung-	,	,	,	
unverkapselt*Bestrahlungsdauer-				
1320	11,196	0,184	10,834	11,558
Herstellung-				
unverkapselt*Bestrahlungsdauer-	11.000	0.404	40.000	14.050
1380 Herotollung	11,288	0,184	10,926	11,650
nerstellung-				
	11 422	0 184	11.060	11 784
Herstellung-	11,122	0,101	11,000	11,701
verkapselt*Bestrahlungsdauer-0	0,000	0,184	-0,362	0,362
Herstellung-				
verkapselt*Bestrahlungsdauer-60	1,316	0,184	0,954	1,678
Herstellung-				
verkapselt*Bestrahlungsdauer-120	2,050	0,184	1,688	2,412
Herstellung-	1 0 10			
verkapselt [*] Bestrahlungsdauer-180	1,846	0,184	1,484	2,208
Herstellung-	2 / 29	0 194	2.076	2 800
Herstellung-	2,430	0,104	2,070	2,000
verkapselt*Bestrahlungsdauer-300	2 596	0 184	2 234	2 958
Herstellung-	2,000	0,101	2,201	2,000
verkapselt*Bestrahlungsdauer-360	2,224	0,184	1,862	2,586
Herstellung-				
verkapselt*Bestrahlungsdauer-420	2,568	0,184	2,206	2,930
Herstellung-				
verkapselt*Bestrahlungsdauer-480	2,600	0,184	2,238	2,962
Herstellung-	2,092	0 104	2 7 2 0	2 4 4 4
Horetollung	3,062	0,164	2,720	3,444
verkapselt*Restrablungsdauer-600	3 042	0 184	2 680	3 404
Herstellung-	0,012	0,101	2,000	0,101
verkapselt*Bestrahlungsdauer-660	3,254	0,184	2,892	3,616
Herstellung-				
verkapselt*Bestrahlungsdauer-720	3,474	0,184	3,112	3,836
Herstellung-				
verkapselt*Bestrahlungsdauer-780	3,702	0,184	3,340	4,064
Herstellung-	4 00 4	0.404	0.700	4 450
Verkapselt Bestranlungsdauer-840	4,094	0,184	3,732	4,456
nerstellung-	4 1 9 6	0 184	3 834	1 558
Herstellung-	4,190	0,104	5,054	4,000
verkapselt*Bestrahlungsdauer-960	3.762	0.184	3.400	4.124
Herstellung-				.,
verkapselt*Bestrahlungsdauer-				
1020	4,124	0,184	3,762	4,486
Herstellung-				
verkapselt*Bestrahlungsdauer-		- · - ·		
1080	4,568	0,184	4,206	4,930
nersienung-				
1140	A 728	0 18/	4 366	5 090
Herstellung-	-+,120	0,104	-1,000	0,000
verkapselt*Bestrahlungsdauer-				
1200	4,610	0,184	4,248	4,972

Herstellung- verkapselt*Bestrahlungsdauer-				
1260	4,560	0,184	4,198	4,922
Herstellung-				
verkapselt*Bestrahlungsdauer-				
1320	4,850	0,184	4,488	5,212
Herstellung-				
verkapselt*Bestrahlungsdauer-				
1380	4,780	0,184	4,418	5,142
Herstellung-				
verkapselt*Bestrahlungsdauer-				
1440	5,286	0,184	4,924	5,648

Tabelle 11 L*-Mittelwerte von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Kategorie	Mittelwert- schätzer	Standardfehler	Untergrenze (95%)	Obergrenze (95%)
Herstellung-				
unverkapselt*Bestrahlungsdauer-0	88,188	0,214	87,766	88,610
Herstellung-				
unverkapselt*Bestrahlungsdauer-60	86,742	0,214	86,320	87,164
Herstellung-	07 57 4	0.014	07.450	07.000
unverkapselt [®] Bestranlungsdauer-120	87,574	0,214	87,152	87,996
Herstellung-	07.040	0.014	07 440	00.000
	07,040	0,214	07,410	00,202
Herstellung-	97 956	0.214	97 424	00 270
Herstellung	07,000	0,214	07,434	00,270
unverkanselt*Bestrahlungsdauer-300	88 976	0 214	88 554	80 208
Herstellung-	00,070	0,214	00,004	00,000
unverkapselt*Bestrahlungsdauer-360	88 682	0 214	88 260	89 104
Herstellung-	00,002	0,211	00,200	
unverkapselt*Bestrahlungsdauer-420	89.130	0.214	88.708	89.552
Herstellung-	,	- 1		,
unverkapselt*Bestrahlungsdauer-480	89,228	0,214	88,806	89,650
Herstellung-				
unverkapselt*Bestrahlungsdauer-540	89,030	0,214	88,608	89,452
Herstellung-				
unverkapselt*Bestrahlungsdauer-600	89,892	0,214	89,470	90,314
Herstellung-				
unverkapselt*Bestrahlungsdauer-660	89,618	0,214	89,196	90,040
Herstellung-				
unverkapselt*Bestrahlungsdauer-720	89,714	0,214	89,292	90,136
Herstellung-	04.000	0.014	00.044	04.000
unverkapselt [®] Bestranlungsdauer-780	91,266	0,214	90,844	91,688
Herstellung-	00 524	0.214	00 112	00.056
	90,554	0,214	90,112	90,950
nerstellung-	90.054	0.214	80.632	00.476
Herstellung-	30,034	0,214	09,032	30,470
unverkapselt*Bestrahlungsdauer-960	90 662	0 214	90 240	91 084
Herstellung-	00,002	0,211	00,210	01,001
unverkapselt*Bestrahlungsdauer-				
1020	90.890	0.214	90.468	91.312
Herstellung-		,		,
unverkapselt*Bestrahlungsdauer-				
1080	91,334	0,214	90,912	91,756
Herstellung-				
unverkapselt*Bestrahlungsdauer-				
1140	90,824	0,214	90,402	91,246

Herstellung-				
unverkapselt*Bestrahlungsdauer-				
1200	91,284	0,214	90,862	91,706
Herstellung-				
1260	90 824	0 214	90 402	91 246
Herstellung-	00,021	0,211	00,102	01,210
unverkapselt*Bestrahlungsdauer-				
1320	91,084	0,214	90,662	91,506
Herstellung-				
unverkapselt*Bestrahlungsdauer-				
1380	91,182	0,214	90,760	91,604
Herstellung-				
	90 684	0.214	90 262	91 106
Herstellung-	50,004	0,214	50,202	51,100
verkapselt*Bestrahlungsdauer-0	86.458	0.214	86.036	86.880
Herstellung-		-,		
verkapselt*Bestrahlungsdauer-60	86,870	0,214	86,448	87,292
Herstellung-				
verkapselt*Bestrahlungsdauer-120	87,686	0,214	87,264	88,108
Herstellung-	00.574		00 (50	
verkapselt*Bestrahlungsdauer-180	86,574	0,214	86,152	86,996
Herstellung-	97 290	0.214	96 959	97 702
Herstellung-	07,200	0,214	00,000	07,702
verkapselt*Bestrahlungsdauer-300	87,736	0.214	87.314	88,158
Herstellung-	01,100	0,2	01,011	
verkapselt*Bestrahlungsdauer-360	86,734	0,214	86,312	87,156
Herstellung-				
verkapselt*Bestrahlungsdauer-420	87,172	0,214	86,750	87,594
Herstellung-				
verkapselt*Bestrahlungsdauer-480	86,658	0,214	86,236	87,080
Herstellung-	97 346	0.214	96.024	97 769
Herstellung-	07,340	0,214	00,924	07,700
verkapselt*Bestrahlungsdauer-600	87,236	0.214	86.814	87,658
Herstellung-		-,		
verkapselt*Bestrahlungsdauer-660	87,128	0,214	86,706	87,550
Herstellung-				
verkapselt*Bestrahlungsdauer-720	87,482	0,214	87,060	87,904
Herstellung-	07.000	0.014		07 744
Verkapselt Bestranlungsdauer-780	87,322	0,214	86,900	87,744
Herstellung-	88 526	0.214	88 104	88 0/8
Herstellung-	00,020	0,214	00,104	00,940
verkapselt*Bestrahlungsdauer-900	88,706	0,214	88,284	89,128
Herstellung-	,	,	,	•
verkapselt*Bestrahlungsdauer-960	88,776	0,214	88,354	89,198
Herstellung-				
verkapselt*Bestrahlungsdauer-1020	88,566	0,214	88,144	88,988
Herstellung-	00 740	0.014	00.000	00.404
Verkapselt Bestranlungsdauer-1080	88,712	0,214	88,290	89,134
nerstellung-	88 672	0.214	88 250	80.004
Herstellung-	00,072	0,214	00,230	09,094
verkapselt*Bestrahlungsdauer-1200	88.704	0.214	88.282	89.126
Herstellung-	,	- ,	, -	
verkapselt*Bestrahlungsdauer-1260	88,634	0,214	88,212	89,056
Herstellung-				
verkapselt*Bestrahlungsdauer-1320	88,662	0,214	88,240	89,084
Herstellung-	00 - 10		00.445	00.000
verkapseit"Bestranlungsdauer-1380	88,540	0,214	88,118	88,962
verkanselt*Bestrahlungedauer-1440	88 856	0.214	88 131	80 278
Verhapsen Destraniungsuader-1440	00,000	0,214	00,434	03,210

Tabelle 12 a*-Mittelwerte von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Kategorie	Mittelwert- schätzer	Standardfehler	Untergrenze (95%)	Obergrenze (95%)				
Herstellung-								
unverkapselt*Bestrahlungsdauer-0	6,236	0,095	6,049	6,423				
Herstellung-								
unverkapselt*Bestrahlungsdauer-60	6,912	0,095	6,725	7,099				
Herstellung-								
unverkapselt*Bestrahlungsdauer-120	6,136	0,095	5,949	6,323				
Herstellung-	5 000	0.005	E 404	F 70F				
Unverkapselt"Bestranlungsdauer-180	5,608	0,095	5,421	5,795				
Herstellung-	E 400	0.005	E 044	E 61E				
Horotollung	5,426	0,095	5,241	5,615				
Herstellung-	4 700	0.005	1 5 1 2	1 997				
Herstellung	4,700	0,095	4,010	4,007				
unverkanselt*Bestrahlungsdauer-360	1 152	0.095	1 265	4 639				
Herstellung-	7,732	0,030	4,200	4,000				
unverkapselt*Bestrahlungsdauer-420	4,146	0.095	3,959	4.333				
Herstellung-	1,110	0,000	0,000	1,000				
unverkapselt*Bestrahlungsdauer-480	3.896	0.095	3.709	4.083				
Herstellung-		-,		.,				
unverkapselt*Bestrahlungsdauer-540	3,956	0,095	3,769	4,143				
Herstellung-		· ·						
unverkapselt*Bestrahlungsdauer-600	3,442	0,095	3,255	3,629				
Herstellung-								
unverkapselt*Bestrahlungsdauer-660	3,586	0,095	3,399	3,773				
Herstellung-								
unverkapselt*Bestrahlungsdauer-720	3,336	0,095	3,149	3,523				
Herstellung-								
unverkapselt*Bestrahlungsdauer-780	2,602	0,095	2,415	2,789				
Herstellung-								
unverkapselt*Bestrahlungsdauer-840	2,962	0,095	2,775	3,149				
Herstellung-	0.000	0.005	0.044	0.005				
unverkapselt*Bestrahlungsdauer-900	3,098	0,095	2,911	3,285				
Herstellung-	2 9 2 6	0.005	2 620	2 0 1 2				
Unverkapseit Bestraniungsdauer-960	2,820	0,095	2,639	3,013				
Herstellung-								
	2 602	0.005	2 /15	2 790				
Herstellung	2,002	0,095	2,413	2,709				
unverkapselt*Bestrahlungsdauer-								
1080	2 460	0.095	2 273	2 647				
Herstellung-	2,100	0,000	2,210	2,011				
unverkapselt*Bestrahlungsdauer-								
1140	2,558	0,095	2,371	2,745				
Herstellung-	,	•	,	,				
unverkapselt*Bestrahlungsdauer-								
1200	2,504	0,095	2,317	2,691				
Herstellung-								
unverkapselt*Bestrahlungsdauer-								
1260	2,418	0,095	2,231	2,605				
Herstellung-								
unverkapselt*Bestrahlungsdauer-								
1320	2,246	0,095	2,059	2,433				
Herstellung-								
unverkapselt [*] Bestrahlungsdauer-	0.046		0.105	0 10-				
1380	2,310	0,095	2,123	2,497				

Herstellung-				
unverkapselt*Bestrahlungsdauer-				
1440	2,416	0,095	2,229	2,603
Herstellung-				·
verkapselt*Bestrahlungsdauer-0	4,276	0,095	4,089	4,463
Herstellung-	, -		,	,
verkapselt*Bestrahlungsdauer-60	4.338	0.095	4,151	4.525
Herstellung-	.,000	0,000	.,	.,020
verkapselt*Bestrahlungsdauer-120	4 022	0.095	3 835	4 209
Herstellung-	1,022	0,000	0,000	1,200
verkanselt*Bestrahlungsdauer-180	4 242	0.095	4 055	4 4 2 9
Herstellung-	.,	0,000	1,000	1,120
verkanselt*Bestrahlungsdauer-240	3 724	0.095	3 537	3 911
Herstellung-	0,724	0,000	0,001	0,011
verkanselt*Bestrahlungsdauer-300	3 580	0.095	3 303	3 767
Herstellung-	0,000	0,000	0,000	0,101
verkapselt*Bestrablungsdauer-360	3 862	0.005	3 675	1 0 1 0
Horstollung	3,002	0,095	3,073	4,043
verkapselt*Bestrablungsdauer-420	3 668	0.005	3 /81	3 855
	3,000	0,095	3,401	3,000
Herstellung-	2 710	0.005	2 5 2 2	2 907
	3,710	0,095	3,523	3,097
Herstellung-	2 5 1 4	0.005	2 2 2 7	2 701
	3,314	0,095	3,327	3,701
Herstellung-	2 5 4 2	0.005	2 255	0,700
	3,342	0,095	3,300	3,729
Herstellung-	2 466	0.005	2 270	2 652
	3,400	0,095	3,219	3,003
Herstellung-	2 224	0.005	2 0 2 7	2 /11
	3,224	0,095	3,037	3,411
nerstellung-	2 050	0.005	2 962	2 227
Heretellung	3,050	0,095	2,003	3,237
Herstellung-	2 764	0.005	2 577	2 051
	2,704	0,095	2,377	2,901
Herstellung-	2 696	0.005	2 400	2 972
	2,000	0,095	2,499	2,073
Herstellung-	2 670	0.005	2 4 9 2	2 957
	2,070	0,095	2,403	2,007
Hersteilung-	2 6 2 4	0.005	0 4 4 7	2 0 2 1
	2,034	0,095	2,447	2,021
Herstellung-	2 6 4 2	0.005	2 425	2 700
	2,012	0,095	2,420	2,799
Herstellung-	0 5 4 4	0.005	0.057	0 704
	2,544	0,095	2,357	2,731
Herstellung-	0.500	0.005	2.240	0,700
	2,536	0,095	2,349	2,723
Herstellung-	0.004	0.005	0.407	0.074
	2,684	0,095	2,497	2,871
Herstellung-	0 570	0.00-	0.005	0 750
verkapseit Bestranlungsdauer-1320	2,572	0,095	2,385	2,759
Herstellung-	0 500	0.00-	0.040	0 700
verkapseit [®] Bestranlungsdauer-1380	2,536	0,095	2,349	2,723
Herstellung-			o	
verkapselt*Bestrahlungsdauer-1440	2,386	0,095	2,199	2,573

Kategorie	Mittelwert- schätzer	Standardfehler	Untergrenze (95%) Obe (95%) 0,497 64,351 0,497 60,601 0,497 52,793 0,497 48,645 0,497 47,695 0,497 45,549 0,497 42,453						
Herstellung- unverkapselt*Bestrahlungsdauer-0	65,332	0,497	64,351	66,313					
Herstellung- unverkapselt*Bestrahlungsdauer-60	61,582	0,497	0,497 60,601						
Herstellung- unverkapselt*Bestrahlungsdauer-120	53,774	0,497	52,793	54,755					
Herstellung- unverkapselt*Bestrahlungsdauer-180	49,626	0,497	48,645	50,607					
unverkapselt*Bestrahlungsdauer-240	48,676	0,497	47,695	49,657					
unverkapselt*Bestrahlungsdauer-300 Herstellung-	46,530	0,497	45,549	47,511					
unverkapselt*Bestrahlungsdauer-360 Herstellung-	45,054	0,497	44,073	46,035					
unverkapselt*Bestrahlungsdauer-420 Herstellung-	43,434	0,497	42,453	44,415					
unverkapselt*Bestrahlungsdauer-480 Herstellung-	42,820	0,497	41,839	43,801					
unverkapselt*Bestrahlungsdauer-540 Herstellung-	42,846	0,497	41,865	43,827					
unverkapselt*Bestrahlungsdauer-600 Herstellung-	39,794	0,497	38,813	40,775					
unverkapselt*Bestrahlungsdauer-660 Herstellung-	40,474	0,497	39,493	41,455					
Unverkapseit Bestrahlungsdauer-720 Herstellung-	39,038	0,497	38,057	40,619					
Herstellung- unverkapselt*Bestrahlungsdauer-840	35.328	0,497	34,347	36.309					
Herstellung- unverkapselt*Bestrahlungsdauer-900	35,278	0,497	34,297	36,259					
Herstellung- unverkapselt*Bestrahlungsdauer-960	33,512	0,497	32,531	34,493					
Herstellung- unverkapselt*Bestrahlungsdauer- 1020	32,808	0,497	31,827	33,789					
Herstellung- unverkapselt*Bestrahlungsdauer- 1080	30,942	0,497	29,961	31,923					
Herstellung- unverkapselt*Bestrahlungsdauer- 1140	32,228	0,497	31,247	33,209					
Herstellung- unverkapselt*Bestrahlungsdauer- 1200	30,346	0,497	29,365	31,327					
Herstellung- unverkapselt*Bestrahlungsdauer- 1260	32,022	0,497	31,041	33,003					
Herstellung- unverkapselt*Bestrahlungsdauer- 1320	30,862	0,497	29,881	31,843					
Herstellung- unverkapselt*Bestrahlungsdauer- 1380	30,708	0,497	29,727	31,689					
Herstellung- unverkapselt*Bestrahlungsdauer- 1440	30,900	0,497	29,919	31.881					
Herstellung- verkapselt*Bestrahlungsdauer-0	72,078	0,497	71,097	73,059					

Tabelle 13 b*-Mittelwerte von mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln unter Lichteinfluss

Herstellung-				
verkapselt [*] Bestrahlungsdauer-60	67,484	0,497	66,503	68,465
Herstellung-				
verkapselt*Bestrahlungsdauer-120	65,496	0,497	64,515	66,477
Herstellung-				
verkapselt*Bestrahlungsdauer-180	65,480	0,497	64,499	66,461
Herstellung-				
verkapselt*Bestrahlungsdauer-240	63,034	0,497	62,053	64,015
Herstellung-				
verkapselt*Bestrahlungsdauer-300	62,640	0,497	61,659	63,621
Herstellung-	00.570	0.407	00 505	04 557
verkapselt*Bestrahlungsdauer-360	63,576	0,497	62,595	64,557
Herstellung-	00.040	0.407		
verkapselt*Bestrahlungsdauer-420	62,346	0,497	61,365	63,327
Herstellung-	00 500	0.407	04 557	00 540
Verkapselt Bestranlungsdauer-480	62,538	0,497	61,557	63,519
Herstellung-	00.000	0.407	50 700	04.074
Verkapselt Bestranlungsdauer-540	60,690	0,497	59,709	61,671
Herstellung-	CO CO 4	0.407	50 740	C4 C75
	60,694	0,497	59,713	61,675
Herstellung-	50.000	0.407	59.041	60.002
	59,922	0,497	58,941	60,903
Herstellung-	50 129	0.407	E0 1E7	60 110
	59,136	0,497	56,157	60,119
Herstellung-	50 5 A G	0.407	57 565	50 527
Verkapseit Bestraniungsuauer-760	56,540	0,497	57,505	59,527
Herstellung-	57 974	0 407	56 802	59 955
Herstellung	57,674	0,497	50,895	50,055
verkanselt*Bestrahlungsdauer-900	57 / 92	0 / 97	56 511	58 173
Herstellung-	07,402	0,407	50,011	50,475
verkapselt*Bestrahlungsdauer-960	58 992	0 497	58 011	59 973
Herstellung-	00,002	0,107	00,011	00,010
verkapselt*Bestrahlungsdauer-1020	57.332	0.497	56.351	58,313
Herstellung-	01,002	0,101	00,001	00,010
verkapselt*Bestrahlungsdauer-1080	56.062	0.497	55.081	57.043
Herstellung-				
verkapselt*Bestrahlungsdauer-1140	55,250	0,497	54,269	56,231
Herstellung-	,	,	,	,
verkapselt*Bestrahlungsdauer-1200	55,602	0,497	54,621	56,583
Herstellung-				
verkapselt*Bestrahlungsdauer-1260	56,148	0,497	55,167	57,129
Herstellung-				
verkapselt*Bestrahlungsdauer-1320	54,910	0,497	53,929	55,891
Herstellung-				
verkapselt*Bestrahlungsdauer-1380	54,920	0,497	53,939	55,901
Herstellung-				
verkapselt*Bestrahlungsdauer-1440	53,556	0,497	52,575	54,537

Tabelle 14 Tukey-Test-Ergebnis der ΔE-Werte zur Wechselwirkung zwischen der Behandlungsart und der Bestrahlungsdauer bei mit Kurkuma-Extrakt gefärbten und mit Schellack isolierten/nicht-isolierten Zuckerstreuseln

Kategorie	Mittelwert-										c		nne	'n								
unicoliort*1440	25 229	۸											phe									
	25,220	A 																		<u> </u>		
unisolient 960	20,102	A																				
	25,150	A																				
unisoliert*1320	25,150	A																				
unisoliert*1140	25,136	A						-														
unisoliert*1200	25,136	Α																				
unisoliert*1380	25,122	A																				
unisoliert*1020	25,032	A																				
unisoliert*1080	25,016	A																		<u> </u>		
unisoliert*840	24,972	А																		<u> </u>	<u> </u>	
unisoliert*900	24,938	А	В																	\vdash		
unisoliert*780	24,606	А	В	С																<u> </u>		
unisoliert*660	24,266		В	С	D												-		-			
unisoliert*720	24,252		В	С	D																	
unisoliert*540	24,128			С	D	Е																
unisoliert*480	24,048			С	D	Е	F															
unisoliert*600	24,020			С	D	Е	F	G														
unisoliert*360	24,002			С	D	Е	F	G														
unisoliert*420	23,996			С	D	Е	F	G														
unisoliert*300	23,830				D	Е	F	G	Н													
isoliert*1440	23,694				D	Е	F	G	Н	I												
isoliert*1260	23,644				D	Е	F	G	Н	T	J											
isoliert*1320	23,594				D	Е	F	G	Н	Ι	J											
isoliert*1380	23,568				D	Е	F	G	Н	Ι	J	к										
isoliert*1200	23,522					Е	F	G	Н	I	J	к										
isoliert*1080	23,508					Е	F	G	Н	Ι	J	к										
isoliert*900	23,386						F	G	Н	I	J	к										
unisoliert*240	23,358						F	G	Н	Ι	J	к	L									
isoliert*1140	23,326							G	Н	Ι	J	к	L									
isoliert*1020	23.270								Н	I	J	к	L									
isoliert*840	23,108									I	J	к	L									
isoliert*960	23.070									I	J	к	L									
isoliert*660	23.024									1	J	к	L									
unisoliert*180	22.960										J	К	L									
isoliert*780	22,868											к	1	м								
isoliert*720	22,670												L	M	Ν							
isoliert*600	22,256													М	Ν	0						
isoliert*540	22,052														Ν	0	Р					
isoliert*480	21,970														Ν	0	Ρ					
unisoliert*120	21,872															0	Ρ	Q				
isoliert*420	21,552																Ρ	Q				

isoliert*360	21,386								Р	Q					
isoliert*300	21,192									Q					
unisoliert*60	20,366										R				
isoliert*240	20,162										R	S			
isoliert*180	19,654											S			
isoliert*120	17,932												Т		
isoliert*60	15,982													U	
isoliert*0	0,000														V
unisoliert*0	0,000														V

Tabelle 15 Tukey-Test-Ergebnis der Δ E-Werte zur Wechselwirkung zwischen der Herstellungsart und der Bestrahlungsdauer bei mit verkapseltem/unverkapseltem Kurkumin gefärbten Zuckerstreuseln

Kategorie	Mittelwert-											G	rur	nei	n						
unverkanselt*1200	11 442	Δ																			
unverkapselt*1///	11,442	Δ																			
unverkapselt*1380	11,422																				
unverkapselt*1080	11,200	^	Б																		
	11,210	A 	D																	-	
unverkapselt*1320	11,196	A	в	0				-												-	
unverkapselt 1260	10,780	A	в																	-	<u> </u>
unverkapselt*1140	10,594	A	В	С	_					-											
unverkapselt*1020	10,496	A	В	С	D																
unverkapselt*960	10,228		В	С	D	E															
unverkapselt*780	10,090			С	D	E															
unverkapselt*840	9,454				D	Е															
unverkapselt*900	9,436					Е															
unverkapselt*720	7,830						F														
unverkapselt*600	7,734						F	G													
unverkapselt*660	7,634						F	G													
unverkapselt*480	6,760							G	Н												
unverkapselt*540	6,738							G	н												
unverkapselt*420	6,476								н												
unverkapselt*360	5,912								Н	Ι											
unverkapselt*300	5,404									I	J										
verkapselt*1440	5,286									Ι	J										
verkapselt*1320	4,850										J	к									
verkapselt*1380	4,780										J	К	L								
unverkapselt*240	4,770										J	к	L								
verkapselt*1140	4,728										J	к	L	М							
verkapselt*1200	4,610										J	к	L	М							
verkapselt*1080	4,568										J	к	L	М							
verkapselt*1260	4,560										J	к	L	М							
unverkapselt*180	4,540										J	к	L	М							
verkapselt*900	4,196											к	L	М	Ν						
verkapselt*1020	4,124											к	L	М	Ν	0					

1			 				í.	1										
verkapselt*840	4,094					κ	L	М	Ν	0	Ρ							
verkapselt*960	3,762						L	М	Ν	0	Ρ							
verkapselt*780	3,702							М	Ν	0	Ρ							
verkapselt*720	3,474								Ν	0	Ρ	Q						
unverkapselt*120	3,410								Ν	0	Ρ	Q						
verkapselt*660	3,254								Ν	0	Ρ	Q	R					
verkapselt*540	3,082									0	Ρ	Q	R	s				
verkapselt*600	3,042										Ρ	Q	R	s				
verkapselt*480	2,600											Q	R	s	Т			
verkapselt*300	2,596											Q	R	s	Т			
verkapselt*420	2,568											Q	R	s	Т	U		
verkapselt*240	2,438											Q	R	s	Т	U		
verkapselt*360	2,224												R	s	Т	U	V	
verkapselt*120	2,050													s	Т	U	V	
verkapselt*180	1,846														Т	U	V	
unverkapselt*60	1,538															U	V	
verkapselt*60	1,316																V	
unverkapselt*0	0,000																	W
verkapselt*0	0,000																	W