

Hamburg University of Applied Sciences

Faculty of Life Sciences

Design, implementation and evaluation of a fitness application to aid in compliance and correctness of home exercises for back pain using PoseNet

Master of Biomedical Engineering

Serena Glass

Hamburg 19.03.20

Reviewer: Prof. Dr. Jürgen Lorenz (HAW Hamburg) Reviewer: Prof. Dr.-Ing. Boris Tolg (HAW Hamburg)

Abstract

Background: Back pain has a high prevalence. It is costly for both the patient and the health system. Exercise therapy is the most prescribed treatment for back pain. Compliance is a serious issue with back pain exercises performed at home. This paper aims to design, evaluate and implement a web application to help with the compliance and correctness of back pain using the machine learning model PoseNet. Methods: A Google search was completed to identify which exercises are most prescribed by physiotherapists. 20 programs were studied and the most commonly used exercises were tabulated. PoseNet was tested for 4 outfits, 11 poses, 3 brightness levels and 6 different backgrounds. 105 images were taken and fed into PoseNet to evaluate its ability to correctly locate 17 body parts. The application was developed using web technologies: HTML, CSS, JavaScript, PHP, MySQL and several libraries. Results: The exercises found in more than 5 programs were: Bridge, Arm and Leg Lift, Back extension, Plank, Crunch, Side Plank and Squat. In the PoseNet evaluation it became clear that the model is extremely robust towards clothes, backgrounds and brightness. However, camera quality and body poses have a big effect on the pose estimation. A prototype web application using the squat as an exercise was implemented. The application provides the user with an index page, exercise program page, how to page, start exercise page, history page and logout. Once in the exercise, the application uses the coordinates of the body parts, calculates angles and displays guidelines and an avatar which change colour and position according to the correctness of the execution. All the critical information obtained during the exercise is saved automatically and displayed in a graph in a history page. Conclusion: PoseNet needs to be retrained or another model needs to be used to include exercises which are executed on the floor. Otherwise the application provides a promising step towards improving the correctness of exercise execution and solving the compliance problems encountered in back pain treatment, without the cost and hassle of some of the currently available solutions.

Table of Contents

1	Intr	oduction1
	1.1	Research Goal
2	Bac	kground
	2.1	Medical background - Back pain
	2.1.	1 Aetiology of back pain
	2.1.	2 Treatment for back pain
	2.1.	3 Exercise therapy
	2.1.	4 Home training and Patient compliance
	2.1.	5 Technology helping with compliance of home exercises
	2.2	Technical Background - Web application
	2.2.	1 HTML
	2.2.	2 CSS, Bootstrap and Font Awesome
	2.2.	3 Javascript and jQuery7
	2.2.	4 PHP7
	2.2.	5 Webserver7
	2.2.	6 Internet hosting service provider
	2.2.	7 User Interface (UI) of website
	2.2.	8 Limitation of web applications without machine learning
	2.3	Technical Background - Artificial Intelligence and PoseNet11
	2.3.	1 Machine learning
	2.3.	2 Computer Vision 12
	2.3.	3 Deep learning
	2.3.	4 Artificial neural networks
	2.3.	5 Training of networks

	2.3.	.6	Minimizing the cost function of networks	15
	2.3.	.7	Convolutional neural network	15
	2.3.	.8	TensorFlow	17
	2.3.9		PoseNet	18
	2.4	Stat	te of the art	20
3	Me	thods	S	21
	3.1	Ide	ntification of back pain exercises	21
	3.2	Eva	lluation of PoseNet	21
	3.2.	.1	Different poses and outfits	22
	3.2.	.2	Different brightnesses	23
	3.2.	.3	Different backgrounds	23
	3.3	Imp	plementation of the web application	23
4	Res	ults.		26
	4.1	Ide	ntification of back pain exercises	26
	4.2	Eva	luation of PoseNet	31
	4.2.	.1	Different poses and outfits	31
	4.2.	.2	Different brightnesses	33
	4.2.	.3	Different backgrounds	34
	4.3	We	b application	35
	4.3	.1	Frontend	36
	4.3.	.2	Backend	39
5	Dis	cussi	ion	41
	5.1	Me	dical	41
	5.1	.1	Methods	41
	5.1.	.2	Results	42
	5.2	Pos	eNet	42

	5.2.1	Methods	43
	5.2.2	Results	44
	5.3 The	Application	45
	5.3.1	Methods	46
	5.3.2	Results	47
	5.4 Stat	te of the art	48
:	5.5 Out	look	49
6	Conclus	ion	50
7	Reference	ces	51

List of Figures

Figure 1: Categories that fall under Artificial Intelligence adapted from Journalism AI [36]. 11
Figure 2: On the left: A model of an artificial neuron.[40] On the right: An artificial neural network.[41]
Figure 3: Convolutional neural network [42]16
Figure 4: Output pose array from PoseNet
Figure 5: Tools and setup of the web application [47,48,49,50,51,52]24
Figure 6: Calculation of the angle of the thigh relative to the x-axis
Figure 7: Ten most commonly recommended exercises for back pain. From top left to bottom right: Child's Pose, Squat, Arm and Leg Lift, Bridge, Thoracic Extension, Cat and Dog stretch, Trunk Side Bending, Plank, Resting Pose
Figure 8: Average confidence score for different poses and outfits facing the camera at 90- degrees
Figure 9: Average confidence score for different poses and outfits facing the camera at 45- degrees
Figure 10: Average confidence score for different light intensities and two cameras
Figure 11: Average confidence score for different backgrounds
Figure 12: Sitemap of the web application
Figure 13: Sequence of events for the execution of a wall squat in the application
Figure 14: Example of a user's exercise history. The image illustrates the onhover event for the 26 th Jan 2020
Figure 15: Structure of the table: users
Figure 16: Structure of the table: holding_exercises
Figure 17: Structure of the table: alldates

List of Tables

Table 1: First 20 results of Google search using the search term 'Rückenübungen
Physiotherapie pdf"27
Table 2: Strengthening and Stability exercises 28
Table 3: Stretching Exercises 29
Table 4: Average confidence score for different poses and outfits facing the camera at 90-
degrees
Table 5: Average confidence score for different poses and outfits facing the camera at 45- degrees
Table 6: Average confidence scores for different image light intensities for two cameras 34
Table 7: Average confidence score for different backgrounds 34

List of Abbreviations

2D	2-dimensional
3D	3-dimensional
AGR	Aktion Gesunder Rücken
ANN	Artificial neural networks
API	Application programming interface
BdR	Bundesverband deutscher Rückenschulen
CNN	Convolutional neural networks
CPU	Central processing unit
CSS	Cascading style sheets
DAC	Directed acyclic graph
DBMS	Database Management System
DEGAM	Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin
FTP	File Transfer Protocol
GIMP	GNU Image Manipulation Program
GPU	Graphics processing unit
HTML	Hyper Text Markup Language
IP	Internet Protocol
LBP	Lower Back Pain
NHS	National Health Service
NN	Neural networks
PHP	PHP Hypertext Pre-processor
RGB	Red, Green, Blue
UI	User Interface

1 Introduction

Back pain has a high prevalence.[1] Results from a statistical questionnaire about the frequency of back pain in Germany from 2017, showed more than 83% of the population having back pain at least once a year and 10% of the population complaining about daily back problems.[2] It is expensive for both the individual and the health system,[3] costing Germany 4.494 Billion euro in 2015 according to Destatis.[4] Back pain affects families, causes disability, participation restriction and is a career burden.[3] In 2018 back pain constituted to 5,3% of the sick days in Germany, an average of nearly 0,8 sick days are taken per person per year due to back pain.[5] Back pain is a multifactorial problem, having many influencing factors including genes, lifestyle and environmental factors. The exact causes of individual cases are often unknown, making the correct treatment for back pain difficult to select.[6,7]

When comparing exercise to other types of treatment it is shown to improve back pain more effectively in terms of pain and function.[8,9] As a result, patients are often given exercise plans to carry out at home.[10] Exercise plans which are personalised and have regular follow ups appear to be most effective.[11] Compliance plays a huge role in the effectiveness of an exercise plan.[11,12] Unfortunately, in a review paper by Beinart et al it was found that between 50% and 70% of patients do not comply to their given exercise plans. Compliance was defined as "the extent to which a person's behaviour corresponds with agreed recommendations from a healthcare provider".[11]

Compliance in home exercise plans is difficult to monitor and control.[11,13,14] More than 90% of Germans are internet users.[15] As a result, web applications and cell phone applications have become more and more part of healthcare and are shown to improve compliance and result in greater functional improvements when compared to paper handouts.[16] The success of such applications could be due to the use of a mobile phone or laptop being more convenient and motivating and that a history of the completed exercises and the knowledge that the patient's personal trainer can monitor his progress could increase compliance.[16,17] Due to the large number of people having access to computers and the internet, these applications have great potential to reach a large population, especially those with limited access to healthcare information and interventions.[17] Most applications however

require the user to input the exercises which he has completed, this is not only time consuming but can also result in incorrect data.

Pose estimation, estimating the position of the human body parts in an image or video, is a subcategory of machine learning artificial intelligence and has been studied for the past few decades. It is a crucial step towards understanding people in images and videos and using this in medical applications.[18] Through machine learning one can produce applications that use everyday cameras, from laptops or cell phones, to obtain information about the exercises that a user completes in terms of frequency and correctness. This eliminates the somewhat biased step of the user filling this information out. PoseNet is a machine learning model which allows for real-time human pose estimation in the browser. PoseNet runs on tensorflow.js, which enables on-device machine learning inference with low latency and a small binary size. It can therefore work in the browser. PoseNet uses an RGB image as its input. This is fed through a convolutional neural network and in the single pose decoding algorithm outputs the 2-dimensional (2D) positions of 17 body parts as well as corresponding certainties.[19]

1.1 Research Goal

This master thesis aims, using PoseNet and user interface guidelines, to design a web application to help with compliance and correctness of home exercises for back pain. The positions of the body parts are used to calculate the correctness of an exercise. The application is then able to guide the user to perform his exercises correctly, in terms of posture and frequency. The application stores and displays this information in order to see how often the user is exercising and where the user is going wrong in his program.

2 Background

2.1 Medical background - Back pain

Back pain is one of the biggest health problems in Germany in terms of prevalence and cost.[1,4] It is found in all genders, in all age groups and in all social classes. Back pain is the term used to describe pain in all areas of the back regardless of the pain intensity and cause. There are different names given to back pain depending on its location: neck pain, middle back pain and lower back pain (LBP). Neck pain is found in the cervical spine region, middle back pain is found in the thoracic spine region, and LBP is found in the lumbar spine region. LBP is the most common type of back pain. There are many classifications of the severity of the pain, the Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin (DEGAM) uses the following criteria: Acute back pain occurs after at least six months without symptoms and lasts for no longer than 3 months. Acute back pain that lasts for longer than 6 weeks is named subacute. Finally, chronic back pain lasts for longer than 3 months.[20]

2.1.1 Aetiology of back pain

The cause of back pain is extremely complex and only partially understood. It is commonly separated into two groups, specific and non-specific. Specific back pain means that the cause is medically diagnosable. Examples of such causes include root compressions, vertebral fractures, spinal stenosis, tumours and inflammatory diseases. Specific back pain only accounts for roughly 10-15% of cases of people with back pain. The rest of the back pain cases are non-specific, accounting for roughly 85-90%. Non-specific, as the name suggests, means no specific cause is found. Not being able to identify the cause makes it extremely difficult to find or prescribe general preventative and therapeutic treatments that work for everybody.[20]

2.1.2 Treatment for back pain

There are many treatments prescribed for back pain, they include the following: exercise therapy, manual therapy such as spinal manipulation/mobilisation, massage, back schools and brief educational interventions/advice to promote self-care, cognitive-behavioural treatment methods, multidisciplinary interventions, pharmacological procedures such as antidepressants, muscle relaxants, opioids, invasive procedures such as acupuncture, injections and nerve blocks, epidural corticosteroids and spinal nerve root blocks with steroids, facet injections, intradiscal injections, trigger point injections and surgery.

Exercise therapy is the most common and it is the recommended treatment according to the European guidelines for the management of chronic nonspecific low back pain. The guideline does not however recommend a specific exercise. According to the guideline the exercise should be decided on by both the therapist and patient together, depending on preferences, abilities and expectations.[21,22,23]

2.1.3 Exercise therapy

Exercise programs which are deemed to be beneficial for the treatment of back pain include strength exercises, flexibility or aerobic exercises and stabilization exercises. These exercises can take place in a standing, sitting or lying position.[24]

It is difficult to say what the most beneficial exercise is. Several randomized control trials failed to find evidence that any one exercise in either of the categories stability, strength or stretching is more beneficial than another in the long run.[22] A review by Smith et. al. notes that the high variability, i.e. differences in the duration of the exercises, methods of measuring pain intensity, scale of pain intensity, progression criteria, duration of treatment and follow-ups, prevent comparison of the effectiveness of different exercises. A unified terminology for all the variables being evaluated is required.[25]

Until better randomized control trials are available, personalised training plans agreed on by both the therapist and the patient work best. These training plans should take the preferences, expectations and abilities of the patient into account.[22, 24, 25, 26, 27]

2.1.4 Home training and Patient compliance

Personalised exercise plans are usually introduced by the trainer or physiotherapist in his office where the trainer shows the patient the exercises and explains how they need to be executed. This can take place in one or several sessions. The patient should then be able to do the exercises alone by the end of the session/s so that he can continue them at home.[28]

Compliance refers to the degree to which the patient follows healthcare instructions.[11,12] Compliance to exercise plans is unfortunately a very big problem worldwide. A lack of compliance usually means that the treatment is not successful which is both a health and a cost problem. Studies show that it would be far more effective to focus on improving the compliance of patients as opposed to trying to improve the prescribed treatment. In order to ensure that compliance is maintained or even improved, regular follow ups and trainer supervision are necessary, which cost time and money.[12, 22]

It is difficult to find out why patients are not compliant. There are many variables that are not necessarily comparable and research often lacks important information about how the intervention was executed. A randomised control trial (RCT) is needed where a validated measure of compliance is defined.[11] To add to this, studies on compliance often rely on the patient himself to provide information on how often the patient did his exercises and his opinion of how well the exercises go. This is unfortunately often biased. Important information on the treatment of back pain could be learnt if compliance was better understood.[27,28]

2.1.5 Technology helping with compliance of home exercises

Technology e.g. in the form of sensors or software applications, that gather unbiased data and provide history summaries could help the therapist encourage and supervise the patient more closely. Additionally, researchers could incorporate such applications into randomised control trials to determine compliance problems and exercise effectiveness.[16,17]

2.2 Technical Background - Web application

Web applications do not require installation. They run on internet browsers and can run on all devices that have an internet connection such as laptops, computers, tablets, cell phones and smart televisions. The application provides the user with an interface, the frontend, through which the user can submit data to a webserver, the backend. The application can store and process this data on the webserver and return processed data to the frontend. There are several languages and programs that can be used to create a web application.[29]

2.2.1 HTML

HTML is the standard language used to create the structure and content of webpages and stands for Hyper Text Markup Language. Hyper Texts are links that connect web pages to one another and a Markup language is human readable, using words and not programming syntax. It uses tags to describe its elements. These tags define the structure and content of the webpage. They are used by the browser to display the content and are themselves not visible.[29,30]

2.2.2 CSS, Bootstrap and Font Awesome

CSS is the standard language used to describe the appearance of a structured webpage written in HTML and stands for Cascading Style Sheets. It is a stylesheet language, which means it describes how the elements of HTML are positioned and how they look. It is included in an HTML document using the style tag.

Bootstrap is a free front-end library consisting of JavaScript and CSS based design templates. These templates provide faster and easier web development. Bootstrap's grid system enables easily made responsive designs.

FontAwesome is a font and icon library. Font awesome was originally designed for Bootstrap and therefore is easily included as a Bootstrap class.[29,30]

2.2.3 Javascript and jQuery

JavaScript completes the three standard languages necessary for web development. It allows websites to be interactive. It is a high-level, interpreted scripting language, which means it is interpreted and does not need a compilation step. This interpretation is done by the browser, which understands the code and then performs the corresponding commands. Javascript is included in HTML using the script tag.

jQuery is a JavaScript library that simplifies various things such as HTML document traversal and manipulation, event handling and animation.[30]

2.2.4 PHP

PHP is the most common server-side language in the world. PHP was originally an abbreviation for "Personal Home Page Tools", but later for "Hypertext Pre-processor". PHP is a server-side scripting language, which means that a webserver is needed to run the code. PHP can be used to dynamically generate HTML documents and interact with a database or file system. It can be embedded in an HTML document, where it is removed from the file before sending it to the client. This means that no PHP code is visible in the frontend.[30, 31]

2.2.5 Webserver

A webserver usually acts as a host for all resources of the webpage, as an interpreter for PHP and as a database server, which holds the Database Management System (DBMS) and the databases for a website to store and maintain its information.

The browser knows which webserver to contact using the domain name, the link that is entered into the browser. Domain names are text based aliases that are easier to remember then the numbers they represent: Internet Protocol (IP) addresses.

Webservers often make use of a database to store and maintain dynamic content for the website. A database is a collection of data that is logically related making it easy to access, update and maintain the data. A database is maintained by a DBMS. It is only possible to access the data in a database through the logical interface of the DBMS. One of the most common database interface languages is SQL. SQL stands for Structured Query Language and is a programming language that is exclusively used to interact with database systems.[30, 31]

2.2.6 Internet hosting service provider

Webservers can be hosted by any computer, but for websites that need to be accessible around the clock, that computer needs to always be online. An internet hosting service provider is the most economical solution. They provide the client with a webspace, a storage space for files on a server, a webserver and a database server.[31]

2.2.7 User Interface (UI) of website

A user interface should not only be aesthetically pleasing and capturing but should be effective, efficient, ergonomic and risk free so that the user can achieve his goals with contentment and satisfaction.[32]

There are many guidelines and studies on what the best practices for designing a user interface are. According to Shneiderman there are eight "Golden Rules" when designing the user interface of an interactive system. Shneiderman makes it clear that these rules are a good starting point and should be adapted for each application as the rules have their limitations.

1. Strive for consistency

The application should be consistent in terms of colour, layout and terminology. As well as, in similar situations, similar actions should lead to similar results.

2. Cater to versatility

The application should take into account factors such as age, disabilities, technical ability of the user, new users (explanations and guidance) and old users (shortcuts, reduction of the number of interactions), personal differences (user settings to suit different tastes), physical abilities, hardware differences (the application should work on all devices).

3. Offer informative feedback

The application should provide informative feedback for each action that the user does. How this feedback is displayed should be dependent on the importance of the action. Users like awards for actions when something was done well and correctly. The application should run quickly, the user should not have to wait too long for anything.

4. Design dialogues to yield closure

Actions should have a beginning, middle and end. The user should be congratulated on completing a set of actions. This gives the user satisfaction and a relief that he is doing everything right.

5. Prevent errors

The application should, as far as possible make it impossible for a user to make serious errors. This can be done by disabling buttons which should not be pressed, validating inputs, ensuring that there are only numbers in a number field. Nothing potentially harmful should be triggered by too simple an operation.

6. Permit easy reversal of actions

If it is impossible to avoid errors, the application should make it clear that the user has made an error and should make it easy for the user to correct the error e.g. when entering the wrong password the user should not have to input his username again. Making errors easily reversible ensures that the user never feels stressed about making mistakes and using the product.

7. Support internal locus of control

The application should respond to actions of the user and not the other way around. Users like to be in charge of the application, unless the application is designed for the user to respond to it.

8. Reduce short-term memory load

Much unlike a computer the human has a very limited information processing capacity, only being able to maintain between five and nine things in his short-term memory. Therefore, it is important not to make the user need to remember too many things. Recognising is much easier than remembering. Incorporating recognising instead of memory can be done by making objects and options available. It is also a good idea to make sure all information relating to one topic is on one page and not scattered over several pages.[33, 34]

2.2.8 Limitation of web applications without machine learning

A problem with most of the available applications for back pain is that the user must input the duration and type of exercise completed. This can be tedious, causing the user to forget to write this down or doing it later and not being able to remember what he did correctly. This is where artificial intelligence and more specifically pose estimation could play an important role.

2.3 Technical Background - Artificial Intelligence and PoseNet

Artificial Intelligence (AI) aims to create computers that can act like human minds, with skills such as reasoning, vision interpretation, perception, association, prediction, planning and motor control.[35] AI is a very broad subject comprising of many subcategories which are described in the diagram seen in Figure 1 below.

Figure 1: Categories that fall under Artificial Intelligence adapted from Journalism AI [36]

2.3.1 Machine learning

We are living in the information age, where everyone from small start-ups to large international companies gather large amounts of data and use machine learning to work through this data to generate knowledge. In 1958 Arthur Samuel said that Machine learning is the ability of computers to learn, without being explicitly programmed.

The two most important aspects in machine learning are choosing the best suited machine learning algorithm and obtaining enough high-quality data to train it. For image recognition it is sometimes necessary to have millions of datasets. The complexity of the algorithm must be chosen according to the available data.

Overfitting occurs when there is too little data and there is too much noise for the complexity of the model, i.e the model is too complex for the available data. Underfitting of data is the exact opposite of overfitting, the model is too simple.

For complex problems the data is often more important than the algorithm. Common data quality issues include bias, when the training data is not representative for the testing data, poor quality, when the data is full of errors, outliers and noise, from measuring mistakes and irrelevant characteristics, when characteristics that are necessary are absent from the data set or unnecessary characteristics are too prominent.

Once the model has been trained, it needs to be tested and validated. This is done by testing the model with new data, i.e. data that was not part of the learning data. It is common to use about 80% of the data for training and 20% of the data for testing.[37, 38]

2.3.2 Computer Vision

Computer vision draws its methods from computer science, physics, mathematics and biology making it a rather complex field. Computer vision has come a long way since machine learning methods have been introduced. The human brain does an impressive job at recognizing faces in images and telling one object apart from another, especially when the boundaries are not very clear. The computer on the other hand sees images only as an array of Red, Green, Blue (RGB) elements. According to Planche and Andreas, the aim of computer vision is to "teach computers how to make sense of pixels the way humans do" and computer vision is in some tasks, such as face identification or handwriting identification, able to surpass the ability of humans. The idea of computer vision is to detect features from the array of pixels and then to determine which of the known, labelled features is most similar to this detected feature and thereby achieve recognition.

Examples of computer vision are object classification (the assignment of labels to images), object detection (e.g. the detection of cancerous cells in medical images), segmentation (the selection of all the pixels relating to a searched object) and pose estimation. Pose estimation uses the 2D information of an image to estimate the actual position and orientation of a 3-dimensional (3D) object. The tool that computer vision uses to do this is machine learning, and

more specifically deep learning. Deep learning has had an impressive influence on computer vision.[37,39]

2.3.3 Deep learning

Deep learning is used to obtain information from and to understand the content in images, text and audio recordings. It has a very broad field of possible applications, from cell phone applications to automobile cars. In deep learning huge amounts of raw data are fed into neural networks and with the help of labels in the data, the network learns how to identify patterns in the data. In images this raw data is usually the pixel values of the image. This teaching usually requires a lot of time, resources and energy. Networks are powerful tools used by machine learning/deep learning. A network type used often in deep learning is artificial neural networks (ANN) or neural networks (NN).[37,39]

2.3.4 Artificial neural networks

ANN or NN are used to process large amounts of information, detect known or new patterns, or to estimate processes. NN are built off how the brain works. The brain is made up of a network of neurons. Each neuron is similar to a signal processing unit, transmitting signals to the next neuron when the signal is stronger than a certain threshold. These neurons stacked together are how we think. Much like our brains, the mathematical model of a NN will usually take in the weighted sum of a number of inputs and apply some activation function to them to produce an output. This output signal is then the input signal for the next row of neurons, the signal is fed forward to the next neuron. Each of the input weights can be tuned when training the model. It is also common to add an offset or bias. This too is a parameter that can be varied during training. Equation 1 describes the weighted summation of the inputs with an added bias:

$$z = x.w + b$$
 Equation 1

Where z is the weighted summation of the inputs with an added bias, x is the input values: x = (x0 x1), w is the weights: $w = {w0 \choose w1}$ and b is the bias.

The weighted inputs with bias then have an activation function applied to them, similar to the threshold in the brain, determining whether a signal is fired or not. The Rectified Linear Unit is one of the most used activation functions. It is shown in Equation 2 below:

$$ReLU(z) = max(0, z) = \begin{cases} 0 & if \ z < 0 \\ z & if \ z \ge 0 \end{cases}$$
 Equation 2

This is a very basic model of an artificial neuron. It receives an input, processes it, and depending on the threshold, outputs the value to the next layer of neurons. Networks are built by layering neurons together.[39] A model of an artificial neuron and of an artificial neural network can be seen below in Figure 2.

Figure 2: On the left: A model of an artificial neuron.[40] On the right: An artificial neural network.[41]

2.3.5 Training of networks

Each network needs to be trained before it can perform the required task. This training includes tuning the parameters so that the network is optimised for that specific task. As already mentioned, training comprises of huge amounts of labelled data being fed into the network. Labelled data is for example, when training for a pose estimation model, images that have the coordinates and the name for each body part. The network estimates where it thinks the coordinates are and this is compared to where the actual coordinates are using a cost or loss function. The cost function enables the computer to judge the impact of changing each of the networks parameters with regards to minimising the error between its own prediction and the labelled data. It indicates which parameters have the biggest influence in minimizing the cost function. Planche et al. describe the cost function as showing the "quality of the predictions as

a function of the network's parameters". This is an iterative process and is computed until the parameters cannot be optimised further. A common cost function is the sum of squares function. Adding all the results costs of each training and averaging them gives the total cost of the network.[39]

2.3.6 Minimizing the cost function of networks

In order to find the minimum of a function, one needs to find the derivative, with negative coefficient, of that function. More complex functions have more than one minimum and a process known as gradient descent is used to find the minimum, i.e. moving down the slope of the cost function with respect to each parameter. In neural networks this means that for each parameter the derivative of that parameter relative to the cost function is computed. These derivatives show to what degree the parameters need to be changed to minimise the cost function. All these derivatives are computed using the chain rule, starting at the last layer moving from layer to layer backwards through the network. This is known as back propagation. The parameters are then updated according to the derivatives found, and this process is reiterated until the cost function is minimized and the parameters cannot be optimized further. Stochastic gradient descent is often used, which takes batches of data instead of all the data and thus speeds up the computation time.[39]

2.3.7 Convolutional neural network

Basic neural networks have two major problems, they have an explosive number of parameters and they have no spatial reasoning. Convolutional neural networks (CNNs) were introduced to solve these problems. In CNNs, unlike in NN, the neurons are not connected to all neurons from the previous layer. Instead each neuron is connected to some neurons in the neighbouring region in the previous layer. This region is known as the receptive field. Through receptive fields, CNNs reduce the number of training parameters and maintain the location of image features.

CNNs are given their name as they have convolutional layers. In image processing convolution is a mathematical operation that is used to for example blur, sharpen or detect edges of the original image (in CNN this result is known as a feature map). It is computed by sliding a filter, kernel or convolutional matrix over an input image. At every point element-wise matrix multiplication is computed and the result is summed. This is what makes up the feature map.

In CNNs the neurons that are connected to the same output, the neurons in the receptive field, are like one of these filters. Looking at the description of a neural network already given thus far, the filter is made up of a matrix of numbers which are the weights and parameters, and the filter is a neuron. Figure 3 shows an example of a convolutional neural network, with the green area being the receptive field.

Figure 3: Convolutional neural network [42]

When looking at inputs with more than 1 channel, RGB images have 3, the convolutional layer will have 3 sets of different filters, i.e. 3 different weight matrices. Extending this to the Nth dimension, a layer with N different neurons has N weight matrices. This layer will also therefore produce N feature maps, these maps each find specific features. All the feature maps from one layer are called a feature volume.

Training the network means finding different values for the filters so that they become better at finding specific features such as, at the first layer, line orientation or colour gradient and at deeper layers, contours of specific shapes such as shoulder or the shapes of eyes. A layer with N filters translates to a layer being able to find N different specific features. An important aspect is that filters look for a specific image feature and the orientation (a translation) is not important.[38, 39] There are many libraries and languages in place to help one program these networks.

2.3.8 TensorFlow

TensorFlow is an open source deep learning library by Google, consisting of several tools that help with developing a convolutional neural network. TensorFlow was designed to be extremely portable, enabling the deployment of machine learning on several platforms, central processing unit (CPU), graphics processing unit (GPU), mobile devices and in the browser.

The architecture of TensorFlow consists of three layers. A C++ layer, a low-level application programming interface (API) layer and a high-level API layer. C++ is used to code the majority of the deep learning computations. Python is used in the low-level API layer to wrap around the C++ code. Python is considered an easier language allowing easier, quicker use and does not need to be compiled. The top layer is made up of Keras, an interface designed for quick experimentation with neural networks and the Estimator, which is a set of templates.

In mathematics, tensors are arrays with N-dimensions and include scalars i.e. 2D arrays, 3D arrays and N dimensional matrices. In TensorFlow a tensor is an object that can store either constants or variables. Tensors are used as both inputs and outputs in TensorFlow. TensorFlow therefore refers to tensors flowing from the input layer to the output layer.

In TensorFlow the activation functions are depicted using a directed acyclic graph (DAC), or just a graph. These graphs represent the different layers of the model and have several benefits, one being that they allow TensorFlow to run on several devices, i.e. they allow different parts of the functions to be run on the CPU and different parts on the GPU.[37,38,39]

The flexibility and portability of TensorFlow make it very easy for users that are not machine learning experts to use and implement these models in real world applications. TensorFlow comes with several already trained models. These models have been trained using enormous amounts of data and using computers with large computing power. They can be easily adapted for what one needs. One such model is PoseNet.[37,39]

2.3.9 PoseNet

PoseNet is a pose estimation model that can run in Javascript, which enables the model to run on the browser of any device with an internet connection and a web camera. There is no system setup or 3D cameras needed. PoseNet takes in an RGB image as input and sends it through a convolutional neural network. It offers two algorithms: single pose for one person and multipose for several people. PoseNet then outputs the pose of the person or the people. The single pose algorithm is more basic and quicker. Only the single pose algorithm will be looked at in this work.[43,44]

Inputs for the model:

- Image element An html image or video element.
- Image scale factor Scales the image. It is a number between 0.2 and 1, the lower the number the smaller the image and the faster and less accurate the network. Defaults to 0.5.
- Flip horizontal This is for when the image/video is flipped horizontally, i.e. when a web camera is used, setting this parameter to true flips the images back. Defaults to false.
- Output stride This influences the height and width of the layers in the neural network. It affects the accuracy and speed of the network. The three options are 32, 16 or 8. The lower the number the better the accuracy but slower, the higher the number the worse the accuracy but faster. Defaults to 16.

For each image, the model outputs a pose. This pose is an array which consists of a confidence score, i.e. a number between 0 and 1 of how confident the estimation is, and an array of 17 keypoints, i.e. 17 body parts. This pose array is highlighted by the blue box in Figure 4. Posenet currently estimates 17 keypoints: nose, right eye, left eye, right ear, left ear, right shoulder, left shoulder, right wrist, left wrist, right elbow, left elbow, right hip, left hip, right knee, left knee, right foot, left foot. The keypoint array is highlighted by the green box in Figure 4. Each keypoint array consists of the body part, its position and a confidence score. The positions are the x and y coordinates of the keypoints in the original image and the score is again a number between 0 and 1 of how confident the estimation is. An example of a body part is highlighted

by an orange box in Figure 4. The pose shown in Figure 4 is one of just the face and shoulders, hence only these body parts have a high confidence score.[43,44]

```
{score: 0.3592196758288671, keypoints: Array(17)}

                                                    i
   score: 0.3592196758288671
 ▼keypoints: Array(17)
   ▼0:
       score: 0.999194324016571
      part: "nose"
     > position: {x: 493.91534180399975, y: 378.0915430566216}
     ▶ __proto__: Object
   ▶ 1: {score: 0.9995879530906677, part: "leftEye", position: {...}}
   > 2: {score: 0.9993409514427185, part: "rightEye", position: {...}}
   > 3: {score: 0.16814060509204865, part: "leftEar", position: {...}}
   ▶ 4: {score: 0.9434421062469482, part: "rightEar", position: {...}}
   ▶ 5: {score: 0.9448500871658325, part: "leftShoulder", position: {...}}
   ▶ 6: {score: 0.8619483113288879, part: "rightShoulder", position: {...}}
   ▶7: {score: 0.019965216517448425, part: "leftElbow", position: {...}}
   ▶ 8: {score: 0.01869097352027893, part: "rightElbow", position: {...}}
   > 9: {score: 0.013820230029523373, part: "leftWrist", position: {...}}
   ▶ 10: {score: 0.015395713970065117, part: "rightWrist", position: {...}}
   ▶ 11: {score: 0.010398437269032001, part: "leftHip", position: {...}}
   ▶ 12: {score: 0.018589826300740242, part: "rightHip", position: {…}}
   ▶ 13: {score: 0.02078281342983246, part: "leftKnee", position: {...}}
   ▶ 14: {score: 0.016923511400818825, part: "rightKnee", position: {...}}
   ▶ 15: {score: 0.041846685111522675, part: "leftAnkle", position: {...}}
   ▶ 16: {score: 0.013816743157804012, part: "rightAnkle", position: {...}}
```

Figure 4: Output pose array from PoseNet

2.4 State of the art

There are many companies producing software solutions to medical problems. Two companies were found that have produced similar products. MIRA and VAY fitness Coach. MIRA is a medical device that uses motion tracking sensors to gamify physical therapy and increase patient compliance. The device is used for orthopaedic and neurological therapy for both children and adults and in programs to help elderly people from falling. The device has been shown to improve compliance.[45] VAY Fitness Coach is a general fitness cell phone application which uses machine learning and professional trainers to motivate the user to do his exercises and stay fit. It was released in 2019. The application asks the user to choose from three options: muscle building, weight loss or better body tone. It then asks for weight, height, age, sex and requests to select a trainer before presenting a training plan. The application has a rating of 3.3 on Google Play with several people complaining that the image recognition does not work properly.[46]

3 Methods

3.1 Identification of back pain exercises

Two methods were employed in order to identify exercises most commonly used for back pain: direct email and a Google search. For the direct email, recipients were selected through Google Maps using the search term "Physiotherapie Hamburg" and sorted by rating. The first 30 doctors and therapists with an email address or contact form were emailed. Additionally, two German back pain societies were emailed. In the email the purpose of this master thesis was briefly explained, and the recipients were asked if they have a training program or a set of home exercises which they find particularly effective for back pain. The email can be found in Appendix A.

The Google search used the search term 'Rückenübungen Physiotherapie pdf". The first 20 results were examined for back pain related exercise programs. Results were excluded if they provided no program at all or if the program was not specifically written for back pain. The back pain program from the National Health Service (NHS) was also included. The names for each exercise are not unified and vary from exercise program to exercise program. As all exercises were found in Physiotools, a commercial online library of exercises for Physiotherapists, the names from this library were used in this thesis. Similar exercises were grouped together. To obtain the most commonly recommended exercises, all exercises from each program were entered into a table and the total number each exercise appeared over all programs found was computed.

3.2 Evaluation of PoseNet

The confidence score of PoseNet in settings of home-based back pain exercises was evaluated through images of different poses, outfits, backgrounds and brightnesses. The images were taken with the Huawei P20 rear camera and Acer Swift 12 front camera. The Huawei P20 has

a dual rear camera with a 12MP RGB sensor and a 20MP monochrome sensor. The Acer Swift 12 has a 2MP HD front camera.

A dedicated evaluation page was programmed for this purpose. This page feeds the image being evaluated into PoseNet, draws blue points onto a canvas at the coordinates of the body parts delivered by PoseNet, and displays the image with the blue points overlaid. Furthermore, the page displays a table with the numerical confidence score for each body part. Only body part coordinates with a confidence score of more than 0.5 were drawn. The Canvas API, a web API which allows drawing graphics in the browser with JavaScript and HTML, was used to draw the blue points. The following PoseNet input parameters were used:

- Image element: A HTML image element.
- Flip horizontal: True
- Image scale factor: 1
- Output stride: 32

The highest accuracy parameters for Image scale factor and Output stride were used, as execution speed did not matter for this evaluation.

3.2.1 Different poses and outfits

Ten poses from section 3.1, were selected to be evaluated. Additionally, the normal standing pose was included, as it appears this pose was used to train the PoseNet model. All images were taken with the Huawei P20 with good lighting in front of a white wall. The four different outfits used were: short, black, colourful and baggy. The short outfit consisted of short black pants, a dark blue T-shirt and no shoes. The black outfit consisted of long and tight all black clothes and black socks. The colourful outfit consisted of long purple, pink, blue and white patterned tights, a yellow long sleeve top and white shoes. Finally, the baggy outfit consisted of long pants and a pullover, both grey and loose fitting and grey socks. For each combination of pose and outfit two images were taken: the first at a 90-degree angle to the camera, the second at a 45-degree angle to the camera. The average confidence score for all the body parts of each of the eleven poses was taken and a bar graph was plotted showing the difference between each outfit for each pose and showing which poses are detected well by PoseNet and which are not.

3.2.2 Different brightnesses

Images of squats in front of a white wall in three different lighting levels were taken. The brightness of the images was defined by their light intensity. The light intensity of the images was calculated by adding the red, green and blue values for each pixel and dividing by three, i.e. finding the grey value of the image. The grey value was then divided by the size of the image resulting in a light intensity between 0 and 255 where 0 is black and 255 is white. The images were taken with both a Huawei P20 and with the front camera of the Acer Swift 12. Different cameras were used, because camera behaviour with decreased lighting depends heavily on the camera hardware and software. The lighting was changed using a blind. Due to the post processing of the Huawei, the images were much brighter than those of the Acer. To obtain similar light intensity levels in the final images, the Huawei images were digitally darkened. The average confidence score for all the body parts was plotted against the light intensity values for both the Huawei and the Acer camera.

3.2.3 Different backgrounds

Six representative home environment backgrounds were selected to be evaluated: a bedroom, a lounge with a couch, a grey wall, a kitchen with fridge and oven, plants and a white wall. A squat was done in front of all backgrounds wearing grey clothes. Images were taken using the Huawei P20 camera. The average confidence score for all the body parts was plotted against the backgrounds.

3.3 Implementation of the web application

Strato was selected as the internet hosting service provider. A contract with 3 domains, 50 GB of webspace and 2 MySQL databases was obtained from Strato. Notepad++ was used to write HTML, CSS, Javascript, PHP and MySQL code. The source files were uploaded to the Strato webserver using FileZilla, a File Transfer Protocol (FTP) interface. The domain name everywheretrainer.com was selected. The user can use the web application by entering this domain name into his browser. In response, the PHP code is run by the webserver to access data from the database using MySQL. PHP dynamically generates HTML documents which

are sent to the user. Frontend languages are executed in the browser to create the GUI that is visible to the user. Figure 5 shows the tools and setup of the web application. GitHub, a development platform, was used for version control and source code management. The source code was documented using Natural Docs, an open source software which allows for easy and neat source code documentation.

Figure 5: Tools and setup of the web application [47,48,49,50,51,52]

The GUI was developed by following, as far as possible, Shneiderman's eight golden rules for user interface. All images on the website were either taken personally with a camera or downloaded from Unsplash, a website which provides freely usable images. Bootstrap was used to achieve a responsive layout, meaning the application adapts its layout to fit the screen size being used.

PoseNet requires an image as input. For this input a video stream of the user is obtained using the MediaDevices interface, a web API which provides access to a user's hardware. SSL/https is needed for MediaDevices to run on all browsers. SSL/https is a licence which allows safe and secure connections between the browser and webserver. A corresponding license was obtained from Strato. The video stream is treated as individual images when input into PoseNet, the PoseNet function is called every second. The coordinates received from PoseNet for the body parts are used to draw blue circles and coloured lines onto a canvas using the Canvas API. This canvas is layered on top of the video stream element, so that the blue dots and coloured lines are visible and align with the body parts in the video stream. Basic geometry and trigonometry were used to calculate the angles of body parts relative to the coordinate system. Using the example of the thigh, seen in Figure 6, first the distance between hip and knee in x and y direction is calculated. These constitute to the opposite and adjacent side of a right-angled

triangle. The arctan function is then used to calculate the angle of the thigh relative to the xaxis. This computed angle is used to colour the body parts and assess how "correct" the exercise is executed.

Figure 6: Calculation of the angle of the thigh relative to the x-axis

For additional visual guidance for the user, an avatar was created using a photo which was made into a silhouette using GIMP. GIMP stands for GNU Image Manipulation Program and is a free graphics editor. The image was then cut, using Microsoft Paint, into individual pieces which can move independently of each other: the foot, the lower leg, the upper leg and the upper body. Each body part is rotated and translated according to the received angles calculated using geometry and trigonometry as explained above. To change the colour of the avatar the image itself is exchanged i.e. both the lower and upper leg have four images, one in black, green, orange and red. The bell noise for the break was downloaded from Zapsplat, a sound effects music library. To display the results from the exercise Plotly, a JavaScript visualization library, was used.

A database was created in Strato to store data that needs to be kept for longer than one user session, such as individual exercise plans and exercise history. The tables were managed using phpMyAdmin, the administration tool for the DBMS which provides a frontend to manage tables in the database, and mySQL.

4 Results

4.1 Identification of back pain exercises

Of the 30 doctors and physiotherapists, as well as the two societies contacted through direct email, only the two societies responded. The Bundesverband deutscher Rückenschulen (BdR) and the Aktion Gesunder Rücken (AGR). The BdR stated that doctors tend not to prescribe specific exercises, but instead point out existing muscular imbalances etc. which are noted on the prescription, whereas therapists (sports or physio) do prescribe specific exercise plans. Similar to doctors, therapists determine, where and to what extent pain occurs before recommending a set of exercises. The AGR suggested to look at their website for generally appropriate exercises. However, they make a note that individuals with existing severe pain, especially if it is long-lasting, should consult a doctor or therapist beforehand. These can then rule out exercises that are not suitable for the patient. The email responses from BdR and AGR can be found in Appendix B. Table 1 shows the first 20 results of the Google search using the search term 'Rückenübungen Physiotherapie pdf''. The table indicates for each result, the organization and if a back pain specific exercise program was found or not.

Organization	Back pain specific exercise program
Wirbelsäulenzentrum [53]	Yes
Dr. Kade [54]	Yes
Regensburger Orthopädengemeinschaft [55]	Yes
Physiotherapie Frank Zwetsloot [56]	Yes
AGR Aktion Gesunder Rücken e.V.[57]	Yes
Novartis Pharmaceuticals [58]	No, Not back pain specific exercise program
Deutsche Rheuma-Liga Bundesverband e.V. [59]	Yes
Praxis für physiotherapie Dietmar Linsler (Köln) [60]	Yes
Voltaren [61]	Yes
Ikk-classic [62]	Yes
Pain Education [63]	Yes
Barmer [64]	Yes
Hirslanden klink Birshof [65]	Yes
Physikalische-medizin [66]	Yes
bGw (Berufsgenossenschaft für Gesundheitsdienst und Wohlfahrtspflege)[67]	Yes
Physiowissen [68]	No, No program
Deutsche Gesellschaft für Unfallchirurgie (DGU) [69]	No, Not back pain specific exercise program
Gesundes Bayern [70]	Yes
Orthopaedie-Zentrum [71,72]	Yes
Rehazentrum-bb [73]	Yes

Table 1: First 20 results of Google search using the search term 'Rückenübungen Physiotherapie pdf''

The Google search results yielded 17 programs. Including the additional NHS program [74], 18 programs were examined. Two tables were created: Table 2 shows exercises that are designed for strengthening and stability and Table 3 shows exercises which were designed for stretching. Both tables were separated into where the exercise is performed i.e. on the floor or in a standing/sitting position. It is important to note that the Cat and Dog stretch and Trunk Rotation stretch can be performed both on the floor and in a standing position, they are however only included in the standing/sitting position in Table 3.

From Table 2, it can be seen that, for exercises on the floor the Bridge, Arm and Leg lift, back extension and the Plank are most commonly recommended. For exercises in a standing position the Squat is most commonly recommended. A table containing the name and an illustration for each of the exercises in Table 2 can be found in Appendix C.1.

Table 2: Strengthening	and Stability	exercises
------------------------	---------------	-----------

Position	Exercise Name	Wirbelsäulenzentrum	Dr Kade Pharma	Regensburger Orthopädengemeinschaft	Physiotherapie Frank Zwetsloot	AGR Aktion Gesunder Rücken e.V.	Deutsche Rheuma-Liga Bundesverband e.V.	Praxis für physiotherapie Dietmar Linsler	Voltaren	ikk-classic	Pain Education	Barmer	Hirslanden klink Birshof	Physikalische-medizin	bGw	Gesundes Bayern	Orthopaedie-Zentrum	Rehazentrum-bb	NHS	Total
Floor	Bridge	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	16
	Arm and Leg lift	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х		15
	Back extension	Х	Х	Х		Х	Х	Х	Х		Х			Х		Х	Х			11
	Plank	Х				Х	Х	Х	Х	Х		Х					Х		Х	9
	Crunch	Х	Х	Х	Х				Х		Х	Х				Х	Х			9
	Side Plank		Х		Х	Х			Х	Х		Х				Х				7
	Side Lying leg lifts	Х			Х							Х								3
	Air Bike		Х				Х													2
	Bent leg hip extension			Х		Х														2
	Arm circles															Х				1
Standing/Sitting	Squat	Х	Х		Х	Х						Х				Х		Х	Х	8
	Lunge	Х											Х							2
	Knee Lift		Х																	1
From Table 3 it can be seen that for stretches on the floor the Resting Pose, Child's Pose, and Knee to chest are most commonly recommended. For stretches in a standing position the Cat and Dog stretch, Thoracic extension and Trunk side bending are most commonly recommended. A table containing the name and an illustration for each of the exercises in Table 3 can be found in Appendix C.2.

Table 3: Stretch	uing Exercises																	
Position	Exercise Name	Wirbelsäulenzentrum	Dr Kade Pharma	Regensburger Orthopädengemeinschaft	Physiotherapie Frank Zwetsloot	AGR Aktion Gesunder Rücken e.V.	Deutsche Rheuma-Liga Bundesverband e.V.	Praxis für physiotherapie Dietmar Linsler	Voltaren	kk-classic	Pain Education	3armer	Hirslanden klink Birshof	Physikalische-medizin	0Gw	Gesundes Bayern	Orthopaedie-Zentrum	Sehazentrum-bb
Floor	Resting Pose	Х		Х	Х		Х		-		Х	Х			Х		Х	
	Child's pose		Х			Х						Х		Х				
	Knee to chest				Х						Х			Х			Х	
	Knees to Sides				Х									Х				
	Posterior Pelvic Tilt								Х				Х					
	Cobra														Х			
	Downward facing dog					Х		Х										
	Clam (sidelying)												Х					
	Hip Adductor								Х									
	Gluteus Stretch		Х															
Standing/Sitting	Cat stretch		Х	Х		Х	Х		Х		Х	Х	Х			Х	Х	
	Dog Stretch		Х	Х		Х	Х		Х		Х	Х	Х			Х	Х	
	Thoracic Extension with shoulder flex	Х		Х	Х		Х		Х			Х						Х
	Trunk Side Bending Stretch		Х	Х		Х			Х			Х						
	Trunk Rotation				Х	Х			Х			Х				Х		
	Crossbody Stretch			Х	Х	Х			Х									
	Trapezius Stretch			Х		Х			Х									
	Triceps Stretch				Х	Х			Х									
	Wrist Flexors Stretch				Х	Х												

Х

Standing Quad Stretch

Forward Bend

Х

Tahl	03.	Stretching	Exe	rcises
1 uvi	ε.σ.	Sucunity	LAC	ruses

Total SHN

2

1

From Table 2 and Table 3 ten of the most commonly recommended exercises for back pain were selected to evaluate PoseNet with. Each of these exercises can be seen in Figure 7. From top left to bottom right the exercises are: Child's Pose, Squat, Arm and Leg Lift, Bridge, Thoracic Extension, Cat and Dog stretch, Trunk Side Bending, Plank, Resting Pose.

Figure 7: Ten most commonly recommended exercises for back pain. From top left to bottom right: Child's Pose, Squat, Arm and Leg Lift, Bridge, Thoracic Extension, Cat and Dog stretch, Trunk Side Bending, Plank, Resting Pose

4.2 Evaluation of PoseNet

4.2.1 Different poses and outfits

The average confidence score for different poses and outfits for images facing the camera at 90-degrees can be seen in Figure 8 and Table 4 and those for images facing the camera at 45degrees can be seen in Figure 9 and Table 5. Images from both evaluations can be found in Appendix D.1.

From Figure 8 and Table 4 it can be seen that there are three poses with an average confidence score greater than 0.8: Standing, Thoracic Extension and Trunk Side Bending, there are four poses with an average confidence score between 0.6 and 0.8: Squat, Arm and Leg Lift, Plank and Dog stretch and finally there are four poses with an average confidence score between 0.2 and 0.6: Cat stretch, Resting pose, Bridge and Child's pose. There is no notable difference between the different outfits, no outfit is consistently better than another outfit. Excluding standing, the pose with the highest average confidence score is the Thoracic Extension (0.88).

Figure 8: Average confidence score for different poses and outfits facing the camera at 90-degrees

Table 4: Average confidence score for different poses and outfits facing the camera at 90-degrees

Outfit	Child's pose	Bridge	Resting Pose	Cat Stretch	Dog Stretch	Plank	Arm and Leg Lift	Squat	Trunk Side Bending	Thoracic Extention	Standing
Colourful	0,109	0,310	0,247	0,482	0,678	0,684	0,775	0,753	0,872	0,798	0,957
Black	0,254	0,229	0,243	0,642	0,601	0,640	0,678	0,793	0,869	0,876	0,980
Short	0,283	0,294	0,306	0,580	0,535	0,664	0,702	0,768	0,844	0,923	0,978
Baggy	0,182	0,209	0,312	0,518	0,621	0,623	0,733	0,771	0,871	0,918	0,979
Average	0,207	0,260	0,277	0,555	0,609	0,653	0,722	0,771	0,864	0,879	0,973

From Figure 9 and Table 5 it can be seen that there are four poses with an average confidence score greater than 0.8: Standing, Squat, Thoracic Extension and Dog stretch, there are three poses with an average confidence score between 0.6 and 0.8: Trunk Side Bending, Arm and Leg Lift, Plank and Cat Stretch and finally there are three poses with an average confidence score between 0.2 and 0.6: Resting pose, Bridge and finally Child's pose. There is no notable difference between the different set of outfits, no outfit is consistently better than another outfit. Excluding standing, the pose with the highest average confidence score is the Squat (0.87).

Figure 9: Average confidence score for different poses and outfits facing the camera at 45-degrees

Outfit	Child's pose	Bridge	Resting Pose	Cat Stretch	Plank	Arm and Leg Lift	Trunk Side Bending	Dog Stretch	Thoracic Extention	Squat	Standing
Colourful	0,161	0,584	0,764	0,637	0,650	0,873	0,852	0,809	0,629	0,855	0,784
Black	0,389	0,496	0,371	0,678	0,601	0,718	0,760	0,807	0,871	0,857	0,924
Short	0,288	0,517	0,501	0,576	0,633	0,707	0,757	0,818	0,896	0,901	0,934
Baggy	0,255	0,359	0,573	0,597	0,620	0,677	0,776	0,775	0,853	0,870	0,922
Average	0,273	0,489	0,552	0,622	0,626	0,744	0,786	0,802	0,812	0,871	0,891

4.2.2 Different brightnesses

The results of the brightness evaluation are shown in Figure 10 and Table 6. Images from the evaluation can be found in Appendix D.2. From Figure 10 and Table 6 it can be seen that the confidence score decreases with decreasing light intensity. At a light intensity of 40 the Huawei has a confidence score of 0.78 and at the same light intensity the Acer Swift has a confidence score of 0.456.

Figure 10: Average confidence score for different light intensities and two cameras

Table 6: Average confidence scores for different image light intensities for two cameras

Camera	150	70	40
Acer Swift 12 camera	0,860	0,821	0,456
Huawei P20 camera	0,861	0,849	0,781

4.2.3 Different backgrounds

The results of the background evaluation are seen in Figure 11 and Table 7. Images from the evaluation can be found in Appendix D.3. From Figure 11 and Table 7 there is no significant difference in the confidence score between each background, for all the backgrounds evaluated the confidence score for the squat is above 0.78.

Figure 11: Average confidence score for different backgrounds

Tuble 7. Therage confidence score for afferent background	Table 7: Average	e confidence	score for	different	backgrounds
---	------------------	--------------	-----------	-----------	-------------

Background	bedroom	couch	greywall	kitchen	plants	white wall
Average Score	0,786	0,856	0,835	0,805	0,842	0,870

4.3 Web application

The application consists of five main pages: Index, Exercise program, How to, Start exercise and History. The application is responsive, allowing users to open it on devices with various screen sizes. The application is bilingual, all functions are available in both English and German. The user can change the language by pressing on the English flag or the German flag.

The structure and makeup of the website is as follows: from the Index page the user can either create a new account or login with an existing account. Once logged in the user is directed to the Exercise program page, from here he has access to all further pages. To perform an exercise, the user can choose between one of two paths. He can either open the Start exercise page directly or visit the How to page first. From the Start exercise page the user can either exit and return to the Exercise program page or once finished with his exercises, continue to the History page. The user is able to logout from three pages, the History page, the Exercise Program Page and the How to Page. A sitemap of the web application can be seen in Figure 12. Large images of each page can be found in Appendix E.1.

Figure 12: Sitemap of the web application

4.3.1 Frontend

The Index page welcomes the user with a short motivation and description of what the application does. Here the user is required to enter his username and password to use the application. If the user does not have an account, he needs to register himself with a new username and password. This is done by pressing on the "create an account" link which makes the create an account pop up appear. The login is designed to be error friendly meaning on entry of a false password, the username does not need to be re-entered. The login is required to provide the user with his individual exercise plan and history page.

The Exercise program page shows all the exercises available to the user. For each exercise the user can choose to either start doing the exercise directly or to first visit the corresponding How to page. New users should go through the How to page first, while experienced users can go directly to the exercise. The How to page explains how to do the exercise correctly, what angles and positions the application is monitoring and how the application will indicate pose errors and breaks. The exercise is illustrated by an MP4 video of an avatar moving through the different exercise positions.

Using the results from section 4.1 and 4.2, the wall squat exercise was chosen for the application prototype. Once the user has opened the Start exercise page for the squat, he must accept a permission request for the application to use the camera. The application cannot work without this permission. The video stream from the camera is displayed in the middle of the screen. PoseNet needs a few seconds for the initial setup. During this time a loading circle is shown until the first coordinates for the body parts are received from PoseNet and the blue points can be drawn.

Above the video stream are the name of the exercise, a clock icon for the number of seconds that the exercise has been held, a repeat icon for the number of repetitions completed, a light bulb icon which indicates when the room is insufficiently lit by turning orange, a start exercise button and an exit exercise button. On the right side of the page is an avatar which updates itself corresponding to the movements of the user. After pressing the start button, the user must step backwards so that all the necessary body parts are visible. This is indicated by a bar at the bottom of the screen and by text on the screen. Once the user is completely visible, the application shows the correctness of his squat indicated by the colour of lines tracing the body parts in the video stream. For the squat, correctness depends on the angle the calf makes with the y-axis and the angle the thigh makes with the x-axis. This angle should be zero for both thigh and calf for the perfect squat. Depending on the deviation from the zero angle, the colour of the corresponding lines is changed. Furthermore, the colour of the relevant body parts of the avatar are changed. For the colours, the traffic light system is used: green when the pose is correct, orange when the pose is slightly incorrect and red when the pose is very incorrect.

The timer starts as soon as the user is in the correct pose for the first time, i.e. all relevant body parts are shown in green. It keeps running as long as the position is held but interrupts when the user deviates from the correct position. The number of repetitions is increased by one once the timer reaches the target duration for one repetition. At the end of each repetition, the information gathered during the exercise is saved into the exercise_holding table in the database. In between each repetition the user is prompted to take a small break, the start and end of the break are indicated with the sound of a bell and text on the screen. The application counts the number of repetitions and once the required number is completed the user is informed of this and has the option to continue the same exercise, move on to the next exercise or go to the History page where he can see the results from the exercise.

The sequence of events for the execution of a wall squat in the application can be seen below in Figure 13. Large images of this sequence can be found in Appendix E.2.

Figure 13: Sequence of events for the execution of a wall squat in the application

The History page displays a stacked graph of the time taken in seconds for each repetition versus the day on which the exercise was completed. The stacked graph starts with the first repetition, then second and so on. Again, the traffic light system is used. Each repetition is coloured in green, orange or red depending on the length of the repetition. The graph gives an overview of the user's compliance and the correctness of the exercise. The graph begins with the date that the user created his account. Hovering the mouse pointer over one of the bars will bring up a text box with detailed information on errors made during each repetition. The graph provides the user with several additional functions such as download plot as png, zoom and pan. One chart is created for each exercise type. At the top of the graph is a menu to change between the

different exercises. At the bottom of the graph is a download button, which enables the user to obtain the data from the graph in table format as a .csv file. An example of a user's exercise history can be seen in Figure 14.

Figure 14: Example of a user's exercise history. The image illustrates the onhover event for the 26th Jan 2020

4.3.2 Backend

Three tables were created: users, holding_exercises and alldates. The user table allows the website to be personalized, the user is greeted by name and the History page displays only information from the currently logged in user. The user table was created with four columns having the following names and data types: id (int), username (varchar), password (varchar) and created_at (timestamp). The id was set as the table's primary key and is a number given automatically to the user upon account creation. The username and password are chosen by the user. The password is saved using a strong one-way hashing algorithm, which means it is not possible to read the password from the database. Finally, created_at is the time and date when the user created his account. An image of the user table structure can be seen in Figure 15.

#	Name	Туре	Collation	Attributes	Null	Default
1	id 🔑	int(11)			No	None
2	username	varchar(50)	latin1_german1_ci		No	None
3	password	varchar(255)	latin1_german1_ci		No	None
4	created_at	timestamp			No	CURRENT_TIMESTAMP

Figure 15: Structure of the table: users

The holding_exercises table was created to store all the valuable information that occurs while a user is exercising. The data is relevant for the History page, enabling the user to evaluate his correctness and compliance with the exercise program. The holding_exercises table has seven columns with the following names and types: user_id (int), exercise (varchar), time (timestamp), exe_time (int), reps (int), corrections (varchar) and reps_duration (int). User_id corresponds to the id in the user table. Exercise is the name of the exercise completed, i.e Wall Squat or Plank. Time is the time and date the repetition was completed. The exe_time, is the time requested by the trainer that the user should hold for one repetition. Reps is the number of repetitions completed, i.e. 1, 2 or 3. Corrections is an array which is saved as a string, it contains all the textual information related to mistakes made by the user during the exercises. Finally, the last column, reps_duration is the actual time the user took to complete a repetition including the errors. The user_id and time were set as a primary key together. An image of the holding_exercises table structure can be seen in Figure 16.

#	Name	Туре	Collation	Attributes	Null	Default
1	user_id 🔑	int(11)			No	None
2	exercise	varchar(50)	latin1_german1_ci		No	None
3	time 🔑	timestamp			No	CURRENT_TIMESTAMP
4	exe_time	int(11)			No	None
5	reps	int(11)			No	None
6	corrections	varchar(1000)	latin1_german1_ci		No	None
7	reps_duration	int(11)			No	None

Figure 16: Structure of the table: holding_exercises

To ensure that the chart on the History page has a continuous time axis, i.e. all dates are shown and not just the dates where the user exercised, a table with all dates is needed. The alldates table fills this purpose and was created with one column having the following name and type: all_dates(date). The table was filled with all dates between the 01.08.2019 and the 31.12.2020. An image of the alldates table structure can be seen in Figure 17.

Figure 17: Structure of the table: alldates

5 Discussion

The aim of this thesis was to design, implement and evaluate a fitness application that employs PoseNet to improve compliance and correctness of home exercises for back pain. Such an application was successfully developed. It guides the user on the correctness of his posture and documents the execution. The user uses a webcam to obtain a video stream of himself. The application shows how to achieve the correct posture through an overlay of coloured lines on the video stream. Additionally, an avatar mirrors the user's movement and shows which body parts are not in the correct position. The application aids the user with compliance by storing and displaying information on how often an exercise was completed and where the user made posture errors. The design, evaluation and implementation processes and results are discussed in the following sections.

5.1 Medical

Several papers [22, 25, 26] suggest that there is no single best practice program against back pain, it was however found that physiotherapists prescribe certain exercises more often than others. An email survey and a Google search were employed to identify the most important home exercises. The programs obtained in this way were summarized into a single list of exercises. As the application would mostly be used by a physiotherapist, it was these exercises that were used for the prototypical implementation and the evaluation of PoseNet.

5.1.1 Methods

None of the 30 physiotherapists replied to the email survey. This shows that the number of recipients was too low and that follow ups in the form of phone calls and second emails are necessary. As an alternative, personal visits to physiotherapy practices, while necessitating much more time, could be more successful.

From the Google search, the most common exercises prescribed by physiotherapists were identified by including the top twenty search results. This number was considered sufficiently large to see a pattern in back pain exercises and to choose an exercise to be implemented into the prototype. It must be noted that these exercises are not necessarily the best in terms of pain relief. Physiotherapists simply suggest them most commonly. For future development more time could be spent on the selection of exercises.

When looking through the back pain programs and sorting the exercises, some exercises were placed in the category for standing position although they could also be executed on the floor. The difference in effectiveness of doing an exercise standing and on the floor should be examined. Furthermore, the difference between similar exercises which were grouped together should be better analysed to ensure these exercises can be grouped together. Finally exercises that require additional equipment to be executed were excluded. These could potentially be added at a later stage as another exercise category.

5.1.2 Results

The results provided a list of exercises which would be plausible to include in the application in the future. The exercises found in more than 5 programs were: Bridge, Arm and Leg Lift, Back extension, Plank, Crunch, Side Plank and Squat. For the stretches: Resting Pose, Child's Pose, Knee to chest, Cat and Dog stretch, Thoracis Extension and Trunk Rotation. These exercises and stretches contain both holding exercises, like the plank and repetition exercises, like crunches and are often executed on the ground.

5.2 PoseNet

PoseNet is an extremely robust model which is easy to use and runs in the browser. This makes it possible to build an application that can observe the user in a similar fashion as a real trainer or therapist would. However, PoseNet was not developed for back pain exercises in particular. The suitability of the model for this purpose was therefore evaluated in a number of tests.

5.2.1 Methods

For all of the PoseNet evaluations, the confidence scores of the body parts were taken as the measure for correctness of the pose estimation. This assumes that the coordinates of the body parts are correct when PoseNet delivers these with a high confidence score, i.e. the location of the knee coordinate is in fact on the knee. This is unfortunately not always the case and it does happen that PoseNet is confident about the coordinates of a body part without them being correct. For example, when doing the plank or the arm and leg lift PoseNet often mistook hands for feet. While the actual reasoning of PoseNet is unknown, it appeared that hands were mistaken for feet when they were located directly beneath the head. PoseNet increasingly struggles when the pose is different from a standing position, probably because it has been trained mainly on images of the latter. For example, PoseNet has high confidence scores for a few body parts of the resting childs pose, but the coordinates are incorrect. Fur future developments, it would probably be necessary to train PoseNet specifically on the poses seen in back pain exercises. For poses where the user is standing with his face towards the camera PoseNet already works very well.

When doing the brightness tests, the brightness of the room was changed 5 times. However, on closer inspection, the first three brightness levels were almost identical and for this reason two of these were discarded leaving only three different levels in the end. In order to determine the detailed behaviour of the curve for low brightness levels, one would need more points towards the darker end of the axis. The quality of the image for the Acer Swift is noticeably worse when changing the lighting in real life as opposed to changing it digitally. The brightness was reduced artificially for the Huawei P20. Obtaining two images of the same brightness naturally from both cameras was very difficult, as the Huawei P20 changed its settings to compensate for the dim light.

The quality of the camera used influences the correctness of PoseNet's results. Unfortunately, only two devices were available for the evaluation. It could be necessary to repeat these evaluations with several cameras to determine limitations specifically for different camera specifications.

A 26-year-old white female was used for all of the evaluations. The evaluation results are therefore biased towards this user group. Results for users of different races, age groups and sexes could deviate from the results obtained in this work.

All evaluations were done with still images that were taken separately. In the application PoseNet is taking an image from the video stream every second. It could happen that the person is moving at the moment that the PoseNet function is called, which would send a potentially blurry image. The effect of this blurriness was not investigated further in this thesis.

With poses, clothes, backgrounds, lighting and cameras, the evaluation conducted in this thesis covers a wide range of possible factors influencing the suitability of PoseNet for monitoring home based back pain exercises. 105 images were taken and evaluated.

5.2.2 Results

PoseNet seems to be largely independent of the outfits worn by the user. Contrary to expectation, baggy clothes do not perform worse than a tighter outfit consisting of shorts and a T-Shirt. Similarly, PoseNet appears to have no problem with objects being in the background or with the background being of a similar colour as the clothes being worn. A natural exception is of course having another person in the background. With the single pose algorithm, the algorithm selected for this thesis, PoseNet will select body parts from every person in the image at random. For monitoring of more than one person, the multipose algorithm should be selected. Through this evaluation however, it became clear that PoseNet is not suited for poses where the user is on the floor or where the user is covering his face. Certain crossing movements are also not recognised well. Therefore, in order to use PoseNet for exercises that occur on the floor, one would either need to train the model further or find a different, more suitable model.

Having a PoseNet confidence score above 0.7 for all relevant body parts was sufficient to be able to compute an exercise effectively. It must be noted that the face was included in all of the average numbers for the certainty score. Although the face coordinates are not necessarily needed for any exercise, PoseNet seems to perform better when the face coordinates are visible. It was found that PoseNet is really only suited for poses where the person is standing relatively upright and with the face being visible. This is highlighted by the Plank: when the image of the Plank is fed into PoseNet horizontally the average confidence score is low, at only 0.609. After rotating the image of the plank, such that the person appears to be standing, the score increased by 0.154 to a score of 0.763.

From the brightness tests it can be concluded that brightness itself is not necessarily a problem on its own, but rather the quality of the camera used. Low light levels can cause the camera to produce pixelated images, which then cause PoseNet to show low confidence scores for the body parts. The Huawei performed far better than the Acer Swift. At a lightness intensity of 40, images from the Acer swift had an average confidence score of 0.456, barely yielding any body parts correctly. The same images taken with the Huawei had an average confidence score of 0.781, which means that PoseNet was still able to estimate most of the body parts accurately. More research needs to be conducted to explore what exactly provides the difference between the cameras; the hardware, software or both. It is therefore difficult to select a minimum brightness level that works for all cameras. For the prototype, a lower intensity limit of 70 was implemented which works with both cameras employed in this thesis.

5.3 The Application

The application provides an easy way to visually monitor patients while they do their exercises. It replaces the need to fill out forms, as is the case in some applications, with all the necessary information being saved automatically. It gives people who already have a cell phone, laptop or smart TV the opportunity to improve their back pain, without having to spend money on equipment or needing to find the time for appointments at a physiotherapist.

Based on the outcome of the several tests performed, this application prototype may be a promising candidate for the solution of standardising the many variables that make it difficult to compare exercises and compliance tests in back pain studies. It could help define randomised control trials for both back pain exercises and compliance.

5.3.1 Methods

The application effectively takes an image from the video stream once every second and sends this to PoseNet, which works well in good lighting. However, when the lighting is not sufficient especially if the camera specifications are low, the recognition quality declines with some body parts intermittently jumping to objects in the room. Therefore, if one were to include cameras that have low specifications, a more effective method than just studying each frame separately i.e. without taking previous images into account, is needed at low light. Such a method could be to take into account the deductions from previous images to guide the process on new frames or take the complete image sequences as inputs for their predictions. By taking into account the temporal relationship between images or video frames, PoseNet might do a better job at recognising the knee for an example in the next frame. However, this would necessitate changes in PoseNet itself and cannot be enforced externally through the API.

Futhermore, some information is lost when one takes an image in 3D and projects its points onto a 2D plane. The 3D image becomes flat and one is not able to 'estimate' all angles correctly. Different perspectives can cause the points to appear in angles that they are not really building in 3D. To minimise this problem, one needs to suggest specific, well working angles between the user and the camera.

Some important notes about the application in its current state. The application needs a good internet connection to load the website, the worse the connection the longer it takes for PoseNet to load. Once the website is loaded it can be seen in the developer tools that there is no network activity, nothing is being sent or received. This means that no image is being sent to Google and the user's video stream remains private.

The time interval to update the coordinates, i.e. the time interval that images are sent to PoseNet was set to 1000 milliseconds. This ensured that the coordinates were accurate enough for the holding exercise without there being delays from PoseNet. For a seamless update of coordinates, i.e. where the coordinates do not flash once a second, the time interval could be decreased. However, this has an immediate effect on the performance of the application. The computing power of both the Acer Swift and Huawei P20 were not sufficient to return the coordinates without lagging or overheating at intervals smaller than 200 milliseconds. Reducing the time interval further could be necessary to implement repetition exercises.

5.3.2 Results

The application that was developed is a Hybrid app, which means it is a web-based app that is designed to also work on a smart phone. The application requires no installation but necessitates a large amount of testing before it can run problem free on all common browsers and screen sizes: i.e. on a phone, laptop and computer. This testing has only been done on a handful of devices.

The application is easy to use. One just needs to enter the domain name into a browser to begin exercising. It is made for all screen sizes, meaning the user can use his cell phone or computer TV screen, whichever is currently available. A bigger screen obviously has the advantage, especially for elderly, of being able to see oneself and the corrections better.

As described in the results, the application uses the coordinates of the body, calculates angles and displays guidelines and an avatar which change colour and position according to the correctness of the execution. The framework for one exercise, the wall squat, has been completed and the application was developed with more than one exercise in mind, meaning that the implementation of other exercises in the future would be easy. The user is guided through the exercise with a written text across the screen. This could be supported or replaced with voice prompts in the future so that the experienced users do not necessarily need to look at the screen all the time and can complete their exercises from voice prompts. The application was programmed with usability in mind and followed Shneiderman's 8 rules, however usability tests still would need to be completed.

Currently the application is set up only for holding exercises. Stretches and repetition exercises would require adjustments and expansion of the current application. Technically, this should not be difficult to implement as all necessary components exist.

The application was programmed at every stage with the intention of adding a trainer's page. This page would enable the trainer to design an individual training program for the trainee. The trainer would do an analysis of the patient and, according to the analysis, select appropriate exercises, their duration and frequency, as well as the angles which the patient should meet. These angles would be different for everyone, an elderly person might not be able to squat at 90 degrees initially. These values are currently all saved in variables but are assigned a fixed value.

An application like this could help trainers or physiotherapists reduce costs and help with compliance of patients as it enables the trainer to supervise without seeing the patient. The patient would only be required to come in when the trainer sees that the user is not doing his exercises or if the exercises are done incorrectly. The application will also provide more insights as to why the user is not compliant. Was the patient insufficiently prepared before going home; i.e. he doesn't know or has forgotten how to do his exercises? Or is the patient not taking time for exercises at all? Either the patient is not complying to his exercise programs, he is not executing his exercises correctly or the chosen exercises are not beneficial to his recovery, all not leading to a healthy patient and needing different solutions.

5.4 State of the art

Comparing the application created in this thesis to that of VAY [46] one can see that with VAY no correctness is saved. The application simply counts the number of repetitions the user has completed for a certain exercise but it does not monitor or record what was done well and what can be improved. Everything is audio related and there is no visual feedback. Furthermore, the work of this thesis focuses on patients who have back problems and not just patients looking to get fit, like VAY. Finally, VAY is a commercial product that requires a subscription.

MIRA [45] has produced a physiotherapy tool that through games helps increase the patient's movements and records his compliance. MIRA however uses motion tracking sensors to perform this task. Although the accuracy of MIRA may be better than that of this thesis, this thesis uses no additional device besides a camera from a device that a user already has, making it much more available but not as accurate. Machine learning is still new and with more progress, has the ability to be as accurate as motion tracking sensors in the future.

5.5 Outlook

There is a big need in the world for an application such as the one presented in this work. An application with the potential to get behind the treatment programs and compliance problems faced in back pain, without the cost and hassle of some of the currently available solutions.

There are several ways forward for this project depending on how the application is developed further. One possibility would be to include a trainer page. If a trainer page is to be included, physiotherapists should be consulted to find out which exercises to include and what variables, such as deviation angle and duration, they would want to set and monitor in the final application. With a physiotherapist behind the treatment plans, these plans could be personalised perfectly instead of having more general treatment plans. An increase in compliance could also be the result of the patient just knowing that he is being monitored by his physiotherapist.

Another option would be to not include physiotherapists and use a general set of exercises instead. The user could then set variables and a plan themselves or the application would suggest a program based on user characteristics, best practice and even the user's historic performance.

Finally, a combination of both approaches is thinkable, i.e. having a trainer page for those users that want to collaborate with a physiotherapist, but not enforcing this collaboration for every user. This approach would also enable a comparative for compliance between users with and without a trainer.

More exercises need to be added. If the further development of the application is to maintain PoseNet as the machine learning model behind the application, the model would need to be retrained so as to enable back pain exercises which are performed on the floor. PoseNet would also need to be tested with a range of different cameras and it might be necessary to establish minimum requirements for the hardware.

If it was decided not to continue with PoseNet, it would be necessary to find another system which provides the coordinates of the body parts being examined. The author believes that the adaptations of the application to another such system would be minimal.

6 Conclusion

This thesis successfully designed, implemented and evaluated a prototype web application that helps with compliance and correctness of home exercises in back pain. This was achieved through the study of compliance and back pain exercises, the evaluation of PoseNet capabilities and the implementation of web technologies.

Several back pain exercises are used by physiotherapists to fight back pain, there is however no exercise proven to be the best. On top of this, compliance is a serious problem in home exercise plans. Back pain exercises are often executed on the floor. In the PoseNet evaluation it became clear that the model is extremely robust towards clothes, backgrounds and brightness. However, camera quality and body poses do have a big effect on the pose estimation. More research needs to be done as to the limitations of the cameras and either PoseNet needs to be retrained or another model needs to be used to allow for the addition of exercises which are executed on the floor. Otherwise the application provides a promising step towards improving the correctness of exercise execution and solving the compliance problems encountered in back pain treatment, without the cost and hassle of some of the currently available solutions.

7 References

- 1. Sudhir Ganesan, Anita Shankar Acharya, Ravi Chauhan, Shankar Acharya: Prevalence and Risk Factors for Low Back Pain in 1,355 Young Adults: A Cross-Sectional Study; Asian Spine J. 2017 Aug; 11(4): 610-617
- "Wie oft haben Sie in den letzten 12 Monaten Rückenschmerzen gehabt?", Statista. [Online]. Available: <u>https://de.statista.com/statistik/daten/studie/668036/umfrage/umfrage-zur-haeufigkeit-von-rueckenschmerzen-in-deutschland/</u>. [Accessed: 12- August-2019].
- Mansueto Gomes-Neto, Jordana Moura Lopes, Cristiano Sena Conceiçao, Anderson Araujo, Alecio Brasileiro, Camila Sousa, Vitor Oliveira Carvalho, Fabio Luciano Arcanjo: Stabilization exercise compared to general exercises or manual therapy for the management of low back pain: A systematic review and meta-analysis; Phys Ther Sport. 2017 Jan;23:136-142. doi: 10.1016/j.ptsp.2016.08.004. Epub 2016 Aug 18.
- "Krankheitskosten für Rückenschmerzen", Destatis. [Online]. Available: <u>https://www-genesis.destatis.de/genesis/online/data;sid=0E42671DCBC235DF6BD7C2BFD955C6</u> 24.GO 1 4?operation=ergebnistabelleDiagramm&option=diagramm&levelindex=2& levelid=1563480833353&downloadname=23631-0003. [Accessed: 12- August-2019]
- "Anzahl der Arbeitsunfähigkeitstage nach Diagnose bis 2018", Statista. [Online]. Available: <u>https://de.statista.com/statistik/daten/studie/195977/umfrage/anzahl-der-arbeitsunfaehigkeitstage-nach-diagnose/</u> [Accessed: 12- August-2019]
- 6. Stolk R, Rosmalen J, Postma D, de Boer R, Navis G, Slaets J, Wolffenbuttel O: Universal risk factors for multifactorial diseases. 2008 European journal of epidemiology, 23(1), pp.67-74
- Jacek Cholewicki, Pramod Pathak, N. Peter Reeves, John M. Popovich: Simulation of Multifactorial Causes of Low Back Pain; The Spine Journal October 2016Volume 16, Issue 10, Supplement, Page S277. doi: 10.1016/j.spinee.2016.07.192
- 8. Akhtar MW, Karimi H, Gilani SA: Effectiveness of core stabilization exercises and routine exercise therapy in management of pain in chronic nonspecific low back pain: A randomized controlled clinical trial. Pak J Med Sci. 2017;33(4):1002-1006.
- 9. Nava-Bringas TI, Roeniger-Desatnik A, Arellano-Hernández A, Cruz-Medina E.: Adherence to a stability exercise programme in patients with chronic low back pain; Cir Cir. 2016 Sep-Oct;84(5):384-91. doi: 10.1016/j.circir.2015.10.014. Epub 2016 Jan 6.
- 10. National Institute for Health and Clinical Excellence: Low back pain: early management of persistent non-specific low back pain. London: Royal College of General Practitioners (UK); 2009 May. National Institute for Health and Clinical Excellence: Guidance. Available at: http://www.nice.org.uk. Accessed June 8, 2012.
- 11. Beinart NA1, Goodchild CE, Weinman JA, Ayis S, Godfrey EL. Individual and intervention-related factors associated with adherence to home exercise in chronic low back pain: a systematic review. Spine J. 2013 Dec;13(12):1940-50. doi: 10.1016/j.spinee.2013.08.027. Epub 2013 Oct 26.

- 12. World Health Organization. Adherence to long-term therapies evidence for action: evidence for action. WHO library 2003, Switzerland. In: Karnad P, McLean S, eds. Physiotherapists' perceptions of patient adherence to home exercises in chronic musculoskeletal rehabilitation. Int J Physiother Rehabil 2011;1:14–29
- Nava-Bringas TI, Roeniger-Desatnik A, Arellano-Hernández A, Cruz-Medina E: Adherence to a stability exercise programme in patients with chronic low back pain; Cir Cir. 2016 Sep-Oct;84(5):384-91. doi: 10.1016/j.circir.2015.10.014. Epub 2016 Jan 6.
- 14. Friedrich M, Gittler G, Halberstadt Y, Cermak T, Heiller I.: Combined exercise and motivation program: effect on the compliance and level of disability of patients with chronic low back pain: a randomized controlled trial. Arch Phys Med Rehabil 1998;79:475–87.
- 15. "Statistiken zur Internetnutzung in Deutschland", Statista. [Online]. Available: <u>https://de.statista.com/themen/2033/internetnutzung-in-</u> <u>deutschland/https://www.destatis.de/DE/Presse/Pressemitteilungen/2018/09/PD18_33</u> <u>0_634.html</u> [Accessed: 12- August-2019]
- 16. Lambert TE, Harvey LA, Avdalis C, Chen LW, Jeyalingam S, Pratt CA, Tatum HJ, Bowden JL, Lucas BR.: An app with remote support achieves better adherence to home exercise programs than paper handouts in people with musculoskeletal conditions: a randomised trial; J Physiother. 2017 Jul;63(3):161-167. doi: 10.1016/j.jphys.2017.05.015. Epub 2017 Jun 26.
- 17. Higgins JP: Smartphone Applications for Patients' Health and Fitness; Am J Med. 2016 Jan;129(1):11-9. doi: 10.1016/j.amjmed.2015.05.038. Epub 2015 Jun 17.
- "A 2019 guide to Human Pose Estimation with Deep Learning", TensorFlow. [Online]. Available: <u>https://nanonets.com/blog/human-pose-estimation-2d-guide/</u> [Accessed: 12- August-2019]
- 19. "TensorFlowLiteguide",TensorFlow.[Online].Available:https://www.tensorflow.org/lite/guide [Accessed: 12- August-2019]Available:
- Casser H, Hasenbring M, Becker A, Baron R: Rückenschmerzen und Nackenschmerzen Interdisziplinäre Diagnostik und Therapie, Versorgungspfade, Patientenedukation, Begutachtung, Langzeitbetreuung. ISBN 978-3-642-29774-8 DOI 10.1007/978-3-642-29775-5
- 21. Airaksinen O, Brox JI, Cedraschi C, Hildebrandt J, Klaber-Moffett J, Kovacs F, Mannion AF, Reis S, Staal JB, Ursin H, Zanoli G; Chapter 4. European guidelines for the management of chronic nonspecific low back pain. Eur Spine J. 2006 Mar;15 Suppl 2:S192-300. Springer-Verlag Berlin Heidelberg 2016
- van Middelkoop M1, Rubinstein SM, Verhagen AP, Ostelo RW, Koes BW, van Tulder MW: Exercise therapy for chronic nonspecific low-back pain. Best Pract Res Clin Rheumatol. 2010 Apr;24(2):193-204. doi: 10.1016/j.berh.2010.01.002.
- Pillastrini P, Gardenghi I, Bonetti F, Capra F, Guccione A, Mugnai R, Violante FS: An updated overview of clinical guidelines for chronic low back pain management in primary care. Joint Bone Spine. 2012 Mar;79(2):176-85. doi: 10.1016/j.jbspin.2011.03.019. Epub 2011 May 12.

- 24. Qais Gasibat, Wurida Suwehli, Abulgasim Rehema Bawa, Noura Adham, Rasha M.Kheer Al turkawi, Jalal Mohamed Baaiou: The Effect of an Enhanced Rehabilitation Exercise Treatment of Non-Specific Low Back Pain- A suggestion for Rehabilitation Specialists in American Journal of Medicine Studies. 2017, 5(1), 25-35. DOI: 10.12691/ajms-5-1-3, Published online: July 31, 2017
- 25. Smith BE, Littlewood C, May S.Picture: An update of stabilisation exercises for low back pain: a systematic review with meta-analysis in BMC Musculoskelet Disord. 2014 Dec 9;15:416. doi: 10.1186/1471-2474-15-416.
- 26. Keller K: Exercise therapy for low back pain: a narrative review of the literature; J Chiropr Med. 2006 Spring;5(1):38-42. doi: 10.1016/S0899-3467(07)60131-1.
- Hermet A, Roren A, Lefevre-Colau MM, Gautier A, Linieres J, Poiraudeau S, Palazzo C: Agreement among physiotherapists in assessing patient performance of exercises for low-back pain in BMC Musculoskelet Disord. 2018 Jul 27;19(1):265. doi: 10.1186/s12891-018-2173-9.
- 28. Riel H, Matthews M, Vicenzino B, Bandholm T, Thorborg K, Skovdal Rathleff M: Efficacy of live feedback to improve objectively monitored compliance to prescribed, home-based, exercise therapydosage in 15 to 19 year old adolescents with patellofemoral pain- a study protocol of a randomized controlled superiority trial (The XRCISE-AS-INSTRUcted-1 trial) in BMC Musculoskelet Disord. 2016; 17: 242. Published online 2016 Jun 2. doi: 10.1186/s12891-016-1103-y
- 29. Pomaska G; Webseiten-Programmierung Sprachen, Werkzeuge, Entwicklung. ISBN 978-3-8348-2484-4 DOI 10.1007/978-3-8348-2485-1 Springer Vieweg.
- Bühler P, Schlaich P, Sinner D: Webtechnologien JavaScript PHP Datenbank. ISBN 978-3-662-54729-8 Springer Vieweg.
- 31. Schicker E: Datenbanken und SQL Eine praxisorientierte Einführung mit Anwendungen in Oracle, SQL Server und MySQL (5. Auflage). ISBN 978-3-658-6 DOI 10.1007/978-3-658-16129-3 Springer Vieweg.
- Thesmann S: Interface Design Usability, User Experience und Accessibility im Web gestalten (2. Auflage). Springer Viewweg. ISBN 978-3-658-03856-4 DOI 10.1007/978-3-658-03857-1
- 33. Gong J, Tarasewich P: GUIDELINES FOR HANDHELD MOBILE DEVICE INTERFACE DESIGN. In Proceedings of the 2004 DSI Annual Meeting, College of Computer and Information Science, Northeastern University
- 34. Shneiderman B, Plaisant C: Designing the user interface: strategies for effective humancomputer interaction.(4th ed.) 2005 by Pearson Education, Inc. ISBN 0-321-19786-0
- 35. Boden M: Artificial Intelligence a very short introduction. 2018 Oxford University Press. ISBN: 978-0-19-960201-9
- 36. "Is deep learning the same as AI & machine learning?" Journalism AI. [Online]. Available: <u>https://journalismai.com/2018/12/30/machine-learning-deep-learning/</u> [Accessed: 04-January -2020]
- 37. Hope T, Resheff Y, Lieder I: Einführung in TensorFlow Deep-Learning-Systeme programmieren trainieren, skalieren und deployen. O'Reilly Media, Inc. ISBN: 978-3-96009-074-8

- Geron A: Praxiseinstieg Machine Learning mit Scikit-Learn & TensorFlow Konzepte, Tools und Techniken f
 ür intelligente systeme.(1. Auflage) dpunkt.verlag. ISBN 978-1-491-96229-9. 2018
- Planche B, Andreas E: Hands-On Computer Vision with TensorFlow 2 Leverage deep learning to create powerful image processing apps with TensorFlow 2.0 and Keras. 2019 Packt Publishing. ISBN: 978-1-78883-064-5.
- 40. "Mathematical model of artificial neuron", ResearchGate. [Online]. Available: <u>https://www.researchgate.net/figure/Mathematical-model-of-artificial-</u> <u>neuron_fig1_320270458</u> [Accessed: 05-January -2020]
- 41. "Artificial Intelligence, Deep Learning, and Neural Networks Explained", innoarchitech. [Online]. Available: <u>https://www.innoarchitech.com/blog/artificialintelligence-deep-learning-neural-networks-explained [Accessed: 05-January -2020]</u>
- 42. "Applied Deep Learning Part 4: Convolutional Neural Networks" towards data science. [Online]. Available: <u>https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2</u>] [Accessed: 05-January -2020]
- 43. "Pose estimation" Tensor Flow. [Online]. Available: https://www.tensorflow.org/lite/models/pose_estimation/overview [Accessed: 12-January -2020]
- 44. "Real-time Human Pose Estimation in the Browser with TensorFlow.js" Tensor Flow. [Online]. Available: https://medium.com/tensorflow/real-time-human-pose-estimationin-the-browser-with-tensorflow-js-7dd0bc881cd5 [Accessed: 12-January -2020]
- 45. "Play your way to recovery" Mira. [Online]. Available: <u>http://www.mirarehab.com</u> [Accessed: 15-January -2020]
- 46. "Activay yourself with the Pros" VAY-Sports. [Online]. Available: <u>https://vay-sports.com</u> [Accessed: 15-January -2020]
- 47. "Database", computerhope. [Online]. Available: https://www.computerhope.com/jargon/d/database.htm [Accessed: 07-October -2019]
- 48. "Network server clip art", Free vectors. [Online]. Available: <u>https://all-free-download.com/free-vector/download/network-server-clip-art 26331.html</u> [Accessed: 23-December-2019]
- 49. "Transparent Background Laptop Screen Png", JING.FM. [Online]. Available: https://www.jing.fm/iclipt/u2q8r5w7y3y3r5w7/ [Accessed: 07- October -2019]
- 50. "Replace new lines with commas in Notepad++", Sundstedt Animation. [Online]. Available: <u>https://sundstedt.se/blog/replace-new-lines-commas-notepad/[Accessed: 07-October 2019]</u>
- 51. "Filezilla icon" Icon Finder. [Online]. Available: https://www.iconfinder.com/icons/95986/filezilla icon, [Accessed: 07- October 2019]
- 52. "Logo STRATO AG November 2017" Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Strato_AG [Accessed: 07- October 2019]
- 53. "RÜCK HALT Übungen für Ihren Rücken" Wirbelsäulenzentrum. [Online]. Available: <u>https://www.wzas.de/sites/default/files/images/Heimuebung_Flyer_20121123.pdf</u> [Accessed: 20-January-2019]

- 54. "Einfache Übungen für einen starken Rücken, Ihre Rückenschule für zu Hause" Dr Kade. [Online]. Available: <u>https://www.kade.de/fileadmin/assets/patienten-informationen/rueckenschule.pdf</u> [Accessed: 20-January-2019]
- 55. "Die guten 12 Gymnastikübungen für den Rücken" Regensburger Orthopädengemeinschaft. [Online]. Available: <u>https://www.orthopaederegensburg.de/fileadmin/dateien/praxen/pilhofer-</u> stork/bilder praxis/GymFolder/Gym Ruecken Stork.pdf[Accessed: 20-January-2019]
- 56. "Rückenschule, Hilfreiche Tipps und Übungen für Zuhause" Physiotherapie Frank Zwetsloot. [Online]. Available: https://www.zwetsloot.de/files/downloads/Teilnehmerhandout%20Rueckenschule%20 -%20Physiotherapie%20Zwetsloot.pdf[Accessed: 20-January-2019]
- 57. "EINFACHE RÜCKENÜBUNGEN FÜR DEN ALLTAG" AGR Aktion Gesunder Rücken e.V. [Online]. Available: <u>https://www.agr-</u> <u>ev.de/de/rueckenschmerzen/rueckenuebungen</u> [Accessed: 20-January-2019]
- 58. "DER PHYSIO VITAL TASCHENTRAINER" Novartis Pharmaceuticals [Online]. Available:<u>https://www.novartis.at/sites/www.novartis.at/files/Physio_Vital_Voltaren_App_Taschentrainer_A6_160208.pdf</u> [Accessed: 20-January-2019]
- 59. "Bewegungsübungen bei Rückenbeschwerden" Deutsche Rheuma-Liga Bundesverband e.V. [Online]. Available: <u>https://www.rheuma-liga.de/fileadmin/public/main_domain/Dokumente/Mediencenter/Publikationen/Broschueren/A9_Bewegungsuebungen_Ruecken.pdf</u> [Accessed: 20-January-2019]
- 60. "Rückenübungen" Praxis für physiotherapie Dietmar Linsler. [Online]. Available:<u>https://www.physiotherapie-linslerkoeln.de/gfx/flyer/Flyer_Linsler_10seiter</u> <u>Ruecken_2015_04_einzeln_web.pdf</u> [Accessed: 20-January-2019]
- 61. "Ihr individuelles Übungsprogramm für den Rücken" Voltaren [Online]. Available:<u>https://rueckenschmerzen.behandeln.de/rueckenuebungen.html?gclid=Cj0K</u> <u>CQiApt_xBRDxARIsAAMUMu_81OysAMIInPhF5f3jnqEhCVDAQh_oOIRCmPrK</u> RX0IfHgdFPm5ax0aAo2OEALw wcB&gclsrc=aw.ds [Accessed: 20-January-2019]
- 62. "Diese Übungen stärken Ihren Rücken" ikk-classic [Online]. Available: <u>https://www.ikk-classic.de/gesund-machen/bewegen/ruecken-</u> <u>staerken?mc=paid.sea.gl.g-m.ruecken-staerken.dynamic</u> [Accessed: 20-January-2019]
- 63. "Rückentraining für die Lendenwirbelsäule" Pain Education [Online]. Available: <u>https://www.change-pain.de/cms/cda/file/R%C3%BCckentraining</u> <u>+f%C3%BCr+die+Lendenwirbels%C3%A4ule.pdf?fileID=320400151&cacheFix=14</u> <u>57967827000& k=8e2ef1d47b54ef11b15bc9e94a57a5f6</u> [Accessed: 20-January-2019]
- 64. "Rücken aktiv Bewegen statt schonen" Barmer [Online]. Available: <u>https://www.barmer.de/blob/8554/fc15b0b01c81eb8368026198f13aa437/data/barmer-</u> <u>--ruecken-aktiv---bewegen-statt-schonen-6028n.pdf</u> [Accessed: 20-January-2019]
- 65. "Übungen zur segmentalen Rumpf Stabilisation" Hirslanden klink Birshof [Online]. Available: <u>https://www.hirslanden.ch/content/dam/klinik-birshof/downloads/de/centres/physiotherapie/birshof-physiotherapie-</u>

<u>%C3%BCbungen-zur-segmentalen-rumpfstabilisation.PDF</u>[Accessed: 20-January-2019]

- 66. "Übungsanleitungen und Tipps bei haltungsbedingten Beschwerden der Wirbelsäule" Physikalische-medizin [Online]. Available: <u>http://www.physikalische-</u> <u>medizin.at/files/haltung.pdf</u> [Accessed: 20-January-2019]
- 67. "Akute Rückenschmerzen durch Eigenübungen behandeln" bGw [Online]. Available: http://www.aktivion.de/assets/PDF/Eigenbungen-BGW.pdf [Accessed: 20-January-2019]
- 68. "Rückentraining" Physiowissen [Online]. Available: <u>https://www.physiowissen.de/uebungen/ubungen-in-der-gruppe/rueckenschule-uebungen/rueckentraining-r3780/</u> [Accessed: 20-January-2019]
- 69. "Gleichgewicht & Kraft"Deutsche Gesellschaft für Unfallchirurgie [Online]. Available: <u>https://www.dgu-online.de/fileadmin/published_content/2.Aktuelles/</u> <u>News/Textdateien/Broschuere_Sturzpraevention_Uebungen_BZgA.pdf</u>[Accessed: 20-January-2019]
- 70. "Fitness-Profi Johanna Fellner präsentiert die Top 10 Rückenübungen" Gesundes Bayern [Online]. Available: <u>https://www.gesundes-</u> <u>bayern.de/data/mediadb/cms_mime/%7Be9347915-f594-50c4-0b40-</u> <u>a285f55ca63a%7D.pdf</u> [Accessed: 20-January-2019]
- 71. "Übungen für die Lendenwirbelsäule" Orthopaedie-Zentrum [Online]. Available: <u>https://www.orthopaedie-</u> <u>zentrum.at/vorsorge/gymnastikuebungen/lendenwirbelsaeule/[Accessed: 20-January-</u> 2019]
- 72. "Muskulaturübungen" Orthopaedie-Zentrum [Online]. Available: <u>https://www.orthopaedie-zentrum.at/vorsorge/gymnastikuebungen/muskulatur/</u> [Accessed: 20-January-2019]
- 73. "Wirbelsäulengymnastik" Rehazentrum-bb [Online]. Available: <u>https://www.rehazentrum-bb.de/images/pdfs/uebungen-fuer-</u> <u>zuhause_wirbelsaeulengymnastik.pdf</u>[Accessed: 20-January-2019]
- 74. "Back Pain Advice and Exercises" NHS [Online]. Available: https://www.eoemskservice.nhs.uk/docs/default-source/msk-condition-leaflets/0529--back-pain-advice-and-exercises.pdf?sfvrsn=e08d2a9_10 [Accessed: 20-January-2019]

Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne fremde Hilfe selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quelle kenntlich gemacht.

Ich erkläre mich damit einverstanden, dass ein Exemplar meiner Bachelor- (Master-) Thesis in die Bibliothek des Fachbereichs aufgenommen wird; Rechte Dritter werden dadurch nicht verletzt.

Ort, Datum

(Unterschrift der/des Studierenden)

Table of Contents for Appendix

Appendix A: E-mail sent to doctors, therapists and back pain societies	II
Appendix B: E-mail responses from BdR and AGR	III
Appendix C: Illustrations of back pain exercises	V
C.1 Strengthening and stability exercises	V
C.2 Stretching exercises	VII
Appendix D: Images from PoseNet Evaluation	X
D.1 Different poses and outfits	X
D.2 Different brightnesses	LVIII
D.3 Different backgrounds	LXI
Appendix E: Screenshots from the web application	LXIV
E.1 Each page of the application	LXIV
E.2 Sequence of events for the execution of a wall squat in the application	LXVIII

Appendix A: E-mail sent to doctors, therapists and back pain societies

Liebe(r) [persönliche Anrede],

ich bin eine Medizintechnik Masterstudentin an der Hochschule für Angewandte Wissenschaften Hamburg. Derzeit schreibe ich meine Masterarbeit, in der es um die Entwicklung einer Fitness Applikation geht. Die Applikation soll mit Compliance und Korrektheit von zuhause ausgeführten Übungen helfen.

Eine Kamera (Handy oder Rechner) beobachtet den Patienten während der Übungen und rechnet die Koordinaten der Gelenke aus. Mit diesen Koordinaten kann man z.B. bestimmen ob die Knie zu weit vorne oder die Hüfte nicht tief genug sind. Die Applikation speichert Zeitpunkt, Dauer/Anzahl Wiederholungen und Qualität aller Übungen und stellt diese Information in grafischer Form auf einer 'Geschichte' Seite da.

Die Idee ist, dass der Trainer/Physiotherapeut Zugriff auf diese 'Geschichte' Seite hat und dementsprechend einfach Compliance, Fortschritte und Probleme einsehen und bewerten kann.

Die Applikation soll zuerst auf Rückenschmerzen fokussieren. Dafür brauche ich Übungen die häufig für Rückenschmerzen verschrieben werden.

Haben Sie vielleicht ein Trainingsprogramm für Zuhause mit Übungen, die Sie ihren Patienten mit Rückenschmerzen geben? Oder gibt es einzelne Übungen, die Sie für besonders effektiv erachten?

Wäre es möglich mir dieses Trainingsprogramm oder einzelne Übungen zu schicken?

Ich wäre sehr dankbar für ihre Hilfe.

Mit freundlichen Grüßen,

Serena Glass

Appendix B: E-mail responses from BdR and AGR

Sehr geehrte Frau Glass,

vielen Dank für Ihre Anfrage. Ihr Plan klingt interessant und umfangreich. Unsere hier hinterlegten Programme beziehen sich zurzeit auf Prävention, auch wenn einige Übungen sicherlich hilfreicher als andere gegen Schmerzen sind und auf jeden Fall der Chronifizierung von Schmerzen entgegen wirken. Ärzte verschreiben eher nicht konkrete Übungen, sondern weisen ggf. auf bestehende muskuläre Dysbalancen usw. hin, welches dann auf dem Rezept/Verordnung vermerkt wird, woraufhin tatsächlich der Therapeut (Sport oder Physio) die Übungsauswahl und deren Dosierung/Belastungsnormative festlegt. Die Schmerzen müssen differenziert werden, wo und in welcher Stärke diese auftreten um konkrete Übungen anzuraten. Wir möchten Ihnen daher empfehlen, gezielt z.B. Physiotherapeuten anzusprechen um hier die entsprechenden Übungen herauszufinden, die geeignet sind.

Mit freundlichen Grüßen

Gudrun Ruggeri

Geschäftsstelle des BdR e.V.

Bundesverband deutscher Rückenschulen (BdR) e. V.

Sehr geehrte Frau Glass,

zunächst entschuldigen Sie bitte, dass wir bis jetzt noch nicht von uns haben hören lassen. Das ist nicht unser Stil, nur leider haben wir gerade wieder sehr viel Anfragen die beantwortet werden wollen. Sorry - für die Verzögerung. Nun zu Ihrer Frage. Unter www.agrev.de/uebungen finden Sie eine Auswahl von verschiedensten Übungen. Hierbei handelt es sich um einfache Übungen die prophylaktisch durchgeführt werden können. Liegen bereits stärkere schmerzen, gerade wenn diese bereits länger anhaltend sind, vor, empfiehlt es sich vorher einen Arzt oder Therapeuten zu konsultieren. Dieser kann dann evtl. Übungen ausschließen, die für den Patienten nicht geeignet sind. Auch empfehlenswerte Onlinetrainingsprogramme gibt es. Diese wurden bereits von unserem unabhängigen Expertengremium mit dem AGR-Gütesiegel ausgezeichnet. Um welche es sich genau dabei handelt und was die Voraussetzungen für eine erfolgreiche Prüfung sind, können Sie hier nachlesen: www.agr-ev.de/trainingsprogramme

Ich hoffe, ich konnte Ihre Fragen ausreichend beantworten, ansonsten melden Sie sich gern noch einmal.

Freundliche Grüße

Jens Löhn

stv. Geschäftsführer

Aktion Gesunder Rücken e. V.

C.1 Strengthening and stability exercises

C.2 Stretching exercises

PT PHYSIOTOOLS	Personal exercise PhysioTools Trial. Provided by Sere Provided for	e program ena Glass	
Constitution of the second	Resting Pose	Physiotools	Child's Pose
Construction of the Saunders Group Inc.	Knee to chest / Lower Trunk Flexion	Physiotools	Knees to Sides
Constitution of the second sec	Posterior Pelvic Tilt	And	Cobra
A the second sec	Downward Facing Dog	Constione and Constitution	Clam (sidelying)

Appendix D: Images from PoseNet Evaluation

D.1 Different poses and outfits

The images are ordered as following in terms of outfits: colourful, black, short and baggy. In each outfit group the poses are ordered as follows: Arm and Leg Lift, Resting Pose Bridge, Cat and Dog stretch, Child's Pose, Trunk Side Bending, Plank, Squat, Standing, Thoracic Extension.

nage:	armandlegliftcolour2
rightness:	207
ose:	0.9970201253890991
ghtEye:	0.9963196516036987
eftEye:	0.7586430907249451
rRight:	0.995003879070282
arLeft:	0.05011877045035362
noulderRight	:0.9714831113815308
noulderLeft:	0.9562243223190308
bowRight:	0.7652704119682312
bowLeft:	0.9189561009407043
ristRight:	0.7892854809761047
ristLeft:	0.9023215174674988
ipRight:	0.5816124677658081
ip <mark>Left:</mark>	0.722343921661377
neeRight:	0.6866103410720825
neeLeft:	0.7656810283660889
nkleRight:	0.6709208488464355
nkleLeft:	0.4575071632862091

restingposecolourful1 216 0.19445087015628815 0.0814913809299469 0.18842379748821259 0.06285954266786575 0.0543944351375103 ShoulderRight: 0.3321058452129364 ShoulderLeft: 0.2500970661640167 0.21191895008087158 0.3402436077594757 0.5567828416824341 0.5723392963409424 0.1966819018125534 0.2771502435207367 0.15295982360839844 0.13684041798114777 0.2920502722263336 0.3009197413921356

BridgeColourful 224 0.2457621544599533 0.16185075044631958 0.17616955935955048 0.16833044588565826 0.14318646490573883 ShoulderRight: 0.22167880833148956 ShoulderLeft: 0.4657192528247833 0.19684718549251556 0.19853471219539642 0.3706578314304352 0.19519241154193878 0.3958192467689514 0.37375912070274353 0.4630305767059326 0.4350539743900299 0.39368483424186707 0.6647210121154785

BridgeColourful3 Brightness: 230 0.7931624054908752 **RightEye:** 0.7811002731323242 0.6561515927314758 EarRight: 0.5778469443321228 0.4535886347293854 ShoulderRight: 0.7228484749794006 ShoulderLeft: 0.6626124978065491 ElbowRight: 0.6786045432090759 ElbowLeft: 0.4743918180465698 WristRight: 0.6228143572807312 WristLeft: 0.41034379601478577 HipRight: 0.6641546487808228 0.5837426781654358 KneeRight: 0.4355550706386566 KneeLeft: 0.38766583800315857 AnkleRight: 0.5060057640075684 AnkleLeft: 0.524114727973938

lmage:	CatStretchColourful
Brightness:	221
Nose:	0.04866057261824608
RightEye:	0.053297556936740875
LeftEye:	0.03791811317205429
EarRight:	0.1224842295050621
EarLeft:	0.02563956193625927
ShoulderRight	0.5396220684051514
ShoulderLeft:	0.36950215697288513
ElbowRight:	0.4999595880508423
ElbowLeft:	0.4423879384994507
WristRight:	0.7186520099639893
WristLeft:	0.7197849750518799
HipRight:	0.8280898928642273
HipLeft:	0.8030499219894409
KneeRight:	0.7912585139274597
KneeLeft:	0.7850269675254822
AnkleRight:	0.760509192943573
AnkleLeft:	0.6532251238822937

nage:	CatStretchColourful2
rightness:	223
ose:	0.23969168961048126
ightEye:	0.30551856756210327
eftEye:	0.05487094074487686
arRight:	0.7827450037002563
arLeft:	0.08036593347787857
houlderRight	0.9391381 <mark>1</mark> 44523621
houlderLeft:	0.5644896626472473
bowRight:	0.6226491928100586
bowLeft:	0.4620630145072937
/ristRight:	0.9102962613105774
/ristLeft:	0.6985602378845215
ipRight:	0.9121411442756653
ipLeft:	0.8437212109565735
neeRight:	0.9381280541419983
neeLeft:	0.8494452238082886
nkleRight:	0.8515207171440125
nkleLeft:	0.7804003953933716

ige:	CowStretchColourful
ghtness:	224
se:	0.9002982378005981
htEye:	0.9205383062362671
tEye:	0.5403800010681152
Right:	0.9212242364883423
Left:	0.24685880541801453
oulderRight	:0.8386502265930176
ulderLeft:	0.773145854473114
owRight:	0.2899119257926941
owLeft:	0.17934516072273254
istRight:	0.6651855111122131
stLeft:	0.4275832176208496
Right:	0.9162958860397339
Left:	0.9104823470115662
eRight:	0.7034773826599121
eLeft:	0.7537362575531006
deRight:	0.7331523895263672
deLeft:	0.8123764991760254

e:	CowStretchColourful2
tness:	227
:	0.9989990592002869
Eye:	0.9983532428741455
ye:	0.9835138916969299
ght:	0.9847198724746704
ft:	0.15330608189105988
IderRight:	0.9356932640075684
lderLeft:	0.9852229356765747
vRight:	0.8991056680679321
vLeft:	0.7229053974151611
Right:	0.1901438981294632
Left:	0.3297622799873352
ight:	0.9892595410346985
eft:	0.9838233590126038
Right:	0.9201886057853699
Left:	0.913120687007904
Right:	0.8833515048027039
eLeft:	0.8756750822067261

LowerbackStretchColourful 225 0.0512055866420269 0.037464603781700134 0.06458979099988937 0.07303943485021591 0.14027659595012665 ShoulderRight: 0.33977723121643066 ShoulderLeft: 0.21697956323623657 0.11793376505374908 0.08279001712799072 0.08581066876649857 0.06597352772951126 0.1382083296775818 0.10428421199321747 0.08852863311767578 0.08673962950706482 0.07953993231058121 0.07341846078634262

Image:	ObliqueStretchColourful
Brightness:	225
Nose:	0.9896904230117798
RightEye:	0.9507542252540588
LeftEye:	0.9701324701309204
EarRight:	0.39586248993873596
EarLeft:	0.8407678604125977
ShoulderRight	:0.946179211139679
ShoulderLeft:	0.9354519248008728
ElbowRight:	0.7584654092788696
ElbowLeft:	0.6810784935951233
WristRight:	0.926813542842865
WristLeft:	0.766692042350769
HipRight:	0.9946579337120056
HipLeft:	0.995586633682251
KneeRight:	0.9501539468765259
KneeLeft:	0.9600806832313538
AnkleRight:	0.8858391642570496
AnkleLeft:	0.8786473274230957

mage:	ObliqueStretchColourful2
rightness:	215
lose:	0.9547932147979736
lightEye:	0.9387839436531067
eftEye:	0.924553394317627
arRight:	0.560194730758667
arLeft:	0.8671327829360962
houlderRight	0.8160915374755859
houlderLeft:	0.9150561690330505
lbowRight:	0.8724561333656311
lbowLeft:	0.6959000825881958
VristRight:	0.9607092142105103
VristLeft:	0.7830028533935547
lipRight:	0.9003193974494934
lipLeft:	0.9284207224845886
neeRight:	0.7972881197929382
neeLeft:	0.7616797089576721
nkleRight:	0.8847361207008362
nkleLeft:	0.9176101088523865

PlankColourful 220 0.9025291800498962 0.8414332270622253 0.5750784277915955 0.9443621039390564 0.37536272406578064 ShoulderRight: 0.9883221983909607 ShoulderLeft: 0.7333311438560486 0.9496994614601135 0.7531809210777283 0.8846451640129089 0.6788278222084045 0.5836832523345947 0.5370931029319763 0.5019863843917847 0.3929136395454407 0.5684465765953064 0.42035847902297974

PlankColourful2 Image: Brightness: 224 Nose: **RightEye:** LeftEye: EarRight: EarLeft: ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

0.8849075436592102 0.9641295671463013 0.42224690318107605 0.9748753309249878 0.08443626016378403 ShoulderRight: 0.9570949077606201 ShoulderLeft: 0.72378009557724 0.9073253273963928 0.6270232796669006 0.8810977935791016 0.8711323738098145 0.45284777879714966 0.5575085878372192 0.49489742517471313 0.5654503107070923 0.29193446040153503 0.39151710271835327

PlankColourful Image: Brightness: 151 Nose: 0.8814506530761719 **RightEye:** 0.7226691246032715 LeftEye: 0.8526284694671631 EarRight: 0.35450679063796997 EarLeft: 0.8631194829940796 ShoulderRight: 0.8775779604911804 ShoulderLeft: 0.9530657529830933 ElbowRight: 0.7119899392127991 ElbowLeft: 0.8099512457847595 WristRight: 0.4255054295063019 WristLeft: 0.5548684597015381 HipRight: 0.9023762941360474 HipLeft: 0.9267178177833557 0.8977673649787903 KneeRight: KneeLeft: 0.7830951809883118 AnkleRight: 0.8604065775871277 AnkleLeft: 0.8504049777984619

nage:	SquatColourful
ightness:	224
ose:	0.8442484736442566
ghtEye:	0.895405113697052
ftEye:	0.30170390009880066
rRight:	0.9760167598724365
rLeft:	0.23629190027713776
oulder Right	0.9825236797332764
oulderLeft:	0.9443936944007874
bowRight:	0.533292829990387
bowLeft:	0.7652763724327087
ristRight:	0.7856977581977844
ristLeft:	0.6988239884376526
pRight:	0.93461674451828
pLeft:	0.9000842571258545
neeRight:	0.8096224069595337
neeLeft:	0.7799235582351685
nkleRight:	0.7041118144989014
nkleLeft:	0.7065220475196838

age:	SquatColourful2
ightness:	229
ose:	0.9982452392578125
ghtEye:	0.997909665107727
ftEye:	0.9862322807312012
rRight:	0.9845032095909119
rLeft:	0.13604217767715454
oulderRight	0.9909566044807434
oulderLeft:	0.9784817099571228
bowRight:	0.39442941546440125
powLeft:	0.9693147540092468
ristRight:	0.5352193713188171
ristLeft:	0.9893348813056946
pRight:	0.993744432926178
pLeft:	0.939493715763092
eeRight:	0.8910982012748718
eeLeft:	0.8906642198562622
nkleRight:	0.9471873044967651
nkleLeft:	0.9192768335342407

	BlueShirtColourfulTight	tP
ess:	215	
	0.997735857963562	
/e:	0.9935698509216309	
:	0.995793342590332	
nt:	0.922096312046051	
	0.8313154578208923	
erRight:	0.9951990842819214	
erLeft:	0.9973081350326538	1
ight:	0.9969196319580078	
eft:	0.9933512806892395	
ght:	0.9843859076499939	
eft:	0.9802746176719666	2
ht:	0.9920418858528137	
:	0.9968175292015076	
ght:	0.9080618023872375	F
ft:	0.9623625874519348	
ight:	0.839999437332 533	
eft:	0.879693448543	
	~	
		2

e:	BlueShirtColourfulTightPants2
tness:	216
	0.9985454082489014
Eye:	0.9931214451789856
/e:	0.9542321562767029
ght:	0.9663486480712891
ft:	0.23110149800777435
derRight	0.995128631591796
derLeft:	0.9894607067108154
Right:	0.9972223043441772
Left:	0.7117280960088008
Right:	0.9912909269332886
Left:	0.5254452228546143
ght:	0.9921203851699829
ft:	0.9897956252098083
Right:	0.9306225776672363
eft:	0.9150113463401794
Right:	0.8467684388160706
Left:	0.818678736686

Image:	thoracicextentioncolour1
Brightness:	165
Nose:	0.9894617199897766
RightEye:	0.9857355952262878
LeftEye:	0.9791684746742249
EarRight:	0.68805992603302
EarLeft:	0.8813760280609131
ShoulderRight	:0.9361162185668945
ShoulderLeft:	0.9095782041549683
ElbowRight:	0.7589005827903748
ElbowLeft:	0.7014590501785278
WristRight:	0.833743691444397
WristLeft:	0.8082473278045654
HipRight:	0.9695417284965515
HipLeft:	0.9839916229248047
KneeRight:	0.562353789806366
KneeLeft:	0.7017796039581299
AnkleRight:	0.3809666633605957
AnkleLeft:	0.49748605489730835

Image:	thoracicextentioncolour2
Brightness:	177
Nose:	0.9895924925804138
RightEye:	0.9886910915374756
LeftEye:	0.977803647518158
EarRight:	0.9092839360237122
EarLeft:	0.6282309293746948
ShoulderRight	:0.9504969716072083
ShoulderLeft:	0.9457675218582153
ElbowRight:	0.5398131608963013
ElbowLeft:	0.7824199795722961
WristRight:	0.3925463855266571
WristLeft:	0.3645768165588379
HipRight:	0.903159499168396
HipLeft:	0.9394949078559875
KneeRight:	0.768164336681366
KneeLeft:	0.7811769247055054
AnkleRight:	0.723354697227478
AnkleLeft:	0.7384718060493469

Image: armandlegliftblack1 **Brightness:** 230 0.9682103991508484 RightEye: 0.9402486681938171 LeftEye: 0.5334433317184448 EarRight: 0.9710353016853333 EarLeft: 0.2132868617773056 ShoulderRight: 0.9776995182037354 ShoulderLeft: 0.9675289988517761 ElbowRight: 0.8415650725364685 ElbowLeft: 0.627605676651001 WristRight: 0.7747955918312073 WristLeft: 0.8436936140060425 HipRight: 0.3640345335006714 HipLeft: 0.2882217764854431 KneeRight: 0.496370404958725 KneeLeft: 0.4679645001888275 AnkleRight: 0.5380540490150452 AnkleLeft: 0.709996223449707

ge:	armandlegliftblack2
htness:	206
e:	0.9964015483856201
htEye:	0.9932689070701599
Eye:	0.8791857957839966
Right:	0.9968481659889221
.eft:	0.05874761939048767
ulderRight	0.9915856122970581
ulderLeft:	0.9540093541145325
wRight:	0.8255022168159485
owLeft:	0.9180699586868286
stRight:	0.8818061947822571
stLeft:	0.7804964780807495
Right:	0.4347212314605713
Left:	0.4894220530986786
eRight:	0.6798146367073059
eLeft:	0.7212340235710144
leRight:	0.2898911237716675
leLeft:	0.3071376383304596

Image: restingposeblack1 **Brightness:** 237 Nose: 0.24949444830417633 **RightEye:** 0.23787404596805573 LeftEye: 0.32755160331726074 EarRight: 0.11458731442689896 EarLeft: 0.14927442371845245 ShoulderRight: 0.21470533311367035 ShoulderLeft: 0.36194658279418945 ElbowRight: 0.11492552608251572 ElbowLeft: 0.1732008010149002 WristRight: 0.4090428948402405 WristLeft: 0.5060009956359863 HipRight: 0.2232932150363922 HipLeft: 0.28862905502319336 KneeRight: 0.16189932823181152 KneeLeft: 0.2237638533115387 AnkleRight: 0.17943018674850464 AnkleLeft: 0.1959305703639984

age:	restingposeblack2
ightness:	231
ose:	0.5361448526382446
ghtEye:	0.49607613682746887
ftEye:	0.2629695236682892
rRight:	0.23268766701221466
rLeft:	0.2136232554912567
oulderRight	:0.4845614731311798
oulderLeft:	0.5661569237709045
owRight:	0.3925940692424774
owLeft:	0.22508780658245087
ristRight:	0.6294812560081482
ristLeft:	0.3472687900066376
pRight:	0.2614423632621765
pLeft:	0.21246276795864105
eeRight:	0.40773841738700867
eeLeft:	0.3636651337146759
kleRight:	0.26523876190185547
kleLeft:	0.40952369570732117

BridgeBlack 250 0.009349986910820007 0.008093087002635002 0.008034870959818363

0.0032665140461176634 0.00632071029394865 ShoulderRight: 0.010237137787044048 ShoulderLeft: 0.007082093507051468 0.074316449463 0.19504041969776154 0.5192869901657104 0.2934077978134155 0.1087107881903648 0.147999882698 0.613459467887 0.586327850818 0.704061329364 0.599043965339

BridgeBlack3 Brightness: 225 ShoulderRight: 0.81187045574188. ShoulderLeft: 0.574907958507537 ElbowRight: WristRight: AnkleRight:

0.8303796648979187 0.47510382533073425 0.763839602470398 0.35930925607681274 0.5433809161186218 0.286622494459152 0.2343045920138590 0.4053373038768768 0.505164921283 0.293263137340 0.192629769444 0.547853708267 0.670054376125 0.418165117502 0.526469945907

Image: Brightness: 214 Nose: **RightEye:** LeftEye: EarRight: EarLeft: ShoulderRight: 0.8147912025451 ShoulderLeft: 0.319789290428 ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

CatStretchBlack 0.6650746464729309 0.7394297122955322 0.2552977204322815 0.3895535171031952 0.062315355986356735 0.826440632343 0.582606613636 0.660089433193 0.584884703159 0.851383864879 0.852623164653 0.962788522243 0.892354249954 0.735656201839 0.715425848960

Image: Brightness: Nose: RightEye: LeftEye: EarRight: EarLeft: ShoulderRight: 0.91110968589782 ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

CatStretchBlack2 219 0.43508854508399963 0.5701786279678345 0.20280976593494415 0.705282986164093 0.13860619068145752 ShoulderLeft: 0.569506943225860 0.404153317213 0.528597056865692 0.836455941200256 0.711399614810943 0.919918596744 0.792719721794 0.948317527770 0.961404621601 0.953179240226 0.940209269523

CowStretchBlack Image: Brightness: Nose: RightEye: LeftEye: EarRight: EarLeft: ShoulderLeft: 0.789553701877 ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

214 0.823405385017395 0.7819028496742249 0.1835838407278061 0.9682813882827759 0.17016223073005676 ShoulderRight: 0.9092759490013121 0.107959769666 0.160004228353 0.132665336132 0.115281336009502 0.866844117641 0.834003329277 0.920204162597 0.858264684677 0.817659616470 0.780526816844

age:	CowStretchBlack2
ightness:	226
se:	0.9979312419891357
ghtEye:	0.9981142282485962
ftEye:	0.9893383979797363
rRight:	0.9528890252113342
rLeft:	0.37331622838974
oulderRight	:0.965646207332611
oulderLeft:	0.9611351490020752
owRight:	0.9044008255004883
owLeft:	0.24712547659873962
ristRight:	0.40094658732414246
ristLeft:	0.22567662596702576
pRight:	0.9967122077941895
pLeft:	0.9959059953689575
eeRight:	0.9778966903686523
eeLeft:	0.9671642184257507
kleRight:	0.8782558441162109
kleLeft:	0.8849020600319909

LowerbackStretchBlack 227

0.02462456002831459 0.03923983871936798 0.03610312193632126 0.010985228233039379 0.01046152226626873 ShoulderRight: 0.10490520298480988 ShoulderLeft: 0.10696137696504593 0.48652198910713196 0.2928575277328491 0.3551303446292877 0.6261353492736816 0.5507785677909851 0.39013203978538513 0.3396294414997101 0.37927764654159546 0.23200133442878723 0.33927568793296814

Image: Brightness: Nose: **RightEye:** LeftEye: EarRight: EarLeft: ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

LowerbackStretchBlack2 237 0.7209054231643677 0.6059017181396484 0.30743318796157837 0.5951526761054993 0.10286292433738708 ShoulderRight: 0.4585321247577667 ShoulderLeft: 0.3989418148994446 0.7301737666130066 0.47448208928108215 0.6338967680931091 0.7302764058113098 0.18735946714878082 0.14829732477664948 0.1562550812959671 0.11516031622886658 0.1177712231874466 0.12682956457138062

mage:	ObliqueStretchBlack
rightness:	233
lose:	0.9827596545219421
ightEye:	0.9129655957221985
eftEye:	0.965579628944397
arRight:	0.2835298776626587
arLeft:	0.8075617551803589
houlderRight	:0.9121886491775513
houlderLeft:	0.9038367867469788
lbowRight:	0.9256247878074646
bowLeft:	0.7665030360221863
VristRight:	0.7819023132324219
VristLeft:	0.7995592951774597
lipRight:	0.9970913529396057
lipLeft:	0.9965330362319946
neeRight:	0.9527806043624878
neeLeft:	0.9674615859985352
nkleRight:	0.8894186615943909
nkleLeft:	0.929286003112793

age:	ObliqueStretchBlack2
ightness:	223
ose:	0.8145070672035217
ghtEye:	0.7125507593154907
ftEye:	0.5731304883956909
rRight:	0.4058586359024048
rLeft:	0.41367125511169434
oulderRight	:0.8036412000656128
oulderLeft:	0.6655018329620361
bowRight:	0.8462594747543335
bowLeft:	0.8470379710197449
ristRight:	0.8914541602134705
ristLeft:	0.7729886174201965
pRight:	0.9742043018341064
pLeft:	0.9106371998786926
neeRight:	0.7903077602386475
neeLeft:	0.6750831007957458
nkleRight:	0.9081107974052429
nkleLeft:	0.9137028455734253

PlankBlack 0.8852107524871826 0.9213424921035767 0.5011325478553772 0.9093767404556274 0.35141023993492126 ShoulderRight: 0.9545191526412964 ShoulderLeft: 0.7831287980079651 0.754828929901123 0.691159188747406 0.6841810941696167 0.5268904566764832 0.1623721718788147 0.20961140096187592 0.6199911832809448 0.6944244503974915 0.6356207132339478 0.5899581909179688

na <mark>ge:</mark>	PlankBlack2
rightness:	233
ose:	0.9710092544555664
ightEye:	0.98343825340271
eftEye:	0.8748995661735535
arRight:	0.9017708897590637
arLeft:	0.07694913446903229
houlderRight	:0.8430594205856323
houlderLeft:	0.726266086101532
bowRight:	0.8075048327445984
bowLeft:	0.40979522466659546
/ristRight:	0.7860034704208374
/ristLeft:	0.7819467186927795
ipRight:	0.11604084819555283
ipLeft:	0.35987117886543274
neeRight:	0.426561176776886
neeLeft:	0.5529382824897766
nkleRight:	0.3131980299949646
nkleLeft:	0.2800601124763489

Image:	SquatBlack
Brightness:	240
Nose:	0.8185484409332275
RightEye:	0.8546019792556763
LeftEye:	0.33124998211860657
EarRight:	0.9819139838218689
EarLeft:	0.19254563748836517
ShoulderRight	0.9679264426231384
ShoulderLeft:	0.9469039440155029
ElbowRight:	0.9111748933792114
ElbowLeft:	0.7903571128845215
WristRight:	0.7906805872917175
WristLeft:	0.9299935698509216
HipRight:	0.8821849226951599
HipLeft:	0.9076568484306335
KneeRight:	0.9434890151023865
KneeLeft:	0.5642421245574951
AnkleRight:	0.900251567363739
AnkleLeft:	0.7753649353981018

nage:	SquatBlack2
ightness:	222
ose:	0.9968078136444092
ghtEye:	0.9982905983924866
ftEye:	0.9898262619972229
rRight:	0.9899736642837524
rLeft:	0.1572500467300415
oulderRight:	0.9858283996582031
oulderLeft:	0.9920021295547485
bowRight:	0.4361696243286133
bowLeft:	0.9679629802703857
ristRight:	0.4346323609352112
ristLeft:	0.9807565808296204
pRight:	0.9842778444290161
pLeft:	0.895567774772644
neeRight:	0.9435290098190308
neeLeft:	0.9741625 <mark>1</mark> 89781189
nkleRight:	0.9073443412780762
nkleLeft:	0.9428697824478149

age:	BlueShirtBlackBlueTightPants
ightness:	209
ose:	0.9972846508026123
ghtEye:	0.9943869709968567
ftEye:	0.9958330988883972
rRight:	0.9416190981864929
rLeft:	0.8255810141563416
oulderRight	0.9959230422973633
oulderLeft:	0.9979460835456848
owRight:	0.997252881526947
owLeft:	0.9911379814147949
ristRight:	0.9912837743759155
ristLeft:	0.9911386370658875
pRight:	0.9963634610176086
pLeft:	0.9974944591522217
eeRight:	0.9929965138435364
eeLeft:	0.992074728012085
kleRight:	0.9855315089225769
kleLeft:	0.9809220433235168
	~

BlueShirtBlackBlueTightPants2 Image: Brightness: 208 0.9983301758766174 Nose: RightEye: LeftEye: EarRight: EarLeft: ShoulderRight: 0.99846613407 ShoulderLeft: 0.99553155899 ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

0.9909700751304626 0.9203928709030151 0.9733596444129944 0.1768608093261 0.99794381856 0.82709962129 0.996363699436 0.940384209156 0.998189151287 0.996529519557 17 0.98846113681 0.992648243904 0.945259153842 0.96462291479

lmage:	thoracicextentionblack1	
Brightness:	147	
Nose:	0.9835923910140991	
RightEye:	0.9865542650222778	
LeftEye:	0.9805731177330017	
EarRight:	0.7032121419906616	
EarLeft:	0.9396634101867676	
ShoulderRight: 0.9676123857498169		
ShoulderLeft:	0.9708200097084045	
ElbowRight:	0.6243115067481995	
ElbowLeft:	0.7399249076843262	
WristRight:	0.7481309771537781	
WristLeft:	0.7445067763328552	
HipRight:	0.9931195974349976	
HipLeft:	0.9966574907302856	
KneeRight:	0.9534109234809875	
KneeLeft:	0.9844833016395569	
AnkleRight:	0.7905185222625732	
Anklel eft	0 7846433520317078	

mage:	thoracicextentionblack2	
Brightness:	191	
Nose:	0.9891290068626404	
RightEye:	0.9842676520347595	
LeftEye:	0.9408279061317444	
EarRight:	0.9041491150856018	
EarLeft:	0.5185336470603943	
Shoulder Right: 0.9781564474105835		
ShoulderLeft:	0.9810001850128174	
ElbowRight:	0.5704745650291443	
ElbowLeft:	0.6580415964126587	
WristRight:	0.7835753560066223	
WristLeft:	0.7657535672187805	
HipRight:	0.9937946796417236	
HipLeft:	0.9924531579017639	
KneeRight:	0.9640287160873413	
KneeLeft:	0.9708850383758545	
AnkleRight:	0.8945725560188293	
AnkleLeft:	0.9241557717323303	

nage:	armandlegliftshort1
rightness:	225
ose:	0.9175870418548584
ightEye:	0.8307062387466431
eftEye:	0.21167156100273132
arRight:	0.9685196280479431
arLeft:	0.1179996207356453
houlderRight	0.9743526577949524
houlderLeft:	0.9171873331069946
bowRight:	0.8434907793998718
bowLeft:	0.8019970059394836
/ristRight:	0.8090157508850098
/ristLeft:	0.9179496765136719
ipRight:	0.6069960594177246
ipLeft:	0.5072482228279114
neeRight:	0.49392908811569214
neeLeft:	0.6795883178710938
nkleRight:	0.5883832573890686
nkleLeft:	0.7500949501991272

age:	armandlegliftshort2
ightness:	195
ose:	0.9930204749107361
ghtEye:	0.9877102971076965
ftEye:	0.6692430377006531
rRight:	0.9885976314544678
rLeft:	0.06566677987575531
oulderRight	:0.9845784306526184
oulderLeft:	0.9662839770317078
owRight:	0.8477952480316162
owLeft:	0.8950182795524597
ristRight:	0.946460485458374
ristLeft:	0.8381516337394714
pRight:	0.6026738882064819
pLeft:	0.5082216262817383
eeRight:	0.7258067727088928
eeLeft:	0.5350633263587952
kleRight:	0.28704217076301575
kleLeft:	0.17851312458515167

Image: restingposeshort1 228 **Brightness:** Nose: 0.031156618148088455 **RightEye:** 0.07176416367292404 LeftEye: 0.04474533721804619 EarRight: 0.014411987736821175 EarLeft: 0.05170772969722748 ShoulderRight: 0.33690541982650757 ShoulderLeft: 0.13399305939674377 ElbowRight: 0.33568206429481506 ElbowLeft: 0.31520938873291016 WristRight: 0.4973316788673401 WristLeft: 0.6157482266426086 HipRight: 0.4272118806838989 HipLeft: 0.5693402290344238 KneeRight: 0.3388981521129608 KneeLeft: 0.4272456169128418 AnkleRight: 0.46907174587249756 AnkleLeft: 0.5160986185073853

ge:	restingposeshort2
htness:	234
e:	0.2962453067302704
htEye:	0.29183584451675415
Eye:	0.1321590691804886
Right:	0.32245275378227234
.eft:	0.15099981427192688
ulderRight	0.6602840423583984
ulderLeft:	0.7513153553009033
wRight:	0.5864577889442444
wLeft:	0.5147346258163452
stRight:	0.6042588353157043
stLeft:	0.35996323823928833
Right:	0.735565185546875
Left:	0.6710508465766907
eRight:	0.5453121662139893
eLeft:	0.46075570583343506
leRight:	0.736550509929657
leLeft:	0.6903504133224487

Image: BridgeShort Brightness: 222 0.058315105736255646 RightEye: 0.034907031804323196 LeftEye: 0.12007515877485275 EarRight: 0.011014366522431374 EarLeft: 0.0510459840297699 ShoulderRight: 0.14237454533576965 ShoulderLeft: 0.23157794773578644 ElbowRight: 0.15496376156806946 ElbowLeft: 0.1610323190689087 WristRight: 0.2511158585548401 WristLeft: 0.4789612591266632 HipRight: 0.3394165337085724 HipLeft: 0.7040272951126099 KneeRight: 0.7308338284492493 0.778068482875824 KneeLeft: AnkleRight: 0.3188205361366272 AnkleLeft: 0.43163496255874634

BridgeShort3 Brightness: 223 0.7551836967468262 0.6123013496398926 0.706950843334198 0.5116586685180664 0.48567265272140503 ShoulderRight: 0.6593859791755676 ShoulderLeft: 0.40244030952453613 ElbowRight: 0.6863753795623779 ElbowLeft: 0.48079273104667664 WristRight: 0.5401676893234253 WristLeft: 0.47294509410858154 0.5155648589134216 0.2949044108390808 KneeRight: 0.5338891744613647 0.48110154271125793 AnkleRight: 0.283782958984375 AnkleLeft: 0.36776259541511536

XXXVI

nage:	CatStretchShort
rightness:	233
ose:	0.18603061139583588
ightEye:	0.26004311442375183
eftEye:	0.03944849967956543
arRight:	0.23984484374523163
arLeft:	0.05004309117794037
houlderRight:	0.8349515795707703
houlderLeft:	0.525480329990387
bowRight:	0.9355745911598206
bowLeft:	0.5942854881286621
/ristRight:	0.8668220639228821
/ristLeft:	0.6277182102203369
ipRight:	0.8679563403129578
ipLeft:	0.8504389524459839
neeRight:	0.9760268330574036
neeLeft:	0.7911625504493713
nkleRight:	0.6079144477844238
nkleLeft:	0.5996537804603577

lmage:	CatStretchShort2
Brightness:	225
Nose:	0.4022809863090515
RightEye:	0.37739717960357666
LeftEye:	0.13776765763759613
EarRight:	0.3041023015975952
EarLeft:	0.04298265650868416
ShoulderRight:	0.4639497697353363
ShoulderLeft:	0.568307638168335
ElbowRight:	0.2340710312128067
ElbowLeft:	0.4226676821708679
WristRight:	0.5394131541252136
WristLeft:	0.8207435607910156
HipRight:	0.9145392179489136
HipLeft:	0.8059834241867065
KneeRight:	0.9785130023956299
KneeLeft:	0.9271172881126404
AnkleRight:	0.9198600053787231
AnkleLeft:	0.9262604117393494

CowStretchShort Brightness: 233 0.4729105234146118 RightEye: 0.4273327589035034 0.2274560183286667 EarRight: 0.5387988090515137 0.1473790407180786 ShoulderRight: 0.8415550589561462 ShoulderLeft: 0.6194161176681519 ElbowRight: 0.20604164898395538 ElbowLeft: 0.22899912297725677 WristRight: 0.5266048312187195 WristLeft: 0.3322654664516449 HipRight: 0.8070310354232788 HipLeft: 0.8188803195953369 KneeRight: 0.9515679478645325 KneeLeft: 0.652310848236084 AnkleRight: 0.6175288558006287 AnkleLeft: 0.6756129264831543

Image: Brightness: Nose: RightEye: LeftEye: EarRight: EarLeft: ElbowLeft: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleLeft:

CowStretchShort2 227 0.998104989528656 0.9966893792152405 0.9744179248809814 0.953130841255188 0.3304330110549927 ShoulderRight: 0.9639487266540527 ShoulderLeft: 0.954472005367279 ElbowRight: 0.93596351146698 0.5207996964454651 WristRight: 0.5065010190010071 0.15258271992206573 0.9487479329109192 0.9131450653076172 0.9429168701171875 0.94380122423172 AnkleRight: 0.9505845904350281 0.9184675216674805

XXXVIII

LowerbackStretchShort Brightness: 227 0.03033248335123062 **RightEye:** 0.019208652898669243 0.008054254576563835 EarRight: 0.0251653790473938 0.01190910767763853 ShoulderRight: 0.2795068621635437 ShoulderLeft: 0.22922399640083313 ElbowRight: 0.6247444152832031 ElbowLeft: 0.3186807632446289 WristRight: 0.16107241809368134 WristLeft: 0.210515096783638 HipRight: 0.6376208066940308 HipLeft: 0.6698644757270813 KneeRight: 0.6585243344306946 KneeLeft: 0.4903229773044586 AnkleRight: 0.2088201642036438 AnkleLeft: 0.23303304612636566

LowerbackStretchShort2 241 0.061054620891809464 0.03291234374046326 0.016513394191861153 0.02798004075884819 0.04296248406171799 ShoulderRight: 0.17860369384288788 ShoulderLeft: 0.3843253552913666 0.28856953978538513 0.2762082517147064 0.7069504857063293 0.5854261517524719 0.4285886883735657 0.4658425748348236 0.516091525554657 0.5010338425636292 0.2596857249736786 0.12582999467849731

Image:	ObliqueStretchShort
Brightness:	225
Nose:	0.8672321438789368
RightEye:	0.7358959913253784
LeftEye:	0.8431145548820496
EarRight:	0.22810830175876617
EarLeft:	0.8246247172355652
ShoulderRight	:0.8653660416603088
ShoulderLeft:	0.7765616178512573
ElbowRight:	0.8677115440368652
ElbowLeft:	0.9218124747276306
WristRight:	0.8821477890014648
WristLeft:	0.7143487334251404
HipRight:	0.9881568551063538
HipLeft:	0.9860486388206482
KneeRight:	0.9633947014808655
KneeLeft:	0.9782704710960388
AnkleRight:	0.9327895641326904
AnkleLeft:	0.9653209447860718

age:	ObliqueStretchShort2
ightness:	219
ose:	0.5063463449478149
ghtEye:	0.46058231592178345
ftEye:	0.435141384601593
rRight:	0.4373120069503784
rLeft:	0.5700017809867859
oulderRight	0.9108529686927795
oulderLeft:	0.8408092856407166
bowRight:	0.915919303894043
bowLeft:	0.7854278683662415
ristRight:	0.9133936166763306
ristLeft:	0.8186390399932861
pRight:	0.9865317344665527
pLeft:	0.931878924369812
neeRight:	0.9057044386863708
neeLeft:	0.811336100101471
nkleRight:	0.8394436240196228
klel oft.	0 7941036224365234

PlankShort 221 0.8415461778640747 0.8630475401878357 0.32873764634132385 0.9432846903800964 0.17948602139949799 ShoulderRight: 0.9891197681427002 ShoulderLeft: 0.918635368347168 0.9529576897621155 0.7390528321266174 0.9428562521934509 0.8277018666267395 0.2769497036933899 0.3172247111797333 0.611484169960022 0.5182892680168152 0.5872480273246765 0.4495163559913635

mage:	PlankShort2
rightness:	225
lose:	0.9937920570373535
ightEye:	0.9892626404762268
eftEye:	0.856268048286438
arRight:	0.9469441771507263
arLeft:	0.02133174054324627
houlderRight	0.9022766947746277
houlderLeft:	0.9202992916107178
lbowRight:	0.7932050228118896
lbowLeft:	0.8184996247291565
VristRight:	0.8026425838470459
VristLeft:	0.8789653182029724
lipRight:	0.26497894525527954
lipLeft:	0.26184046268463135
neeRight:	0.40543055534362793
neeLeft:	0.47910064458847046
nkleRight:	0.15863105654716492
nkleLeft:	0.2688259482383728

PlankShort2

0.6960924863815308 0.6238154172897339 0.6761056184768677 0.5335714221000671 0.8195814490318298 ShoulderRight: 0.9453676342964172 ShoulderLeft: 0.9505817294120789 ElbowRight: 0.4411173462867737 0.9916314482688904 0.45817360281944275 0.739635705947876 0.9772036075592041 0.9749336838722229 0.7912022471427917 0.8194122910499573 0.6619996428489685 0.5832564830780029

mage:	SquatShort
Brightness:	230
Nose:	0.8851502537727356
RightEye:	0.8026252388954163
.eftEye:	0.24540959298610687
EarRight:	0.9863194823265076
EarLeft:	0.099367655813694
ShoulderRight	0.9546751379966736
ShoulderLeft:	0.9188094735145569
ElbowRight:	0.868808925151825
ElbowLeft:	0.8223843574523926
WristRight:	0.7591754794120789
WristLeft:	0.9469470381736755
HipRight:	0.8507446050643921
HipLeft:	0.747765064239502
KneeRight:	0.9652165174484253
(neeLeft:	0.7656543850898743
AnkleRight:	0.722231388092041
AnkleLeft:	0.7174443006515503

nage:	SquatShort2
rightness:	234
ose:	0.998841226100921
ightEye:	0.997546255588531
eftEye:	0.9834483861923218
arRight:	0.971445202827453
arLeft:	0.0998789519071579
houlderRight	0.986883103847503
houlderLeft:	0.977601945400238
lbowRight:	0.920153021812439
lbowLeft:	0.955033898353576
/ristRight:	0.705025672912597
/ristLeft:	0.9492472410202020
ipRight:	0.977300584316253
ipLeft:	0.944088757038116
neeRight:	0.977681815624237
neeLeft:	0.9657005667686462
nkleRight:	0.9824954867362976
nkleLeft:	0.9323678016662598

BlueShirtBlackShorts Image: Brightness: 178 0.9984570741653442 Nose: RightEye: LeftEye: EarRight: EarLeft: ShoulderRight: 0.99638438224792 ShoulderLeft: 0.998335659503 ElbowRight: 0.994444310665 ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

0.9927886128425598 0.9933306574821472 0.939825713634491 0.8394007682800293 0.990714430809 0.98887586593627 0.994704782962 0.996575951576 0.995538294315 0.982967138290 0.983415305614 0.964384257793 0.978061854839

nage:	BlueShirtBlackShorts2	
rightness:	173	
ose:	0.9987695217132568	
ightEye:	0.9925536513328552	
eftEye:	0.9146897792816162	
arRight:	0.9850831031799316	
arLeft:	0.11811880767345428	3
houlderRight	:0.997664213180542	
houlderLeft:	0.9933680891990662	-
lbowRight:	0.998412549495697	-
lbowLeft:	0.7249690890312195	
/ristRight:	0.9953848719596863	
/ristLeft:	0.5761279463768005	1
ipRight:	0.989177405834198	
ipLeft:	0.9924013614654541	L
neeRight:	0.979245841503 433	k
neeLeft:	0.9760589599609375	
nkleRight:	0.9764375686645508	
nkleLeft:	0.945059180259	

Image:	thoracicextentionshort1
Brightness:	172
Nose:	0.9858004450798035
RightEye:	0.9780979156494141
LeftEye:	0.986246645450592
EarRight:	0.6864498853683472
EarLeft:	0.9172183871269226
ShoulderRight	:0.9733386635780334
ShoulderLeft:	0.9587512016296387
ElbowRight:	0.8532435894012451
ElbowLeft:	0.8864080905914307
WristRight:	0.8188825845718384
WristLeft:	0.8649035692214966
HipRight:	0.9950513243675232
HipLeft:	0.9982118606567383
KneeRight:	0.9741929769515991
KneeLeft:	0.9927850961685181
AnkleRight:	0.9132910966873169
AnkleLeft:	0.9060751795768738

Image:	thoracic
Brightness:	184
Nose:	0.98871
RightEye:	0.98685
LeftEye:	0.93239
EarRight:	0.88952
EarLeft:	0.60994
ShoulderRight	:0.99370
ShoulderLeft:	0.98683
ElbowRight:	0.78525
ElbowLeft:	0.67032
WristRight:	0.79779
WristLeft:	0.78117
HipRight:	0.99767
HipLeft:	0.99380
KneeRight:	0.99272
KneeLeft:	0.99350
AnkleRight:	0.90080
AnkleLeft:	0.93560

thoracicextentionshort2

Image: armandlegliftbaggy1 Brightness: 228 Nose: 0.9762467741966248 **RightEye:** 0.9629952907562256 LeftEye: 0.40967753529548645 EarRight: 0.986461341381073 EarLeft: 0.08851201087236404 ShoulderRight: 0.9901887774467468 ShoulderLeft: 0.9459103345870972 ElbowRight: 0.8932148218154907 ElbowLeft: 0.698510468006134 WristRight: 0.8051803708076477 WristLeft: 0.820839524269104 HipRight: 0.5569656491279602 HipLeft: 0.5545300841331482 KneeRight: 0.6948665380477905 KneeLeft: 0.6737953424453735 AnkleRight: 0.612660825252533 AnkleLeft: 0.7868410348892212

age:	armandlegliftbaggy2
ightness:	207
ose:	0.9952139854431152
ghtEye:	0.9810278415679932
ftEye:	0.8221817016601562
rRight:	0.9955618381500244
rLeft:	0.05162377655506134
oulderRight	0.9960508942604065
oulderLeft:	0.9667874574661255
owRight:	0.8686034679412842
owLeft:	0.9489313364028931
ristRight:	0.8447625637054443
ristLeft:	0.9399917125701904
pRight:	0.35190656781196594
pLeft:	0.28937995433807373
eeRight:	0.5779409408569336
eeLeft:	0.33766040205955505
kleRight:	0.31485772132873535
kleLeft:	0.2280578911304474

Image: restingposebaggy1 Brightness: 217 Nose: 0.2638155221939087 **RightEye:** 0.07556510716676712 LeftEye: 0.39754408597946167 EarRight: 0.024852445349097252 EarLeft: 0.4703817665576935 ShoulderRight: 0.35355496406555176 ShoulderLeft: 0.4693661332130432 ElbowRight: 0.21812468767166138 ElbowLeft: 0.2329290509223938 WristRight: 0.5449028015136719 WristLeft: 0.5730785727500916 HipRight: 0.3985576331615448 HipLeft: 0.31609588861465454 KneeRight: 0.14656390249729156 KneeLeft: 0.14890901744365692 AnkleRight: 0.30367618799209595 AnkleLeft: 0.3621719181537628

nage:	restingposebaggy2
rightness:	232
ose:	0.6506224274635315
ightEye:	0.620330810546875
eftEye:	0.5304286479949951
arRight:	0.4697578251361847
arLeft:	0.421681672334671
houlderRight	0.7457215785980225
houlderLeft:	0.8378562927246094
lbowRight:	0.560944139957428
bowLeft:	0.4740772545337677
vristRight:	0.8351753354072571
vristLeft:	0.6270310878753662
ipRight:	0.8581538200378418
ipLeft:	0.8119195103645325
neeRight:	0.31335780024528503
neeLeft:	0.3303285241127014
nkleRight:	0.28841787576675415
nkleLeft:	0.3719085156917572

Image: **Brightness:** 226 Nose: **RightEye:** LeftEye: EarRight: EarLeft: ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

BridgeBaggy

0.046631865203380585 0.023076042532920837 0.06600213795900345 0.012253405526280403 0.025928281247615814 ShoulderRight: 0.05004057660698891 ShoulderLeft: 0.060360800474882126 0.09333935379981995 0.15573936700820923 0.5276557207107544 0.18013782799243927 0.12049724906682968 0.14060792326927185 0.3900446593761444 0.5371907949447632 0.6007469296455383 0.5161537528038025

Image: **Brightness:** 236 Nose: **RightEye:** LeftEye: EarRight: EarLeft: ShoulderRight: 0.7207156419754028 ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

BridgeBaggy3 0.8336452841758728 0.7251392006874084 0.28839102387428284 0.5732463598251343 0.175645649433136 ShoulderLeft: 0.39550891518592834 0.28928545117378235 0.2615637481212616 0.44129928946495056 0.5907995700836182 0.24557706713676453 0.18415582180023193 0.07597208768129349 0.09658912569284439 0.12168219685554504 0.08643784373998642

mage:	CatStretchBaggy
Brightness:	221
Nose:	0.2873651683330536
RightEye:	0.26875609159469604
eftEye:	0.06738190352916718
arRight:	0.25484851002693176
arLeft:	0.02978513576090336
houlderRight	:0.5084084272384644
houlderLeft:	0.3758573830127716
lbowRight:	0.8833930492401123
lbowLeft:	0.6236159205436707
WristRight:	0.8622460961341858
WristLeft:	0.3566998839378357
lipRight:	0.8666386604309082
lipLeft:	0.8520685434341431
(neeRight:	0.8868204951286316
(neeLeft:	0.7264963984489441
AnkleRight:	0.4398859739303589
AnkleLeft:	0.5086671113967896

mage:	CatStretchBaggy2
Brightness:	215
Nose:	0.43425366282463074
RightEye:	0.37574514746665955
eftEye:	0.1216842457652092
arRight:	0.28373631834983826
arLeft:	0.07371577620506287
houlderRight:	0.5859294533729553
ShoulderLeft:	0.2058621048927307
lbowRight:	0.8345320820808411
lbowLeft:	0.3405733108520508
WristRight:	0.871293306350708
WristLeft:	0.7809646129608154
lipRight:	0.7991493344306946
lipLeft:	0.6961461305618286
(neeRight:	0.9460381269454956
(neeLeft:	0.9275459051132202
AnkleRight:	0.9651151299476624
AnkleLeft:	0.9106317758560181

nage:	CowStretchBaggy
ightness:	220
ose:	0.9787418842315674
ghtEye:	0.9755889177322388
ftEye:	0.47158437967300415
rRight:	0.9721981883049011
rLeft:	0.06700658053159714
oulderRight	0.7841094136238098
oulderLeft:	0.7513717412948608
bowRight:	0.2998005747795105
bowLeft:	0.3021054267883301
ristRight:	0.202629953622818
ristLeft:	0.10364042967557907
pRight:	0.8792108297348022
pLeft:	0.8336226344108582
neeRight:	0.9199641942977905
neeLeft:	0.8286208510398865
nkleRight:	0.5002527236938477
nkleLeft:	0.6840890645980835

	CowStretchBaggy2
ness:	227
	0.9981325268745422
ye:	0.9986405968666077
e:	0.9942250847816467
ht:	0.9232281446456909
t:	0.3239070773124695
lerRight:	0.9673218131065369
lerLeft:	0.9376322031021118
Right:	0.8498803377151489
Left:	0.21297883987426758
ight:	0.23993438482284546
eft:	0.11871100962162018
ht:	0.9864451885223389
t:	0.9867927432060242
ight:	0.9315006136894226
eft:	0.9683968424797058
Right:	0.9061007499694824
eft:	0.8279469013214111

Image: **Brightness:** 230 Nose: **RightEye:** LeftEye: EarRight: EarLeft: ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

LowerbackStretchBaggy

0.019123312085866928 0.014813043177127838 0.007305576000362635 0.009463517926633358 0.018262246623635292 ShoulderRight: 0.03021201491355896 ShoulderLeft: 0.0914001613855362 0.21910031139850616 0.29658451676368713 0.4536387622356415 0.7022745013237 0.08063817769289017 0.06924239546060562 0.19896696507930756 0.3332841098308563 0.19848211109638214 0.34813615679740906

ObliqueStretchBaggy
232
0.961139440536499
0.9007402062416077
0.9441330432891846
0.4053278863430023
0.8042687177658081
0.9337366819381714
0.9357985854148865
0.8624201416969299
0.8228309750556946
0.8994303345680237
0.6063107848167419
0.9879570603370667
0.991060197353363
0.9811034202575684
0.9743671417236328
0.9207994341850281
0.8829522132873535

Image:	ObliqueStretchBaggy2
Brightness:	218
Nose:	0.766814649105072
RightEye:	0.6582342982292175
LeftEye:	0.7436076998710632
EarRight:	0.30945736169815063
EarLeft:	0.693569540977478
ShoulderRight	0.9713395833969116
ShoulderLeft:	0.8559340238571167
ElbowRight:	0.9203280210494995
ElbowLeft:	0.8372340202331543
WristRight:	0.971385657787323
WristLeft:	0.7381792068481445
HipRight:	0.9624913930892944
HipLeft:	0.9537707567214966
KneeRight:	0.7545009255409241
KneeLeft:	0.8557083010673523
AnkleRight:	0.6663164496421814
AnkleLeft:	0.5337399244308472

Image: **Brightness:** Nose: **RightEye:** LeftEye: EarRight: EarLeft: ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

PlankBaggy 220 0.82471764087677 0.8684245944023132 0.31480273604393005 0.9299775958061218 0.12851184606552124 ShoulderRight: 0.9658307433128357 ShoulderLeft: 0.8574433922767639 0.9508835077285767 0.6892958283424377 0.8633984327316284 0.7162884473800659 0.19099503755569458 0.3417341411113739 0.4681699872016907 0.5569526553153992 0.4681077003479004 0.4620668888092041

PlankBaggy2 235

0.9416465163230896 0.9413784146308899 0.877130389213562 0.8640915751457214 0.015118397772312164 ShoulderRight: 0.9472083449363708 ShoulderLeft: 0.873046875 0.9527704119682312 0.9517993927001953 0.8227216601371765 0.9780173897743225 0.23956385254859924 0.35802558064460754 0.27906784415245056 0.20912359654903412 0.1637706160545349 0.11918601393699646

PlankBaggy Image: Brightness: 156 0.9329870939254761 Nose: RightEye: 0.7356540560722351 LeftEye: 0.9147491455078125 EarRight: 0.2631663680076599 EarLeft: 0.8766382336616516 ShoulderRight: 0.8617682456970215 ShoulderLeft: 0.861008882522583 ElbowRight: 0.664153516292572 ElbowLeft: 0.8524473905563354 WristRight: 0.4646332561969757 WristLeft: 0.6671907901763916 HipRight: 0.7993457317352295 HipLeft: 0.8741011619567871 KneeRight: 0.8490533232688904 KneeLeft: 0.5123543222873612 AnkleRight: 0.6265438737881224 AnkleLeft: 0.5723354350182022

age:	SquatBaggy
ightness:	233
ose:	0.961554229259491
ghtEye:	0.9427397847175598
ftEye:	0.3224015235900879
rRight:	0.992720365524292
rLeft:	0.0816053897142410
oulderRight	:0.9820141196250916
oulderLeft:	0.9206153154373169
bowRight:	0.8691364526748657
bowLeft:	0.7818995118141174
ristRight:	0.7668424248695374
ristLeft:	0.9520722031593323
pRight:	0.7337641716003418
pLeft:	0.8008562326431274
neeRight:	0.9534425139427185
neeLeft:	0.5401203036308289
nkleRight:	0.8700634241104126
nkleLeft:	0.629734992980957

SquatBaggy2
240
0.9981827735900879
0.9983446598052979
0.9667848944664001
0.9895870089530945
0.05206499993801117
:0.9843981862068176
0.9859353303909302
0.7256110906600952
0.9678134322166443
0.5571615695953369
0.9792419672012329
0.971637487411499
0.9162285327911377
0.9402430653572083
0.9783180952072144
0.8276049494743347
0.9569618105888367

BlueShirtGreyLoosePants 192 0.9978737831115723 0.9925635457038879 0.9950309991836548 0.9477708339691162 0.8386121392250061 ShoulderRight: 0.994234502315 ShoulderLeft: 0.99778574705* 0.99301856756 0.989122807979 0.989279210567 0.996729731559 0.996891438961 0.995245516300 0.986926972866 0.989943504333 0.97189414501 0.97031533718

Image: Brightness: Nose: RightEye: LeftEye: EarRight: EarLeft: ShoulderRight: 0.998263895511 ShoulderLeft: 0.99221587181 ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: AnkleLeft:

BlueShirtGreyLoosePants 206 0.9979677200317383 0.9890022277832031 0.8519382476806641 0.9907617568969727 0.09941358119249344 0.996936678886 0.963206529617 0.99642926454544 0.9834054112434 0.990061879158 0.992295980453 0.961883902549 0.98730427026 0.921276748180 0.968555212020

lmage:	thoracicextentionbaggy1
Brightness:	176
Nose:	0.9867250919342041
RightEye:	0.992285966873169
LeftEye:	0.9544913172721863
EarRight:	0.7029089331626892
EarLeft:	0.8271608352661133
ShoulderRight	:0.9424263834953308
ShoulderLeft:	0.9476452469825745
ElbowRight:	0.7036041617393494
ElbowLeft:	0.901037335395813
WristRight:	0.9316520690917969
WristLeft:	0.8308398723602295
HipRight:	0.9975572228431702
HipLeft:	0.9972512125968933
KneeRight:	0.9849744439125061
KneeLeft:	0.9603087306022644
AnkleRight:	0.9754583239555359
AnkleLeft:	0.9643491506576538

Image:	thoracicextentionbaggy2
Brightness:	185
Nose:	0.9892656803131104
RightEye:	0.9916812777519226
LeftEye:	0.9386917948722839
EarRight:	0.7648490071296692
EarLeft:	0.6772001385688782
ShoulderRight	:0.9757351875305176
ShoulderLeft:	0.9916122555732727
ElbowRight:	0.5507441163063049
ElbowLeft:	0.5037638545036316
WristRight:	0.6714643239974976
WristLeft:	0.5267764329910278
HipRight:	0.9950699806213379
HipLeft:	0.9973157048225403
KneeRight:	0.9883695840835571
KneeLeft:	0.981709361076355
AnkleRight:	0.9792501926422119
AnkleLeft:	0.9726060032844543

D.2 Different brightnesses

The first three images were taken with Acer Swift 12, and the last three images were taken with the Huawei P20.

age:	webcam5
ightness:	38
ose:	0.6796322464942932
ghtEye:	0.5686498880386353
ftEye:	0.7520131468772888
rRight:	0.08089720457792282
rLeft:	0.6748868227005005
oulderRight	:0.6130324006080627
oulderLeft:	0.9539454579353333
oowRight:	0.38276100158691406
oowLeft:	0.8356490731239319
ristRight:	0.09881546348333359
ristLeft:	0.41988271474838257
pRight:	0.5822170376777649
pLeft:	0.6878145933151245
eeRight:	0.04933106154203415
neeLeft:	0.0992254838347435
nkleRight:	0.14328445494174957
nkleLeft:	0.12278854846954346

ge:	phone3
htness:	149
e:	0.9985126852989197
tEye:	0.9953983426094055
Eye:	0.9905089139938354
ight:	0.9795571565628052
eft:	0.4042694866657257
ulderRight	0.995868444442749
ulderLeft:	0.9956560134887695
wRight:	0.991877555847168
wLeft:	0.6333289742469788
tRight:	0.9250091314315796
tLeft:	0.24047718942165375
Right:	0.9951197504997253
.eft:	0.9932250380516052
eRight:	0.8696547746658325
eLeft:	0.9267507195472717
eRight:	0.8285384774208069
eLeft:	0.8799490332603455

age:	phone4
ightness:	71
ose:	0.9988481998443604
ghtEye:	0.9965896606445312
ftEye:	0.9888157844543457
Right:	0.98521888256073
rLeft:	0.2810097336769104
oulderRight	:0.9937484264373779
oulderLeft:	0.994041383266449
owRight:	0.9939624667167664
owLeft:	0.6529989838600159
ristRight:	0.8906714916229248
ristLeft:	0.15513917803764343
pRight:	0.9956552982330322
pLeft:	0.9938576817512512
eeRight:	0.8455601930618286
eeLeft:	0.92479407787323
kleRight:	0.8672450184822083
kleLeft:	0.8747929334640503

mage:	phone5
rightness:	42
lose:	0.9989140033721924
tightEye:	0.9965702295303345
eftEye:	0.987750232219696
arRight:	0.9792648553848267
arLeft:	0.24720418453216553
houlderRight	0.9929070472717285
houlderLeft:	0.9923531413078308
lbowRight:	0.9885880947113037
lbowLeft:	0.694862961769104
VristRight:	0.6824750304222107
VristLeft:	0.11525166034698486
lipRight:	0.9923343658447266
lipLeft:	0.9957687854766846
neeRight:	0.5359918475151062
neeLeft:	0.8673187494277954
nkleRight:	0.6145038604736328
nkleLeft:	0.59548419713974

D.3 Different backgrounds

je:	bedroom
ntness:	124
	0.9984232187271118
tEye:	0.9968256950378418
ye:	0.8550942540168762
ight:	0.9940492510795593
eft:	0.044620320200920105
IderRight	0.9840812683105469
IderLeft:	0.9498295783996582
wRight:	0.30836519598960876
wLeft:	0.8208803534507751
tRight:	0.34305423498153687
tLeft:	0.7700291872024536
light:	0.9743322730064392
eft:	0.9117316603660583
Right:	0.8326855897903442
Left:	0.968795120716095
eRight:	0.8074027895927429
eLeft:	0.8095497488975525

e:	couch
tness:	177
:	0.9949681162834167
Eye:	0.9973100423812866
ye:	0.9271694421768188
ght:	0.9933886528015137
eft:	0.10342764854431152
IderRight:	0.9790463447570801
lderLeft:	0.9822752475738525
wRight:	0.6391429901123047
vLeft:	0.9718019366264343
Right:	0.5331013202667236
Left:	0.9406167268753052
ight:	0.9893926382064819
eft:	0.9731048941612244
Right:	0.9090672135353088
Left:	0.9259536862373352
eRight:	0.8695753216743469
eLeft:	0.8288494348526001

Image:	greywall
Brightness:	255
Nose:	0.9994677901268005
RightEye:	0.9994677901268005
LeftEye:	0.9812387228012085
EarRight:	0.9878252148628235
EarLeft:	0.11748920381069183
ShoulderRight	:0.9908101558685303
ShoulderLeft:	0.9833796620368958
ElbowRight:	0.9778153896331787
ElbowLeft:	0.6424998641014099
WristRight:	0.7411760091781616
WristLeft:	0.4714880585670471
HipRight:	0.9859511852264404
HipLeft:	0.9409452676773071
KneeRight:	0.8242825269699097
KneeLeft:	0.93964684009552
AnkleRight:	0.7990590333938599
AnkleLeft:	0.8054730892181396

Image: Brightness: Nose: RightEye: LeftEye: EarRight: EarLeft: ElbowRight: ElbowLeft: WristRight: WristLeft: HipRight: HipLeft: KneeRight: KneeLeft: AnkleRight: 0.88730388879776 AnkleLeft: 0.8196596503257751

kitchen 138 0.9942424893379211 0.988379716873169 0.7142977118492126 0.9946276545524597 0.06958909332752228 ShoulderRight: 0.9749822616577148 ShoulderLeft: 0.945013701915741 0.4425419569015503 0.8795492649078369 0.3221651017665863 0.878298282623291 0.9914277791976929 0.9798105359077454 0.9187726974487305 0.8835827708244324

LXII

mage:	plants
rightness:	94
lose:	0.998234212398529
ightEye:	0.9975887537002563
eftEye:	0.9447724223136902
arRight:	0.9969478249549866
arLeft:	0.0456569641828537
houlderRight	0.9756378531455994
houlderLeft:	0.9726588726043701
lbowRight:	0.2890768051147461
lbowLeft:	0.9688040614128113
VristRight:	0.6988140940666199
VristLeft:	0.9645317792892456
lipRight:	0.984684944152832
lipLeft:	0.9537510871887207
neeRight:	0.8312225937843323
neeLeft:	0.9341433048248291
nkleRight:	0.9179320335388184
nkleLeft:	0.8412572145462036

e:	SquatBaggy2
ntness:	240
	0.9981827735900879
tEye:	0.9983446598052979
ye:	0.9667848944664001
ight:	0.9895870089530945
eft:	0.05206499993801117
IderRight:	0.9843981862068176
IderLeft:	0.9859353303909302
wRight:	0.7256110906600952
wLeft:	0.9678134322166443
tRight:	0.5571615695953369
tLeft:	0.9792419672012329
ight:	0.971637487411499
eft:	0.9162285327911377
Right:	0.9402430653572083
Left:	0.9783180952072144
eRight:	0.8276049494743347
eLeft:	0.9569618105888367

Appendix E: Screenshots from the web application

	usern passv Logir Dont h accoun	hame word h have an account yet? Create an ht
Welcome to Everywhere train	er	
We are here to help you stay motiv	vated! The aim of this website	is to
make sure you are doing your exer when and for how long you exercise	rcises correctly and it keeps tra sed for Straight from the brow	ack of
which means you can access it from	m any computer or cellphone.	No
more excuses!		Photo by Victor Freitas on Unsplash
	Create account	×
	& Username	
	Password	
	A Confirm Becoword	count yet? Create an
	Submit Reset	
	Already have an account? Login here	e.
Welcome to Everywhere train	er	
We are here to help you stay moti	vated! The aim of this website	is to
when and for how long your exerci	rcises correctly and it keeps tra-	ack of
which means you can access it from	bed for. Straight norm the bio	roci,
which means you can access it no	m any computer or cellphone.	No

E.1 Each page of the application

Welcome Emma! Select an exercise to begin:

lcome Emma! Select an exercise to begin:

E.2 Sequence of events for the execution of a wall squat in the application

