

 II

Bachelorbeit eingereicht im Rahmen der Bachelorprüfung

im Sommersemester 2022

am Department Fahrzeugtechnik und Flugzeugbau

der Fakultät Technik und Informatik

der Hochschule für Angewandte Wissenschaften Hamburg

First examiner: Prof. Dr. Dirk Engel

Second examiner: Prof. Dr. Sven Füser

Abgabedatum 19.09.2022

Niklas Bakula

Concept development, evaluation and

implementation of a method for image-based

distance computation in AUDEx

 III

Niklas Bakula

Title of the paper

Concept development, evaluation and implementation of a method for image-based

distance determination in the AUDEx

Keywords

AUDEx, computer vision, python, calibration, rectification, correspondence, triangulation,

object detection, OpenCV, deep learning, transfer learning

Abstract

This paper studies a machine learning based vision aid concept for the implementation on

a teleoperated Taxibot. The mathematical background of computer vision as well as the key

steps needed to configure a stereo camera system are discussed and a software prototype,

capable of object classification and depth detection is implemented and tested.

Niklas Bakula

Thema der Bachelorarbeit

Konzeptentwicklung, Bewertung und Implementierung einer Methode zur bildbasierten

Abstandsermittlung im AUDEx-Projekt

Stichworte

AUDEx, computer vision, python, calibration, rectification, correspondence, triangulation,

object detection, OpenCV, deep learning, transfer learning

Kurzzusammenfassung

Diese Bachelorarbeit untersucht ein bildbasiertes Konzept zur Abstandsermittlung für die

Implementierung auf einem teleoperierten Taxibot. Der mathematische Hintergrund des

computerbasierten Sehens sowie die wichtigsten Schritte, die zur Konfiguration eines

Stereo-Kamerasystems erforderlich sind, werden erörtert und ein Softwareprototyp, der

zur Objektklassifizierung und Tiefenerkennung fähig ist, wird implementiert und getestet.

 IV

Content
CONTENT .. IV
TABLE OF FIGURES ... V

LIST OF TABLES ... VIII
LIST OF SYMBOLS .. IX

LIST OF ABBREVIATIONS ... XI
1 INTRODUCTION ... 1

2 FUNDAMENTALS ... 2
2.1 DEPTH DETECTION TECHNOLOGY ... 2
2.2 THE MATHEMATICS OF A CAMERA ... 5

2.2.1 Camera intrinsics and coordinate systems ... 5
2.2.2 Distortion .. 8
2.2.3 Coordinate transformation ... 9
2.2.4 Planar homography .. 11
2.2.5 Field of view .. 12
2.2.6 Depth of field .. 14

2.3 THE MATHEMATICS OF STEREO CAMERAS .. 16
2.3.1 Stereo camera geometry .. 16
2.3.2 Stereo calibration ... 17
2.3.3 Stereo rectification ... 19
2.3.4 Depth computation ... 20
2.3.5 Conclusion ... 22

2.4 OBJECT DETECTION ... 23

3 REQUIREMENTS .. 25
4 IMPLEMENTATION .. 27

4.1 HARDWARE .. 27
4.1.1 Geometry analysis .. 27
4.1.2 Prototype .. 32

4.2 SOFTWARE ... 33
4.2.1 Installation .. 33
4.2.2 Model training .. 36
4.2.3 Depth computation ... 40

5 TESTING .. 58

6 CONCLUSION AND OUTLOOK .. 61
7 SOURCES ... 63

8 APPENDIX .. 70

 V

Table of figures

FIGURE 1: PRINCIPLES OF LIGHT REFLECTION [7] 2

FIGURE 2: POINT CLOUD GENERATED USING LIDAR [10] 3

FIGURE 3: COMPONENTS OF A SPINNING LIDAR [11] 3

FIGURE 4: COMPONENTS OF A COLOUR IMAGE SENSOR [14] 4

FIGURE 5: PINHOLE CAMERA MODEL, BASED ON [15] 5
FIGURE 6: PINHOLE MODEL USED IN COMPUTER VISION, BASED ON [16] 6

FIGURE 7: EXAMPLE OF RADIAL DISTORTION, [15] 9

FIGURE 8: COORDINATE TRANSFORMATION (ROTATION), BASED ON [15] 9

FIGURE 9: PROJECTIVE TRANSFORMATION, BASED ON [15] 11

FIGURE 10: GEOMETRY OF THE FIELD OF VIEW (FOV), BASED ON [19] 13

FIGURE 11: DEPTH OF FIELD GEOMETRY, BASED ON [21] 14

FIGURE 12: SIMPLE STEREO SYSTEM, BASED ON [15] 16

FIGURE 13: EPIPOLAR GEOMETRY, BASED ON [22] 18

FIGURE 14: EXAMPLE OF AN IMAGE BEFORE RECTIFICATION [23] 19

FIGURE 15: EXAMPLE OF THE SAME IMAGE AFTER RECTIFICATION [23] 19

FIGURE 16: VISUAL REPRESENTATION OF DISPARITY, BASED ON [23] 21

FIGURE 17: FUNDAMENTAL ARCHITECTURE OF A NEURAL NETWORK [25] 23

FIGURE 18: GEOMETRY OF TAXIBOT AND AIRCRAFT, UNITS IN [M] 27
FIGURE 19: RELATION DOF TO PLANE OF FOCUS FOR F=6MM, N=1,8, C=2,74UM 30

FIGURE 20: SIMPLE STEREO HARDWARE PROTOTYPE 32

FIGURE 21: DISPLAY OF ACTIVATED VIRTUAL ENVIRONMENT 33

FIGURE 22: COMMAND TO PERFORM INITIAL INSTALLATION IN AN ACTIVATED VIRTUAL ENVIRONMENT 34

FIGURE 23: DISPLAY OF SUCCESSFUL INSTALLATION 36

FIGURE 24: SELECTION OF PROJECT FOLDER IM JUPYTER NOTEBOOK 36

FIGURE 25: : SELECTION OF TRAINING SCRIPT IN JUPYTER NOTEBOOK 36

FIGURE 26: SELECTION OF CORRECT KERNEL IN JUPYTER NOTEBOOK 37

FIGURE 27: PATH TO MODEL TRAINING ENVIRONMENT 39

FIGURE 28: MAIN CAMERA SETUP MENU 40

FIGURE 29: SINGLE CAMERA SETUP MENU 41

FIGURE 30: DISPLAY OF CAPTURES IMAGES FROM THE BACK 42

 VI

FIGURE 31: DISPLAY OF CAPTURES IMAGES FROM THE SIDE 42

FIGURE 32: STORAGE LOCATION FOR SINGLE CAM CALIBRATION IMAGES 43

FIGURE 33: COMPARISON OF THE REPROJECTION ERROR FOR VARIOUS SIZES OF IMAGE COMBINATIONS 45

FIGURE 34: COMPARISON OF REPROJECTION ERRORS IN MATLAB AND OPENCV 46

FIGURE 35: ORIGINAL IMAGE FRAME 47
FIGURE 36: UNDISTORTED IMAGE FRAME 47

FIGURE 37: DISPLAY OF OPTIONS FOR THE STEREO CAMERA SETUP 48

FIGURE 38: DIRECTORY OF GENERATED STEREO IMAGES 48

FIGURE 39: STEREO OVERALL MEAN REPROJECTION ERROR 49

FIGURE 40: HORIZONTAL OFFSET FOR STEREO SETUP 50

FIGURE 41: DETAIL VIEW OF UN-RECTIFIED FRAME 52

FIGURE 42: DETAILED VIEW OF RECTIFIED FRAME 52

FIGURE 43: DETECTABLE DEPTH RANGE - "HOROPTER" [50] 53

FIGURE 44: EXAMPLE OF DISPARITY MAPS USING DIFFERENT BLOCK SIZES 55

FIGURE 45: SAMPLE OF THE ORIGINAL IMAGE PAIR USED FOR STATIC TESTS 58

FIGURE 46: SAMPLE OF THE LEFT CAMERA FRAME, INCLUDING DETECTION 59

FIGURE 47: SAMPLE OF THE RIGHT CAMERA FRAME, INCLUDING DETECTION 59

FIGURE 48: STEREOBM, BLOCKSIZE = 5PX, GROUNDTRUTH=35CM, MEANDISTANCE=55CM 59
FIGURE 49: STEREOBM, BLOCKSIZE=21PX, GROUNDTRUTH=35CM, MEANDISTANCE =55CM 59

FIGURE 50: STEREOBM, BLOCKSIZE=5PX, GROUNDTRUTH=45CM, MEANDISTANCE=54,52CM 60

FIGURE 51: STEREOSGBM DISPARITY MAP, BLOCKSIZE=5PX, GROUNDTRUTH=45CM, MEANDISTANCE=50,90CM 60

FIGURE 52: ACCURACY COMPARISON FOR STEREO ALGORITHMS 60

FIGURE 53: COMPUTATION TIME COMPARISON FOR STEREO ALGORITHMS 60

FIGURE 54: GEOMETRIC REQUIREMENTS DEFINED IN [6] 74

FIGURE 55: FRONTAL FOVS TAXIBOT 75

FIGURE 56: FORWARD AND BACKWARD DOF 75

FIGURE 57: TOP VIEW OF HARDWARE PROTOTYPE 76

FIGURE 58: BOTTOM VIEW OF HARDWARE PROTOTYPE 76

FIGURE 59: STRUCTURE OF DIRECTORY 78

FIGURE 60: RECTIFICATION CHECK, ORIGINAL FRAMES 79

FIGURE 61: RECTIFICATION CHECK, RECTIFIED FRAMES 79
FIGURE 62: FIRST SAMPLE OF MODIFIED IMAGES USING ALBUMENTATION 80

 VII

FIGURE 63: SECOND SAMPLE OF MODIFIED IMAGES USING ALBUMENTATION 80

FIGURE 64: THIRD SAMPLE OF MODIFIED IMAGES USING ALBUMENTATION 80

FIGURE 65: FOURTH SAMPLE OF MODIFIED IMAGES USING ALBUMENTATION 80

 VIII

List of tables

TABLE 1: TECHNICAL SPECIFICATION FOR BASLER ACE 2 [28] 28

TABLE 2: TECHNICAL SPECIFICATION BASLER KOWA LENS LM6HC [29] 29

TABLE 3: SUMMARY OF FURTHER REQUIRED CAMERA CONFIGURATIONS 31

TABLE 4: LIST OF REQUIRED PACKAGES 35

TABLE 5: PARAMETERS MODIFIED USING ALBUMENTATION 38
TABLE 7: ESTIMATION OF HARDWARE COSTS 77

TABLE 8: HARDWARE USED FOR STEREO VISION 77

 IX

List of symbols

Symbol Description Unit

D Aperture mm

# Baseline mm,m, cm	etc.

b Blur circle pixels

Q! = [X!	Y!	Z!]" Camera coordinates mm,m, cm	etc.

O#,% Centre of projection -

Z Depth mm,m, cm	etc.

8 Disparity pixels

c&, c' Displacement of optical axis from top left

image plane corner

pixels

R Distance to object mm,m, cm	etc.

: Distance from image plane to lens mm

e#,% Epipole -

E Essential matrix -

N f-number -

Θ(,)
2

Field of view angle °, @A8	(@A8:ACD)

F Focal length mm

f&, f' Focal length pixels

F Fundamental matrix -

H Homography matrix -

q = [u		v]" Image coordinates pixels

s&, s' Pixel density
pixels

mm

 X

C Pixel size pixels

k*, k+, k, Radial distortion coefficients -

Q Reprojection matrix -

R, r	, R-.!/ Rotation matrices @A8	(@A8:ACD)

H Sensor height OO, P:QRSD

W Sensor width OO, P:QRSD

p*, p+ Tangential distortion coefficients -

t Translation vector OO,O, UO	RVU.

Q0 = [X0	Y0	Z0]" World coordinates OO,O, UO	RVU.

 XI

List of abbreviations

Abbreviation Description

API Application programming interface

AUDEx Automotive Development in 1:x

BGR Blue, Green, Red

Bm Block matching

COCO Common Object in Context

CSCT Centre symmetric census transform

DOF Depth of field

EASA European Union Aviation Safety Agency

FoV Field of view

LiDAR Light detection and ranging systems

RGB Red, Green, Blue

SAD Sum of absolute differences

SGBM Semi global block matching

SSD Single-Shot-Detector

TF Tensorflow

ToF Time of Flight

WLS Weighted Least Squares

 1

1 Introduction

The introduction of computers has allowed many human tasks to be automated. From fast and

accurate executions of mathematical operations using calculators to self-driving vehicles, the high

availability of today’s computational resources has dramatically increased the usage of new

technologies in our lives.

Automotive companies, such as Audi, Mercedes or Tesla, have frequently been the subject of

headlines for testing new technologies that take the use of computers in cars to the next level [1].

These technologies, many of which use machine learning, have the aim of increasing the safety,

comfort and efficiency of our travels. Especially Tesla has been very vocal about the benefits of

computer vision for vehicles [2]. But the application of such technologies has been tested for the

use at airports as well. From driverless trains transporting passengers between terminals [3] to

autonomous baggage tractors [4], companies are interested in tech that increases safety, reduces

(operational) costs and lowers emissions.

The “Automotive Development in 1:x” (AUDEx) project at the University of Applied Sciences in

Hamburg enables students to study various concepts of teleoperation using scaled vehicle

models with different kinds of sensors and actors. In particular, a simulator was built, which allows

a driver to teleoperate a vehicle using virtual reality glasses that provide a view of the environment

around the vehicle as well as an augmented display of the vehicle’s cockpit to ensure a better

sense of orientation. Furthermore, visual and haptic feedback are given to the driver [5].

Previous work [6] has studied the adaptation of such a teleoperation concept for the use in tow

tractors at airports while focusing on the visual requirements to ensure that an operator in a

remote location is provided with views at all critical points at or around the aircraft. This paper

provides an in-depth analysis of a computer vision based visual aid system for one of the concepts

described in the previous work. Furthermore, the aim of this work is to provide a hardware and

software prototype for such a system.

 2

2 Fundamentals

2.1 Depth detection technology

Computer vision applications often rely on the use of depth detection technology. Especially the

field of autonomous driving has seen a considerable increase in the usage of this technology. It

allows systems to detect distances to obstacles and, as a result, increases the safety of a drivers,

passengers or bystanders. Some of the most known depth detection technologies shall be

introduced in the following paragraphs.

Light

The human eye can perceive its environment

when there is light. A light source, such as the sun,

emits electromagnetic waves with certain

wavelengths or, using an idealisation, light rays,

which travel down to earth. When light rays hit an

object in space they can be absorbed, transmitted

Figure 1: Principles of light reflection [7]

and/or reflected [8]. Depending on whether the surface is smooth (regular reflection on a polished

metal) or textured (diffused or scattered reflection) the amount of light that is reflected changes.

Furthermore, coloured objects absorb and reflect different wave lengths of the light, depending

on the colour their surface is made of. A red object, for instance, absorbs much of the blue and

green light and a red light ray is reflected [7]. If the light ray is reflected into the human eye, it is

perceived in this colour.

Lidar

Light detection and ranging systems (LiDAR) belong to the category of Time of Flight (ToF)

systems [9]. While there are various implementations of LiDAR technology, the fundamental

concept of how distances are measured is based on a laser that emits a light ray. The light ray

travels in the direction that it is emitted in, is reflected by an object and returns to the LiDAR

installation, where it is recorded by a scanner. The distance to the object can be calculated by

measuring the time it took for the light ray to travel from the laser to the scanner and by using the

 4

distances to objects located up to 100m from the system [13]. Spinning systems provide greater

distance measurement capability.

Cameras

Depth computation can also be performed using cameras, in particular two cameras in a type of

vision called binocular vision. While the following chapters will discuss how depth detection using

such as stereo camera setup works, the components of cameras shall be explained in this section.

The manner in which a camera can capture an image

of its environment is similar to how the human eye

perceives light. A light ray that is reflected on an object

enters the camera through a lens. The lens, through

its physical shape, transmits and focusses the ray on

an image sensor. The image sensor consists of many

pixel elements that are essentially photodiodes

equipped with a microlens as well as a colour filter.

Each pixel element includes some electric circuits on

its edges, which cannot capture light. The light from

the main lens is focussed on the active pixel area,

which can capture light, be a microlens. A colour filter

below the microlens filters the respective colour, with

neighbouring pixel elements having one red, green

and blue (RGB) filter [14].

Figure 4: Components of a colour image sensor [14]

The three pixel elements provide their respective colour information for one point on the image

sensor, from which the actual RGB colour of a point is computed. After it passed through the

colour filter, a light ray enters the photodiode, where the electromagnetic light wave’s energy is

converted into an electric signal that can be further processed by the electric circuits.

The quality of the image a camera produces greatly depends on the quality of the (main) lens, as

well as the sensor quality. A measure of the quality of an image sensor is its resolution, i.e., how

many pixel elements it has per millimetre. Sensors of 4K cameras have 3840 horizontal and 2160

vertical pixel elements with each pixel element having a length of down to 1,67 micrometres.

Some image sensors have rectangular pixel elements, instead of square ones.

 5

The function of a lens is to capture a large number of light rays and focus these rays on the image

sensor. The wider the lens, the more light can be captured and, thus, the more scenery can be

captured on a single image. Cameras with such a large field of view are called wide angle

cameras.

2.2 The mathematics of a camera

The following sections provide a high-level introduction to the physics and mathematics of (stereo)

cameras that are required to understand key requirements for and operation of computer vision

components.

2.2.1 Camera intrinsics and coordinate systems

The pinhole camera model (see Figure 5) is an idealised camera model that provides a basic

understanding of what are called the camera intrinsics. A light ray from an object in space W =

[X		Y		Z]1 enters the camera through a pinhole and is projected onto the image plane (also called

projective plane).

Figure 5: Pinhole camera model, based on [15]

The optical axis is defined as a straight line passing through the pinhole while perpendicular to

the image plane. The centre of projection lies in the centre of the pinhole. The point where the

optical axis intersects with the image plane is called principal point. Using similar triangles, the

size of the projected object W on the image plane can be calculated as:

 6

−Q

\
=
X

Z
→ −Q = \ ∗

X

Z
				AC8					

−_

\
=
Y

Z
→ −_ = \ ∗

Y

Z
	

(1)

The focal length (F) is defined as the distance between the centre of projection and the image

plane. Equation (1) makes it evident that the focal length is the parameter of a camera that

determines in which size an object in the real world is projected onto the image plane. The focal

length of a lens is specified in its technical documents and given in world units (i.e., usually mm).

A larger focal length creates a larger projection on the image plane. Both coordinates on the

image plane being negative shows that the projected object is upside down as well as horizontally

flipped compared to the real world. The above-mentioned relationship is usually illustrated in a

simpler manner, in which the image plane is mirrored along the optical axis from the centre of

projection (Figure 6). As a result, the image plane as well as the object Q are both at a positive

distance from the centre of projection and thus the negative values for coordinates x and y in

equation (1) become positive [15].

In computer vision there are three coordinate

systems to consider. The first is the world-

coordinate system, in which real world units

(i.e., cm, m, inches etc.) are used. A point W2 =

[X2		Y2		Z2]1 in the world-coordinate system

can be expressed in camera coordinates W3 =

[X3 		Y3 		Z3]1, which use the same units as the

world coordinate system. While the world-

coordinate system can be located anywhere in

space, the camera coordinate system

originates in a camera’s centre of projection.

Figure 6: Pinhole model used in computer vision, based on [16]

Its Z3-axis is parallel to the optical axis, the Y3-axis points downwards and the X3-axis is

perpendicular to both. When a point in camera coordinates W3 is projected onto the image plane,

it’s position can be expressed in image coordinates ` = [a		b]1, which specify its location in pixel

coordinates. The image coordinate system originates in the upper left-hand corner of the image

plane. As it was mentioned in the last subsection, pixel elements can be of rectangular or

quadratic shape. The position in image coordinates is determined by multiplying the horizontal

 7

and vertical position in camera coordinates with the pixel density of the image sensor in the

respective direction:

 a = D4 ∗ X3 and v= D5 ∗ Y3 (2)

In equation (2) the pixel densities (D4 , D5) have units in

67489:

;;
, image coordinates (a, b) are in units

of pixels and camera coordinates (X3 , Y3 , Z3)	are given in mm. Since coordinates in the camera

coordinate system are measured from the optical axis and the image coordinate system does not

originate in the same point, the location of the optical axis with respect to the origin of the image

coordinate system is considered using the parameters U4 and U5. Furthermore, in reality the

optical axis is not perfectly aligned with the centre of the image plane. This is due to the fact that

the lens (the pinhole in this idealised model) is not aligned precisely due to manufacturing

inaccuracies. As a result, the displacement of the image plane’s centre from the optical axis is

considered in the parameters U4 and U5. Substituting equations (2) into equation (1)

1
 and defining

two focal lengths, c4 and c5 (in pixels) as the product of the focal length (\) and the respective

sensor density (c4 = D4 ∗ \, AC8	c5 = D5 ∗ \) yields:

 a = c4 ∗ d
<!
=!
e + U4

(3)

And

v= c5 ∗ d
>!
=!
e + U5

(4)

These four parameters, the two displacements U4, U5 and the two focal lengths c4 ,c5, are called

the camera intrinsics and are noted in the camera matrix (M):

g =		 h
c4 0 U4		
0 c5 U5			
0 0 1

k

1
 Remember that in this idealised model the equation has a positive sign

 8

To provide a linear system of equations, matrices are noted in homogenous coordinates.

Equations (3) and (4) can be written as:

 l
Da
Db
D
m = 		 h

c4 0 U4		
0 c5 U5			
0 0 1

k h
X3
Y3
Z3
k (5)

The actual screen coordinates in equation (5) are determined by a =
:?

:
 with D = Z3. A point in

camera coordinates W3 	can thus be transformed to image coordinates with:

 ` = gW3 		, nℎR@R	` = D l
a
b
1
m (6)

The reverse transformation can be achieved using the inverse of the camera matrix:

 W3 = g@*` (7)

It shall be noted that for this paper the intrinsic parameter skew (D) is not considered, in contrast

to other work mentioned in this paper. This is due to the fact that modern cameras have a very

small skew, which can sufficiently be neglected [15].

2.2.2 Distortion

A camera in the real world, in comparison to the pinhole camera, allows multiple rays to enter

from various directions by using a lens. Depending on the shape of the lens, the light rays are

focussed onto the image plane. The physical characteristics of the lens introduce another import

parameter that has to be considered when working with computer vision: Distortion.

Radial distortion is caused by the shape of a lens, which instead of ideally being parabolic, in

reality has a spherical shape. This causes a light ray travelling through the lens to be diverted,

different to how it would ideally be, when entering at the edges of the lens. Light rays in the centre

are not diverted (distortion at the centre is zero).

 9

Figure 7: Example of radial distortion, [15]

Tangential distortion arises from the assembly process of the camera when the image plane is

not placed exactly parallel to the lens.

Another characteristic to consider is that wide angle lens produce a higher distortion than regular

lenses [17].

The effect of distortion can be computationally corrected as long as the distortion coefficients,	p*

through p, for radial distortion and P* and P+ for tangential distortion, are known.

These four intrinsic parameters (c4 , c5 , U4	AC8	U5)	as well as the distortion coefficients

(p*, p+, p,, P*, P+)	of a camera are determined during the camera calibration process, which will be

discussed in detail.

2.2.3 Coordinate transformation

point, relative to its location before the transformation, can be expressed using trigonometry and

written in matrix form:

The position and pose of the world coordinate

system can be offset from the camera

coordinate system by translation and/or

rotation about any or all of the three axis. A

coordinate transformation determines the

coordinates of a point W2 = [X2		Y2		Z2]1 in

the camera coordinate system WA =

[XA 		YA 		ZA]", as shown for a rotation about

one axis in Figure 8. The new location of one

Figure 8: Coordinate transformation (rotation), based on [15]

 10

W3 = 	qB(D)W2 , nℎR@R	W3 = h
X3
Y3
Z3
k , W2 = h

X2
Y2
Z2
k , qB(D) = h

UrDs D:Cs 0
−D:Cs UrDs 0
0 0 1

k	 (8)

Because there are three axes in three-dimension space, a rotation about all or any of these axes

is possible. Hence, the total rotation vector is the product of the three 2D rotation matrices:

 q =	qB(D)q5(F)q4(G) (9)

The rotation matrix has the property q1 = q@* and the inverse transformation can be achieved

with [15]:

 W2 = 	qB(D)
@* W3 (10)

The second offset between two coordinate systems, the translation, is expressed in the translation

vector (V). The translated location of any point W2 in the world coordinate system can be

determined in the camera coordinate system as follows:

W3 = W2 − V,nℎR@R	V = 	 h
V4
V5
VB
k (11)

To understand the upcoming derivations in this paper, translation vector and rotation matrix are

written into a single 3x4 matrix:

 t = [q	 ∣ 	V] (12)

 11

2.2.4 Planar homography

Planar homography describes the projective

mapping of two planar surfaces to one

another. The homography matrix (H) maps a

point in world coordinates (W2) to a point in

image coordinates system	(`) in a

mathematical operation called projective

transformation [15]. It considers the camera

intrinsics as well as the geometric relation

(extrinsics) between the two coordinate

systems.

Figure 9: Projective transformation, based on [15]

Different from the notation in equation (5), a scale factor (s) is considered on the right side of the

equation to provide a required constraint for the system of equations to be solvable [18].

 ` = 	DvW2 = DgtW2 (13)

To provide a better understanding, the equation is written in full using homogenous coordinates.

This time, the world coordinates are homogenous as well, which is needed for the multiplication

of t,4H:

l
a
b
1
m = D h

c4 0 U4		
0 c5 U5			
0 0 1

k [@*	@+	@,	V] w

X2
Y2
Z2
1

x (14)

By definition, planar homography maps two planes to one another. As a result, all three-

dimensional points on the planar surface (“object plane” in Figure 9) must have one equal

coordinate, for instance, Z2 	= 	0. Equation (14) can thus be simplified to:

l
a
b
1
m = D h

c4 0 U4		
0 c5 U5			
0 0 1

k [@*	@+		V] h
X2
Y2
1
k (15)

Using this assumption, the homography matrix is a 3x3 matrix, providing a homogenous system

of equations that maps a three-dimensional point in world coordinates to a two-dimensional point

in image coordinates.

 12

Knowing the 3D world coordinates of multiple points of the same plane, as well as their projected

coordinates in image coordinates, allows one to compute one homography matrix for each point.

Doing so for multiple points in the same plane, multiple homography matrices are computed. The

resulting system of equations can be solved for the camera intrinsics. The details of this procedure

are beyond scope for this paper.

For this project, images of a chessboard with n=9 rows and m=6 columns are used. The

chessboard corners, whose (planar) world coordinates are related by a horizontal and vertical

offset of the length of a chessboard’s square, provide enough points per image to solve for

2.2.5 Field of view

When setting up a (stereo) camera system, one of the first steps is the selection of a field of view

(FOV). At the beginning of this paper, in equation (1), it was discussed that, for the idealised

pinhole camera model, the image plane is located at distance F from the pinhole. The physics of

real lenses or lens-systems are rarely covered in fundamental literature that does not reach

beyond the scope of this work, but one essential relation is called the thin lens law [18], which

defines that the distance between the image plane and the lens (i) is generally not equal to the

focal length (\) but depends on the distance between the lens and the object in space (Z):

1

\
=
1

Z
+
1

:
 (16)

That being said, it is generally proposed [19] for a first system definition to determine the FOV

assuming the camera to be focussed on an object at infinity (Z = 	∞), making equation (16) to be

\ = :. Using this assumption and knowing the geometry and distance to an object relative to the

camera, the focal length (\) for the camera can be determined.

 13

Figure 10: Geometry of the field of view (FOV), based on [19]

For an object of width (z) in at a distance (Z) from the camera’s lens, the required horizontal FOV

noted using angle

I"
+
	can be determined:

Θ)
2
= arctan}

z
2
Z
~ 		= arctan �

z

2Z
Ä	 (17)

In equation (17), the geometry is specified in world units. Similarly, such equation can be defined

for the right side of the lens using the sensor width (t) and the focal length (\) in world units:

Θ)
2
= arctan �

t

2\
Ä (18)

Knowing

I"
+

 from (17) for a given geometry, equation (18) can be used to determine one of the

required camera properties. These cannot be chosen arbitrarily but must be chosen from a range

of commercially available sensor sizes and focal lengths. This relationship can be determined for

the vertical FOV analogously:

ΘJ
2
= arctan �

v

2Z
Ä (19)

 14

2.2.6 Depth of field

In real camera lenses, the aperture defines through which diameter of the physical lens light can

enter the camera [20]. A lens’ available aperture settings are defined as f-number (N), which is

the quotient of focal length (\) and available aperture diameter (z):

Å =
\

z
 (20)

The thin lens law in equation (17) defines that a plane of focus exists for a particular focal length

(F) for which the light rays are focussed onto the image plane, where they intersect and thus a

single point is projected. The object is in perfect focus.

Figure 11: Depth of field geometry, based on [21]

Objects closer or farther from the camera, compared to the plane of focus, form a blur circle (also

called circle of confusion) on the image plane and are thus not perfectly in focus. Alternatively,

when selecting a camera configuration, defining the maximum allowed size of the blur circle

defines the range for a known focal length (\), in which the projection of any point is sufficiently

accurate, thus smaller than the blur circle. This range is called depth of field (DOF):

Z+ − Z* =
2Z\+#Å(Z − \)

\H − #+Å+(Z − \)+
 (21)

 15

The derivation is shown in the appendix on page 70. Equally, the range limits can be calculated

using equations (34) and (35) to be:

Z* =
Z\+

#Å(Z − \) + \+
 (22)

And

Z+ =
−Z\+

#Å(Z − \) − \+
 (23)

 16

2.3 The mathematics of stereo cameras

The stereo camera arrangement that is

used in this paper is called frontal

parallel (or “simple stereo system”)

and is shown in Figure 12 This

particular arrangement features two

identical cameras that are placed

coplanar and horizontally offset from

one another. Such placement is not

possible in reality, because of

manufacturing inaccuracies causing

different intrinsics and distortion

parameters for two cameras of the

same kind [15].

Figure 12: Simple stereo system, based on [15]

Furthermore, mounting the two cameras manually produces inaccuracies and an exact coplanar

placement cannot be achieved. This chapter summarises the steps that are required to create a

mathematical model, which allows one to transform a real-world-setup into the idealised model.

2.3.1 Stereo camera geometry

Two cameras with identical intrinsics are displayed in Figure 12, using the same geometry that

was introduced in Figure 6, horizontally offset by a baseline (b). Let us assume, for now, that the

world coordinate system and camera coordinate system are identical. The camera coordinate

system for this stereo setup has its origin in the principle point of the left camera. In computer

vision the left camera is usually defined as the main camera. A point W3 is projected onto the left

and right images planes at coordinates `9 = [a9 		b9]1 and `K = [aK 	bK]1 Looking at point W3 from

the left image plane, it’s depth (Z3) cannot be determined because it could lie on any point on the

ray Ç9W3ÉÉÉÉÉÉÉÉÉ⃗
. However, it can be calculated when combining the information provided by the two

cameras.

 17

Using equation (3), the geometric relation can be defined for both cameras as:

 a9 = c4 ∗ d
4!
B!
e + U4 and b9 = c5 ∗ d

5!
B!
e + U5

And:

 aK = c4 ∗ d
<!@L
=!
e + U4 and bK = c5 ∗ d

>!
=!
e + U5

Solving these equations for X3, Y3 and Z3, assuming that U4 , U5 , c4	and	c5 are the same for both

cameras results in:

 X3 =
L(?#@3$)
(?#@?%)

	 , Y3 =
L∗N$(O#@3&)
N&∗(?#@?%)

	AC8	Z3 =
L∗N$

(?#@?%)

(24)

For a known baseline (b) and known camera intrinsics, the depth (Z3) to an object can thus be

determined. While in some cases the depth to an object is of interest, in other cases the distance

(q) to the object is more relevant. It can be calculated as follows:

q = ÜX3+ + Y3+ + Z3+ (25)

2.3.2 Stereo calibration

The goal of stereo calibration is to identify the geometric relationship between the two stereo

cameras, which is expressed in the translation vector (V) and the rotation matrix (q). The notation

of both was discussed for the projective mapping of a chessboard and a single camera in chapter

2.2, only now it maps both cameras to one another. Furthermore, the first coordinate of the

translation vector is the baseline (#) that is needed to determine the depth to an object in equation

(24). Both matrices are also needed for the next step, which is the rectification.

Two image planes that are tilted towards one another are displayed in Figure 13. The projected

point	W3 		in camera coordinates is visible on both image planes `9 and `K. Since the two cameras

are rotated towards each other, the centre of projection of the right camera (ÇP) represents

another point in space that is projected onto the left camera’s image plane at point (RQ). This point

is called the epipole. The right image plane also has one epipole (RP) where the left camera’s

 18

centre of projection is projected onto the image plane. The two epipoles as well as point Q define

a plane in space, which is called epipolar plane [15].

Figure 13: Epipolar geometry, based on [22]

When viewed from the left camera alone, the depth of point Q cannot be determined, because it

could lie anywhere on the ray Ç9WÉÉÉÉÉÉÉ⃗ . This is highlighted in Figure 13 using points Q1 through Q3,

which all prove to be possible locations of point Q when looking at it from the left image plane.

One characteristic, however, is that all these points must, by definition, lie in the epipolar plane

and, thus, all rays from the right camera’s centre of projection to the points Qi must be in the same

plane as well. All these rays project one line on the image plane of the left camera, called the

epipolar line. The same applies for the epipolar line on the right image plane. Viewed from the left

camera, the actual location of point Q in space must be somewhere along the left epipolar line.

Using the characteristics of epipolar planes and epipolar lines, the following relation between

corresponding image coordinates of the left and right camera can be defined (see page 71 for the

derivation):

 [aK 	bK 	1]	\ l
a9
b9
1
m 	= 0 (26)

In equation (26), a and b are the image coordinates in the left and right camera written in

homogenous coordinates. The fundamental matrix (F) relates the images points of the left and

right camera and provides a system of equations that is solved, using additional constraints that

are beyond the scope of this paper, for each chessboard view. Furthermore, the fundamental

 19

matrix can be split into the two camera matrices, gK and g9, as well as the essential matrix (E),

where \ = 	gK
@*1á	g9

@*
. Equation (26) thus becomes:

 [aK 	bK 	1]	gK
@*1á	g9

@* l
a9
b9
1
m 	= 0 (27)

Since both camera matrices are known, as they have been determined during the single camera

calibration procedure, the essential matrix can be solved for. Knowing the essential matrix, the

translation vector V and the rotation matrix q are computed. The resulting translation vector and

rotation matrix transform a point in the image plane of the right camera to the image plane of the

left camera. When this is done for all points in the image, the resulting images are coplanar, which

was the first, ideal, characteristic of the frontal parallel stereo system. Furthermore, the distance

between the centres of projection of the two cameras are related by V = àV4	V5	VBâ
1
, the first value

of vector V	is equal to the baseline #.

2.3.3 Stereo rectification

The goal of stereo rectification is to transform two images, which after the stereo calibration

procedure are coplanar, in a manner that all epipolar lines of both images are horizontal and

colinear, i.e., have the same vertical coordinate. Given the pose and position of the epipolar lines

these images are called row aligned (see Figure 15). Doing so will prove to have a considerable

advantage during the depth computation procedure, which will be discussed in the next step. The

most relevant operations for this paper during the stereo rectification procedure shall be outlined

below.

Figure 14: Example of an image before rectification [23]

Figure 15: Example of the same image after rectification [23]

Bouguet’s algorithm [15] starts with the rotation matrix q, which was computed during stereo

calibration and rotates, in this case, the right camera’s image into the left camera’s image plane.

 20

Instead of rotating one image plane, Bouguet splits the rotation matrix q into two, rotating both

images towards one another :

 q = @Q + @P (28)

In equation (28), the rotation of the left camera is @Q	and for the right camera it is @P. The row

alignment of the images is achieved by rotating the images around their centres of projection in a

manner that aligns the epipolar lines with the (horizontal) baseline b that connects the two

cameras, which is defined in coordinates in translation matrix ä. This rotation is defined in the

rectification matrix qK83R . The required mathematical derivation is beyond scope for this paper.

The two single rotation terms define the total rotation matrices:

 qQ = qK83R@Q			AC8			qP = qK83R@P (29)

Row aligned images are thus achieved by performing a coordinate transformation, first rotating

the images towards one another followed by a rotation around their respective centres of

projection. To achieve the required equal focal lengths, the rectified images are scaled and the

new camera intrinsics modified accordingly. The equal focal lengths	c4 , c5 and the equal

displacements U4 , U5 are noted in the rectified camera matrix gK83R.

2.3.4 Depth computation

Once the stereo rectification has produced two row-aligned and coplanar images, the depth

computation can begin. Equation (24) shows that for a frontal parallel stereo setup, the depth can

be computed for a known focal length (f) and known horizontal image coordinates (a9, aK) of the

projected point. The displacement of the horizontal coordinates of the projected point is called

disparity 8	 = 	a9 − aK. To understand what disparity is, one shall examine the following images.

 21

Figure 16: Visual representation of disparity, based on [24]

An object close to the camera, such as the centre of the sculpture’s nose in Figure 16, left, is

visible in the left image at coordinate a9 from the left edge of the screen, while in the right image

it is located at aK from the left edge. The object is close to the camera, the depth to the object is

small, and the disparity is large. On the other hand, an object at the back, for instance the centre

of the vertical shelf pillar, produces a smaller disparity. The depth to the object is larger. If the

depth to the object goes towards infinity the disparity goes towards zero and the depth cannot be

calculated. In practice, if an object is too close to a camera, it might not be visible in both camera

frames and no disparity or depth can be determined either.

Since the depth to an object is determined by the disparity of horizontal image coordinates, the

advantage of rectified images becomes clear. Let’s recall that the projected point must lie

somewhere on the epipolar lines of the two cameras. These now have the same vertical

coordinate in both images. To find the disparity of a certain feature or point, the computer only

has to search along the epipolar line in the right image, instead of searching the entire image.

This reduces the computational effort considerably.

In this paper, the initial point in the left camera, for which the disparity and depth will be calculated,

is determined using object detection, which is discussed in the next step. Let’s summarise the

above-mentioned procedure quickly.

 22

2.3.5 Conclusion

The goal of the single camera calibration procedure is to compute the camera intrinsics as well

as the distortion coefficients, which are parameters that describe individual camera inaccuracies

from the ideal pinhole camera model.

During the stereo calibration process, the intrinsics and distortion coefficients are used to

determine the geometric relationship, the translation (and baseline) and rotation between the two

cameras.

Third comes the rectification process, which, given the geometric relationship between the two

cameras, computes transformation matrices that produce coplanar and row-aligned images,

which are called rectified images.

The rectified images are used to compute correspondences of features in the left image and the

right image. Knowing the disparity of a projected point, the depth to the object can be computed.

 23

2.4 Object detection

A grayscale image is read by the computer as a matrix, with the number of rows and columns

defined by the vertical and horizontal resolution of the image (the number of single pixel elements

in the respective direction). Each matrix element of an 8bit grayscale image has a value between

0 and 255 representing the intensity of the pixel element. An 8bit colour image is represented as

a tensor with three channels. Each channel stores the colour intensity for one of the colours blue,

green, red (BGR).

Figure 17: Fundamental architecture of a neural network [25]

The task of object detection requires a computer to analyse information in an image and, in our

case, perform the classification of objects in the image. To do so, it must make a decision using

the available data, which is a task that defines the disciple of machine learning. Using an existing

data set, a computer can use statistical algorithms, such as k-nearest-neighbour (k-NN), to

compare the characteristics of newly input data with those of existing data points [26]. Knowing a

class of the existing data point, the classification (e.g., country, age, height, cost, object) of the

new input can thus be approximated. Deep learning is a sub-discipline of machine learning and

uses deep neural networks to perform such classifications for instance. Their general architecture

consists of an input layer, an output layer and a number of (hidden) layers. In its very essence,

information entering the input layer is passed into the nodes (“neurons”) of the first hidden layer,

where various properties of the input are evaluated. More specifically, the properties of the input

are compared to known properties of known objects. The output layer then returns the class of

the object that the algorithm has found the highest resemblance to. One manner in which the

mathematics of the hidden layers can be simplified is that the neurons at the top of the network

(on the left side of the layer in Figure 17) evaluate a small piece of the input image, such as one

pixel element, regarding its (colour) intensity. Comparing this weighted value (called activation)

 24

to the known intensity of a larger feature, e.g., comparing whether a black pixel element

corresponded to a corner in correctly classified images, the probability of such correspondence

is passed along to the next layer. Neurons in the next layer evaluate the received information and,

again, determine the probability that the feature corresponds to a shape, e.g., a black corner is

part of a chessboard square, and so on [25] .

In order to allow any neural network to identify known geometry, the weights in all neurons have

to be adapted to evaluate the correspondence of input data to the new geometry. This is done

during the training process, using supervised learning. Supervised learning includes providing an

input as well as an output to the model and using an algorithm to adjust all weights to maximize

the similarity of input and output. The success of a training is measured with the metrics precision,

i.e., out of all tests, how many matches between known input and output were correct (true

positive), and recall, i.e., out of all known objects in a known image, how many were correctly

identified.

Instead of completing an entire model training for the purpose of this paper, existing pre-trained

models can be used and adapted to properly classify new objects in a process called transfer

learning. This is done, in the case of single-shot-detector models (SSD), by retaining the

backbone of the network, which extract features, such as lines, corners and shapes (and many

more) from the images, while adapting the head, which matches these shapes to new objects and

classifies these as such. While the architecture of SSD models is far more complex than the

simple neuron-layer model described in this chapter, the fundamental principles of feature and

object detection are similar. Because this paper uses object detection merely as a supportive

function, the above-mentioned concept of neural networks shall be sufficient to understand the

work of this paper. A detailed architecture review can be found in [27].

 25

3 Requirements

Now that the fundamentals for this project were discussed, the next step is the definition of

requirements for the computer vision system.

Functional requirements

The previous work in [6], which this paper is based on, highlights that the pushback procedure is

one of the tasks that requires a considerable amount of money due to the requirement of multiple

members of staff. Costs could be reduced by providing a teleoperated version of the Taxibot,

which is a towbarless tow tractor developed by Israel Aerospace Industries and others and

certified by the European Union Aviation Safety Agency (EASA) in 2014. It is currently certified

for the operation with Airbus’ A320 family as well as Boeing’s type B737 aircraft [28].

This paper analyses a concept for a teleoperated version of the Taxibot for the pushback

procedure only, i.e., the process that starts after the Taxibot has coupled with the aircraft and

ends when the aircraft is in a position from which the pilot can navigate the aircraft to the runway.

Furthermore, the analysis and development will only consider Airbus’ A320 aircraft.

A teleoperated version of the Taxibot must allow the operator to view crucial points of the aircraft

and the aerodrome, such as the wingtips, the uplifting system of the tow tractor, airport signs,

paths, other aerodrome infrastructure, the pavement and any other obstacles that could damage

the aircraft while it is moving and coupled with the tractor. Hence, views of the Taxibot should be

given in each direction of movement; forward, backward and sideward [29]. It shall be the aim of

this paper to develop a concept, which provides the operator with such views, as well as distances

to said objects. As a result, the software must be able to detect the above-mentioned objects.

These objects shall be detected once they enter a certain area around the aircraft or the tow

tractor. Previous work [6] has assumed a visibility of 50m behind the aircraft’s tail to be sufficient

for sudden breaking manoeuvres, which shall define the distance in which objects must be

detected from the aircraft’s tail. Since the pushback of the aircraft does not happen sidewards, a

detection radius of 1m from the aircraft’s wingtips shall be provided. It is important to note that all

objects underneath the aircraft, including underneath the wings, must be detected. The resulting

geometry requirements are displayed in Figure 54 in the appendix, with arbitrary angles for

visibility chosen to begin with. Their analysis will follow shortly.

 26

Moreover, the system should provide guidance to the Taxibot operator regarding the magnitude

of change in throttle and steering that needs to be performed to push the aircraft along the

intended pushback path, marked by yellow lines, in the most efficient manner. Hence, the system

should be able to detect the pose and position of the aircraft relative to the Taxibot to provide the

operator with the required information.

An additional requirement shall be that the real-time information required to obtain the distances

to the above-mentioned objects shall be produced by a local system on the Taxibot or at the

venue from which it is teleoperated. This has the aim to reduce a dependency from other airport

service providers and allow the Taxibot to be deployed ‘out of the box’ without prior airport or

aircraft modifications

2
 or wire(-less) connections.

Regulatory requirements

All aircraft and aviation products must be proven to be safe and provide their intended functions.

The European Union Aviation Safety Agency is one of the regulatory bodies, which provides

certification specifications as well as means of compliance that provide guidance on how these

specifications can be complied with. The development of aviation products is heavily based on

these guidelines. For the concept work in this paper, however, the regulatory requirements are

not considered because the software part of the visual aid system shall not be accessible to the

pilots of the aircraft. Providing the same visual display to the pilot, including object detection,

would require a change to the software of the aircraft, which requires additional certification for

each aircraft that uses the Taxibot. Regulatory requirements for autonomous or teleoperated

ground vehicles are not included in the certification specification at the time of writing.

2
 Not including the software that is already installed on A320s allowing the pilot to control the

Taxibot or the potential need for further certification

 27

4 Implementation

4.1 Hardware

The before-mentioned, rough geometry requirements for the teleoperated Taxibot concept (see

Figure 54 in the appendix for reference) will be analysed in depth in this chapter. Furthermore,

the required camera parameters to provide the desired views will be determined. First, the

horizontal frontal view shall be analysed.

4.1.1 Geometry analysis

Figure 18: Geometry of Taxibot and aircraft, units in [m]

Figure 18 displays the underlying geometry, to scale, using publicly available dimensions of an

A320neo [30]. Dimensions for the Taxibot are taken from [6], which assumes it to have the

 30

Figure 19: Relation DOF to plane of focus for F=6mm, N=1,8, c=2,74um

It becomes evident from Figure 19 that increasing the distance of the plane of focus increases

the available depth of field considerably for this sensor and lens combination. With this particular

stereo setup mounted inside of the Taxibot’s cockpit, the plane of focus should be selected to be

close to the front face of both engines (Z = 10,37O), as these are very important key points for

the navigation of the aircraft, for which a precise position must be calculated. Furthermore, a near

detection limit shall be chosen, which allows depths to be detected accurately at the distance that

the front landing gear is located at (Z* = 4,3O). This would allow for the system to be used during

the coupling procedure as well. A plane of focus of Z = 6,5O is selected, resulting in a near DOF

limit of Z* = 3,44O, a far limit of Z+ = 58,92O and a depth of field of Z+ − Z* = 55,48O3
.

To detect objects at farther distances, another stereo pair should be placed at a lower location,

overseeing the area behind the aircraft. Furthermore, two cameras must be placed to provide a

3
 These calculations were made based on the assumption that the thin lens theory applies for

wide-angle lenses as well, which differentiate themselves from regular lenses by the curvature of

the glass and not it’s thickness. A plausibility check shows that Tesla uses wide-angle lenses to

detect depths of up to 60m, which increases the plausibility of these results:

https://www.tesla.com/autopilot

 32

4.1.2 Prototype

The functional requirements on page 25 defined that the pose and position of the aircraft shall be

detected by the computer vision system. Given the previously discussed camera configuration

and the respective depths of field, only the wide-angle cameras with the FOV towards the aircraft

are plausible to be used for the detection of the aircraft.

For this project work, a hardware prototype,

featuring two horizontally offset cameras

(simple stereo system) will be used to

simulate the functions of the wide-angle

cameras. Raspberry Pi cameras are not

used, since the computational resource

required to run an object detection and depth

computation algorithm are beyond those

provided by standard raspberry computers.

The two webcams used are Logi and

Logitech C920HD cameras. They offer a

resolution of 1980 x 1020 pixels, but further

technical specifications found on the internet

could not be verified. Moreover, both

cameras have an auto-focus feature, which

does not allow a useful depth of field

calculation since the plane of focus changes

constantly.

Figure 20: Simple stereo hardware prototype

The two cameras are screwed to a tripod, which prevents them from changing their positions

relative to each other (see Figure 20 and page 76 in the appendix). The camera calibration is

done using a printed chessboard version in DIN A4 as well as on an iPad Pro with a resolution of

264ppi. A computer, running on macOS is used for debugging as well as testing of computation

time for the algorithm (see Table 7 in the appendix). Unfortunately, neither a Windows nor a Linux

machine are supported in the software implementation, due to time limitations.

 33

4.2 Software

This chapter will cover the software implementation of a stereo vision system using two cameras,

which shall detect and compute the distance to two aircraft engines. Key steps and functions to

achieve this goal will be summarised.

4.2.1 Installation

The start of a new programming project should begin with creating a new virtual environment. It

allows packages and specific versions of these to be installed in this environment without effecting

other programs on the same machine, which might require different package versions. The

following steps require python version 3 and the open-source package manager “pip” to be

installed globally on the machine by downloading it from the web [35] [36]. Furthermore, “git”, a

package allowing repositories to be cloned from GitHub must be installed from [37].

The first step to do so is to navigate any desired folder on the machine, from where the depth

computation program will be run. This folder should be empty and must have a recognisable

name, such as “BachelorNB”. Next, the shell, a human machine interface allowing the user to

perform various operations on the machine, must be opened. Now, using cd ‘pathToBachelorNB’

the current working directory of the computer is changed to the newly created one.

Figure 21: Display of activated virtual environment

A new virtual environment, here using the name “envTeleTaxi” is created with python3 -m venv

envTeleTaxi. Then, key files required for the program are cloned to the directory from GitHub

using git clone https://github.com/joshba06/projectTeleoperatedTaxibot.git. The virtual

environment is then activated with source envTeleTaxi/bin/activate, see Figure 21. Next, a jupyter

notebook kernel has to be installed, which allows python code (segments) to be executed and

analysed step by step in an appealing graphic environment in the web browser [38], which will be

used for the model training as well as the stereo algorithm analysis. This is done using the shell

command pip install ipykernel and, in a separate call, python3 -m ipykernel install --user --

name=teleTaxi.

 34

Now, the wget package must be installed manually. It allows content to be downloaded from the

web, using URLs. On macOS, the homebrew package installer must be installed first from [39]

which describes how this is done. Then, using brew install wget installs said package in the active

virtual environment.

Back in the shell, cd projectTeleoperatedTaxibot is used to navigate into the previously cloned

folder. The file userSettings.py is opened with any text editor. In this file, which is the basis for the

installation of the following packages, the variables homePath and pathLocalInterpreter must be

modified appropriately. Essentially, the file path to the left of /BachelorNB/ must be changed to

the path that leads to said folder. By activating python in the shell, in which the desired

environment is activated, this path can be printed using commands import sys followed by

sys.executable.

Figure 22: Command to perform initial installation in an activated virtual environment

Now, entering python3 main.py --initialInstallation True, the main script is executed in the “first

installation” mode. This script creates the folder structure pictured in Figure 59 in the appendix.

Then, the routine installs all required packages, which are summarised in Table 4 and which

functions were, in part, covered by previous papers [40]. The procedure for the installation of

packages required for object detection is based on the tutorial available in [41] and [42].

The sequence in which the installation of some packages takes place has an important role. First,

the package GitPython is installed, which allows cloning of repositories from GitHub from within

a python file. More advanced packages that are installed afterwards include Tensorflow 2, which

is a Google-built platform for machine learning, through which’s APIs machine learning tools can

be accessed [43]. Tensorflow’s Model Garden, maintained by Google, is an optimised directory

and file architecture for state-of-the-art machine vision and can be cloned from [44]. Afterwards,

supporting packages “Common Object in Context API” (COCO) and Google’s protocol buffers

(also called protoc or protobuf) are downloaded and installed from [45] and [46]. Then, the

Tensorflow object detection API, which is a framework built by Google for Tensorflow to provide

means for easy training and deployment of models, is installed from the “setup.py” file in the

downloaded model garden.

 37

All will run the complete preparation and transfer learning procedure, without the user having to

intervene in any way, as along appropriate background and object images are provided in

0 UserInput/backgrounds and 0 UserInput/objects/’classname’. A new class must also be

defined in the userSettings.py file. The following section will summarise what the routine does.

To begin with, a pre-trained single-shot-detector (SSD) model has to be downloaded. A list of

available models compatible with Tensorflow 2 can be found in [47]. For this project work, the

“SSD MobileNet V2 FPNLite 640x640” was selected, primarily due to its fast computation (39

[ms]) as well as it’s acceptable mean average precision (28,2 [%]). The pre-trained model is

downloaded into the directory 2 ObjectDetection/2 Tensorflow/workspace, which is the folder

where all files for the transfer learning are stored. The transfer learning for this model requires a

dataset of images featuring the object that the model shall be able to detect. Furthermore, XML

files defining the image’s names, the class(es) of the object in the image as well as the image

Figure 26: Selection of correct kernel in jupyter notebook

size and the bounding box size are required. A bounding box is a rectangle that is drawn onto an

image, marking the position of an object of interest. For the specific SSD model that is trained for

this paper, images of various backgrounds were created in the size of 640x640 pixels.

Images of aircraft were downloaded from the internet and the engines extracted from the photos

using photoshop. The objective of the model training in this paper is to identify an object to

determine its location. It shall be sufficient to identify the exact object image, which was used in

the model training. A real software prototype should be trained thoroughly using appropriate

backgrounds, similar to the scene seen at airports. Furthermore, the extraction of engines using

 39

did not detect the engines. Table 5 displays the scale limits used in the before-mentioned project

as well as the ones used for this paper.

In addition to the modification of objects and images, each object image is multiplied by factor of

250 to provide a large dataset and variety.

The XML- and image files resulting from the multiplication and modification steps are first stored

in the directory 2 ObjectDetection/1 Preprocessing. Then, the image and XML pairs are selected

randomly and partitioned into the directories testing and training, seen in Figure 27. Of all

available images, 85% are used for training and 15% for testing.

Figure 27: Path to model training environment

Next, the label map, which allows a model to identify the class of the detected object, given its

integer object ID, is created. Furthermore, the image data from the images used for testing and

for training as well as the information from the previously created XML files is converted into the

TFRecord format, which is required by Tensorflow and used to start the training. The conversion

is handled by a script available in [42].

The downloaded, pre-trained model includes a checkpoint folder as well as a pipeline.config file.

The former captures the current state of the model, by storing the weights of the neural network.

This checkpoint is used as a starting point to perform the fine-tuning of the model, i.e., adding

weights to perform object detection and classification. The pipeline is used to configure the new

training job. Parameters, such as the number of classes the model shall be trained on, the paths

 40

to checkpoint, TFRecord and the labelmap must be added to the pipeline. Furthermore, the batch

size, i.e., the number of training jobs performed in parallel, must be set. A batch size of 4 is

selected for this project is selected [41] since the computation is performed on a computer with

limited resources. In the last step, the routine that starts the training job, called model main tf2.py

is started, setting the number of training steps to 10.000.

4.2.3 Depth computation

The routine main.py guides the user through the system and camera setup process by using the

shell only. Ordinarily, once the installation is completed, the program shall be started with the

shell command “python3 main.py”. This will setup the previously mentioned directory structure

and display a menu in the shell, which we will go through on the following pages.

Figure 28: Main camera setup menu

Before starting further computations, one should select option “0”, which will open the livestream

of both cameras in which it should be checked whether the window “Camera R” and “Camera L”

actually display the correct cameras. If they do not, the simplest solution is to re-connect the

cameras to the opposite USB port, respectively.

 41

4.2.3.1 Single camera calibration

First, the left camera shall be set up by typing “1” in the main menu. This will open the left camera

menu providing three set up options displayed in Figure 29. This section will describe the process

for the left camera but the same steps apply for the setup of the right camera too.

Figure 29: Single camera setup menu

When using a new camera, one must compute the camera intrinsic and distortion coefficients

first. Before explaining the functions that compute these parameters, one should first discuss how

a successful calibration can be identified.

Reprojection error

It was described at the beginning of this paper that a homography matrix maps a point in world

coordinates to a point in image coordinates and that, if this procedure is completed multiple times,

the homography matrices provide a system of equations that can be solved for the camera

intrinsics as well as the translation and rotation values.

Looking at the procedure in reverse, using the computed camera intrinsics, extrinsics and

distortion coefficients, a homography matrix can be computed for a given view of a chessboard.

The homography matrix computed in this manner may well differ from the matrix computed in the

original procedure because the camera intrinsics are refined with every additional chessboard

image for which the homography is computed. Using the homography matrix from the inverse

procedure, and using the set of known object points, the projected image coordinates can be

computed. These coordinates may vary from the actual images coordinates that were previously

recorded when taken the image of the chessboard. The offset in x- and y- coordinates is the

reprojection error. It provides an insight of how accurate the computation of camera intrinsics and

distortion coefficients is. The goal for a calibration is, thus, to minimize the reprojection error.

 42

For the comparison with Matlab’s Camera Calibrator the following terminology shall be used:

While for a single point the reprojection offset is given in x- and- coordinates, the root mean square

(RMS) of the two will be called reprojection error. The mean of all reprojection errors for one

chessboard view is called mean reprojection error. Furthermore, the overall mean reprojection

error is the mean value of all mean reprojection errors for all images.

Generating images

Back to the left camera menu, the first step is to take multiple images of a chessboard. Therefore,

option “1” is selected, which runs a routine that opens a livestream of the selected camera. Now,

a chessboard must be placed in front of the camera. For this paper, a chessboard with n=9 rows

and m=6 columns (“9x6”) is used. Multiple photos of the chessboard are taken. The aim is to have

photos of the chessboard from different perspectives, with different orientations and with varying

distances to the chessboard. The board must be in focus, all squares must be visible on screen

and there should be a thick white border outside of the chessboard area, which must be visible

on screen as well [48]. Furthermore, areas of high brightness due to high light reflection, such as

from a lamp or from the sun shall be avoided. The literature that is quoted by the OpenCV

documentation [15] recommends using at least 10 images with a large difference in pose and

position of the chessboard. Posts by official staff of OpenCV’s online forum add, based on

experience, that the chessboard shall not be photographed when parallel to the camera [49] and

that the total mean reprojection error shall be below 0,5 pixels to ensure an accurate depth

computation. Figure 30 and Figure 31 display the orientation, pose of and distance to the

chessboard in the images generated for this paper.

Figure 30: Display of captures images from the back

Figure 31: Display of captures images from the side

The routine takes a photo of a chessboard and uses OpenCV’s findChessboardCorners() to find

all chessboard corners. If all corners are found, the locations of all corners are refined, and

 43

coloured points are drawn onto the frame where the position of chessboard corners was

computed. The image is then saved into the “individual calibration” folder of the respective

camera, where it will be analysed in the next step (Figure 32).

Figure 32: Storage location for single cam calibration images

Finding best combination

The second option “2” in the left camera menu is a routine that finds the best combination of

images of the ones that were taken in the last step. The routine starts by reading all images and

storing the chessboard’s corner locations as two-dimensional image coordinates (in pixels) in a

matrix called “imagePoints”. The 3D world coordinates are stored in a matrix called

“objectPoints”, with the third coordinate set to Z = 0	 (because one coordinate was chosen to be

zero, see page 11). This matrix has an important role in the overall depth computation.

r#ìRUVîr:CVD =

⎣
⎢
⎢
⎢
⎡

(Q*	_*	0),
(Q+	_*	0),
(Q,	_*	0),

…
(QS@*	_;@*	0)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
(0	0	0),
(1	0	0),
(2	0	0),
…

(8	5	0)⎦
⎥
⎥
⎥
⎤

In the above example, the object points are stored in normalized coordinates, i.e., a chessboard

square has a length of 1 unit. While using this approach does not influence the resulting camera

intrinsics and distortion coefficients, it does influence the translation vector that is the result of the

stereo calibration procedure and defines the units in which the distance computation will later be

returned. The matrix “objectPoints” is, therefore, multiplied by the manually measured length of a

square, which is 2,2cm for this paper but must be changed by the user when starting a new

calibration procedure accordingly. Note that units are not stored in the matrix itself and one must

remember which units were defined for the lengths in this matrix.

 44

r#ìRUVîr:CVD = r#ìRUVîr:CVD ∗ D`aA@Rú:ùR = 	

⎣
⎢
⎢
⎢
⎡

(0	0	0),
(2,2	0	0),
(4,4	0	0),

…
(17,6	11,0	0)⎦

⎥
⎥
⎥
⎤

OpenCV’s routine calibrateCamera() is then used to calibrate the camera using the object points,

image points and some further parameters as input. Particularly important parameters to consider

are the input-distortion matrix as well as the calibration criteria. The distortion matrix (n=5, m=1)

has to be pre-defined, because if it is not OpenCV computes a (n=1, m=5) matrix by default, which

causes issues in later functions. The calibration criteria specify the accuracy of the computes

results, the camera intrinsics matrix and the distortion coefficients. The term

“CV TERMCRIT EPS” defines to which decimal value (1/10, 1/100, 1/1000) the computed

values, e.g., intrinsics and distortion coefficients, shall be calculated before the results are

accepted and the algorithm stops. Criterion “CV CRITERIA MAX ITER”, on the other hand,

specifies after which iteration the algorithm should stop refining the results, if the target accuracy

is not reached [15]. Following multiple test runs, the settings äR@O_ü@:VR@:A_áîú	 = 1 ∗ 10@T and

äR@O_ü@:VR@:A_gAQ_†VR@	 = 100 produced the most accurate calibration results.

The routine computes the homography for every chessboard view and solves for the camera

matrix. In a second iteration, the distortion coefficients are calculated (without derivation [15])

using the now known intrinsics parameters as a starting point to narrow down the actual position

of a point in the undistorted frame. Because the intrinsics are calculated for images that assume

a non-existing distortion, both matrices, distortion coefficients and intrinsics, are passed into

getOptimalNewCameraMatrix(), which returns the distortion-considering-intrinsics as the new

camera matrix.

Calibrating a camera using all images that were generated in the previous step can lead to large

overall mean reprojection error that can be caused by single images, which, for one of the reasons

listed before, have a large mean reprojection error and thus increase the overall mean. To

optimise the image combination for the lowest overall mean reprojection error, the following

approach is used:

First, the 5 images resulting in the lowest overall mean reprojection error are selected. Since the

camera calibration function may fail for fewer images, this is achieved by choosing a base of 5

consecutive images and adding 5 images, one by one, while computing a new overall mean

 45

reprojection error. This means that a complete camera calibration is performed for every image

combination to find the overall mean reprojection error. In theory, if an image is added that only

increases the overall mean reprojection error insignificantly, this image should have a low mean

reprojection error. After 5 images are checked, these last 5 images are used as the new base and

one by one, all images that are left are added and the overall mean reprojection error for the new

image combination is computed. If an image increases the overall mean reprojection error beyond

a certain threshold, it is removed, and a different image is tested instead. The results are

displayed in Figure 33.

Figure 33: Comparison of the reprojection error for various sizes of image combinations

From Figure 33 one can derive that compared to a combination of 5 images that were shown to

have the lowest mean reprojection errors, increasing the number of images yields better results,

i.e., lower total mean reprojection errors. However, this is only true for up to circa 25 images. The

global minimum is achieved for 6 images with an overall mean reprojection error of 0,046 pixels.

The right end of the graph shows a steep increase in the overall mean reprojection error. This

might be caused by the images that were used for the computation of the error. These are the

ones that produced large errors when they were checked for smaller image groups and were thus

removed from those groups.

The specific combination of images that lead to the lowest overall mean reprojection error in

OpenCV is analysed using Matlab’s Camera Calibrator. Compared to OpenCV, Matlab produces

an overall mean reprojection error of 0,12 pixels, which is nearly 2,5 times larger (worse) than

OpenCV’s result.

 46

Figure 34: Comparison of reprojection errors in Matlab and OpenCV

Figure 34 displays the mean reprojection error for each image in the best image combination.

Matlab’s mean reprojection errors are only slightly larger than OpenCV’s values. However, for

image 54_R there is a significant difference in the errors.

Throughout the many (failed) calibration attempts that were made during the project work on this

paper, another significant factor became clear, which is displayed in Figure 33. Compared to the

overall mean reprojection errors that result from using the chessboard display on an iPad, the

printed version of a chessboard yields larger errors and thus implies a less accurate calibration.

The best image combination of 6 images results in an overall reprojection error of 0,204 pixels. It

is the case even though very similar lighting conditions were used while generating both image

series as well as using similar orientations, poses and distances to the camera. Possible

explanations are the resolution of both mediums, i.e., the printing resolution displaced chessboard

corners compared to the higher resolution on the iPad. Furthermore, while chessboard corners

on the iPad are precisely equidistant, attaching the printed version of the chessboard to a book

and placing it in various angles on object on the floor might introduce a slight bend, causing the

distances between the corners to be not as precisely equidistant as the iPad’s ones. As a result,

it is derived that the quality of calibration therefore relies on displaying the chessboard in a high

quality. Hence, the iPad will be used for calibration throughout this paper.

The names of the images of the best image combination are stored in the calibration folder.

 47

Calibration

In the last step, the image combination stored in the previous step is loaded and, using OpenCV’s

calibrateCamera() the camera intrinsics and distortion coefficients are computed (once again).

This is made to be a separate function to provide a quick insight into the best calibration results

(errors, image numbers, intrinsics and distortion coefficients), as the “Combination testing”

function takes a lot of time, circa 15 minutes on a dual core CPU, to compute the results.

Validation

Starting the program by calling “python3 main.py --debugging True” and selection option 4 in the

main menu, computes a validation for each step in the camera setup. For the single camera

calibration such a plausibility check is shown in Figure 35 and Figure 36, which display the

distorted and undistorted image of a chessboard. The function used to undistort the images,

OpenCV’s undistort(), uses the cameraMatrix, newCameraMatrix and the distortionCoefficients

as inputs and thus these three results can be checked for plausibility by looking at the images.

Noticeable are for an undistorted image are the black corners, where pixels were remapped to

remove the distortion effect.

Figure 35: Original image frame

Figure 36: Undistorted image frame

 48

4.2.3.2 Stereo calibration

After the single camera calibration has been completed, the next step is the stereo calibration

procedure, which is very similar to the calibration of the individual cameras and has the same

user options as the single camera calibration.

Figure 37: Display of options for the stereo camera setup

Generating images

First, photos of the chessboard in different locations and poses must be taken using the stereo

setup, in a manner that the full chessboard is visible in both frames at once. Images for which the

chessboard pattern is identified are stored in the “stereo calibration” folder.

Figure 38: Directory of generated stereo images

While it is possible, in theory, to compute the camera intrinsics using the images generated during

the stereo calibration process, it is not recommended. Especially the distortion coefficients, which

are parameters that are returned by the single camera calibration, are more significant at the

edges of the cameras’ frames than in their centre. When taking photos using two cameras, it is

geometrically not possible, as both cameras are horizontally offset, to generate images that have

a chessboard both, in the left camera’s left edge and in the right camera’s right edge. Hence, both

steps are completed separately.

 49

Finding best combination

After a sufficient number of images is generated, the next step is to, once again, find the

combination of images leading to the lowest reprojection error. This is accomplished using the

same function that was used in the single camera calibration. It is important to note the return

value of the program for the overall mean reprojection error:

Figure 39: Stereo overall mean reprojection error

These values must only be seen as a comparison metric relative to the results of other stereo

image combinations in terms of which images have the best quality for stereo calibration. The

results are not the actual overall mean reprojection errors for the stereo calibration procedure, as

they do not include the previously computed intrinsics and distortion coefficients.

Calibration

After the image combination with the lowest overall reprojection error has been computed, the

stereo setup is calibrated using OpenCV’s stereoCalibrate(). The relevant outputs for this paper,

described in chapter 2.3 , are the translation matrix (ä) and the rotation matrix (q).

Validation

One can use the first value of matrix ä, which is the baseline #, to get a very rough indication

whether the stereo calibration procedure was successful. For the stereo setup used in this paper,

the translation is ä = [−9,62, −0,11, −0,19]1 	:C	UO.

It is important to keep in mind that these matrices are used to transform a point in the right

camera’s coordinate system into the one of the left camera. Hence, the values in matrix ä are

negative, because, for the horizontal element, the left camera is located further towards the

 50

coordinate system’s origin than the right camera, according to the coordinate system definition

on page 5.

Figure 40: Horizontal offset for stereo setup

Matlab’s Camera Calibrator provides a visual display of the result, which shows the location of

both cameras relative to the image pair (which is displayed as a single image) of the chessboard.

Doing so the offset between both cameras becomes evident, displaying a horizontal displacement

of circa 100mm in Figure 40, which offers a rough plausibility check for the success of the

calibration.

While the intrinsics and distortion coefficients do not change for a camera, the rotation and

translation matrices for a stereo setup may change for instance if the object they are mounted to

changes its shape. One reason for this could be that the object is made from a metal, which

elongates and shortens depending on the environment’s temperature or fatigue in a material that

bends the object over time. Moreover, if two single cameras are used to enable a stereo-setup

and if these cameras are rotated individually by an electric mechanism to provide a different field

of view, these matrices change as well depending on the accuracy of the movement mechanism.

For reference, such camera rotation might be of interest for a camera pair at the front of the

Taxibot, which performs frontal depth detection during the movement of the airplane but is then

rotated towards the aircraft’s front landing gear to provide the operator with a better view on the

uplifting system during coupling and decoupling.

 51

4.2.3.3 Rectification

The rectification function, cv.stereoRectify(), uses both cameras’ intrinsics and distortion

coefficients as well as the rotation and translation matrices q and ä between the two cameras to

compute two rotation matrices qQ and qP, two projection matrices îQ and îP 	as well as the

reprojection matrix W. While the rectified camera matrices are the first three columns in the

projection matrices, the re-projection matrix can be used to reproject all points in a disparity map

into a point cloud, consisting of three dimensional coordinates in the left cameras’ coordinate

system.

 One important parameter, which must be activated in the rectification function is

“cv.CALIB ZERO DISPARITY”. What it does is that it generates these transformation matrices

in a manner that both principal points (U4,9 , 	U4,K) have the same values, which is the fundamental

assumption that was made to derive the depth equation on page 16.

OpenCV’s initUndistortRectifyMap() uses the results from stereoRectify() to compute two

rectification maps per camera. These maps, one for the horizontal and one for the vertical

direction, transform all points in a newly captured image pair to be coplanar and row aligned.

Validation

After the rectification procedure has been completed, the success of the stereo calibration and

rectification steps should be verified. This is done by using a chessboard, not an existing image

of a chessboard that was taken previously, since the rectification is based on this image, but by

holding a chessboard, once again, in a manner that both cameras’ live streams display the

pattern. Once the chessboard pattern is found and drawn onto the two frames, the user shall

press the SPACE key. This starts a routine, which displays the un-rectified (therefore original)

versions of both frames, as well as the rectified image pair. In addition, the algorithm connects a

chessboard corners in the image pair using an orange line and displays the horizontal pixel

coordinates for both images.

Given that the epipolar lines in both rectified images are horizontal and row-aligned, a line that

goes through a chessboard corner in the left image, must do the same for the corner in the right

image. Horizontal lines are thus also drawn on both images. The full results are displayed in

Figure 60 and Figure 61 in the appendix, while Figure 41 and Figure 42 display a detail view of a

 52

region in the right frames. In the Figure 41, the blue horizontal lines, which have the vertical

coordinate of the corners in the left image pair, do not go through the corresponding corner in the

right image. The yellow line connecting both corresponding corners are clearly offset from the

blue horizontal lines. Such a display is common for either an un-rectified frame or a badly rectified

frame and can be used to properly validate the results that were computed so far.

Figure 41: Detail view of un-rectified frame

Figure 42: Detailed view of rectified frame

In Figure 42, on the other hand, the blue horizontal lines go through the corresponding corners

in the right image. Furthermore, the yellow line is now almost colinear with the blue line, proving

that the image is correctly rectified.

 53

4.2.3.4 Correspondence

Finding a feature from the left image in the right image is called correspondence problem. In

general, the search for corresponding points requires a lot of computational resources and time.

While their search has been greatly reduced by rectifying the images pair, some further important

parameters, allowing the computational time to be reduced, shall be explained.

Horopter

Generally speaking, correspondence algorithms extract the information of a single pixel or a

region of pixels from the left image, which is called window or block, to find the corresponding

pixel or window in the right image. For a given coordinate (a9 , b9) in the left image, the search for

a match in the right image usually begins at the same coordinate (a9 , b9). An object at infinity, or

at a large distance, would have a disparity close to zero and, thus, the same image coordinates

in both frames. The parameter minimum disparity, which is zero by default, can be set to larger

values, if the detection range for objects can be limited i.e., only objects closer to the camera are

of interest. The parameter number of disparities, which specifies the range in pixels measured

from the coordinate (a9) in the right frame, can be used to limit the search area. While the depth

to far objects can still be computed, setting the number of disparities to a low value will limit the

range at which minimum depth can be detected. These geometric dependencies are shown in

Figure 43, which displays the 3D-volume, a horopter, in which depth can be detected.

Figure 43: Detectable depth range - "horopter" [50]

Alternatively, the maximum disparity can be set to limit the search range for a feature with the

number of disparities being the difference between the maximum and minimum disparity.

 54

Correspondence algorithms and their applications have been studied in many papers such as

[51] and [52]. This chapter will outline the key differences between OpenCV’s StereoBM and

StereoSGBM algorithms and study their implementation for the previously described geometry.

The goal of this chapter is to compute a disparity map, storing the disparity information of all points

in the image pair.

StereoBM

OpenCV’s Block Matching (BM) algorithm extracts the intensity value for the pixels in a window

from the left image and determines the same properties for a window of the same size in the right

image. The resulting sum of absolute differences (SAD), indicating the similarity between the

feature in the left and right window, is calculated for all disparity levels, defined by the parameter

numDisparities. The best match is determined using the “winner takes all” principle, with the

overall lowest computed value selected as the correct match. This algorithm works best on

feature-rich images because correct matches rely on varying pixel and colour intensities to

differentiate between, while low-textured regions can produce inaccurate results. Furthermore,

OpenCV’s StereoBM cannot be used to find matches for individual pixels.

The routine takes two inputs, numDisparities and block size. The latter defines the window, that

is extracted from the left image and searched for in the right image. Choosing a small block size

provides a greater amount of detail, displaying clearer edges and shapes (see Figure 44). It also

leads to more noise, because a smaller window contains fewer unique features and thus the

matching function might assume incorrect windows to be the correct match. To paint an example,

a small window with dark pixels could belong to a car tire but be matched to a pair of sunglasses.

Larger block sizes produce fewer details in smoother disparity maps in which the boundaries

between foreground and background may not be displayed correctly. It is important to set the

minimum disparity using stereo.setMinDisparity() after initialising the algorithm, which does not

allow the parameter to be entered into the first initialisation call.

 55

Figure 44: Example of disparity maps using different block sizes

Disparity maps, like the one in Figure 44, are typically encoded using intensities, where points or

objects close to the camera are brighter than objects at greater distances, which are darker [50].

They are, furthermore, usually written in signed values.

StereoSGBM

The Semi Global Block Matching (SGBM) algorithm can be used with single pixels or windows.

For every pixel or centre pixel in a window, it determines the “centre symmetric census transform”

(CSCT), a 31-bit value that includes colour and intensities of surrounding pixels even if only

searching for a single pixel match. The matching cost is calculated by comparing the CSCT for

the original feature and the current window in the right image. Furthermore, smoothness of

disparity changes for neighbouring pixels is considered in the overall matching cost, which aims

to minimize sudden, falsely detected depth changes. Due to the complexity of this

correspondence search, StereoSGBM requires more computation time to generate a disparity

map, compared to the StereoBM algorithm. The results are said to be more accurate, however,

which will be tested in the last chapter.

Both, StereoBM and StereoSGBM allow for more parameters to be input. These can be used to

specify uniqueness thresholds that matches must differentiate themselves from the second-best

potential match to be chosen as the winner, or parameters adding additional smoothness

constraints. During this project work, however, only the parameters blockSize, minDisparity and

maxDisparity (or numDisparities) shall be used to compare the most basic matching capabilities

of both algorithms.

 56

WLS-Filter

Since computational speed, as well as accuracy are both required for safety critical real-time

applications, such as a Taxibot pushing an aircraft filled with passengers, an alternative to the

two previously mentioned algorithms should be analysed. With StereoBM computing results

quickly, but with lower accuracy, and StereoSGBM providing the opposite, a middle ground can

be of interest. Such is provided by the “Weighted Least Squares”-Filter [53]. In a disparity map

based on the left image, each element would contain one pixel value, e.g., 8:DP9 = a9 − aK = 8	,

implying the displacement of the corresponding point in the right image is at the horizontal

coordinate aK = a9 − 8[P:QRSD].	Computing another disparity map based on the right image would

in this case lead to the element having a value of 8:DPK = aK − a9 = −8, with the horizontal

coordinates of the point in the left image being at a9 = aK + 8[P:QRSD] [54]. The WLS Filter

computes two disparity maps, a left disparity map and a right disparity map, and filters inconsistent

disparity values. The computed results shall be analysed for the use with StereoBM and

compared to the accuracy of standalone StereoBM and standalone StereoSGBM.

Depth

Once the disparity map is computed, the next step is the depth computation, for which there are

multiple approaches. The first approach, using equation (24), is to find a point of interest and its

image coordinates in the left rectified image using object detection. This is achieved by modifying

the visualisation functions of the object detection algorithm to detect and return the image

coordinates as well as the class name of the two bounding boxes with the highest confidence

ratings, which can then be processed in the script main.py. Then, the depth to this single point is

determined using the known rectified camera matrix and the baseline.

A second approach, using OpenCV’s reprojection matrix Q, reprojects all points in the image into

a 3D point cloud, providing depth information about all points in the image. While it is the

assumption that the first approach takes less time to compute, since only the information for a

single point is computed, knowing the depth information for all points in the image is

advantageous. For the first approach, an object detection algorithm must detect any object for

which depth shall be known. To determine the pose and position of an aircraft, using its engines,

it is sufficient. The second approach, however, makes the depth detection more robust allowing

 57

for unknown obstacles to be detected within the search range. Both approaches are tested in the

next chapter.

Taxibot

The above-mentioned methods for reducing the computational time of the correspondence search

shall be applied to the prototype stereo setup used in this paper. A minimum detectable depth of

ù;7S = 35UO and a maximum depth of ù;U4 = 70UO shall be possible. Using equation (24), the

baseline (# = −V4) and the rectified focal length (c4,K83R) the minimum disparity (8;U4) is

calculated as:

8;U4 =
1323,3P:QRSD ∗ 9,62UO

70UO
= 181,86	P:QRSD	

Both, the value for minimum disparity and maximum disparity must be dividable by 16 for the

algorithm to work. Thus, the result is rounded up to the next number dividable by 16 8;U4 =

192	P:QRSD. The minimum disparity is calculated analogously to be 8;7S = 368	P:QRSD.

 58

5 Testing

Static tests

Static tests were completed for an image pair displaying two aircraft engines for distances of 35

to 70cm in 5cm increments. For each image pair, computation time, disparity and depth were

determined using StereoBM, StereoSGBM and StereoBM with WLS filter. In addition, object

detection was applied to both images to determine the disparity of the identified engine

coordinates. All of these values were compared to the ground truth, which was measured using

a measuring tape by hand, thus introducing slight inaccuracies. Figure 45 displays the original

frames of one such measurement. Two printed images of two different engines were attached to

a solid object to provide an insight into possible differences in detection and depth estimation

between these engines.

Figure 45: Sample of the original image pair used for static tests

Beginning with the localisation of the engine centre(s), Figure 46 and Figure 47 show two rectified

images, for which the engine centres have been identified and the engines classified as such, by

the object detection model.

 59

Figure 46: Sample of the left camera frame, including detection

Figure 47: Sample of the right camera frame, including detection

What became apparent during this test series, is that a static definition of correspondence

algorithm parameters does not produce accurate results in practice. Figure 48 and Figure 49

display the disparity map computed by OpenCV’s block matching algorithm. The image on the

left was computed using a block size of 5 pixels. The depth was estimated to be 55cm, whereas

the actual distance was 35cm. Because the disparity and depth are only determined for a single

point (the size of 1 pixel), which is returned by the object detection function, in the case of Figure

48 the computation error could be traced back to the point of interest being in a noisy area, where

correspondences could not be identified by the algorithm. While, in theory, increasing the block

size should reduce noise, quadrupling the block size to 21, displayed in Figure 49 did little to

improve the result. The computed distance did not change.

Figure 48: StereoBM, blockSize = 5px, groundTruth=35cm,

meanDistance=55cm

Figure 49: StereoBM, blockSize=21px, groundTruth=35cm,

meanDistance =55cm

In other cases, pictured in Figure 50 and Figure 51, a block size of 5 pixels computed a mean

depth, i.e., the mean computed depth for both engines, of 54,52 cm in the left image and 50,90

cm in the right image. However, comparing the two engines in the same image, the specific

parameters in Figure 50 compute a depth of 61,49cm for the left engine and 47,54cm for the right

engine. The ground truth depth in this example being 45cm, this results in an error of circa 5%,

 60

which is considerably lower than for the left engine where it is more than 20%. A possible

explanation for this particular computation is that the right engine (see Figure 47) has a yellow

feature on the fan, compared to the plain white surface of the left fan. Such a feature might

increase the accuracy of correspondence calculations. Another interesting, but unexpected

phenomenon is that for the right-hand engines in Figure 50 and Figure 51, depths of 47,53cm and

47,54cm were computed, although stemming from two different stereo algorithms, StereoBM and

StereoSGBM, the latter of which requires considerably more computational time for the

calculation.

Figure 50: StereoBM, blockSize=5px, groundTruth=45cm,

meanDistance=54,52cm

Figure 51: StereoSGBM disparity map, blockSize=5px,

groundTruth=45cm, meanDistance=50,90cm

The statistic displayed using the diagram in Figure 52 visualises as the overall result that the

StereoSGBM algorithm in combination with the WLS filter produced the most accurate outputs in

tests, albeit at a considerably higher computational time than any other algorithm (see Figure 53).

Relative to the ground truth, which for the entire test series was between 35cm and 70cm, the

resulting deviation, on average, is up to 10%.

Figure 52: Accuracy comparison for stereo algorithms

Figure 53: Computation time comparison for stereo algorithms

Due to the time limitation set for this paper, dynamic tests could not be completed.

 61

6 Conclusion and outlook

This paper studied the implementation of a machine learning based vision aid for the

implementation on a teleoperated Taxibot concept. The focus was placed on the software

prototype, which had the aim of assisting the operator navigating the vehicle from a remote

location, by detecting two engines of an Airbus a320, in order to determine the position and pose

of the engines, and thus the aircraft, relative to the coupled Taxibot.

A considerable amount of time was invested in developing a framework, based on python and the

open-source computer vision package, which navigates a future user through the steps of image

generation, single camera calibration, stereo calibration, rectification, correspondence search as

well as triangulation. Furthermore, existing object-detection model training modules were adapted

to optimise a new transfer learning process as well as to detect and evaluate the distance to two

aircraft engines in a livestream, using a simple stereo system.

The result of the project work is a fully and correctly configured stereo vision setup, which detects

the depth to objects in a range between 35cm and 70cm with an average error below 10%.

The design concept that was followed was to provide a remote operator with a rectified camera

view on the aircraft, mark obstacles (and engines) in a specific range and provide a bird-eye

perspective view displaying the Taxibot as well as the surrounding geometry including obstacles

 62

and distances to objects. Such views are provided in many passenger vehicles nowadays. The

next aim was to utilise related research concerning lane assist software and adapt it to detect

aerodrome paths, which combined with the location and pose of the aircraft (engines) could be

used to provide a visual display to the operator about the predicted and ideal angles of movement

the aircraft would perform, depending on the magnitude of change that would be applied to the

steering wheel of the Taxibot. Such technology already exists in passenger vehicles, displaying

the optimal path to drivers to park the car in a specific position.

Before this next step can be approached, however, an in-depth study and automation of the

parameters used for correspondence search must be performed. The static tests in this paper

showed that engines prove to be difficult objects to find corresponding matches for, given their

repetitive texture. Furthermore, illumination issues, such as shade coming into the engine

depending on the time of day proved to be a difficult problem to solve. Given the considerable

costs that were estimated a camera setup to be in case of the Taxibot, the usage of a 500 USD

Velodyne Lidar system might be the better choice to detect engines. Computer vision could have

a supportive role, such as performing perspective transformation to allow a bird-eye view or

classify objects or even text recognition to determine the location of the Taxibot at the airport by

reading airport signs, which’s location on an online or offline airport map could then be found.

Especially the visibility issues in darkness, which is a regular operating mode in many countries

in winter months or at airports that allow late or early flights, could prevent a successful usage of

computer vision.

Given that the created framework configures a new stereo system from scratch easily and quickly,

further research on these topics has just become a lot easier.

 63

7 Sources

[1] Elektroniknet Logo, “Schlüsseltechnik fürs automatisierte Fahren,” [Online]. Available:

https://www.elektroniknet.de/automotive/schluesseltechnik-fuers-automatisierte-

fahren.154797.html. [Accessed 17 09 2022].

[2] IEEE Spectrum, “Tesla Places Big Bet on Vision-Only Self-Driving,” [Online]. Available:

https://spectrum.ieee.org/tesla-places-big-bet-vision-only-self-driving. [Accessed 17 09

2022].

[3] SG Trains, “Changi Airport Skytrain,” [Online]. Available: https://www.sgtrains.com/network-

cga.html. [Accessed 17 09 2022].

[4] navya, “Self-driving baggage tractor,” [Online]. Available:

https://navya.tech/en/usecases/autonomous-baggage-tractor/. [Accessed 17 09 2022].

[5] Hochschule für Angewandte Wissenschaften Hamburg, “Automotive Development in 1:x,”

[Online]. Available: https://www.haw-hamburg.de/forschung/forschungsprojekte-

detail/project/project/show/audex/. [Accessed 17 09 2022].

[6] P. P. Otaegui, Analizing Teleoperated and Automated Airport Handling Services to

Implement an Adapted Concept for an Efficient Ground Movement in AUDEx, Hamburg:

HAW Hamburg, 2022.

[7] OLYMPUS Live Science Solutions, “Introduction to the Reflection of Light,” [Online].

Available: https://www.olympus-lifescience.com/en/microscope-

resource/primer/lightandcolor/reflectionintro/#:~:text=reflection%20of%20light.-

,What%20is%20Reflection%20of%20Light%3F,waves%20away%20from%20the%20surfac

e.. [Accessed 03 08 2022].

[8] Maggie's Science Connection, “Relfection, Absorption, Transmission,” [Online]. Available:

https://maggiesscienceconnection.weebly.com/reflection-absorption--

 64

transmission.html#:~:text=When%20light%20hits%20an%20object,absorb%20and%2For%

20transmit%20light.. [Accessed 17 09 2022].

[9] Framos, “DEPTH SENSING TECHNOLOGIES OVERVIEW,” [Online]. Available:

https://www.framos.com/en/products-solutions/3d-depth-sensing/depth-sensing-

technologies. [Accessed 17 09 2022].

[1

0]

D. Oxtoby, S. Fallah, M. Dianati, O. Y. Al-Jarrah, E. Arnold and A. Mouzakitis, “A Survey on

3D Object Detection Methods for Autonomous Driving Applications,” IEEE

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, vol. 20, no. 10, pp.

3782-3795, 2019.

[1

1]

L. You and I.-G. Javier, “Lidar for Autonomous Driving,” IEEE SIGNAL PROCESSING

MAGAZINE , pp. 50-60, 2020.

[1

2]

Forbes, “Velodyne’s $500 Velarray Solid-State Lidar Goes Into Production In 2021,”

[Online]. Available: https://www.forbes.com/sites/samabuelsamid/2020/11/13/velodyne-

announces-500-velarray-h800-lidar-production-in-2021/?sh=6e6291f6e8f3. [Accessed 03

08 2022].

[1

3]

Velodyne Lidar, “Velabit,” [Online]. Available: https://velodynelidar.com/products/velabit/.

[Accessed 03 08 2022].

[1

4]

Lucid vision labs, “Understanding vision technology,” [Online]. Available:

http://thinklucid.cn/tech-briefs/understanding-image-sensors/. [Accessed 21 08 2022].

[1

5]

B. Gary and K. Adrian, Learning OpenCV, Sebastopol: O’Reilly Media, 2008.

[1

6]

R. Owens, “Camera calibration,” [Online]. Available:

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT9/node2.html.

[Accessed 18 09 2022].

[1

7]

photographylife, “What is Lens Distortion?,” [Online]. Available:

https://photographylife.com/what-is-distortion. [Accessed 18 09 2022].

 65

[1

8]

E. Trucco, Introductory Techniques for 3-D Computer Vision, New Jersey: Prentice-Hall

Inc., 1998.

[1

9]

Teledyne, “Field of View and Angular Field of View,” [Online]. Available:

https://www.princetoninstruments.com/learn/camera-fundamentals/field-of-view-and-

angular-field-of-view. [Accessed 18 09 2022].

[2

0]

photographylife, “What is aperture in photography,” [Online]. Available:

https://photographylife.com/what-is-aperture-in-photography. [Accessed 18 09 2022].

[2

1]

First Principles of Computer Vision , “Youtube - Depth of Field | Image Formation,” [Online].

Available:

https://www.youtube.com/watch?v=v5OE90eVIXo&t=137s&ab_channel=FirstPrinciplesofC

omputerVision. [Accessed 18 09 2022].

[2

2]

D. Chotrov, Z. Uzunova, Y. Yordanov and S. Maleshkov, “Mixed-Reality Spatial

Configuration with a ZED Mini Stereoscopic Camera.,” Unknown, 2018.

[2

3]

G. Gerig, “Image Rectification (Stereo),” [Online]. Available:

http://www.sci.utah.edu/~gerig/CS6320-S2013/Materials/CS6320-CV-F2012-

Rectification.pdf. [Accessed 18 09 2022].

[2

4]

University of Waterloo, “Direct Methods in Visual Odometry,” [Online]. Available:

http://wavelab.uwaterloo.ca/slam/2017-SLAM/Lecture14-

Direct_visual_inertial_odometry_and_SLAM/slides.pdf. [Accessed 18 09 2022].

[2

5]

R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2022.

[2

6]

MathWorks, “Machine Learning Onramp,” [Online]. Available:

https://de.mathworks.com/learn/tutorials/machine-learning-onramp.html. [Accessed 18 09

2022].

[2

7]

J. Kämpfer, C. Olbrich and M. Lapschin, “Projektarbeit im Rahmen der Veranstaltung

Aktive Systeme in der Fahrwerkstechnik - Implementierung einer

 66

Verkehrszeichenerkennung auf einem Raspberry Pi für ein 1:8 Fahrzeugmodell,”

Hochschule für Angewandte Wissenschaften Hamburg, Hamburg, 2021.

[2

8]

Taxibot, “IAI's TaxiBot® Granted Certification for Operation With the Airbus A320 Aircraft

Family,” [Online]. Available: https://www.taxibot-international.com/certification-airbus-a320.

[Accessed 18 09 2022].

[2

9]

Schiphol airport, “Sustainable taxiing and the Taxibot,” Schiphol airport, Sustainable taxiing

and the Taxibo, -.

[3

0]

AIRBUS S.A.S. Customer Services Technical Data Support and Services, A320/A320NEO

AIRCRAFT CHARACTERISTICS AIRPORT AND MAINTENANCE PLANNING, Blagnac

Cedex: AIRBUS S.A.S. Customer Services Technical Data Support and Services, 2014.

[3

1]

Adobe, “A guide to wide-angle lenses,” [Online]. Available:

https://www.adobe.com/creativecloud/photography/discover/wide-angle-

lens.html#:~:text=A%20wide%2Dangle%20lens%20has,angle%20lens%20in%20their%20

kit.. [Accessed 18 09 2022].

[3

2]

Basler, “a2A4096-30ucPRO - Basler ace 2,” [Online]. Available:

https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace2/a2a4096-

30ucpro/. [Accessed 18 09 2022].

[3

3]

Basler, “Kowa Lens LM6HC F1.8 f6mm 1" - Lens,” [Online]. Available:

https://www.baslerweb.com/en/products/lenses/fixed-focal-lenses/kowa-lens-lm6hc-f1-8-

f6mm-1/.

[3

4]

Basler, “Basler Lens C23-3520-5M-P f35mm - Lens,” [Online]. Available:

https://www.baslerweb.com/en/products/lenses/fixed-focal-lenses/basler-lens-c23-3520-

5m-p-f35mm/. [Accessed 18 09 2022].

[3

5]

Python.org, [Online]. Available: https://www.python.org/downloads/. [Accessed 25 08

2022].

 67

[3

6]

Pip Documentation, “Installation,” [Online]. Available:

https://pip.pypa.io/en/stable/installation/. [Accessed 25 08 2022].

[3

7]

Git, “1.5 Getting Started - Installing Git,” [Online]. Available: https://git-

scm.com/book/en/v2/Getting-Started-Installing-Git. [Accessed 18 09 2022].

[3

8]

Jupyter / IPython Notebook Quick Start Guide, “1. What is the Jupyter Notebook,” [Online].

Available: https://jupyter-notebook-beginner-

guide.readthedocs.io/en/latest/what_is_jupyter.html. [Accessed 08 25 2022].

[3

9]

Homebrew, “Install Homebrew,” [Online]. Available: https://brew.sh/. [Accessed 18 09

2022].

[4

0]

C. Olbrich, Konzeptentwicklung, Bewertung und Implementierung einer Umfelderkennung

im AUDEx-Projekt, Hamburg: HAW Hamburg, 2022.

[4

1]

Tensorflow 2 Object Detection API tutorial, “Installation,” [Online]. Available:

https://tensorflow-object-detection-api-

tutorial.readthedocs.io/en/latest/install.html#downloading-the-tensorflow-model-garden.

[Accessed 25 08 2022].

[4

2]

Nicknochnack, “Github.com - TFOD course,” [Online]. Available:

https://github.com/nicknochnack/TFODCourse. [Accessed 18 09 2022].

[4

3]

Tensorflow.org, [Online]. Available: https://www.tensorflow.org/. [Accessed 25 08 2022].

[4

4]

Github, “Tensorflow Model Garden,” [Online]. Available:

https://github.com/tensorflow/models. [Accessed 25 08 2022].

[4

5]

Github, “Coco API,” [Online]. Available: https://github.com/cocodataset/cocoapi. [Accessed

25 08 2022].

[4

6]

Github, “Protocol buffers,” [Online]. Available:

https://github.com/protocolbuffers/protobuf/releases. [Accessed 25 08 2022].

 68

[4

7]

Github, “TensorFlow 2 Detection Model Zoo,” [Online]. Available:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_dete

ction_zoo.md. [Accessed 18 09 2022].

[4

8]

Open Source Computer Vision, “Camera Calibration and 3D Reconstruction,” [Online].

Available:

https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga93efa9b0aa890de240ca32b112

53dd4a . [Accessed 18 09 2022].

[4

9]

C. Rackwitz, “OpenCV Forum,” [Online]. Available: https://forum.opencv.org/t/bad-disparity-

map-with-sgbm-algorithm/8209/5. [Accessed 18 09 2022].

[5

0]

Technische Universität München, “Stereo Vision I: Rectification and Disparity,” [Online].

Available:

https://campar.in.tum.de/twiki/pub/Chair/TeachingWs11Cv2/3D_CV2_WS_2011_Rectificati

on_Disparity.pdf. [Accessed 18 09 2022].

[5

1]

G. Föll, “Stereo Vision: Vergleich verschiedener Algorithmen zur Lösung des

Korrespondenzproblems,” Hochschule für Angewandte Wissenschaften Hamburg,

Hamburg, 2010.

[5

2]

M. Gschwindt, “Bachelorarbeit Integration eines Echtzeit-Algorithmus zur

Objektrekonstruktion aus Stereo- Bilddaten in eine Simulationsumgebung zur

Nahbereichsnavigation im Orbit,” Technische Universität München, München, 2016.

[5

3]

Open Source Computer Vision, “cv::ximgproc::DisparityWLSFilter Class Reference,”

[Online]. Available:

https://docs.opencv.org/3.4/d9/d51/classcv_1_1ximgproc_1_1DisparityWLSFilter.html.

[Accessed 18 09 2022].

[5

4]

BHawk, “Stackoverflow.com:How to interpret Disparity value,” [Online]. Available:

https://stackoverflow.com/questions/44184676/how-to-interpret-disparity-value. [Accessed

18 09 2022].

 69

[5

5]

Melles Griot, “Fundamental Optics,” CVI Melles Griot 2009 Technical Guide,, vol. 2, no. 1,

2009.

[5

6]

FRAMOS, “DEPTH SENSING TECHNOLOGIES OVERVIEW,” [Online]. Available:

https://www.framos.com/en/products-solutions/3d-depth-sensing/depth-sensing-

technologies. [Accessed 03 08 2022].

[5

7]

E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby and A. Mouzakitis, “A Survey on

3D Object Detection Methods for Autonomous Driving Applications,” in TRANSACTIONS

ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE , 2019.

[5

8]

J. Ibanez-Guzman and Y. Li, “Lidar for Autonomous Driving,” IEEE SIGNAL PROCESSING

MAGAZINE, no. July2020, 2020.

[5

9]

J. Chouinard, “How to use Wget: Install, Commands and Examples (Mac & Windows),”

[Online]. Available: https://www.jcchouinard.com/wget/#Download_Wget_on_Windows.

[Accessed 18 09 2022].

 70

8 Appendix

Derivation of depth of field

Using the notation of Figure 11, the blur circle for an object at a closer distance to the camera

than the plane of focus is, using similar triangles [18] [55]([21]):

 #

z
=
|:* − :|

:*
			→ 				# = z

|:* − :|

:*
 (30)

The lens equation for the point in focus is:

1

\
=
1

:
+
1

Z
		→ 	: =

Z ∗ \

Z − \
		

(31)

And for the point closer to the camera

1

\
=
1

:*
+
1

Z*
		→ 	 :* =

Z* ∗ \

Z* − \
		

(32)

Bringing equations (31) and (32) to the form of equation (30):

:* − : = 		
Z* ∗ \

Z* − \
−
Z ∗ \

Z − \
=

\+

(Z* − \)(Z − \)
∗ (Z − Z*)			

(33)

Substituting the denominator in equation (30) for (32) and the enumerator for (33) yields:

= z ∗ \ ∗
(Z − Z*)

Z* ∗ (Z − \)
=
\+

Å

(Z − Z*)

Z*(Z − \)
				

(34)

Analogously, the blur circle for the objects farther from the camera than the plane of focus is:

=
\+

Å

(Z+ − Z)

Z+(Z − \)
				

(35)

The depth of field is determined from equations (34) and (33) yielding:

Z+ − Z* =
2Z\+#Å(Z − \)

\H − #+Å+(Z − \)+
				

(36)

 71

Derivation epipolar geometry

To find the geometric relationship between the two cameras in Figure 13, i.e., matrices V and q,

a mathematical approach called the epipolar constraint is used. It uses two observations:

The vectors V⃗, W9ÉÉÉÉ⃗ and WKÉÉÉÉ⃗ all lie in the same epipolar plane. A normal vector to this plane can be

described, for instance, using the cross product:

 CÉ⃗ = V⃗ 	× W9ÉÉÉÉ⃗
(37)

Furthermore, the normal vector must be perpendicular to vectors W9ÉÉÉÉ⃗ and WKÉÉÉÉ⃗ . Hence, the dot-

product must equal zero:

 WKÉÉÉÉ⃗ ∙ 	CÉ⃗ = 	0		AC8		W9ÉÉÉÉ⃗ ∙ 	CÉ⃗ = 	0 (38)

To provide a better fundamental understanding of these operations in later implementation

chapters, the matrix notation will be used instead of vector notation. Equation (38) becomes:

 W1C = 	0		, nℎR@R	W1 = [Q	_	ù] (39)

Equation (37) can be written using matrix notation as:

CÉ⃗ = §
0 −VB V5
VB 0 −V4
V5 V4 0

• §
X3,9
Y3,9
Z3,9

• (40)

To provide a system of equations that includes the required translation matrix V, WK is expressed

as W9 − V in equation (39) and the normal vector is substituted for (37), which yields the coplanar

constraint:

 (W9 − V)1(V	Q	W9) = 0 (41)

The second observation is that the point described in matrices W9 and WK has the same

coordinates when viewed from the other camera, after coordinate transformation between the

cameras (defined for world-to-camera transformation as W3 = q(W2 − V)), which is used for the

second constraint:

 WK = q(W9 − V) (42)

 72

Since q@* = q1, as mentioned previously, equation (42) can be modified to:

 q@*WK = q@*q(W9 − V) 			→ 				 (W9 − V) = q@*WK (43)

Substituting eq. (41) for (43) yields:

 WK1qVW9 = 0	 (44)

Which is:

 àX3,K 	Y3,K 	Z3,Kâ h
@** @*+ @*,
@+* @++ @+,
@,* @,+ @,,

k §
0 −VB V5
VB 0 −V4
V5 V4 0

• §
X3,9
Y3,9
Z3,9

• = 0

The product of q V is called the essential matrix á. It relates two points in three dimensional

coordinates. However, the camera coordinates of the left and right camera in equation (44) are

not known during the camera calibration process. The known coordinates are the image

coordinates a and b for both cameras.

The right camera’s projective transformation from equation (7) becomes:

W3,K1 = g@*1Z3,K 	[aK 	bK 	1]

Inserting W3,K1 in (44) becomes:

 Z3,K[aK 	bK 	1]gK
@*1 		á	g9

@*Z3,9 l
a9
b9
1
m 	= 0 (45)

The depth of the point relative to both cameras (Z3,K , Z3,9) cannot be zero, since this would indicate

that this point lies in the centre of projection, which is inside of the cameras. Therefore Z3,K ≠ 0

and Z3,9 ≠ 0. Hence, the remaining terms in equation (45) must be zero:

 [aK 	bK 	1]	gK
@*1á	g9

@* l
a9
b9
1
m 	= 0 (46)

The product of the matrices in equation(46) relating the left camera’s image coordinates to the

ones of the right camera is called the fundamental matrix \	with \ = 	gK
@*1á	g9

@*
. Equation (46)

becomes

 73

[aK 	bK 	1]	§
c** c*+ c*,
c+* c++ c+,
c,* c,+ c,,

• l
a9
b9
1
m 	= 0 (47)

 74

Taxibot geometry requirements

Figure 54: Geometric requirements defined in [6]

 75

Taxibot FOV configuration

Figure 55: Frontal FOVs Taxibot

Figure 56: Forward and backward DOF

 76

Hardware prototype

Figure 57: Top view of hardware prototype

Figure 58: Bottom view of hardware prototype

 78

Directory structure

Figure 59: Structure of directory

 79

Rectification check

Figure 60: Rectification check, original frames

Figure 61: Rectification check, rectified frames

 80

Sample of images produces with albumentation

Figure 62: First sample of modified images using Albumentation

Figure 63: Second sample of modified images using Albumentation

Figure 64: Third sample of modified images using Albumentation

Figure 65: Fourth sample of modified images using Albumentation

